Sample records for coupled analysis methodology

  1. Methodologies for launcher-payload coupled dynamic analysis

    NASA Astrophysics Data System (ADS)

    Fransen, S. H. J. A.

    2012-06-01

    An important step in the design and verification process of spacecraft structures is the coupled dynamic analysis with the launch vehicle in the low-frequency domain, also referred to as coupled loads analysis (CLA). The objective of such analyses is the computation of the dynamic environment of the spacecraft (payload) in terms of interface accelerations, interface forces, center of gravity (CoG) accelerations as well as the internal state of stress. In order to perform an efficient, fast and accurate launcher-payload coupled dynamic analysis, various methodologies have been applied and developed. The methods are related to substructuring techniques, data recovery techniques, the effects of prestress and fluids and time integration problems. The aim of this paper was to give an overview of these methodologies and to show why, how and where these techniques can be used in the process of launcher-payload coupled dynamic analysis. In addition, it will be shown how these methodologies fit together in a library of procedures which can be used with the MSC.Nastran™ solution sequences.

  2. Application of hybrid methodology to rotors in steady and maneuvering flight

    NASA Astrophysics Data System (ADS)

    Rajmohan, Nischint

    Helicopters are versatile flying machines that have capabilities that are unparalleled by fixed wing aircraft, such as operating in hover, performing vertical takeoff and landing on unprepared sites. This makes their use especially desirable in military and search-and-rescue operations. However, modern helicopters still suffer from high levels of noise and vibration caused by the physical phenomena occurring in the vicinity of the rotor blades. Therefore, improvement in rotorcraft design to reduce the noise and vibration levels requires understanding of the underlying physical phenomena, and accurate prediction capabilities of the resulting rotorcraft aeromechanics. The goal of this research is to study the aeromechanics of rotors in steady and maneuvering flight using hybrid Computational Fluid Dynamics (CFD) methodology. The hybrid CFD methodology uses the Navier-Stokes equations to solve the flow near the blade surface but the effect of the far wake is computed through the wake model. The hybrid CFD methodology is computationally efficient and its wake modeling approach is nondissipative making it an attractive tool to study rotorcraft aeromechanics. Several enhancements were made to the CFD methodology and it was coupled to a Computational Structural Dynamics (CSD) methodology to perform a trimmed aeroelastic analysis of a rotor in forward flight. The coupling analyses, both loose and tight were used to identify the key physical phenomena that affect rotors in different steady flight regimes. The modeling enhancements improved the airloads predictions for a variety of flight conditions. It was found that the tightly coupled method did not impact the loads significantly for steady flight conditions compared to the loosely coupled method. The coupling methodology was extended to maneuvering flight analysis by enhancing the computational and structural models to handle non-periodic flight conditions and vehicle motions in time accurate mode. The flight test control angles were employed to enable the maneuvering flight analysis. The fully coupled model provided the presence of three dynamic stall cycles on the rotor in maneuver. It is important to mention that analysis of maneuvering flight requires knowledge of the pilot input control pitch settings, and the vehicle states. As the result, these computational tools cannot be used for analysis of loads in a maneuver that has not been duplicated in a real flight. This is a significant limitation if these tools are to be selected during the design phase of a helicopter where its handling qualities are evaluated in different trajectories. Therefore, a methodology was developed to couple the CFD/CSD simulation with an inverse flight mechanics simulation to perform the maneuver analysis without using the flight test control input. The methodology showed reasonable convergence in steady flight regime and control angles predictions compared fairly well with test data. In the maneuvering flight regions, the convergence was slower due to relaxation techniques used for the numerical stability. The subsequent computed control angles for the maneuvering flight regions compared well with test data. Further, the enhancement of the rotor inflow computations in the inverse simulation through implementation of a Lagrangian wake model improved the convergence of the coupling methodology.

  3. The Shock and Vibration Bulletin. Part 1. Welcome, Keynote Address, Invited Papers, Pyrotechnic Shock, and Shock Testing and Analysis

    DTIC Science & Technology

    1983-05-01

    DESIGN PROCEDURE M. S. IIAndal, University of Vermont, Burlington, VT Machinery Dynamics ANALYTICAL AND EXPERIMENTAL INVESTIGATION OF ROTATING BLADE... methodology to accurately predict rotor vibratory loads and has recently been initiated for detail design and bench test- coupled rotor/airframe vibrations... design methodology , a trating on the basic disciplines of aerodynamics and struc. coupled rotor/airframe vibration analysis has been developed. tural

  4. Validations of Coupled CSD/CFD and Particle Vortex Transport Method for Rotorcraft Applications: Hover, Transition, and High Speed Flights

    NASA Technical Reports Server (NTRS)

    Anusonti-Inthra, Phuriwat

    2010-01-01

    This paper presents validations of a novel rotorcraft analysis that coupled Computational Fluid Dynamics (CFD), Computational Structural Dynamics (CSD), and Particle Vortex Transport Method (PVTM) methodologies. The CSD with associated vehicle trim analysis is used to calculate blade deformations and trim parameters. The near body CFD analysis is employed to provide detailed near body flow field information which is used to obtain high-fidelity blade aerodynamic loadings. The far field wake dominated region is simulated using the PVTM analysis which provides accurate prediction of the evolution of the rotor wake released from the near body CFD domains. A loose coupling methodology between the CSD and CFD/PVTM modules are used with appropriate information exchange amongst the CSD/CFD/PVTM modules. The coupled CSD/CFD/PVTM methodology is used to simulate various rotorcraft flight conditions (i.e. hover, transition, and high speed flights), and the results are compared with several sets of experimental data. For the hover condition, the results are compared with hover data for the HART II rotor tested at DLR Institute of Flight Systems, Germany. For the forward flight conditions, the results are validated with the UH-60A flight test data.

  5. Couple Attachment and Relationship Duration in Psychotherapy Patients: Exploring a New Methodology of Assessment

    ERIC Educational Resources Information Center

    Sochos, Antigonos

    2014-01-01

    The couple relationship is an essential source of support for individuals undergoing psychological treatment and the aim of this study was to apply a new methodology in assessing the quality of such support. A theoretically informed thematic analysis of interview transcripts was conducted, triangulated by quantitative data. Twenty-one brief…

  6. Examining the Utility of Topic Models for Linguistic Analysis of Couple Therapy

    ERIC Educational Resources Information Center

    Doeden, Michelle A.

    2012-01-01

    This study examined the basic utility of topic models, a computational linguistics model for text-based data, to the investigation of the process of couple therapy. Linguistic analysis offers an additional lens through which to examine clinical data, and the topic model is presented as a novel methodology within couple and family psychology that…

  7. Optimization of coupled multiphysics methodology for safety analysis of pebble bed modular reactor

    NASA Astrophysics Data System (ADS)

    Mkhabela, Peter Tshepo

    The research conducted within the framework of this PhD thesis is devoted to the high-fidelity multi-physics (based on neutronics/thermal-hydraulics coupling) analysis of Pebble Bed Modular Reactor (PBMR), which is a High Temperature Reactor (HTR). The Next Generation Nuclear Plant (NGNP) will be a HTR design. The core design and safety analysis methods are considerably less developed and mature for HTR analysis than those currently used for Light Water Reactors (LWRs). Compared to LWRs, the HTR transient analysis is more demanding since it requires proper treatment of both slower and much longer transients (of time scale in hours and days) and fast and short transients (of time scale in minutes and seconds). There is limited operation and experimental data available for HTRs for validation of coupled multi-physics methodologies. This PhD work developed and verified reliable high fidelity coupled multi-physics models subsequently implemented in robust, efficient, and accurate computational tools to analyse the neutronics and thermal-hydraulic behaviour for design optimization and safety evaluation of PBMR concept The study provided a contribution to a greater accuracy of neutronics calculations by including the feedback from thermal hydraulics driven temperature calculation and various multi-physics effects that can influence it. Consideration of the feedback due to the influence of leakage was taken into account by development and implementation of improved buckling feedback models. Modifications were made in the calculation procedure to ensure that the xenon depletion models were accurate for proper interpolation from cross section tables. To achieve this, the NEM/THERMIX coupled code system was developed to create the system that is efficient and stable over the duration of transient calculations that last over several tens of hours. Another achievement of the PhD thesis was development and demonstration of full-physics, three-dimensional safety analysis methodology for the PBMR to provide reference solutions. Investigation of different aspects of the coupled methodology and development of efficient kinetics treatment for the PBMR were carried out, which accounts for all feedback phenomena in an efficient manner. The OECD/NEA PBMR-400 coupled code benchmark was used as a test matrix for the proposed investigations. The integrated thermal-hydraulics and neutronics (multi-physics) methods were extended to enable modeling of a wider range of transients pertinent to the PBMR. First, the effect of the spatial mapping schemes (spatial coupling) was studied and quantified for different types of transients, which resulted in implementation of improved mapping methodology based on user defined criteria. The second aspect that was studied and optimized is the temporal coupling and meshing schemes between the neutronics and thermal-hydraulics time step selection algorithms. The coupled code convergence was achieved supplemented by application of methods to accelerate it. Finally, the modeling of all feedback phenomena in PBMRs was investigated and a novel treatment of cross-section dependencies was introduced for improving the representation of cross-section variations. The added benefit was that in the process of studying and improving the coupled multi-physics methodology more insight was gained into the physics and dynamics of PBMR, which will help also to optimize the PBMR design and improve its safety. One unique contribution of the PhD research is the investigation of the importance of the correct representation of the three-dimensional (3-D) effects in the PBMR analysis. The performed studies demonstrated that explicit 3-D modeling of control rod movement is superior and removes the errors associated with the grey curtain (2-D homogenized) approximation.

  8. Coupled structural/thermal/electromagnetic analysis/tailoring of graded composite structures

    NASA Technical Reports Server (NTRS)

    Mcknight, R. L.; Huang, H.; Hartle, M.

    1992-01-01

    Accomplishments are described for the third years effort of a 5-year program to develop a methodology for coupled structural/thermal/electromagnetic analysis/tailoring of graded composite structures. These accomplishments include: (1) structural analysis capability specialized for graded composite structures including large deformation and deformation position eigenanalysis technologies; (2) a thermal analyzer specialized for graded composite structures; (3) absorption of electromagnetic waves by graded composite structures; and (4) coupled structural thermal/electromagnetic analysis of graded composite structures.

  9. High Accuracy Liquid Propellant Slosh Predictions Using an Integrated CFD and Controls Analysis Interface

    NASA Technical Reports Server (NTRS)

    Marsell, Brandon; Griffin, David; Schallhorn, Dr. Paul; Roth, Jacob

    2012-01-01

    Coupling computational fluid dynamics (CFD) with a controls analysis tool elegantly allows for high accuracy predictions of the interaction between sloshing liquid propellants and th e control system of a launch vehicle. Instead of relying on mechanical analogs which are not valid during aU stages of flight, this method allows for a direct link between the vehicle dynamic environments calculated by the solver in the controls analysis tool to the fluid flow equations solved by the CFD code. This paper describes such a coupling methodology, presents the results of a series of test cases, and compares said results against equivalent results from extensively validated tools. The coupling methodology, described herein, has proven to be highly accurate in a variety of different cases.

  10. Integrated CFD and Controls Analysis Interface for High Accuracy Liquid Propellant Slosh Predictions

    NASA Technical Reports Server (NTRS)

    Marsell, Brandon; Griffin, David; Schallhorn, Paul; Roth, Jacob

    2012-01-01

    Coupling computational fluid dynamics (CFD) with a controls analysis tool elegantly allows for high accuracy predictions of the interaction between sloshing liquid propellants and the control system of a launch vehicle. Instead of relying on mechanical analogs which are n0t va lid during all stages of flight, this method allows for a direct link between the vehicle dynamic environments calculated by the solver in the controls analysis tool to the fluid now equations solved by the CFD code. This paper describes such a coupling methodology, presents the results of a series of test cases, and compares said results against equivalent results from extensively validated tools. The coupling methodology, described herein, has proven to be highly accurate in a variety of different cases.

  11. Coupled structural/thermal/electromagnetic analysis/tailoring of graded composite structures

    NASA Technical Reports Server (NTRS)

    Mcknight, R. L.; Huang, H.; Hartle, M.

    1992-01-01

    Accomplishments are described for the fourth years effort of a 5-year program to develop a methodology for coupled structural/thermal/electromagnetic analysis/tailoring of graded component structures. These accomplishments include: (1) demonstration of coupled solution capability; (2) alternate CSTEM electromagnetic technology; (3) CSTEM acoustic capability; (4) CSTEM tailoring; (5) CSTEM composite micromechanics using ICAN; and (6) multiple layer elements in CSTEM.

  12. Solving Modal Equations of Motion with Initial Conditions Using MSC/NASTRAN DMAP. Part 2; Coupled Versus Uncoupled Integration

    NASA Technical Reports Server (NTRS)

    Barnett, Alan R.; Ibrahim, Omar M.; Abdallah, Ayman A.; Sullivan, Timothy L.

    1993-01-01

    By utilizing MSC/NASTRAN DMAP (Direct Matrix Abstraction Program) in an existing NASA Lewis Research Center coupled loads methodology, solving modal equations of motion with initial conditions is possible using either coupled (Newmark-Beta) or uncoupled (exact mode superposition) integration available within module TRD1. Both the coupled and newly developed exact mode superposition methods have been used to perform transient analyses of various space systems. However, experience has shown that in most cases, significant time savings are realized when the equations of motion are integrated using the uncoupled solver instead of the coupled solver. Through the results of a real-world engineering analysis, advantages of using the exact mode superposition methodology are illustrated.

  13. ARO - Terrestrial Research Program, Methodologies and Protocols for Characterization of Geomaterials

    DTIC Science & Technology

    2015-05-14

    of ice involves melting, digestion, and analysis using inductively coupled plasma – mass spectrometry (ICPMS). ICP-MS analysis established elemental...4] have distinct chemical compositions. Knowledge of the chemical composition of the mineral assemblage present in a rock is critical to...activation analysis (INAA), to inductively-coupled plasma analysis and mass spectrometry (ICP & ICP-MS), mass spectrometry (MS), and laser-ablation

  14. Coupled structural/thermal/electromagnetic analysis/tailoring of graded composite structures

    NASA Technical Reports Server (NTRS)

    Mcknight, R. L.; Chen, P. C.; Dame, L. T.; Huang, H.

    1992-01-01

    Accomplishments are described for the first year effort of a 5-year program to develop a methodology for coupled structural/thermal/electromagnetic analysis/tailoring of graded composite structures. These accomplishments include: (1) the results of the selective literature survey; (2) 8-, 16-, and 20-noded isoparametric plate and shell elements; (3) large deformation structural analysis; (4) eigenanalysis; (5) anisotropic heat transfer analysis; and (6) anisotropic electromagnetic analysis.

  15. Recent advances in CE-MS coupling: Instrumentation, methodology, and applications.

    PubMed

    Týčová, Anna; Ledvina, Vojtěch; Klepárník, Karel

    2017-01-01

    This review focuses on the latest development of microseparation electromigration methods in capillaries and microfluidic devices coupled with MS for detection and identification of important analytes. It is a continuation of the review article on the same topic by Kleparnik (Electrophoresis 2015, 36, 159-178). A wide selection of 161 relevant articles covers the literature published from June 2014 till May 2016. New improvements in the instrumentation and methodology of MS interfaced with capillary or microfluidic versions of zone electrophoresis, isotachophoresis, and isoelectric focusing are described in detail. The most frequently implemented MS ionization methods include electrospray ionization, matrix-assisted desorption/ionization and inductively coupled plasma ionization. Although the main attention is paid to the development of instrumentation and methodology, representative examples illustrate also applications in the proteomics, glycomics, metabolomics, biomarker research, forensics, pharmacology, food analysis, and single-cell analysis. The combinations of MS with capillary versions of electrochromatography, and micellar electrokinetic chromatography are not included. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Equivalent Viscous Damping Methodologies Applied on VEGA Launch Vehicle Numerical Model

    NASA Astrophysics Data System (ADS)

    Bartoccini, D.; Di Trapani, C.; Fransen, S.

    2014-06-01

    Part of the mission analysis of a spacecraft is the so- called launcher-satellite coupled loads analysis which aims at computing the dynamic environment of the satellite and of the launch vehicle for the most severe load cases in flight. Evidently the damping of the coupled system shall be defined with care as to not overestimate or underestimate the loads derived for the spacecraft. In this paper the application of several EqVD (Equivalent Viscous Damping) for Craig an Bampton (CB)-systems are investigated. Based on the structural damping defined for the various materials in the parent FE-models of the CB-components, EqVD matrices can be computed according to different methodologies. The effect of these methodologies on the numerical reconstruction of the VEGA launch vehicle dynamic environment will be presented.

  17. Development of Probabilistic Life Prediction Methodologies and Testing Strategies for MEMS and CMC's

    NASA Technical Reports Server (NTRS)

    Jadaan, Osama

    2003-01-01

    This effort is to investigate probabilistic life prediction methodologies for ceramic matrix composites and MicroElectroMechanical Systems (MEMS) and to analyze designs that determine stochastic properties of MEMS. For CMC's this includes a brief literature survey regarding lifing methodologies. Also of interest for MEMS is the design of a proper test for the Weibull size effect in thin film (bulge test) specimens. The Weibull size effect is a consequence of a stochastic strength response predicted from the Weibull distribution. Confirming that MEMS strength is controlled by the Weibull distribution will enable the development of a probabilistic design methodology for MEMS - similar to the GRC developed CARES/Life program for bulk ceramics. A main objective of this effort is to further develop and verify the ability of the Ceramics Analysis and Reliability Evaluation of Structures/Life (CARES/Life) code to predict the time-dependent reliability of MEMS structures subjected to multiple transient loads. A second set of objectives is to determine the applicability/suitability of the CARES/Life methodology for CMC analysis, what changes would be needed to the methodology and software, and if feasible, run a demonstration problem. Also important is an evaluation of CARES/Life coupled to the ANSYS Probabilistic Design System (PDS) and the potential of coupling transient reliability analysis to the ANSYS PDS.

  18. Intervention research in couple and family therapy: a methodological and substantive review and an introduction to the special issue.

    PubMed

    Sprenkle, Douglas H

    2012-01-01

    This article serves as an introduction to this third version of research reviews of couple and family therapy (CFT) that have appeared in this journal beginning in 1995. It also presents a methodological and substantive overview of research in couple and family therapy from about 2001/2002 to 2010/2011 (the period covered in this issue), while also making connections with previous research. The article introduces quantitative research reviews of family-based intervention research that appear in this issue on 10 substantive areas including conduct disorder/delinquency, drug abuse, childhood and adolescent disorders (not including the aforementioned), family psycho-education for major mental illness, alcoholism, couple distress, relationship education, affective disorders, interpersonal violence, and chronic illness. The paper also introduces the first qualitative research paper in this series, as well as a paper that highlights current methodologies in meta-analysis. The first part of this article rates the 10 content areas on 12 dimensions of methodological strength for quantitative research and makes generalizations about the state of quantitative methodology in CFT. The latter part of the papers summarizes and makes comments on the substantive findings in the 12 papers in this issue, as well as on the field as a whole. © 2012 American Association for Marriage and Family Therapy.

  19. A parallel multi-domain solution methodology applied to nonlinear thermal transport problems in nuclear fuel pins

    DOE PAGES

    Philip, Bobby; Berrill, Mark A.; Allu, Srikanth; ...

    2015-01-26

    We describe an efficient and nonlinearly consistent parallel solution methodology for solving coupled nonlinear thermal transport problems that occur in nuclear reactor applications over hundreds of individual 3D physical subdomains. Efficiency is obtained by leveraging knowledge of the physical domains, the physics on individual domains, and the couplings between them for preconditioning within a Jacobian Free Newton Krylov method. Details of the computational infrastructure that enabled this work, namely the open source Advanced Multi-Physics (AMP) package developed by the authors are described. The details of verification and validation experiments, and parallel performance analysis in weak and strong scaling studies demonstratingmore » the achieved efficiency of the algorithm are presented. Moreover, numerical experiments demonstrate that the preconditioner developed is independent of the number of fuel subdomains in a fuel rod, which is particularly important when simulating different types of fuel rods. Finally, we demonstrate the power of the coupling methodology by considering problems with couplings between surface and volume physics and coupling of nonlinear thermal transport in fuel rods to an external radiation transport code.« less

  20. Coupled socioeconomic-crop modelling for the participatory local analysis of climate change impacts on smallholder farmers in Guatemala

    NASA Astrophysics Data System (ADS)

    Malard, J. J.; Adamowski, J. F.; Wang, L. Y.; Rojas, M.; Carrera, J.; Gálvez, J.; Tuy, H. A.; Melgar-Quiñonez, H.

    2015-12-01

    The modelling of the impacts of climate change on agriculture requires the inclusion of socio-economic factors. However, while cropping models and economic models of agricultural systems are common, dynamically coupled socio-economic-biophysical models have not received as much success. A promising methodology for modelling the socioeconomic aspects of coupled natural-human systems is participatory system dynamics modelling, in which stakeholders develop mental maps of the socio-economic system that are then turned into quantified simulation models. This methodology has been successful in the water resources management field. However, while the stocks and flows of water resources have also been represented within the system dynamics modelling framework and thus coupled to the socioeconomic portion of the model, cropping models are ill-suited for such reformulation. In addition, most of these system dynamics models were developed without stakeholder input, limiting the scope for the adoption and implementation of their results. We therefore propose a new methodology for the analysis of climate change variability on agroecosystems which uses dynamically coupled system dynamics (socio-economic) and biophysical (cropping) models to represent both physical and socioeconomic aspects of the agricultural system, using two case studies (intensive market-based agricultural development versus subsistence crop-based development) from rural Guatemala. The system dynamics model component is developed with relevant governmental and NGO stakeholders from rural and agricultural development in the case study regions and includes such processes as education, poverty and food security. Common variables with the cropping models (yield and agricultural management choices) are then used to dynamically couple the two models together, allowing for the analysis of the agroeconomic system's response to and resilience against various climatic and socioeconomic shocks.

  1. Four applications of a software data collection and analysis methodology

    NASA Technical Reports Server (NTRS)

    Basili, Victor R.; Selby, Richard W., Jr.

    1985-01-01

    The evaluation of software technologies suffers because of the lack of quantitative assessment of their effect on software development and modification. A seven-step data collection and analysis methodology couples software technology evaluation with software measurement. Four in-depth applications of the methodology are presented. The four studies represent each of the general categories of analyses on the software product and development process: blocked subject-project studies, replicated project studies, multi-project variation studies, and single project strategies. The four applications are in the areas of, respectively, software testing, cleanroom software development, characteristic software metric sets, and software error analysis.

  2. High-performance parallel analysis of coupled problems for aircraft propulsion

    NASA Technical Reports Server (NTRS)

    Felippa, C. A.; Farhat, C.; Lanteri, S.; Gumaste, U.; Ronaghi, M.

    1994-01-01

    Applications are described of high-performance parallel, computation for the analysis of complete jet engines, considering its multi-discipline coupled problem. The coupled problem involves interaction of structures with gas dynamics, heat conduction and heat transfer in aircraft engines. The methodology issues addressed include: consistent discrete formulation of coupled problems with emphasis on coupling phenomena; effect of partitioning strategies, augmentation and temporal solution procedures; sensitivity of response to problem parameters; and methods for interfacing multiscale discretizations in different single fields. The computer implementation issues addressed include: parallel treatment of coupled systems; domain decomposition and mesh partitioning strategies; data representation in object-oriented form and mapping to hardware driven representation, and tradeoff studies between partitioning schemes and fully coupled treatment.

  3. Development of a rotorcraft. Propulsion dynamics interface analysis, volume 2

    NASA Technical Reports Server (NTRS)

    Hull, R.

    1982-01-01

    A study was conducted to establish a coupled rotor/propulsion analysis that would be applicable to a wide range of rotorcraft systems. The effort included the following tasks: (1) development of a model structure suitable for simulating a wide range of rotorcraft configurations; (2) defined a methodology for parameterizing the model structure to represent a particular rotorcraft; (3) constructing a nonlinear coupled rotor/propulsion model as a test case to use in analyzing coupled system dynamics; and (4) an attempt to develop a mostly linear coupled model derived from the complete nonlinear simulations. Documentation of the computer models developed is presented.

  4. Discovering Semantic Patterns in Bibliographically Coupled Documents.

    ERIC Educational Resources Information Center

    Qin, Jian

    1999-01-01

    An example of semantic pattern analysis, based on keywords selected from documents grouped by bibliographical coupling, is used to demonstrate the methodological aspects of knowledge discovery in bibliographic databases. Frequency distribution patterns suggest the existence of a common intellectual base with a wide range of specialties and…

  5. Comparison of composite rotor blade models: A coupled-beam analysis and an MSC/NASTRAN finite-element model

    NASA Technical Reports Server (NTRS)

    Hodges, Robert V.; Nixon, Mark W.; Rehfield, Lawrence W.

    1987-01-01

    A methodology was developed for the structural analysis of composite rotor blades. This coupled-beam analysis is relatively simple to use compared with alternative analysis techniques. The beam analysis was developed for thin-wall single-cell rotor structures and includes the effects of elastic coupling. This paper demonstrates the effectiveness of the new composite-beam analysis method through comparison of its results with those of an established baseline analysis technique. The baseline analysis is an MSC/NASTRAN finite-element model built up from anisotropic shell elements. Deformations are compared for three linear static load cases of centrifugal force at design rotor speed, applied torque, and lift for an ideal rotor in hover. A D-spar designed to twist under axial loading is the subject of the analysis. Results indicate the coupled-beam analysis is well within engineering accuracy.

  6. Risk-Informed External Hazards Analysis for Seismic and Flooding Phenomena for a Generic PWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parisi, Carlo; Prescott, Steve; Ma, Zhegang

    This report describes the activities performed during the FY2017 for the US-DOE Light Water Reactor Sustainability Risk-Informed Safety Margin Characterization (LWRS-RISMC), Industry Application #2. The scope of Industry Application #2 is to deliver a risk-informed external hazards safety analysis for a representative nuclear power plant. Following the advancements occurred during the previous FYs (toolkits identification, models development), FY2017 focused on: increasing the level of realism of the analysis; improving the tools and the coupling methodologies. In particular the following objectives were achieved: calculation of buildings pounding and their effects on components seismic fragility; development of a SAPHIRE code PRA modelsmore » for 3-loops Westinghouse PWR; set-up of a methodology for performing static-dynamic PRA coupling between SAPHIRE and EMRALD codes; coupling RELAP5-3D/RAVEN for performing Best-Estimate Plus Uncertainty analysis and automatic limit surface search; and execute sample calculations for demonstrating the capabilities of the toolkit in performing a risk-informed external hazards safety analyses.« less

  7. Client Narratives about Experiences with a Multicouple Treatment Program for Intimate Partner Violence

    ERIC Educational Resources Information Center

    Todahl, Jeff; Linville, Deanna; Tuttle Shamblin, Abby F.; Ball, David

    2012-01-01

    A handful of clinical trials have concluded that conjoint couples treatment for intimate partner violence is safe and at least as effective as conventional batterer intervention programs, yet very few researchers have explored couples' perspectives on conjoint treatment. Using qualitative narrative analysis methodology, the researchers conducted…

  8. Computational methods for global/local analysis

    NASA Technical Reports Server (NTRS)

    Ransom, Jonathan B.; Mccleary, Susan L.; Aminpour, Mohammad A.; Knight, Norman F., Jr.

    1992-01-01

    Computational methods for global/local analysis of structures which include both uncoupled and coupled methods are described. In addition, global/local analysis methodology for automatic refinement of incompatible global and local finite element models is developed. Representative structural analysis problems are presented to demonstrate the global/local analysis methods.

  9. Methodology for estimating helicopter performance and weights using limited data

    NASA Technical Reports Server (NTRS)

    Baserga, Claudio; Ingalls, Charles; Lee, Henry; Peyran, Richard

    1990-01-01

    Methodology is developed and described for estimating the flight performance and weights of a helicopter for which limited data are available. The methodology is based on assumptions which couple knowledge of the technology of the helicopter under study with detailed data from well documented helicopters thought to be of similar technology. The approach, analysis assumptions, technology modeling, and the use of reference helicopter data are discussed. Application of the methodology is illustrated with an investigation of the Agusta A129 Mangusta.

  10. Coupled reactors analysis: New needs and advances using Monte Carlo methodology

    DOE PAGES

    Aufiero, M.; Palmiotti, G.; Salvatores, M.; ...

    2016-08-20

    Coupled reactors and the coupling features of large or heterogeneous core reactors can be investigated with the Avery theory that allows a physics understanding of the main features of these systems. However, the complex geometries that are often encountered in association with coupled reactors, require a detailed geometry description that can be easily provided by modern Monte Carlo (MC) codes. This implies a MC calculation of the coupling parameters defined by Avery and of the sensitivity coefficients that allow further detailed physics analysis. The results presented in this paper show that the MC code SERPENT has been successfully modifed tomore » meet the required capabilities.« less

  11. Coupled structural/thermal/electromagnetic analysis/tailoring of graded composite structures

    NASA Technical Reports Server (NTRS)

    Hartle, M. S.; Mcknight, R. L.; Huang, H.; Holt, R.

    1992-01-01

    Described here are the accomplishments of a 5-year program to develop a methodology for coupled structural, thermal, electromagnetic analysis tailoring of graded component structures. The capabilities developed over the course of the program are the analyzer module and the tailoring module for the modeling of graded materials. Highlighted accomplishments for the past year include the addition of a buckling analysis capability, the addition of mode shape slope calculation for flutter analysis, verification of the analysis modules using simulated components, and verification of the tailoring module.

  12. Quantitative Analysis by Isotopic Dilution Using Mass Spectroscopy: The Determination of Caffeine by GC-MS.

    ERIC Educational Resources Information Center

    Hill, Devon W.; And Others

    1988-01-01

    Describes a laboratory technique for quantitative analysis of caffeine by an isotopic dilution method for coupled gas chromatography-mass spectroscopy. Discusses caffeine analysis and experimental methodology. Lists sample caffeine concentrations found in common products. (MVL)

  13. Aeroelastic optimization methodology for viscous and turbulent flows

    NASA Astrophysics Data System (ADS)

    Barcelos Junior, Manuel Nascimento Dias

    2007-12-01

    In recent years, the development of faster computers and parallel processing allowed the application of high-fidelity analysis methods to the aeroelastic design of aircraft. However, these methods are restricted to the final design verification, mainly due to the computational cost involved in iterative design processes. Therefore, this work is concerned with the creation of a robust and efficient aeroelastic optimization methodology for inviscid, viscous and turbulent flows by using high-fidelity analysis and sensitivity analysis techniques. Most of the research in aeroelastic optimization, for practical reasons, treat the aeroelastic system as a quasi-static inviscid problem. In this work, as a first step toward the creation of a more complete aeroelastic optimization methodology for realistic problems, an analytical sensitivity computation technique was developed and tested for quasi-static aeroelastic viscous and turbulent flow configurations. Viscous and turbulent effects are included by using an averaged discretization of the Navier-Stokes equations, coupled with an eddy viscosity turbulence model. For quasi-static aeroelastic problems, the traditional staggered solution strategy has unsatisfactory performance when applied to cases where there is a strong fluid-structure coupling. Consequently, this work also proposes a solution methodology for aeroelastic and sensitivity analyses of quasi-static problems, which is based on the fixed point of an iterative nonlinear block Gauss-Seidel scheme. The methodology can also be interpreted as the solution of the Schur complement of the aeroelastic and sensitivity analyses linearized systems of equations. The methodologies developed in this work are tested and verified by using realistic aeroelastic systems.

  14. Ten Adaptive Strategies for Family and Work Balance: Advice from Successful Families.

    ERIC Educational Resources Information Center

    Haddock, Shelley A.; Zimmerman, Toni Schindler; Ziemba, Scott J.; Current, Lisa R.

    2001-01-01

    Investigated adaptive strategies of middle class, dual earner couples (N=47) with children that are successfully managing family and work. Guided by grounded-theory methodology, analysis of interview data revealed these successful couples structured their lives around 10 major strategies. Each strategy is defined and illustrated through the…

  15. Exploratory High-Fidelity Aerostructural Optimization Using an Efficient Monolithic Solution Method

    NASA Astrophysics Data System (ADS)

    Zhang, Jenmy Zimi

    This thesis is motivated by the desire to discover fuel efficient aircraft concepts through exploratory design. An optimization methodology based on tightly integrated high-fidelity aerostructural analysis is proposed, which has the flexibility, robustness, and efficiency to contribute to this goal. The present aerostructural optimization methodology uses an integrated geometry parameterization and mesh movement strategy, which was initially proposed for aerodynamic shape optimization. This integrated approach provides the optimizer with a large amount of geometric freedom for conducting exploratory design, while allowing for efficient and robust mesh movement in the presence of substantial shape changes. In extending this approach to aerostructural optimization, this thesis has addressed a number of important challenges. A structural mesh deformation strategy has been introduced to translate consistently the shape changes described by the geometry parameterization to the structural model. A three-field formulation of the discrete steady aerostructural residual couples the mesh movement equations with the three-dimensional Euler equations and a linear structural analysis. Gradients needed for optimization are computed with a three-field coupled adjoint approach. A number of investigations have been conducted to demonstrate the suitability and accuracy of the present methodology for use in aerostructural optimization involving substantial shape changes. Robustness and efficiency in the coupled solution algorithms is crucial to the success of an exploratory optimization. This thesis therefore also focuses on the design of an effective monolithic solution algorithm for the proposed methodology. This involves using a Newton-Krylov method for the aerostructural analysis and a preconditioned Krylov subspace method for the coupled adjoint solution. Several aspects of the monolithic solution method have been investigated. These include appropriate strategies for scaling and matrix-vector product evaluation, as well as block preconditioning techniques that preserve the modularity between subproblems. The monolithic solution method is applied to problems with varying degrees of fluid-structural coupling, as well as a wing span optimization study. The monolithic solution algorithm typically requires 20%-70% less computing time than its partitioned counterpart. This advantage increases with increasing wing flexibility. The performance of the monolithic solution method is also much less sensitive to the choice of the solution parameter.

  16. Trace elemental composition of curry by inductively coupled plasma optical emission spectrometry (ICP-OES).

    PubMed

    Gonzálvez, A; Armenta, S; De La Guardia, M

    2008-01-01

    A methodology based on inductively coupled plasma optical emission spectrometry (ICP-OES) after microwave-assisted acid digestion was developed to determine the content of traces elements in curry samples from the Spanish market. The methodology was validated in terms of accuracy by the analysis of citrus and tomato leaf reference materials achieving comparable results with the certified values. The trace metal content of curry samples was compared with data available from previously published reports concerning Indian samples, especially in terms of heavy metal composition, in order to guarantee the quality of the commercially available spices in the European countries. Values found for the analysis of arsenic, lead and cadmium were significantly lower than the maximum limit allowed by European Union statutory limits for heavy metals and lower than those obtained for Indian curry leaves reported by Indian research teams by using neutron activation and γ-ray analysis.

  17. Optimization of chitosan nanoparticles for colon tumors using experimental design methodology.

    PubMed

    Jain, Anekant; Jain, Sanjay K

    2016-12-01

    Purpose Colon-specific drug delivery systems (CDDS) can improve the bio-availability of drugs through the oral route. A novel formulation for oral administration using ligand coupled chitosan nanoparticles bearing 5-Flurouracil (5FU) encapsulated in enteric coated pellets has been investigated for CDDS. Method The effect of polymer concentration, drug concentration, stirring time and stirring speed on the encapsulation efficiency, and size of nanoparticles were evaluated. The best (or optimum) formulation was obtained by response surface methodology. Using the experimental data, analysis of variance has been carried out to evolve linear empirical models. Using a new methodology, polynomial models have been evolved and the parametric analysis has been carried out. In order to target nanoparticles to the hyaluronic acid (HA) receptors present on colon tumors, HA coupled nanoparticles were tested for their efficacy in vivo. The HA coupled nanoparticles were encapsulated in pellets and were enteric coated to release the drug in the colon. Results Drug release studies under conditions of mimicking stomach to colon transit have shown that the drug was protected from being released in the physiological environment of the stomach and small intestine. The relatively high local drug concentration with prolonged exposure time provides a potential to enhance anti-tumor efficacy with low systemic toxicity for the treatment of colon cancer. Conclusions Conclusively, HA coupled nanoparticles can be considered as the potential candidate for targeted drug delivery and are anticipated to be promising in the treatment of colorectal cancer.

  18. New methodology for the analysis of volatile organic compounds (VOCs) in bioethanol by gas chromatography coupled to mass spectrometry

    NASA Astrophysics Data System (ADS)

    Campos, M. S. G.; Sarkis, J. E. S.

    2018-03-01

    The present study presents a new analytical methodology for the determination of 11 compounds present in ethanol samples through the gas chromatography coupled to mass spectrometry (GC-MS) technique using a medium polarity chromatography column composed of 6% cyanopropyl-phenyl and 94% dimethyl polysiloxane. The validation parameters were determined according to NBR ISO 17025:2005. The recovery rates of the studied compounds were 100.4% to 114.7%. The limits of quantification are between 2.4 mg.kg-1 and 5.8 mg.kg-1. The uncertainty of the measurement was estimate in circa of 8%.

  19. Urban Flow and Pollutant Dispersion Simulation with Multi-scale coupling of Meteorological Model with Computational Fluid Dynamic Analysis

    NASA Astrophysics Data System (ADS)

    Liu, Yushi; Poh, Hee Joo

    2014-11-01

    The Computational Fluid Dynamics analysis has become increasingly important in modern urban planning in order to create highly livable city. This paper presents a multi-scale modeling methodology which couples Weather Research and Forecasting (WRF) Model with open source CFD simulation tool, OpenFOAM. This coupling enables the simulation of the wind flow and pollutant dispersion in urban built-up area with high resolution mesh. In this methodology meso-scale model WRF provides the boundary condition for the micro-scale CFD model OpenFOAM. The advantage is that the realistic weather condition is taken into account in the CFD simulation and complexity of building layout can be handled with ease by meshing utility of OpenFOAM. The result is validated against the Joint Urban 2003 Tracer Field Tests in Oklahoma City and there is reasonably good agreement between the CFD simulation and field observation. The coupling of WRF- OpenFOAM provide urban planners with reliable environmental modeling tool in actual urban built-up area; and it can be further extended with consideration of future weather conditions for the scenario studies on climate change impact.

  20. Evaluative methodology for comprehensive water quality management planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dyer, H. L.

    Computer-based evaluative methodologies have been developed to provide for the analysis of coupled phenomena associated with natural resource comprehensive planning requirements. Provisions for planner/computer interaction have been included. Each of the simulation models developed is described in terms of its coded procedures. An application of the models for water quality management planning is presented; and the data requirements for each of the models are noted.

  1. High-resolution coupled physics solvers for analysing fine-scale nuclear reactor design problems.

    PubMed

    Mahadevan, Vijay S; Merzari, Elia; Tautges, Timothy; Jain, Rajeev; Obabko, Aleksandr; Smith, Michael; Fischer, Paul

    2014-08-06

    An integrated multi-physics simulation capability for the design and analysis of current and future nuclear reactor models is being investigated, to tightly couple neutron transport and thermal-hydraulics physics under the SHARP framework. Over several years, high-fidelity, validated mono-physics solvers with proven scalability on petascale architectures have been developed independently. Based on a unified component-based architecture, these existing codes can be coupled with a mesh-data backplane and a flexible coupling-strategy-based driver suite to produce a viable tool for analysts. The goal of the SHARP framework is to perform fully resolved coupled physics analysis of a reactor on heterogeneous geometry, in order to reduce the overall numerical uncertainty while leveraging available computational resources. The coupling methodology and software interfaces of the framework are presented, along with verification studies on two representative fast sodium-cooled reactor demonstration problems to prove the usability of the SHARP framework.

  2. High-resolution coupled physics solvers for analysing fine-scale nuclear reactor design problems

    PubMed Central

    Mahadevan, Vijay S.; Merzari, Elia; Tautges, Timothy; Jain, Rajeev; Obabko, Aleksandr; Smith, Michael; Fischer, Paul

    2014-01-01

    An integrated multi-physics simulation capability for the design and analysis of current and future nuclear reactor models is being investigated, to tightly couple neutron transport and thermal-hydraulics physics under the SHARP framework. Over several years, high-fidelity, validated mono-physics solvers with proven scalability on petascale architectures have been developed independently. Based on a unified component-based architecture, these existing codes can be coupled with a mesh-data backplane and a flexible coupling-strategy-based driver suite to produce a viable tool for analysts. The goal of the SHARP framework is to perform fully resolved coupled physics analysis of a reactor on heterogeneous geometry, in order to reduce the overall numerical uncertainty while leveraging available computational resources. The coupling methodology and software interfaces of the framework are presented, along with verification studies on two representative fast sodium-cooled reactor demonstration problems to prove the usability of the SHARP framework. PMID:24982250

  3. Conversation Analysis in Computer-Assisted Language Learning

    ERIC Educational Resources Information Center

    González-Lloret, Marta

    2015-01-01

    The use of Conversation Analysis (CA) in the study of technology-mediated interactions is a recent methodological addition to qualitative research in the field of Computer-assisted Language Learning (CALL). The expansion of CA in Second Language Acquisition research, coupled with the need for qualitative techniques to explore how people interact…

  4. Design Methodology of a Dual-Halbach Array Linear Actuator with Thermal-Electromagnetic Coupling

    PubMed Central

    Eckert, Paulo Roberto; Flores Filho, Aly Ferreira; Perondi, Eduardo; Ferri, Jeferson; Goltz, Evandro

    2016-01-01

    This paper proposes a design methodology for linear actuators, considering thermal and electromagnetic coupling with geometrical and temperature constraints, that maximizes force density and minimizes force ripple. The method allows defining an actuator for given specifications in a step-by-step way so that requirements are met and the temperature within the device is maintained under or equal to its maximum allowed for continuous operation. According to the proposed method, the electromagnetic and thermal models are built with quasi-static parametric finite element models. The methodology was successfully applied to the design of a linear cylindrical actuator with a dual quasi-Halbach array of permanent magnets and a moving-coil. The actuator can produce an axial force of 120 N and a stroke of 80 mm. The paper also presents a comparative analysis between results obtained considering only an electromagnetic model and the thermal-electromagnetic coupled model. This comparison shows that the final designs for both cases differ significantly, especially regarding its active volume and its electrical and magnetic loading. Although in this paper the methodology was employed to design a specific actuator, its structure can be used to design a wide range of linear devices if the parametric models are adjusted for each particular actuator. PMID:26978370

  5. Design Methodology of a Dual-Halbach Array Linear Actuator with Thermal-Electromagnetic Coupling.

    PubMed

    Eckert, Paulo Roberto; Flores Filho, Aly Ferreira; Perondi, Eduardo; Ferri, Jeferson; Goltz, Evandro

    2016-03-11

    This paper proposes a design methodology for linear actuators, considering thermal and electromagnetic coupling with geometrical and temperature constraints, that maximizes force density and minimizes force ripple. The method allows defining an actuator for given specifications in a step-by-step way so that requirements are met and the temperature within the device is maintained under or equal to its maximum allowed for continuous operation. According to the proposed method, the electromagnetic and thermal models are built with quasi-static parametric finite element models. The methodology was successfully applied to the design of a linear cylindrical actuator with a dual quasi-Halbach array of permanent magnets and a moving-coil. The actuator can produce an axial force of 120 N and a stroke of 80 mm. The paper also presents a comparative analysis between results obtained considering only an electromagnetic model and the thermal-electromagnetic coupled model. This comparison shows that the final designs for both cases differ significantly, especially regarding its active volume and its electrical and magnetic loading. Although in this paper the methodology was employed to design a specific actuator, its structure can be used to design a wide range of linear devices if the parametric models are adjusted for each particular actuator.

  6. Interactive multi-mode blade impact analysis

    NASA Technical Reports Server (NTRS)

    Alexander, A.; Cornell, R. W.

    1978-01-01

    The theoretical methodology used in developing an analysis for the response of turbine engine fan blades subjected to soft-body (bird) impacts is reported, and the computer program developed using this methodology as its basis is described. This computer program is an outgrowth of two programs that were previously developed for the purpose of studying problems of a similar nature (a 3-mode beam impact analysis and a multi-mode beam impact analysis). The present program utilizes an improved missile model that is interactively coupled with blade motion which is more consistent with actual observations. It takes into account local deformation at the impact area, blade camber effects, and the spreading of the impacted missile mass on the blade surface. In addition, it accommodates plate-type mode shapes. The analysis capability in this computer program represents a significant improvement in the development of the methodology for evaluating potential fan blade materials and designs with regard to foreign object impact resistance.

  7. Robust decentralized controller for minimizing coupling effect in single inductor multiple output DC-DC converter operating in continuous conduction mode.

    PubMed

    Medeiros, Renan Landau Paiva de; Barra, Walter; Bessa, Iury Valente de; Chaves Filho, João Edgar; Ayres, Florindo Antonio de Cavalho; Neves, Cleonor Crescêncio das

    2018-02-01

    This paper describes a novel robust decentralized control design methodology for a single inductor multiple output (SIMO) DC-DC converter. Based on a nominal multiple input multiple output (MIMO) plant model and performance requirements, a pairing input-output analysis is performed to select the suitable input to control each output aiming to attenuate the loop coupling. Thus, the plant uncertainty limits are selected and expressed in interval form with parameter values of the plant model. A single inductor dual output (SIDO) DC-DC buck converter board is developed for experimental tests. The experimental results show that the proposed methodology can maintain a desirable performance even in the presence of parametric uncertainties. Furthermore, the performance indexes calculated from experimental data show that the proposed methodology outperforms classical MIMO control techniques. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  8. Models of Educational Attainment: A Theoretical and Methodological Critique

    ERIC Educational Resources Information Center

    Byrne, D. S.; And Others

    1973-01-01

    Uses cluster analysis techniques to show that egalitarian policies in secondary education coupled with high financial inputs have measurable payoffs in higher attainment rates, based on Max Weber's notion of power'' within a community. (Author/JM)

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harben, P E; Harris, D; Myers, S

    Seismic imaging and tracking methods have intelligence and monitoring applications. Current systems, however, do not adequately calibrate or model the unknown geological heterogeneity. Current systems are also not designed for rapid data acquisition and analysis in the field. This project seeks to build the core technological capabilities coupled with innovative deployment, processing, and analysis methodologies to allow seismic methods to be effectively utilized in the applications of seismic imaging and vehicle tracking where rapid (minutes to hours) and real-time analysis is required. The goal of this project is to build capabilities in acquisition system design, utilization and in full 3Dmore » finite difference modeling as well as statistical characterization of geological heterogeneity. Such capabilities coupled with a rapid field analysis methodology based on matched field processing are applied to problems associated with surveillance, battlefield management, finding hard and deeply buried targets, and portal monitoring. This project benefits the U.S. military and intelligence community in support of LLNL's national-security mission. FY03 was the final year of this project. In the 2.5 years this project has been active, numerous and varied developments and milestones have been accomplished. A wireless communication module for seismic data was developed to facilitate rapid seismic data acquisition and analysis. The E3D code was enhanced to include topographic effects. Codes were developed to implement the Karhunen-Loeve (K-L) statistical methodology for generating geological heterogeneity that can be utilized in E3D modeling. The matched field processing methodology applied to vehicle tracking and based on a field calibration to characterize geological heterogeneity was tested and successfully demonstrated in a tank tracking experiment at the Nevada Test Site. A 3-seismic-array vehicle tracking testbed was installed on-site at LLNL for testing real-time seismic tracking methods. A field experiment was conducted over a tunnel at the Nevada Site that quantified the tunnel reflection signal and, coupled with modeling, identified key needs and requirements in experimental layout of sensors. A large field experiment was conducted at the Lake Lynn Laboratory, a mine safety research facility in Pennsylvania, over a tunnel complex in realistic, difficult conditions. This experiment gathered the necessary data for a full 3D attempt to apply the methodology. The experiment also collected data to analyze the capabilities to detect and locate in-tunnel explosions for mine safety and other applications.« less

  10. Coupled liquid chromatography-gas chromatography for the rapid analysis of gamma-oryzanol in rice lipids.

    PubMed

    Miller, Andreas; Frenzel, Thomas; Schmarr, Hans-Georg; Engel, Karl-Heinz

    2003-01-24

    An approach based on on-line coupled liquid chromatography-gas chromatography (LC-GC) was developed for the rapid analysis of gamma-oryzanol in rice. Total lipids were extracted from rice and subjected to LC-GC without any prior purification. gamma-Oryzanol was pre-separated by HPLC from rice lipids and transferred on-line to GC analysis in order to separate its major constituents. 24-methylenecycloartanyl ferulate, cycloartenyl ferulate, campesteryl ferulate, beta-sitosteryl ferulate and campestanyl ferulate. The identities of the compounds were confirmed by off-line GC-MS analysis. Total gamma-oryzanol content could be quantified by HPLC-UV detection and the distribution of gamma-oryzanol constituents could be determined by on-line coupled GC analysis. The proposed methodology paves the way for high-throughput investigations providing information on natural variations in gamma-oryzanol content and its composition in different rice varieties.

  11. Estimating annual bole biomass production using uncertainty analysis

    Treesearch

    Travis J. Woolley; Mark E. Harmon; Kari B. O' Connell

    2007-01-01

    Two common sampling methodologies coupled with a simple statistical model were evaluated to determine the accuracy and precision of annual bole biomass production (BBP) and inter-annual variability estimates using this type of approach. We performed an uncertainty analysis using Monte Carlo methods in conjunction with radial growth core data from trees in three Douglas...

  12. Therapy of a couple with a bipolar spouse.

    PubMed

    Witusik, Andrzej; Pietras, Tadeusz

    2017-10-23

    Qualitative analysis of therapy of a couple with a partner who has bipolar disorder is an important research paradigm in contemporary psychotherapy of mental disorders.The qualitative method of the study is important both from the cognitive point of view and for the evaluation of the therapeutic efficacy in the individual, idiographical aspect. The aim of the study is a qualitative analysis of the therapeutic process of a couple in which one partner suffers from bipolar affective disorder. The study of the couple therapy process utilized the qualitative research methodology using variouspsychotherapeutic paradigms indicating the interrelationships that exist between relapses of the disease and functioning of the couple. The importance of triangulation processes, inheritance of transgenerational myths and dysfunctional cognitive patterns in the functional destabilization of a couple with one partner suffering from bipolar affective disorder was indicated. The study of the couple therapy process utilized the qualitative research methodology using variouspsychotherapeutic paradigms indicating the interrelationships that exist between relapses of the disease and functioning of the couple. The importance of triangulation processes, inheritance of transgenerational myths and dysfunctional cognitive patterns in the functional destabilization of a couple with one partner suffering from bipolar affective disorder was indicated. The dysfunctionality of the discussed couple is largely due to the effects of bipolar disorder and related disturbances on marital functioning. The spectrum of autism in the child is probably related both to the genetic strain of predisposition to psychiatric disorders and to the dysfunctionality of the parental dyad. The presence of bipolar affective disorder in the partner's family is also a genetic burden. The wife's aggression represents probably a syndrome of adaptation to disease in the family. Aggression plays a morphostatic role in the couple integrity.In both families of origin of the spouses, the transgeneration myth placed the woman in the position of a strong and family-oriented person.

  13. Evaluation of RCAS Inflow Models for Wind Turbine Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tangler, J.; Bir, G.

    The finite element structural modeling in the Rotorcraft Comprehensive Analysis System (RCAS) provides a state-of-the-art approach to aeroelastic analysis. This, coupled with its ability to model all turbine components, results in a methodology that can simulate complex system interactions characteristic of large wind. In addition, RCAS is uniquely capable of modeling advanced control algorithms and the resulting dynamic responses.

  14. Know how to maximize maintenance spending

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carrino, A.J.; Jones, R.B.; Platt, W.E.

    Solomon has developed a methodology to determine a large optimum point where availability meets maintenance spending for Powder River Basin (PRB) coal-fired units. Using a database of sufficient size and composition across various operating ranges, Solomon generated an algorithm that predicts the relationship between maintenance spending and availability. Coupling this generalized algorithm with a unit-specific market-loss curve determines the optimum spending for a facility. The article presents the results of the analysis, how this methodology can be applied to develop optimum operating and financial targets for specific units and markets and a process to achieve those targets. It also describesmore » how this methodology can be used for other types of fossil-fired technologies and future enhancements to the analysis. 5 figs.« less

  15. High-resolution coupled physics solvers for analysing fine-scale nuclear reactor design problems

    DOE PAGES

    Mahadevan, Vijay S.; Merzari, Elia; Tautges, Timothy; ...

    2014-06-30

    An integrated multi-physics simulation capability for the design and analysis of current and future nuclear reactor models is being investigated, to tightly couple neutron transport and thermal-hydraulics physics under the SHARP framework. Over several years, high-fidelity, validated mono-physics solvers with proven scalability on petascale architectures have been developed independently. Based on a unified component-based architecture, these existing codes can be coupled with a mesh-data backplane and a flexible coupling-strategy-based driver suite to produce a viable tool for analysts. The goal of the SHARP framework is to perform fully resolved coupled physics analysis of a reactor on heterogeneous geometry, in ordermore » to reduce the overall numerical uncertainty while leveraging available computational resources. Finally, the coupling methodology and software interfaces of the framework are presented, along with verification studies on two representative fast sodium-cooled reactor demonstration problems to prove the usability of the SHARP framework.« less

  16. Methodological framework for heart rate variability analysis during exercise: application to running and cycling stress testing.

    PubMed

    Hernando, David; Hernando, Alberto; Casajús, Jose A; Laguna, Pablo; Garatachea, Nuria; Bailón, Raquel

    2018-05-01

    Standard methodologies of heart rate variability analysis and physiological interpretation as a marker of autonomic nervous system condition have been largely published at rest, but not so much during exercise. A methodological framework for heart rate variability (HRV) analysis during exercise is proposed, which deals with the non-stationary nature of HRV during exercise, includes respiratory information, and identifies and corrects spectral components related to cardiolocomotor coupling (CC). This is applied to 23 male subjects who underwent different tests: maximal and submaximal, running and cycling; where the ECG, respiratory frequency and oxygen consumption were simultaneously recorded. High-frequency (HF) power results largely modified from estimations with the standard fixed band to those obtained with the proposed methodology. For medium and high levels of exercise and recovery, HF power results in a 20 to 40% increase. When cycling, HF power increases around 40% with respect to running, while CC power is around 20% stronger in running.

  17. NPAC-Nozzle Performance Analysis Code

    NASA Technical Reports Server (NTRS)

    Barnhart, Paul J.

    1997-01-01

    A simple and accurate nozzle performance analysis methodology has been developed. The geometry modeling requirements are minimal and very flexible, thus allowing rapid design evaluations. The solution techniques accurately couple: continuity, momentum, energy, state, and other relations which permit fast and accurate calculations of nozzle gross thrust. The control volume and internal flow analyses are capable of accounting for the effects of: over/under expansion, flow divergence, wall friction, heat transfer, and mass addition/loss across surfaces. The results from the nozzle performance methodology are shown to be in excellent agreement with experimental data for a variety of nozzle designs over a range of operating conditions.

  18. Proposed solution methodology for the dynamically coupled nonlinear geared rotor mechanics equations

    NASA Technical Reports Server (NTRS)

    Mitchell, L. D.; David, J. W.

    1983-01-01

    The equations which describe the three-dimensional motion of an unbalanced rigid disk in a shaft system are nonlinear and contain dynamic-coupling terms. Traditionally, investigators have used an order analysis to justify ignoring the nonlinear terms in the equations of motion, producing a set of linear equations. This paper will show that, when gears are included in such a rotor system, the nonlinear dynamic-coupling terms are potentially as large as the linear terms. Because of this, one must attempt to solve the nonlinear rotor mechanics equations. A solution methodology is investigated to obtain approximate steady-state solutions to these equations. As an example of the use of the technique, a simpler set of equations is solved and the results compared to numerical simulations. These equations represent the forced, steady-state response of a spring-supported pendulum. These equations were chosen because they contain the type of nonlinear terms found in the dynamically-coupled nonlinear rotor equations. The numerical simulations indicate this method is reasonably accurate even when the nonlinearities are large.

  19. Coprecipitation-assisted coacervative extraction coupled to high-performance liquid chromatography: An approach for determining organophosphorus pesticides in water samples.

    PubMed

    Mammana, Sabrina B; Berton, Paula; Camargo, Alejandra B; Lascalea, Gustavo E; Altamirano, Jorgelina C

    2017-05-01

    An analytical methodology based on coprecipitation-assisted coacervative extraction coupled to HPLC-UV was developed for determination of five organophosphorus pesticides (OPPs), including fenitrothion, guthion, parathion, methidathion, and chlorpyrifos, in water samples. It involves a green technique leading to an efficient and simple analytical methodology suitable for high-throughput analysis. Relevant physicochemical variables were studied and optimized on the analytical response of each OPP. Under optimized conditions, the resulting methodology was as follows: an aliquot of 9 mL of water sample was placed into a centrifuge tube and 0.5 mL sodium citrate 0.1 M, pH 4; 0.08 mL Al 2 (SO 4 ) 3 0.1 M; and 0.7 mL SDS 0.1 M were added and homogenized. After centrifugation the supernatant was discarded. A 700 μL aliquot of the coacervate-rich phase obtained was dissolved with 300 μL of methanol and 20 μL of the resulting solution was analyzed by HPLC-UV. The resulting LODs ranged within 0.7-2.5 ng/mL and the achieved RSD and recovery values were <8% (n = 3) and >81%, respectively. The proposed analytical methodology was successfully applied for the analysis of five OPPs in water samples for human consumption of different locations of Mendoza. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Gas-phase detection of solid-state fission product complexes for post-detonation nuclear forensic analysis

    DOE PAGES

    Stratz, S. Adam; Jones, Steven A.; Oldham, Colton J.; ...

    2016-06-27

    This study presents the first known detection of fission products commonly found in post-detonation nuclear debris samples using solid sample introduction and a uniquely coupled gas chromatography inductively-coupled plasma time-of-flight mass spectrometer. Rare earth oxides were chemically altered to incorporate a ligand that enhances the volatility of the samples. These samples were injected (as solids) into the aforementioned instrument and detected for the first time. Repeatable results indicate the validity of the methodology, and this capability, when refined, will prove to be a valuable asset for rapid post-detonation nuclear forensic analysis.

  1. Gas-phase detection of solid-state fission product complexes for post-detonation nuclear forensic analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stratz, S. Adam; Jones, Steven A.; Oldham, Colton J.

    This study presents the first known detection of fission products commonly found in post-detonation nuclear debris samples using solid sample introduction and a uniquely coupled gas chromatography inductively-coupled plasma time-of-flight mass spectrometer. Rare earth oxides were chemically altered to incorporate a ligand that enhances the volatility of the samples. These samples were injected (as solids) into the aforementioned instrument and detected for the first time. Repeatable results indicate the validity of the methodology, and this capability, when refined, will prove to be a valuable asset for rapid post-detonation nuclear forensic analysis.

  2. Reliability based design optimization: Formulations and methodologies

    NASA Astrophysics Data System (ADS)

    Agarwal, Harish

    Modern products ranging from simple components to complex systems should be designed to be optimal and reliable. The challenge of modern engineering is to ensure that manufacturing costs are reduced and design cycle times are minimized while achieving requirements for performance and reliability. If the market for the product is competitive, improved quality and reliability can generate very strong competitive advantages. Simulation based design plays an important role in designing almost any kind of automotive, aerospace, and consumer products under these competitive conditions. Single discipline simulations used for analysis are being coupled together to create complex coupled simulation tools. This investigation focuses on the development of efficient and robust methodologies for reliability based design optimization in a simulation based design environment. Original contributions of this research are the development of a novel efficient and robust unilevel methodology for reliability based design optimization, the development of an innovative decoupled reliability based design optimization methodology, the application of homotopy techniques in unilevel reliability based design optimization methodology, and the development of a new framework for reliability based design optimization under epistemic uncertainty. The unilevel methodology for reliability based design optimization is shown to be mathematically equivalent to the traditional nested formulation. Numerical test problems show that the unilevel methodology can reduce computational cost by at least 50% as compared to the nested approach. The decoupled reliability based design optimization methodology is an approximate technique to obtain consistent reliable designs at lesser computational expense. Test problems show that the methodology is computationally efficient compared to the nested approach. A framework for performing reliability based design optimization under epistemic uncertainty is also developed. A trust region managed sequential approximate optimization methodology is employed for this purpose. Results from numerical test studies indicate that the methodology can be used for performing design optimization under severe uncertainty.

  3. Relationship satisfaction in lesbian couples: Review, methodological critique, and research agenda.

    PubMed

    Lavner, Justin A

    2017-01-02

    There has been increased interest in and attention to understanding the characteristics associated with relationship satisfaction among same-sex couples. This review examines the individual, couple, and external factors associated with relationship satisfaction among contemporary lesbian couples, highlighting domains such as internalized homophobia, personality, communication, conflict, sex, stress, and social support. I discuss methodological concerns and future directions to advance research in this area.

  4. Air-coupled laser vibrometry: analysis and applications.

    PubMed

    Solodov, Igor; Döring, Daniel; Busse, Gerd

    2009-03-01

    Acousto-optic interaction between a narrow laser beam and acoustic waves in air is analyzed theoretically. The photoelastic relation in air is used to derive the phase modulation of laser light in air-coupled reflection vibrometry induced by angular spatial spectral components comprising the acoustic beam. Maximum interaction was found for the zero spatial acoustic component propagating normal to the laser beam. The angular dependence of the imaging efficiency is determined for the axial and nonaxial acoustic components with the regard for the laser beam steering in the scanning mode. The sensitivity of air-coupled vibrometry is compared with conventional "Doppler" reflection vibrometry. Applications of the methodology for visualization of linear and nonlinear air-coupled fields are demonstrated.

  5. New Developments in the Embedded Statistical Coupling Method: Atomistic/Continuum Crack Propagation

    NASA Technical Reports Server (NTRS)

    Saether, E.; Yamakov, V.; Glaessgen, E.

    2008-01-01

    A concurrent multiscale modeling methodology that embeds a molecular dynamics (MD) region within a finite element (FEM) domain has been enhanced. The concurrent MD-FEM coupling methodology uses statistical averaging of the deformation of the atomistic MD domain to provide interface displacement boundary conditions to the surrounding continuum FEM region, which, in turn, generates interface reaction forces that are applied as piecewise constant traction boundary conditions to the MD domain. The enhancement is based on the addition of molecular dynamics-based cohesive zone model (CZM) elements near the MD-FEM interface. The CZM elements are a continuum interpretation of the traction-displacement relationships taken from MD simulations using Cohesive Zone Volume Elements (CZVE). The addition of CZM elements to the concurrent MD-FEM analysis provides a consistent set of atomistically-based cohesive properties within the finite element region near the growing crack. Another set of CZVEs are then used to extract revised CZM relationships from the enhanced embedded statistical coupling method (ESCM) simulation of an edge crack under uniaxial loading.

  6. Methodology for modeling the mechanical interaction between a reaction wheel and a flexible structure

    NASA Astrophysics Data System (ADS)

    Elias, Laila M.; Dekens, Frank G.; Basdogan, Ipek; Sievers, Lisa A.; Neville, Timothy

    2003-02-01

    This paper presents a modeling methodology used to predict the performance of a flexible structure, such as a space telescope, in the presence of an on-board vibrational disturbance source, such as a reaction wheel assembly (RWA). Both decoupled and coupled analysis methods are presented. The decoupled method relies on blocked RWA disturbances, measured with the RWA hardmounted to a rigid surface. The coupled method corrects the blocked RWA disturbance boundary conditions using 'force filters' which depend on estimates of the interface accelerances of the RWA and spacecraft. Both methods were validated on the Micro-Precision Interferometer testbed at the Jet Propulsion Laboratory. Experimental results are encouraging, indicating that both methods provide sufficient accuracy compared to measured values; however, the coupled method provides the best results when the gyroscopic nature of the spinning RWA is captured in the RWA accelerance model. Additionally, the RWA disturbance cross spectral density terms are found to be influential.

  7. Convectively Coupled Equatorial Waves in Reanalysis and CMIP5 Simulations

    NASA Astrophysics Data System (ADS)

    Castanheira, J. M.; Marques, C. A. F.

    2014-12-01

    Convectively coupled equatorial waves (CCEWs) are a result of the interplay between the physics and dynamics in the tropical atmosphere. As a result of such interplay, tropical convection appears often organized into synoptic to planetary-scale disturbances with time scales matching those of equatorial shallow water waves. CCEWs have broad impacts within the tropics, and their simulation in general circulation models is still problematic. Several studies showed that dispersion of those waves characteristics fit the dispersion curves derived from the Matsuno's (1966) solutions of the shallow water equations on the equatorial beta plane, namely, Kelvin, equatorial Rossby, mixed Rossby-gravity, and inertio-gravity waves. However, the more common methodology used to identify those waves is yet controversial. In this communication a new methodology for the diagnosis of CCEWs will be presented. It is based on a pre-filtering of the geopotential and horizontal wind, using 3--D normal modes functions of the adiabatic linearized equations of a resting atmosphere, followed by a space--time spectral analysis to identify the spectral regions of coherence. The methodology permits a direct detection of various types of equatorial waves, compares the dispersion characteristics of the coupled waves with the theoretical dispersion curves and allows an identification of which vertical modes are more involved in the convection. Moreover, the proposed methodology is able to show the existence of free dry waves and moist coupled waves with a common vertical structure, which is in conformity with the effect of convective heating/cooling on the effective static stability, as traduced in the gross moist stability concept. The methodology is also sensible to Doppler shifting effects. The methodology has been applied to the ERA-Interim horizontal wind and geopotential height fields and to the interpolated Outgoing Longwave Radiation (OLR) data produced by the National Oceanic and Atmospheric Administration. The same type of data (i.e. u, v, Φ and OLR) from CMIP5 historical experiments (1976-2005) were analyzed. The obtained results provide examples of the aforementioned effects and points deficiencies in the models.

  8. HPCC Methodologies for Structural Design and Analysis on Parallel and Distributed Computing Platforms

    NASA Technical Reports Server (NTRS)

    Farhat, Charbel

    1998-01-01

    In this grant, we have proposed a three-year research effort focused on developing High Performance Computation and Communication (HPCC) methodologies for structural analysis on parallel processors and clusters of workstations, with emphasis on reducing the structural design cycle time. Besides consolidating and further improving the FETI solver technology to address plate and shell structures, we have proposed to tackle the following design related issues: (a) parallel coupling and assembly of independently designed and analyzed three-dimensional substructures with non-matching interfaces, (b) fast and smart parallel re-analysis of a given structure after it has undergone design modifications, (c) parallel evaluation of sensitivity operators (derivatives) for design optimization, and (d) fast parallel analysis of mildly nonlinear structures. While our proposal was accepted, support was provided only for one year.

  9. A Multifunctional Interface Method for Coupling Finite Element and Finite Difference Methods: Two-Dimensional Scalar-Field Problems

    NASA Technical Reports Server (NTRS)

    Ransom, Jonathan B.

    2002-01-01

    A multifunctional interface method with capabilities for variable-fidelity modeling and multiple method analysis is presented. The methodology provides an effective capability by which domains with diverse idealizations can be modeled independently to exploit the advantages of one approach over another. The multifunctional method is used to couple independently discretized subdomains, and it is used to couple the finite element and the finite difference methods. The method is based on a weighted residual variational method and is presented for two-dimensional scalar-field problems. A verification test problem and a benchmark application are presented, and the computational implications are discussed.

  10. Notes on a Political Theory of Educational Organizations.

    ERIC Educational Resources Information Center

    Bacharach, Samuel B.

    This essay reviews major trends in methodological and theoretical approaches to the study of organizations since the mid-sixties and espouses the political analysis of organizations, a position representing a middle ground between comparative structuralism and the loosely coupled systems approach. This position emphasizes micropolitics as well as…

  11. Hardware accelerated high performance neutron transport computation based on AGENT methodology

    NASA Astrophysics Data System (ADS)

    Xiao, Shanjie

    The spatial heterogeneity of the next generation Gen-IV nuclear reactor core designs brings challenges to the neutron transport analysis. The Arbitrary Geometry Neutron Transport (AGENT) AGENT code is a three-dimensional neutron transport analysis code being developed at the Laboratory for Neutronics and Geometry Computation (NEGE) at Purdue University. It can accurately describe the spatial heterogeneity in a hierarchical structure through the R-function solid modeler. The previous version of AGENT coupled the 2D transport MOC solver and the 1D diffusion NEM solver to solve the three dimensional Boltzmann transport equation. In this research, the 2D/1D coupling methodology was expanded to couple two transport solvers, the radial 2D MOC solver and the axial 1D MOC solver, for better accuracy. The expansion was benchmarked with the widely applied C5G7 benchmark models and two fast breeder reactor models, and showed good agreement with the reference Monte Carlo results. In practice, the accurate neutron transport analysis for a full reactor core is still time-consuming and thus limits its application. Therefore, another content of my research is focused on designing a specific hardware based on the reconfigurable computing technique in order to accelerate AGENT computations. It is the first time that the application of this type is used to the reactor physics and neutron transport for reactor design. The most time consuming part of the AGENT algorithm was identified. Moreover, the architecture of the AGENT acceleration system was designed based on the analysis. Through the parallel computation on the specially designed, highly efficient architecture, the acceleration design on FPGA acquires high performance at the much lower working frequency than CPUs. The whole design simulations show that the acceleration design would be able to speedup large scale AGENT computations about 20 times. The high performance AGENT acceleration system will drastically shortening the computation time for 3D full-core neutron transport analysis, making the AGENT methodology unique and advantageous, and thus supplies the possibility to extend the application range of neutron transport analysis in either industry engineering or academic research.

  12. Parallel adaptive discontinuous Galerkin approximation for thin layer avalanche modeling

    NASA Astrophysics Data System (ADS)

    Patra, A. K.; Nichita, C. C.; Bauer, A. C.; Pitman, E. B.; Bursik, M.; Sheridan, M. F.

    2006-08-01

    This paper describes the development of highly accurate adaptive discontinuous Galerkin schemes for the solution of the equations arising from a thin layer type model of debris flows. Such flows have wide applicability in the analysis of avalanches induced by many natural calamities, e.g. volcanoes, earthquakes, etc. These schemes are coupled with special parallel solution methodologies to produce a simulation tool capable of very high-order numerical accuracy. The methodology successfully replicates cold rock avalanches at Mount Rainier, Washington and hot volcanic particulate flows at Colima Volcano, Mexico.

  13. Assessment of the dynamic interactions between heart rate and arterial pressure by the cross time-frequency analysis.

    PubMed

    Orini, M; Laguna, P; Mainardi, L T; Bailón, R

    2012-03-01

    In this study, a framework for the characterization of the dynamic interactions between RR variability (RRV) and systolic arterial pressure variability (SAPV) is proposed. The methodology accounts for the intrinsic non-stationarity of the cardiovascular system and includes the assessment of both the strength and the prevalent direction of local coupling. The smoothed pseudo-Wigner-Ville distribution (SPWVD) is used to estimate the time-frequency (TF) power, coherence, and phase-difference spectra with fine TF resolution. The interactions between the signals are quantified by time-varying indices, including the local coupling, phase differences, time delay, and baroreflex sensitivity (BRS). Every index is extracted from a specific TF region, localized by combining information from the different spectra. In 14 healthy subjects, a head-up tilt provoked an abrupt decrease in the cardiovascular coupling; a rapid change in the phase difference (from 0.37 ± 0.23 to -0.27 ± 0.22 rad) and time delay (from 0.26 ± 0.14 to -0.16 ± 0.16 s) in the high-frequency band; and a decrease in the BRS (from 23.72 ± 7.66 to 6.92 ± 2.51 ms mmHg(-1)). In the low-frequency range, during a head-up tilt, restoration of the baseline level of cardiovascular coupling took about 2 min and SAPV preceded RRV by about 0.85 s during the whole test. The analysis of the Eurobavar data set, which includes subjects with intact as well as impaired baroreflex, showed that the presented methodology represents an improved TF generalization of traditional time-invariant methodologies and can reveal dysfunctions in subjects with baroreflex impairment. Additionally, the results also suggest the use of non-stationary signal-processing techniques to analyze signals recorded under conditions that are usually supposed to be stationary.

  14. Theoretical investigation of the force and dynamically coupled torsional-axial-lateral dynamic response of eared rotors

    NASA Technical Reports Server (NTRS)

    David, J. W.; Mitchell, L. D.

    1982-01-01

    Difficulties in solution methodology to be used to deal with the potentially higher nonlinear rotor equations when dynamic coupling is included. A solution methodology is selected to solve the nonlinear differential equations. The selected method was verified to give good results even at large nonlinearity levels. The transfer matrix methodology is extended to the solution of nonlinear problems.

  15. Fast classification of hazelnut cultivars through portable infrared spectroscopy and chemometrics

    NASA Astrophysics Data System (ADS)

    Manfredi, Marcello; Robotti, Elisa; Quasso, Fabio; Mazzucco, Eleonora; Calabrese, Giorgio; Marengo, Emilio

    2018-01-01

    The authentication and traceability of hazelnuts is very important for both the consumer and the food industry, to safeguard the protected varieties and the food quality. This study investigates the use of a portable FTIR spectrometer coupled to multivariate statistical analysis for the classification of raw hazelnuts. The method discriminates hazelnuts from different origins/cultivars based on differences of the signal intensities of their IR spectra. The multivariate classification methods, namely principal component analysis (PCA) followed by linear discriminant analysis (LDA) and partial least square discriminant analysis (PLS-DA), with or without variable selection, allowed a very good discrimination among the groups, with PLS-DA coupled to variable selection providing the best results. Due to the fast analysis, high sensitivity, simplicity and no sample preparation, the proposed analytical methodology could be successfully used to verify the cultivar of hazelnuts, and the analysis can be performed quickly and directly on site.

  16. Elemental labelling combined with liquid chromatography inductively coupled plasma mass spectrometry for quantification of biomolecules: A review

    PubMed Central

    Kretschy, Daniela; Koellensperger, Gunda; Hann, Stephan

    2012-01-01

    This article reviews novel quantification concepts where elemental labelling is combined with flow injection inductively coupled plasma mass spectrometry (FI-ICP-MS) or liquid chromatography inductively coupled plasma mass spectrometry (LC–ICP-MS), and employed for quantification of biomolecules such as proteins, peptides and related molecules in challenging sample matrices. In the first sections an overview on general aspects of biomolecule quantification, as well as of labelling will be presented emphasizing the potential, which lies in such methodological approaches. In this context, ICP-MS as detector provides high sensitivity, selectivity and robustness in biological samples and offers the capability for multiplexing and isotope dilution mass spectrometry (IDMS). Fundamental methodology of elemental labelling will be highlighted and analytical, as well as biomedical applications will be presented. A special focus will lie on established applications underlining benefits and bottlenecks of such approaches for the implementation in real life analysis. Key research made in this field will be summarized and a perspective for future developments including sophisticated and innovative applications will given. PMID:23062431

  17. Experiences of Latino Couples in Relationship Education: A Critical Analysis

    ERIC Educational Resources Information Center

    Perez, Carlos; Brown, Matthew D.; Whiting, Jason B.; Harris, Steven M.

    2013-01-01

    There exists a need to better understand the applicability of Marriage and Relationship Education (MRE) initiatives with diverse populations. This study presents findings from focus groups with Latino men and women (N = 16) who participated in MRE classes. A critical theory approach guided the researchers who used grounded theory methodology to…

  18. Evaluating the influence of process parameters on soluble microbial products formation using response surface methodology coupled with grey relational analysis.

    PubMed

    Xu, Juan; Sheng, Guo-Ping; Luo, Hong-Wei; Fang, Fang; Li, Wen-Wei; Zeng, Raymond J; Tong, Zhong-Hua; Yu, Han-Qing

    2011-01-01

    Soluble microbial products (SMPs) present a major part of residual chemical oxygen demand (COD) in the effluents from biological wastewater treatment systems, and the SMP formation is greatly influenced by a variety of process parameters. In this study, response surface methodology (RSM) coupled with grey relational analysis (GRA) method was used to evaluate the effects of substrate concentration, temperature, NH(4)(+)-N concentration and aeration rate on the SMP production in batch activated sludge reactors. Carbohydrates were found to be the major component of SMP, and the influential priorities of these factors were: temperature>substrate concentration > aeration rate > NH(4)(+)-N concentration. On the basis of the RSM results, the interactive effects of these factors on the SMP formation were evaluated, and the optimal operating conditions for a minimum SMP production in such a batch activated sludge system also were identified. These results provide useful information about how to control the SMP formation of activated sludge and ensure the bioreactor high-quality effluent. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Formal and heuristic system decomposition methods in multidisciplinary synthesis. Ph.D. Thesis, 1991

    NASA Technical Reports Server (NTRS)

    Bloebaum, Christina L.

    1991-01-01

    The multidisciplinary interactions which exist in large scale engineering design problems provide a unique set of difficulties. These difficulties are associated primarily with unwieldy numbers of design variables and constraints, and with the interdependencies of the discipline analysis modules. Such obstacles require design techniques which account for the inherent disciplinary couplings in the analyses and optimizations. The objective of this work was to develop an efficient holistic design synthesis methodology that takes advantage of the synergistic nature of integrated design. A general decomposition approach for optimization of large engineering systems is presented. The method is particularly applicable for multidisciplinary design problems which are characterized by closely coupled interactions among discipline analyses. The advantage of subsystem modularity allows for implementation of specialized methods for analysis and optimization, computational efficiency, and the ability to incorporate human intervention and decision making in the form of an expert systems capability. The resulting approach is not a method applicable to only a specific situation, but rather, a methodology which can be used for a large class of engineering design problems in which the system is non-hierarchic in nature.

  20. Ten adaptive strategies for family and work balance: advice from successful families.

    PubMed

    Haddock, S A; Zimmerman, T S; Ziemba, S J; Current, L R

    2001-10-01

    Despite negative media images and social dynamics insensitive to the lives of many dual-career couples, research shows that these families are largely healthy and thriving. In this study, we investigated the adaptive strategies of middle-class, dual-earner couples (N = 47) with children that are successfully managing family and work. Guided by grounded-theory methodology, analysis of interview data revealed that these successful couples structured their lives around 10 major strategies: Valuing family, striving for partnership, deriving meaning from work, maintaining work boundaries, focusing and producing at work, taking pride in dual earning, prioritizing family fun, living simply, making decisions proactively, and valuing time. Each adaptive strategy is defined and illustrated through the participants' own words. Clinical applications for therapists working with dual-earner couples are offered.

  1. Parametric and energy consumption optimization of Basic Red 2 removal by electrocoagulation/egg shell adsorption coupling using response surface methodology in a batch system.

    PubMed

    de Carvalho, Helder Pereira; Huang, Jiguo; Zhao, Meixia; Liu, Gang; Yang, Xinyu; Dong, Lili; Liu, Xingjuan

    2016-01-01

    In this study, response surface methodology (RSM) model was applied for optimization of Basic Red 2 (BR2) removal using electrocoagulation/eggshell (ES) coupling process in a batch system. Central composite design was used to evaluate the effects and interactions of process parameters including current density, reaction time, initial pH and ES dosage on the BR2 removal efficiency and energy consumption. The analysis of variance revealed high R(2) values (≥85%) indicating that the predictions of RSM models are adequately applicable for both responses. The optimum conditions when the dye removal efficiency of 93.18% and energy consumption of 0.840 kWh/kg were observed were 11.40 mA/cm(2) current density, 5 min and 3 s reaction time, 6.5 initial pH and 10.91 g/L ES dosage.

  2. Loss of Coolant Accident (LOCA) / Emergency Core Coolant System (ECCS Evaluation of Risk-Informed Margins Management Strategies for a Representative Pressurized Water Reactor (PWR)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szilard, Ronaldo Henriques

    A Risk Informed Safety Margin Characterization (RISMC) toolkit and methodology are proposed for investigating nuclear power plant core, fuels design and safety analysis, including postulated Loss-of-Coolant Accident (LOCA) analysis. This toolkit, under an integrated evaluation model framework, is name LOCA toolkit for the US (LOTUS). This demonstration includes coupled analysis of core design, fuel design, thermal hydraulics and systems analysis, using advanced risk analysis tools and methods to investigate a wide range of results.

  3. A Coupled Fluid-Structure Interaction Analysis of Solid Rocket Motor with Flexible Inhibitors

    NASA Technical Reports Server (NTRS)

    Yang, H. Q.; West, Jeff

    2014-01-01

    A capability to couple NASA production CFD code, Loci/CHEM, with CFDRC's structural finite element code, CoBi, has been developed. This paper summarizes the efforts in applying the installed coupling software to demonstrate/investigate fluid-structure interaction (FSI) between pressure wave and flexible inhibitor inside reusable solid rocket motor (RSRM). First a unified governing equation for both fluid and structure is presented, then an Eulerian-Lagrangian framework is described to satisfy the interfacial continuity requirements. The features of fluid solver, Loci/CHEM and structural solver, CoBi, are discussed before the coupling methodology of the solvers is described. The simulation uses production level CFD LES turbulence model with a grid resolution of 80 million cells. The flexible inhibitor is modeled with full 3D shell elements. Verifications against analytical solutions of structural model under steady uniform pressure condition and under dynamic condition of modal analysis show excellent agreements in terms of displacement distribution and eigen modal frequencies. The preliminary coupled result shows that due to acoustic coupling, the dynamics of one of the more flexible inhibitors shift from its first modal frequency to the first acoustic frequency of the solid rocket motor.

  4. Performance Analysis of Triple Asymmetrical Optical Micro Ring Resonator with 2 × 2 Input-Output Bus Waveguide

    NASA Astrophysics Data System (ADS)

    Ranjan, Suman; Mandal, Sanjoy

    2017-12-01

    Modeling of triple asymmetrical optical micro ring resonator (TAOMRR) in z-domain with 2 × 2 input-output system with detailed design of its waveguide configuration using finite-difference time-domain (FDTD) method is presented. Transfer function in z-domain using delay-line signal processing technique of the proposed TAOMRR is determined for different input and output ports. The frequency response analysis is carried out using MATLAB software. Group delay and dispersion characteristics are also determined in MATLAB. The electric field analysis is done using FDTD. The method proposes a new methodology to design and draw multiple configurations of coupled ring resonators having multiple in and out ports. Various important parameters such as coupling coefficients and FSR are also determined.

  5. Performance Analysis of Triple Asymmetrical Optical Micro Ring Resonator with 2 × 2 Input-Output Bus Waveguide

    NASA Astrophysics Data System (ADS)

    Ranjan, Suman; Mandal, Sanjoy

    2018-02-01

    Modeling of triple asymmetrical optical micro ring resonator (TAOMRR) in z-domain with 2 × 2 input-output system with detailed design of its waveguide configuration using finite-difference time-domain (FDTD) method is presented. Transfer function in z-domain using delay-line signal processing technique of the proposed TAOMRR is determined for different input and output ports. The frequency response analysis is carried out using MATLAB software. Group delay and dispersion characteristics are also determined in MATLAB. The electric field analysis is done using FDTD. The method proposes a new methodology to design and draw multiple configurations of coupled ring resonators having multiple in and out ports. Various important parameters such as coupling coefficients and FSR are also determined.

  6. Immediate drop on demand technology (I-DOT) coupled with mass spectrometry via an open port sampling interface.

    PubMed

    Van Berkel, Gary J; Kertesz, Vilmos; Boeltz, Harry

    2017-11-01

    The aim of this work was to demonstrate and evaluate the analytical performance of coupling the immediate drop on demand technology to a mass spectrometer via the recently introduced open port sampling interface and ESI. Methodology & results: A maximum sample analysis throughput of 5 s per sample was demonstrated. Signal reproducibility was 10% or better as demonstrated by the quantitative analysis of propranolol and its stable isotope-labeled internal standard propranolol-d7. The ability of the system to multiply charge and analyze macromolecules was demonstrated using the protein cytochrome c. This immediate drop on demand technology/open port sampling interface/ESI-MS combination allowed for the quantitative analysis of relatively small mass analytes and was used for the identification of macromolecules like proteins.

  7. Numerical Analysis of Intra-Cavity and Power-Stream Flow Interaction in Multiple Gas-Turbine Disk-Cavities

    NASA Technical Reports Server (NTRS)

    Athavale, M. M.; Przekwas, A. J.; Hendricks, R. C.; Steinetz, B. M.

    1995-01-01

    A numerical analysis methodology and solutions of the interaction between the power stream and multiply-connected multi-cavity sealed secondary flow fields are presented. Flow solutions for a multi-cavity experimental rig were computed and compared with experimental data of Daniels and Johnson. The flow solutions illustrate the complex coupling between the main-path and the cavity flows as well as outline the flow thread that exists throughout the subplatform multiple cavities and seals. The analysis also shows that the de-coupled solutions on single cavities is inadequate. The present results show trends similar to the T-700 engine data that suggests the changes in the CDP seal altered the flow fields throughout the engine and affected the engine performance.

  8. The use of coupled atmospheric and hydrological models for water-resources management in headwater basins

    USGS Publications Warehouse

    Leavesley, G.; Hay, L.

    1998-01-01

    Coupled atmospheric and hydrological models provide an opportunity for the improved management of water resources in headwater basins. Issues currently limiting full implementation of coupled-model methodologies include (a) the degree of uncertainty in the accuracy of precipitation and other meteorological variables simulated by atmospheric models, and (b) the problem of discordant scales between atmospheric and bydrological models. Alternative methodologies being developed to address these issues are reviewed.

  9. A CFD/CSD Interaction Methodology for Aircraft Wings

    NASA Technical Reports Server (NTRS)

    Bhardwaj, Manoj K.

    1997-01-01

    With advanced subsonic transports and military aircraft operating in the transonic regime, it is becoming important to determine the effects of the coupling between aerodynamic loads and elastic forces. Since aeroelastic effects can contribute significantly to the design of these aircraft, there is a strong need in the aerospace industry to predict these aero-structure interactions computationally. To perform static aeroelastic analysis in the transonic regime, high fidelity computational fluid dynamics (CFD) analysis tools must be used in conjunction with high fidelity computational structural fluid dynamics (CSD) analysis tools due to the nonlinear behavior of the aerodynamics in the transonic regime. There is also a need to be able to use a wide variety of CFD and CSD tools to predict these aeroelastic effects in the transonic regime. Because source codes are not always available, it is necessary to couple the CFD and CSD codes without alteration of the source codes. In this study, an aeroelastic coupling procedure is developed which will perform static aeroelastic analysis using any CFD and CSD code with little code integration. The aeroelastic coupling procedure is demonstrated on an F/A-18 Stabilator using NASTD (an in-house McDonnell Douglas CFD code) and NASTRAN. In addition, the Aeroelastic Research Wing (ARW-2) is used for demonstration of the aeroelastic coupling procedure by using ENSAERO (NASA Ames Research Center CFD code) and a finite element wing-box code (developed as part of this research).

  10. Advanced proteomic liquid chromatography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Fang; Smith, Richard D.; Shen, Yufeng

    2012-10-26

    Liquid chromatography coupled with mass spectrometry is the predominant platform used to analyze proteomics samples consisting of large numbers of proteins and their proteolytic products (e.g., truncated polypeptides) and spanning a wide range of relative concentrations. This review provides an overview of advanced capillary liquid chromatography techniques and methodologies that greatly improve separation resolving power and proteomics analysis coverage, sensitivity, and throughput.

  11. Multi-rater feedback with gap analysis: an innovative means to assess communication skill and self-insight.

    PubMed

    Calhoun, Aaron W; Rider, Elizabeth A; Peterson, Eleanor; Meyer, Elaine C

    2010-09-01

    Multi-rater assessment with gap analysis is a powerful method for assessing communication skills and self-insight, and enhancing self-reflection. We demonstrate the use of this methodology. The Program for the Approach to Complex Encounters (PACE) is an interdisciplinary simulation-based communication skills program. Encounters are assessed using an expanded Kalamazoo Consensus Statement Essential Elements Checklist adapted for multi-rater feedback and gap analysis. Data from a representative conversation were analyzed. Likert and forced-choice data with gap analysis are used to assess performance. Participants were strong in Demonstrating Empathy and Providing Closure, and needed to improve Relationship Building, Gathering Information, and understanding the Patient's/Family's Perspective. Participants under-appraised their abilities in Relationship Building, Providing Closure, and Demonstrating Empathy, as well as their overall performance. The conversion of these results into verbal feedback is discussed. We describe an evaluation methodology using multi-rater assessment with gap analysis to assess communication skills and self-insight. This methodology enables faculty to identify undervalued skills and perceptual blind spots, provide comprehensive, data driven, feedback, and encourage reflection. Implementation of graphical feedback forms coupled with one-on-one discussion using the above methodology has the potential to enhance trainee self-awareness and reflection, improving the impact of educational programs. Copyright (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  12. Locally optimal extracellular stimulation for chaotic desynchronization of neural populations.

    PubMed

    Wilson, Dan; Moehlis, Jeff

    2014-10-01

    We use optimal control theory to design a methodology to find locally optimal stimuli for desynchronization of a model of neurons with extracellular stimulation. This methodology yields stimuli which lead to positive Lyapunov exponents, and hence desynchronizes a neural population. We analyze this methodology in the presence of interneuron coupling to make predictions about the strength of stimulation required to overcome synchronizing effects of coupling. This methodology suggests a powerful alternative to pulsatile stimuli for deep brain stimulation as it uses less energy than pulsatile stimuli, and could eliminate the time consuming tuning process.

  13. High-performance parallel analysis of coupled problems for aircraft propulsion

    NASA Technical Reports Server (NTRS)

    Felippa, C. A.; Farhat, C.; Lanteri, S.; Maman, N.; Piperno, S.; Gumaste, U.

    1994-01-01

    This research program deals with the application of high-performance computing methods for the analysis of complete jet engines. We have entitled this program by applying the two dimensional parallel aeroelastic codes to the interior gas flow problem of a bypass jet engine. The fluid mesh generation, domain decomposition, and solution capabilities were successfully tested. We then focused attention on methodology for the partitioned analysis of the interaction of the gas flow with a flexible structure and with the fluid mesh motion that results from these structural displacements. This is treated by a new arbitrary Lagrangian-Eulerian (ALE) technique that models the fluid mesh motion as that of a fictitious mass-spring network. New partitioned analysis procedures to treat this coupled three-component problem are developed. These procedures involved delayed corrections and subcycling. Preliminary results on the stability, accuracy, and MPP computational efficiency are reported.

  14. Electron-lattice coupling after high-energy deposition in aluminum

    NASA Astrophysics Data System (ADS)

    Gorbunov, S. A.; Medvedev, N. A.; Terekhin, P. N.; Volkov, A. E.

    2015-07-01

    This paper presents an analysis of the parameters of highly-excited electron subsystem of aluminum, appearing e.g. after swift heavy ion impact or laser pulse irradiation. For elevated electron temperatures, the electron heat capacity and the screening parameter are evaluated. The electron-phonon approximation of electron-lattice coupling is compared with its precise formulation based on the dynamic structure factor (DSF) formalism. The DSF formalism takes into account collective response of a lattice to excitation including all possible limit cases of this response. In particular, it automatically provides realization of electron-phonon coupling as the low-temperature limit, while switching to the plasma-limit for high electron temperatures. Aluminum is chosen as a good model system for illustration of the presented methodology.

  15. Magnetic exchange couplings from noncollinear perturbation theory: dinuclear CuII complexes.

    PubMed

    Phillips, Jordan J; Peralta, Juan E

    2014-08-07

    To benchmark the performance of a new method based on noncollinear coupled-perturbed density functional theory [J. Chem. Phys. 138, 174115 (2013)], we calculate the magnetic exchange couplings in a series of triply bridged ferromagnetic dinuclear Cu(II) complexes that have been recently synthesized [Phys. Chem. Chem. Phys. 15, 1966 (2013)]. We find that for any basis-set the couplings from our noncollinear coupled-perturbed methodology are practically identical to those of spin-projected energy-differences when a hybrid density functional approximation is employed. This demonstrates that our methodology properly recovers a Heisenberg description for these systems, and is robust in its predictive power of magnetic couplings. Furthermore, this indicates that the failure of density functional theory to capture the subtle variation of the exchange couplings in these complexes is not simply an artifact of broken-symmetry methods, but rather a fundamental weakness of current approximate density functionals for the description of magnetic couplings.

  16. An improved methodology of asymmetric flow field flow fractionation hyphenated with inductively coupled mass spectrometry for the determination of size distribution of gold nanoparticles in dietary supplements.

    PubMed

    Mudalige, Thilak K; Qu, Haiou; Linder, Sean W

    2015-11-13

    Engineered nanoparticles are available in large numbers of commercial products claiming various health benefits. Nanoparticle absorption, distribution, metabolism, excretion, and toxicity in a biological system are dependent on particle size, thus the determination of size and size distribution is essential for full characterization. Number based average size and size distribution is a major parameter for full characterization of the nanoparticle. In the case of polydispersed samples, large numbers of particles are needed to obtain accurate size distribution data. Herein, we report a rapid methodology, demonstrating improved nanoparticle recovery and excellent size resolution, for the characterization of gold nanoparticles in dietary supplements using asymmetric flow field flow fractionation coupled with visible absorption spectrometry and inductively coupled plasma mass spectrometry. A linear relationship between gold nanoparticle size and retention times was observed, and used for characterization of unknown samples. The particle size results from unknown samples were compared to results from traditional size analysis by transmission electron microscopy, and found to have less than a 5% deviation in size for unknown product over the size range from 7 to 30 nm. Published by Elsevier B.V.

  17. Discrimination of Rhizoma Gastrodiae (Tianma) using 3D synchronous fluorescence spectroscopy coupled with principal component analysis

    NASA Astrophysics Data System (ADS)

    Fan, Qimeng; Chen, Chaoyin; Huang, Zaiqiang; Zhang, Chunmei; Liang, Pengjuan; Zhao, Shenglan

    2015-02-01

    Rhizoma Gastrodiae (Tianma) of different variants and different geographical origins has vital difference in quality and physiological efficacy. This paper focused on the classification and identification of Tianma of six types (two variants from three different geographical origins) using three dimensional synchronous fluorescence spectroscopy (3D-SFS) coupled with principal component analysis (PCA). 3D-SF spectra of aqueous extracts, which were obtained from Tianma of the six types, were measured by a LS-50B luminescence spectrofluorometer. The experimental results showed that the characteristic fluorescent spectral regions of the 3D-SF spectra were similar, while the intensities of characteristic regions are different significantly. Coupled these differences in peak intensities with PCA, Tianma of six types could be discriminated successfully. In conclusion, 3D-SFS coupled with PCA, which has such advantages as effective, specific, rapid, non-polluting, has an edge for discrimination of the similar Chinese herbal medicine. And the proposed methodology is a useful tool to classify and identify Tianma of different variants and different geographical origins.

  18. Depressive symptomatology in middle-aged and older married couples: a dyadic analysis.

    PubMed

    Townsend, A L; Miller, B; Guo, S

    2001-11-01

    Depressive symptomatology has been frequently conceptualized as an individual matter, but social contextual models argue that symptom levels are likely to covary in close relationships. The present study investigated correlation between spouses' depressive symptomatology in middle-aged and older married couples, the influence of gender and race/ethnicity in predicting variability in symptom level, and the importance of individual-level covariates (education, health, and age) and couple-level covariates (household income and net worth). Results were based on secondary analysis of Wave 1 interviews with White, Black, and Mexican American married couples (N = 5,423) from the Health and Retirement Study (HRS) and the Study of Asset and Health Dynamics Among the Oldest Old (AHEAD). Dyadic data from husbands and wives were analyzed with multilevel modeling. Husbands' and wives' depressive symptoms were moderately correlated, gender and race/ethnicity (and their interaction) predicted depressive symptoms, and both individual-level and couple-level characteristics were significant covariates. Similarities as well as differences are noted between the HRS and AHEAD results. Results highlight the importance of dyadic data and multilevel models for understanding depressive symptomatology in married couples. The influence of race/ethnicity merits greater attention in future research. Differences in findings between HRS and AHEAD suggest life-course, cohort, or methodological influences.

  19. Optimization and performance calculation of dual-rotation propellers

    NASA Technical Reports Server (NTRS)

    Davidson, R. E.

    1981-01-01

    An analysis is given which enables the design of dual-rotation propellers. It relies on the use of a new tip loss factor deduced from T. Theodorsen's measurements coupled with the general methodology of C. N. H. Lock. In addition, it includes the effect of drag in optimizing. Some values for the tip loss factor are calculated for one advance ratio.

  20. Advanced proteomic liquid chromatography

    PubMed Central

    Xie, Fang; Smith, Richard D.; Shen, Yufeng

    2012-01-01

    Liquid chromatography coupled with mass spectrometry is the predominant platform used to analyze proteomics samples consisting of large numbers of proteins and their proteolytic products (e.g., truncated polypeptides) and spanning a wide range of relative concentrations. This review provides an overview of advanced capillary liquid chromatography techniques and methodologies that greatly improve separation resolving power and proteomics analysis coverage, sensitivity, and throughput. PMID:22840822

  1. NASA LeRC/Akron University Graduate Cooperative Fellowship Program and Graduate Student Researchers Program

    NASA Technical Reports Server (NTRS)

    Fertis, D. G.; Simon, A. L.

    1981-01-01

    The requisite methodology to solve linear and nonlinear problems associated with the static and dynamic analysis of rotating machinery, their static and dynamic behavior, and the interaction between the rotating and nonrotating parts of an engine is developed. Linear and nonlinear structural engine problems are investigated by developing solution strategies and interactive computational methods whereby the man and computer can communicate directly in making analysis decisions. Representative examples include modifying structural models, changing material, parameters, selecting analysis options and coupling with interactive graphical display for pre- and postprocessing capability.

  2. Analytical methodologies for aluminium speciation in environmental and biological samples--a review.

    PubMed

    Bi, S P; Yang, X D; Zhang, F P; Wang, X L; Zou, G W

    2001-08-01

    It is recognized that aluminium (Al) is a potential environmental hazard. Acidic deposition has been linked to increased Al concentrations in natural waters. Elevated levels of Al might have serious consequences for biological communities. Of particular interest is the speciation of Al in aquatic environments, because Al toxicity depends on its forms and concentrations. In this paper, advances in analytical methodologies for Al speciation in environmental and biological samples during the past five years are reviewed. Concerns about the specific problems of Al speciation and highlights of some important methods are elucidated in sections devoted to hybrid techniques (HPLC or FPLC coupled with ET-AAS, ICP-AES, or ICP-MS), flow-injection analysis (FIA), nuclear magnetic resonance (27Al NMR), electrochemical analysis, and computer simulation. More than 130 references are cited.

  3. A method for the design of transonic flexible wings

    NASA Technical Reports Server (NTRS)

    Smith, Leigh Ann; Campbell, Richard L.

    1990-01-01

    Methodology was developed for designing airfoils and wings at transonic speeds which includes a technique that can account for static aeroelastic deflections. This procedure is capable of designing either supercritical or more conventional airfoil sections. Methods for including viscous effects are also illustrated and are shown to give accurate results. The methodology developed is an interactive system containing three major parts. A design module was developed which modifies airfoil sections to achieve a desired pressure distribution. This design module works in conjunction with an aerodynamic analysis module, which for this study is a small perturbation transonic flow code. Additionally, an aeroelastic module is included which determines the wing deformation due to the calculated aerodynamic loads. Because of the modular nature of the method, it can be easily coupled with any aerodynamic analysis code.

  4. PTR-ToF-MS Coupled with an Automated Sampling System and Tailored Data Analysis for Food Studies: Bioprocess Monitoring, Screening and Nose-space Analysis.

    PubMed

    Capozzi, Vittorio; Yener, Sine; Khomenko, Iuliia; Farneti, Brian; Cappellin, Luca; Gasperi, Flavia; Scampicchio, Matteo; Biasioli, Franco

    2017-05-11

    Proton Transfer Reaction (PTR), combined with a Time-of-Flight (ToF) Mass Spectrometer (MS) is an analytical approach based on chemical ionization that belongs to the Direct-Injection Mass Spectrometric (DIMS) technologies. These techniques allow the rapid determination of volatile organic compounds (VOCs), assuring high sensitivity and accuracy. In general, PTR-MS requires neither sample preparation nor sample destruction, allowing real time and non-invasive analysis of samples. PTR-MS are exploited in many fields, from environmental and atmospheric chemistry to medical and biological sciences. More recently, we developed a methodology based on coupling PTR-ToF-MS with an automated sampler and tailored data analysis tools, to increase the degree of automation and, consequently, to enhance the potential of the technique. This approach allowed us to monitor bioprocesses (e.g. enzymatic oxidation, alcoholic fermentation), to screen large sample sets (e.g. different origins, entire germoplasms) and to analyze several experimental modes (e.g. different concentrations of a given ingredient, different intensities of a specific technological parameter) in terms of VOC content. Here, we report the experimental protocols exemplifying different possible applications of our methodology: i.e. the detection of VOCs released during lactic acid fermentation of yogurt (on-line bioprocess monitoring), the monitoring of VOCs associated with different apple cultivars (large-scale screening), and the in vivo study of retronasal VOC release during coffee drinking (nosespace analysis).

  5. Ultra-high-performance liquid chromatography/tandem high-resolution mass spectrometry analysis of sixteen red beverages containing carminic acid: identification of degradation products by using principal component analysis/discriminant analysis.

    PubMed

    Gosetti, Fabio; Chiuminatto, Ugo; Mazzucco, Eleonora; Mastroianni, Rita; Marengo, Emilio

    2015-01-15

    The study investigates the sunlight photodegradation process of carminic acid, a natural red colourant used in beverages. For this purpose, both carminic acid aqueous standard solutions and sixteen different commercial beverages, ten containing carminic acid and six containing E120 dye, were subjected to photoirradiation. The results show different patterns of degradation, not only between the standard solutions and the beverages, but also from beverage to beverage. Due to the different beverage recipes, unpredictable reactions take place between the dye and the other ingredients. To identify the dye degradation products in a very complex scenario, a methodology was used, based on the combined use of principal component analysis with discriminant analysis and ultra-high-performance liquid chromatography coupled with tandem high resolution mass spectrometry. The methodology is unaffected by beverage composition and allows the degradation products of carminic acid dye to be identified for each beverage. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Direct trace-elemental analysis of urine samples by laser ablation-inductively coupled plasma mass spectrometry after sample deposition on clinical filter papers.

    PubMed

    Aramendía, Maite; Rello, Luis; Vanhaecke, Frank; Resano, Martín

    2012-10-16

    Collection of biological fluids on clinical filter papers shows important advantages from a logistic point of view, although analysis of these specimens is far from straightforward. Concerning urine analysis, and particularly when direct trace elemental analysis by laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS) is aimed at, several problems arise, such as lack of sensitivity or different distribution of the analytes on the filter paper, rendering obtaining reliable quantitative results quite difficult. In this paper, a novel approach for urine collection is proposed, which circumvents many of these problems. This methodology consists on the use of precut filter paper discs where large amounts of sample can be retained upon a single deposition. This provides higher amounts of the target analytes and, thus, sufficient sensitivity, and allows addition of an adequate internal standard at the clinical lab prior to analysis, therefore making it suitable for a strategy based on unsupervised sample collection and ulterior analysis at referral centers. On the basis of this sampling methodology, an analytical method was developed for the direct determination of several elements in urine (Be, Bi, Cd, Co, Cu, Ni, Sb, Sn, Tl, Pb, and V) at the low μg L(-1) level by means of LA-ICPMS. The method developed provides good results in terms of accuracy and LODs (≤1 μg L(-1) for most of the analytes tested), with a precision in the range of 15%, fit-for-purpose for clinical control analysis.

  7. Indirect Lightning Safety Assessment Methodology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ong, M M; Perkins, M P; Brown, C G

    2009-04-24

    Lightning is a safety hazard for high-explosives (HE) and their detonators. In the However, the current flowing from the strike point through the rebar of the building The methodology for estimating the risk from indirect lighting effects will be presented. It has two parts: a method to determine the likelihood of a detonation given a lightning strike, and an approach for estimating the likelihood of a strike. The results of these two parts produce an overall probability of a detonation. The probability calculations are complex for five reasons: (1) lightning strikes are stochastic and relatively rare, (2) the quality ofmore » the Faraday cage varies from one facility to the next, (3) RF coupling is inherently a complex subject, (4) performance data for abnormally stressed detonators is scarce, and (5) the arc plasma physics is not well understood. Therefore, a rigorous mathematical analysis would be too complex. Instead, our methodology takes a more practical approach combining rigorous mathematical calculations where possible with empirical data when necessary. Where there is uncertainty, we compensate with conservative approximations. The goal is to determine a conservative estimate of the odds of a detonation. In Section 2, the methodology will be explained. This report will discuss topics at a high-level. The reasons for selecting an approach will be justified. For those interested in technical details, references will be provided. In Section 3, a simple hypothetical example will be given to reinforce the concepts. While the methodology will touch on all the items shown in Figure 1, the focus of this report is the indirect effect, i.e., determining the odds of a detonation from given EM fields. Professor Martin Uman from the University of Florida has been characterizing and defining extreme lightning strikes. Using Professor Uman's research, Dr. Kimball Merewether at Sandia National Laboratory in Albuquerque calculated the EM fields inside a Faraday-cage type facility, when the facility is struck by lightning. In the following examples we will use Dr. Merewether's calculations from a poor quality Faraday cage as the input for the RF coupling analysis. coupling of radio frequency (RF) energy to explosive components is an indirect effect of currents [1]. If HE is adequately separated from the walls of the facility that is struck by disassembled have been turned into Faraday-cage structures to protect against lightning is initiation of the HE. last couple of decades, DOE facilities where HE is manufactured, assembled, stored or lightning. The most sensitive component is typically a detonator, and the safety concern lightning, electrons discharged from the clouds should not reach the HE components. radio receiver, the metal cable of a detonator can extract energy from the EM fields. This to the earth will create electromagnetic (EM) fields in the facility. Like an antenna in a« less

  8. Interchannel Coupling in the Photoionization of Atoms and Ions in the X-Ray Range

    NASA Technical Reports Server (NTRS)

    Manson, Steven T.; Chakraborty, Himadri S.; Deshmukh, Pranawa C.

    2002-01-01

    To understand how this interchannel coupling, so important in neutral atoms, applies to positive ions, a research program has been initiated to deal with this question, i.e., a program to quantify the effects of interchannel coupling in ionic photoionization, thereby assessing existing photoionization data bases in the x-ray region. To accomplish this task, we have employed the Relativistic Random-Phase-Approximation (RRPA) methodology which includes significant aspects of electron-electron correlation, including interchannel coupling. The RRPA methodology has been found to produce excellent agreement with experiment for neutral Ne at photon energies in the 1 keV range.

  9. A coupled hydrological-hydraulic flood inundation model calibrated using post-event measurements and integrated uncertainty analysis in a poorly gauged Mediterranean basin

    NASA Astrophysics Data System (ADS)

    Hdeib, Rouya; Abdallah, Chadi; Moussa, Roger; Colin, Francois

    2017-04-01

    Developing flood inundation maps of defined exceedance probabilities is required to provide information on the flood hazard and the associated risk. A methodology has been developed to model flood inundation in poorly gauged basins, where reliable information on the hydrological characteristics of floods are uncertain and partially captured by the traditional rain-gauge networks. Flood inundation is performed through coupling a hydrological rainfall-runoff (RR) model (HEC-HMS) with a hydraulic model (HEC-RAS). The RR model is calibrated against the January 2013 flood event in the Awali River basin, Lebanon (300 km2), whose flood peak discharge was estimated by post-event measurements. The resulting flows of the RR model are defined as boundary conditions of the hydraulic model, which is run to generate the corresponding water surface profiles and calibrated against 20 post-event surveyed cross sections after the January-2013 flood event. An uncertainty analysis is performed to assess the results of the models. Consequently, the coupled flood inundation model is simulated with design storms and flood inundation maps are generated of defined exceedance probabilities. The peak discharges estimated by the simulated RR model were in close agreement with the results from different empirical and statistical methods. This methodology can be extended to other poorly gauged basins facing common stage-gauge failure or characterized by floods with a stage exceeding the gauge measurement level, or higher than that defined by the rating curve.

  10. Drug target inference through pathway analysis of genomics data

    PubMed Central

    Ma, Haisu; Zhao, Hongyu

    2013-01-01

    Statistical modeling coupled with bioinformatics is commonly used for drug discovery. Although there exist many approaches for single target based drug design and target inference, recent years have seen a paradigm shift to system-level pharmacological research. Pathway analysis of genomics data represents one promising direction for computational inference of drug targets. This article aims at providing a comprehensive review on the evolving issues is this field, covering methodological developments, their pros and cons, as well as future research directions. PMID:23369829

  11. Analysis of the time structure of synchronization in multidimensional chaotic systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makarenko, A. V., E-mail: avm.science@mail.ru

    2015-05-15

    A new approach is proposed to the integrated analysis of the time structure of synchronization of multidimensional chaotic systems. The method allows one to diagnose and quantitatively evaluate the intermittency characteristics during synchronization of chaotic oscillations in the T-synchronization mode. A system of two identical logistic mappings with unidirectional coupling that operate in the developed chaos regime is analyzed. It is shown that the widely used approach, in which only synchronization patterns are subjected to analysis while desynchronization areas are considered as a background signal and removed from analysis, should be regarded as methodologically incomplete.

  12. QM/MM Geometry Optimization on Extensive Free-Energy Surfaces for Examination of Enzymatic Reactions and Design of Novel Functional Properties of Proteins.

    PubMed

    Hayashi, Shigehiko; Uchida, Yoshihiro; Hasegawa, Taisuke; Higashi, Masahiro; Kosugi, Takahiro; Kamiya, Motoshi

    2017-05-05

    Many remarkable molecular functions of proteins use their characteristic global and slow conformational dynamics through coupling of local chemical states in reaction centers with global conformational changes of proteins. To theoretically examine the functional processes of proteins in atomic detail, a methodology of quantum mechanical/molecular mechanical (QM/MM) free-energy geometry optimization is introduced. In the methodology, a geometry optimization of a local reaction center is performed with a quantum mechanical calculation on a free-energy surface constructed with conformational samples of the surrounding protein environment obtained by a molecular dynamics simulation with a molecular mechanics force field. Geometry optimizations on extensive free-energy surfaces by a QM/MM reweighting free-energy self-consistent field method designed to be variationally consistent and computationally efficient have enabled examinations of the multiscale molecular coupling of local chemical states with global protein conformational changes in functional processes and analysis and design of protein mutants with novel functional properties.

  13. A statistical estimation of Snow Water Equivalent coupling ground data and MODIS images

    NASA Astrophysics Data System (ADS)

    Bavera, D.; Bocchiola, D.; de Michele, C.

    2007-12-01

    The Snow Water Equivalent (SWE) is an important component of the hydrologic balance of mountain basins and snow fed areas in general. The total cumulated snow water equivalent at the end of the accumulation season represents the water availability at melt. Here, a statistical methodology to estimate the Snow Water Equivalent, at April 1st, is developed coupling ground data (snow depth and snow density measurements) and MODIS images. The methodology is applied to the Mallero river basin (about 320 km²) located in the Central Alps, northern Italy, where are available 11 snow gauges and a lot of sparse snow density measurements. The application covers 7 years from 2001 to 2007. The analysis has identified some problems in the MODIS information due to the cloud cover and misclassification for orographic shadow. The study is performed in the framework of AWARE (A tool for monitoring and forecasting Available WAter REsource in mountain environment) EU-project, a STREP Project in the VI F.P., GMES Initiative.

  14. QM/MM Geometry Optimization on Extensive Free-Energy Surfaces for Examination of Enzymatic Reactions and Design of Novel Functional Properties of Proteins

    NASA Astrophysics Data System (ADS)

    Hayashi, Shigehiko; Uchida, Yoshihiro; Hasegawa, Taisuke; Higashi, Masahiro; Kosugi, Takahiro; Kamiya, Motoshi

    2017-05-01

    Many remarkable molecular functions of proteins use their characteristic global and slow conformational dynamics through coupling of local chemical states in reaction centers with global conformational changes of proteins. To theoretically examine the functional processes of proteins in atomic detail, a methodology of quantum mechanical/molecular mechanical (QM/MM) free-energy geometry optimization is introduced. In the methodology, a geometry optimization of a local reaction center is performed with a quantum mechanical calculation on a free-energy surface constructed with conformational samples of the surrounding protein environment obtained by a molecular dynamics simulation with a molecular mechanics force field. Geometry optimizations on extensive free-energy surfaces by a QM/MM reweighting free-energy self-consistent field method designed to be variationally consistent and computationally efficient have enabled examinations of the multiscale molecular coupling of local chemical states with global protein conformational changes in functional processes and analysis and design of protein mutants with novel functional properties.

  15. A computer simulator for development of engineering system design methodologies

    NASA Technical Reports Server (NTRS)

    Padula, S. L.; Sobieszczanski-Sobieski, J.

    1987-01-01

    A computer program designed to simulate and improve engineering system design methodology is described. The simulator mimics the qualitative behavior and data couplings occurring among the subsystems of a complex engineering system. It eliminates the engineering analyses in the subsystems by replacing them with judiciously chosen analytical functions. With the cost of analysis eliminated, the simulator is used for experimentation with a large variety of candidate algorithms for multilevel design optimization to choose the best ones for the actual application. Thus, the simulator serves as a development tool for multilevel design optimization strategy. The simulator concept, implementation, and status are described and illustrated with examples.

  16. Making the Hubble Space Telescope servicing mission safe

    NASA Technical Reports Server (NTRS)

    Bahr, N. J.; Depalo, S. V.

    1992-01-01

    The implementation of the HST system safety program is detailed. Numerous safety analyses are conducted through various phases of design, test, and fabrication, and results are presented to NASA management for discussion during dedicated safety reviews. Attention is given to the system safety assessment and risk analysis methodologies used, i.e., hazard analysis, fault tree analysis, and failure modes and effects analysis, and to how they are coupled with engineering and test analysis for a 'synergistic picture' of the system. Some preliminary safety analysis results, showing the relationship between hazard identification, control or abatement, and finally control verification, are presented as examples of this safety process.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myers, S; Larsen, S; Wagoner, J

    Seismic imaging and tracking methods have intelligence and monitoring applications. Current systems, however, do not adequately calibrate or model the unknown geological heterogeneity. Current systems are also not designed for rapid data acquisition and analysis in the field. This project seeks to build the core technological capabilities coupled with innovative deployment, processing, and analysis methodologies to allow seismic methods to be effectively utilized in the applications of seismic imaging and vehicle tracking where rapid (minutes to hours) and real-time analysis is required. The goal of this project is to build capabilities in acquisition system design, utilization of full three-dimensional (3D)more » finite difference modeling, as well as statistical characterization of geological heterogeneity. Such capabilities coupled with a rapid field analysis methodology based on matched field processing are applied to problems associated with surveillance, battlefield management, finding hard and deeply buried targets, and portal monitoring. This project, in support of LLNL's national-security mission, benefits the U.S. military and intelligence community. Fiscal year (FY) 2003 was the final year of this project. In the 2.5 years this project has been active, numerous and varied developments and milestones have been accomplished. A wireless communication module for seismic data was developed to facilitate rapid seismic data acquisition and analysis. The E3D code was enhanced to include topographic effects. Codes were developed to implement the Karhunen-Loeve (K-L) statistical methodology for generating geological heterogeneity that can be utilized in E3D modeling. The matched field processing methodology applied to vehicle tracking and based on a field calibration to characterize geological heterogeneity was tested and successfully demonstrated in a tank tracking experiment at the Nevada Test Site. A three-seismic-array vehicle tracking testbed was installed on site at LLNL for testing real-time seismic tracking methods. A field experiment was conducted over a tunnel at the Nevada Site that quantified the tunnel reflection signal and, coupled with modeling, identified key needs and requirements in experimental layout of sensors. A large field experiment was conducted at the Lake Lynn Laboratory, a mine safety research facility in Pennsylvania, over a tunnel complex in realistic, difficult conditions. This experiment gathered the necessary data for a full 3D attempt to apply the methodology. The experiment also collected data to analyze the capabilities to detect and locate in-tunnel explosions for mine safety and other applications. In FY03 specifically, a large and complex simulation experiment was conducted that tested the full modeling-based approach to geological characterization using E2D, the K-L statistical methodology, and matched field processing applied to tunnel detection with surface seismic sensors. The simulation validated the full methodology and the need for geological heterogeneity to be accounted for in the overall approach. The Lake Lynn site area was geologically modeled using the code Earthvision to produce a 32 million node 3D model grid for E3D. Model linking issues were resolved and a number of full 3D model runs were accomplished using shot locations that matched the data. E3D-generated wavefield movies showed the reflection signal would be too small to be observed in the data due to trapped and attenuated energy in the weathered layer. An analysis of the few sensors coupled to bedrock did not improve the reflection signal strength sufficiently because the shots, though buried, were within the surface layer and hence attenuated. Ability to model a complex 3D geological structure and calculate synthetic seismograms that are in good agreement with actual data (especially for surface waves and below the complex weathered layer) was demonstrated. We conclude that E3D is a powerful tool for assessing the conditions under which a tunnel could be detected in a specific geological setting. Finally, the Lake Lynn tunnel explosion data were analyzed using standard array processing techniques. The results showed that single detonations could be detected and located but simultaneous detonations would require a strategic placement of arrays.« less

  18. A density functional theory study of the magnetic exchange coupling in dinuclear manganese(II) inverse crown structures.

    PubMed

    Vélez, Ederley; Alberola, Antonio; Polo, Víctor

    2009-12-17

    The magnetic exchange coupling constants between two Mn(II) centers for a set of five inverse crown structures have been investigated by means of a methodology based on broken-symmetry unrestricted density functional theory. These novel and highly unstable compounds present superexchange interactions between two Mn centers, each one with S = 5/2 through anionic "guests" such as oxygen, benzene, or hydrides or through the cationic ring formed by amide ligands and alkali metals (Na, Li). Magnetic exchange couplings calculated at B3LYP/6-31G(d,p) level yield strong antiferromagnetic couplings for compounds linked via an oxygen atom or hydride and very small antiferromagnetic couplings for those linked via a benzene molecule, deprotonated in either 1,4- or 1,3- positions. Analysis of the magnetic orbitals and spin polarization maps provide an understanding of the exchange mechanism between the Mn centers. The dependence of J with respect to 10 different density functional theory potentials employed and the basis set has been analyzed.

  19. Conjugate Heat Transfer Study in Hypersonic Flows

    NASA Astrophysics Data System (ADS)

    Sahoo, Niranjan; Kulkarni, Vinayak; Peetala, Ravi Kumar

    2018-04-01

    Coupled and decoupled conjugate heat transfer (CHT) studies are carried out to imitate experimental studies for heat transfer measurement in hypersonic flow regime. The finite volume based solvers are used for analyzing the heat interaction between fluid and solid domains. Temperature and surface heat flux signals are predicted by both coupled and decoupled CHT analysis techniques for hypersonic Mach numbers. These two methodologies are also used to study the effect of different wall materials on surface parameters. Effectiveness of these CHT solvers has been verified for the inverse problem of wall heat flux recovery using various techniques reported in the literature. Both coupled and decoupled CHT techniques are seen to be equally useful for prediction of local temperature and heat flux signals prior to the experiments in hypersonic flows.

  20. Methods for simulation-based analysis of fluid-structure interaction.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barone, Matthew Franklin; Payne, Jeffrey L.

    2005-10-01

    Methods for analysis of fluid-structure interaction using high fidelity simulations are critically reviewed. First, a literature review of modern numerical techniques for simulation of aeroelastic phenomena is presented. The review focuses on methods contained within the arbitrary Lagrangian-Eulerian (ALE) framework for coupling computational fluid dynamics codes to computational structural mechanics codes. The review treats mesh movement algorithms, the role of the geometric conservation law, time advancement schemes, wetted surface interface strategies, and some representative applications. The complexity and computational expense of coupled Navier-Stokes/structural dynamics simulations points to the need for reduced order modeling to facilitate parametric analysis. The proper orthogonalmore » decomposition (POD)/Galerkin projection approach for building a reduced order model (ROM) is presented, along with ideas for extension of the methodology to allow construction of ROMs based on data generated from ALE simulations.« less

  1. Chromatographic background drift correction coupled with parallel factor analysis to resolve coelution problems in three-dimensional chromatographic data: quantification of eleven antibiotics in tap water samples by high-performance liquid chromatography coupled with a diode array detector.

    PubMed

    Yu, Yong-Jie; Wu, Hai-Long; Fu, Hai-Yan; Zhao, Juan; Li, Yuan-Na; Li, Shu-Fang; Kang, Chao; Yu, Ru-Qin

    2013-08-09

    Chromatographic background drift correction has been an important field of research in chromatographic analysis. In the present work, orthogonal spectral space projection for background drift correction of three-dimensional chromatographic data was described in detail and combined with parallel factor analysis (PARAFAC) to resolve overlapped chromatographic peaks and obtain the second-order advantage. This strategy was verified by simulated chromatographic data and afforded significant improvement in quantitative results. Finally, this strategy was successfully utilized to quantify eleven antibiotics in tap water samples. Compared with the traditional methodology of introducing excessive factors for the PARAFAC model to eliminate the effect of background drift, clear improvement in the quantitative performance of PARAFAC was observed after background drift correction by orthogonal spectral space projection. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Evaluating the statistical methodology of randomized trials on dentin hypersensitivity management.

    PubMed

    Matranga, Domenica; Matera, Federico; Pizzo, Giuseppe

    2017-12-27

    The present study aimed to evaluate the characteristics and quality of statistical methodology used in clinical studies on dentin hypersensitivity management. An electronic search was performed for data published from 2009 to 2014 by using PubMed, Ovid/MEDLINE, and Cochrane Library databases. The primary search terms were used in combination. Eligibility criteria included randomized clinical trials that evaluated the efficacy of desensitizing agents in terms of reducing dentin hypersensitivity. A total of 40 studies were considered eligible for assessment of quality statistical methodology. The four main concerns identified were i) use of nonparametric tests in the presence of large samples, coupled with lack of information about normality and equality of variances of the response; ii) lack of P-value adjustment for multiple comparisons; iii) failure to account for interactions between treatment and follow-up time; and iv) no information about the number of teeth examined per patient and the consequent lack of cluster-specific approach in data analysis. Owing to these concerns, statistical methodology was judged as inappropriate in 77.1% of the 35 studies that used parametric methods. Additional studies with appropriate statistical analysis are required to obtain appropriate assessment of the efficacy of desensitizing agents.

  3. Structure & Coupling of Semiotic Sets

    NASA Astrophysics Data System (ADS)

    Orsucci, Franco; Giuliani, Alessandro; Zbilut, Joseph

    2004-12-01

    We investigated the informational structure of written texts (also in the form of speech transcriptions) using Recurrence Quantification Analysis (RQA). RQA technique provides a quantitative description of text sequences at the orthographic level in terms of structuring, and may be useful for a variety of linguistics-related studies. We used RQA to measure differences in linguistic samples from different subjects. They were divided in subgroups based on personality and culture differences. We used RQA and KRQA (Cross Recurrence) to measure the coupling and synchronization during the conversation (semiotic interaction) of different subjects. We discuss results both for the improvement of methodology and some general implications for neurocognitive science.

  4. Numerical Methodology for Coupled Time-Accurate Simulations of Primary and Secondary Flowpaths in Gas Turbines

    NASA Technical Reports Server (NTRS)

    Przekwas, A. J.; Athavale, M. M.; Hendricks, R. C.; Steinetz, B. M.

    2006-01-01

    Detailed information of the flow-fields in the secondary flowpaths and their interaction with the primary flows in gas turbine engines is necessary for successful designs with optimized secondary flow streams. Present work is focused on the development of a simulation methodology for coupled time-accurate solutions of the two flowpaths. The secondary flowstream is treated using SCISEAL, an unstructured adaptive Cartesian grid code developed for secondary flows and seals, while the mainpath flow is solved using TURBO, a density based code with capability of resolving rotor-stator interaction in multi-stage machines. An interface is being tested that links the two codes at the rim seal to allow data exchange between the two codes for parallel, coupled execution. A description of the coupling methodology and the current status of the interface development is presented. Representative steady-state solutions of the secondary flow in the UTRC HP Rig disc cavity are also presented.

  5. Transonic Flow Field Analysis for Wing-Fuselage Configurations

    NASA Technical Reports Server (NTRS)

    Boppe, C. W.

    1980-01-01

    A computational method for simulating the aerodynamics of wing-fuselage configurations at transonic speeds is developed. The finite difference scheme is characterized by a multiple embedded mesh system coupled with a modified or extended small disturbance flow equation. This approach permits a high degree of computational resolution in addition to coordinate system flexibility for treating complex realistic aircraft shapes. To augment the analysis method and permit applications to a wide range of practical engineering design problems, an arbitrary fuselage geometry modeling system is incorporated as well as methodology for computing wing viscous effects. Configuration drag is broken down into its friction, wave, and lift induced components. Typical computed results for isolated bodies, isolated wings, and wing-body combinations are presented. The results are correlated with experimental data. A computer code which employs this methodology is described.

  6. Coupled Cryogenic Thermal and Electrical Models for Transient Analysis of Superconducting Power Devices with Integrated Cryogenic Systems

    NASA Astrophysics Data System (ADS)

    Satyanarayana, S.; Indrakanti, S.; Kim, J.; Kim, C.; Pamidi, S.

    2017-12-01

    Benefits of an integrated high temperature superconducting (HTS) power system and the associated cryogenic systems on board an electric ship or aircraft are discussed. A versatile modelling methodology developed to assess the cryogenic thermal behavior of the integrated system with multiple HTS devices and the various potential configurations are introduced. The utility and effectiveness of the developed modelling methodology is demonstrated using a case study involving a hypothetical system including an HTS propulsion motor, an HTS generator and an HTS power cable cooled by an integrated cryogenic helium circulation system. Using the methodology, multiple configurations are studied. The required total cooling power and the ability to maintain each HTS device at the required operating temperatures are considered for each configuration and the trade-offs are discussed for each configuration. Transient analysis of temperature evolution in the cryogenic helium circulation loop in case of a system failure is carried out to arrive at the required critical response time. The analysis was also performed for a similar liquid nitrogen circulation for an isobaric condition and the cooling capacity ratio is used to compare the relative merits of the two cryogens.

  7. Industry Application ECCS / LOCA Integrated Cladding/Emergency Core Cooling System Performance: Demonstration of LOTUS-Baseline Coupled Analysis of the South Texas Plant Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Hongbin; Szilard, Ronaldo; Epiney, Aaron

    Under the auspices of the DOE LWRS Program RISMC Industry Application ECCS/LOCA, INL has engaged staff from both South Texas Project (STP) and the Texas A&M University (TAMU) to produce a generic pressurized water reactor (PWR) model including reactor core, clad/fuel design and systems thermal hydraulics based on the South Texas Project (STP) nuclear power plant, a 4-Loop Westinghouse PWR. A RISMC toolkit, named LOCA Toolkit for the U.S. (LOTUS), has been developed for use in this generic PWR plant model to assess safety margins for the proposed NRC 10 CFR 50.46c rule, Emergency Core Cooling System (ECCS) performance duringmore » LOCA. This demonstration includes coupled analysis of core design, fuel design, thermalhydraulics and systems analysis, using advanced risk analysis tools and methods to investigate a wide range of results. Within this context, a multi-physics best estimate plus uncertainty (MPBEPU) methodology framework is proposed.« less

  8. Numerical Estimation of Sound Transmission Loss in Launch Vehicle Payload Fairing

    NASA Astrophysics Data System (ADS)

    Chandana, Pawan Kumar; Tiwari, Shashi Bhushan; Vukkadala, Kishore Nath

    2017-08-01

    Coupled acoustic-structural analysis of a typical launch vehicle composite payload faring is carried out, and results are validated with experimental data. Depending on the frequency range of interest, prediction of vibro-acoustic behavior of a structure is usually done using the finite element method, boundary element method or through statistical energy analysis. The present study focuses on low frequency dynamic behavior of a composite payload fairing structure using both coupled and uncoupled vibro-acoustic finite element models up to 710 Hz. A vibro-acoustic model, characterizing the interaction between the fairing structure, air cavity, and satellite, is developed. The external sound pressure levels specified for the payload fairing's acoustic test are considered as external loads for the analysis. Analysis methodology is validated by comparing the interior noise levels with those obtained from full scale Acoustic tests conducted in a reverberation chamber. The present approach has application in the design and optimization of acoustic control mechanisms at lower frequencies.

  9. Development of a Multi-Disciplinary Computing Environment (MDICE)

    NASA Technical Reports Server (NTRS)

    Kingsley, Gerry; Siegel, John M., Jr.; Harrand, Vincent J.; Lawrence, Charles; Luker, Joel J.

    1999-01-01

    The growing need for and importance of multi-component and multi-disciplinary engineering analysis has been understood for many years. For many applications, loose (or semi-implicit) coupling is optimal, and allows the use of various legacy codes without requiring major modifications. For this purpose, CFDRC and NASA LeRC have developed a computational environment to enable coupling between various flow analysis codes at several levels of fidelity. This has been referred to as the Visual Computing Environment (VCE), and is being successfully applied to the analysis of several aircraft engine components. Recently, CFDRC and AFRL/VAAC (WL) have extended the framework and scope of VCE to enable complex multi-disciplinary simulations. The chosen initial focus is on aeroelastic aircraft applications. The developed software is referred to as MDICE-AE, an extensible system suitable for integration of several engineering analysis disciplines. This paper describes the methodology, basic architecture, chosen software technologies, salient library modules, and the current status of and plans for MDICE. A fluid-structure interaction application is described in a separate companion paper.

  10. Development of a Methodology for the Characterisation of Air-coupled Ultrasound Probes

    NASA Astrophysics Data System (ADS)

    Pietroni, Paolo; Marco Revel, Gian

    2010-05-01

    This study is aimed at developing a technique for the characterisation of air-coupled ultrasound probes, starting from the analysis of the mechanical behaviour of the probe membrane. The vibratory behaviour of the emission membrane is studied using laser-Doppler vibrometry techniques with high frequency demodulation system (20 MHz). The determination of the vibration provides information which are useful for the assessment of the performance of the probe, in particular concerning the Quality factor and the portion of the membrane which really contributes to the emission. During the second step the results of the vibration measurements are used to calculate, by means of numerical boundary element method, the ultrasound beam emitted in terms of intensity in space. The obtained field is compared with the direct measurements carried out by scanning with the receiver probe and a pinhole plate. This comparison allows the potential and the problems of the two different characterisation techniques to be determined, even if the pinhole technique (which is currently considered the state of the art) cannot be used as an absolute reference. This study appears to be useful for paving the way for a new methodology for the calibration of air-coupled ultrasound probes, which potentially could be used not only to improve the probe manufacturing process, but also to control conformity to specifications.

  11. Progress in integrated-circuit horn antennas for receiver applications. Part 1: Antenna design

    NASA Technical Reports Server (NTRS)

    Eleftheriades, George V.; Ali-Ahmad, Walid Y.; Rebeiz, Gabriel M.

    1992-01-01

    The purpose of this work is to present a systematic method for the design of multimode quasi-integrated horn antennas. The design methodology is based on the Gaussian beam approach and the structures are optimized for achieving maximum fundamental Gaussian coupling efficiency. For this purpose, a hybrid technique is employed in which the integrated part of the antennas is treated using full-wave analysis, whereas the machined part is treated using an approximate method. This results in a simple and efficient design process. The developed design procedure has been applied for the design of a 20, a 23, and a 25 dB quasi-integrated horn antennas, all with a Gaussian coupling efficiency exceeding 97 percent. The designed antennas have been tested and characterized using both full-wave analysis and 90 GHz/370 GHz measurements.

  12. Analysis of Flame Deflector Spray Nozzles in Rocket Engine Test Stands

    NASA Technical Reports Server (NTRS)

    Sachdev, Jai S.; Ahuja, Vineet; Hosangadi, Ashvin; Allgood, Daniel C.

    2010-01-01

    The development of a unified tightly coupled multi-phase computational framework is described for the analysis and design of cooling spray nozzle configurations on the flame deflector in rocket engine test stands. An Eulerian formulation is used to model the disperse phase and is coupled to the gas-phase equations through momentum and heat transfer as well as phase change. The phase change formulation is modeled according to a modified form of the Hertz-Knudsen equation. Various simple test cases are presented to verify the validity of the numerical framework. The ability of the methodology to accurately predict the temperature load on the flame deflector is demonstrated though application to an actual sub-scale test facility. The CFD simulation was able to reproduce the result of the test-firing, showing that the spray nozzle configuration provided insufficient amount of cooling.

  13. An evaluation of the directed flow graph methodology

    NASA Technical Reports Server (NTRS)

    Snyder, W. E.; Rajala, S. A.

    1984-01-01

    The applicability of the Directed Graph Methodology (DGM) to the design and analysis of special purpose image and signal processing hardware was evaluated. A special purpose image processing system was designed and described using DGM. The design, suitable for very large scale integration (VLSI) implements a region labeling technique. Two computer chips were designed, both using metal-nitride-oxide-silicon (MNOS) technology, as well as a functional system utilizing those chips to perform real time region labeling. The system is described in terms of DGM primitives. As it is currently implemented, DGM is inappropriate for describing synchronous, tightly coupled, special purpose systems. The nature of the DGM formalism lends itself more readily to modeling networks of general purpose processors.

  14. LES, DNS, and RANS for the Analysis of High-Speed Turbulent Reacting Flows

    NASA Technical Reports Server (NTRS)

    Colucci, P. J.; Jaberi, F. A.; Givi, P.

    1996-01-01

    A filtered density function (FDF) method suitable for chemically reactive flows is developed in the context of large eddy simulation. The advantage of the FDF methodology is its inherent ability to resolve subgrid scales (SGS) scalar correlations that otherwise have to be modeled. Because of the lack of robust models to accurately predict these correlations in turbulent reactive flows, simulations involving turbulent combustion are often met with a degree of skepticism. The FDF methodology avoids the closure problem associated with these terms and treats the reaction in an exact manner. The scalar FDF approach is particularly attractive since it can be coupled with existing hydrodynamic computational fluid dynamics (CFD) codes.

  15. Interviewing with or without the partner present?--an underexposed dilemma between ethics and methodology in nursing research.

    PubMed

    Norlyk, Annelise; Haahr, Anita; Hall, Elisabeth

    2016-04-01

    To discuss ethical and methodological challenges related to in-depth interviews with patients and partners when interviewed together or separately. Increased interest in exploring illness phenomena from both patients' and partners' perspectives has emerged. The decision about how to collect data is challenging. Patients and partners can be interviewed separately or together; in both scenarios researchers face complex questions of methodology and ethics. This paper contributes to the ongoing debate on individual or joint interviewing and the effect of absence/presence of the partner on data collection. Discussion paper that draws on data from three phenomenological studies. Referring to three cases from our phenomenological studies, we discuss the different types of ethical and methodological dilemmas faced when undertaking joint and separate interviews with couples. Furthermore, we discuss how the unexpected presence of the partner potentially influences the data gathered from the patient. The cases demonstrate the interrelatedness of ethics and methodology in studies based on in-depth interviews with couples. Nurse researchers may be caught up in a dilemma between ethical concerns and methodological considerations. We argue that the presence of the partner during an interview session might influence the data and favour expressions of shared rather than individual experiences of the phenomenon studied. Furthermore, we argue that ethical concerns must be given higher priority than methodology when interviewing couples. An increased awareness of the tension between ethical and methodological challenges in joint or individual interviewing with patients and partners is necessary, as this issue is underexposed. © 2015 John Wiley & Sons Ltd.

  16. Cross Time-Frequency Analysis for Combining Information of Several Sources: Application to Estimation of Spontaneous Respiratory Rate from Photoplethysmography

    PubMed Central

    Peláez-Coca, M. D.; Orini, M.; Lázaro, J.; Bailón, R.; Gil, E.

    2013-01-01

    A methodology that combines information from several nonstationary biological signals is presented. This methodology is based on time-frequency coherence, that quantifies the similarity of two signals in the time-frequency domain. A cross time-frequency analysis method, based on quadratic time-frequency distribution, has been used for combining information of several nonstationary biomedical signals. In order to evaluate this methodology, the respiratory rate from the photoplethysmographic (PPG) signal is estimated. The respiration provokes simultaneous changes in the pulse interval, amplitude, and width of the PPG signal. This suggests that the combination of information from these sources will improve the accuracy of the estimation of the respiratory rate. Another target of this paper is to implement an algorithm which provides a robust estimation. Therefore, respiratory rate was estimated only in those intervals where the features extracted from the PPG signals are linearly coupled. In 38 spontaneous breathing subjects, among which 7 were characterized by a respiratory rate lower than 0.15 Hz, this methodology provided accurate estimates, with the median error {0.00; 0.98} mHz ({0.00; 0.31}%) and the interquartile range error {4.88; 6.59} mHz ({1.60; 1.92}%). The estimation error of the presented methodology was largely lower than the estimation error obtained without combining different PPG features related to respiration. PMID:24363777

  17. Joint symbolic dynamics for the assessment of cardiovascular and cardiorespiratory interactions

    PubMed Central

    Baumert, Mathias; Javorka, Michal; Kabir, Muammar

    2015-01-01

    Beat-to-beat variations in heart period provide information on cardiovascular control and are closely linked to variations in arterial pressure and respiration. Joint symbolic analysis of heart period, systolic arterial pressure and respiration allows for a simple description of their shared short-term dynamics that are governed by cardiac baroreflex control and cardiorespiratory coupling. In this review, we discuss methodology and research applications. Studies suggest that analysis of joint symbolic dynamics provides a powerful tool for identifying physiological and pathophysiological changes in cardiovascular and cardiorespiratory control. PMID:25548272

  18. Joint symbolic dynamics for the assessment of cardiovascular and cardiorespiratory interactions.

    PubMed

    Baumert, Mathias; Javorka, Michal; Kabir, Muammar

    2015-02-13

    Beat-to-beat variations in heart period provide information on cardiovascular control and are closely linked to variations in arterial pressure and respiration. Joint symbolic analysis of heart period, systolic arterial pressure and respiration allows for a simple description of their shared short-term dynamics that are governed by cardiac baroreflex control and cardiorespiratory coupling. In this review, we discuss methodology and research applications. Studies suggest that analysis of joint symbolic dynamics provides a powerful tool for identifying physiological and pathophysiological changes in cardiovascular and cardiorespiratory control.

  19. A fourth order Euler/Navier-Stokes prediction method for the aerodynamics and aeroelasticity of hovering rotor blades

    NASA Astrophysics Data System (ADS)

    Smith, Marilyn Jones

    Some of the computational issues relating to the development of a three-dimensional fourth-order compact Euler/Navier-Stokes methodology for rotary wing flows and its coupling with an elastic rotor blade beam structural model have been explored. The compact Euler/NavierStokes method is used to predict the aerodynamic loads on an isolated rotor blade. Because the scheme is fourth-order, fewer grid nodes are necessary to predict loads with the same accuracy as traditional second order methodologies on finer grids. Grid and numerical parameter optimizations were performed to examine the changes in the predictive capabilities of the higher-order scheme. Comparisons were made with experimental data for a rotor using NACA 0012 airfoil sections and a rectangular planform with no twist. Simulations for both lifting and non-lifting configurations at various tip Mach numbers were performed. This Euler/Navier-Stokes methodology can be applied to rotor blades with either rigid-blade or elastic-beam-structural models to determine the steady-state response in hovering flight. The blade is represented by a geometrically nonlinear beam model which accounts for coupled flap bending, lead-lag bending and torsion. Moderately large displacements and rotations due to structural deformations can be simulated. The analysis has been performed for blade configurations having uniform mass and stiffness, no twist, and no chordwise offsets of the elastic and tension axes, as well as the center of mass. The results are compared with a panel method coupled with the same structural dynamics model. Computations have been made to predict the aerodynamic deflections for the rotor in hover. A starting solution using initial deflections predicted by aeroelastic analyses with a two-dimensional aerodynamic model was investigated. The present Euler/Navier-Stokes method using a momentum wake and a contracting vortex wake shows the impact on the aeroelastic deflections of a three-dimensional aerodynamic module which includes rotational and viscous effects, particularly at higher collective pitch angles. The differences in the aeroelastic predictions using fully coupled and loosely coupled aerodynamic analyses are examined. The induced wake plays a critical role in determining the final equilibrium tip deflections.

  20. Review: Current applications and challenges for liquid chromatography coupled to isotope ratio mass spectrometry (LC/IRMS).

    PubMed

    Godin, Jean-Philippe; McCullagh, James S O

    2011-10-30

    High-precision isotope analysis is recognized as an essential research tool in many fields of study. Until recently, continuous flow isotope ratio mass spectrometry (CF-IRMS) was available via an elemental analyzer or a gas chromatography inlet system for compound-specific analysis of light stable isotopes. In 2004, however, an interface that coupled liquid chromatography with IRMS (LC/IRMS) became commercially available for the first time. This brought the capability for new areas of application, in particular enabling compound-specific δ(13)C analysis of non-volatile, aqueous soluble, compounds from complex mixtures. The interface design brought with it several analytical constraints, however, in particular a lack of compatibility with certain types of chromatography as well as limited flow rates and mobile phase compositions. Routine LC/IRMS methods have, however, been established for measuring the δ(13)C isotopic ratios of underivatized individual compounds for application in archeology, nutrition and physiology, geochemistry, hydrology, soil science and food authenticity. Seven years after its introduction, we review the technical advances and constraints, methodological developments and new applications of liquid chromatography coupled to isotope ratio mass spectrometry. Copyright © 2011 John Wiley & Sons, Ltd.

  1. Analytical Kinematics and Coupled Vibrations Analysis of Mechanical System Operated by Solar Array Drive Assembly

    NASA Astrophysics Data System (ADS)

    Sattar, M.; Wei, C.; Jalali, A.; Sattar, R.

    2017-07-01

    To address the impact of solar array (SA) anomalies and vibrations on performance of precision space-based operations, it is important to complete its accurate jitter analysis. This work provides mathematical modelling scheme to approximate kinematics and coupled micro disturbance dynamics of rigid load supported and operated by solar array drive assembly (SADA). SADA employed in analysis provides a step wave excitation torque to activate the system. Analytical investigations into kinematics is accomplished by using generalized linear and Euler angle coordinates, applying multi-body dynamics concepts and transformations principles. Theoretical model is extended, to develop equations of motion (EoM), through energy method (Lagrange equation). The main emphasis is to research coupled frequency response by determining energies dissipated and observing dynamic behaviour of internal vibratory systems of SADA. The disturbance model captures discrete active harmonics of SADA, natural modes and vibration amplifications caused by interactions between active harmonics and structural modes of mechanical assembly. The proposed methodology can help to predict true micro disturbance nature of SADA operating rigid load. Moreover, performance outputs may be compared against actual mission requirements to assess precise spacecraft controller design to meet next space generation stringent accuracy goals.

  2. Convergent close coupling versus the generalized Sturmian function approach: Wave-function analysis

    NASA Astrophysics Data System (ADS)

    Ambrosio, M.; Mitnik, D. M.; Gasaneo, G.; Randazzo, J. M.; Kadyrov, A. S.; Fursa, D. V.; Bray, I.

    2015-11-01

    We compare the physical information contained in the Temkin-Poet (TP) scattering wave function representing electron-impact ionization of hydrogen, calculated by the convergent close-coupling (CCC) and generalized Sturmian function (GSF) methodologies. The idea is to show that the ionization cross section can be extracted from the wave functions themselves. Using two different procedures based on hyperspherical Sturmian functions we show that the transition amplitudes contained in both GSF and CCC scattering functions lead to similar single-differential cross sections. The single-continuum channels were also a subject of the present studies, and we show that the elastic and excitation amplitudes are essentially the same as well.

  3. Contribution to the application of two-colour imaging to diesel combustion

    NASA Astrophysics Data System (ADS)

    Payri, F.; Pastor, J. V.; García, J. M.; Pastor, J. M.

    2007-08-01

    The two-colour method (2C) is a well-known methodology for the estimation of flame temperature and the soot-related KL factor. A 2C imaging system has been built with a single charge-coupled device (CCD) camera for visualization of the diesel flame in a single-cylinder 2-stroke engine with optical accesses. The work presented here focuses on methodological aspects. In that sense, the influence of calibration uncertainties on the measured temperature and KL factor has been analysed. Besides, a theoretical study is presented that tries to link the true flame temperature and soot distributions with those derived from the 2C images. Finally, an experimental study has been carried out in order to show the influence of injection pressure, air density and temperature on the 2C-derived parameters. Comparison with the expected results has shown the limitations of this methodology for diesel flame analysis.

  4. Mathematical modeling of elementary trapping-reduction processes in positron annihilation lifetime spectroscopy: methodology of Ps-to-positron trapping conversion

    NASA Astrophysics Data System (ADS)

    Shpotyuk, Ya; Cebulski, J.; Ingram, A.; Shpotyuk, O.

    2017-12-01

    Methodological possibilities of positron annihilation lifetime (PAL) spectroscopy in application to nanostructurized substances treated within three-term fitting procedure are reconsidered to parameterize their atomic-deficient structural arrangement. In contrast to conventional three-term fitting analysis of the detected PAL spectra based on admixed positron trapping and positronium (Ps) decaying, the nanostructurization due to guest nanoparticles embedded in host matrix is considered as producing modified trapping, which involves conversion between these channels. The developed approach referred to as x3-x2-coupling decomposition algorithm allows estimation free volumes of interfacial voids responsible for positron trapping and bulk lifetimes in nanoparticle-embedded substances. This methodology is validated using experimental data of Chakraverty et al. [Phys. Rev. B71 (2005) 024115] on PAL study of composites formed by guest NiFe2O4 nanocrystals grown in host SiO2 matrix.

  5. Transient loads analysis for space flight applications

    NASA Technical Reports Server (NTRS)

    Thampi, S. K.; Vidyasagar, N. S.; Ganesan, N.

    1992-01-01

    A significant part of the flight readiness verification process involves transient analysis of the coupled Shuttle-payload system to determine the low frequency transient loads. This paper describes a methodology for transient loads analysis and its implementation for the Spacelab Life Sciences Mission. The analysis is carried out using two major software tools - NASTRAN and an external FORTRAN code called EZTRAN. This approach is adopted to overcome some of the limitations of NASTRAN's standard transient analysis capabilities. The method uses Data Recovery Matrices (DRM) to improve computational efficiency. The mode acceleration method is fully implemented in the DRM formulation to recover accurate displacements, stresses, and forces. The advantages of the method are demonstrated through a numerical example.

  6. General implementation of arbitrary nonlinear quadrature phase gates

    NASA Astrophysics Data System (ADS)

    Marek, Petr; Filip, Radim; Ogawa, Hisashi; Sakaguchi, Atsushi; Takeda, Shuntaro; Yoshikawa, Jun-ichi; Furusawa, Akira

    2018-02-01

    We propose general methodology of deterministic single-mode quantum interaction nonlinearly modifying single quadrature variable of a continuous-variable system. The methodology is based on linear coupling of the system to ancillary systems subsequently measured by quadrature detectors. The nonlinear interaction is obtained by using the data from the quadrature detection for dynamical manipulation of the coupling parameters. This measurement-induced methodology enables direct realization of arbitrary nonlinear quadrature interactions without the need to construct them from the lowest-order gates. Such nonlinear interactions are crucial for more practical and efficient manipulation of continuous quadrature variables as well as qubits encoded in continuous-variable systems.

  7. Global sensitivity analysis of groundwater transport

    NASA Astrophysics Data System (ADS)

    Cvetkovic, V.; Soltani, S.; Vigouroux, G.

    2015-12-01

    In this work we address the model and parametric sensitivity of groundwater transport using the Lagrangian-Stochastic Advection-Reaction (LaSAR) methodology. The 'attenuation index' is used as a relevant and convenient measure of the coupled transport mechanisms. The coefficients of variation (CV) for seven uncertain parameters are assumed to be between 0.25 and 3.5, the highest value being for the lower bound of the mass transfer coefficient k0 . In almost all cases, the uncertainties in the macro-dispersion (CV = 0.35) and in the mass transfer rate k0 (CV = 3.5) are most significant. The global sensitivity analysis using Sobol and derivative-based indices yield consistent rankings on the significance of different models and/or parameter ranges. The results presented here are generic however the proposed methodology can be easily adapted to specific conditions where uncertainty ranges in models and/or parameters can be estimated from field and/or laboratory measurements.

  8. Trace element analysis of rough diamond by LA-ICP-MS: a case of source discrimination?

    PubMed

    Dalpé, Claude; Hudon, Pierre; Ballantyne, David J; Williams, Darrell; Marcotte, Denis

    2010-11-01

    Current profiling of rough diamond source is performed using different physical and/or morphological techniques that require strong knowledge and experience in the field. More recently, chemical impurities have been used to discriminate diamond source and with the advance of laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) empirical profiling of rough diamonds is possible to some extent. In this study, we present a LA-ICP-MS methodology that we developed for analyzing ultra-trace element impurities in rough diamond for origin determination ("profiling"). Diamonds from two sources were analyzed by LA-ICP-MS and were statistically classified by accepted methods. For the two diamond populations analyzed in this study, binomial logistic regression produced a better overall correct classification than linear discriminant analysis. The results suggest that an anticipated matrix match reference material would improve the robustness of our methodology for forensic applications. © 2010 American Academy of Forensic Sciences.

  9. Developments in the application of the geometrical theory of diffraction and computer graphics to aircraft inter-antenna coupling analysis

    NASA Astrophysics Data System (ADS)

    Bogusz, Michael

    1993-01-01

    The need for a systematic methodology for the analysis of aircraft electromagnetic compatibility (EMC) problems is examined. The available computer aids used in aircraft EMC analysis are assessed and a theoretical basis is established for the complex algorithms which identify and quantify electromagnetic interactions. An overview is presented of one particularly well established aircraft antenna to antenna EMC analysis code, the Aircraft Inter-Antenna Propagation with Graphics (AAPG) Version 07 software. The specific new algorithms created to compute cone geodesics and their associated path losses and to graph the physical coupling path are discussed. These algorithms are validated against basic principles. Loss computations apply the uniform geometrical theory of diffraction and are subsequently compared to measurement data. The increased modelling and analysis capabilities of the newly developed AAPG Version 09 are compared to those of Version 07. Several models of real aircraft, namely the Electronic Systems Trainer Challenger, are generated and provided as a basis for this preliminary comparative assessment. Issues such as software reliability, algorithm stability, and quality of hardcopy output are also discussed.

  10. Development of Multi-physics (Multiphase CFD + MCNP) simulation for generic solution vessel power calculation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Seung Jun; Buechler, Cynthia Eileen

    The current study aims to predict the steady state power of a generic solution vessel and to develop a corresponding heat transfer coefficient correlation for a Moly99 production facility by conducting a fully coupled multi-physics simulation. A prediction of steady state power for the current application is inherently interconnected between thermal hydraulic characteristics (i.e. Multiphase computational fluid dynamics solved by ANSYS-Fluent 17.2) and the corresponding neutronic behavior (i.e. particle transport solved by MCNP6.2) in the solution vessel. Thus, the development of a coupling methodology is vital to understand the system behavior at a variety of system design and postulated operatingmore » scenarios. In this study, we report on the k-effective (keff) calculation for the baseline solution vessel configuration with a selected solution concentration using MCNP K-code modeling. The associated correlation of thermal properties (e.g. density, viscosity, thermal conductivity, specific heat) at the selected solution concentration are developed based on existing experimental measurements in the open literature. The numerical coupling methodology between multiphase CFD and MCNP is successfully demonstrated, and the detailed coupling procedure is documented. In addition, improved coupling methods capturing realistic physics in the solution vessel thermal-neutronic dynamics are proposed and tested further (i.e. dynamic height adjustment, mull-cell approach). As a key outcome of the current study, a multi-physics coupling methodology between MCFD and MCNP is demonstrated and tested for four different operating conditions. Those different operating conditions are determined based on the neutron source strength at a fixed geometry condition. The steady state powers for the generic solution vessel at various operating conditions are reported, and a generalized correlation of the heat transfer coefficient for the current application is discussed. The assessment of multi-physics methodology and preliminary results from various coupled calculations (power prediction and heat transfer coefficient) can be further utilized for the system code validation and generic solution vessel design improvement.« less

  11. Heuristic decomposition for non-hierarchic systems

    NASA Technical Reports Server (NTRS)

    Bloebaum, Christina L.; Hajela, P.

    1991-01-01

    Design and optimization is substantially more complex in multidisciplinary and large-scale engineering applications due to the existing inherently coupled interactions. The paper introduces a quasi-procedural methodology for multidisciplinary optimization that is applicable for nonhierarchic systems. The necessary decision-making support for the design process is provided by means of an embedded expert systems capability. The method employs a decomposition approach whose modularity allows for implementation of specialized methods for analysis and optimization within disciplines.

  12. Navier-Stokes simulation of plume/Vertical Launching System interaction flowfields

    NASA Astrophysics Data System (ADS)

    York, B. J.; Sinha, N.; Dash, S. M.; Anderson, L.; Gominho, L.

    1992-01-01

    The application of Navier-Stokes methodology to the analysis of Vertical Launching System/missile exhaust plume interactions is discussed. The complex 3D flowfields related to the Vertical Launching System are computed utilizing the PARCH/RNP Navier-Stokes code. PARCH/RNP solves the fully-coupled system of fluid, two-equation turbulence (k-epsilon) and chemical species equations via the implicit, approximately factored, Beam-Warming algorithm utilizing a block-tridiagonal inversion procedure.

  13. Predicting the Coupling Properties of Axially-Textured Materials.

    PubMed

    Fuentes-Cobas, Luis E; Muñoz-Romero, Alejandro; Montero-Cabrera, María E; Fuentes-Montero, Luis; Fuentes-Montero, María E

    2013-10-30

    A description of methods and computer programs for the prediction of "coupling properties" in axially-textured polycrystals is presented. Starting data are the single-crystal properties, texture and stereography. The validity and proper protocols for applying the Voigt, Reuss and Hill approximations to estimate coupling properties effective values is analyzed. Working algorithms for predicting mentioned averages are given. Bunge's symmetrized spherical harmonics expansion of orientation distribution functions, inverse pole figures and (single and polycrystals) physical properties is applied in all stages of the proposed methodology. The established mathematical route has been systematized in a working computer program. The discussion of piezoelectricity in a representative textured ferro-piezoelectric ceramic illustrates the application of the proposed methodology. Polycrystal coupling properties, predicted by the suggested route, are fairly close to experimentally measured ones.

  14. Predicting the Coupling Properties of Axially-Textured Materials

    PubMed Central

    Fuentes-Cobas, Luis E.; Muñoz-Romero, Alejandro; Montero-Cabrera, María E.; Fuentes-Montero, Luis; Fuentes-Montero, María E.

    2013-01-01

    A description of methods and computer programs for the prediction of “coupling properties” in axially-textured polycrystals is presented. Starting data are the single-crystal properties, texture and stereography. The validity and proper protocols for applying the Voigt, Reuss and Hill approximations to estimate coupling properties effective values is analyzed. Working algorithms for predicting mentioned averages are given. Bunge’s symmetrized spherical harmonics expansion of orientation distribution functions, inverse pole figures and (single and polycrystals) physical properties is applied in all stages of the proposed methodology. The established mathematical route has been systematized in a working computer program. The discussion of piezoelectricity in a representative textured ferro-piezoelectric ceramic illustrates the application of the proposed methodology. Polycrystal coupling properties, predicted by the suggested route, are fairly close to experimentally measured ones. PMID:28788370

  15. Fundamental and methodological investigations for the improvement of elemental analysis by inductively coupled plasma mass soectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebert, Christopher Hysjulien

    This dissertation describes a variety of studies meant to improve the analytical performance of inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation (LA) ICP-MS. The emission behavior of individual droplets and LA generated particles in an ICP is studied using a high-speed, high frame rate digital camera. Phenomena are observed during the ablation of silicate glass that would cause elemental fractionation during analysis by ICP-MS. Preliminary work for ICP torch developments specifically tailored for the improvement of LA sample introduction are presented. An abnormal scarcity of metal-argon polyatomic ions (MAr{sup +}) is observed during ICP-MS analysis. Evidence shows thatmore » MAr{sup +} ions are dissociated by collisions with background gas in a shockwave near the tip of the skimmer cone. Method development towards the improvement of LA-ICP-MS for environmental monitoring is described. A method is developed to trap small particles in a collodion matrix and analyze each particle individually by LA-ICP-MS.« less

  16. Analysis of Coupled Seals, Secondary and Powerstream Flow Fields in Aircraft and Aerospace Turbomachines

    NASA Technical Reports Server (NTRS)

    Athavale, M. M.; Ho, Y. H.; Prezekwas, A. J.

    2005-01-01

    Higher power, high efficiency gas turbine engines require optimization of the seals and secondary flow systems as well as their impact on the powerstream. This work focuses on two aspects: 1. To apply the present day CFD tools (SCISEAL) to different real-life secondary flow applications from different original equipment manufacturers (OEM s) to provide feedback data and 2. Develop a computational methodology for coupled time-accurate simulation of the powerstream and secondary flow with emphasis on the interaction between the disk-cavity and rim seals flows with the powerstream (SCISEAL-MS-TURBO). One OEM simulation was of the Allison Engine Company T-56 turbine drum cavities including conjugate heat transfer with good agreement with data and provided design feedback information. Another was the GE aspirating seal where the 3-D CFD simulations played a major role in analysis and modification of that seal configuration. The second major objective, development of a coupled flow simulation capability was achieved by using two codes MS-TURBO for the powerstream and SCISEAL for the secondary flows with an interface coupling algorithm. The coupled code was tested against data from three differed configurations: 1. bladeless-rotor-stator-cavity turbine test rig, 2. UTRC high pressure turbine test rig, and, 3. the NASA Low-Speed-Air Compressor rig (LSAC) with results and limitations discussed herein.

  17. Quantitative bioanalysis of strontium in human serum by inductively coupled plasma-mass spectrometry

    PubMed Central

    Somarouthu, Srikanth; Ohh, Jayoung; Shaked, Jonathan; Cunico, Robert L; Yakatan, Gerald; Corritori, Suzana; Tami, Joe; Foehr, Erik D

    2015-01-01

    Aim: A bioanalytical method using inductively-coupled plasma-mass spectrometry to measure endogenous levels of strontium in human serum was developed and validated. Results & methodology: This article details the experimental procedures used for the method development and validation thus demonstrating the application of the inductively-coupled plasma-mass spectrometry method for quantification of strontium in human serum samples. The assay was validated for specificity, linearity, accuracy, precision, recovery and stability. Significant endogenous levels of strontium are present in human serum samples ranging from 19 to 96 ng/ml with a mean of 34.6 ± 15.2 ng/ml (SD). Discussion & conclusion: Calibration procedures and sample pretreatment were simplified for high throughput analysis. The validation demonstrates that the method was sensitive, selective for quantification of strontium (88Sr) and is suitable for routine clinical testing of strontium in human serum samples. PMID:28031925

  18. A new formulation for air-blast fluid-structure interaction using an immersed approach. Part I: basic methodology and FEM-based simulations

    NASA Astrophysics Data System (ADS)

    Bazilevs, Y.; Kamran, K.; Moutsanidis, G.; Benson, D. J.; Oñate, E.

    2017-07-01

    In this two-part paper we begin the development of a new class of methods for modeling fluid-structure interaction (FSI) phenomena for air blast. We aim to develop accurate, robust, and practical computational methodology, which is capable of modeling the dynamics of air blast coupled with the structure response, where the latter involves large, inelastic deformations and disintegration into fragments. An immersed approach is adopted, which leads to an a-priori monolithic FSI formulation with intrinsic contact detection between solid objects, and without formal restrictions on the solid motions. In Part I of this paper, the core air-blast FSI methodology suitable for a variety of discretizations is presented and tested using standard finite elements. Part II of this paper focuses on a particular instantiation of the proposed framework, which couples isogeometric analysis (IGA) based on non-uniform rational B-splines and a reproducing-kernel particle method (RKPM), which is a Meshfree technique. The combination of IGA and RKPM is felt to be particularly attractive for the problem class of interest due to the higher-order accuracy and smoothness of both discretizations, and relative simplicity of RKPM in handling fragmentation scenarios. A collection of mostly 2D numerical examples is presented in each of the parts to illustrate the good performance of the proposed air-blast FSI framework.

  19. Simulation for Prediction of Entry Article Demise (SPEAD): An Analysis Tool for Spacecraft Safety Analysis and Ascent/Reentry Risk Assessment

    NASA Technical Reports Server (NTRS)

    Ling, Lisa

    2014-01-01

    For the purpose of performing safety analysis and risk assessment for a potential off-nominal atmospheric reentry resulting in vehicle breakup, a synthesis of trajectory propagation coupled with thermal analysis and the evaluation of node failure is required to predict the sequence of events, the timeline, and the progressive demise of spacecraft components. To provide this capability, the Simulation for Prediction of Entry Article Demise (SPEAD) analysis tool was developed. The software and methodology have been validated against actual flights, telemetry data, and validated software, and safety/risk analyses were performed for various programs using SPEAD. This report discusses the capabilities, modeling, validation, and application of the SPEAD analysis tool.

  20. Insight into model mechanisms through automatic parameter fitting: a new methodological framework for model development

    PubMed Central

    2014-01-01

    Background Striking a balance between the degree of model complexity and parameter identifiability, while still producing biologically feasible simulations using modelling is a major challenge in computational biology. While these two elements of model development are closely coupled, parameter fitting from measured data and analysis of model mechanisms have traditionally been performed separately and sequentially. This process produces potential mismatches between model and data complexities that can compromise the ability of computational frameworks to reveal mechanistic insights or predict new behaviour. In this study we address this issue by presenting a generic framework for combined model parameterisation, comparison of model alternatives and analysis of model mechanisms. Results The presented methodology is based on a combination of multivariate metamodelling (statistical approximation of the input–output relationships of deterministic models) and a systematic zooming into biologically feasible regions of the parameter space by iterative generation of new experimental designs and look-up of simulations in the proximity of the measured data. The parameter fitting pipeline includes an implicit sensitivity analysis and analysis of parameter identifiability, making it suitable for testing hypotheses for model reduction. Using this approach, under-constrained model parameters, as well as the coupling between parameters within the model are identified. The methodology is demonstrated by refitting the parameters of a published model of cardiac cellular mechanics using a combination of measured data and synthetic data from an alternative model of the same system. Using this approach, reduced models with simplified expressions for the tropomyosin/crossbridge kinetics were found by identification of model components that can be omitted without affecting the fit to the parameterising data. Our analysis revealed that model parameters could be constrained to a standard deviation of on average 15% of the mean values over the succeeding parameter sets. Conclusions Our results indicate that the presented approach is effective for comparing model alternatives and reducing models to the minimum complexity replicating measured data. We therefore believe that this approach has significant potential for reparameterising existing frameworks, for identification of redundant model components of large biophysical models and to increase their predictive capacity. PMID:24886522

  1. Probabilistic Simulation of Stress Concentration in Composite Laminates

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Murthy, P. L. N.; Liaw, D. G.

    1994-01-01

    A computational methodology is described to probabilistically simulate the stress concentration factors (SCF's) in composite laminates. This new approach consists of coupling probabilistic composite mechanics with probabilistic finite element structural analysis. The composite mechanics is used to probabilistically describe all the uncertainties inherent in composite material properties, whereas the finite element is used to probabilistically describe the uncertainties associated with methods to experimentally evaluate SCF's, such as loads, geometry, and supports. The effectiveness of the methodology is demonstrated by using is to simulate the SCF's in three different composite laminates. Simulated results match experimental data for probability density and for cumulative distribution functions. The sensitivity factors indicate that the SCF's are influenced by local stiffness variables, by load eccentricities, and by initial stress fields.

  2. Optimisation of wire-cut EDM process parameter by Grey-based response surface methodology

    NASA Astrophysics Data System (ADS)

    Kumar, Amit; Soota, Tarun; Kumar, Jitendra

    2018-03-01

    Wire electric discharge machining (WEDM) is one of the advanced machining processes. Response surface methodology coupled with Grey relation analysis method has been proposed and used to optimise the machining parameters of WEDM. A face centred cubic design is used for conducting experiments on high speed steel (HSS) M2 grade workpiece material. The regression model of significant factors such as pulse-on time, pulse-off time, peak current, and wire feed is considered for optimising the responses variables material removal rate (MRR), surface roughness and Kerf width. The optimal condition of the machining parameter was obtained using the Grey relation grade. ANOVA is applied to determine significance of the input parameters for optimising the Grey relation grade.

  3. Optical/thermal analysis methodology for a space-qualifiable RTP furnace

    NASA Technical Reports Server (NTRS)

    Bugby, D.; Dardarian, S.; Cole, E.

    1993-01-01

    A methodology to predict the coupled optical/thermal performance of a reflective cavity heating system was developed and a laboratory test to verify the method was carried out. The procedure was utilized to design a rapid thermal processing (RTP) furnace for the Robot-Operated Material Processing in Space (ROMPS) Program which is a planned STS HH-G canister experiment involving robotics and material processing in microgravity. The laboratory test employed a tungsten-halogen reflector/lamp to heat thin, p-type silicon wafers. Measurements instrumentation consisted of 5-mil Pt/Pt-Rh thermocouples and an optical pyrometer. The predicted results, utilizing an optical ray-tracing program and a lumped-capacitance thermal analyzer, showed good agreement with the measured data for temperatures exceeding 1300 C.

  4. Flow Cytometric Analysis of Bimolecular Fluorescence Complementation: A High Throughput Quantitative Method to Study Protein-protein Interaction

    PubMed Central

    Wang, Li; Carnegie, Graeme K.

    2013-01-01

    Among methods to study protein-protein interaction inside cells, Bimolecular Fluorescence Complementation (BiFC) is relatively simple and sensitive. BiFC is based on the production of fluorescence using two non-fluorescent fragments of a fluorescent protein (Venus, a Yellow Fluorescent Protein variant, is used here). Non-fluorescent Venus fragments (VN and VC) are fused to two interacting proteins (in this case, AKAP-Lbc and PDE4D3), yielding fluorescence due to VN-AKAP-Lbc-VC-PDE4D3 interaction and the formation of a functional fluorescent protein inside cells. BiFC provides information on the subcellular localization of protein complexes and the strength of protein interactions based on fluorescence intensity. However, BiFC analysis using microscopy to quantify the strength of protein-protein interaction is time-consuming and somewhat subjective due to heterogeneity in protein expression and interaction. By coupling flow cytometric analysis with BiFC methodology, the fluorescent BiFC protein-protein interaction signal can be accurately measured for a large quantity of cells in a short time. Here, we demonstrate an application of this methodology to map regions in PDE4D3 that are required for the interaction with AKAP-Lbc. This high throughput methodology can be applied to screening factors that regulate protein-protein interaction. PMID:23979513

  5. Flow cytometric analysis of bimolecular fluorescence complementation: a high throughput quantitative method to study protein-protein interaction.

    PubMed

    Wang, Li; Carnegie, Graeme K

    2013-08-15

    Among methods to study protein-protein interaction inside cells, Bimolecular Fluorescence Complementation (BiFC) is relatively simple and sensitive. BiFC is based on the production of fluorescence using two non-fluorescent fragments of a fluorescent protein (Venus, a Yellow Fluorescent Protein variant, is used here). Non-fluorescent Venus fragments (VN and VC) are fused to two interacting proteins (in this case, AKAP-Lbc and PDE4D3), yielding fluorescence due to VN-AKAP-Lbc-VC-PDE4D3 interaction and the formation of a functional fluorescent protein inside cells. BiFC provides information on the subcellular localization of protein complexes and the strength of protein interactions based on fluorescence intensity. However, BiFC analysis using microscopy to quantify the strength of protein-protein interaction is time-consuming and somewhat subjective due to heterogeneity in protein expression and interaction. By coupling flow cytometric analysis with BiFC methodology, the fluorescent BiFC protein-protein interaction signal can be accurately measured for a large quantity of cells in a short time. Here, we demonstrate an application of this methodology to map regions in PDE4D3 that are required for the interaction with AKAP-Lbc. This high throughput methodology can be applied to screening factors that regulate protein-protein interaction.

  6. Methods for heat transfer and temperature field analysis of the insulated diesel, phase 3

    NASA Technical Reports Server (NTRS)

    Morel, Thomas; Wahiduzzaman, Syed; Fort, Edward F.; Keribar, Rifat; Blumberg, Paul N.

    1988-01-01

    Work during Phase 3 of a program aimed at developing a comprehensive heat transfer and thermal analysis methodology for design analysis of insulated diesel engines is described. The overall program addresses all the key heat transfer issues: (1) spatially and time-resolved convective and radiative in-cylinder heat transfer, (2) steady-state conduction in the overall structure, and (3) cyclical and load/speed temperature transients in the engine structure. These are all accounted for in a coupled way together with cycle thermodynamics. This methodology was developed during Phases 1 and 2. During Phase 3, an experimental program was carried out to obtain data on heat transfer under cooled and insulated engine conditions and also to generate a database to validate the developed methodology. A single cylinder Cummins diesel engine was instrumented for instantaneous total heat flux and heat radiation measurements. Data were acquired over a wide range of operating conditions in two engine configurations. One was a cooled baseline. The other included ceramic coated components (0.050 inches plasma sprayed zirconia)-piston, head and valves. The experiments showed that the insulated engine has a smaller heat flux than the cooled one. The model predictions were found to be in very good agreement with the data.

  7. Utilization of Gastrointestinal Simulator, an in Vivo Predictive Dissolution Methodology, Coupled with Computational Approach To Forecast Oral Absorption of Dipyridamole.

    PubMed

    Matsui, Kazuki; Tsume, Yasuhiro; Takeuchi, Susumu; Searls, Amanda; Amidon, Gordon L

    2017-04-03

    Weakly basic drugs exhibit a pH-dependent dissolution profile in the gastrointestinal (GI) tract, which makes it difficult to predict their oral absorption profile. The aim of this study was to investigate the utility of the gastrointestinal simulator (GIS), a novel in vivo predictive dissolution (iPD) methodology, in predicting the in vivo behavior of the weakly basic drug dipyridamole when coupled with in silico analysis. The GIS is a multicompartmental dissolution apparatus, which represents physiological gastric emptying in the fasted state. Kinetic parameters for drug dissolution and precipitation were optimized by fitting a curve to the dissolved drug amount-time profiles in the United States Pharmacopeia apparatus II and GIS. Optimized parameters were incorporated into mathematical equations to describe the mass transport kinetics of dipyridamole in the GI tract. By using this in silico model, intraluminal drug concentration-time profile was simulated. The predicted profile of dipyridamole in the duodenal compartment adequately captured observed data. In addition, the plasma concentration-time profile was also predicted using pharmacokinetic parameters following intravenous administration. On the basis of the comparison with observed data, the in silico approach coupled with the GIS successfully predicted in vivo pharmacokinetic profiles. Although further investigations are still required to generalize, these results indicated that incorporating GIS data into mathematical equations improves the predictability of in vivo behavior of weakly basic drugs like dipyridamole.

  8. Development of a Methodology for the Characterisation of Air-coupled Ultrasound Probes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pietroni, Paolo; Marco Revel, Gian

    2010-05-28

    This study is aimed at developing a technique for the characterisation of air-coupled ultrasound probes, starting from the analysis of the mechanical behaviour of the probe membrane. The vibratory behaviour of the emission membrane is studied using laser-Doppler vibrometry techniques with high frequency demodulation system (20 MHz). The determination of the vibration provides information which are useful for the assessment of the performance of the probe, in particular concerning the Quality factor and the portion of the membrane which really contributes to the emission. During the second step the results of the vibration measurements are used to calculate, by meansmore » of numerical boundary element method, the ultrasound beam emitted in terms of intensity in space. The obtained field is compared with the direct measurements carried out by scanning with the receiver probe and a pinhole plate. This comparison allows the potential and the problems of the two different characterisation techniques to be determined, even if the pinhole technique (which is currently considered the state of the art) cannot be used as an absolute reference. This study appears to be useful for paving the way for a new methodology for the calibration of air-coupled ultrasound probes, which potentially could be used not only to improve the probe manufacturing process, but also to control conformity to specifications.« less

  9. A new formulation for air-blast fluid-structure interaction using an immersed approach: part II—coupling of IGA and meshfree discretizations

    NASA Astrophysics Data System (ADS)

    Bazilevs, Y.; Moutsanidis, G.; Bueno, J.; Kamran, K.; Kamensky, D.; Hillman, M. C.; Gomez, H.; Chen, J. S.

    2017-07-01

    In this two-part paper we begin the development of a new class of methods for modeling fluid-structure interaction (FSI) phenomena for air blast. We aim to develop accurate, robust, and practical computational methodology, which is capable of modeling the dynamics of air blast coupled with the structure response, where the latter involves large, inelastic deformations and disintegration into fragments. An immersed approach is adopted, which leads to an a-priori monolithic FSI formulation with intrinsic contact detection between solid objects, and without formal restrictions on the solid motions. In Part I of this paper, the core air-blast FSI methodology suitable for a variety of discretizations is presented and tested using standard finite elements. Part II of this paper focuses on a particular instantiation of the proposed framework, which couples isogeometric analysis (IGA) based on non-uniform rational B-splines and a reproducing-kernel particle method (RKPM), which is a meshfree technique. The combination of IGA and RKPM is felt to be particularly attractive for the problem class of interest due to the higher-order accuracy and smoothness of both discretizations, and relative simplicity of RKPM in handling fragmentation scenarios. A collection of mostly 2D numerical examples is presented in each of the parts to illustrate the good performance of the proposed air-blast FSI framework.

  10. A hybrid algorithm for coupling partial differential equation and compartment-based dynamics.

    PubMed

    Harrison, Jonathan U; Yates, Christian A

    2016-09-01

    Stochastic simulation methods can be applied successfully to model exact spatio-temporally resolved reaction-diffusion systems. However, in many cases, these methods can quickly become extremely computationally intensive with increasing particle numbers. An alternative description of many of these systems can be derived in the diffusive limit as a deterministic, continuum system of partial differential equations (PDEs). Although the numerical solution of such PDEs is, in general, much more efficient than the full stochastic simulation, the deterministic continuum description is generally not valid when copy numbers are low and stochastic effects dominate. Therefore, to take advantage of the benefits of both of these types of models, each of which may be appropriate in different parts of a spatial domain, we have developed an algorithm that can be used to couple these two types of model together. This hybrid coupling algorithm uses an overlap region between the two modelling regimes. By coupling fluxes at one end of the interface and using a concentration-matching condition at the other end, we ensure that mass is appropriately transferred between PDE- and compartment-based regimes. Our methodology gives notable reductions in simulation time in comparison with using a fully stochastic model, while maintaining the important stochastic features of the system and providing detail in appropriate areas of the domain. We test our hybrid methodology robustly by applying it to several biologically motivated problems including diffusion and morphogen gradient formation. Our analysis shows that the resulting error is small, unbiased and does not grow over time. © 2016 The Authors.

  11. A hybrid algorithm for coupling partial differential equation and compartment-based dynamics

    PubMed Central

    Yates, Christian A.

    2016-01-01

    Stochastic simulation methods can be applied successfully to model exact spatio-temporally resolved reaction–diffusion systems. However, in many cases, these methods can quickly become extremely computationally intensive with increasing particle numbers. An alternative description of many of these systems can be derived in the diffusive limit as a deterministic, continuum system of partial differential equations (PDEs). Although the numerical solution of such PDEs is, in general, much more efficient than the full stochastic simulation, the deterministic continuum description is generally not valid when copy numbers are low and stochastic effects dominate. Therefore, to take advantage of the benefits of both of these types of models, each of which may be appropriate in different parts of a spatial domain, we have developed an algorithm that can be used to couple these two types of model together. This hybrid coupling algorithm uses an overlap region between the two modelling regimes. By coupling fluxes at one end of the interface and using a concentration-matching condition at the other end, we ensure that mass is appropriately transferred between PDE- and compartment-based regimes. Our methodology gives notable reductions in simulation time in comparison with using a fully stochastic model, while maintaining the important stochastic features of the system and providing detail in appropriate areas of the domain. We test our hybrid methodology robustly by applying it to several biologically motivated problems including diffusion and morphogen gradient formation. Our analysis shows that the resulting error is small, unbiased and does not grow over time. PMID:27628171

  12. Obtaining high-resolution stage forecasts by coupling large-scale hydrologic models with sensor data

    NASA Astrophysics Data System (ADS)

    Fries, K. J.; Kerkez, B.

    2017-12-01

    We investigate how "big" quantities of distributed sensor data can be coupled with a large-scale hydrologic model, in particular the National Water Model (NWM), to obtain hyper-resolution forecasts. The recent launch of the NWM provides a great example of how growing computational capacity is enabling a new generation of massive hydrologic models. While the NWM spans an unprecedented spatial extent, there remain many questions about how to improve forecast at the street-level, the resolution at which many stakeholders make critical decisions. Further, the NWM runs on supercomputers, so water managers who may have access to their own high-resolution measurements may not readily be able to assimilate them into the model. To that end, we ask the question: how can the advances of the large-scale NWM be coupled with new local observations to enable hyper-resolution hydrologic forecasts? A methodology is proposed whereby the flow forecasts of the NWM are directly mapped to high-resolution stream levels using Dynamical System Identification. We apply the methodology across a sensor network of 182 gages in Iowa. Of these sites, approximately one third have shown to perform well in high-resolution flood forecasting when coupled with the outputs of the NWM. The quality of these forecasts is characterized using Principal Component Analysis and Random Forests to identify where the NWM may benefit from new sources of local observations. We also discuss how this approach can help municipalities identify where they should place low-cost sensors to most benefit from flood forecasts of the NWM.

  13. Computation of steady and unsteady quasi-one-dimensional viscous/inviscid interacting internal flows at subsonic, transonic, and supersonic Mach numbers

    NASA Technical Reports Server (NTRS)

    Swafford, Timothy W.; Huddleston, David H.; Busby, Judy A.; Chesser, B. Lawrence

    1992-01-01

    Computations of viscous-inviscid interacting internal flowfields are presented for steady and unsteady quasi-one-dimensional (Q1D) test cases. The unsteady Q1D Euler equations are coupled with integral boundary-layer equations for unsteady, two-dimensional (planar or axisymmetric), turbulent flow over impermeable, adiabatic walls. The coupling methodology differs from that used in most techniques reported previously in that the above mentioned equation sets are written as a complete system and solved simultaneously; that is, the coupling is carried out directly through the equations as opposed to coupling the solutions of the different equation sets. Solutions to the coupled system of equations are obtained using both explicit and implicit numerical schemes for steady subsonic, steady transonic, and both steady and unsteady supersonic internal flowfields. Computed solutions are compared with measurements as well as Navier-Stokes and inverse boundary-layer methods. An analysis of the eigenvalues of the coefficient matrix associated with the quasi-linear form of the coupled system of equations indicates the presence of complex eigenvalues for certain flow conditions. It is concluded that although reasonable solutions can be obtained numerically, these complex eigenvalues contribute to the overall difficulty in obtaining numerical solutions to the coupled system of equations.

  14. Moving from theory to practice: A participatory social network mapping approach to address unmet need for family planning in Benin.

    PubMed

    Igras, Susan; Diakité, Mariam; Lundgren, Rebecka

    2017-07-01

    In West Africa, social factors influence whether couples with unmet need for family planning act on birth-spacing desires. Tékponon Jikuagou is testing a social network-based intervention to reduce social barriers by diffusing new ideas. Individuals and groups judged socially influential by their communities provide entrée to networks. A participatory social network mapping methodology was designed to identify these diffusion actors. Analysis of monitoring data, in-depth interviews, and evaluation reports assessed the methodology's acceptability to communities and staff and whether it produced valid, reliable data to identify influential individuals and groups who diffuse new ideas through their networks. Results indicated the methodology's acceptability. Communities were actively and equitably engaged. Staff appreciated its ability to yield timely, actionable information. The mapping methodology also provided valid and reliable information by enabling communities to identify highly connected and influential network actors. Consistent with social network theory, this methodology resulted in the selection of informal groups and individuals in both informal and formal positions. In-depth interview data suggest these actors were diffusing new ideas, further confirming their influence/connectivity. The participatory methodology generated insider knowledge of who has social influence, challenging commonly held assumptions. Collecting and displaying information fostered staff and community learning, laying groundwork for social change.

  15. Determination of size and mass-and number-based concentration of biogenic SeNPs synthesized by lactic acid bacteria by using a multimethod approach.

    PubMed

    Moreno-Martin, Gustavo; Pescuma, Micaela; Pérez-Corona, Teresa; Mozzi, Fernanda; Madrid, Yolanda

    2017-11-01

    Selenium nanoparticles (SeNPs) were synthesized by a green technology using lactic acid bacteria (LAB, Lactobacillus acidophilus, L. delbrueckii subsp. bulgaricus and L. reuteri). The exposure of aqueous sodium selenite to LAB led to the synthesis of SeNPs. Characterization of SeNPs by transmission electron microscopy with energy dispersive X-ray spectrum (EDXS) analysis revealed the presence of stable, predominantly monodispersed and spherical SeNPs of an average size of 146 ± 71 nm. Additionally, SeNPs hydrodynamic size was determined by dispersive light scattering (DLS) and nanoparticle tracking analysis (NTA). For this purpose, a methodology based on the use of surfactants in basic medium was developed for isolating SeNPs from the bacterial pellet. The hydrodynamic size values provided by DLS and NTA were 258 ± 4 and 187 ± 56 nm, respectively. NTA measurements of number-based concentration reported values of (4.67±0.30)x10 9 SeNPs mL -1 with a relative standard deviation lower than 5% (n = 3). The quantitative results obtained by NTA were supported by theoretical calculations. Asymmetrical flow field flow fractionation (AF 4 ) on line coupled to the inductively couple plasma mass spectrometry (ICP-MS) and off-line coupled to DLS was further employed to characterize biogenic SeNPs. The distribution of the particle size for the Se-containing peak provide an average size of (247 ± 14) nm. The data obtained by independent techniques were in good agreement and the developed methodology could be implemented for characterizing NPs in complex matrices such as biogenic nanoparticles embedded inside microbial material. Copyright © 2017. Published by Elsevier B.V.

  16. Integrated Control Using the SOFFT Control Structure

    NASA Technical Reports Server (NTRS)

    Halyo, Nesim

    1996-01-01

    The need for integrated/constrained control systems has become clearer as advanced aircraft introduced new coupled subsystems such as new propulsion subsystems with thrust vectoring and new aerodynamic designs. In this study, we develop an integrated control design methodology which accomodates constraints among subsystem variables while using the Stochastic Optimal Feedforward/Feedback Control Technique (SOFFT) thus maintaining all the advantages of the SOFFT approach. The Integrated SOFFT Control methodology uses a centralized feedforward control and a constrained feedback control law. The control thus takes advantage of the known coupling among the subsystems while maintaining the identity of subsystems for validation purposes and the simplicity of the feedback law to understand the system response in complicated nonlinear scenarios. The Variable-Gain Output Feedback Control methodology (including constant gain output feedback) is extended to accommodate equality constraints. A gain computation algorithm is developed. The designer can set the cross-gains between two variables or subsystems to zero or another value and optimize the remaining gains subject to the constraint. An integrated control law is designed for a modified F-15 SMTD aircraft model with coupled airframe and propulsion subsystems using the Integrated SOFFT Control methodology to produce a set of desired flying qualities.

  17. Building toy models of proteins using coevolutionary information

    NASA Astrophysics Data System (ADS)

    Cheng, Ryan; Raghunathan, Mohit; Onuchic, Jose

    2015-03-01

    Recent developments in global statistical methodologies have advanced the analysis of large collections of protein sequences for coevolutionary information. Coevolution between amino acids in a protein arises from compensatory mutations that are needed to maintain the stability or function of a protein over the course of evolution. This gives rise to quantifiable correlations between amino acid positions within the multiple sequence alignment of a protein family. Here, we use Direct Coupling Analysis (DCA) to infer a Potts model Hamiltonian governing the correlated mutations in a protein family to obtain the sequence-dependent interaction energies of a toy protein model. We demonstrate that this methodology predicts residue-residue interaction energies that are consistent with experimental mutational changes in protein stabilities as well as other computational methodologies. Furthermore, we demonstrate with several examples that DCA could be used to construct a structure-based model that quantitatively agrees with experimental data on folding mechanisms. This work serves as a potential framework for generating models of proteins that are enriched by evolutionary data that can potentially be used to engineer key functional motions and interactions in protein systems. This research has been supported by the NSF INSPIRE award MCB-1241332 and by the CTBP sponsored by the NSF (Grant PHY-1427654).

  18. Gas Chromatography Analysis with Olfactometric Detection (GC-O) as a Useful Methodology for Chemical Characterization of Odorous Compounds

    PubMed Central

    Brattoli, Magda; Cisternino, Ezia; Dambruoso, Paolo Rosario; de Gennaro, Gianluigi; Giungato, Pasquale; Mazzone, Antonio; Palmisani, Jolanda; Tutino, Maria

    2013-01-01

    The gas chromatography-olfactometry (GC-O) technique couples traditional gas chromatographic analysis with sensory detection in order to study complex mixtures of odorous substances and to identify odor active compounds. The GC-O technique is already widely used for the evaluation of food aromas and its application in environmental fields is increasing, thus moving the odor emission assessment from the solely olfactometric evaluations to the characterization of the volatile components responsible for odor nuisance. The aim of this paper is to describe the state of the art of gas chromatography-olfactometry methodology, considering the different approaches regarding the operational conditions and the different methods for evaluating the olfactometric detection of odor compounds. The potentials of GC-O are described highlighting the improvements in this methodology relative to other conventional approaches used for odor detection, such as sensoristic, sensorial and the traditional gas chromatographic methods. The paper also provides an examination of the different fields of application of the GC-O, principally related to fragrances and food aromas, odor nuisance produced by anthropic activities and odorous compounds emitted by materials and medical applications. PMID:24316571

  19. Multiphysics Simulation of Welding-Arc and Nozzle-Arc System: Mathematical-Model, Solution-Methodology and Validation

    NASA Astrophysics Data System (ADS)

    Pawar, Sumedh; Sharma, Atul

    2018-01-01

    This work presents mathematical model and solution methodology for a multiphysics engineering problem on arc formation during welding and inside a nozzle. A general-purpose commercial CFD solver ANSYS FLUENT 13.0.0 is used in this work. Arc formation involves strongly coupled gas dynamics and electro-dynamics, simulated by solution of coupled Navier-Stoke equations, Maxwell's equations and radiation heat-transfer equation. Validation of the present numerical methodology is demonstrated with an excellent agreement with the published results. The developed mathematical model and the user defined functions (UDFs) are independent of the geometry and are applicable to any system that involves arc-formation, in 2D axisymmetric coordinates system. The high-pressure flow of SF6 gas in the nozzle-arc system resembles arc chamber of SF6 gas circuit breaker; thus, this methodology can be extended to simulate arcing phenomenon during current interruption.

  20. Transient analysis mode participation for modal survey target mode selection using MSC/NASTRAN DMAP

    NASA Technical Reports Server (NTRS)

    Barnett, Alan R.; Ibrahim, Omar M.; Sullivan, Timothy L.; Goodnight, Thomas W.

    1994-01-01

    Many methods have been developed to aid analysts in identifying component modes which contribute significantly to component responses. These modes, typically targeted for dynamic model correlation via a modal survey, are known as target modes. Most methods used to identify target modes are based on component global dynamic behavior. It is sometimes unclear if these methods identify all modes contributing to responses important to the analyst. These responses are usually those in areas of hardware design concerns. One method used to check the completeness of target mode sets and identify modes contributing significantly to important component responses is mode participation. With this method, the participation of component modes in dynamic responses is quantified. Those modes which have high participation are likely modal survey target modes. Mode participation is most beneficial when it is used with responses from analyses simulating actual flight events. For spacecraft, these responses are generated via a structural dynamic coupled loads analysis. Using MSC/NASTRAN DMAP, a method has been developed for calculating mode participation based on transient coupled loads analysis results. The algorithm has been implemented to be compatible with an existing coupled loads methodology and has been used successfully to develop a set of modal survey target modes.

  1. An Evaluation of a Program to Help Dual-Earner Couples Share the Second Shift.

    ERIC Educational Resources Information Center

    Hawkins, Alan J.; And Others

    1994-01-01

    Used both traditional scientific and feminist methodologies to evaluate effectiveness of family life education program designed to help dual-earner couples (n=14 couples) share domestic labor. Both quantitative and qualitative data suggest that program produced small increases in husbands' involvement in both housework and child care and large…

  2. Developing Optimized Trajectories Derived from Mission and Thermo-Structural Constraints

    NASA Technical Reports Server (NTRS)

    Lear, Matthew H.; McGrath, Brian E.; Anderson, Michael P.; Green, Peter W.

    2008-01-01

    In conjunction with NASA and the Department of Defense, the Johns Hopkins University Applied Physics Laboratory (JHU/APL) has been investigating analytical techniques to address many of the fundamental issues associated with solar exploration spacecraft and high-speed atmospheric vehicle systems. These issues include: thermo-structural response including the effects of thermal management via the use of surface optical properties for high-temperature composite structures; aerodynamics with the effects of non-equilibrium chemistry and gas radiation; and aero-thermodynamics with the effects of material ablation for a wide range of thermal protection system (TPS) materials. The need exists to integrate these discrete tools into a common framework that enables the investigation of interdisciplinary interactions (including analysis tool, applied load, and environment uncertainties) to provide high fidelity solutions. In addition to developing robust tools for the coupling of aerodynamically induced thermal and mechanical loads, JHU/APL has been studying the optimal design of high-speed vehicles as a function of their trajectory. Under traditional design methodology the optimization of system level mission parameters such as range and time of flight is performed independently of the optimization for thermal and mechanical constraints such as stress and temperature. A truly optimal trajectory should optimize over the entire range of mission and thermo-mechanical constraints. Under this research, a framework for the robust analysis of high-speed spacecraft and atmospheric vehicle systems has been developed. It has been built around a generic, loosely coupled framework such that a variety of readily available analysis tools can be used. The methodology immediately addresses many of the current analysis inadequacies and allows for future extension in order to handle more complex problems.

  3. Model coupling methodology for thermo-hydro-mechanical-chemical numerical simulations in integrated assessment of long-term site behaviour

    NASA Astrophysics Data System (ADS)

    Kempka, Thomas; De Lucia, Marco; Kühn, Michael

    2015-04-01

    The integrated assessment of long-term site behaviour taking into account a high spatial resolution at reservoir scale requires a sophisticated methodology to represent coupled thermal, hydraulic, mechanical and chemical processes of relevance. Our coupling methodology considers the time-dependent occurrence and significance of multi-phase flow processes, mechanical effects and geochemical reactions (Kempka et al., 2014). Hereby, a simplified hydro-chemical coupling procedure was developed (Klein et al., 2013) and validated against fully coupled hydro-chemical simulations (De Lucia et al., 2015). The numerical simulation results elaborated for the pilot site Ketzin demonstrate that mechanical reservoir, caprock and fault integrity are maintained during the time of operation and that after 10,000 years CO2 dissolution is the dominating trapping mechanism and mineralization occurs on the order of 10 % to 25 % with negligible changes to porosity and permeability. De Lucia, M., Kempka, T., Kühn, M. A coupling alternative to reactive transport simulations for long-term prediction of chemical reactions in heterogeneous CO2 storage systems (2014) Geosci Model Dev Discuss 7:6217-6261. doi:10.5194/gmdd-7-6217-2014. Kempka, T., De Lucia, M., Kühn, M. Geomechanical integrity verification and mineral trapping quantification for the Ketzin CO2 storage pilot site by coupled numerical simulations (2014) Energy Procedia 63:3330-3338, doi:10.1016/j.egypro.2014.11.361. Klein E, De Lucia M, Kempka T, Kühn M. Evaluation of longterm mineral trapping at the Ketzin pilot site for CO2 storage: an integrative approach using geo-chemical modelling and reservoir simulation. Int J Greenh Gas Con 2013; 19:720-730. doi:10.1016/j.ijggc.2013.05.014.

  4. Interaction Dynamics Between a Flexible Rotor and an Auxiliary Clearance Bearing

    NASA Technical Reports Server (NTRS)

    Lawen, James L., Jr.; Flowers, George T.

    1996-01-01

    This study investigates the application of synchronous interaction dynamics methodology to the design of auxiliary bearing systems. The technique is applied to a flexible rotor system and comparisons are made between the behavior predicted by this analysis method and the observed simulation response characteristics. Of particular interest is the influence of coupled shaft/bearing vibration modes on rotordynamical behavior. Experimental studies are also perFormed to validate the simulation results and provide insight into the expected behavior of such a system.

  5. Solar Dynamics Observatory (SDO) HGAS Induced Jitter

    NASA Technical Reports Server (NTRS)

    Liu, Alice; Blaurock, Carl; Liu, Kuo-Chia; Mule, Peter

    2008-01-01

    This paper presents the results of a comprehensive assessment of High Gain Antenna System induced jitter on the Solar Dynamics Observatory. The jitter prediction is created using a coupled model of the structural dynamics, optical response, control systems, and stepper motor actuator electromechanical dynamics. The paper gives an overview of the model components, presents the verification processes used to evaluate the models, describes validation and calibration tests and model-to-measurement comparison results, and presents the jitter analysis methodology and results.

  6. Impact of the time scale of model sensitivity response on coupled model parameter estimation

    NASA Astrophysics Data System (ADS)

    Liu, Chang; Zhang, Shaoqing; Li, Shan; Liu, Zhengyu

    2017-11-01

    That a model has sensitivity responses to parameter uncertainties is a key concept in implementing model parameter estimation using filtering theory and methodology. Depending on the nature of associated physics and characteristic variability of the fluid in a coupled system, the response time scales of a model to parameters can be different, from hourly to decadal. Unlike state estimation, where the update frequency is usually linked with observational frequency, the update frequency for parameter estimation must be associated with the time scale of the model sensitivity response to the parameter being estimated. Here, with a simple coupled model, the impact of model sensitivity response time scales on coupled model parameter estimation is studied. The model includes characteristic synoptic to decadal scales by coupling a long-term varying deep ocean with a slow-varying upper ocean forced by a chaotic atmosphere. Results show that, using the update frequency determined by the model sensitivity response time scale, both the reliability and quality of parameter estimation can be improved significantly, and thus the estimated parameters make the model more consistent with the observation. These simple model results provide a guideline for when real observations are used to optimize the parameters in a coupled general circulation model for improving climate analysis and prediction initialization.

  7. A network-base analysis of CMIP5 "historical" experiments

    NASA Astrophysics Data System (ADS)

    Bracco, A.; Foudalis, I.; Dovrolis, C.

    2012-12-01

    In computer science, "complex network analysis" refers to a set of metrics, modeling tools and algorithms commonly used in the study of complex nonlinear dynamical systems. Its main premise is that the underlying topology or network structure of a system has a strong impact on its dynamics and evolution. By allowing to investigate local and non-local statistical interaction, network analysis provides a powerful, but only marginally explored, framework to validate climate models and investigate teleconnections, assessing their strength, range, and impacts on the climate system. In this work we propose a new, fast, robust and scalable methodology to examine, quantify, and visualize climate sensitivity, while constraining general circulation models (GCMs) outputs with observations. The goal of our novel approach is to uncover relations in the climate system that are not (or not fully) captured by more traditional methodologies used in climate science and often adopted from nonlinear dynamical systems analysis, and to explain known climate phenomena in terms of the network structure or its metrics. Our methodology is based on a solid theoretical framework and employs mathematical and statistical tools, exploited only tentatively in climate research so far. Suitably adapted to the climate problem, these tools can assist in visualizing the trade-offs in representing global links and teleconnections among different data sets. Here we present the methodology, and compare network properties for different reanalysis data sets and a suite of CMIP5 coupled GCM outputs. With an extensive model intercomparison in terms of the climate network that each model leads to, we quantify how each model reproduces major teleconnections, rank model performances, and identify common or specific errors in comparing model outputs and observations.

  8. Probabilistic simulation of stress concentration in composite laminates

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Murthy, P. L. N.; Liaw, L.

    1993-01-01

    A computational methodology is described to probabilistically simulate the stress concentration factors in composite laminates. This new approach consists of coupling probabilistic composite mechanics with probabilistic finite element structural analysis. The probabilistic composite mechanics is used to probabilistically describe all the uncertainties inherent in composite material properties while probabilistic finite element is used to probabilistically describe the uncertainties associated with methods to experimentally evaluate stress concentration factors such as loads, geometry, and supports. The effectiveness of the methodology is demonstrated by using it to simulate the stress concentration factors in composite laminates made from three different composite systems. Simulated results match experimental data for probability density and for cumulative distribution functions. The sensitivity factors indicate that the stress concentration factors are influenced by local stiffness variables, by load eccentricities and by initial stress fields.

  9. Rapid monitoring of glycerol in fermentation growth media: Facilitating crude glycerol bioprocess development.

    PubMed

    Abad, Sergi; Pérez, Xavier; Planas, Antoni; Turon, Xavier

    2014-04-01

    Recently, the need for crude glycerol valorisation from the biodiesel industry has generated many studies for practical and economic applications. Amongst them, fermentations based on glycerol media for the production of high value metabolites are prominent applications. This has generated a need to develop analytical techniques which allow fast and simple glycerol monitoring during fermentation. The methodology should be fast and inexpensive to be adopted in research, as well as in industrial applications. In this study three different methods were analysed and compared: two common methodologies based on liquid chromatography and enzymatic kits, and the new method based on a DotBlot assay coupled with image analysis. The new methodology is faster and cheaper than the other conventional methods, with comparable performance. Good linearity, precision and accuracy were achieved in the lower range (10 or 15 g/L to depletion), the most common range of glycerol concentrations to monitor fermentations in terms of growth kinetics. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Optimization of operating parameters in polysilicon chemical vapor deposition reactor with response surface methodology

    NASA Astrophysics Data System (ADS)

    An, Li-sha; Liu, Chun-jiao; Liu, Ying-wen

    2018-05-01

    In the polysilicon chemical vapor deposition reactor, the operating parameters are complex to affect the polysilicon's output. Therefore, it is very important to address the coupling problem of multiple parameters and solve the optimization in a computationally efficient manner. Here, we adopted Response Surface Methodology (RSM) to analyze the complex coupling effects of different operating parameters on silicon deposition rate (R) and further achieve effective optimization of the silicon CVD system. Based on finite numerical experiments, an accurate RSM regression model is obtained and applied to predict the R with different operating parameters, including temperature (T), pressure (P), inlet velocity (V), and inlet mole fraction of H2 (M). The analysis of variance is conducted to describe the rationality of regression model and examine the statistical significance of each factor. Consequently, the optimum combination of operating parameters for the silicon CVD reactor is: T = 1400 K, P = 3.82 atm, V = 3.41 m/s, M = 0.91. The validation tests and optimum solution show that the results are in good agreement with those from CFD model and the deviations of the predicted values are less than 4.19%. This work provides a theoretical guidance to operate the polysilicon CVD process.

  11. Methodology for the analysis of transcription and translation in transcription-coupled-to-translation systems in vitro.

    PubMed

    Castro-Roa, Daniel; Zenkin, Nikolay

    2015-09-15

    The various properties of RNA polymerase (RNAP) complexes with nucleic acids during different stages of transcription involve various types of regulation and different cross-talk with other cellular entities and with fellow RNAP molecules. The interactions of transcriptional apparatus with the translational machinery have been focused mainly in terms of outcomes of gene expression, whereas the study of the physical interaction of the ribosome and the RNAP remains obscure partly due to the lack of a system that allows such observations. In this article we will describe the methodology needed to set up a pure, transcription-coupled-to-translation system in which the translocation of the ribosome can be performed in a step-wise manner towards RNAP allowing investigation of the interactions between the two machineries at colliding and non-colliding distances. In the same time RNAP can be put in various types of states, such as paused, roadblocked, backtracked, etc. The experimental system thus allows studying the effects of the ribosome on different aspects of transcription elongation and the effects by RNAP on translation. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Temperature dependence of (+)-catechin pyran ring proton coupling constants as measured by NMR and modeled using GMMX search methodology

    Treesearch

    Fred L. Tobiason; Stephen S. Kelley; M. Mark Midland; Richard W. Hemingway

    1997-01-01

    The pyran ring proton coupling constants for (+)-catechin have been experimentally determined in deuterated methanol over a temperature range of 213 K to 313 K. The experimental coupling constants were simulated to 0.04 Hz on the average at a 90 percent confidence limit using a LAOCOON method. The temperature dependence of the coupling constants was reproduced from the...

  13. Modeling and Design Analysis Methodology for Tailoring of Aircraft Structures with Composites

    NASA Technical Reports Server (NTRS)

    Rehfield, Lawrence W.

    2004-01-01

    Composite materials provide design flexibility in that fiber placement and orientation can be specified and a variety of material forms and manufacturing processes are available. It is possible, therefore, to 'tailor' the structure to a high degree in order to meet specific design requirements in an optimum manner. Common industrial practices, however, have limited the choices designers make. One of the reasons for this is that there is a dearth of conceptual/preliminary design analysis tools specifically devoted to identifying structural concepts for composite airframe structures. Large scale finite element simulations are not suitable for such purposes. The present project has been devoted to creating modeling and design analysis methodology for use in the tailoring process of aircraft structures. Emphasis has been given to creating bend-twist elastic coupling in high aspect ratio wings or other lifting surfaces. The direction of our work was in concert with the overall NASA effort Twenty- First Century Aircraft Technology (TCAT). A multi-disciplinary team was assembled by Dr. Damodar Ambur to work on wing technology, which included our project.

  14. Comparison of internet and mailing methods to recruit couples into research on unaided smoking cessation.

    PubMed

    Derrick, Jaye L; Eliseo-Arras, Rebecca K; Hanny, Courtney; Britton, Maggie; Haddad, Sana

    2017-12-01

    In smoking cessation studies with restrictive criteria (e.g., single-smoker couples), thousands of potential participants might need to be screened to obtain a reasonable sample size. Consideration of recruitment methodology is critical because recruitment methods influence both the success and cost effectiveness of recruitment. Although traditional recruitment methods are often used to recruit participants into smoking cessation research, newer technologies, such as paid Facebook advertising, might offer more cost-effective alternatives for recruitment. The current analysis compares two versions of paid Facebook advertising and a specialized mass mailing method used to recruit single-smoker couples into an intensive three-week study of unaided smoking cessation. The three methods are compared in terms of demographic characteristics, eligibility, and cost-effectiveness. Although Facebook's "Promote Your Page" mechanism achieved the fastest recruitment rate (2.75 couples per month; 498 USD per couple), Facebook's "Send People to Your Website" mechanism was the least expensive and provided the most demographically diverse sample (1.64 couples per month; 181 USD per couple). The specialized mailing method was not productive or cost-effective (0.80 couples per month; 454 USD per couple). Paid Facebook advertising fared better as a recruitment method than a specialized mailing method often used in survey research. Studies that have less restrictive eligibility criteria, that draw from a larger local population, or that recruit for a less intense study might find paid Facebook advertising to be quite feasible. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Amide to Alkyne Interconversion via a Nickel/Copper-Catalyzed Deamidative Cross-Coupling of Aryl and Alkenyl Amides.

    PubMed

    Srimontree, Watchara; Chatupheeraphat, Adisak; Liao, Hsuan-Hung; Rueping, Magnus

    2017-06-16

    A nickel-catalyzed deamidative cross-coupling reaction of amides with terminal alkynes as coupling partners was disclosed. This newly developed methodology allows the direct interconversion of amides to alkynes and enables a facile route for C(sp2)-C(sp) bond formation in a straightforward and mild fashion.

  16. Conceptual compression discussion on a multi-linear (FTA) and systematic (FRAM) method in an offshore operation's accident modeling.

    PubMed

    Toroody, Ahmad Bahoo; Abaei, Mohammad Mahdy; Gholamnia, Reza

    2016-12-01

    Risk assessment can be classified into two broad categories: traditional and modern. This paper is aimed at contrasting the functional resonance analysis method (FRAM) as a modern approach with the fault tree analysis (FTA) as a traditional method, regarding assessing the risks of a complex system. Applied methodology by which the risk assessment is carried out, is presented in each approach. Also, FRAM network is executed with regard to nonlinear interaction of human and organizational levels to assess the safety of technological systems. The methodology is implemented for lifting structures deep offshore. The main finding of this paper is that the combined application of FTA and FRAM during risk assessment, could provide complementary perspectives and may contribute to a more comprehensive understanding of an incident. Finally, it is shown that coupling a FRAM network with a suitable quantitative method will result in a plausible outcome for a predefined accident scenario.

  17. SMITHERS: An object-oriented modular mapping methodology for MCNP-based neutronic–thermal hydraulic multiphysics

    DOE PAGES

    Richard, Joshua; Galloway, Jack; Fensin, Michael; ...

    2015-04-04

    A novel object-oriented modular mapping methodology for externally coupled neutronics–thermal hydraulics multiphysics simulations was developed. The Simulator using MCNP with Integrated Thermal-Hydraulics for Exploratory Reactor Studies (SMITHERS) code performs on-the-fly mapping of material-wise power distribution tallies implemented by MCNP-based neutron transport/depletion solvers for use in estimating coolant temperature and density distributions with a separate thermal-hydraulic solver. The key development of SMITHERS is that it reconstructs the hierarchical geometry structure of the material-wise power generation tallies from the depletion solver automatically, with only a modicum of additional information required from the user. In addition, it performs the basis mapping from themore » combinatorial geometry of the depletion solver to the required geometry of the thermal-hydraulic solver in a generalizable manner, such that it can transparently accommodate varying levels of thermal-hydraulic solver geometric fidelity, from the nodal geometry of multi-channel analysis solvers to the pin-cell level of discretization for sub-channel analysis solvers.« less

  18. Development of an Aeroelastic Modeling Capability for Transient Nozzle Side Load Analysis

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Zhao, Xiang; Zhang, Sijun; Chen, Yen-Sen

    2013-01-01

    Lateral nozzle forces are known to cause severe structural damage to any new rocket engine in development during test. While three-dimensional, transient, turbulent, chemically reacting computational fluid dynamics methodology has been demonstrated to capture major side load physics with rigid nozzles, hot-fire tests often show nozzle structure deformation during major side load events, leading to structural damages if structural strengthening measures were not taken. The modeling picture is incomplete without the capability to address the two-way responses between the structure and fluid. The objective of this study is to develop a coupled aeroelastic modeling capability by implementing the necessary structural dynamics component into an anchored computational fluid dynamics methodology. The computational fluid dynamics component is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, while the computational structural dynamics component is developed in the framework of modal analysis. Transient aeroelastic nozzle startup analyses of the Block I Space Shuttle Main Engine at sea level were performed. The computed results from the aeroelastic nozzle modeling are presented.

  19. Uncertainty Analysis of Coupled Socioeconomic-Cropping Models: Building Confidence in Climate Change Decision-Support Tools for Local Stakeholders

    NASA Astrophysics Data System (ADS)

    Malard, J. J.; Rojas, M.; Adamowski, J. F.; Gálvez, J.; Tuy, H. A.; Melgar-Quiñonez, H.

    2015-12-01

    While cropping models represent the biophysical aspects of agricultural systems, system dynamics modelling offers the possibility of representing the socioeconomic (including social and cultural) aspects of these systems. The two types of models can then be coupled in order to include the socioeconomic dimensions of climate change adaptation in the predictions of cropping models.We develop a dynamically coupled socioeconomic-biophysical model of agricultural production and its repercussions on food security in two case studies from Guatemala (a market-based, intensive agricultural system and a low-input, subsistence crop-based system). Through the specification of the climate inputs to the cropping model, the impacts of climate change on the entire system can be analysed, and the participatory nature of the system dynamics model-building process, in which stakeholders from NGOs to local governmental extension workers were included, helps ensure local trust in and use of the model.However, the analysis of climate variability's impacts on agroecosystems includes uncertainty, especially in the case of joint physical-socioeconomic modelling, and the explicit representation of this uncertainty in the participatory development of the models is important to ensure appropriate use of the models by the end users. In addition, standard model calibration, validation, and uncertainty interval estimation techniques used for physically-based models are impractical in the case of socioeconomic modelling. We present a methodology for the calibration and uncertainty analysis of coupled biophysical (cropping) and system dynamics (socioeconomic) agricultural models, using survey data and expert input to calibrate and evaluate the uncertainty of the system dynamics as well as of the overall coupled model. This approach offers an important tool for local decision makers to evaluate the potential impacts of climate change and their feedbacks through the associated socioeconomic system.

  20. Structural Characterisation of Acetogenins from Annona muricata by Supercritical Fluid Chromatography Coupled to High-Resolution Tandem Mass Spectrometry.

    PubMed

    Laboureur, Laurent; Bonneau, Natacha; Champy, Pierre; Brunelle, Alain; Touboul, David

    2017-11-01

    Acetogenins are plant polyketides known to be cytotoxic and proposed as antitumor candidates. They are also suspected to be alimentary neurotoxins. Their occurrence as complex mixtures renders their dereplication and structural identification difficult using liquid chromatography coupled to tandem mass spectrometry and efforts are required to improve the methodology. To develop a supercritical fluid chromatography (SFC) high-resolution tandem mass spectrometry method, involving lithium post-column cationisation, for the structural characterisation of Annonaceous acetogenins in crude extracts. The seeds of Annona muricata L. were extracted with methanol. Supercritical fluid chromatography of the extract, using a 2-ethylpyridine stationary phase column, was monitored using a high-resolution quadrupole time-of-flight mass spectrometer. Lithium iodide was added post-column in the make-up solvent. For comparison, the same extract was analysed using high-pressure liquid chromatography coupled to the same mass spectrometer, with a column based on solid core particles. Sensitivity was similar for both HPLC and SFC approaches. Retention behaviour and fragmentation pathways of three different isomer groups are described. A previously unknown group of acetogenins was also evidenced for the first time. The use of SFC-MS/MS allows the reduction of the time of analysis, of environmental impact and an increase in the chromatographic resolution, compared to liquid chromatography. This new methodology enlightened a new group of acetogenins, isomers of montanacin-D. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  1. Data collection and analysis strategies for phMRI.

    PubMed

    Mandeville, Joseph B; Liu, Christina H; Vanduffel, Wim; Marota, John J A; Jenkins, Bruce G

    2014-09-01

    Although functional MRI traditionally has been applied mainly to study changes in task-induced brain function, evolving acquisition methodologies and improved knowledge of signal mechanisms have increased the utility of this method for studying responses to pharmacological stimuli, a technique often dubbed "phMRI". The proliferation of higher magnetic field strengths and the use of exogenous contrast agent have boosted detection power, a critical factor for successful phMRI due to the restricted ability to average multiple stimuli within subjects. Receptor-based models of neurovascular coupling, including explicit pharmacological models incorporating receptor densities and affinities and data-driven models that incorporate weak biophysical constraints, have demonstrated compelling descriptions of phMRI signal induced by dopaminergic stimuli. This report describes phMRI acquisition and analysis methodologies, with an emphasis on data-driven analyses. As an example application, statistically efficient data-driven regressors were used to describe the biphasic response to the mu-opioid agonist remifentanil, and antagonism using dopaminergic and GABAergic ligands revealed modulation of the mesolimbic pathway. Results illustrate the power of phMRI as well as our incomplete understanding of mechanisms underlying the signal. Future directions are discussed for phMRI acquisitions in human studies, for evolving analysis methodologies, and for interpretative studies using the new generation of simultaneous PET/MRI scanners. This article is part of the Special Issue Section entitled 'Neuroimaging in Neuropharmacology'. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. An insight into morphometric descriptors of cell shape that pertain to regenerative medicine.

    PubMed

    Lobo, Joana; See, Eugene Yong-Shun; Biggs, Manus; Pandit, Abhay

    2016-07-01

    Cellular morphology has recently been indicated as a powerful indicator of cellular function. The analysis of cell shape has evolved from rudimentary forms of microscopic visual inspection to more advanced methodologies that utilize high-resolution microscopy coupled with sophisticated computer hardware and software for data analysis. Despite this progress, there is still a lack of standardization in quantification of morphometric parameters. In addition, uncertainty remains as to which methodologies and parameters of cell morphology will yield meaningful data, which methods should be utilized to categorize cell shape, and the extent of reliability of measurements and the interpretation of the resulting analysis. A large range of descriptors has been employed to objectively assess the cellular morphology in two-dimensional and three-dimensional domains. Intuitively, simple and applicable morphometric descriptors are preferable and standardized protocols for cell shape analysis can be achieved with the help of computerized tools. In this review, cellular morphology is discussed as a descriptor of cellular function and the current morphometric parameters that are used quantitatively in two- and three-dimensional environments are described. Furthermore, the current problems associated with these morphometric measurements are addressed. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reynolds, William; Weber, Marta S.; Farber, Robert M.

    Social Media provide an exciting and novel view into social phenomena. The vast amounts of data that can be gathered from the Internet coupled with massively parallel supercomputers such as the Cray XMT open new vistas for research. Conclusions drawn from such analysis must recognize that social media are distinct from the underlying social reality. Rigorous validation is essential. This paper briefly presents results obtained from computational analysis of social media - utilizing both blog and twitter data. Validation of these results is discussed in the context of a framework of established methodologies from the social sciences. Finally, an outlinemore » for a set of supporting studies is proposed.« less

  4. A computer-aided approach to nonlinear control systhesis

    NASA Technical Reports Server (NTRS)

    Wie, Bong; Anthony, Tobin

    1988-01-01

    The major objective of this project is to develop a computer-aided approach to nonlinear stability analysis and nonlinear control system design. This goal is to be obtained by refining the describing function method as a synthesis tool for nonlinear control design. The interim report outlines the approach by this study to meet these goals including an introduction to the INteractive Controls Analysis (INCA) program which was instrumental in meeting these study objectives. A single-input describing function (SIDF) design methodology was developed in this study; coupled with the software constructed in this study, the results of this project provide a comprehensive tool for design and integration of nonlinear control systems.

  5. Harvesting model uncertainty for the simulation of interannual variability

    NASA Astrophysics Data System (ADS)

    Misra, Vasubandhu

    2009-08-01

    An innovative modeling strategy is introduced to account for uncertainty in the convective parameterization (CP) scheme of a coupled ocean-atmosphere model. The methodology involves calling the CP scheme several times at every given time step of the model integration to pick the most probable convective state. Each call of the CP scheme is unique in that one of its critical parameter values (which is unobserved but required by the scheme) is chosen randomly over a given range. This methodology is tested with the relaxed Arakawa-Schubert CP scheme in the Center for Ocean-Land-Atmosphere Studies (COLA) coupled general circulation model (CGCM). Relative to the control COLA CGCM, this methodology shows improvement in the El Niño-Southern Oscillation simulation and the Indian summer monsoon precipitation variability.

  6. Assessing Aircraft Susceptibility to Nonlinear Aircraft-Pilot Coupling/Pilot-Induced Oscillations

    NASA Technical Reports Server (NTRS)

    Hess, R.A.; Stout, P. W.

    1997-01-01

    A unified approach for assessing aircraft susceptibility to aircraft-pilot coupling (or pilot-induced oscillations) which was previously reported in the literature and applied to linear systems is extended to nonlinear systems, with emphasis upon vehicles with actuator rate saturation. The linear methodology provided a tool for predicting: (1) handling qualities levels, (2) pilot-induced oscillation rating levels and (3) a frequency range in which pilot-induced oscillations are likely to occur. The extension to nonlinear systems provides a methodology for predicting the latter two quantities. Eight examples are presented to illustrate the use of the technique. The dearth of experimental flight-test data involving systematic variation and assessment of the effects of actuator rate limits presently prevents a more thorough evaluation of the methodology.

  7. Mixed oxidizer hybrid propulsion system optimization under uncertainty using applied response surface methodology and Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Whitehead, James Joshua

    The analysis documented herein provides an integrated approach for the conduct of optimization under uncertainty (OUU) using Monte Carlo Simulation (MCS) techniques coupled with response surface-based methods for characterization of mixture-dependent variables. This novel methodology provides an innovative means of conducting optimization studies under uncertainty in propulsion system design. Analytic inputs are based upon empirical regression rate information obtained from design of experiments (DOE) mixture studies utilizing a mixed oxidizer hybrid rocket concept. Hybrid fuel regression rate was selected as the target response variable for optimization under uncertainty, with maximization of regression rate chosen as the driving objective. Characteristic operational conditions and propellant mixture compositions from experimental efforts conducted during previous foundational work were combined with elemental uncertainty estimates as input variables. Response surfaces for mixture-dependent variables and their associated uncertainty levels were developed using quadratic response equations incorporating single and two-factor interactions. These analysis inputs, response surface equations and associated uncertainty contributions were applied to a probabilistic MCS to develop dispersed regression rates as a function of operational and mixture input conditions within design space. Illustrative case scenarios were developed and assessed using this analytic approach including fully and partially constrained operational condition sets over all of design mixture space. In addition, optimization sets were performed across an operationally representative region in operational space and across all investigated mixture combinations. These scenarios were selected as representative examples relevant to propulsion system optimization, particularly for hybrid and solid rocket platforms. Ternary diagrams, including contour and surface plots, were developed and utilized to aid in visualization. The concept of Expanded-Durov diagrams was also adopted and adapted to this study to aid in visualization of uncertainty bounds. Regions of maximum regression rate and associated uncertainties were determined for each set of case scenarios. Application of response surface methodology coupled with probabilistic-based MCS allowed for flexible and comprehensive interrogation of mixture and operating design space during optimization cases. Analyses were also conducted to assess sensitivity of uncertainty to variations in key elemental uncertainty estimates. The methodology developed during this research provides an innovative optimization tool for future propulsion design efforts.

  8. An Investigation of Land-Atmosphere Coupling from Local to Regional Scales

    NASA Astrophysics Data System (ADS)

    Brunsell, N. A.; Van Vleck, E.; Rahn, D. A.

    2017-12-01

    The exchanges of mass and energy between the surface and atmosphere have been shown to depend upon both local and regional climatic influences. However, the degree of control exerted by the land surface on the coupling metrics is not well understood. In particular, we lack an understanding of the relationship between the local microclimate of a site and the regional forces responsible for land-atmosphere coupling. To address this, we investigate a series of metrics calculated from eddy covariance data and ceilometer data, land surface modeling and remotely sensed observations in the central United States to diagnose these interactions and predict the change from one coupling regime (e.g. wet/dry coupling) to another state. The stability of the coupling is quantified using a Lyapunov exponent based methodology. Through the use of a wavelet information theoretic approach, we isolate the roles local energy partitioning, as well as the temperature and moisture gradients on controlling and changing the coupling regime. Taking a multi-scale observational approach, we first examine the relationship at the tower scale. Using land surface models, we quantify to what extent current models are capable of properly diagnosing the dynamics of the coupling regime. In particular, we focus on the role of the surface moisture and vegetation to initiate and maintain precipitation feedbacks. We extend this analysis to the regional scale by utilizing reanalysis and remotely sensed observations. Thus, we are able to quantify the changes in observed coupling patterns with linkages to local interactions to address the question of the local control that the surface exerts over the maintenance of land-atmosphere coupling.

  9. State-of-The-Art of Modeling Methodologies and Optimization Operations in Integrated Energy System

    NASA Astrophysics Data System (ADS)

    Zheng, Zhan; Zhang, Yongjun

    2017-08-01

    Rapid advances in low carbon technologies and smart energy communities are reshaping future patterns. Uncertainty in energy productions and demand sides are paving the way towards decentralization management. Current energy infrastructures could not meet with supply and consumption challenges, along with emerging environment and economic requirements. Integrated Energy System(IES) whereby electric power, natural gas, heating couples with each other demonstrates that such a significant technique would gradually become one of main comprehensive and optimal energy solutions with high flexibility, friendly renewables absorption and improving efficiency. In these global energy trends, we summarize this literature review. Firstly the accurate definition and characteristics of IES have been presented. Energy subsystem and coupling elements modeling issues are analyzed. It is pointed out that decomposed and integrated analysis methods are the key algorithms for IES optimization operations problems, followed by exploring the IES market mechanisms. Finally several future research tendencies of IES, such as dynamic modeling, peer-to-peer trading, couple market design, sare under discussion.

  10. A rapid and ultrasensitive SERRS assay for histidine and tyrosine based on azo coupling.

    PubMed

    Sui, Huimin; Wang, Yue; Yu, Zhi; Cong, Qian; Han, Xiao Xia; Zhao, Bing

    2016-10-01

    A simple and highly sensitive surface-enhanced resonance Raman scattering (SERRS)-based approach coupled with azo coupling reaction has been put forward for quantitative analysis of histidine and tyrosine. The SERRS-based assay is simple and rapid by mixing the azo reaction products with silver nanoparticles (AgNPs) for measurements within 2min. The limits of detection (LODs) of the method are as low as 4.33×10(-11) and 8.80×10(-11)M for histidine and tyrosine, respectively. Moreover, the SERRS fingerprint information specific to corresponding amino acids guarantees the selective detection for the target histidine and tyrosine. The results from serum indicated the potential application of the proposed approach into biological samples. Compared with the methods ever reported, the main advantages of this methodology are simpleness, rapidity without time-consuming separation or pretreatment steps, high sensitivity, selectivity and the potential for determination of other molecules containing imidazole or phenol groups. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Ad-hoc surface-enhanced Raman spectroscopy methodologies for the detection of artist dyestuffs: thin layer chromatography-surface enhanced Raman spectroscopy and in situ on the fiber analysis.

    PubMed

    Brosseau, Christa L; Gambardella, Alessa; Casadio, Francesca; Grzywacz, Cecily M; Wouters, Jan; Van Duyne, Richard P

    2009-04-15

    Tailored ad-hoc methods must be developed for successful identification of minute amounts of natural dyes on works of art using Surface-Enhanced Raman Spectroscopy (SERS). This article details two of these successful approaches using silver film over nanosphere (AgFON) substrates and silica gel coupled with citrate-reduced Ag colloids. The latter substrate functions as the test system for the coupling of thin-layer chromatography and SERS (TLC-SERS), which has been used in the current research to separate and characterize a mixture of several artists' dyes. The poor limit of detection of TLC is overcome by coupling with SERS, and dyes which co-elute to nearly the same spot can be distinguished from each other. In addition, in situ extractionless non-hydrolysis SERS was used to analyze dyed reference fibers, as well as historical textile fibers. Colorants such as alizarin, purpurin, carminic acid, lac dye, crocin, and Cape jasmine were thus successfully identified.

  12. Determination of biomass burning tracers in air samples by GC/MS

    NASA Astrophysics Data System (ADS)

    Janoszka, Katarzyna

    2018-01-01

    Levoglucosan (LG) as a main cellulose burning product at 300°C is a biomass burning tracer. LG characterize by relatively high molar mass and it is sorbed by particulate matter. In the study of air pollution monitoring LG is mainly analyzed in particulate matter, PM1 and PM2,5. The tracer create relatively high O-H…O bond and weaker C-H…O bond. Due to the hydrogen bond, LG dissolves very well in water. Analytical procedure of LG determination include: extraction, derivatization and analysis by gas chromatography coupled with mass spectrometry detector. In water samples levoglucosan is determined by liquid chromatography. The paper presents a methodology for particulate matter samples determination their analysis by gas chromatography coupled with a mass spectrometry detector. Determination of LG content in particulate matter was performed according to an analytical method based on simultaneous pyridine extraction and derivatization using N,O-bis (trimethylsilyl) trifluoroacetamide and trimethylchlorosilane mixture (BSTFA: TMCS, 99: 1).

  13. A novel HS-SBSE system coupled with gas chromatography and mass spectrometry for the analysis of organochlorine pesticides in water samples.

    PubMed

    Grossi, Paula; Olivares, Igor R B; de Freitas, Diego R; Lancas, Fernando M

    2008-10-01

    A methodology to analyze organochlorine pesticides (OCPs) in water samples has been accomplished by using headspace stir bar sorptive extraction (HS-SBSE). The bars were in house coated with a thick film of PDMS in order to properly work in the headspace mode. Sampling was done by a novel HS-SBSE system whereas the analysis was performed by capillary GC coupled mass spectrometric detection (HS-SBSE-GC-MS). The extraction optimization, using different experimental parameters has been established by a standard equilibrium time of 120 min at 85 degrees C. A mixture of ACN/toluene as back extraction solvent promoted a good performance to remove the OCPs sorbed in the bar. Reproducibility between 2.1 and 14.8% and linearity between 0.96 and 1.0 were obtained for pesticides spiked in a linear range between 5 and 17 ng/g in water samples during the bar evaluation.

  14. The chronnectome: time-varying connectivity networks as the next frontier in fMRI data discovery.

    PubMed

    Calhoun, Vince D; Miller, Robyn; Pearlson, Godfrey; Adalı, Tulay

    2014-10-22

    Recent years have witnessed a rapid growth of interest in moving functional magnetic resonance imaging (fMRI) beyond simple scan-length averages and into approaches that capture time-varying properties of connectivity. In this Perspective we use the term "chronnectome" to describe metrics that allow a dynamic view of coupling. In the chronnectome, coupling refers to possibly time-varying levels of correlated or mutually informed activity between brain regions whose spatial properties may also be temporally evolving. We primarily focus on multivariate approaches developed in our group and review a number of approaches with an emphasis on matrix decompositions such as principle component analysis and independent component analysis. We also discuss the potential these approaches offer to improve characterization and understanding of brain function. There are a number of methodological directions that need to be developed further, but chronnectome approaches already show great promise for the study of both the healthy and the diseased brain.

  15. "Never in Our Lifetime": Legal Marriage for Same-Sex Couples in Long-Term Relationships

    ERIC Educational Resources Information Center

    Porche, Michelle V.; Purvin, Diane M.

    2008-01-01

    We present data from 4 lesbian and 5 gay male same-sex couples who have been together 20 years or more. Couples included those legally married and unmarried, with and without children, and were interviewed within the first year legalized same-sex marriage was enacted in Massachusetts. Using life course theory and case study methodology, we…

  16. Aerobic, Metal-Free, and Catalytic Dehydrogenative Coupling of Heterocycles: En Route to Hedgehog Signaling Pathway Inhibitors.

    PubMed

    Bering, Luis; Paulussen, Felix M; Antonchick, Andrey P

    2018-04-06

    The nitrosonium ion-catalyzed dehydrogenative coupling of heteroarenes under mild reaction conditions is reported. The developed method utilizes ambient molecular oxygen as a terminal oxidant, and only water is produced as byproduct. Dehydrogenative coupling of heteroarenes translated into the rapid discovery of novel hedgehog signaling pathway inhibitors, emphasizing the importance of the developed methodology.

  17. Which technology to investigate visual perception in sport: video vs. virtual reality.

    PubMed

    Vignais, Nicolas; Kulpa, Richard; Brault, Sébastien; Presse, Damien; Bideau, Benoit

    2015-02-01

    Visual information uptake is a fundamental element of sports involving interceptive tasks. Several methodologies, like video and methods based on virtual environments, are currently employed to analyze visual perception during sport situations. Both techniques have advantages and drawbacks. The goal of this study is to determine which of these technologies may be preferentially used to analyze visual information uptake during a sport situation. To this aim, we compared a handball goalkeeper's performance using two standardized methodologies: video clip and virtual environment. We examined this performance for two response tasks: an uncoupled task (goalkeepers show where the ball ends) and a coupled task (goalkeepers try to intercept the virtual ball). Variables investigated in this study were percentage of correct zones, percentage of correct responses, radial error and response time. The results showed that handball goalkeepers were more effective, more accurate and started to intercept earlier when facing a virtual handball thrower than when facing the video clip. These findings suggested that the analysis of visual information uptake for handball goalkeepers was better performed by using a 'virtual reality'-based methodology. Technical and methodological aspects of these findings are discussed further. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Efficient preliminary floating offshore wind turbine design and testing methodologies and application to a concrete spar design

    PubMed Central

    Matha, Denis; Sandner, Frank; Molins, Climent; Campos, Alexis; Cheng, Po Wen

    2015-01-01

    The current key challenge in the floating offshore wind turbine industry and research is on designing economic floating systems that can compete with fixed-bottom offshore turbines in terms of levelized cost of energy. The preliminary platform design, as well as early experimental design assessments, are critical elements in the overall design process. In this contribution, a brief review of current floating offshore wind turbine platform pre-design and scaled testing methodologies is provided, with a focus on their ability to accommodate the coupled dynamic behaviour of floating offshore wind systems. The exemplary design and testing methodology for a monolithic concrete spar platform as performed within the European KIC AFOSP project is presented. Results from the experimental tests compared to numerical simulations are presented and analysed and show very good agreement for relevant basic dynamic platform properties. Extreme and fatigue loads and cost analysis of the AFOSP system confirm the viability of the presented design process. In summary, the exemplary application of the reduced design and testing methodology for AFOSP confirms that it represents a viable procedure during pre-design of floating offshore wind turbine platforms. PMID:25583870

  19. Suzuki–Miyaura Cross-Coupling of Aryl Carbamates and Sulfamates: Experimental and Computational Studies

    PubMed Central

    Quasdorf, Kyle W.; Antoft-Finch, Aurora; Liu, Peng; Silberstein, Amanda L.; Komaromi, Anna; Blackburn, Tom; Ramgren, Stephen D.; Houk, K. N.; Snieckus, Victor; Garg, Neil K.

    2011-01-01

    The first Suzuki–Miyaura cross-coupling reactions of the synthetically versatile O-aryl carbamate and O-sulfamate groups is described. The transformations utilize the inexpensive, bench-stable catalyst NiCl2(PCy3)2 to furnish biaryls in good to excellent yields. A broad scope for this methodology has been demonstrated. Substrates with electron-donating and electron-withdrawing groups (EDGs, EWGs) are tolerated, in addition to those that possess ortho substitutents. Furthermore, heteroaryl substrates may be employed as coupling partners. A computational study providing the full catalytic cycles for these cross-coupling reactions is described. The oxidative additions with carbamates and sulfamates occur via a five-centered transition state, resulting in the exclusive cleavage of the Ar–O bond. Water is found to stabilize the Ni–carbamate catalyst resting state, and thus provides rationalization of the relative decreased rate of coupling of carbamates. Several synthetic applications are presented to showcase the utility of the methodology in the synthesis of polysubstituted aromatic compounds of natural product and bioactive molecule interest. PMID:21456551

  20. Evaluation of MARC for the analysis of rotating composite blades

    NASA Technical Reports Server (NTRS)

    Bartos, Karen F.; Ernst, Michael A.

    1993-01-01

    The suitability of the MARC code for the analysis of rotating composite blades was evaluated using a four-task process. A nonlinear displacement analysis and subsequent eigenvalue analysis were performed on a rotating spring mass system to ensure that displacement-dependent centrifugal forces were accounted for in the eigenvalue analysis. Normal modes analyses were conducted on isotropic plates with various degrees of twist to evaluate MARC's ability to handle blade twist. Normal modes analyses were conducted on flat composite plates to validate the newly developed coupled COBSTRAN-MARC methodology. Finally, normal modes analyses were conducted on four composite propfan blades that were designed, analyzed, and fabricated at NASA Lewis Research Center. Results were compared with experimental data. The research documented herein presents MARC as a viable tool for the analysis of rotating composite blades.

  1. Evaluation of MARC for the analysis of rotating composite blades

    NASA Astrophysics Data System (ADS)

    Bartos, Karen F.; Ernst, Michael A.

    1993-03-01

    The suitability of the MARC code for the analysis of rotating composite blades was evaluated using a four-task process. A nonlinear displacement analysis and subsequent eigenvalue analysis were performed on a rotating spring mass system to ensure that displacement-dependent centrifugal forces were accounted for in the eigenvalue analysis. Normal modes analyses were conducted on isotropic plates with various degrees of twist to evaluate MARC's ability to handle blade twist. Normal modes analyses were conducted on flat composite plates to validate the newly developed coupled COBSTRAN-MARC methodology. Finally, normal modes analyses were conducted on four composite propfan blades that were designed, analyzed, and fabricated at NASA Lewis Research Center. Results were compared with experimental data. The research documented herein presents MARC as a viable tool for the analysis of rotating composite blades.

  2. Identification of species of the Euterpe genus by rare earth elements using inductively coupled plasma mass spectrometry and linear discriminant analysis.

    PubMed

    Santos, Vívian Silva; Nardini, Viviani; Cunha, Luís Carlos; Barbosa, Fernando; De Almeida Teixeira, Gustavo Henrique

    2014-06-15

    The açaí (Euterpe oleracea Mart.) and juçara (Euterpe edulis Mart.) produce similar fruits which are rich in energy, minerals, vitamins and natural compounds with antioxidant and anti-inflammatory properties. Although the drink obtained from these species is similar, it is important to develop tools to establish the identity of the fruit species and growing regions. To assess claims of origin and for other purposes, we use multivariate analysis to investigate the differentiation of açaí and juçara fruits based on rare earth element (REE) content determined by Inductively Coupled Plasma Mass Spectrometry. REE content, in particular Sm, Th, La, Pr, Gd, and especially Ce and Nd varied between species. PCA analysis was not efficient in differentiating açaí from juçara fruit samples. In contrast, LDA analysis permitted a correct differentiation between species with a predictive ability of 83.3%. The methodology that we have applied confirms that REE can be used to differentiate between açaí and juçara fruit samples and to identify their origin. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Analytical strategies for organic food packaging contaminants.

    PubMed

    Sanchis, Yovana; Yusà, Vicent; Coscollà, Clara

    2017-03-24

    In this review, we present current approaches in the analysis of food-packaging contaminants. Gas and liquid chromatography coupled to mass spectrometry detection have been widely used in the analysis of some relevant families of these compounds such as primary aromatic amines, bisphenol A, bisphenol A diglycidyl ether and related compounds, UV-ink photoinitiators, perfluorinated compounds, phthalates and non-intentionally added substances. Main applications for sample treatment and different types of food-contact material migration studies have been also discussed. Pressurized Liquid Extraction, Solid-Phase Microextraction, Focused Ultrasound Solid-Liquid Extraction and Quechers have been mainly used in the extraction of food contact material (FCM) contaminants, due to the trend of minimising solvent consumption, automatization of sample preparation and integration of extraction and clean-up steps. Recent advances in analytical methodologies have allowed unequivocal identification and confirmation of these contaminants using Liquid Chromatography coupled to High Resolution Mass Spectrometry (LC-HRMS) through mass accuracy and isotopic pattern applying. LC-HRMS has been used in the target analysis of primary aromatic amines in different plastic materials, but few studies have been carried out applying this technique in post-target and non-target analysis of FCM contaminants. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Methodology and guidelines for regulating traffic flows under air quality constraints in metropolitan areas.

    DOT National Transportation Integrated Search

    2010-02-01

    This project developed a methodology to couple a new pollutant dispersion model with a traffic : assignment process to contain air pollution while maximizing mobility. The overall objective of the air : quality modeling part of the project is to deve...

  5. On the Evolving Nature of Exposure Therapy

    ERIC Educational Resources Information Center

    Schare, Mitchell L.; Wyatt, Kristin P.

    2013-01-01

    Four articles examining methodological applications of exposure therapy and its limited dissemination were briefly reviewed. Methodological articles included those by Abramowitz et al., Gryczkowski et al., and Weiner and McKay, which addressed couple treatment of obsessive-compulsive disorder (OCD), modification of evidence-based anxiety…

  6. Experimental Methodology for Measuring Combustion and Injection-Coupled Responses

    NASA Technical Reports Server (NTRS)

    Cavitt, Ryan C.; Frederick, Robert A.; Bazarov, Vladimir G.

    2006-01-01

    A Russian scaling methodology for liquid rocket engines utilizing a single, full scale element is reviewed. The scaling methodology exploits the supercritical phase of the full scale propellants to simplify scaling requirements. Many assumptions are utilized in the derivation of the scaling criteria. A test apparatus design is presented to implement the Russian methodology and consequently verify the assumptions. This test apparatus will allow researchers to assess the usefulness of the scaling procedures and possibly enhance the methodology. A matrix of the apparatus capabilities for a RD-170 injector is also presented. Several methods to enhance the methodology have been generated through the design process.

  7. Quantification of cell cycle kinetics by EdU (5-ethynyl-2′-deoxyuridine)-coupled-fluorescence-intensity analysis

    PubMed Central

    Cabrita, Marisa; Bekman, Evguenia; Braga, José; Rino, José; Santus, Renè; Filipe, Paulo L.; Sousa, Ana E.; Ferreira, João A.

    2017-01-01

    We propose a novel single-deoxynucleoside-based assay that is easy to perform and provides accurate values for the absolute length (in units of time) of each of the cell cycle stages (G1, S and G2/M). This flow-cytometric assay takes advantage of the excellent stoichiometric properties of azide-fluorochrome detection of DNA substituted with 5-ethynyl-2′-deoxyuridine (EdU). We show that by pulsing cells with EdU for incremental periods of time maximal EdU-coupled fluorescence is reached when pulsing times match the length of S phase. These pulsing times, allowing labelling for a full S phase of a fraction of cells in asynchronous populations, provide accurate values for the absolute length of S phase. We characterized additional, lower intensity signals that allowed quantification of the absolute durations of G1 and G2 phases. Importantly, using this novel assay data on the lengths of G1, S and G2/M phases are obtained in parallel. Therefore, these parameters can be estimated within a time frame that is shorter than a full cell cycle. This method, which we designate as EdU-Coupled Fluorescence Intensity (E-CFI) analysis, was successfully applied to cell types with distinctive cell cycle features and shows excellent agreement with established methodologies for analysis of cell cycle kinetics. PMID:28465489

  8. Isolation and Puification of Uranium Isotopes for Measurement by Mass-Spectrometry (233, 234, 235, 236, 238U) and Alpha Spectrometry (232U)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marinelli, R; Hamilton, T; Brown, T

    2006-05-30

    This report describes a standardized methodology used by researchers from the Center for Accelerator Mass Spectrometry (CAMS) (Energy and Environment Directorate) and the Environmental Radiochemistry Group (Chemistry and Materials Science Directorate) at the Lawrence Livermore National Laboratory (LLNL) for the full isotopic analysis of uranium from solution. The methodology has largely been developed for use in characterizing the uranium composition of selected nuclear materials but may also be applicable to environmental studies and assessments of public, military or occupational exposures to uranium using in-vitro bioassay monitoring techniques. Uranium isotope concentrations and isotopic ratios are measured using a combination of Multimore » Collector Inductively Coupled Plasma Mass Spectrometry (MC ICP-MS), Accelerator Mass Spectrometry (AMS) and Alpha Spectrometry.« less

  9. Methodology for the Assessment of 3D Conduction Effects in an Aerothermal Wind Tunnel Test

    NASA Technical Reports Server (NTRS)

    Oliver, Anthony Brandon

    2010-01-01

    This slide presentation reviews a method for the assessment of three-dimensional conduction effects during test in a Aerothermal Wind Tunnel. The test objectives were to duplicate and extend tests that were performed during the 1960's on thermal conduction on proturberance on a flat plate. Slides review the 1D versus 3D conduction data reduction error, the analysis process, CFD-based analysis, loose coupling method that simulates a wind tunnel test run, verification of the CFD solution, Grid convergence, Mach number trend, size trends, and a Sumary of the CFD conduction analysis. Other slides show comparisons to pretest CFD at Mach 1.5 and 2.16 and the geometries of the models and grids.

  10. Extended aeroelastic analysis for helicopter rotors with prescribed hub motion and blade appended penduluum vibration absorbers

    NASA Technical Reports Server (NTRS)

    Bielawa, R. L.

    1984-01-01

    The mathematical development for the expanded capabilities of the G400 rotor aeroelastic analysis was examined. The G400PA expanded analysis simulates the dynamics of all conventional rotors, blade pendulum vibration absorbers, and the higher harmonic excitations resulting from prescribed vibratory hub motions and higher harmonic blade pitch control. The methodology for modeling the unsteady stalled airloads of two dimensional airfoils is discussed. Formulations for calculating the rotor impedance matrix appropriate to the higher harmonic blade excitations are outlined. This impedance matrix, and the associated vibratory hub loads, are the rotor dynamic characteristic elements for use in the simplified coupled rotor/fuselage vibration analysis (SIMVIB). Updates to the development of the original G400 theory, program documentation, user instructions and information are presented.

  11. System Risk Assessment and Allocation in Conceptual Design

    NASA Technical Reports Server (NTRS)

    Mahadevan, Sankaran; Smith, Natasha L.; Zang, Thomas A. (Technical Monitor)

    2003-01-01

    As aerospace systems continue to evolve in addressing newer challenges in air and space transportation, there exists a heightened priority for significant improvement in system performance, cost effectiveness, reliability, and safety. Tools, which synthesize multidisciplinary integration, probabilistic analysis, and optimization, are needed to facilitate design decisions allowing trade-offs between cost and reliability. This study investigates tools for probabilistic analysis and probabilistic optimization in the multidisciplinary design of aerospace systems. A probabilistic optimization methodology is demonstrated for the low-fidelity design of a reusable launch vehicle at two levels, a global geometry design and a local tank design. Probabilistic analysis is performed on a high fidelity analysis of a Navy missile system. Furthermore, decoupling strategies are introduced to reduce the computational effort required for multidisciplinary systems with feedback coupling.

  12. Novel patch modelling method for efficient simulation and prediction uncertainty analysis of multi-scale groundwater flow and transport processes

    NASA Astrophysics Data System (ADS)

    Sreekanth, J.; Moore, Catherine

    2018-04-01

    The application of global sensitivity and uncertainty analysis techniques to groundwater models of deep sedimentary basins are typically challenged by large computational burdens combined with associated numerical stability issues. The highly parameterized approaches required for exploring the predictive uncertainty associated with the heterogeneous hydraulic characteristics of multiple aquifers and aquitards in these sedimentary basins exacerbate these issues. A novel Patch Modelling Methodology is proposed for improving the computational feasibility of stochastic modelling analysis of large-scale and complex groundwater models. The method incorporates a nested groundwater modelling framework that enables efficient simulation of groundwater flow and transport across multiple spatial and temporal scales. The method also allows different processes to be simulated within different model scales. Existing nested model methodologies are extended by employing 'joining predictions' for extrapolating prediction-salient information from one model scale to the next. This establishes a feedback mechanism supporting the transfer of information from child models to parent models as well as parent models to child models in a computationally efficient manner. This feedback mechanism is simple and flexible and ensures that while the salient small scale features influencing larger scale prediction are transferred back to the larger scale, this does not require the live coupling of models. This method allows the modelling of multiple groundwater flow and transport processes using separate groundwater models that are built for the appropriate spatial and temporal scales, within a stochastic framework, while also removing the computational burden associated with live model coupling. The utility of the method is demonstrated by application to an actual large scale aquifer injection scheme in Australia.

  13. Combined UMC- DFT prediction of electron-hole coupling in unit cells of pentacene crystals.

    PubMed

    Leal, Luciano Almeida; de Souza Júnior, Rafael Timóteo; de Almeida Fonseca, Antonio Luciano; Ribeiro Junior, Luiz Antonio; Blawid, Stefan; da Silva Filho, Demetrio Antonio; da Cunha, Wiliam Ferreira

    2017-05-01

    Pentacene is an organic semiconductor that draws special attention from the scientific community due to the high mobility of its charge carriers. As electron-hole interactions are important aspects in the regard of such property, a computationally inexpensive method to predict the coupling between these quasi-particles is highly desired. In this work, we propose a hybrid methodology of combining Uncoupled Monte Carlo Simulations (UMC) and Density functional Theory (DFT) methodologies to obtain a good compromise between computational feasibility and accuracy. As a first step in considering a Pentacene crystal, we describe its unit cell: the Pentacene Dimer. Because many conformations can be encountered for the dimer and considering the complexity of the system, we make use of UMC in order to find the most probable structures and relative orientations for the Pentacene-Pentacene complex. Following, we carry out electronic structure calculations in the scope of DFT with the goal of describing the electron-hole coupling on the most probable configurations obtained by UMC. The comparison of our results with previously reported data on the literature suggests that the methodology is well suited for describing transfer integrals of organic semiconductors. The observed accuracy together with the smaller computational cost required by our approach allows us to conclude that such methodology might be an important tool towards the description of systems with higher complexity.

  14. Mutual caring of elderly Korean couples.

    PubMed

    Ahn, Taesung; Kim, Kwibun

    2007-01-01

    The article described the experiences of elderly couples caring for each other using ethnographic methodology. Ten couples were interviewed in depth. The presence of a support system was found to be the primary requirement of elderly couples. Three taxonomies comprised the support system: (a) desire for respect in care, (b) desire for reliance, and (c) expectation. The close linkage and interaction of desire for care, desire for reliance, and expectations were confirmed. The findings suggested establishing a holistic support network for these elders.

  15. Differentiation of aflatoxigenic and non-aflatoxigenic strains of Aspergilli by FT-IR spectroscopy.

    PubMed

    Atkinson, Curtis; Pechanova, Olga; Sparks, Darrell L; Brown, Ashli; Rodriguez, Jose M

    2014-01-01

    Fourier transform infrared spectroscopy (FT-IR) is a well-established and widely accepted methodology to identify and differentiate diverse microbial species. In this study, FT-IR was used to differentiate 20 strains of ubiquitous and agronomically important phytopathogens of Aspergillus flavus and Aspergillus parasiticus. By analyzing their spectral profiles via principal component and cluster analysis, differentiation was achieved between the aflatoxin-producing and nonproducing strains of both fungal species. This study thus indicates that FT-IR coupled to multivariate statistics can rapidly differentiate strains of Aspergilli based on their toxigenicity.

  16. Analysis of crystalline lens coloration using a black and white charge-coupled device camera.

    PubMed

    Sakamoto, Y; Sasaki, K; Kojima, M

    1994-01-01

    To analyze lens coloration in vivo, we used a new type of Scheimpflug camera that is a black and white type of charge-coupled device (CCD) camera. A new methodology was proposed. Scheimpflug images of the lens were taken three times through red (R), green (G), and blue (B) filters, respectively. Three images corresponding with the R, G, and B channels were combined into one image on the cathode-ray tube (CRT) display. The spectral transmittance of the tricolor filters and the spectral sensitivity of the CCD camera were used to correct the scattering-light intensity of each image. Coloration of the lens was expressed on a CIE standard chromaticity diagram. The lens coloration of seven eyes analyzed by this method showed values almost the same as those obtained by the previous method using color film.

  17. Modulations of Heart Rate, ECG, and Cardio-Respiratory Coupling Observed in Polysomnography

    PubMed Central

    Penzel, Thomas; Kantelhardt, Jan W.; Bartsch, Ronny P.; Riedl, Maik; Kraemer, Jan F.; Wessel, Niels; Garcia, Carmen; Glos, Martin; Fietze, Ingo; Schöbel, Christoph

    2016-01-01

    The cardiac component of cardio-respiratory polysomnography is covered by ECG and heart rate recordings. However, their evaluation is often underrepresented in summarizing reports. As complements to EEG, EOG, and EMG, these signals provide diagnostic information for autonomic nervous activity during sleep. This review presents major methodological developments in sleep research regarding heart rate, ECG, and cardio-respiratory couplings in a chronological (historical) sequence. It presents physiological and pathophysiological insights related to sleep medicine obtained by new technical developments. Recorded nocturnal ECG facilitates conventional heart rate variability (HRV) analysis, studies of cyclical variations of heart rate, and analysis of ECG waveform. In healthy adults, the autonomous nervous system is regulated in totally different ways during wakefulness, slow-wave sleep, and REM sleep. Analysis of beat-to-beat heart-rate variations with statistical methods enables us to estimate sleep stages based on the differences in autonomic nervous system regulation. Furthermore, up to some degree, it is possible to track transitions from wakefulness to sleep by analysis of heart-rate variations. ECG and heart rate analysis allow assessment of selected sleep disorders as well. Sleep disordered breathing can be detected reliably by studying cyclical variation of heart rate combined with respiration-modulated changes in ECG morphology (amplitude of R wave and T wave). PMID:27826247

  18. Modulations of Heart Rate, ECG, and Cardio-Respiratory Coupling Observed in Polysomnography.

    PubMed

    Penzel, Thomas; Kantelhardt, Jan W; Bartsch, Ronny P; Riedl, Maik; Kraemer, Jan F; Wessel, Niels; Garcia, Carmen; Glos, Martin; Fietze, Ingo; Schöbel, Christoph

    2016-01-01

    The cardiac component of cardio-respiratory polysomnography is covered by ECG and heart rate recordings. However, their evaluation is often underrepresented in summarizing reports. As complements to EEG, EOG, and EMG, these signals provide diagnostic information for autonomic nervous activity during sleep. This review presents major methodological developments in sleep research regarding heart rate, ECG, and cardio-respiratory couplings in a chronological (historical) sequence. It presents physiological and pathophysiological insights related to sleep medicine obtained by new technical developments. Recorded nocturnal ECG facilitates conventional heart rate variability (HRV) analysis, studies of cyclical variations of heart rate, and analysis of ECG waveform. In healthy adults, the autonomous nervous system is regulated in totally different ways during wakefulness, slow-wave sleep, and REM sleep. Analysis of beat-to-beat heart-rate variations with statistical methods enables us to estimate sleep stages based on the differences in autonomic nervous system regulation. Furthermore, up to some degree, it is possible to track transitions from wakefulness to sleep by analysis of heart-rate variations. ECG and heart rate analysis allow assessment of selected sleep disorders as well. Sleep disordered breathing can be detected reliably by studying cyclical variation of heart rate combined with respiration-modulated changes in ECG morphology (amplitude of R wave and T wave).

  19. Direct analysis of textile dyes from trace fibers by automated microfluidics extraction system coupled with Q-TOF mass spectrometer for forensic applications.

    PubMed

    Sultana, Nadia; Gunning, Sean; Furst, Stephen J; Garrard, Kenneth P; Dow, Thomas A; Vinueza, Nelson R

    2018-05-19

    Textile fiber is a common form of transferable trace evidence at the crime scene. Different techniques such as microscopy or spectroscopy are currently being used for trace fiber analysis. Dye characterization in trace fiber adds an important molecular specificity during the analysis. In this study, we performed a direct trace fiber analysis method via dye characterization by a novel automated microfluidics device (MFD) dye extraction system coupled with a quadrupole-time-of-flight (Q-TOF) mass spectrometer (MS). The MFD system used an in-house made automated procedure which requires only 10μL of organic solvent for the extraction. The total extraction and identification time by the system is under 12min. A variety of sulfonated azo and anthraquinone dyes were analyzed from ∼1mm length nylon fiber samples. This methodology successfully characterized multiple dyes (≥3 dyes) from a single fiber thread. Additionally, it was possible to do dye characterization from single fibers with a diameter of ∼10μm. The MFD-MS system was used for elemental composition and isotopic distribution analysis where MFD-MS/MS was used for structural characterization of dyes on fibers. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Symplectic analysis of vertical random vibration for coupled vehicle track systems

    NASA Astrophysics Data System (ADS)

    Lu, F.; Kennedy, D.; Williams, F. W.; Lin, J. H.

    2008-10-01

    A computational model for random vibration analysis of vehicle-track systems is proposed and solutions use the pseudo excitation method (PEM) and the symplectic method. The vehicle is modelled as a mass, spring and damping system with 10 degrees of freedom (dofs) which consist of vertical and pitching motion for the vehicle body and its two bogies and vertical motion for the four wheelsets. The track is treated as an infinite Bernoulli-Euler beam connected to sleepers and hence to ballast and is regarded as a periodic structure. Linear springs couple the vehicle and the track. Hence, the coupled vehicle-track system has only 26 dofs. A fixed excitation model is used, i.e. the vehicle does not move along the track but instead the track irregularity profile moves backwards at the vehicle velocity. This irregularity is assumed to be a stationary random process. Random vibration theory is used to obtain the response power spectral densities (PSDs), by using PEM to transform this random multiexcitation problem into a deterministic harmonic excitation one and then applying symplectic solution methodology. Numerical results for an example include verification of the proposed method by comparing with finite element method (FEM) results; comparison between the present model and the traditional rigid track model and; discussion of the influences of track damping and vehicle velocity.

  1. [The application of inductively coupled plasma atomic emission spectrometry/mass spectrometry to the analysis of advanced ceramic materials].

    PubMed

    Wang, Zheng; Wang, Shi-Wei; Qiu, De-Ren; Yang, Peng-Yuan

    2009-10-01

    Advanced ceramics have been applied to various important fields such as information science, aeronautics and astronautics, and life sciences. However, the optics and electric properties of ceramics are significantly affected by the micro and trace impurities existing in the material even at very low concentration level. Thus, the accurate determination of impurities is important for materials preparation and performance. Methodology of the analysis of advanced ceramic materials using ICP-AES/MS was reviewed in the present paper for the past decade. Various techniques of sample introduction, especially advances in the authors' recent work, are described in detail. The developing trend is also presented. Sixty references are cited.

  2. Multiscale integral analysis of a HT leakage in a fusion nuclear power plant

    NASA Astrophysics Data System (ADS)

    Velarde, M.; Fradera, J.; Perlado, J. M.; Zamora, I.; Martínez-Saban, E.; Colomer, C.; Briani, P.

    2016-05-01

    The present work presents an example of the application of an integral methodology based on a multiscale analysis that covers the whole tritium cycle within a nuclear fusion power plant, from a micro scale, analyzing key components where tritium is leaked through permeation, to a macro scale, considering its atmospheric transport. A leakage from the Nuclear Power Plants, (NPP) primary to the secondary side of a heat exchanger (HEX) is considered for the present example. Both primary and secondary loop coolants are assumed to be He. Leakage is placed inside the HEX, leaking tritium in elementary tritium (HT) form to the secondary loop where it permeates through the piping structural material to the exterior. The Heating Ventilation and Air Conditioning (HVAC) system removes the leaked tritium towards the NPP exhaust. The HEX is modelled with system codes and coupled to Computational Fluid Dynamic (CFD) to account for tritium dispersion inside the nuclear power plants buildings and in site environment. Finally, tritium dispersion is calculated with an atmospheric transport code and a dosimetry analysis is carried out. Results show how the implemented methodology is capable of assessing the impact of tritium from the microscale to the atmospheric scale including the dosimetric aspect.

  3. Application of damage tolerance methodology in certification of the Piaggio P-180 Avanti

    NASA Technical Reports Server (NTRS)

    Johnson, Jerry

    1992-01-01

    The Piaggio P-180 Avanti, a twin pusher-prop engine nine-passenger business aircraft was certified in 1990, to the requirements of FAR Part 23 and Associated Special Conditions for Composite Structure. Certification included the application of a damage tolerant methodology to the design of the composite forward wing and empennage (vertical fin, horizontal stabilizer, tailcone, and rudder) structure. This methodology included an extensive analytical evaluation coupled with sub-component and full-scale testing of the structure. The work from the Damage Tolerance Analysis Assessment was incorporated into the full-scale testing. Damage representing hazards such as dropped tools, ground equipment, handling, and runway debris, was applied to the test articles. Additional substantiation included allowing manufacturing discrepancies to exist unrepaired on the full-scale articles and simulated bondline failures in critical elements. The importance of full-scale testing in the critical environmental conditions and the application of critical damage are addressed. The implication of damage tolerance on static and fatigue testing is discussed. Good correlation between finite element solutions and experimental test data was observed.

  4. Socio-Hydrology: Conceptual and Methodological Challenges in the Bidirectional Coupling of Human and Water Systems

    NASA Astrophysics Data System (ADS)

    Scott, C. A.

    2014-12-01

    This presentation reviews conceptual advances in the emerging field of socio-hydrology that focuses on coupled human and water systems. An important current challenge is how to better couple the bidirectional influences between human and water systems, which lead to emergent dynamics. The interactions among (1) the structure and dynamics of systems with (2) human values and norms lead to (3) outcomes, which in turn influence subsequent interactions. Human influences on hydrological systems are relatively well understood, chiefly resulting from developments in the field of water resources. The ecosystem-service concept of cultural value has expanded understanding of decision-making beyond economic rationality criteria. Hydrological impacts on social processes are less well developed conceptually, but this is changing with growing attention to vulnerability, adaptation, and resilience, particularly in the face of climate change. Methodological limitations, especially in characterizing the range of human responses to hydrological events and drivers, still pose challenges to modeling bidirectional human-water influences. Evidence from multiple case studies, synthesized in more broadly generic syndromes, helps surmount these methodological limitations and offers the potential to improve characterization and quantification of socio-hydrological systems.

  5. Role-exit theory and marital discord following extended military deployment.

    PubMed

    Gambardella, Lucille C

    2008-07-01

    The purpose of this study was to determine the effectiveness of applying role-exit theory concepts in the counseling of military couples experiencing marital discord following extended periods of deployment. Qualitative case-study methodology was utilized to assess, diagnose, and treat 10 military couples using a framework based on role-exit theory. Six couples self-reported improvement in the marital relationship following this counseling approach. Role-exit theory based counseling may benefit other couples who experience marital discord due to role issues. The clinical nurse specialist might consider this paradigm when working with couples in marital therapy.

  6. Coastal zone management with stochastic multi-criteria analysis.

    PubMed

    Félix, A; Baquerizo, A; Santiago, J M; Losada, M A

    2012-12-15

    The methodology for coastal management proposed in this study takes into account the physical processes of the coastal system and the stochastic nature of forcing agents. Simulation techniques are used to assess the uncertainty in the performance of a set of predefined management strategies based on different criteria representing the main concerns of interest groups. This statistical information as well as the distribution function that characterizes the uncertainty regarding the preferences of the decision makers is fed into a stochastic multi-criteria acceptability analysis that provides the probability of alternatives obtaining certain ranks and also calculates the preferences of a typical decision maker who supports an alternative. This methodology was applied as a management solution for Playa Granada in the Guadalfeo River Delta (Granada, Spain), where the construction of a dam in the river basin is causing severe erosion. The analysis of shoreline evolution took into account the coupled action of atmosphere, ocean, and land agents and their intrinsic stochastic character. This study considered five different management strategies. The criteria selected for the analysis were the economic benefits for three interest groups: (i) indirect beneficiaries of tourist activities; (ii) beach homeowners; and (iii) the administration. The strategies were ranked according to their effectiveness, and the relative importance given to each criterion was obtained. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Coupled Fluid-Structure Interaction Analysis of Solid Rocket Motor with Flexible Inhibitors

    NASA Technical Reports Server (NTRS)

    Yang, H. Q.; West, Jeff; Harris, Robert E.

    2014-01-01

    Flexible inhibitors are generally used in solid rocket motors (SRMs) as a means to control the burning of propellant. Vortices generated by the flow of propellant around the flexible inhibitors have been identified as a driving source of instabilities that can lead to thrust oscillations in launch vehicles. Potential coupling between the SRM thrust oscillations and structural vibration modes is an important risk factor in launch vehicle design. As a means to predict and better understand these phenomena, a multidisciplinary simulation capability that couples the NASA production CFD code, Loci/CHEM, with CFDRC's structural finite element code, CoBi, has been developed. This capability is crucial to the development of NASA's new space launch system (SLS). This paper summarizes the efforts in applying the coupled software to demonstrate and investigate fluid-structure interaction (FSI) phenomena between pressure waves and flexible inhibitors inside reusable solid rocket motors (RSRMs). The features of the fluid and structural solvers are described in detail, and the coupling methodology and interfacial continuity requirements are then presented in a general Eulerian-Lagrangian framework. The simulations presented herein utilize production level CFD with hybrid RANS/LES turbulence modeling and grid resolution in excess of 80 million cells. The fluid domain in the SRM is discretized using a general mixed polyhedral unstructured mesh, while full 3D shell elements are utilized in the structural domain for the flexible inhibitors. Verifications against analytical solutions for a structural model under a steady uniform pressure condition and under dynamic modal analysis show excellent agreement in terms of displacement distribution and eigenmode frequencies. The preliminary coupled results indicate that due to acoustic coupling, the dynamics of one of the more flexible inhibitors shift from its first modal frequency to the first acoustic frequency of the solid rocket motor. This insight could have profound implications for SRM and flexible inhibitor designs for current and future launch vehicles including SLS.

  8. CASL L1 Milestone report : CASL.P4.01, sensitivity and uncertainty analysis for CIPS with VIPRE-W and BOA.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sung, Yixing; Adams, Brian M.; Secker, Jeffrey R.

    2011-12-01

    The CASL Level 1 Milestone CASL.P4.01, successfully completed in December 2011, aimed to 'conduct, using methodologies integrated into VERA, a detailed sensitivity analysis and uncertainty quantification of a crud-relevant problem with baseline VERA capabilities (ANC/VIPRE-W/BOA).' The VUQ focus area led this effort, in partnership with AMA, and with support from VRI. DAKOTA was coupled to existing VIPRE-W thermal-hydraulics and BOA crud/boron deposit simulations representing a pressurized water reactor (PWR) that previously experienced crud-induced power shift (CIPS). This work supports understanding of CIPS by exploring the sensitivity and uncertainty in BOA outputs with respect to uncertain operating and model parameters. Thismore » report summarizes work coupling the software tools, characterizing uncertainties, and analyzing the results of iterative sensitivity and uncertainty studies. These studies focused on sensitivity and uncertainty of CIPS indicators calculated by the current version of the BOA code used in the industry. Challenges with this kind of analysis are identified to inform follow-on research goals and VERA development targeting crud-related challenge problems.« less

  9. Hydrophilic interaction ultra-performance liquid chromatography coupled with triple-quadrupole tandem mass spectrometry for highly rapid and sensitive analysis of underivatized amino acids in functional foods.

    PubMed

    Zhou, Guisheng; Pang, Hanqing; Tang, Yuping; Yao, Xin; Mo, Xuan; Zhu, Shaoqing; Guo, Sheng; Qian, Dawei; Qian, Yefei; Su, Shulan; Zhang, Li; Jin, Chun; Qin, Yong; Duan, Jin-ao

    2013-05-01

    This work presented a new analytical methodology based on hydrophilic interaction ultra-performance liquid chromatography coupled with triple-quadrupole tandem mass spectrometry in multiple-reaction monitoring mode for analysis of 24 underivatized free amino acids (FAAs) in functional foods. The proposed method was first reported and validated by assessing the matrix effects, linearity, limit of detections and limit of quantifications, precision, repeatability, stability and recovery of all target compounds, and it was used to determine the nutritional substances of FAAs in ginkgo seeds and further elucidate the nutritional value of this functional food. The result showed that ginkgo seed turned out to be a good source of FAAs with high levels of several essential FAAs and to have a good nutritional value. Furthermore, the principal component analysis was performed to classify the ginkgo seed samples on the basis of 24 FAAs. As a result, the samples could be mainly clustered into three groups, which were similar to areas classification. Overall, the presented method would be useful for the investigation of amino acids in edible plants and agricultural products.

  10. An Ensemble-Based Protocol for the Computational Prediction of Helix-Helix Interactions in G Protein-Coupled Receptors using Coarse-Grained Molecular Dynamics.

    PubMed

    Altwaijry, Nojood A; Baron, Michael; Wright, David W; Coveney, Peter V; Townsend-Nicholson, Andrea

    2017-05-09

    The accurate identification of the specific points of interaction between G protein-coupled receptor (GPCR) oligomers is essential for the design of receptor ligands targeting oligomeric receptor targets. A coarse-grained molecular dynamics computer simulation approach would provide a compelling means of identifying these specific protein-protein interactions and could be applied both for known oligomers of interest and as a high-throughput screen to identify novel oligomeric targets. However, to be effective, this in silico modeling must provide accurate, precise, and reproducible information. This has been achieved recently in numerous biological systems using an ensemble-based all-atom molecular dynamics approach. In this study, we describe an equivalent methodology for ensemble-based coarse-grained simulations. We report the performance of this method when applied to four different GPCRs known to oligomerize using error analysis to determine the ensemble size and individual replica simulation time required. Our measurements of distance between residues shown to be involved in oligomerization of the fifth transmembrane domain from the adenosine A 2A receptor are in very good agreement with the existing biophysical data and provide information about the nature of the contact interface that cannot be determined experimentally. Calculations of distance between rhodopsin, CXCR4, and β 1 AR transmembrane domains reported to form contact points in homodimers correlate well with the corresponding measurements obtained from experimental structural data, providing an ability to predict contact interfaces computationally. Interestingly, error analysis enables identification of noninteracting regions. Our results confirm that GPCR interactions can be reliably predicted using this novel methodology.

  11. Ultra-trace determination of gold nanoparticles in environmental water by surfactant assisted dispersive liquid liquid microextraction coupled with electrothermal vaporization-inductively coupled plasma-mass spectrometry

    NASA Astrophysics Data System (ADS)

    Liu, Ying; He, Man; Chen, Beibei; Hu, Bin

    2016-08-01

    A new method by coupling surfactant assisted dispersive liquid liquid microextraction (SA-DLLME) with electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS) was proposed for the analysis of gold nanoparticles (AuNPs) in environmental water samples. Effective separation of AuNPs from ionic gold species was achieved by using sodium thiosulphate as a complexing agent. Various experimental parameters affecting SA-DLLME of AuNPs, such as the organic solvent, organic solvent volume, pH of the sample, the kind of surfactant, surfactant concentration, vortex time, speed of centrifugation, centrifugation time, and different coating as well as sizes of AuNPs were investigated carefully. Furthermore, the interference of coexisting ions, dissolved organic matter (DOM) and other metal nanoparticles (NPs) were studied. Under the optimal conditions, a detection limit of 2.2 ng L- 1 and an enrichment factor of 152-fold was achieved for AuNPs, and the original morphology of the AuNPs could be maintained during the extraction process. The developed method was successfully applied for the analysis of AuNPs in environmental water samples, including tap water, the East Lake water, and the Yangtze River water, with recoveries in the range of 89.6-102%. Compared with the established methods for metal NPs analysis, the proposed method has the merits of simple and fast operation, low detection limit, high selectivity, good tolerance to the sample matrix and no digestion or dilution required. It provides an efficient quantification methodology for monitoring AuNPs' pollution in the environmental water and evaluating its toxicity.

  12. Efficient preliminary floating offshore wind turbine design and testing methodologies and application to a concrete spar design.

    PubMed

    Matha, Denis; Sandner, Frank; Molins, Climent; Campos, Alexis; Cheng, Po Wen

    2015-02-28

    The current key challenge in the floating offshore wind turbine industry and research is on designing economic floating systems that can compete with fixed-bottom offshore turbines in terms of levelized cost of energy. The preliminary platform design, as well as early experimental design assessments, are critical elements in the overall design process. In this contribution, a brief review of current floating offshore wind turbine platform pre-design and scaled testing methodologies is provided, with a focus on their ability to accommodate the coupled dynamic behaviour of floating offshore wind systems. The exemplary design and testing methodology for a monolithic concrete spar platform as performed within the European KIC AFOSP project is presented. Results from the experimental tests compared to numerical simulations are presented and analysed and show very good agreement for relevant basic dynamic platform properties. Extreme and fatigue loads and cost analysis of the AFOSP system confirm the viability of the presented design process. In summary, the exemplary application of the reduced design and testing methodology for AFOSP confirms that it represents a viable procedure during pre-design of floating offshore wind turbine platforms. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  13. ICP-MS/MS-Based Ionomics: A Validated Methodology to Investigate the Biological Variability of the Human Ionome.

    PubMed

    Konz, Tobias; Migliavacca, Eugenia; Dayon, Loïc; Bowman, Gene; Oikonomidi, Aikaterini; Popp, Julius; Rezzi, Serge

    2017-05-05

    We here describe the development, validation and application of a quantitative methodology for the simultaneous determination of 29 elements in human serum using state-of-the-art inductively coupled plasma triple quadrupole mass spectrometry (ICP-MS/MS). This new methodology offers high-throughput elemental profiling using simple dilution of minimal quantity of serum samples. We report the outcomes of the validation procedure including limits of detection/quantification, linearity of calibration curves, precision, recovery and measurement uncertainty. ICP-MS/MS-based ionomics was used to analyze human serum of 120 older adults. Following a metabolomic data mining approach, the generated ionome profiles were subjected to principal component analysis revealing gender and age-specific differences. The ionome of female individuals was marked by higher levels of calcium, phosphorus, copper and copper to zinc ratio, while iron concentration was lower with respect to male subjects. Age was associated with lower concentrations of zinc. These findings were complemented with additional readouts to interpret micronutrient status including ceruloplasmin, ferritin and inorganic phosphate. Our data supports a gender-specific compartmentalization of the ionome that may reflect different bone remodelling in female individuals. Our ICP-MS/MS methodology enriches the panel of validated "Omics" approaches to study molecular relationships between the exposome and the ionome in relation with nutrition and health.

  14. An Integrated Approach to Life Cycle Analysis

    NASA Technical Reports Server (NTRS)

    Chytka, T. M.; Brown, R. W.; Shih, A. T.; Reeves, J. D.; Dempsey, J. A.

    2006-01-01

    Life Cycle Analysis (LCA) is the evaluation of the impacts that design decisions have on a system and provides a framework for identifying and evaluating design benefits and burdens associated with the life cycles of space transportation systems from a "cradle-to-grave" approach. Sometimes called life cycle assessment, life cycle approach, or "cradle to grave analysis", it represents a rapidly emerging family of tools and techniques designed to be a decision support methodology and aid in the development of sustainable systems. The implementation of a Life Cycle Analysis can vary and may take many forms; from global system-level uncertainty-centered analysis to the assessment of individualized discriminatory metrics. This paper will focus on a proven LCA methodology developed by the Systems Analysis and Concepts Directorate (SACD) at NASA Langley Research Center to quantify and assess key LCA discriminatory metrics, in particular affordability, reliability, maintainability, and operability. This paper will address issues inherent in Life Cycle Analysis including direct impacts, such as system development cost and crew safety, as well as indirect impacts, which often take the form of coupled metrics (i.e., the cost of system unreliability). Since LCA deals with the analysis of space vehicle system conceptual designs, it is imperative to stress that the goal of LCA is not to arrive at the answer but, rather, to provide important inputs to a broader strategic planning process, allowing the managers to make risk-informed decisions, and increase the likelihood of meeting mission success criteria.

  15. Nature, Origin and Transfers of SPM (Mineral, Organic, and Biological) in Hydrosystems : a New Methodological Approach by Morphogranulometry

    NASA Astrophysics Data System (ADS)

    Viennet, D.; Fournier, M.; Copard, Y.; Dupont, J. P.

    2017-12-01

    Source to sink is one of the main concepts in Earth Sciences for a better knowledge of hydrosystems dynamics. Regarding this issue, the present day challenge consists in the characterization by in-situ measurements of the nature and the origin of suspended particles matters (SPM). Few methods can fully cover such requirements and among them, the methodology using the form of particles deserves to be developed. Indeed, morphometry of particles is widely used in sedimentology to identify different sedimentary stocks, source-to-sink transport and sedimentation mechanisms. Currently, morphometry analyses are carried out by scanning electron microscope coupled to image analysis to measure various size and shape descriptors on particles like flatness, elongation, circularity, sphericity, bluntness, fractal dimension. However, complexity and time of analysis are the main limitations of this technique for a long-term monitoring of SPM transfers. Here we present an experimental morphometric approach using a morphogranulometer (a CCD camera coupled to a peristaltic pump). The camera takes pictures while the sample is circulating through a flow cell, leading to the analysis of numerous particles in a short time. The image analysis provides size and shape information discriminating various particles stocks according to their nature and origin by statistical analyses. Measurements were carried out on standard samples of particles commonly found in natural waters. The size and morphological distributions of the different mineral fractions (clay, sand, oxides etc), biologic (microalgae, pollen, etc) and organic (peat, coal, soil organic matter, etc) samples are statistically independent and can be discriminated on a 4D graph. Next step will be on field in situ measurements in a sink-spring network to understand the transfers of the particles stocks inside this simple karstic network. Such a development would be promising for the characterisation of natural hydrosystems.

  16. Polarizable Molecular Dynamics in a Polarizable Continuum Solvent

    PubMed Central

    Lipparini, Filippo; Lagardère, Louis; Raynaud, Christophe; Stamm, Benjamin; Cancès, Eric; Mennucci, Benedetta; Schnieders, Michael; Ren, Pengyu; Maday, Yvon; Piquemal, Jean-Philip

    2015-01-01

    We present for the first time scalable polarizable molecular dynamics (MD) simulations within a polarizable continuum solvent with molecular shape cavities and exact solution of the mutual polarization. The key ingredients are a very efficient algorithm for solving the equations associated with the polarizable continuum, in particular, the domain decomposition Conductor-like Screening Model (ddCOSMO), a rigorous coupling of the continuum with the polarizable force field achieved through a robust variational formulation and an effective strategy to solve the coupled equations. The coupling of ddCOSMO with non variational force fields, including AMOEBA, is also addressed. The MD simulations are feasible, for real life systems, on standard cluster nodes; a scalable parallel implementation allows for further speed up in the context of a newly developed module in Tinker, named Tinker-HP. NVE simulations are stable and long term energy conservation can be achieved. This paper is focused on the methodological developments, on the analysis of the algorithm and on the stability of the simulations; a proof-of-concept application is also presented to attest the possibilities of this newly developed technique. PMID:26516318

  17. Coupling groundwater and riparian vegetation models to assess effects of reservoir releases

    USGS Publications Warehouse

    Springer, Abraham E.; Wright, Julie M.; Shafroth, Patrick B.; Stromberg, Juliet C.; Patten, Duncan T.

    1999-01-01

    Although riparian areas in the arid southwestern United States are critical for maintaining species diversity, their extent and health have been declining since Euro‐American settlement. The purpose of this study was to develop a methodology to evaluate the potential for riparian vegetation restoration and groundwater recharge. A numerical groundwater flow model was coupled with a conceptual riparian vegetation model to predict hydrologic conditions favorable to maintaining riparian vegetation downstream of a reservoir. A Geographic Information System (GIS) was used for this one‐way coupling. Constant and seasonally varying releases from the dam were simulated using volumes anticipated to be permitted by a regional water supplier. Simulations indicated that seasonally variable releases would produce surface flow 5.4–8.5 km below the dam in a previously dry reach. Using depth to groundwater simulations from the numerical flow model with conceptual models of depths to water necessary for maintenance of riparian vegetation, the GIS analysis predicted a 5‐ to 6.5‐fold increase in the area capable of sustaining riparian vegetation.

  18. Modeling for intra-body communication with bone effect.

    PubMed

    Pun, S H; Gao, Y M; Mak, P U; Du, M; Vai, M I

    2009-01-01

    Intra-body communication (IBC) is a new, different "wireless" communication technique based on the human tissue. This short range "wireless" communication technology provides an alternative solution to wearable sensors, home health system, telemedicine and implanted devices. The development of the IBC enables the possibilities of providing less complexity and convenient communication methodologies for these devices. By regarding human tissue as communication channel, IBC making use of the conductivities properties of human tissue to send electrical signal from transmitter to receiver. In this paper, the authors proposed a new mathematical model for galvanic coupling type IBC based on a human limb. Starting from the electromagnetic theory, the authors treat human tissue as volume conductor, which is in analogous with the bioelectric phenomena analysis. In order to explain the mechanism of galvanic coupling type technique of IBC, applying the quasi-static approximation, the governing equation can be reduced to Laplace Equation. Finally, the analytical model is evaluated with on-body measurement for testing its performance. The comparison result shows that the developed mathematical model can provide good approximation for galvanic coupling type IBC on human limb under low operating frequencies.

  19. Electrochemical sensing of total antioxidant capacity and polyphenol content in wine samples using amperometry online-coupled with microdialysis.

    PubMed

    Jakubec, Petr; Bancirova, Martina; Halouzka, Vladimir; Lojek, Antonin; Ciz, Milan; Denev, Petko; Cibicek, Norbert; Vacek, Jan; Vostalova, Jitka; Ulrichova, Jitka; Hrbac, Jan

    2012-08-15

    This work describes the method for total antioxidant capacity (TAC) and/or total content of phenolics (TCP) analysis in wines using microdialysis online-coupled with amperometric detection using a carbon microfiber working electrode. The system was tested on 10 selected wine samples, and the results were compared with total reactive antioxidant potential (TRAP), oxygen radical absorbance capacity (ORAC), and chemiluminescent determination of total antioxidant capacity (CL-TAC) methods using Trolox and catechin as standards. Microdialysis online-coupled with amperometric detection gives similar results to the widely used cyclic voltammetry methodology and closely correlates with ORAC and TRAP. The problem of electrode fouling is overcome by the introduction of an electrochemical cleaning step (1-2 min at the potential of 0 V vs Ag/AgCl). Such a procedure is sufficient to fully regenerate the electrode response for both red and white wine samples as well as catechin/Trolox standards. The appropriate size of microdialysis probes enables easy automation of the electrochemical TAC/TCP measurement using 96-well microtitration plates.

  20. High-Performance Parallel Analysis of Coupled Problems for Aircraft Propulsion

    NASA Technical Reports Server (NTRS)

    Felippa, C. A.; Farhat, C.; Park, K. C.; Gumaste, U.; Chen, P.-S.; Lesoinne, M.; Stern, P.

    1997-01-01

    Applications are described of high-performance computing methods to the numerical simulation of complete jet engines. The methodology focuses on the partitioned analysis of the interaction of the gas flow with a flexible structure and with the fluid mesh motion driven by structural displacements. The latter is treated by a ALE technique that models the fluid mesh motion as that of a fictitious mechanical network laid along the edges of near-field elements. New partitioned analysis procedures to treat this coupled three-component problem were developed. These procedures involved delayed corrections and subcycling, and have been successfully tested on several massively parallel computers, including the iPSC-860, Paragon XP/S and the IBM SP2. The NASA-sponsored ENG10 program was used for the global steady state analysis of the whole engine. This program uses a regular FV-multiblock-grid discretization in conjunction with circumferential averaging to include effects of blade forces, loss, combustor heat addition, blockage, bleeds and convective mixing. A load-balancing preprocessor for parallel versions of ENG10 was developed as well as the capability for the first full 3D aeroelastic simulation of a multirow engine stage. This capability was tested on the IBM SP2 parallel supercomputer at NASA Ames.

  1. Quality evaluation of moluodan concentrated pill using high-performance liquid chromatography fingerprinting coupled with chemometrics.

    PubMed

    Tao, Lingyan; Zhang, Qing; Wu, Yongjiang; Liu, Xuesong

    2016-12-01

    In this study, a fast and effective high-performance liquid chromatography method was developed to obtain a fingerprint chromatogram and quantitative analysis simultaneously of four indexes including gallic acid, chlorogenic acid, albiflorin and paeoniflorin of the traditional Chinese medicine Moluodan Concentrated Pill. The method was performed by using a Waters X-bridge C 18 reversed phase column on an Agilent 1200S high-performance liquid chromatography system coupled with diode array detection. The mobile phase of the high-performance liquid chromatography method was composed of 20 mmol/L phosphate solution and acetonitrile with a 1 mL/min eluent velocity, under a detection temperature of 30°C and a UV detection wavelength of 254 nm. After the methodology validation, 16 batches of Moluodan Concentrated Pill were analyzed by this high-performance liquid chromatography method and both qualitative and quantitative evaluation results were achieved by similarity analysis, principal component analysis and hierarchical cluster analysis. The results of these three chemometrics were in good agreement and all indicated that batch 10 and batch 16 showed significant differences with the other 14 batches. This suggested that the developed high-performance liquid chromatography method could be applied in the quality evaluation of Moluodan Concentrated Pill. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Loose and Tight Coupling in Educational Organizations--An Integrative Literature Review

    ERIC Educational Resources Information Center

    Hautala, Tanja; Helander, Jaakko; Korhonen, Vesa

    2018-01-01

    Purpose: The purpose of this paper is to review and synthesize the attributes of loose and tight coupling in educational organizations. In addition, it is aimed to determine whether this phenomenon has value and strategies to offer for the current educational administration and research. Design/methodology/approach: Integrative literature review…

  3. Multiscale molecular dynamics simulations of rotary motor proteins.

    PubMed

    Ekimoto, Toru; Ikeguchi, Mitsunori

    2018-04-01

    Protein functions require specific structures frequently coupled with conformational changes. The scale of the structural dynamics of proteins spans from the atomic to the molecular level. Theoretically, all-atom molecular dynamics (MD) simulation is a powerful tool to investigate protein dynamics because the MD simulation is capable of capturing conformational changes obeying the intrinsically structural features. However, to study long-timescale dynamics, efficient sampling techniques and coarse-grained (CG) approaches coupled with all-atom MD simulations, termed multiscale MD simulations, are required to overcome the timescale limitation in all-atom MD simulations. Here, we review two examples of rotary motor proteins examined using free energy landscape (FEL) analysis and CG-MD simulations. In the FEL analysis, FEL is calculated as a function of reaction coordinates, and the long-timescale dynamics corresponding to conformational changes is described as transitions on the FEL surface. Another approach is the utilization of the CG model, in which the CG parameters are tuned using the fluctuation matching methodology with all-atom MD simulations. The long-timespan dynamics is then elucidated straightforwardly by using CG-MD simulations.

  4. MisTec - A software application for supporting space exploration scenario options and technology development analysis and planning

    NASA Technical Reports Server (NTRS)

    Horsham, Gary A. P.

    1992-01-01

    This structure and composition of a new, emerging software application, which models and analyzes space exploration scenario options for feasibility based on technology development projections is presented. The software application consists of four main components: a scenario generator for designing and inputting scenario options and constraints; a processor which performs algorithmic coupling and options analyses of mission activity requirements and technology capabilities; a results display which graphically and textually shows coupling and options analysis results; and a data/knowledge base which contains information on a variety of mission activities and (power and propulsion) technology system capabilities. The general long-range study process used by NASA to support recent studies is briefly introduced to provide the primary basis for comparison for discussing the potential advantages to be gained from developing and applying this kind of application. A hypothetical example of a scenario option to facilitate the best conceptual understanding of what the application is, how it works, or the operating methodology, and when it might be applied is presented.

  5. Phase synchronization of neuronal noise in mouse hippocampal epileptiform dynamics.

    PubMed

    Serletis, Demitre; Carlen, Peter L; Valiante, Taufik A; Bardakjian, Berj L

    2013-02-01

    Organized brain activity is the result of dynamical, segregated neuronal signals that may be used to investigate synchronization effects using sophisticated neuroengineering techniques. Phase synchrony analysis, in particular, has emerged as a promising methodology to study transient and frequency-specific coupling effects across multi-site signals. In this study, we investigated phase synchronization in intracellular recordings of interictal and ictal epileptiform events recorded from pairs of cells in the whole (intact) mouse hippocampus. In particular, we focused our analysis on the background noise-like activity (NLA), previously reported to exhibit complex neurodynamical properties. Our results show evidence for increased linear and nonlinear phase coupling in NLA across three frequency bands [theta (4-10 Hz), beta (12-30 Hz) and gamma (30-80 Hz)] in the ictal compared to interictal state dynamics. We also present qualitative and statistical evidence for increased phase synchronization in the theta, beta and gamma frequency bands from paired recordings of ictal NLA. Overall, our results validate the use of background NLA in the neurodynamical study of epileptiform transitions and suggest that what is considered "neuronal noise" is amenable to synchronization effects in the spatiotemporal domain.

  6. MisTec: A software application for supporting space exploration scenario options and technology development analysis and planning

    NASA Technical Reports Server (NTRS)

    Horsham, Gary A. P.

    1991-01-01

    The structure and composition of a new, emerging software application, which models and analyzes space exploration scenario options for feasibility based on technology development projections is presented. The software application consists of four main components: a scenario generator for designing and inputting scenario options and constraints; a processor which performs algorithmic coupling and options analyses of mission activity requirements and technology capabilities; a results display which graphically and textually shows coupling and options analysis results; and a data/knowledge base which contains information on a variety of mission activities and (power and propulsion) technology system capabilities. The general long-range study process used by NASA to support recent studies is briefly introduced to provide the primary basis for comparison for discussing the potential advantages to be gained from developing and applying this king of application. A hypothetical example of a scenario option to facilitate the best conceptual understanding of what the application is, how it works, or the operating methodology, and when it might be applied is presented.

  7. Norton-Thevenin Receptance Coupling (NTRC) as a Payload Design Tool

    NASA Technical Reports Server (NTRS)

    Gordon, Scott; Kaufman, Dan; Majed, Arya

    2017-01-01

    The NASA Engineering and Safety Center (NESC) is funding a study to develop an alternate method for performing coupled loads analysis called Norton-Thevenin Receptance Coupling (NTRC). NTRC combines Receptance Coupling (RC), a frequency-domain synthesis method and Norton-Thevenin (NT) theory, an impedance based approach for simulating the interaction between dynamic systems. The goal of developing the NTRC method is to provide a tool that payload developers can use to reduce the conservatism in defining preliminary design loads, assess the impact of design changes between formal load cycles, and to perform trade studies for design optimization with a minimum amount of data required from the launch vehicle (LV) provider. NTRC also has the ability to perform parametric loads analysis where many different design configurations can be evaluated. This will result in cost and schedule benefits to the payload developer that are currently not possible under the standard coupled loads analysis (CLA) flow where typically only 2-3 official load cycles are performed by the LV provider over the life of a payload program. NTRC is not envisioned as a replacement for the official load cycles performed by the LV provider but rather as a means to address the types of design issues faced by the payload developer before and between official load cycles.The presentation provides an overview of the NTRC methodology and discusses how NTRC can be used to replicate the results from a standard LV CLA. The presentation covers the benchmarking that has been performed as part of the NESC study to demonstrate the accuracy of the technique for both frequency and time domain dynamic analyses. Future plans for benchmarking the NTRC approach against CLA results for NASAs Space Launch System (SLS) and commercial launch vehicles are discussed and the role that NTRC is envisioned to play in the payload development cycle.

  8. Novel method for metalloproteins determination in human breast milk by size exclusion chromatography coupled to inductively coupled plasma mass spectrometry.

    PubMed

    Acosta, Mariano; Torres, Sabier; Mariño-Repizo, Leonardo; Martinez, Luis D; Gil, Raúl A

    2018-06-02

    Levels of essential metals in human breast milk (HBM) have been determined by different analytical techniques, but there is few woks about human whey milk fractions. However, the current trend lies in metalloproteomic and identification of different metalloproteins. In this sense, native separative techniques (N-PAGE and SEC) coupled to ICP-MS provide us with valuable information. Besides it is necessary the development of new methodologies in order to determine with accuracy and precision the profile of such metals and metalloproteins in the different whey protein fractions of HBM. Thus, the aim of this work was to develop a new method for metals and metalloproteins determination by SEC-ICP-MS in whey protein fractions of HBM. Human whey fractions were obtained of HBM samples by ultracentrifugation. Then, protein fractions of whey milk were separated by SEC coupled to ICP-MS for metalloproteins and Mn, Co, Cu and Se quantification. Besides, protein profile of whey milk was determined by N-PAGE and computer assisted image analysis. SEC-ICP-MS results indicated that first and second protein fractions showed detectable levels of the Mn, Co, Cu, and Se. Protein profile determined by N-PAGE and image analysis showed that molecular weight of protein fractions ranged between 68,878-1,228.277 Da. In this work, metalloproteins were analyzed by SEC coupled to ICP-MS, with adequate sensitivity and accuracy. Our study has shown the presence of Mn, Co, Cu and Se bound to two protein fractions in whey milk of HBM. Metals levels analyzed were within the ranges reported in the literature. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. An effective placental cotyledons proteins extraction method for 2D gel electrophoresis.

    PubMed

    Tan, Niu J; Daim, Leona D J; Jamil, Amilia A M; Mohtarrudin, Norhafizah; Thilakavathy, Karuppiah

    2017-03-01

    Effective protein extraction is essential especially in producing a well-resolved proteome on 2D gels. A well-resolved placental cotyledon proteome, with good reproducibility, have allowed researchers to study the proteins underlying the physiology and pathophysiology of pregnancy. The aim of this study is to determine the best protein extraction protocol for the extraction of protein from placental cotyledons tissues for a two-dimensional gel electrophoresis (2D-GE). Based on widely used protein extraction strategies, 12 different extraction methodologies were carefully selected, which included one chemical extraction, two mechanical extraction coupled protein precipitations, and nine chemical extraction coupled protein precipitations. Extracted proteins were resolved in a one-dimensional gel electrophoresis and 2D-GE; then, it was compared with set criteria: extraction efficacy, protein resolution, reproducibility, and recovery efficiency. Our results revealed that a better profile was obtained by chemical extraction in comparison to mechanical extraction. We further compared chemical extraction coupled protein precipitation methodologies, where the DNase/lithium chloride-dense sucrose homogenization coupled dichloromethane-methanol precipitation (DNase/LiCl-DSH-D/MPE) method showed good protein extraction efficiency. This, however, was carried out with the best protein resolution and proteome reproducibility on 2D-gels. DNase/LiCl-DSH-D/MPE was efficient in the extraction of proteins from placental cotyledons tissues. In addition, this methodology could hypothetically allow the protein extraction of any tissue that contains highly abundant lipid and glycogen. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Widely-targeted quantitative lipidomics methodology by supercritical fluid chromatography coupled with fast-scanning triple quadrupole mass spectrometry.

    PubMed

    Takeda, Hiroaki; Izumi, Yoshihiro; Takahashi, Masatomo; Paxton, Thanai; Tamura, Shohei; Koike, Tomonari; Yu, Ying; Kato, Noriko; Nagase, Katsutoshi; Shiomi, Masashi; Bamba, Takeshi

    2018-05-03

    Lipidomics, the mass spectrometry-based comprehensive analysis of lipids, has attracted attention as an analytical approach to provide novel insight into lipid metabolism and to search for biomarkers. However, an ideal method for both comprehensive and quantitative analysis of lipids has not been fully developed. Herein, we have proposed a practical methodology for widely-targeted quantitative lipidome analysis using supercritical fluid chromatography fast-scanning triple-quadrupole mass spectrometry (SFC/QqQMS) and theoretically calculated a comprehensive lipid multiple reaction monitoring (MRM) library. Lipid classes can be separated by SFC with a normal phase diethylamine-bonded silica column with high-resolution, high-throughput, and good repeatability. Structural isomers of phospholipids can be monitored by mass spectrometric separation with fatty acyl-based MRM transitions. SFC/QqQMS analysis with an internal standard-dilution method offers quantitative information for both lipid class and individual lipid molecular species in the same lipid class. Additionally, data acquired using this method has advantages including reduction of misidentification and acceleration of data analysis. Using the SFC/QqQMS system, alteration of plasma lipid levels in myocardial infarction-prone rabbits to the supplementation of eicosapentaenoic acid was first observed. Our developed SFC/QqQMS method represents a potentially useful tool for in-depth studies focused on complex lipid metabolism and biomarker discovery. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Structural design of composite rotor blades with consideration of manufacturability, durability, and manufacturing uncertainties

    NASA Astrophysics Data System (ADS)

    Li, Leihong

    A modular structural design methodology for composite blades is developed. This design method can be used to design composite rotor blades with sophisticate geometric cross-sections. This design method hierarchically decomposed the highly-coupled interdisciplinary rotor analysis into global and local levels. In the global level, aeroelastic response analysis and rotor trim are conduced based on multi-body dynamic models. In the local level, variational asymptotic beam sectional analysis methods are used for the equivalent one-dimensional beam properties. Compared with traditional design methodology, the proposed method is more efficient and accurate. Then, the proposed method is used to study three different design problems that have not been investigated before. The first is to add manufacturing constraints into design optimization. The introduction of manufacturing constraints complicates the optimization process. However, the design with manufacturing constraints benefits the manufacturing process and reduces the risk of violating major performance constraints. Next, a new design procedure for structural design against fatigue failure is proposed. This procedure combines the fatigue analysis with the optimization process. The durability or fatigue analysis employs a strength-based model. The design is subject to stiffness, frequency, and durability constraints. Finally, the manufacturing uncertainty impacts on rotor blade aeroelastic behavior are investigated, and a probabilistic design method is proposed to control the impacts of uncertainty on blade structural performance. The uncertainty factors include dimensions, shapes, material properties, and service loads.

  12. Use of microextraction by packed sorbent directly coupled to an electron ionization single quadrupole mass spectrometer as an alternative for non-separative determinations.

    PubMed

    Casas Ferreira, Ana María; Moreno Cordero, Bernardo; Pérez Pavón, José Luis

    2017-02-01

    Sometimes it is not necessary to separate the individual compounds of a sample to resolve an analytical problem, it is enough to obtain a signal profile of the sample formed by all the components integrating it. Within this strategy, electronic noses based on the direct coupling of a headspace sampler with a mass spectrometer (HS-MS) have been proposed. Nevertheless, this coupling is not suitable for the analysis of non-volatile compounds. In order to propose an alternative to HS-MS determinations for non-volatile compounds, here we present the first 'proof of concept' use of the direct coupling of microextraction by packed sorbents (MEPS) to a mass spectrometer device using an electron ionization (EI) and a single quadrupole as ionization source and analyzer, respectively. As target compounds, a set of analytes with different physic-chemical properties were evaluated (2-ethyl-1-hexanol, styrene, 2-heptanone, among others). The use of MEPS extraction present many advantages, such as it is fast, simple, easy to automate and requires small volumes of sample and organic solvents. Moreover, MEPS cartridges are re-usable as samples can be extracted more than 100 times using the same syringe. In order to introduce into the system all the elution volume from the MEPS extraction, a programmable temperature vaporizer (PTV) is proposed as the injector device. Results obtained with the proposed methodology (MEPS-PTV/MS) were compared with the ones obtained based on the separative scheme, i.e. using gas chromatography separation (MEPS-PTV-GC/MS), and both methods provided similar results. Limits of detection were found to be between 3.26 and 146.6μgL -1 in the non-separative scheme and between 0.02 and 1.72μgL -1 when the separative methodology was used. Repeatability and reproducibility were evaluated with values below 17% in all cases. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Holistic Experiences and Strategies for Conducting Research With Couples.

    PubMed

    Braybrook, Debbie E; Mróz, Lawrence W; Robertson, Steve; White, Alan; Milnes, Kate

    2017-03-01

    In this article, we outline methodological considerations for conducting research interviews with couples. We draw from two qualitative men's health studies, both developed to explore social interactions between men and their partners of either sex in relation to their health practices. We utilized a combination of separate interviews and joint couple interviews. From these studies, we offer insight into our experiences of using both types of interview styles, addressing four key areas which span elements across the research project journey: (a) choosing a mode of interview, (b) ethical concerns in couple research, (c) the interview as a platform for disclosure, and (d) analyzing data from couple research.

  14. Coupling 2D Finite Element Models and Circuit Equations Using a Bottom-Up Methodology

    DTIC Science & Technology

    2002-11-01

    EQUATIONS USING A BOTTOM-UP METHODOLOGY E. G6mezl, J. Roger-Folch2 , A. Gabald6nt and A. Molina’ ’Dpto. de Ingenieria Eldctrica. Universidad Polit...de Ingenieria Elictrica. ETSII. Universidad Politdcnica de Valencia. PO Box 22012, 46071. Valencia, Spain. E-mail: iroger adie.upv.es ABSTRACT The

  15. High temperature materials characterization

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.

    1990-01-01

    A lab facility for measuring elastic moduli up to 1700 C was constructed and delivered. It was shown that the ultrasonic method can be used to determine elastic constants of materials from room temperature to their melting points. The ease in coupling high frequency acoustic energy is still a difficult task. Even now, new coupling materials and higher power ultrasonic pulsers are being suggested. The surface was only scratched in terms of showing the full capabilities of either technique used, especially since there is such a large learning curve in developing proper methodologies to take measurements into the high temperature region. The laser acoustic system does not seem to have sufficient precision at this time to replace the normal buffer rod methodology.

  16. A semi-empirical approach for the modelling and analysis of microvibration sources on-board spacecraft

    NASA Astrophysics Data System (ADS)

    Addari, Daniele

    The term microvibrations generally refers to accelerations in the order of micro-gs and which manifest in a bandwidth from a few Hz up to say 500-1000 Hz. The need to accurately characterise this small disturbances acting on-board modern satellites, thus allowing the design of dedicated minimisation and control systems, is nowadays a major concern for the success of some space missions. The main issues related to microvibrations are the feasibility to analytically describe the microvibration sources using a series of analysis tools and test experiments and the prediction of how the dynamics of the microvibration sources couple with those of the satellite structure. In this thesis, a methodology to facilitate the modelling of these phenomena is described. Two aspects are investigated: the characterisation of the microvibration sources with a semi-empirical procedure which allows derivation of the dynamic mass properties of the source, also including the gyroscopic effect, with a significantly simpler test configuration and lower computational effort compared to traditional approaches; and the modelling of the coupled dynamics when the source is mounted on a representative supporting structure of a spacecraft, including the passive and active effects of the source, which allows prediction of the structure response at any location. The methodology has been defined conducting an extensive study, both experimental and numerical, on a reaction wheel assembly, as this is usually identified as the main contributory factor among all microvibration sources. The contributions to the state-of-the-art made during this work include: i) the development of a cantilever configured reaction wheel analytical model able to reproduce all the configurations in which the mechanism may operate and inclusive of the gyroscopic effect; ii) the reformulation of the coupling theory which allows retrieving the dynamic mass of a microvibration source over a wide range of frequencies and speeds, by means of the experimental data obtained from measurements of the forces generated when the source is rigidly secured on a dynamometric platform and measurements of the accelerations at the source mounting interface in a freefree suspended boundary condition; iii) a practical example of coupling between a reaction wheel and a honeycomb structural panel, where the coupled loads and the panel response have been estimated using the mathematical model and compared with test results, obtained during the physical microvibration testing of the structural panel, showing a good level of agreement when the gyroscopic effect is also taken into account.

  17. Estimating stream discharge from a Himalayan Glacier using coupled satellite sensor data

    NASA Astrophysics Data System (ADS)

    Child, S. F.; Stearns, L. A.; van der Veen, C. J.; Haritashya, U. K.; Tarpanelli, A.

    2015-12-01

    The 4th IPCC report highlighted our limited understanding of Himalayan glacier behavior and contribution to the region's hydrology. Seasonal snow and glacier melt in the Himalayas are important sources of water, but estimates greatly differ about the actual contribution of melted glacier ice to stream discharge. A more comprehensive understanding of the contribution of glaciers to stream discharge is needed because streams being fed by glaciers affect the livelihoods of a large part of the world's population. Most of the streams in the Himalayas are unmonitored because in situ measurements are logistically difficult and costly. This necessitates the use of remote sensing platforms to obtain estimates of river discharge for validating hydrological models. In this study, we estimate stream discharge using cost-effective methods via repeat satellite imagery from Landsat-8 and SENTINEL-1A sensors. The methodology is based on previous studies, which show that ratio values from optical satellite bands correlate well with measured stream discharge. While similar, our methodology relies on significantly higher resolution imagery (30 m) and utilizes bands that are in the blue and near-infrared spectrum as opposed to previous studies using 250 m resolution imagery and spectral bands only in the near-infrared. Higher resolution imagery is necessary for streams where the source is a glacier's terminus because the width of the stream is often only 10s of meters. We validate our methodology using two rivers in the state of Kansas, where stream gauges are plentiful. We then apply our method to the Bhagirathi River, in the North-Central Himalayas, which is fed by the Gangotri Glacier and has a well monitored stream gauge. The analysis will later be used to couple river discharge and glacier flow and mass balance through an integrated hydrologic model in the Bhagirathi Basin.

  18. Conventional and Advanced Separations in Mass Spectrometry-Based Metabolomics: Methodologies and Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heyman, Heino M.; Zhang, Xing; Tang, Keqi

    2016-02-16

    Metabolomics is the quantitative analysis of all metabolites in a given sample. Due to the chemical complexity of the metabolome, optimal separations are required for comprehensive identification and quantification of sample constituents. This chapter provides an overview of both conventional and advanced separations methods in practice for reducing the complexity of metabolite extracts delivered to the mass spectrometer detector, and covers gas chromatography (GC), liquid chromatography (LC), capillary electrophoresis (CE), supercritical fluid chromatography (SFC) and ion mobility spectrometry (IMS) separation techniques coupled with mass spectrometry (MS) as both uni-dimensional and as multi-dimensional approaches.

  19. Advances in interpretation of subsurface processes with time-lapse electrical imaging

    USGS Publications Warehouse

    Singha, Kaminit; Day-Lewis, Frederick D.; Johnson, Tim B.; Slater, Lee D.

    2015-01-01

    Electrical geophysical methods, including electrical resistivity, time-domain induced polarization, and complex resistivity, have become commonly used to image the near subsurface. Here, we outline their utility for time-lapse imaging of hydrological, geochemical, and biogeochemical processes, focusing on new instrumentation, processing, and analysis techniques specific to monitoring. We review data collection procedures, parameters measured, and petrophysical relationships and then outline the state of the science with respect to inversion methodologies, including coupled inversion. We conclude by highlighting recent research focused on innovative applications of time-lapse imaging in hydrology, biology, ecology, and geochemistry, among other areas of interest.

  20. Advances in interpretation of subsurface processes with time-lapse electrical imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singha, Kamini; Day-Lewis, Frederick D.; Johnson, Timothy C.

    2015-03-15

    Electrical geophysical methods, including electrical resistivity, time-domain induced polarization, and complex resistivity, have become commonly used to image the near subsurface. Here, we outline their utility for time-lapse imaging of hydrological, geochemical, and biogeochemical processes, focusing on new instrumentation, processing, and analysis techniques specific to monitoring. We review data collection procedures, parameters measured, and petrophysical relationships and then outline the state of the science with respect to inversion methodologies, including coupled inversion. We conclude by highlighting recent research focused on innovative applications of time-lapse imaging in hydrology, biology, ecology, and geochemistry, among other areas of interest.

  1. Process optimization and analysis of microwave assisted extraction of pectin from dragon fruit peel.

    PubMed

    Thirugnanasambandham, K; Sivakumar, V; Prakash Maran, J

    2014-11-04

    Microwave assisted extraction (MAE) technique was employed for the extraction of pectin from dragon fruit peel. The extracting parameters were optimized by using four-variable-three-level Box-Behnken design (BBD) coupled with response surface methodology (RSM). RSM analysis indicated good correspondence between experimental and predicted values. 3D response surface plots were used to study the interactive effects of process variables on extraction of pectin. The optimum extraction conditions for the maximum yield of pectin were power of 400 W, temperature of 45 °C, extracting time of 20 min and solid-liquid ratio of 24 g/mL. Under these conditions, 7.5% of pectin was extracted. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Aeroservoelastic and Flight Dynamics Analysis Using Computational Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Arena, Andrew S., Jr.

    1999-01-01

    This document in large part is based on the Masters Thesis of Cole Stephens. The document encompasses a variety of technical and practical issues involved when using the STARS codes for Aeroservoelastic analysis of vehicles. The document covers in great detail a number of technical issues and step-by-step details involved in the simulation of a system where aerodynamics, structures and controls are tightly coupled. Comparisons are made to a benchmark experimental program conducted at NASA Langley. One of the significant advantages of the methodology detailed is that as a result of the technique used to accelerate the CFD-based simulation, a systems model is produced which is very useful for developing the control law strategy, and subsequent high-speed simulations.

  3. Recent Advances in the Measurement of Arsenic, Cadmium, and Mercury in Rice and Other Foods

    PubMed Central

    Punshon, Tracy

    2015-01-01

    Trace element analysis of foods is of increasing importance because of raised consumer awareness and the need to evaluate and establish regulatory guidelines for toxic trace metals and metalloids. This paper reviews recent advances in the analysis of trace elements in food, including challenges, state-of-the art methods, and use of spatially resolved techniques for localizing the distribution of As and Hg within rice grains. Total elemental analysis of foods is relatively well-established but the push for ever lower detection limits requires that methods be robust from potential matrix interferences which can be particularly severe for food. Inductively coupled plasma mass spectrometry (ICP-MS) is the method of choice, allowing for multi-element and highly sensitive analyses. For arsenic, speciation analysis is necessary because the inorganic forms are more likely to be subject to regulatory limits. Chromatographic techniques coupled to ICP-MS are most often used for arsenic speciation and a range of methods now exist for a variety of different arsenic species in different food matrices. Speciation and spatial analysis of foods, especially rice, can also be achieved with synchrotron techniques. Sensitive analytical techniques and methodological advances provide robust methods for the assessment of several metals in animal and plant-based foods, in particular for arsenic, cadmium and mercury in rice and arsenic speciation in foodstuffs. PMID:25938012

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mendoza-Lopez, M.L.; Centro de Fisica Aplicada y Tecnologia Avanzada, Departamento de Nanotecnologia, Universidad Nacional Autonoma de Mexico, Campus Juriquilla, Apdo. Postal 1-1010, Queretaro Qro. C.P. 76230; Perez-Bueno, J.J.

    This paper presents a complete methodology for the characterization of silver alloys used in modern coin production. Mexican coins with a nominal silver concentration from 10% to 99.99% were used in this study. Calibrated Glow Discharge Optical Emission Spectrometers were used to determine the chemical composition of the alloys as a function of the depth, while inductively coupled plasma was used to determine the total element composition in bulk. Scanning Electron Microscope was used to study the phase distributions in the different silver coins. According to Glow Discharge Optical Emission Spectrometers and inductively coupled plasma, the silver content found inmore » the studied samples was consistently greater than that of the nominal silver content reported by the Mexican mint. This may lead to a review of the new methods of analysis used nowadays in contemporary coin minting. This result is very important because silver is increasing in value as metal and, considering the volume of production of silver coins, this may increase further as a consequence of a growing popular confidence in silver currency. In the case of silver studies, an advantage of the absence of silver detector in the Glow Discharge Optical Emission Spectrometers system is that it allows for the recalibration to have a better range of detection of other metals present in the alloys. A calibration curve using the copper content obtained by inductively coupled plasma (bulk) and Glow Discharge Optical Emission Spectrometers (depth profile) was performed. The relevance of control in modern silver coin minting was clarified, especially in minimizing the discrepancy between the nominal and the core fineness. The physical and chemical properties of the alloys studied are defined, revealing important variations in silver and copper contents. A new methodology and metrology for the control of coinage are suggested.« less

  5. A methodology for the comparative evaluation of alternative bioseparation technologies.

    PubMed

    Tran, Richard; Zhou, Yuhong; Lacki, Karol M; Titchener-Hooker, Nigel J

    2008-01-01

    Advances in upstream technologies and growing commercial demand have led to cell culture processes of ever larger volumes and expressing at higher product titers. This has increased the burden on downstream processing. Concerns regarding the capacity limitations of packed-bed chromatography have led process engineers to begin investigating new bioseparation techniques that may be considered as "alternatives" to chromatography, and which could potentially offer higher processing capacities but at a lower cost. With the wide range of alternatives, which are currently available, each with their own strengths and inherent limitations, coupled with the time pressures associated with process development, the challenge for process engineers is to determine which technologies are most worth investigating. This article presents a methodology based on a multiattribute decision making (MADM) analysis approach, utilizing both quantitative and qualitative data, which can be used to determine the "industrial attractiveness" of bioseparation technologies, accounting for trade-offs between their strengths and weaknesses. By including packed-bed chromatography in the analysis as a reference point, it was possible to determine the alternatives, which show the most promise for use in large-scale manufacturing processes. The results of this analysis show that although the majority of alternative techniques offer certain advantages over conventional packed-bed chromatography, their attractiveness overall means that currently none of these technologies may be considered as viable alternatives to chromatography. The methodology introduced in this study may be used to gain significant quantitative insight as to the key areas in which improvements are required for each technique, and thus may be used as a tool to aid in further technological development.

  6. Coupling Hydraulic Fracturing Propagation and Gas Well Performance for Simulation of Production in Unconventional Shale Gas Reservoirs

    NASA Astrophysics Data System (ADS)

    Wang, C.; Winterfeld, P. H.; Wu, Y. S.; Wang, Y.; Chen, D.; Yin, C.; Pan, Z.

    2014-12-01

    Hydraulic fracturing combined with horizontal drilling has made it possible to economically produce natural gas from unconventional shale gas reservoirs. An efficient methodology for evaluating hydraulic fracturing operation parameters, such as fluid and proppant properties, injection rates, and wellhead pressure, is essential for the evaluation and efficient design of these processes. Traditional numerical evaluation and optimization approaches are usually based on simulated fracture properties such as the fracture area. In our opinion, a methodology based on simulated production data is better, because production is the goal of hydraulic fracturing and we can calibrate this approach with production data that is already known. This numerical methodology requires a fully-coupled hydraulic fracture propagation and multi-phase flow model. In this paper, we present a general fully-coupled numerical framework to simulate hydraulic fracturing and post-fracture gas well performance. This three-dimensional, multi-phase simulator focuses on: (1) fracture width increase and fracture propagation that occurs as slurry is injected into the fracture, (2) erosion caused by fracture fluids and leakoff, (3) proppant subsidence and flowback, and (4) multi-phase fluid flow through various-scaled anisotropic natural and man-made fractures. Mathematical and numerical details on how to fully couple the fracture propagation and fluid flow parts are discussed. Hydraulic fracturing and production operation parameters, and properties of the reservoir, fluids, and proppants, are taken into account. The well may be horizontal, vertical, or deviated, as well as open-hole or cemented. The simulator is verified based on benchmarks from the literature and we show its application by simulating fracture network (hydraulic and natural fractures) propagation and production data history matching of a field in China. We also conduct a series of real-data modeling studies with different combinations of hydraulic fracturing parameters and present the methodology to design these operations with feedback of simulated production data. The unified model aids in the optimization of hydraulic fracturing design, operations, and production.

  7. Comparison of different extraction procedures for the comprehensive characterization of bioactive phenolic compounds in Rosmarinus officinalis by reversed-phase high-performance liquid chromatography with diode array detection coupled to electrospray time-of-flight mass spectrometry.

    PubMed

    Borrás Linares, I; Arráez-Román, D; Herrero, M; Ibáñez, E; Segura-Carretero, A; Fernández-Gutiérrez, A

    2011-10-21

    In the present work, a comparative study between two environmentally friendly and selective extraction techniques, such as supercritical fluid extraction (SFE) and pressurized liquid extraction (PLE) have been carried out focusing in the bioactive phenolic compounds present in Rosmarinus officinalis. For the analysis of the SFE and PLE extracts, a new methodology for qualitative characterization has been developed, based on the use of reversed-phase high-performance liquid chromatography (RP-HPLC), equipped with two different detection systems coupled in series: diode array detector (DAD) and time of flight mass spectrometry (TOF-MS) detector connected via an electrospray ionization interface (ESI). The use of a small particle size C(18) column (1.8 μm) provided a great resolution and made possible the separation of several isomers. Moreover, UV-visible spectrophotometry is a valuable tool for identifying the class of phenolic compounds, whereas MS data enabled to structurally characterize the compounds present in the extracts. The applied methodology was useful for the determination of many well-known phenolic compounds present in R. officinalis, such as carnosol, carnosic acid, rosmadial, rosmanol, genkwanin, homoplantaginin, scutellarein, cirsimaritin and rosmarinic acid, as well as other phenolic compounds present in other species belonging to Lamiaceae family. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Protein expression profiles of human lymph and plasma mapped by 2D-DIGE and 1D SDS–PAGE coupled with nanoLC–ESI–MS/MS bottom-up proteomics

    PubMed Central

    Clement, Cristina C.; Aphkhazava, David; Nieves, Edward; Callaway, Myrasol; Olszewski, Waldemar; Rotzschke, Olaf; Santambrogio, Laura

    2013-01-01

    In this study a proteomic approach was used to define the protein content of matched samples of afferent prenodal lymph and plasma derived from healthy volunteers. The analysis was performed using two analytical methodologies coupled with nanoliquid chromatography-tandem mass spectrometry: one-dimensional gel electrophoresis (1DEF nanoLC Orbitrap–ESI–MS/MS), and two-dimensional fluorescence difference-in-gel electrophoresis (2D-DIGE nanoLC–ESI–MS/MS). The 253 significantly identified proteins (p<0.05), obtained from the tandem mass spectrometry data, were further analyzed with pathway analysis (IPA) to define the functional signature of prenodal lymph and matched plasma. The 1DEF coupled with nanoLC–MS–MS revealed that the common proteome between the two biological fluids (144 out of 253 proteins) was dominated by complement activation and blood coagulation components, transporters and protease inhibitors. The enriched proteome of human lymph (72 proteins) consisted of products derived from the extracellular matrix, apoptosis and cellular catabolism. In contrast, the enriched proteome of human plasma (37 proteins) consisted of soluble molecules of the coagulation system and cell–cell signaling factors. The functional networks associated with both common and source-distinctive proteomes highlight the principal biological activity of these immunologically relevant body fluids. PMID:23202415

  9. Analysis of Uncertainty and Variability in Finite Element Computational Models for Biomedical Engineering: Characterization and Propagation

    PubMed Central

    Mangado, Nerea; Piella, Gemma; Noailly, Jérôme; Pons-Prats, Jordi; Ballester, Miguel Ángel González

    2016-01-01

    Computational modeling has become a powerful tool in biomedical engineering thanks to its potential to simulate coupled systems. However, real parameters are usually not accurately known, and variability is inherent in living organisms. To cope with this, probabilistic tools, statistical analysis and stochastic approaches have been used. This article aims to review the analysis of uncertainty and variability in the context of finite element modeling in biomedical engineering. Characterization techniques and propagation methods are presented, as well as examples of their applications in biomedical finite element simulations. Uncertainty propagation methods, both non-intrusive and intrusive, are described. Finally, pros and cons of the different approaches and their use in the scientific community are presented. This leads us to identify future directions for research and methodological development of uncertainty modeling in biomedical engineering. PMID:27872840

  10. Analysis of Uncertainty and Variability in Finite Element Computational Models for Biomedical Engineering: Characterization and Propagation.

    PubMed

    Mangado, Nerea; Piella, Gemma; Noailly, Jérôme; Pons-Prats, Jordi; Ballester, Miguel Ángel González

    2016-01-01

    Computational modeling has become a powerful tool in biomedical engineering thanks to its potential to simulate coupled systems. However, real parameters are usually not accurately known, and variability is inherent in living organisms. To cope with this, probabilistic tools, statistical analysis and stochastic approaches have been used. This article aims to review the analysis of uncertainty and variability in the context of finite element modeling in biomedical engineering. Characterization techniques and propagation methods are presented, as well as examples of their applications in biomedical finite element simulations. Uncertainty propagation methods, both non-intrusive and intrusive, are described. Finally, pros and cons of the different approaches and their use in the scientific community are presented. This leads us to identify future directions for research and methodological development of uncertainty modeling in biomedical engineering.

  11. Improved finite element methodology for integrated thermal structural analysis

    NASA Technical Reports Server (NTRS)

    Dechaumphai, P.; Thornton, E. A.

    1982-01-01

    An integrated thermal-structural finite element approach for efficient coupling of thermal and structural analysis is presented. New thermal finite elements which yield exact nodal and element temperatures for one dimensional linear steady state heat transfer problems are developed. A nodeless variable formulation is used to establish improved thermal finite elements for one dimensional nonlinear transient and two dimensional linear transient heat transfer problems. The thermal finite elements provide detailed temperature distributions without using additional element nodes and permit a common discretization with lower order congruent structural finite elements. The accuracy of the integrated approach is evaluated by comparisons with analytical solutions and conventional finite element thermal structural analyses for a number of academic and more realistic problems. Results indicate that the approach provides a significant improvement in the accuracy and efficiency of thermal stress analysis for structures with complex temperature distributions.

  12. ARAMIS project: a more explicit demonstration of risk control through the use of bow-tie diagrams and the evaluation of safety barrier performance.

    PubMed

    de Dianous, Valérie; Fiévez, Cécile

    2006-03-31

    Over the last two decades a growing interest for risk analysis has been noted in the industries. The ARAMIS project has defined a methodology for risk assessment. This methodology has been built to help the industrialist to demonstrate that they have a sufficient risk control on their site. Risk analysis consists first in the identification of all the major accidents, assuming that safety functions in place are inefficient. This step of identification of the major accidents uses bow-tie diagrams. Secondly, the safety barriers really implemented on the site are taken into account. The barriers are identified on the bow-ties. An evaluation of their performance (response time, efficiency, and level of confidence) is performed to validate that they are relevant for the expected safety function. At last, the evaluation of their probability of failure enables to assess the frequency of occurrence of the accident. The demonstration of the risk control based on a couple gravity/frequency of occurrence is also possible for all the accident scenarios. During the risk analysis, a practical tool called risk graph is used to assess if the number and the reliability of the safety functions for a given cause are sufficient to reach a good risk control.

  13. A solid phase extraction-ion chromatography with conductivity detection procedure for determining cationic surfactants in surface water samples.

    PubMed

    Olkowska, Ewa; Polkowska, Żaneta; Namieśnik, Jacek

    2013-11-15

    A new analytical procedure for the simultaneous determination of individual cationic surfactants (alkyl benzyl dimethyl ammonium chlorides) in surface water samples has been developed. We describe this methodology for the first time: it involves the application of solid phase extraction (SPE-for sample preparation) coupled with ion chromatography-conductivity detection (IC-CD-for the final determination). Mean recoveries of analytes between 79% and 93%, and overall method quantification limits in the range from 0.0018 to 0.038 μg/mL for surface water and CRM samples were achieved. The methodology was applied to the determination of individual alkyl benzyl quaternary ammonium compounds in environmental samples (reservoir water) and enables their presence in such types of waters to be confirmed. In addition, it is a simpler, less time-consuming, labour-intensive, avoiding use of toxic chloroform and significantly less expensive methodology than previously described approaches (liquid-liquid extraction coupled with liquid chromatography-mass spectrometry). Copyright © 2013 Elsevier B.V. All rights reserved.

  14. On sustainable and efficient design of ground-source heat pump systems

    NASA Astrophysics Data System (ADS)

    Grassi, W.; Conti, P.; Schito, E.; Testi, D.

    2015-11-01

    This paper is mainly aimed at stressing some fundamental features of the GSHP design and is based on a broad research we are performing at the University of Pisa. In particular, we focus the discussion on an environmentally sustainable approach, based on performance optimization during the entire operational life. The proposed methodology aims at investigating design and management strategies to find the optimal level of exploitation of the ground source and refer to other technical means to cover the remaining energy requirements and modulate the power peaks. The method is holistic, considering the system as a whole, rather than focusing only on some components, usually considered as the most important ones. Each subsystem is modeled and coupled to the others in a full set of equations, which is used within an optimization routine to reproduce the operative performances of the overall GSHP system. As a matter of fact, the recommended methodology is a 4-in-1 activity, including sizing of components, lifecycle performance evaluation, optimization process, and feasibility analysis. The paper reviews also some previous works concerning possible applications of the proposed methodology. In conclusion, we describe undergoing research activities and objectives of future works.

  15. Developing and Implementing the Data Mining Algorithms in RAVEN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sen, Ramazan Sonat; Maljovec, Daniel Patrick; Alfonsi, Andrea

    The RAVEN code is becoming a comprehensive tool to perform probabilistic risk assessment, uncertainty quantification, and verification and validation. The RAVEN code is being developed to support many programs and to provide a set of methodologies and algorithms for advanced analysis. Scientific computer codes can generate enormous amounts of data. To post-process and analyze such data might, in some cases, take longer than the initial software runtime. Data mining algorithms/methods help in recognizing and understanding patterns in the data, and thus discover knowledge in databases. The methodologies used in the dynamic probabilistic risk assessment or in uncertainty and error quantificationmore » analysis couple system/physics codes with simulation controller codes, such as RAVEN. RAVEN introduces both deterministic and stochastic elements into the simulation while the system/physics code model the dynamics deterministically. A typical analysis is performed by sampling values of a set of parameter values. A major challenge in using dynamic probabilistic risk assessment or uncertainty and error quantification analysis for a complex system is to analyze the large number of scenarios generated. Data mining techniques are typically used to better organize and understand data, i.e. recognizing patterns in the data. This report focuses on development and implementation of Application Programming Interfaces (APIs) for different data mining algorithms, and the application of these algorithms to different databases.« less

  16. Exploratory and spatial data analysis (EDA-SDA) for determining regional background levels and anomalies of potentially toxic elements in soils from Catorce-Matehuala, Mexico

    USGS Publications Warehouse

    Chiprés, J.A.; Castro-Larragoitia, J.; Monroy, M.G.

    2009-01-01

    The threshold between geochemical background and anomalies can be influenced by the methodology selected for its estimation. Environmental evaluations, particularly those conducted in mineralized areas, must consider this when trying to determinate the natural geochemical status of a study area, quantifying human impacts, or establishing soil restoration values for contaminated sites. Some methods in environmental geochemistry incorporate the premise that anomalies (natural or anthropogenic) and background data are characterized by their own probabilistic distributions. One of these methods uses exploratory data analysis (EDA) on regional geochemical data sets coupled with a geographic information system (GIS) to spatially understand the processes that influence the geochemical landscape in a technique that can be called a spatial data analysis (SDA). This EDA-SDA methodology was used to establish the regional background range from the area of Catorce-Matehuala in north-central Mexico. Probability plots of the data, particularly for those areas affected by human activities, show that the regional geochemical background population is composed of smaller subpopulations associated with factors such as soil type and parent material. This paper demonstrates that the EDA-SDA method offers more certainty in defining thresholds between geochemical background and anomaly than a numeric technique, making it a useful tool for regional geochemical landscape analysis and environmental geochemistry studies.

  17. An Ensemble-Based Protocol for the Computational Prediction of Helix–Helix Interactions in G Protein-Coupled Receptors using Coarse-Grained Molecular Dynamics

    PubMed Central

    2017-01-01

    The accurate identification of the specific points of interaction between G protein-coupled receptor (GPCR) oligomers is essential for the design of receptor ligands targeting oligomeric receptor targets. A coarse-grained molecular dynamics computer simulation approach would provide a compelling means of identifying these specific protein–protein interactions and could be applied both for known oligomers of interest and as a high-throughput screen to identify novel oligomeric targets. However, to be effective, this in silico modeling must provide accurate, precise, and reproducible information. This has been achieved recently in numerous biological systems using an ensemble-based all-atom molecular dynamics approach. In this study, we describe an equivalent methodology for ensemble-based coarse-grained simulations. We report the performance of this method when applied to four different GPCRs known to oligomerize using error analysis to determine the ensemble size and individual replica simulation time required. Our measurements of distance between residues shown to be involved in oligomerization of the fifth transmembrane domain from the adenosine A2A receptor are in very good agreement with the existing biophysical data and provide information about the nature of the contact interface that cannot be determined experimentally. Calculations of distance between rhodopsin, CXCR4, and β1AR transmembrane domains reported to form contact points in homodimers correlate well with the corresponding measurements obtained from experimental structural data, providing an ability to predict contact interfaces computationally. Interestingly, error analysis enables identification of noninteracting regions. Our results confirm that GPCR interactions can be reliably predicted using this novel methodology. PMID:28383913

  18. A New Concurrent Multiscale Methodology for Coupling Molecular Dynamics and Finite Element Analyses

    NASA Technical Reports Server (NTRS)

    Yamakov, Vesselin; Saether, Erik; Glaessgen, Edward H/.

    2008-01-01

    The coupling of molecular dynamics (MD) simulations with finite element methods (FEM) yields computationally efficient models that link fundamental material processes at the atomistic level with continuum field responses at higher length scales. The theoretical challenge involves developing a seamless connection along an interface between two inherently different simulation frameworks. Various specialized methods have been developed to solve particular classes of problems. Many of these methods link the kinematics of individual MD atoms with FEM nodes at their common interface, necessarily requiring that the finite element mesh be refined to atomic resolution. Some of these coupling approaches also require simulations to be carried out at 0 K and restrict modeling to two-dimensional material domains due to difficulties in simulating full three-dimensional material processes. In the present work, a new approach to MD-FEM coupling is developed based on a restatement of the standard boundary value problem used to define a coupled domain. The method replaces a direct linkage of individual MD atoms and finite element (FE) nodes with a statistical averaging of atomistic displacements in local atomic volumes associated with each FE node in an interface region. The FEM and MD computational systems are effectively independent and communicate only through an iterative update of their boundary conditions. With the use of statistical averages of the atomistic quantities to couple the two computational schemes, the developed approach is referred to as an embedded statistical coupling method (ESCM). ESCM provides an enhanced coupling methodology that is inherently applicable to three-dimensional domains, avoids discretization of the continuum model to atomic scale resolution, and permits finite temperature states to be applied.

  19. Evolution of a primary pulse in the granular dimers mounted on a linear elastic foundation: An analytical and numerical study.

    PubMed

    Ahsan, Zaid; Jayaprakash, K R

    2016-10-01

    In this exposition we consider the wave dynamics of a one-dimensional periodic granular dimer (diatomic) chain mounted on a damped and an undamped linear elastic foundation (otherwise called the on-site potential). It is very well known that periodic granular dimers support solitary wave propagation (similar to that in the homogeneous granular chains) for a specific discrete set of mass ratios. In this work we present the analytical investigation of the evolution of solitary waves and primary pulses in granular dimers when they are mounted on on-site potential with and without velocity proportional foundation damping. We invoke a methodology based on the multiple time-scale asymptotic analysis and partition the dynamics of the perturbed dimer chain into slow and fast components. The dynamics of the dimer chain in the limit of large mass mismatch (auxiliary chain) mounted on on-site potential and foundation damping is used as the basis for the analysis. A systematic analytical procedure is then developed for the slowly varying response of the beads and in estimating primary pulse amplitude evolution resulting in a nonlinear map relating the relative displacement amplitudes of two adjacent beads. The methodology is applicable for arbitrary mass ratios between the beads. We present several examples to demonstrate the efficacy of the proposed method. It is observed that the amplitude evolution predicted by the described methodology is in good agreement with the numerical simulation of the original system. This work forms a basis for further application of the considered methodology to weakly coupled granular dimers which finds practical relevance in designing shock mitigating granular layers.

  20. Heart Rate Variability and Cardiac Vagal Tone in Psychophysiological Research – Recommendations for Experiment Planning, Data Analysis, and Data Reporting

    PubMed Central

    Laborde, Sylvain; Mosley, Emma; Thayer, Julian F.

    2017-01-01

    Psychophysiological research integrating heart rate variability (HRV) has increased during the last two decades, particularly given the fact that HRV is able to index cardiac vagal tone. Cardiac vagal tone, which represents the contribution of the parasympathetic nervous system to cardiac regulation, is acknowledged to be linked with many phenomena relevant for psychophysiological research, including self-regulation at the cognitive, emotional, social, and health levels. The ease of HRV collection and measurement coupled with the fact it is relatively affordable, non-invasive and pain free makes it widely accessible to many researchers. This ease of access should not obscure the difficulty of interpretation of HRV findings that can be easily misconstrued, however, this can be controlled to some extent through correct methodological processes. Standards of measurement were developed two decades ago by a Task Force within HRV research, and recent reviews updated several aspects of the Task Force paper. However, many methodological aspects related to HRV in psychophysiological research have to be considered if one aims to be able to draw sound conclusions, which makes it difficult to interpret findings and to compare results across laboratories. Those methodological issues have mainly been discussed in separate outlets, making difficult to get a grasp on them, and thus this paper aims to address this issue. It will help to provide psychophysiological researchers with recommendations and practical advice concerning experimental designs, data analysis, and data reporting. This will ensure that researchers starting a project with HRV and cardiac vagal tone are well informed regarding methodological considerations in order for their findings to contribute to knowledge advancement in their field. PMID:28265249

  1. Synthesis of amino ester-embedded benzimidazoles: a one-pot sequential protocol under metal-free neutral conditions.

    PubMed

    Roy, Priyabrata; Bodhak, Chandan; Pramanik, Animesh

    2017-02-01

    A one-pot three-component protocol has been developed for the synthesis of amino ester-embedded benzimidazoles under metal-free neutral conditions. Sequentially, the methodology involves coupling of an amino ester with 1-fluoro-2-nitrobenzene, reduction of the coupled nitroarene by sodium dithionite, and cyclization of the corresponding diamine with an aldehyde.

  2. "It's about Us": Marital Adjustment and Marital Adaptation in Couples Who Adopt Children from the Child Welfare System

    ERIC Educational Resources Information Center

    Mooradian, John K.; Timm, Tina M.; Hock, Robert M.; Jackson, Rosemary

    2011-01-01

    This article examines, using grounded theory methodology, the marital relationships of couples who adopted children from the child welfare system. Twenty-two spouses in four focus groups reported initial marital adjustment that featured husbands' support of their wives' initiation of adoption and management of child needs. About one half of these…

  3. A method for identifying EMI critical circuits during development of a large C3

    NASA Astrophysics Data System (ADS)

    Barr, Douglas H.

    The circuit analysis methods and process Boeing Aerospace used on a large, ground-based military command, control, and communications (C3) system are described. This analysis was designed to help identify electromagnetic interference (EMI) critical circuits. The methodology used the MIL-E-6051 equipment criticality categories as the basis for defining critical circuits, relational database technology to help sort through and account for all of the approximately 5000 system signal cables, and Macintosh Plus personal computers to predict critical circuits based on safety margin analysis. The EMI circuit analysis process systematically examined all system circuits to identify which ones were likely to be EMI critical. The process used two separate, sequential safety margin analyses to identify critical circuits (conservative safety margin analysis, and detailed safety margin analysis). These analyses used field-to-wire and wire-to-wire coupling models using both worst-case and detailed circuit parameters (physical and electrical) to predict circuit safety margins. This process identified the predicted critical circuits that could then be verified by test.

  4. At-Line Cellular Screening Methodology for Bioactives in Mixtures Targeting the α7-Nicotinic Acetylcholine Receptor.

    PubMed

    Otvos, Reka A; Mladic, Marija; Arias-Alpizar, Gabriela; Niessen, Wilfried M A; Somsen, Govert W; Smit, August B; Kool, Jeroen

    2016-06-01

    The α7-nicotinic acetylcholine receptor (α7-nAChR) is a ligand-gated ion channel expressed in different regions of the central nervous system (CNS). The α7-nAChR has been associated with Alzheimer's disease, epilepsy, and schizophrenia, and therefore is extensively studied as a drug target for the treatment of these diseases. Important sources for new compounds in drug discovery are natural extracts. Since natural extracts are complex mixtures, identification of the bioactives demands the use of analytical techniques to separate a bioactive from inactive compounds. This study describes screening methodology for identifying bioactive compounds in mixtures acting on the α7-nAChR. The methodology developed combines liquid chromatography (LC) coupled via a split with both an at-line calcium (Ca(2+))-flux assay and high-resolution mass spectrometry (MS). This allows evaluation of α7-nAChR responses after LC separation, while parallel MS enables compound identification. The methodology was optimized for analysis of agonists and positive allosteric modulators, and was successfully applied to screening of the hallucinogen mushroom Psilocybe Mckennaii The crude mushroom extract was analyzed using both reversed-phase and hydrophilic interaction liquid chromatography. Matching retention times and peak shapes of bioactives found with data from the parallel MS measurements allowed rapid pinpointing of accurate masses corresponding to the bioactives. © 2016 Society for Laboratory Automation and Screening.

  5. Surface modification of TiO2 nanotubes by grafting with APTS coupling agents

    NASA Astrophysics Data System (ADS)

    Phan Duong, Hong; Le, Minh Duc; Dao, Hung Cuong; Chen, Chia-Yun

    2017-10-01

    Titanium dioxide nanotubes (TNTs) have been considered the promising nanostructures employed for many practical applications such as biomedical, photonic and optoelectronic devices. Nevertheless, strong aggregation of TNTs within various aqueous media significantly hindered their practical utilizations and the capability of dispersing TNTs in the desired solvents are urgent to be improved. Therefore, in this study, the methodic investigations have been performed on the grafted modification of 3-aminopropyl triethoxysilane (APTS) on the surfaces of synthesized TNTs. A preliminary study was carried out to evaluate the influences of key parameters, including the concentrations of coupling agents, temperatures and the reaction durations, on the grafting efficiency of the aminosilane using Statistical design of experiments (DoE) methodology. TNTs with approximately 10-20 nm in diameter were prepared with the controlled hydrothermal treatment of commercialized P25 particles. The obtained products were revealed by the modern physicochemical systems including x-ray diffraction (XRD), transmission electron microscopy (TEM) and Brunauer-Emmett-Teller (BET) analysis. The additions of silane agent, reaction temperature and time have been adjusted to reveal the influences of the grafting efficiency (from 2.5 to 7.8 wt %) by thermal gravimetric analysis (TGA). Analysis of Fourier transform infrared spectroscopy (FTIR) has confirmed the successful link of Ti-O-Si chemical bonds on the grafted TNTs.

  6. An Affordance-Based Framework for Human Computation and Human-Computer Collaboration.

    PubMed

    Crouser, R J; Chang, R

    2012-12-01

    Visual Analytics is "the science of analytical reasoning facilitated by visual interactive interfaces". The goal of this field is to develop tools and methodologies for approaching problems whose size and complexity render them intractable without the close coupling of both human and machine analysis. Researchers have explored this coupling in many venues: VAST, Vis, InfoVis, CHI, KDD, IUI, and more. While there have been myriad promising examples of human-computer collaboration, there exists no common language for comparing systems or describing the benefits afforded by designing for such collaboration. We argue that this area would benefit significantly from consensus about the design attributes that define and distinguish existing techniques. In this work, we have reviewed 1,271 papers from many of the top-ranking conferences in visual analytics, human-computer interaction, and visualization. From these, we have identified 49 papers that are representative of the study of human-computer collaborative problem-solving, and provide a thorough overview of the current state-of-the-art. Our analysis has uncovered key patterns of design hinging on human and machine-intelligence affordances, and also indicates unexplored avenues in the study of this area. The results of this analysis provide a common framework for understanding these seemingly disparate branches of inquiry, which we hope will motivate future work in the field.

  7. Relative quantitation of glycosylation variants by stable isotope labeling of enzymatically released N-glycans using [12C]/[13C] aniline and ZIC-HILIC-ESI-TOF-MS.

    PubMed

    Giménez, Estela; Sanz-Nebot, Victòria; Rizzi, Andreas

    2013-09-01

    Glycan reductive isotope labeling (GRIL) using [(12)C]- and [(13)C]-coded aniline was used for relative quantitation of N-glycans. In a first step, the labeling method by reductive amination was optimized for this reagent. It could be demonstrated that selecting aniline as limiting reactant and using the reductant in excess is critical for achieving high derivatization yields (over 95 %) and good reproducibility (relative standard deviations ∼1-5 % for major and ∼5-10 % for minor N-glycans). In a second step, zwitterionic-hydrophilic interaction liquid chromatography in capillary columns coupled to electrospray mass spectrometry with time-of-flight analyzer (μZIC-HILIC-ESI-TOF-MS) was applied for the analysis of labeled N-glycans released from intact glycoproteins. Ovalbumin, bovine α1-acid-glycoprotein and bovine fetuin were used as test glycoproteins to establish and evaluate the methodology. Excellent separation of isomeric N-glycans and reproducible quantitation via the extracted ion chromatograms indicate a great potential of the proposed methodology for glycoproteomic analysis and for reliable relative quantitation of glycosylation variants in biological samples.

  8. Gas chromatography coupled to tunable pulsed glow discharge time-of-flight mass spectrometry for environmental analysis.

    PubMed

    Solà-Vázquez, Auristela; Lara-Gonzalo, Azucena; Costa-Fernández, José M; Pereiro, Rosario; Sanz-Medel, Alfredo

    2010-05-01

    A tuneable microsecond pulsed direct current glow discharge (GD)-time-of-flight mass spectrometer MS(TOF) developed in our laboratory was coupled to a gas chromatograph (GC) to obtain sequential collection of the mass spectra, at different temporal regimes occurring in the GD pulses, during elution of the analytes. The capabilities of this set-up were explored using a mixture of volatile organic compounds of environmental concern: BrClCH, Cl(3)CH, Cl(4)C, BrCl(2)CH, Br(2)ClCH, Br(3)CH. The experimental parameters of the GC-pulsed GD-MS(TOF) prototype were optimized in order to separate appropriately and analyze the six selected organic compounds, and two GC carrier gases, helium and nitrogen, were evaluated. Mass spectra for all analytes were obtained in the prepeak, plateau and afterpeak temporal regimes of the pulsed GD. Results showed that helium offered the best elemental sensitivity, while nitrogen provided higher signal intensities for fragments and molecular peaks. The analytical performance characteristics were also worked out for each analyte. Absolute detection limits obtained were in the order of ng. In a second step, headspace solid phase microextraction (HS SPME), as sample preparation and preconcentration technique, was evaluated for the quantification of the compounds under study, in order to achieve the required analytical sensitivity for trihalomethanes European Union (EU) environmental legislation. The analytical figures of merit obtained using the proposed methodology showed rather good detection limits (between 2 and 13 microg L(-1) depending on the analyte). In fact, the developed methodology met the EU legislation requirements (the maximum level permitted in tap water for the "total trihalomethanes" is set at 100 microg L(-1)). Real analysis of drinking water and river water were successfully carried out. To our knowledge this is the first application of GC-pulsed GD-MS(TOF) for the analysis of real samples. Its ability to provide elemental, fragments and molecular information of the organic compounds is demonstrated.

  9. CAD-Based Modeling of Advanced Rotary Wing Structures for Integrated 3-D Aeromechanics Analysis

    NASA Astrophysics Data System (ADS)

    Staruk, William

    This dissertation describes the first comprehensive use of integrated 3-D aeromechanics modeling, defined as the coupling of 3-D solid finite element method (FEM) structural dynamics with 3-D computational fluid dynamics (CFD), for the analysis of a real helicopter rotor. The development of this new methodology (a departure from how rotor aeroelastic analysis has been performed for 40 years), its execution on a real rotor, and the fundamental understanding of aeromechanics gained from it, are the key contributions of this dissertation. This work also presents the first CFD/CSD analysis of a tiltrotor in edgewise flight, revealing many of its unique loading mechanisms. The use of 3-D FEM, integrated with a trim solver and aerodynamics modeling, has the potential to enhance the design of advanced rotors by overcoming fundamental limitations of current generation beam-based analysis tools and offering integrated internal dynamic stress and strain predictions for design. Two primary goals drove this research effort: 1) developing a methodology to create 3-D CAD-based brick finite element models of rotors including multibody joints, controls, and aerodynamic interfaces, and 2) refining X3D, the US Army's next generation rotor structural dynamics solver featuring 3-D FEM within a multibody formulation with integrated aerodynamics, to model a tiltrotor in the edgewise conversion flight regime, which drives critical proprotor structural loads. Prior tiltrotor analysis has primarily focused on hover aerodynamics with rigid blades or forward flight whirl-flutter stability with simplified aerodynamics. The first goal was met with the development of a detailed methodology for generating multibody 3-D structural models, starting from CAD geometry, continuing to higher-order hexahedral finite element meshing, to final assembly of the multibody model by creating joints, assigning material properties, and defining the aerodynamic interface. Several levels of verification and validation were carried out systematically, covering formulation, model accuracy, and accuracy of the physics of the problem and the many complex coupled aeromechanical phenomena that characterize the behavior of a tiltrotor in the conversion corridor. Compatibility of the new structural analysis models with X3D is demonstrated using analytical test cases, including 90° twisted beams and thick composite plates, and a notional bearingless rotor. Prediction of deformations and stresses in composite beams and plates is validated and verified against experimental measurements, theory, and state-of-the-art beam models. The second goal was met through integrated analysis of the Tilt Rotor Aeroacoustic Model (TRAM) proprotor using X3D coupled to Helios--the US Army's next generation CFD framework featuring a high fidelity Reynolds-average Navier-Stokes (RANS) structured/unstructured overset solver--as well as low order aerodynamic models. Although development of CFD was not part of this work, coupling X3D with Helios was, including establishing consistent interface definitions for blade deformations (for CFD mesh motion), aerodynamic interfaces (for loads transfer), and rotor control angles (for trim). It is expected that this method and solver will henceforth be an integral part of the Helios framework, providing an equal fidelity of representation for fluids and structures in the development of future advanced rotor systems. Structural dynamics analysis of the TRAM model show accurate prediction of the lower natural frequencies, demonstrating the ability to model advanced rotors from first principles using 3-D structural dynamics, and a study of how joint properties affect these frequencies reveals how X3D can be used as a detailed design tool. The CFD/CSD analysis reveals accurate prediction of rotor performance and airloads in edgewise flight when compared to wind tunnel test data. Structural blade loads trends are well predicted at low thrust, but a 3/rev component of flap and lag bending moment appearing in test data at high thrust remains a mystery. Efficiently simulating a gimbaled rotor is not trivial; a time-domain method with only a single blade model is proposed and tested. The internal stress in the blade, particularly at its root where the gimbal action has major influence, is carefully examined, revealing complex localized loading patterns.

  10. Investigating Dynamics of Eccentricity in Turbomachines

    NASA Technical Reports Server (NTRS)

    Baun, Daniel

    2010-01-01

    A methodology (and hardware and software to implement the methodology) has been developed as a means of investigating coupling between certain rotordynamic and hydrodynamic phenomena in turbomachines. Originally, the methodology was intended for application in an investigation of coupled rotordynamic and hydrodynamic effects postulated to have caused high synchronous vibration in the space shuttle s high-pressure oxygen turbopump (HPOTP). The methodology can also be applied in investigating (for the purpose of developing means of suppressing) undesired hydrodynamic rotor/stator interactions in turbomachines in general. The methodology and the types of phenomena that can be investigated by use of the methodology are best summarized by citing the original application as an example. In that application, in consideration of the high synchronous vibration in the space-shuttle main engine (SSME) HPOTP, it was determined to be necessary to perform tests to investigate the influence of inducer eccentricity and/or synchronous whirl motion on inducer hydrodynamic forces under prescribed flow and cavitation conditions. It was believed that manufacturing tolerances of the turbopump resulted in some induced runout of the pump rotor. Such runout, if oriented with an inducer blade, would cause that blade to run with tip clearance smaller than the tip clearances of the other inducer blades. It was hypothesized that the resulting hydraulic asymmetry, coupled with alternating blade cavitation, could give rise to the observed high synchronous vibration. In tests performed to investigate this hypothesis, prescribed rotor whirl motions have been imposed on a 1/3-scale water-rig version of the SSME LPOTP inducer (which is also a 4-biased inducer having similar cavitation dynamics as the HPOTP) in a magnetic-bearing test facility. The particular magnetic-bearing test facility, through active vibration control, affords a capability to impose, on the rotor, whirl orbits having shapes and whirl rates prescribed by the user, and to simultaneously measure the resulting hydrodynamic forces generated by the impeller. Active control also made it possible to modulate the inducer-blade running tip clearance and consequently effect alternating blade cavitation. The measured hydraulic forces have been compared and correlated with shroud dynamic-pressure measurements.

  11. Sequence analysis by iterated maps, a review.

    PubMed

    Almeida, Jonas S

    2014-05-01

    Among alignment-free methods, Iterated Maps (IMs) are on a particular extreme: they are also scale free (order free). The use of IMs for sequence analysis is also distinct from other alignment-free methodologies in being rooted in statistical mechanics instead of computational linguistics. Both of these roots go back over two decades to the use of fractal geometry in the characterization of phase-space representations. The time series analysis origin of the field is betrayed by the title of the manuscript that started this alignment-free subdomain in 1990, 'Chaos Game Representation'. The clash between the analysis of sequences as continuous series and the better established use of Markovian approaches to discrete series was almost immediate, with a defining critique published in same journal 2 years later. The rest of that decade would go by before the scale-free nature of the IM space was uncovered. The ensuing decade saw this scalability generalized for non-genomic alphabets as well as an interest in its use for graphic representation of biological sequences. Finally, in the past couple of years, in step with the emergence of BigData and MapReduce as a new computational paradigm, there is a surprising third act in the IM story. Multiple reports have described gains in computational efficiency of multiple orders of magnitude over more conventional sequence analysis methodologies. The stage appears to be now set for a recasting of IMs with a central role in processing nextgen sequencing results.

  12. Assessment of cardio-respiratory interactions in preterm infants by bivariate autoregressive modeling and surrogate data analysis.

    PubMed

    Indic, Premananda; Bloch-Salisbury, Elisabeth; Bednarek, Frank; Brown, Emery N; Paydarfar, David; Barbieri, Riccardo

    2011-07-01

    Cardio-respiratory interactions are weak at the earliest stages of human development, suggesting that assessment of their presence and integrity may be an important indicator of development in infants. Despite the valuable research devoted to infant development, there is still a need for specifically targeted standards and methods to assess cardiopulmonary functions in the early stages of life. We present a new methodological framework for the analysis of cardiovascular variables in preterm infants. Our approach is based on a set of mathematical tools that have been successful in quantifying important cardiovascular control mechanisms in adult humans, here specifically adapted to reflect the physiology of the developing cardiovascular system. We applied our methodology in a study of cardio-respiratory responses for 11 preterm infants. We quantified cardio-respiratory interactions using specifically tailored multivariate autoregressive analysis and calculated the coherence as well as gain using causal approaches. The significance of the interactions in each subject was determined by surrogate data analysis. The method was tested in control conditions as well as in two different experimental conditions; with and without use of mild mechanosensory intervention. Our multivariate analysis revealed a significantly higher coherence, as confirmed by surrogate data analysis, in the frequency range associated with eupneic breathing compared to the other ranges. Our analysis validates the models behind our new approaches, and our results confirm the presence of cardio-respiratory coupling in early stages of development, particularly during periods of mild mechanosensory intervention, thus encouraging further application of our approach. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  13. Three-dimensional time-dependent STAR reactor kinetics analyses coupled with RETRAN and MCPWR system response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feltus, M.A.

    1989-11-01

    The operation of a nuclear power plant must be regularly supported by various reactor dynamics and thermal-hydraulic analyses, which may include final safety analysis report (FSAR) design-basis calculations, and conservative and best-estimate analyses. The development and improvement of computer codes and analysis methodologies provide many advantages, including the ability to evaluate the effect of modeling simplifications and assumptions made in previous reactor kinetics and thermal-hydraulic calculations. This paper describes the results of using the RETRAN, MCPWR, and STAR codes in a tandem, predictive-corrective manner for three pressurized water reactor (PWR) transients: (a) loss of feedwater (LOF) anticipated transient without scrammore » (ATWS), (b) station blackout ATWS, and (c) loss of total reactor coolant system (RCS) flow with a scram.« less

  14. Inclusion of Children with Autism Spectrum Disorders: Listening and Hearing to Voices from the Grassroots.

    PubMed

    Majoko, Tawanda

    2016-04-01

    The current significantly high prevalence rates of autism spectrum disorder (ASD) coupled with the paradigm shift from exclusive to inclusive education warrants research on inclusion of children with ASD in mainstream classrooms in Zimbabwe. A qualitative methodology was used to interview 21 regular primary school teachers regarding social barriers and enablers of inclusion of 6-12 year old children with ASD in mainstream classrooms in Harare educational province of Zimbabwe. Data analysis comprised pattern coding and cross-case analysis. Social rejection, communication impairments and behavioural challenges of children with ASD interfered with inclusion in mainstream classrooms. Regular teachers' training, stakeholder collaboration and institutionalization of social support services and programmes would facilitate the inclusion of children with ASD in mainstream classrooms.

  15. Fibre optical spectroscopy and sensing innovation at innoFSPEC Potsdam

    NASA Astrophysics Data System (ADS)

    Haynes, Roger; Reich, Oliver; Rambold, William; Hass, Roland; Janssen, Katja

    2010-07-01

    In October 2009, an interdisciplinary centre for fibre spectroscopy and sensing, innoFSPEC Potsdam, has been established as joint initiative of the Astrophysikalisches Institut Potsdam (AIP) and the Physical Chemistry group of Potsdam University (UPPC), Germany. The centre focuses on fundamental research in the two fields of fibre-coupled multi-channel spectroscopy and optical fibre-based sensing. Thanks to its interdisciplinary approach, the complementary methodologies of astrophysics on the one hand, and physical chemistry on the other hand, are expected to spawn synergies that otherwise would not normally become available in more standard research programmes. innoFSPEC Potsdam targets future innovations for next generation astrophysical instrumentation, environmental analysis, manufacturing control and process analysis, medical diagnostics, non-invasive imaging spectroscopy, biopsy, genomics/proteomics, high throughput screening, and related applications.

  16. Aeroelastic Modeling of a Nozzle Startup Transient

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Zhao, Xiang; Zhang, Sijun; Chen, Yen-Sen

    2014-01-01

    Lateral nozzle forces are known to cause severe structural damage to any new rocket engine in development during test. While three-dimensional, transient, turbulent, chemically reacting computational fluid dynamics methodology has been demonstrated to capture major side load physics with rigid nozzles, hot-fire tests often show nozzle structure deformation during major side load events, leading to structural damages if structural strengthening measures were not taken. The modeling picture is incomplete without the capability to address the two-way responses between the structure and fluid. The objective of this study is to develop a tightly coupled aeroelastic modeling algorithm by implementing the necessary structural dynamics component into an anchored computational fluid dynamics methodology. The computational fluid dynamics component is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, while the computational structural dynamics component is developed under the framework of modal analysis. Transient aeroelastic nozzle startup analyses at sea level were performed, and the computed transient nozzle fluid-structure interaction physics presented,

  17. Delay-range-dependent chaos synchronization approach under varying time-lags and delayed nonlinear coupling.

    PubMed

    Zaheer, Muhammad Hamad; Rehan, Muhammad; Mustafa, Ghulam; Ashraf, Muhammad

    2014-11-01

    This paper proposes a novel state feedback delay-range-dependent control approach for chaos synchronization in coupled nonlinear time-delay systems. The coupling between two systems is esteemed to be nonlinear subject to time-lags. Time-varying nature of both the intrinsic and the coupling delays is incorporated to broad scope of the present study for a better-quality synchronization controller synthesis. Lyapunov-Krasovskii (LK) functional is employed to derive delay-range-dependent conditions that can be solved by means of the conventional linear matrix inequality (LMI)-tools. The resultant control approach for chaos synchronization of the master-slave time-delay systems considers non-zero lower bound of the intrinsic as well as the coupling time-delays. Further, the delay-dependent synchronization condition has been established as a special case of the proposed LK functional treatment. Furthermore, a delay-range-dependent condition, independent of the delay-rate, has been provided to address the situation when upper bound of the delay-derivative is unknown. A robust state feedback control methodology is formulated for synchronization of the time-delay chaotic networks against the L2 norm bounded perturbations by minimizing the L2 gain from the disturbance to the synchronization error. Numerical simulation results are provided for the time-delay chaotic networks to show effectiveness of the proposed delay-range-dependent chaos synchronization methodologies. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Building a common pipeline for rule-based document classification.

    PubMed

    Patterson, Olga V; Ginter, Thomas; DuVall, Scott L

    2013-01-01

    Instance-based classification of clinical text is a widely used natural language processing task employed as a step for patient classification, document retrieval, or information extraction. Rule-based approaches rely on concept identification and context analysis in order to determine the appropriate class. We propose a five-step process that enables even small research teams to develop simple but powerful rule-based NLP systems by taking advantage of a common UIMA AS based pipeline for classification. Our proposed methodology coupled with the general-purpose solution provides researchers with access to the data locked in clinical text in cases of limited human resources and compact timelines.

  19. New Stable Cu(I) Catalyst Supported on Weakly Acidic Polyacrylate Resin for Green C-N Coupling: Synthesis of N-(Pyridin-4-yl)benzene Amines and N,N-Bis(pyridine-4-yl)benzene Amines.

    PubMed

    Kore, Nitin; Pazdera, Pavel

    2016-12-22

    A method for preparation of a new stable Cu(I) catalyst supported on weakly acidic polyacrylate resin without additional stabilizing ligands is described. A simple and efficient methodology for Ullmann Cu(I) catalyzed C-N cross coupling reactions using this original catalyst is reported. Coupling reactions of 4-chloropyridinium chloride with anilines containing electron donating (EDG) or electron withdrawing (EWG) groups, naphthalen-2-amine and piperazine, respectively, are successfully demonstrated.

  20. Adaptation of Laser Microdissection Technique for the Study of a Spontaneous Metastatic Mammary Carcinoma Mouse Model by NanoString Technologies

    PubMed Central

    Saylor, Karen L.; Anver, Miriam R.; Salomon, David S.; Golubeva, Yelena G.

    2016-01-01

    Laser capture microdissection (LCM) of tissue is an established tool in medical research for collection of distinguished cell populations under direct microscopic visualization for molecular analysis. LCM samples have been successfully analyzed in a number of genomic and proteomic downstream molecular applications. However, LCM sample collection and preparation procedure has to be adapted to each downstream analysis platform. In this present manuscript we describe in detail the adaptation of LCM methodology for the collection and preparation of fresh frozen samples for NanoString analysis based on a study of a model of mouse mammary gland carcinoma and its lung metastasis. Our adaptation of LCM sample preparation and workflow to the requirements of the NanoString platform allowed acquiring samples with high RNA quality. The NanoString analysis of such samples provided sensitive detection of genes of interest and their associated molecular pathways. NanoString is a reliable gene expression analysis platform that can be effectively coupled with LCM. PMID:27077656

  1. Qualitative and quantitative analysis of milk for the detection of adulteration by Laser Induced Breakdown Spectroscopy (LIBS).

    PubMed

    Moncayo, S; Manzoor, S; Rosales, J D; Anzano, J; Caceres, J O

    2017-10-01

    The present work focuses on the development of a fast and cost effective method based on Laser Induced Breakdown Spectroscopy (LIBS) to the quality control, traceability and detection of adulteration in milk. Two adulteration cases have been studied; a qualitative analysis for the discrimination between different milk blends and quantification of melamine in adulterated toddler milk powder. Principal Component Analysis (PCA) and neural networks (NN) have been used to analyze LIBS spectra obtaining a correct classification rate of 98% with a 100% of robustness. For the quantification of melamine, two methodologies have been developed; univariate analysis using CN emission band and multivariate calibration NN model obtaining correlation coefficient (R 2 ) values of 0.982 and 0.999 respectively. The results of the use of LIBS technique coupled with chemometric analysis are discussed in terms of its potential use in the food industry to perform the quality control of this dairy product. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Use of sonic tomography to detect and quantify wood decay in living trees1

    PubMed Central

    Gilbert, Gregory S.; Ballesteros, Javier O.; Barrios-Rodriguez, Cesar A.; Bonadies, Ernesto F.; Cedeño-Sánchez, Marjorie L.; Fossatti-Caballero, Nohely J.; Trejos-Rodríguez, Mariam M.; Pérez-Suñiga, José Moises; Holub-Young, Katharine S.; Henn, Laura A. W.; Thompson, Jennifer B.; García-López, Cesar G.; Romo, Amanda C.; Johnston, Daniel C.; Barrick, Pablo P.; Jordan, Fulvia A.; Hershcovich, Shiran; Russo, Natalie; Sánchez, Juan David; Fábrega, Juan Pablo; Lumpkin, Raleigh; McWilliams, Hunter A.; Chester, Kathleen N.; Burgos, Alana C.; Wong, E. Beatriz; Diab, Jonathan H.; Renteria, Sonia A.; Harrower, Jennifer T.; Hooton, Douglas A.; Glenn, Travis C.; Faircloth, Brant C.; Hubbell, Stephen P.

    2016-01-01

    Premise of the study: Field methodology and image analysis protocols using acoustic tomography were developed and evaluated as a tool to estimate the amount of internal decay and damage of living trees, with special attention to tropical rainforest trees with irregular trunk shapes. Methods and Results: Living trunks of a diversity of tree species in tropical rainforests in the Republic of Panama were scanned using an Argus Electronic PiCUS 3 Sonic Tomograph and evaluated for the amount and patterns of internal decay. A protocol using ImageJ analysis software was used to quantify the proportions of intact and compromised wood. The protocols provide replicable estimates of internal decay and cavities for trees of varying shapes, wood density, and bark thickness. Conclusions: Sonic tomography, coupled with image analysis, provides an efficient, noninvasive approach to evaluate decay patterns and structural integrity of even irregularly shaped living trees. PMID:28101433

  3. Detailed analysis and group-type separation of natural fats and oils using comprehensive two-dimensional gas chromatography.

    PubMed

    Mondello, Luigi; Casilli, Alessandro; Tranchida, Peter Quinto; Dugo, Paola; Dugo, Giovanni

    2003-11-26

    Comprehensive gas chromatography (GC x GC) is an adequate methodology for the separation and identification of very complex samples. It is based on the coupling of two capillary columns that each give a different but substantial contribution to the unprecedented resolving power of this technique. The 2D space chromatograms that derive from GC x GC analysis have great potential for identification. This is due to the fact that the contour plot positions, pinpointed by two retention time coordinates, give characteristic patterns for specific families of compounds that can be mathematically translated. This investigation concerned the application of this principle to fatty acid methyl esters that were grouped on an equal double bond number basis. The ester samples were derived from various lipids and all underwent bidimensional analysis on two sets of columns. Peak attribution was supported by mass spectra, linear retention indices and information reported in the literature.

  4. Improvements in the analytical methodology for the residue determination of the herbicide glyphosate in soils by liquid chromatography coupled to mass spectrometry.

    PubMed

    Botero-Coy, A M; Ibáñez, M; Sancho, J V; Hernández, F

    2013-05-31

    The determination of glyphosate (GLY) in soils is of great interest due to the widespread use of this herbicide and the need of assessing its impact on the soil/water environment. However, its residue determination is very problematic especially in soils with high organic matter content, where strong interferences are normally observed, and because of the particular physico-chemical characteristics of this polar/ionic herbicide. In the present work, we have improved previous LC-MS/MS analytical methodology reported for GLY and its main metabolite AMPA in order to be applied to "difficult" soils, like those commonly found in South-America, where this herbicide is extensively used in large areas devoted to soya or maize, among other crops. The method is based on derivatization with FMOC followed by LC-MS/MS analysis, using triple quadrupole. After extraction with potassium hydroxide, a combination of extract dilution, adjustment to appropriate pH, and solid phase extraction (SPE) clean-up was applied to minimize the strong interferences observed. Despite the clean-up performed, the use of isotope labelled glyphosate as internal standard (ILIS) was necessary for the correction of matrix effects and to compensate for any error occurring during sample processing. The analytical methodology was satisfactorily validated in four soils from Colombia and Argentina fortified at 0.5 and 5mg/kg. In contrast to most LC-MS/MS methods, where the acquisition of two transitions is recommended, monitoring all available transitions was required for confirmation of positive samples, as some of them were interfered by unknown soil components. This was observed not only for GLY and AMPA but also for the ILIS. Analysis by QTOF MS was useful to confirm the presence of interferent compounds that shared the same nominal mass of analytes as well as some of their main product ions. Therefore, the selection of specific transitions was crucial to avoid interferences. The methodology developed was applied to the analysis of 26 soils from different areas of Colombia and Argentina, and the method robustness was demonstrated by analysis of quality control samples along 4 months. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. High-performance parallel analysis of coupled problems for aircraft propulsion

    NASA Technical Reports Server (NTRS)

    Felippa, C. A.; Farhat, C.; Chen, P.-S.; Gumaste, U.; Leoinne, M.; Stern, P.

    1995-01-01

    This research program deals with the application of high-performance computing methods to the numerical simulation of complete jet engines. The program was initiated in 1993 by applying two-dimensional parallel aeroelastic codes to the interior gas flow problem of a by-pass jet engine. The fluid mesh generation, domain decomposition and solution capabilities were successfully tested. Attention was then focused on methodology for the partitioned analysis of the interaction of the gas flow with a flexible structure and with the fluid mesh motion driven by these structural displacements. The latter is treated by an ALE technique that models the fluid mesh motion as that of a fictitious mechanical network laid along the edges of near-field fluid elements. New partitioned analysis procedures to treat this coupled 3-component problem were developed in 1994. These procedures involved delayed corrections and subcycling, and have been successfully tested on several massively parallel computers. For the global steady-state axisymmetric analysis of a complete engine we have decided to use the NASA-sponsored ENG10 program, which uses a regular FV-multiblock-grid discretization in conjunction with circumferential averaging to include effects of blade forces, loss, combustor heat addition, blockage, bleeds and convective mixing. A load-balancing preprocessor for parallel versions of ENG10 has been developed. It is planned to use the steady-state global solution provided by ENG10 as input to a localized three-dimensional FSI analysis for engine regions where aeroelastic effects may be important.

  6. Fast, sensitive, and selective gas chromatography tandem mass spectrometry method for the target analysis of chemical secretions from femoral glands in lizards.

    PubMed

    Sáiz, Jorge; García-Roa, Roberto; Martín, José; Gómara, Belén

    2017-09-08

    Chemical signaling is a widespread mode of communication among living organisms that is used to establish social organization, territoriality and/or for mate choice. In lizards, femoral and precloacal glands are important sources of chemical signals. These glands protrude chemical secretions used to mark territories and also, to provide valuable information from the bearer to other individuals. Ecologists have studied these chemical secretions for decades in order to increase the knowledge of chemical communication in lizards. Although several studies have focused on the chemical analysis of these secretions, there is a lack of faster, more sensitive and more selective analytical methodologies for their study. In this work a new GC coupled to tandem triple quadrupole MS (GC-QqQ (MS/MS)) methodology is developed and proposed for the target study of 12 relevant compounds often found in lizard secretions (i.e. 1-hexadecanol, palmitic acid, 1-octadecanol, oleic acid, stearic acid, 1-tetracosanol, squalene, cholesta-3,5-diene, α-tocopherol, cholesterol, ergosterol and campesterol). The method baseline-separated the analytes in less than 7min, with instrumental limits of detection ranging from 0.04 to 6.0ng/mL. It was possible to identify differences in the composition of the samples from the lizards analyzed, which depended on the species, the habitat occupied and the diet of the individuals. Moreover, α-tocopherol has been determined for the first time in a lizard species, which was thought to lack its expression in chemical secretions. Globally, the methodology has been proven to be a valuable alternative to other published methods with important improvements in terms of analysis time, sensitivity, and selectivity. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. The physical vulnerability of elements at risk: a methodology based on fluid and classical mechanics

    NASA Astrophysics Data System (ADS)

    Mazzorana, B.; Fuchs, S.; Levaggi, L.

    2012-04-01

    The impacts of the flood events occurred in autumn 2011 in the Italian regions Liguria and Tuscany revived the engagement of the public decision makers to enhance in synergy flood control and land use planning. In this context, the design of efficient flood risk mitigation strategies and their subsequent implementation critically relies on a careful vulnerability analysis of both, the immobile and mobile elements at risk potentially exposed to flood hazards. Based on fluid and classical mechanics notions we developed computation schemes enabling for a dynamic vulnerability and risk analysis facing a broad typological variety of elements at risk. The methodological skeleton consists of (1) hydrodynamic computation of the time-varying flood intensities resulting for each element at risk in a succession of loading configurations; (2) modelling the mechanical response of the impacted elements through static, elasto-static and dynamic analyses; (3) characterising the mechanical response through proper structural damage variables and (4) economic valuation of the expected losses as a function of the quantified damage variables. From a computational perspective we coupled the description of the hydrodynamic flow behaviour and the induced structural modifications of the elements at risk exposed. Valuation methods, suitable to support a correct mapping from the value domains of the physical damage variables to the economic loss values are discussed. In such a way we target to complement from a methodological perspective the existing, mainly empirical, vulnerability and risk assessment approaches to refine the conceptual framework of the cost-benefit analysis. Moreover, we aim to support the design of effective flood risk mitigation strategies by diminishing the main criticalities within the systems prone to flood risk.

  8. Recent advances in jointed quantum mechanics and molecular mechanics calculations of biological macromolecules: schemes and applications coupled to ab initio calculations.

    PubMed

    Hagiwara, Yohsuke; Tateno, Masaru

    2010-10-20

    We review the recent research on the functional mechanisms of biological macromolecules using theoretical methodologies coupled to ab initio quantum mechanical (QM) treatments of reaction centers in proteins and nucleic acids. Since in most cases such biological molecules are large, the computational costs of performing ab initio calculations for the entire structures are prohibitive. Instead, simulations that are jointed with molecular mechanics (MM) calculations are crucial to evaluate the long-range electrostatic interactions, which significantly affect the electronic structures of biological macromolecules. Thus, we focus our attention on the methodologies/schemes and applications of jointed QM/MM calculations, and discuss the critical issues to be elucidated in biological macromolecular systems. © 2010 IOP Publishing Ltd

  9. MinePath: Mining for Phenotype Differential Sub-paths in Molecular Pathways

    PubMed Central

    Koumakis, Lefteris; Kartsaki, Evgenia; Chatzimina, Maria; Zervakis, Michalis; Vassou, Despoina; Marias, Kostas; Moustakis, Vassilis; Potamias, George

    2016-01-01

    Pathway analysis methodologies couple traditional gene expression analysis with knowledge encoded in established molecular pathway networks, offering a promising approach towards the biological interpretation of phenotype differentiating genes. Early pathway analysis methodologies, named as gene set analysis (GSA), view pathways just as plain lists of genes without taking into account either the underlying pathway network topology or the involved gene regulatory relations. These approaches, even if they achieve computational efficiency and simplicity, consider pathways that involve the same genes as equivalent in terms of their gene enrichment characteristics. Most recent pathway analysis approaches take into account the underlying gene regulatory relations by examining their consistency with gene expression profiles and computing a score for each profile. Even with this approach, assessing and scoring single-relations limits the ability to reveal key gene regulation mechanisms hidden in longer pathway sub-paths. We introduce MinePath, a pathway analysis methodology that addresses and overcomes the aforementioned problems. MinePath facilitates the decomposition of pathways into their constituent sub-paths. Decomposition leads to the transformation of single-relations to complex regulation sub-paths. Regulation sub-paths are then matched with gene expression sample profiles in order to evaluate their functional status and to assess phenotype differential power. Assessment of differential power supports the identification of the most discriminant profiles. In addition, MinePath assess the significance of the pathways as a whole, ranking them by their p-values. Comparison results with state-of-the-art pathway analysis systems are indicative for the soundness and reliability of the MinePath approach. In contrast with many pathway analysis tools, MinePath is a web-based system (www.minepath.org) offering dynamic and rich pathway visualization functionality, with the unique characteristic to color regulatory relations between genes and reveal their phenotype inclination. This unique characteristic makes MinePath a valuable tool for in silico molecular biology experimentation as it serves the biomedical researchers’ exploratory needs to reveal and interpret the regulatory mechanisms that underlie and putatively govern the expression of target phenotypes. PMID:27832067

  10. MinePath: Mining for Phenotype Differential Sub-paths in Molecular Pathways.

    PubMed

    Koumakis, Lefteris; Kanterakis, Alexandros; Kartsaki, Evgenia; Chatzimina, Maria; Zervakis, Michalis; Tsiknakis, Manolis; Vassou, Despoina; Kafetzopoulos, Dimitris; Marias, Kostas; Moustakis, Vassilis; Potamias, George

    2016-11-01

    Pathway analysis methodologies couple traditional gene expression analysis with knowledge encoded in established molecular pathway networks, offering a promising approach towards the biological interpretation of phenotype differentiating genes. Early pathway analysis methodologies, named as gene set analysis (GSA), view pathways just as plain lists of genes without taking into account either the underlying pathway network topology or the involved gene regulatory relations. These approaches, even if they achieve computational efficiency and simplicity, consider pathways that involve the same genes as equivalent in terms of their gene enrichment characteristics. Most recent pathway analysis approaches take into account the underlying gene regulatory relations by examining their consistency with gene expression profiles and computing a score for each profile. Even with this approach, assessing and scoring single-relations limits the ability to reveal key gene regulation mechanisms hidden in longer pathway sub-paths. We introduce MinePath, a pathway analysis methodology that addresses and overcomes the aforementioned problems. MinePath facilitates the decomposition of pathways into their constituent sub-paths. Decomposition leads to the transformation of single-relations to complex regulation sub-paths. Regulation sub-paths are then matched with gene expression sample profiles in order to evaluate their functional status and to assess phenotype differential power. Assessment of differential power supports the identification of the most discriminant profiles. In addition, MinePath assess the significance of the pathways as a whole, ranking them by their p-values. Comparison results with state-of-the-art pathway analysis systems are indicative for the soundness and reliability of the MinePath approach. In contrast with many pathway analysis tools, MinePath is a web-based system (www.minepath.org) offering dynamic and rich pathway visualization functionality, with the unique characteristic to color regulatory relations between genes and reveal their phenotype inclination. This unique characteristic makes MinePath a valuable tool for in silico molecular biology experimentation as it serves the biomedical researchers' exploratory needs to reveal and interpret the regulatory mechanisms that underlie and putatively govern the expression of target phenotypes.

  11. Gold Nanoparticles Used as Protein Scavengers Enhance Surface Plasmon Resonance Signal

    PubMed Central

    Ferreira de Macedo, Erenildo; Ducatti Formaggio, Daniela Maria; Salles Santos, Nivia; Batista Tada, Dayane

    2017-01-01

    Although several researchers had reported on methodologies for surface plasmon resonance (SPR) signal amplification based on the use of nanoparticles (NPs), the majority addressed the sandwich technique and low protein concentration. In this work, a different approach for SPR signal enhancement based on the use of gold NPs was evaluated. The method was used in the detection of two lectins, peanut agglutinin (PNA) and concanavalin A (ConA). Gold NPs were functionalized with antibodies anti-PNA and anti-ConA, and these NPs were used as protein scavengers in a solution. After being incubated with solutions of PNA or ConA, the gold NPs coupled with the collected lectins were injected on the sensor containing the immobilized antibodies. The signal amplification provided by this method was compared to the signal amplification provided by the direct coupling of PNA and ConA to gold NPs. Furthermore, both methods, direct coupling and gold NPs as protein scavengers, were compared to the direct detection of PNA and ConA in solution. Compared to the analysis of free protein, the direct coupling of PNA and ConA to gold NPs resulted in a signal amplification of 10–40-fold and a 13-fold decrease of the limit of detection (LOD), whereas the use of gold NPs as protein scavengers resulted in an SPR signal 40–50-times higher and an LOD 64-times lower. PMID:29186024

  12. Solvent-free, microwave-assisted synthesis of thiophene oligomers via Suzuki coupling.

    PubMed

    Melucci, Manuela; Barbarella, Giovanna; Sotgiu, Giovanna

    2002-12-13

    The purpose of this study was to obtain a rapid, efficient, and environmentally friendly methodology for the synthesis of highly pure thiophene oligomers. The solvent-free, microwave-assisted coupling of thienyl boronic acids and esters with thienyl bromides, using aluminum oxide as the solid support, allowed us to rapidly check the reaction trends on changing times, temperature, catalyst, and base and easily optimize the experimental conditions to obtain the targeted product in fair amounts. This procedure offers a novel, general, and very rapid route to the preparation of soluble thiophene oligomers. Thus, for example, quaterthiophene was obtained in 6 min by reaction of 2-bromo-2,2'-bithiophene with bis(pinacolato)diboron (isolated yield 65%), whereas quinquethiophene was obtained in 11 min by reaction of dibromoterthiophene with thienylboronic acid (isolated yield 74%). The synthesis of new chiral 2,2'-bithiophenes is reported. The detailed analysis of the byproducts of some reactions allowed us to elucidate a few aspects of reaction mechanisms. While the use of microwaves proved to be very convenient for the coupling between conventional thienyl moieties, the same was not true for the coupling of thienyl rings to thienyl-S,S-dioxide moieties. Indeed, in this case, the targeted product was obtained in low yields because of the competitive, accelerated, Diels-Alder reaction that affords a variety of condensation products.

  13. Analysis of chloramphenicol residues in the macroalgae Ulva lactuca through ultra-high performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS).

    PubMed

    Leston, Sara; Freitas, Andreia; Nunes, Margarida; Barbosa, Jorge; Pardal, Miguel Ângelo; Ramos, Fernando

    2015-02-15

    Antibiotic use is a well-described practice to promote animal health whether for prevention or treatment. Nonetheless, it can also cause a number of potentially harmful effects that dictate the need to implement regulation to assure a reduction of hazards to the consumers and the environment. Chloramphenicol (CAP) is a broad-spectrum antibacterial excluded from use in animal food production but despite this, reports of illegal use still persist. More recently, awareness has risen that the surrounding natural ecosystems can potentially be contaminated by pharmaceuticals and the extent of their effects in non-target organisms is already under the scope of researchers. To face the demanding new challenges a methodology for the determination of CAP in the green macroalgae Ulva lactuca by ultra-high performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS) was developed, optimized and fully validated following the guidelines of the EC Decision 2002/657. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. The application of headspace gas chromatography coupled to tandem quadrupole mass spectrometry for the analysis of furan in baby food samples.

    PubMed

    Pugajeva, Iveta; Rozentale, Irina; Viksna, Arturs; Bartkiene, Elena; Bartkevics, Vadims

    2016-12-01

    Selective methodology employing a tandem quadrupole mass spectrometer coupled to a gas chromatograph with headspace autosampler (HS-GC-MS/MS) was elaborated in this study. Application of the elaborated procedure resulted in a limit of detection of 0.021μgkg(-1) and a limit of quantification of 0.071μgkg(-1). The mean recoveries during in-house validation ranged from 89% to 109%, and coefficients of variation for repeatability ranged from 4% to 11%. The proposed analytical method was applied for monitoring the furan content of 30 commercial baby food samples available on the Latvian retail market. The level of furan found in these samples varied from 0.45 to 81.9μgkg(-1), indicating that infants whose sole diet comprises baby food sold in jars and cans are exposed constantly to furan. Samples containing vegetables and meat had higher levels of furan than those containing only fruits. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Suzuki-miyaura cross-coupling in acylation reactions, scope and recent developments.

    PubMed

    Blangetti, Marco; Rosso, Heléna; Prandi, Cristina; Deagostino, Annamaria; Venturello, Paolo

    2013-01-17

    Since the first report and due to its handiness and wide scope, the Suzuki-Miyaura (SM) cross coupling reaction has become a routine methodology in many laboratories worldwide. With respect to other common transition metal catalyzed cross couplings, the SM reaction has been so far less exploited as a tool to introduce an acyl function into a specific substrate. In this review, the various approaches found in the literature will be considered, starting from the direct SM acylative coupling to the recent developments of cross coupling between boronates and acyl chlorides or anhydrides. Special attention will be dedicated to the use of masked acyl boronates, alkoxy styryl and alkoxy dienyl boronates as coupling partners. A final section will be then focused on the acyl SM reaction as key synthetic step in the framework of natural products synthesis.

  16. Hydrogen measurement during steam oxidation using coupled thermogravimetric analysis and quadrupole mass spectrometry

    DOE PAGES

    Parkison, Adam J.; Nelson, Andrew Thomas

    2016-01-11

    An analytical technique is presented with the goal of measuring reaction kinetics during steam oxidation reactions for three cases in which obtaining kinetics information often requires a prohibitive amount of time and cost. The technique presented relies on coupling thermogravimetric analysis (TGA) with a quantitative hydrogen measurement technique using quadrupole mass spectrometry (QMS). The first case considered is in differentiating between the kinetics of steam oxidation reactions and those for simultaneously reacting gaseous impurities such as nitrogen or oxygen. The second case allows one to independently measure the kinetics of oxide and hydride formation for systems in which both ofmore » these reactions are known to take place during steam oxidation. The third case deals with measuring the kinetics of formation for competing volatile and non-volatile oxides during certain steam oxidation reactions. In order to meet the requirements of the coupled technique, a methodology is presented which attempts to provide quantitative measurement of hydrogen generation using QMS in the presence of an interfering fragmentation species, namely water vapor. This is achieved such that all calibrations and corrections are performed during the TGA baseline and steam oxidation programs, making system operation virtually identical to standard TGA. Benchmarking results showed a relative error in hydrogen measurement of 5.7–8.4% following the application of a correction factor. Lastly, suggestions are made for possible improvements to the presented technique so that it may be better applied to the three cases presented.« less

  17. DESIGN CHARACTERISTICS OF THE IDAHO NATIONAL LABORATORY HIGH-TEMPERATURE GAS-COOLED TEST REACTOR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sterbentz, James; Bayless, Paul; Strydom, Gerhard

    2016-11-01

    Uncertainty and sensitivity analysis is an indispensable element of any substantial attempt in reactor simulation validation. The quantification of uncertainties in nuclear engineering has grown more important and the IAEA Coordinated Research Program (CRP) on High-Temperature Gas Cooled Reactor (HTGR) initiated in 2012 aims to investigate the various uncertainty quantification methodologies for this type of reactors. The first phase of the CRP is dedicated to the estimation of cell and lattice model uncertainties due to the neutron cross sections co-variances. Phase II is oriented towards the investigation of propagated uncertainties from the lattice to the coupled neutronics/thermal hydraulics core calculations.more » Nominal results for the prismatic single block (Ex.I-2a) and super cell models (Ex.I-2c) have been obtained using the SCALE 6.1.3 two-dimensional lattice code NEWT coupled to the TRITON sequence for cross section generation. In this work, the TRITON/NEWT-flux-weighted cross sections obtained for Ex.I-2a and various models of Ex.I-2c is utilized to perform a sensitivity analysis of the MHTGR-350 core power densities and eigenvalues. The core solutions are obtained with the INL coupled code PHISICS/RELAP5-3D, utilizing a fixed-temperature feedback for Ex. II-1a.. It is observed that the core power density does not vary significantly in shape, but the magnitude of these variations increases as the moderator-to-fuel ratio increases in the super cell lattice models.« less

  18. Hydrogen measurement during steam oxidation using coupled thermogravimetric analysis and quadrupole mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parkison, Adam J.; Nelson, Andrew Thomas

    An analytical technique is presented with the goal of measuring reaction kinetics during steam oxidation reactions for three cases in which obtaining kinetics information often requires a prohibitive amount of time and cost. The technique presented relies on coupling thermogravimetric analysis (TGA) with a quantitative hydrogen measurement technique using quadrupole mass spectrometry (QMS). The first case considered is in differentiating between the kinetics of steam oxidation reactions and those for simultaneously reacting gaseous impurities such as nitrogen or oxygen. The second case allows one to independently measure the kinetics of oxide and hydride formation for systems in which both ofmore » these reactions are known to take place during steam oxidation. The third case deals with measuring the kinetics of formation for competing volatile and non-volatile oxides during certain steam oxidation reactions. In order to meet the requirements of the coupled technique, a methodology is presented which attempts to provide quantitative measurement of hydrogen generation using QMS in the presence of an interfering fragmentation species, namely water vapor. This is achieved such that all calibrations and corrections are performed during the TGA baseline and steam oxidation programs, making system operation virtually identical to standard TGA. Benchmarking results showed a relative error in hydrogen measurement of 5.7–8.4% following the application of a correction factor. Lastly, suggestions are made for possible improvements to the presented technique so that it may be better applied to the three cases presented.« less

  19. Remote sensing of methane with OSAS-lidar on the 2ν3 band Q-branch: Experimental proof

    NASA Astrophysics Data System (ADS)

    Galtier, Sandrine; Anselmo, Christophe; Welschinger, Jean-Yves; Sivignon, J. F.; Cariou, Jean-Pierre; Miffre, Alain; Rairoux, Patrick

    2018-06-01

    Optical sensors based on absorption spectroscopy play a central role in the detection and monitoring of atmospheric trace gases. We here present for the first time the experimental demonstration of OSAS-Lidar on the remote sensing of CH4 in the atmosphere. This new methodology, the OSAS-Lidar, couples the Optical Similitude Absorption Spectroscopy (OSAS) methodology with a light detection and ranging device. It is based on the differential absorption of spectrally integrated signals following Beer Lambert-Bouguer law, which are range-resolved. Its novelty originates from the use of broadband laser spectroscopy and from the mathematical approach used to retrieve the trace gas concentration. We previously applied the OSAS methodology in laboratory on the 2ν3 methane absorption band, centered at the 1665 nm wavelength and demonstrated that the OSAS-methodology is almost independent from atmospheric temperature and pressure. In this paper, we achieve an OSAS-Lidar device capable of observing large concentrations of CH4 released from a methane source directly into the atmosphere. Comparison with a standard in-situ measurement device shows that the path-integrated concentrations retrieved from OSAS-Lidar methodology exhibit sufficient sensitivity (2 000 ppm m) and observational time resolution (1 s) to remotely sense methane leaks in the atmosphere. The coupling of OSAS-lidar with a wind measurement device opens the way to monitor time-resolved methane flux emissions, which is important in regards to future climate mitigation involving regional reduction of CH4 flux emissions.

  20. Methodology for extracting local constants from petroleum cracking flows

    DOEpatents

    Chang, Shen-Lin; Lottes, Steven A.; Zhou, Chenn Q.

    2000-01-01

    A methodology provides for the extraction of local chemical kinetic model constants for use in a reacting flow computational fluid dynamics (CFD) computer code with chemical kinetic computations to optimize the operating conditions or design of the system, including retrofit design improvements to existing systems. The coupled CFD and kinetic computer code are used in combination with data obtained from a matrix of experimental tests to extract the kinetic constants. Local fluid dynamic effects are implicitly included in the extracted local kinetic constants for each particular application system to which the methodology is applied. The extracted local kinetic model constants work well over a fairly broad range of operating conditions for specific and complex reaction sets in specific and complex reactor systems. While disclosed in terms of use in a Fluid Catalytic Cracking (FCC) riser, the inventive methodology has application in virtually any reaction set to extract constants for any particular application and reaction set formulation. The methodology includes the step of: (1) selecting the test data sets for various conditions; (2) establishing the general trend of the parametric effect on the measured product yields; (3) calculating product yields for the selected test conditions using coupled computational fluid dynamics and chemical kinetics; (4) adjusting the local kinetic constants to match calculated product yields with experimental data; and (5) validating the determined set of local kinetic constants by comparing the calculated results with experimental data from additional test runs at different operating conditions.

  1. Accurate quantitation standards of glutathione via traceable sulfur measurement by inductively coupled plasma optical emission spectrometry and ion chromatography

    PubMed Central

    Rastogi, L.; Dash, K.; Arunachalam, J.

    2013-01-01

    The quantitative analysis of glutathione (GSH) is important in different fields like medicine, biology, and biotechnology. Accurate quantitative measurements of this analyte have been hampered by the lack of well characterized reference standards. The proposed procedure is intended to provide an accurate and definitive method for the quantitation of GSH for reference measurements. Measurement of the stoichiometrically existing sulfur content in purified GSH offers an approach for its quantitation and calibration through an appropriate characterized reference material (CRM) for sulfur would provide a methodology for the certification of GSH quantity, that is traceable to SI (International system of units). The inductively coupled plasma optical emission spectrometry (ICP-OES) approach negates the need for any sample digestion. The sulfur content of the purified GSH is quantitatively converted into sulfate ions by microwave-assisted UV digestion in the presence of hydrogen peroxide prior to ion chromatography (IC) measurements. The measurement of sulfur by ICP-OES and IC (as sulfate) using the “high performance” methodology could be useful for characterizing primary calibration standards and certified reference materials with low uncertainties. The relative expanded uncertainties (% U) expressed at 95% confidence interval for ICP-OES analyses varied from 0.1% to 0.3%, while in the case of IC, they were between 0.2% and 1.2%. The described methods are more suitable for characterizing primary calibration standards and certifying reference materials of GSH, than for routine measurements. PMID:29403814

  2. Modeling and optimization of anaerobic codigestion of potato waste and aquatic weed by response surface methodology and artificial neural network coupled genetic algorithm.

    PubMed

    Jacob, Samuel; Banerjee, Rintu

    2016-08-01

    A novel approach to overcome the acidification problem has been attempted in the present study by codigesting industrial potato waste (PW) with Pistia stratiotes (PS, an aquatic weed). The effectiveness of codigestion of the weed and PW was tested in an equal (1:1) proportion by weight with substrate concentration of 5g total solid (TS)/L (2.5gPW+2.5gPS) which resulted in enhancement of methane yield by 76.45% as compared to monodigestion of PW with a positive synergistic effect. Optimization of process parameters was conducted using central composite design (CCD) based response surface methodology (RSM) and artificial neural network (ANN) coupled genetic algorithm (GA) model. Upon comparison of these two optimization techniques, ANN-GA model obtained through feed forward back propagation methodology was found to be efficient and yielded 447.4±21.43LCH4/kgVSfed (0.279gCH4/kgCODvs) which is 6% higher as compared to the CCD-RSM based approach. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Methodology Investigation Automatic Magnetic Recording Borescope.

    DTIC Science & Technology

    1986-01-01

    or other brushless signal coupling devices to the extent possible and feasible to reduce or eliminate the need for slip ring and brush type signal...the inspection head, is used to magnetically couple the necessary energy across the rotary interface. Because there is (1) an appreciable air gap in...were written. (2) As required by the contract, the signal conditioners in the MB employ automatic gain control to compensate for the changes in

  4. Merging photoredox and nickel catalysis: decarboxylative cross-coupling of carboxylic acids with vinyl halides.

    PubMed

    Noble, Adam; McCarver, Stefan J; MacMillan, David W C

    2015-01-21

    Decarboxylative cross-coupling of alkyl carboxylic acids with vinyl halides has been accomplished through the synergistic merger of photoredox and nickel catalysis. This new methodology has been successfully applied to a variety of α-oxy and α-amino acids, as well as simple hydrocarbon-substituted acids. Diverse vinyl iodides and bromides give rise to vinylation products in high efficiency under mild, operationally simple reaction conditions.

  5. Improving the performance of the mass transfer-based reference evapotranspiration estimation approaches through a coupled wavelet-random forest methodology

    NASA Astrophysics Data System (ADS)

    Shiri, Jalal

    2018-06-01

    Among different reference evapotranspiration (ETo) modeling approaches, mass transfer-based methods have been less studied. These approaches utilize temperature and wind speed records. On the other hand, the empirical equations proposed in this context generally produce weak simulations, except when a local calibration is used for improving their performance. This might be a crucial drawback for those equations in case of local data scarcity for calibration procedure. So, application of heuristic methods can be considered as a substitute for improving the performance accuracy of the mass transfer-based approaches. However, given that the wind speed records have usually higher variation magnitudes than the other meteorological parameters, application of a wavelet transform for coupling with heuristic models would be necessary. In the present paper, a coupled wavelet-random forest (WRF) methodology was proposed for the first time to improve the performance accuracy of the mass transfer-based ETo estimation approaches using cross-validation data management scenarios in both local and cross-station scales. The obtained results revealed that the new coupled WRF model (with the minimum scatter index values of 0.150 and 0.192 for local and external applications, respectively) improved the performance accuracy of the single RF models as well as the empirical equations to great extent.

  6. Stereocontrolled intramolecular iron-mediated diene/olefin cyclocoupling

    NASA Astrophysics Data System (ADS)

    Dorange, Ismet B.

    A methodology for stereocontrol during the intramolecular coupling between cyclohexadiene-Fe(CO)3 complexes and pendant alkenes is presented. Introduction of a methoxy group at the C(3) position of the diene moiety controls pre- and post-cyclization rearrangements of the diene Fe(CO)3 unit, allowing the preparation of spirolactams with defined relative stereochemistry and with a cyclohexenone framework, thus making this reaction a potentially valuable tool for the construction of quaternary carbon centers.* A new methodology for the formation of tricarbonyl(cyclohexadienyl)ketone iron complexes was also developed. This method involves the coupling of a Grignard reagent with an acyl mesylate iron complex, giving rise to ketone derivatives in excellent yields. The possibility of intramolecular coupling between diene-Fe(CO)3 complexes and homoallylic olefin was demonstrated. The stereospecific formation of spiroketones occurred in excellent yields under thermal conditions, but appeared to be limited to the simpler, less substituted pendant alkenes. The control of the stereochemical outcome of these spirocyclization was achieved using the "C(3) substitution method" previously described. The same trends were observed in these series. Also illustrated in these studies is the extension of this spirocoupling to the formation of a spiro[5.5]undecane framework. It is the first time that this framework has been accessed using this intramolecular coupling.* *Please refer to dissertation for diagram.

  7. Integrating protein structural dynamics and evolutionary analysis with Bio3D.

    PubMed

    Skjærven, Lars; Yao, Xin-Qiu; Scarabelli, Guido; Grant, Barry J

    2014-12-10

    Popular bioinformatics approaches for studying protein functional dynamics include comparisons of crystallographic structures, molecular dynamics simulations and normal mode analysis. However, determining how observed displacements and predicted motions from these traditionally separate analyses relate to each other, as well as to the evolution of sequence, structure and function within large protein families, remains a considerable challenge. This is in part due to the general lack of tools that integrate information of molecular structure, dynamics and evolution. Here, we describe the integration of new methodologies for evolutionary sequence, structure and simulation analysis into the Bio3D package. This major update includes unique high-throughput normal mode analysis for examining and contrasting the dynamics of related proteins with non-identical sequences and structures, as well as new methods for quantifying dynamical couplings and their residue-wise dissection from correlation network analysis. These new methodologies are integrated with major biomolecular databases as well as established methods for evolutionary sequence and comparative structural analysis. New functionality for directly comparing results derived from normal modes, molecular dynamics and principal component analysis of heterogeneous experimental structure distributions is also included. We demonstrate these integrated capabilities with example applications to dihydrofolate reductase and heterotrimeric G-protein families along with a discussion of the mechanistic insight provided in each case. The integration of structural dynamics and evolutionary analysis in Bio3D enables researchers to go beyond a prediction of single protein dynamics to investigate dynamical features across large protein families. The Bio3D package is distributed with full source code and extensive documentation as a platform independent R package under a GPL2 license from http://thegrantlab.org/bio3d/ .

  8. A general method for copper-catalyzed arene cross-dimerization.

    PubMed

    Do, Hien-Quang; Daugulis, Olafs

    2011-08-31

    A general method for a highly regioselective copper-catalyzed cross-coupling of two aromatic compounds using iodine as an oxidant has been developed. The reactions involve an initial iodination of one arene followed by arylation of the most acidic C-H bond of the other coupling component. Cross-coupling of electron-rich arenes, electron-poor arenes, and five- and six-membered heterocycles is possible in many combinations. Typically, a 1/1.5 to 1/3 ratio of coupling components is used, in contrast to existing methodology that often employs a large excess of one of the arenes. Common functionalities such as ester, ketone, aldehyde, ether, nitrile, nitro, and amine are well-tolerated.

  9. A General Method for Copper-Catalyzed Arene Cross-Dimerization

    PubMed Central

    Do, Hien-Quang; Daugulis, Olafs

    2011-01-01

    A general method for a highly regioselective, copper-catalyzed cross-coupling of two aromatic compounds by using iodine oxidant has been developed. The reactions involve an initial iodination of one arene followed by arylation of the most acidic C-H bond of the other coupling component. Cross-coupling of electron-rich arenes, electron-poor arenes, five- and six-membered heterocycles is possible in many combinations. Typically, 1/1.5 to 1/3 ratio of coupling components is used in contrast to existing methodology that often employs a large excess of one of the arenes. Common functionalities such as ester, ketone, aldehyde, ether, nitrile, nitro, and amine are well-tolerated. PMID:21823581

  10. High-throughput analysis using non-depletive SPME: challenges and applications to the determination of free and total concentrations in small sample volumes.

    PubMed

    Boyacı, Ezel; Bojko, Barbara; Reyes-Garcés, Nathaly; Poole, Justen J; Gómez-Ríos, Germán Augusto; Teixeira, Alexandre; Nicol, Beate; Pawliszyn, Janusz

    2018-01-18

    In vitro high-throughput non-depletive quantitation of chemicals in biofluids is of growing interest in many areas. Some of the challenges facing researchers include the limited volume of biofluids, rapid and high-throughput sampling requirements, and the lack of reliable methods. Coupled to the above, growing interest in the monitoring of kinetics and dynamics of miniaturized biosystems has spurred the demand for development of novel and revolutionary methodologies for analysis of biofluids. The applicability of solid-phase microextraction (SPME) is investigated as a potential technology to fulfill the aforementioned requirements. As analytes with sufficient diversity in their physicochemical features, nicotine, N,N-Diethyl-meta-toluamide, and diclofenac were selected as test compounds for the study. The objective was to develop methodologies that would allow repeated non-depletive sampling from 96-well plates, using 100 µL of sample. Initially, thin film-SPME was investigated. Results revealed substantial depletion and consequent disruption in the system. Therefore, new ultra-thin coated fibers were developed. The applicability of this device to the described sampling scenario was tested by determining the protein binding of the analytes. Results showed good agreement with rapid equilibrium dialysis. The presented method allows high-throughput analysis using small volumes, enabling fast reliable free and total concentration determinations without disruption of system equilibrium.

  11. Supercritical fluid chromatography with photodiode array detection for pesticide analysis in papaya and avocado samples.

    PubMed

    Pano-Farias, Norma S; Ceballos-Magaña, Silvia G; Gonzalez, Jorge; Jurado, José M; Muñiz-Valencia, Roberto

    2015-04-01

    To improve the analysis of pesticides in complex food matrices with economic importance, alternative chromatographic techniques, such as supercritical fluid chromatography, can be used. Supercritical fluid chromatography has barely been applied for pesticide analysis in food matrices. In this paper, an analytical method using supercritical fluid chromatography coupled to a photodiode array detection has been established for the first time for the quantification of pesticides in papaya and avocado. The extraction of methyl parathion, atrazine, ametryn, carbofuran, and carbaryl was performed through the quick, easy, cheap, effective, rugged, and safe methodology. The method was validated using papaya and avocado samples. For papaya, the correlation coefficient values were higher than 0.99; limits of detection and quantification ranged from 130-380 and 220-640 μg/kg, respectively; recovery values ranged from 72.8-94.6%; precision was lower than 3%. For avocado, limit of detection values were ˂450 μg/kg; precision was lower than 11%; recoveries ranged from 50.0-94.2%. Method feasibility was tested for lime, banana, mango, and melon samples. Our results demonstrate that the proposed method is applicable to methyl parathion, atrazine, ametryn, and carbaryl, toxics pesticides used worldwide. The methodology presented in this work could be applicable to other fruits. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Automated Discovery and Modeling of Sequential Patterns Preceding Events of Interest

    NASA Technical Reports Server (NTRS)

    Rohloff, Kurt

    2010-01-01

    The integration of emerging data manipulation technologies has enabled a paradigm shift in practitioners' abilities to understand and anticipate events of interest in complex systems. Example events of interest include outbreaks of socio-political violence in nation-states. Rather than relying on human-centric modeling efforts that are limited by the availability of SMEs, automated data processing technologies has enabled the development of innovative automated complex system modeling and predictive analysis technologies. We introduce one such emerging modeling technology - the sequential pattern methodology. We have applied the sequential pattern methodology to automatically identify patterns of observed behavior that precede outbreaks of socio-political violence such as riots, rebellions and coups in nation-states. The sequential pattern methodology is a groundbreaking approach to automated complex system model discovery because it generates easily interpretable patterns based on direct observations of sampled factor data for a deeper understanding of societal behaviors that is tolerant of observation noise and missing data. The discovered patterns are simple to interpret and mimic human's identifications of observed trends in temporal data. Discovered patterns also provide an automated forecasting ability: we discuss an example of using discovered patterns coupled with a rich data environment to forecast various types of socio-political violence in nation-states.

  13. Remote sensing of methane emissions by combining optical similitude absorption spectroscopy (OSAS) and lidar

    NASA Astrophysics Data System (ADS)

    Galtier, Sandrine; Anselmo, Christophe; Welschinger, Jean-Yves; Cariou, Jean-Pierre; Sivignon, Jean-François; Miffre, Alain; Rairoux, Patrick

    2018-04-01

    Monitoring the emission of gases is difficult to achieve in industrial sites and in environments presenting poor infrastructures. Hence, robust methodologies should be developed and coupled to Lidar technology to allow remote sensing of gas emission. OSAS is a new methodology to evaluate gas concentration emission from spectrally integrated differential absorption measurements. Proof of concept of OSAS-Lidar for CH4 emission monitoring is here presented.

  14. Critical evaluation of distillation procedure for the determination of methylmercury in soil samples.

    PubMed

    Perez, Pablo A; Hintelman, Holger; Quiroz, Waldo; Bravo, Manuel A

    2017-11-01

    In the present work, the efficiency of distillation process for extracting monomethylmercury (MMHg) from soil samples was studied and optimized using an experimental design methodology. The influence of soil composition on MMHg extraction was evaluated by testing of four soil samples with different geochemical characteristics. Optimization suggested that the acid concentration and the duration of the distillation process were most significant and the most favorable conditions, established as a compromise for the studied soils, were determined to be a 70 min distillation using an 0.2 M acid. Corresponding limits of detection (LOD) and quantification (LOQ) were 0.21 and 0.7 pg absolute, respectively. The optimized methodology was applied with satisfactory results to soil samples and was compared to a reference methodology based on isotopic dilution analysis followed by gas chromatography-inductively coupled plasma mass spectrometry (IDA-GC-ICP-MS). Using the optimized conditions, recoveries ranged from 82 to 98%, which is an increase of 9-34% relative to the previously used standard operating procedure. Finally, the validated methodology was applied to quantify MMHg in soils collected from different sites impacted by coal fired power plants in the north-central zone of Chile, measuring MMHg concentrations ranging from 0.091 to 2.8 ng g -1 . These data are to the best of our knowledge the first MMHg measurements reported for Chile. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Coupled attenuation and multiscale damage model for composite structures

    NASA Astrophysics Data System (ADS)

    Moncada, Albert M.; Chattopadhyay, Aditi; Bednarcyk, Brett; Arnold, Steven M.

    2011-04-01

    Composite materials are widely used in many applications for their high strength, low weight, and tailorability for specific applications. However, the development of robust and reliable methodologies to detect micro level damage in composite structures has been challenging. For composite materials, attenuation of ultrasonic waves propagating through the media can be used to determine damage within the material. Currently available numerical solutions for attenuation induce arbitrary damage, such as fiber-matrix debonding or inclusions, to show variations between healthy and damaged states. This paper addresses this issue by integrating a micromechanics analysis to simulate damage in the form of a fiber-matrix crack and an analytical model for calculating the attenuation of the waves when they pass through the damaged region. The hybrid analysis is validated by comparison with experimental stress-strain curves and piezoelectric sensing results for attenuation measurement. The results showed good agreement between the experimental stress-strain curves and the results from the micromechanics analysis. Wave propagation analysis also showed good correlation between simulation and experiment for the tested frequency range.

  16. Multielemental speciation analysis by advanced hyphenated technique - HPLC/ICP-MS: A review.

    PubMed

    Marcinkowska, Monika; Barałkiewicz, Danuta

    2016-12-01

    Speciation analysis has become an invaluable tool in human health risk assessment, environmental monitoring or food quality control. Another step is to develop reliable multielemental speciation methodologies, to reduce costs, waste and time needed for the analysis. Separation and detection of species of several elements in a single analytical run can be accomplished by high performance liquid chromatography hyphenated to inductively coupled plasma mass spectrometry (HPLC/ICP-MS). Our review assembles articles concerning multielemental speciation determination of: As, Se, Cr, Sb, I, Br, Pb, Hg, V, Mo, Te, Tl, Cd and W in environmental, biological, food and clinical samples analyzed with HPLC/ICP-MS. It addresses the procedures in terms of following issues: sample collection and pretreatment, selection of optimal conditions for elements species separation by HPLC and determination using ICP-MS as well as metrological approach. The presented work is the first review article concerning multielemental speciation analysis by advanced hyphenated technique HPLC/ICP-MS. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Sonic Boom Mitigation Through Aircraft Design and Adjoint Methodology

    NASA Technical Reports Server (NTRS)

    Rallabhandi, Siriam K.; Diskin, Boris; Nielsen, Eric J.

    2012-01-01

    This paper presents a novel approach to design of the supersonic aircraft outer mold line (OML) by optimizing the A-weighted loudness of sonic boom signature predicted on the ground. The optimization process uses the sensitivity information obtained by coupling the discrete adjoint formulations for the augmented Burgers Equation and Computational Fluid Dynamics (CFD) equations. This coupled formulation links the loudness of the ground boom signature to the aircraft geometry thus allowing efficient shape optimization for the purpose of minimizing the impact of loudness. The accuracy of the adjoint-based sensitivities is verified against sensitivities obtained using an independent complex-variable approach. The adjoint based optimization methodology is applied to a configuration previously optimized using alternative state of the art optimization methods and produces additional loudness reduction. The results of the optimizations are reported and discussed.

  18. Designing prospective cohort studies for assessing reproductive and developmental toxicity during sensitive windows of human reproduction and development--the LIFE Study.

    PubMed

    Buck Louis, Germaine M; Schisterman, Enrique F; Sweeney, Anne M; Wilcosky, Timothy C; Gore-Langton, Robert E; Lynch, Courtney D; Boyd Barr, Dana; Schrader, Steven M; Kim, Sungduk; Chen, Zhen; Sundaram, Rajeshwari

    2011-09-01

    The relationship between the environment and human fecundity and fertility remains virtually unstudied from a couple-based perspective in which longitudinal exposure data and biospecimens are captured across sensitive windows. In response, we completed the LIFE Study with methodology that intended to empirically evaluate a priori purported methodological challenges: implementation of population-based sampling frameworks suitable for recruiting couples planning pregnancy; obtaining environmental data across sensitive windows of reproduction and development; home-based biospecimen collection; and development of a data management system for hierarchical exposome data. We used two sampling frameworks (i.e., fish/wildlife licence registry and a direct marketing database) for 16 targeted counties with presumed environmental exposures to persistent organochlorine chemicals to recruit 501 couples planning pregnancies for prospective longitudinal follow-up while trying to conceive and throughout pregnancy. Enrolment rates varied from <1% of the targeted population (n = 424,423) to 42% of eligible couples who were successfully screened; 84% of the targeted population could not be reached, while 36% refused screening. Among enrolled couples, ∼ 85% completed daily journals while trying; 82% of pregnant women completed daily early pregnancy journals, and 80% completed monthly pregnancy journals. All couples provided baseline blood/urine samples; 94% of men provided one or more semen samples and 98% of women provided one or more saliva samples. Women successfully used urinary fertility monitors for identifying ovulation and home pregnancy test kits. Couples can be recruited for preconception cohorts and will comply with intensive data collection across sensitive windows. However, appropriately sized sampling frameworks are critical, given the small percentage of couples contacted found eligible and reportedly planning pregnancy at any point in time. © Published 2011. This article is a US Government work and is in the public domain in the USA.

  19. Effects of modal truncation and condensation methods on the Frequency Response Function of a stage reducer connected by rigid coupling to a planetary gear system

    NASA Astrophysics Data System (ADS)

    Bouslema, Marwa; Frikha, Ahmed; Abdennadhar, Moez; Fakhfakh, Tahar; Nasri, Rachid; Haddar, Mohamed

    2017-12-01

    The present paper is aimed at the application of a substructure methodology, based on the Frequency Response Function (FRF) simulation technique, to analyze the vibration of a stage reducer connected by a rigid coupling to a planetary gear system. The computation of the vibration response was achieved using the FRF-based substructuring method. First of all, the two subsystems were analyzed separately and their FRF were obtained. Then the coupled model was analyzed indirectly using the substructuring technique. A comparison between the full system response and the coupled model response using the FRF substructuring was investigated to validate the coupling method. Furthermore, a parametric study of the effect of the shaft coupling stiffness on the FRF was discussed and the effects of modal truncation and condensation methods on the FRF of subsystems were analyzed.

  20. Possibilities of care for serodiscordant couples for HIV who got pregnant.

    PubMed

    Langendorf, Tassiane Ferreira; Souza, Ivis Emília de Oliveira; Padoin, Stela Maris de Mello; Paula, Cristiane Cardoso de; Queiroz, Ana Beatriz Azevedo; Moura, Maria Aparecida Vasconcelos; Melo, Maria Carmen Simões Cardoso de; Silva, Lúcia de Fatima da

    2017-01-01

    Understanding the meaning of pregnancy for heterosexual couples facing serodiscordant situation for HIV, aiming at construction of care possibilities based on subjectivity. Phenomenological research, theoretical-philosophical-methodological framework by Martin Heidegger. Research was conducted in a University Hospital in the countryside of Southern Brazil, from September 2013 to May 2014 through a phenomenological interview, with participation of eleven couples. For the couples, pregnancy is part of life when they wish to have a child, even when one or both of them already have children from previous relationships. In addition, it is part of life when they consider the risks and do not want to have children in such circumstances anymore, but it happened unexpectedly. Understanding reproductive needs and demands of these couples is an aid for qualification and improvement of care as a contribution to nursing care planning towards reproductive health of these couples.

  1. Coupled semivariogram uncertainty of hydrogeological and geophysical data on capture zone uncertainty analysis

    USGS Publications Warehouse

    Rahman, A.; Tsai, F.T.-C.; White, C.D.; Willson, C.S.

    2008-01-01

    This study investigates capture zone uncertainty that relates to the coupled semivariogram uncertainty of hydrogeological and geophysical data. Semivariogram uncertainty is represented by the uncertainty in structural parameters (range, sill, and nugget). We used the beta distribution function to derive the prior distributions of structural parameters. The probability distributions of structural parameters were further updated through the Bayesian approach with the Gaussian likelihood functions. Cokriging of noncollocated pumping test data and electrical resistivity data was conducted to better estimate hydraulic conductivity through autosemivariograms and pseudo-cross-semivariogram. Sensitivities of capture zone variability with respect to the spatial variability of hydraulic conductivity, porosity and aquifer thickness were analyzed using ANOVA. The proposed methodology was applied to the analysis of capture zone uncertainty at the Chicot aquifer in Southwestern Louisiana, where a regional groundwater flow model was developed. MODFLOW-MODPATH was adopted to delineate the capture zone. The ANOVA results showed that both capture zone area and compactness were sensitive to hydraulic conductivity variation. We concluded that the capture zone uncertainty due to the semivariogram uncertainty is much higher than that due to the kriging uncertainty for given semivariograms. In other words, the sole use of conditional variances of kriging may greatly underestimate the flow response uncertainty. Semivariogram uncertainty should also be taken into account in the uncertainty analysis. ?? 2008 ASCE.

  2. Impedance analysis of GPCR-mediated changes in endothelial barrier function: overview, and fundamental considerations for stable and reproducible measurements

    PubMed Central

    Stolwijk, Judith A.; Matrougui, Khalid; Renken, Christian W.; Trebak, Mohamed

    2014-01-01

    The past 20 years have seen significant growth in using impedance-based assays to understand the molecular underpinning of endothelial and epithelial barrier function in response to physiological agonists, pharmacological and toxicological compounds. Most studies on barrier function use G protein coupled receptor (GPCR) agonists which couple to fast and transient changes in barrier properties. The power of impedance based techniques such as Electric Cell-Substrate Impedance Sensing (ECIS) reside in its ability to detect minute changes in cell layer integrity label-free and in real-time ranging from seconds to days. We provide a comprehensive overview of the biophysical principles, applications and recent developments in impedance-based methodologies. Despite extensive application of impedance analysis in endothelial barrier research little attention has been paid to data analysis and critical experimental variables, which are both essential for signal stability and reproducibility. We describe the rationale behind common ECIS data presentation and interpretation and illustrate practical guidelines to improve signal intensity by adapting technical parameters such as electrode layout, monitoring frequency or parameter (resistance versus impedance magnitude). Moreover, we discuss the impact of experimental parameters, including cell source, liquid handling and agonist preparation on signal intensity and kinetics. Our discussions are supported by experimental data obtained from human microvascular endothelial cells challenged with three GPCR agonists, thrombin, histamine and Sphingosine-1-Phosphate. PMID:25537398

  3. Impedance analysis of GPCR-mediated changes in endothelial barrier function: overview and fundamental considerations for stable and reproducible measurements.

    PubMed

    Stolwijk, Judith A; Matrougui, Khalid; Renken, Christian W; Trebak, Mohamed

    2015-10-01

    The past 20 years has seen significant growth in using impedance-based assays to understand the molecular underpinning of endothelial and epithelial barrier function in response to physiological agonists and pharmacological and toxicological compounds. Most studies on barrier function use G protein-coupled receptor (GPCR) agonists which couple to fast and transient changes in barrier properties. The power of impedance-based techniques such as electric cell-substrate impedance sensing (ECIS) resides in its ability to detect minute changes in cell layer integrity label-free and in real-time ranging from seconds to days. We provide a comprehensive overview of the biophysical principles, applications, and recent developments in impedance-based methodologies. Despite extensive application of impedance analysis in endothelial barrier research, little attention has been paid to data analysis and critical experimental variables, which are both essential for signal stability and reproducibility. We describe the rationale behind common ECIS data presentation and interpretation and illustrate practical guidelines to improve signal intensity by adapting technical parameters such as electrode layout, monitoring frequency, or parameter (resistance versus impedance magnitude). Moreover, we discuss the impact of experimental parameters, including cell source, liquid handling, and agonist preparation on signal intensity and kinetics. Our discussions are supported by experimental data obtained from human microvascular endothelial cells challenged with three GPCR agonists, thrombin, histamine, and sphingosine-1-phosphate.

  4. Coupled thermal, electrical, and fluid flow analyses of AMTEC converters, with illustrative application to OSC`s cell design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schock, A.; Noravian, H.; Or, C.

    1997-12-31

    This paper presents the background and introduction to the OSC AMTEC (Alkali Metal Thermal-to-Electrical Conversion) studies, which were conducted for the Department of energy (DOE) and NASA`s jet Propulsion Laboratory (JPL). After describing the basic principle of AMTEC, the paper describes and explains the operation of multi-tube vapor/vapor cells, which have been under development by AMPS (Advance Modular Power Systems, Inc.) for the Air Force Phillips Laboratory (AFPL) and JPL for possible application to the Europa Orbiter, Pluto Express, and other space missions. It then describes a novel OSC-generated methodology for analyzing the performance of such cells. This methodology consistsmore » of an iterative procedure for the coupled solution of the interdependent thermal, electrical, and fluid flow differential and integral equations governing the performance of AMTEC cells and generators, taking proper account of the non-linear axial variations of temperature, pressure, open-circuit voltage, inter-electrode voltages, current density, axial current, sodium mass flow rate, and power density. The paper illustrates that analytical procedure by applying it to OSC`s latest cell design and by presenting detailed analytical results for that design. The OSC-developed analytic methodology constitutes a unique and powerful tool for accurate parametric analyses and design optimizations of the multi-tube AMTEC cells and of radioisotope power systems. This is illustrated in two companion papers in these proceedings. The first of those papers applies the OSC-derived program to determine the effect of various design parameters on the performance of single AMTEC cells with adiabatic side walls, culminating in an OSC-recommended revised cell design. And the second describes a number of OSC-generated AMTEC generator designs consisting of 2 and 3 GPHS heat source modules, 16 multi-tube converter cells, and a hybrid insulation design, and presents the results of applying the above analysis program to determine the applicability of those generators to possible future missions under consideration by NASA.« less

  5. In silico gene expression analysis – an overview

    PubMed Central

    Murray, David; Doran, Peter; MacMathuna, Padraic; Moss, Alan C

    2007-01-01

    Efforts aimed at deciphering the molecular basis of complex disease are underpinned by the availability of high throughput strategies for the identification of biomolecules that drive the disease process. The completion of the human genome-sequencing project, coupled to major technological developments, has afforded investigators myriad opportunities for multidimensional analysis of biological systems. Nowhere has this research explosion been more evident than in the field of transcriptomics. Affordable access and availability to the technology that supports such investigations has led to a significant increase in the amount of data generated. As most biological distinctions are now observed at a genomic level, a large amount of expression information is now openly available via public databases. Furthermore, numerous computational based methods have been developed to harness the power of these data. In this review we provide a brief overview of in silico methodologies for the analysis of differential gene expression such as Serial Analysis of Gene Expression and Digital Differential Display. The performance of these strategies, at both an operational and result/output level is assessed and compared. The key considerations that must be made when completing an in silico expression analysis are also presented as a roadmap to facilitate biologists. Furthermore, to highlight the importance of these in silico methodologies in contemporary biomedical research, examples of current studies using these approaches are discussed. The overriding goal of this review is to present the scientific community with a critical overview of these strategies, so that they can be effectively added to the tool box of biomedical researchers focused on identifying the molecular mechanisms of disease. PMID:17683638

  6. Merging Photoredox and Nickel Catalysis: Decarboxylative Cross-Coupling of Carboxylic Acids with Vinyl Halides

    PubMed Central

    2015-01-01

    Decarboxylative cross-coupling of alkyl carboxylic acids with vinyl halides has been accomplished through the synergistic merger of photoredox and nickel catalysis. This new methodology has been successfully applied to a variety of α-oxy and α-amino acids, as well as simple hydrocarbon-substituted acids. Diverse vinyl iodides and bromides give rise to vinylation products in high efficiency under mild, operationally simple reaction conditions. PMID:25521443

  7. Modeling and Control of the Redundant Parallel Adjustment Mechanism on a Deployable Antenna Panel

    PubMed Central

    Tian, Lili; Bao, Hong; Wang, Meng; Duan, Xuechao

    2016-01-01

    With the aim of developing multiple input and multiple output (MIMO) coupling systems with a redundant parallel adjustment mechanism on the deployable antenna panel, a structural control integrated design methodology is proposed in this paper. Firstly, the modal information from the finite element model of the structure of the antenna panel is extracted, and then the mathematical model is established with the Hamilton principle; Secondly, the discrete Linear Quadratic Regulator (LQR) controller is added to the model in order to control the actuators and adjust the shape of the panel. Finally, the engineering practicality of the modeling and control method based on finite element analysis simulation is verified. PMID:27706076

  8. HPLC-PFD determination of priority pollutant PAHs in water, sediment, and semipermeable membrane devices

    USGS Publications Warehouse

    Williamson, K.S.; Petty, J.D.; Huckins, J.N.; Lebo, J.A.; Kaiser, E.M.

    2002-01-01

    High performance liquid chromatography coupled with programmable fluorescence detection was employed for the determination of 15 priority pollutant polycyclic aromatic hydrocarbons (PPPAHs) in water, sediment, and semipermeable membrane devices (SPMDs). Chromatographic separation using this analytical method facilitates selectivity, sensitivity (ppt levels), and can serve as a non-destructive technique for subsequent analysis by other chromatographic and spectroscopic techniques. Extraction and sample cleanup procedures were also developed for water, sediment, and SPMDs using various chromatographic and wet chemical methods. The focus of this publication is to examine the enrichment techniques and the analytical methodologies used in the isolation, characterization, and quantitation of 15 PPPAHs in different sample matrices.

  9. Capillary Electrophoresis of Mono- and Oligosaccharides.

    PubMed

    Toppazzini, Mila; Coslovi, Anna; Rossi, Marco; Flamigni, Anna; Baiutti, Edi; Campa, Cristiana

    2016-01-01

    This chapter reports an overview of the recent advances in the analysis of mono- and oligosaccharides by capillary electrophoresis (CE); furthermore, relevant reviews and research articles recently published in the field are tabulated. Additionally, pretreatments and procedures applied to uncharged and acidic carbohydrates (i.e., monosaccharides and lower oligosaccharides carrying carboxylate, sulfate, or phosphate groups) are described.Representative examples of such procedures are reported in detail, upon describing robust methodologies for the study of (1) neutral oligosaccharides derivatized by reductive amination and by formation of glycosylamines; (2) sialic acid derivatized with 2-aminoacridone, released from human serum immunoglobulin G; (3) anomeric couples of neutral glycosides separated using borate-based buffers; (4) unsaturated, underivatized oligosaccharides from lyase-treated alginate.

  10. A phenomenological study of photon production in low energy neutrino nucleon scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jenkins, James P; Goldman, Terry J

    2009-01-01

    Low energy photon production is an important background to many current and future precision neutrino experiments. We present a phenomenological study of t-channel radiative corrections to neutral current neutrino nucleus scattering. After introducing the relevant processes and phenomenological coupling constants, we will explore the derived energy and angular distributions as well as total cross-section predictions along with their estimated uncertainties. This is supplemented throughout with comments on possible experimental signatures and implications. We conclude with a general discussion of the analysis in the context of complimentary methodologies. This is based on a talk presented at the DPF 2009 meeting inmore » Detroit MI.« less

  11. Development of hazard-compatible building fragility and vulnerability models

    USGS Publications Warehouse

    Karaca, E.; Luco, N.

    2008-01-01

    We present a methodology for transforming the structural and non-structural fragility functions in HAZUS into a format that is compatible with conventional seismic hazard analysis information. The methodology makes use of the building capacity (or pushover) curves and related building parameters provided in HAZUS. Instead of the capacity spectrum method applied in HAZUS, building response is estimated by inelastic response history analysis of corresponding single-degree-of-freedom systems under a large number of earthquake records. Statistics of the building response are used with the damage state definitions from HAZUS to derive fragility models conditioned on spectral acceleration values. Using the developed fragility models for structural and nonstructural building components, with corresponding damage state loss ratios from HAZUS, we also derive building vulnerability models relating spectral acceleration to repair costs. Whereas in HAZUS the structural and nonstructural damage states are treated as if they are independent, our vulnerability models are derived assuming "complete" nonstructural damage whenever the structural damage state is complete. We show the effects of considering this dependence on the final vulnerability models. The use of spectral acceleration (at selected vibration periods) as the ground motion intensity parameter, coupled with the careful treatment of uncertainty, makes the new fragility and vulnerability models compatible with conventional seismic hazard curves and hence useful for extensions to probabilistic damage and loss assessment.

  12. Response surface optimization of electro-oxidation process for the treatment of C.I. Reactive Yellow 186 dye: reaction pathways

    NASA Astrophysics Data System (ADS)

    Rajkumar, K.; Muthukumar, M.

    2017-05-01

    In this study, central composite design at five levels (- β, -1, 0, +1, + β) combined with response surface methodology has been applied to optimize C.I. Reactive Yellow 186 using electro-oxidation process with graphite electrodes in a batch reactor. The variables considered were the pH ( X 1), NaCl concentration (M) ( X 2), and electrolysis time (min) ( X 3) on C.I. Reactive Yellow 186 were studied. A second-order empirical relationship between the response and independent variables was derived. Analysis of variance showed a high coefficient of determination value ( R 2 = 0.9556 and 0.9416 for color and COD, respectively). The optimized condition of the electro-oxidation of Reactive Yellow 186 is as follows: pH 3.9; NaCl concentration 0.11 M; and electrolysis time 18 min. Under this condition, the maximal decolorization efficiency of 99 % and COD removal 73 % was achieved. Detailed physico-chemical analysis of electrode and residues of the electro-oxidation process has also been carried out UV-Visible and Fourier transform infrared spectroscopy. The intermediate compounds formed during the oxidation were identified using a gas chromatography coupled with mass spectrometry. According to these results, response surface methodology could be useful for reducing the time to treat effluent wastewater.

  13. Analyzing simulation-based PRA data through traditional and topological clustering: A BWR station blackout case study

    DOE PAGES

    Maljovec, D.; Liu, S.; Wang, B.; ...

    2015-07-14

    Here, dynamic probabilistic risk assessment (DPRA) methodologies couple system simulator codes (e.g., RELAP and MELCOR) with simulation controller codes (e.g., RAVEN and ADAPT). Whereas system simulator codes model system dynamics deterministically, simulation controller codes introduce both deterministic (e.g., system control logic and operating procedures) and stochastic (e.g., component failures and parameter uncertainties) elements into the simulation. Typically, a DPRA is performed by sampling values of a set of parameters and simulating the system behavior for that specific set of parameter values. For complex systems, a major challenge in using DPRA methodologies is to analyze the large number of scenarios generated,more » where clustering techniques are typically employed to better organize and interpret the data. In this paper, we focus on the analysis of two nuclear simulation datasets that are part of the risk-informed safety margin characterization (RISMC) boiling water reactor (BWR) station blackout (SBO) case study. We provide the domain experts a software tool that encodes traditional and topological clustering techniques within an interactive analysis and visualization environment, for understanding the structures of such high-dimensional nuclear simulation datasets. We demonstrate through our case study that both types of clustering techniques complement each other for enhanced structural understanding of the data.« less

  14. Stable isotopes and elasmobranchs: tissue types, methods, applications and assumptions.

    PubMed

    Hussey, N E; MacNeil, M A; Olin, J A; McMeans, B C; Kinney, M J; Chapman, D D; Fisk, A T

    2012-04-01

    Stable-isotope analysis (SIA) can act as a powerful ecological tracer with which to examine diet, trophic position and movement, as well as more complex questions pertaining to community dynamics and feeding strategies or behaviour among aquatic organisms. With major advances in the understanding of the methodological approaches and assumptions of SIA through dedicated experimental work in the broader literature coupled with the inherent difficulty of studying typically large, highly mobile marine predators, SIA is increasingly being used to investigate the ecology of elasmobranchs (sharks, skates and rays). Here, the current state of SIA in elasmobranchs is reviewed, focusing on available tissues for analysis, methodological issues relating to the effects of lipid extraction and urea, the experimental dynamics of isotopic incorporation, diet-tissue discrimination factors, estimating trophic position, diet and mixing models and individual specialization and niche-width analyses. These areas are discussed in terms of assumptions made when applying SIA to the study of elasmobranch ecology and the requirement that investigators standardize analytical approaches. Recommendations are made for future SIA experimental work that would improve understanding of stable-isotope dynamics and advance their application in the study of sharks, skates and rays. © 2012 The Authors. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.

  15. Toward decentralized analysis of mercury (II) in real samples. A critical review on nanotechnology-based methodologies.

    PubMed

    Botasini, Santiago; Heijo, Gonzalo; Méndez, Eduardo

    2013-10-24

    In recent years, it has increased the number of works focused on the development of novel nanoparticle-based sensors for mercury detection, mainly motivated by the need of low cost portable devices capable of giving fast and reliable analytical response, thus contributing to the analytical decentralization. Methodologies employing colorimetric, fluorometric, magnetic, and electrochemical output signals allowed reaching detection limits within the pM and nM ranges. Most of these developments proved their suitability in detecting and quantifying mercury (II) ions in synthetic solutions or spiked water samples. However, the state of art in these technologies is still behind the standard methods of mercury quantification, such as cold vapor atomic absorption spectrometry and inductively coupled plasma techniques, in terms of reliability and sensitivity. This is mainly because the response of nanoparticle-based sensors is highly affected by the sample matrix. The developed analytical nanosystems may fail in real samples because of the negative incidence of the ionic strength and the presence of exchangeable ligands. The aim of this review is to critically consider the recently published innovations in this area, and highlight the needs to include more realistic assays in future research in order to make these advances suitable for on-site analysis. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Controlling allosteric networks in proteins

    NASA Astrophysics Data System (ADS)

    Dokholyan, Nikolay

    2013-03-01

    We present a novel methodology based on graph theory and discrete molecular dynamics simulations for delineating allosteric pathways in proteins. We use this methodology to uncover the structural mechanisms responsible for coupling of distal sites on proteins and utilize it for allosteric modulation of proteins. We will present examples where inference of allosteric networks and its rewiring allows us to ``rescue'' cystic fibrosis transmembrane conductance regulator (CFTR), a protein associated with fatal genetic disease cystic fibrosis. We also use our methodology to control protein function allosterically. We design a novel protein domain that can be inserted into identified allosteric site of target protein. Using a drug that binds to our domain, we alter the function of the target protein. We successfully tested this methodology in vitro, in living cells and in zebrafish. We further demonstrate transferability of our allosteric modulation methodology to other systems and extend it to become ligh-activatable.

  17. Cultural intersections: a qualitative inquiry into the experience of Asian Indian-White interracial couples.

    PubMed

    Inman, Arpana G; Altman, Abby; Kaduvettoor-Davidson, Anju; Carr, Amanda; Walker, Jessica A

    2011-06-01

    The purpose of this study was to examine the "lived experience" of Asian Indian (AI)-White couples in interracial marriages. Ten highly educated AI-White professional couples were individually interviewed about their subjective experience of being in an interracial marriage, the challenges and strengths of this marriage, and the potential role of culture in their marriages. Data were analyzed using the Consensual Qualitative Research methodology. Results indicated that the couples' marital experiences were influenced by a complex intersection of ecosystemic factors with significant psychological impacts. These findings highlight shortcomings in drawing simplistic conclusions regarding the success or failure of an interracial marriage and have important implications for theory, research, and clinical practice. 2011 © FPI, Inc.

  18. Approximate solution of coupled cluster equations: application to the coupled cluster doubles method and non-covalent interacting systems.

    PubMed

    Smiga, Szymon; Fabiano, Eduardo

    2017-11-15

    We have developed a simplified coupled cluster (SCC) methodology, using the basic idea of scaled MP2 methods. The scheme has been applied to the coupled cluster double equations and implemented in three different non-iterative variants. This new method (especially the SCCD[3] variant, which utilizes a spin-resolved formalism) has been found to be very efficient and to yield an accurate approximation of the reference CCD results for both total and interaction energies of different atoms and molecules. Furthermore, we demonstrate that the equations determining the scaling coefficients for the SCCD[3] approach can generate non-empirical SCS-MP2 scaling coefficients which are in good agreement with previous theoretical investigations.

  19. Toward the assimilation of biogeochemical data in the CMEMS BIOMER coupled physical-biogeochemical operational system

    NASA Astrophysics Data System (ADS)

    Lamouroux, Julien; Testut, Charles-Emmanuel; Lellouche, Jean-Michel; Perruche, Coralie; Paul, Julien

    2017-04-01

    The operational production of data-assimilated biogeochemical state of the ocean is one of the challenging core projects of the Copernicus Marine Environment Monitoring Service. In that framework - and with the April 2018 CMEMS V4 release as a target - Mercator Ocean is in charge of improving the realism of its global ¼° BIOMER coupled physical-biogeochemical (NEMO/PISCES) simulations, analyses and re-analyses, and to develop an effective capacity to routinely estimate the biogeochemical state of the ocean, through the implementation of biogeochemical data assimilation. Primary objectives are to enhance the time representation of the seasonal cycle in the real time and reanalysis systems, and to provide a better control of the production in the equatorial regions. The assimilation of BGC data will rely on a simplified version of the SEEK filter, where the error statistics do not evolve with the model dynamics. The associated forecast error covariances are based on the statistics of a collection of 3D ocean state anomalies. The anomalies are computed from a multi-year numerical experiment (free run without assimilation) with respect to a running mean in order to estimate the 7-day scale error on the ocean state at a given period of the year. These forecast error covariances rely thus on a fixed-basis seasonally variable ensemble of anomalies. This methodology, which is currently implemented in the "blue" component of the CMEMS operational forecast system, is now under adaptation to be applied to the biogeochemical part of the operational system. Regarding observations - and as a first step - the system shall rely on the CMEMS GlobColour Global Ocean surface chlorophyll concentration products, delivered in NRT. The objective of this poster is to provide a detailed overview of the implementation of the aforementioned data assimilation methodology in the CMEMS BIOMER forecasting system. Focus shall be put on (1) the assessment of the capabilities of this data assimilation methodology to provide satisfying statistics of the model variability errors (through space-time analysis of dedicated representers of satellite surface Chla observations), (2) the dedicated features of the data assimilation configuration that have been implemented so far (e.g. log-transformation of the analysis state, multivariate Chlorophyll-Nutrient control vector, etc.) and (3) the assessment of the performances of this future operational data assimilation configuration.

  20. Secondary Metabolites in Ramalina terebrata Detected by UHPLC/ESI/MS/MS and Identification of Parietin as Tau Protein Inhibitor.

    PubMed

    Cornejo, Alberto; Salgado, Francisco; Caballero, Julio; Vargas, Reinaldo; Simirgiotis, Mario; Areche, Carlos

    2016-08-18

    Liquid chromatography coupled with mass spectrometry is an outstanding methodology for fast analysis of phenolic compounds in biological samples. Twenty two compounds were quickly and accurately identified in the methanolic extract of the Antarctic lichen Ramalina terebrata for the first time using ultra high pressure liquid chromatography coupled with photodiode array detector and high resolution mass spectrometry (UHPLC-PDA-Q/Orbitrap/MS/MS). In addition, the extract and the four compounds isolated from this species were tested for the inhibitory activity of tau protein aggregation, which is a protein involved in Alzheimer's disease (AD). All compounds showed null activity with the exception of parietin, which it was able to inhibit aggregation process of tau in a concentration range between 3 µg/mL (10 µM) to 28 µg/mL (100 µM). In addition, we show how parietin interact with tau (306)VQIVYK(311) hexapeptide inside of the microtubule binding domain (4R) with the help of molecular docking experiments. Finally, the constituents present in the methanolic extract could possibly contribute to the established anti-aggregation activity for this extract and this in-depth analysis of the chemical composition of R. terebrata could guide further research into its medicinal properties and potential uses.

  1. Secondary Metabolites in Ramalina terebrata Detected by UHPLC/ESI/MS/MS and Identification of Parietin as Tau Protein Inhibitor

    PubMed Central

    Cornejo, Alberto; Salgado, Francisco; Caballero, Julio; Vargas, Reinaldo; Simirgiotis, Mario; Areche, Carlos

    2016-01-01

    Liquid chromatography coupled with mass spectrometry is an outstanding methodology for fast analysis of phenolic compounds in biological samples. Twenty two compounds were quickly and accurately identified in the methanolic extract of the Antarctic lichen Ramalina terebrata for the first time using ultra high pressure liquid chromatography coupled with photodiode array detector and high resolution mass spectrometry (UHPLC-PDA-Q/Orbitrap/MS/MS). In addition, the extract and the four compounds isolated from this species were tested for the inhibitory activity of tau protein aggregation, which is a protein involved in Alzheimer’s disease (AD). All compounds showed null activity with the exception of parietin, which it was able to inhibit aggregation process of tau in a concentration range between 3 µg/mL (10 µM) to 28 µg/mL (100 µM). In addition, we show how parietin interact with tau 306VQIVYK311 hexapeptide inside of the microtubule binding domain (4R) with the help of molecular docking experiments. Finally, the constituents present in the methanolic extract could possibly contribute to the established anti-aggregation activity for this extract and this in-depth analysis of the chemical composition of R. terebrata could guide further research into its medicinal properties and potential uses. PMID:27548142

  2. Data Analysis Approaches for the Risk-Informed Safety Margins Characterization Toolkit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mandelli, Diego; Alfonsi, Andrea; Maljovec, Daniel P.

    2016-09-01

    In the past decades, several numerical simulation codes have been employed to simulate accident dynamics (e.g., RELAP5-3D, RELAP-7, MELCOR, MAAP). In order to evaluate the impact of uncertainties into accident dynamics, several stochastic methodologies have been coupled with these codes. These stochastic methods range from classical Monte-Carlo and Latin Hypercube sampling to stochastic polynomial methods. Similar approaches have been introduced into the risk and safety community where stochastic methods (such as RAVEN, ADAPT, MCDET, ADS) have been coupled with safety analysis codes in order to evaluate the safety impact of timing and sequencing of events. These approaches are usually calledmore » Dynamic PRA or simulation-based PRA methods. These uncertainties and safety methods usually generate a large number of simulation runs (database storage may be on the order of gigabytes or higher). The scope of this paper is to present a broad overview of methods and algorithms that can be used to analyze and extract information from large data sets containing time dependent data. In this context, “extracting information” means constructing input-output correlations, finding commonalities, and identifying outliers. Some of the algorithms presented here have been developed or are under development within the RAVEN statistical framework.« less

  3. A coupled stochastic inverse-management framework for dealing with nonpoint agriculture pollution under groundwater parameter uncertainty

    NASA Astrophysics Data System (ADS)

    Llopis-Albert, Carlos; Palacios-Marqués, Daniel; Merigó, José M.

    2014-04-01

    In this paper a methodology for the stochastic management of groundwater quality problems is presented, which can be used to provide agricultural advisory services. A stochastic algorithm to solve the coupled flow and mass transport inverse problem is combined with a stochastic management approach to develop methods for integrating uncertainty; thus obtaining more reliable policies on groundwater nitrate pollution control from agriculture. The stochastic inverse model allows identifying non-Gaussian parameters and reducing uncertainty in heterogeneous aquifers by constraining stochastic simulations to data. The management model determines the spatial and temporal distribution of fertilizer application rates that maximizes net benefits in agriculture constrained by quality requirements in groundwater at various control sites. The quality constraints can be taken, for instance, by those given by water laws such as the EU Water Framework Directive (WFD). Furthermore, the methodology allows providing the trade-off between higher economic returns and reliability in meeting the environmental standards. Therefore, this new technology can help stakeholders in the decision-making process under an uncertainty environment. The methodology has been successfully applied to a 2D synthetic aquifer, where an uncertainty assessment has been carried out by means of Monte Carlo simulation techniques.

  4. Detection of beryllium in digested autopsy tissues by inductively coupled plasma mass spectrometry using a high matrix interface configuration.

    PubMed

    Larivière, Dominic; Tremblay, Mélodie; Durand-Jézéquel, Myriam; Tolmachev, Sergei

    2012-04-01

    This article describes a robust methodology using the combination of instrumental design (high matrix interface-HMI), sample dilution and internal standardization for the quantification of beryllium (Be) in various digested autopsy tissues using inductively coupled plasma mass spectrometry. The applicability of rhodium as a proper internal standard for Be was demonstrated in three types of biological matrices (i.e., femur, hair, lung tissues). Using HMI, it was possible to achieve instrumental detection limits and sensitivity of 0.6 ng L(-1) and 157 cps L ng(-1), respectively. Resilience to high salt matrices of the HMI setup was also highlighted using bone mimicking solution ([Ca(2+)] = 26 to 1,400 mg L(-1)), providing a 14-fold increase in tolerance and a 2.7-fold decrease in method detection limit compared to optimized experimental conditions obtained without the HMI configuration. Precision of the methodology to detect low levels of Be in autopsy samples was demonstrated using hair and blood certified reference materials. Be concentration ranging from 0.015 to 255 μg kg(-1) in autopsy samples obtained from the U.S. Transuranium and Uranium Registries were measured using the methodology presented.

  5. Lipidomic Analysis of Endocannabinoid Signaling: Targeted Metabolite Identification and Quantification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keereetaweep, Jantana; Chapman, Kent D.

    The endocannabinoidsN-arachidonoylethanolamide (or anandamide, AEA) and 2-arachidonoylglycerol (2-AG) belong to the larger groups ofN-acylethanolamines (NAEs) and monoacylglycerol (MAG) lipid classes, respectively. They are biologically active lipid molecules that activate G-protein-coupled cannabinoid receptors found in various organisms. After AEA and 2-AG were discovered in the 1990s, they have been extensively documented to have a broad range of physiological functions. Along with AEA, several NAEs, for example,N-palmitoylethanolamine (PEA),N-stearoylethanolamine (SEA), andN-oleoylethanolamine (OEA) are also present in tissues, usually at much larger concentrations than AEA. Any perturbation that involves the endocannabinoid pathway may subsequently alter basal level or metabolism of these lipid mediators. Further,more » the altered levels of these molecules often reflect pathological conditions associated with tissue damage. Robust and sensitive methodologies to analyze these lipid mediators are essential to understanding how they act as endocannabinoids. Lastly, the recent advances in mass spectrometry allow researchers to develop lipidomics approaches and several methodologies have been proposed to quantify endocannabinoids in various biological systems.« less

  6. Optimization of Aqueous Ammonia Soaking of manure fibers by Response Surface Methodology for unlocking the methane potential of swine manure.

    PubMed

    Lymperatou, Anna; Gavala, Hariklia N; Skiadas, Ioannis V

    2017-11-01

    Swine manure mono-digestion often results to economically non-feasible processes, due to the high dilution and ammonia concentration together with the low degradation rates it presents. The effects of different parameters of Aqueous Ammonia Soaking (AAS) as a pretreatment for improving the digestion of manure fibers when coupled to an ammonia removal step were investigated in this study. Response Surface Methodology was followed and the influence and interactions of the following AAS parameters were studied: NH 3 concentration, duration and solid-to-liquid ratio. The mild conditions found to be optimal (7%w/w NH 3 , 96h, and 0.16kg/L) in combination to a significant increase of the short term CH 4 yield (244% in 17days), make this pretreatment a promising solution for improving swine manure mono-digestion. Furthermore, compositional analysis of the manure fibers revealed significant solubilization of hemicellulose, while no lignin removal or loss of cellulose occurred under optimal conditions. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Lipidomic Analysis of Endocannabinoid Signaling: Targeted Metabolite Identification and Quantification

    DOE PAGES

    Keereetaweep, Jantana; Chapman, Kent D.

    2016-01-01

    The endocannabinoidsN-arachidonoylethanolamide (or anandamide, AEA) and 2-arachidonoylglycerol (2-AG) belong to the larger groups ofN-acylethanolamines (NAEs) and monoacylglycerol (MAG) lipid classes, respectively. They are biologically active lipid molecules that activate G-protein-coupled cannabinoid receptors found in various organisms. After AEA and 2-AG were discovered in the 1990s, they have been extensively documented to have a broad range of physiological functions. Along with AEA, several NAEs, for example,N-palmitoylethanolamine (PEA),N-stearoylethanolamine (SEA), andN-oleoylethanolamine (OEA) are also present in tissues, usually at much larger concentrations than AEA. Any perturbation that involves the endocannabinoid pathway may subsequently alter basal level or metabolism of these lipid mediators. Further,more » the altered levels of these molecules often reflect pathological conditions associated with tissue damage. Robust and sensitive methodologies to analyze these lipid mediators are essential to understanding how they act as endocannabinoids. Lastly, the recent advances in mass spectrometry allow researchers to develop lipidomics approaches and several methodologies have been proposed to quantify endocannabinoids in various biological systems.« less

  8. Development of garlic bioactive compounds analytical methodology based on liquid phase microextraction using response surface design. Implications for dual analysis: Cooked and biological fluids samples.

    PubMed

    Ramirez, Daniela Andrea; Locatelli, Daniela Ana; Torres-Palazzolo, Carolina Andrea; Altamirano, Jorgelina Cecilia; Camargo, Alejandra Beatriz

    2017-01-15

    Organosulphur compounds (OSCs) present in garlic (Allium sativum L.) are responsible of several biological properties. Functional foods researches indicate the importance of quantifying these compounds in food matrices and biological fluids. For this purpose, this paper introduces a novel methodology based on dispersive liquid-liquid microextraction (DLLME) coupled to high performance liquid chromatography with ultraviolet detector (HPLC-UV) for the extraction and determination of organosulphur compounds in different matrices. The target analytes were allicin, (E)- and (Z)-ajoene, 2-vinyl-4H-1,2-dithiin (2-VD), diallyl sulphide (DAS) and diallyl disulphide (DADS). The microextraction technique was optimized using an experimental design, and the analytical performance was evaluated under optimum conditions. The desirability function presented an optimal value for 600μL of chloroform as extraction solvent using acetonitrile as dispersant. The method proved to be reliable, precise and accurate. It was successfully applied to determine OSCs in cooked garlic samples as well as blood plasma and digestive fluids. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Outsourcing strategy and tendering methodology for the operation and maintenance of CERN’s cryogenic facilities

    NASA Astrophysics Data System (ADS)

    Serio, L.; Bremer, J.; Claudet, S.; Delikaris, D.; Ferlin, G.; Ferrand, F.; Pezzetti, M.; Pirotte, O.

    2017-12-01

    CERN operates and maintains the world largest cryogenic infrastructure ranging from ageing but well maintained installations feeding detectors, test facilities and general services, to the state-of-the-art cryogenic system serving the flagship LHC machine complex. A study was conducted and a methodology proposed to outsource to industry the operation and maintenance of the whole cryogenic infrastructure. The cryogenic installations coupled to non LHC-detectors, test facilities and general services infrastructure have been fully outsourced for operation and maintenance on the basis of performance obligations. The contractor is responsible for the operational performance of the installations based on a yearly operation schedule provided by CERN. The maintenance of the cryogenic system serving the LHC machine and its detectors has been outsourced on the basis of tasks oriented obligations, monitored by key performance indicators. CERN operation team, with the support of the contractor operation team, remains responsible for the operational strategy and performances. We report the analysis, strategy, definition of the requirements and technical specifications as well as the achieved technical and economic performances after one year of operation.

  10. Lipidomic Analysis of Endocannabinoid Signaling: Targeted Metabolite Identification and Quantification

    PubMed Central

    Keereetaweep, Jantana; Chapman, Kent D.

    2016-01-01

    The endocannabinoids N-arachidonoylethanolamide (or anandamide, AEA) and 2-arachidonoylglycerol (2-AG) belong to the larger groups of N-acylethanolamines (NAEs) and monoacylglycerol (MAG) lipid classes, respectively. They are biologically active lipid molecules that activate G-protein-coupled cannabinoid receptors found in various organisms. After AEA and 2-AG were discovered in the 1990s, they have been extensively documented to have a broad range of physiological functions. Along with AEA, several NAEs, for example, N-palmitoylethanolamine (PEA), N-stearoylethanolamine (SEA), and N-oleoylethanolamine (OEA) are also present in tissues, usually at much larger concentrations than AEA. Any perturbation that involves the endocannabinoid pathway may subsequently alter basal level or metabolism of these lipid mediators. Further, the altered levels of these molecules often reflect pathological conditions associated with tissue damage. Robust and sensitive methodologies to analyze these lipid mediators are essential to understanding how they act as endocannabinoids. The recent advances in mass spectrometry allow researchers to develop lipidomics approaches and several methodologies have been proposed to quantify endocannabinoids in various biological systems. PMID:26839710

  11. A local quasicontinuum method for 3D multilattice crystalline materials: Application to shape-memory alloys

    NASA Astrophysics Data System (ADS)

    Sorkin, V.; Elliott, R. S.; Tadmor, E. B.

    2014-07-01

    The quasicontinuum (QC) method, in its local (continuum) limit, is applied to materials with a multilattice crystal structure. Cauchy-Born (CB) kinematics, which accounts for the shifts of the crystal motif, is used to relate atomic motions to continuum deformation gradients. To avoid failures of CB kinematics, QC is augmented with a phonon stability analysis that detects lattice period extensions and identifies the minimum required periodic cell size. This approach is referred to as Cascading Cauchy-Born kinematics (CCB). In this paper, the method is described and developed. It is then used, along with an effective interaction potential (EIP) model for shape-memory alloys, to simulate the shape-memory effect and pseudoelasticity in a finite specimen. The results of these simulations show that (i) the CCB methodology is an essential tool that is required in order for QC-type simulations to correctly capture the first-order phase transitions responsible for these material behaviors, and (ii) that the EIP model adopted in this work coupled with the QC/CCB methodology is capable of predicting the characteristic behavior found in shape-memory alloys.

  12. Investigation of Cr(VI) adsorption onto chemically treated Helianthus annuus: optimization using response surface methodology.

    PubMed

    Jain, Monika; Garg, V K; Kadirvelu, K

    2011-01-01

    In the present study, chemically treated Helianthus annuus flowers (SHC) were used to optimize the removal efficiency for Cr(VI) by applying Response Surface Methodological approach. The surface structure of SHC was analyzed by Scanning Electron Microscopy (SEM) coupled with Energy Dispersive X-ray Analysis (EDX). Batch mode experiments were also carried out to assess the adsorption equilibrium in aqueous solution. The adsorption capacity (qe) was found to be 7.2 mg/g. The effect of three parameters, that is pH of the solution (2.0-7.0), initial concentration (10-70 mg/L) and adsorbent dose (0.05-0.5 g/100 mL) was studied for the removal of Cr(VI) by SHC. Box-Behnken model was used as an experimental design. The optimum pH, adsorbent dose and initial Cr(VI) concentration were found to be 2.0, 5.0 g/L and 40 mg/L, respectively. Under these conditions, removal efficiency of Cr(VI) was found to be 90.8%. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Metabolic Toxicity Screening Using Electrochemiluminescence Arrays Coupled with Enzyme-DNA Biocolloid Reactors and Liquid Chromatography-Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Hvastkovs, Eli, G.; Schenkman, John B.; Rusling, James, F.

    2012-07-01

    New chemicals or drugs must be guaranteed safe before they can be marketed. Despite widespread use of bioassay panels for toxicity prediction, products that are toxic to a subset of the population often are not identified until clinical trials. This article reviews new array methodologies based on enzyme/DNA films that form and identify DNA-reactive metabolites that are indicators of potentially genotoxic species. This molecularly based methodology is designed in a rapid screening array that utilizes electrochemiluminescence (ECL) to detect metabolite-DNA reactions, as well as biocolloid reactors that provide the DNA adducts and metabolites for liquid chromatography-mass spectrometry (LC-MS) analysis. ECL arrays provide rapid toxicity screening, and the biocolloid reactor LC-MS approach provides a valuable follow-up on structure, identification, and formation rates of DNA adducts for toxicity hits from the ECL array screening. Specific examples using this strategy are discussed. Integration of high-throughput versions of these toxicity-screening methods with existing drug toxicity bioassays should allow for better human toxicity prediction as well as more informed decision making regarding new chemical and drug candidates.

  14. Evaluating Coupled Human-Hydrologic Systems in High Altitude Regions: A Case Study of the Arun Watershed, Eastern Nepal

    NASA Astrophysics Data System (ADS)

    Voss, K.; Bookhagen, B.; Tague, C.; Lopez-Carr, D.

    2014-12-01

    The Himalaya exhibit dynamic ecological, hydrological, and climatic extremes that magnify the variability and extent of natural hazards, resulting in destruction to both physical and human landscapes. Coupled with poverty, these factors intensify local communities' vulnerability to climate change. This study highlights the Arun watershed in eastern Nepal as a case study to evaluate how local communities in high altitude regions are managing their water for domestic and agricultural needs while coping with extreme events, such as floods and landslides. Remotely-sensed precipitation, snowpack and glacial extent data from the past decade are combined with preliminary results from extensive field-based community surveys in the Arun watershed. The analysis of remotely-sensed data will describe seasonal trends in water availability, glacial lake growth, and the spatial variation of these trends within the basin. These hydrologic changes will be linked to the human survey analysis, which will provide an understanding of locals' perceptions of water challenges and the current water management strategies within the basin. Particular attention will be given to a comparison between the eastern and western tributaries of the Arun River, where the catchments are mainly rain-fed (eastern) versus glacial-fed (western). This contrast will highlight how different hydrologic scenarios evidenced from remote-sensing data motivate diverse human water management responses as defined in field surveys. A particular focus will be given to management decisions related to agriculture expansion and hydropower development. This synthesis of remote-sensing and social research methodologies provides a valuable perspective on coupled human-hydrologic systems.

  15. In vitro digestion method for estimation of copper bioaccessibility in Açaí berry.

    PubMed

    Ruzik, Lena; Wojcieszek, Justyna

    Copper is an essential trace element for humans and its deficiency can lead to numerous diseases. A lot of mineral supplements are available to increase intake of copper. Unfortunately, only a part of the total concentration of elements is available for human body. Thus, the aim of the study was to determine bioaccessibility of copper in Açai berry, known as a "superfood" because of its antioxidant qualities. An analytical methodology was based on size exclusion chromatography (SEC) coupled to a mass spectrometer with inductively coupled plasma (ICP MS) and on capillary liquid chromatography coupled to tandem mass spectrometer with electrospray ionization (µ-HPLC-ESI MS/MS). To extract various copper compounds, berries were treated with the following buffers: ammonium acetate, Tris-HCl, and sodium dodecyl sulfate (SDS). The best extraction efficiency of copper was obtained for SDS extract (88 %), while results obtained for Tris-HCl and ammonium acetate were very similar (47 and 48 %, respectively). After SEC-ICP-MS analysis, main signal was obtained for all extracts in the region of molecular mass about 17 kDa. A two-step model simulated gastric (pepsin) and gastrointestinal (pancreatin) digestion was used to obtain the knowledge about copper bioaccessibility. Copper compounds present in Açai berry were found to be highly bioaccessible. The structures of five copper complexes with amino acids such as aspartic acid, tyrosine, phenylalanine, were proposed after µ-HPLC-ESI MS/MS analysis. Obtained results show that copper in enzymatic extracts is bound by amino acids and peptides what leads to better bioavailability of copper for human body.

  16. Entangled trajectories Hamiltonian dynamics for treating quantum nuclear effects

    NASA Astrophysics Data System (ADS)

    Smith, Brendan; Akimov, Alexey V.

    2018-04-01

    A simple and robust methodology, dubbed Entangled Trajectories Hamiltonian Dynamics (ETHD), is developed to capture quantum nuclear effects such as tunneling and zero-point energy through the coupling of multiple classical trajectories. The approach reformulates the classically mapped second-order Quantized Hamiltonian Dynamics (QHD-2) in terms of coupled classical trajectories. The method partially enforces the uncertainty principle and facilitates tunneling. The applicability of the method is demonstrated by studying the dynamics in symmetric double well and cubic metastable state potentials. The methodology is validated using exact quantum simulations and is compared to QHD-2. We illustrate its relationship to the rigorous Bohmian quantum potential approach, from which ETHD can be derived. Our simulations show a remarkable agreement of the ETHD calculation with the quantum results, suggesting that ETHD may be a simple and inexpensive way of including quantum nuclear effects in molecular dynamics simulations.

  17. Calculation of the exchange coupling constants of copper binuclear systems based on spin-flip constricted variational density functional theory.

    PubMed

    Zhekova, Hristina R; Seth, Michael; Ziegler, Tom

    2011-11-14

    We have recently developed a methodology for the calculation of exchange coupling constants J in weakly interacting polynuclear metal clusters. The method is based on unrestricted and restricted second order spin-flip constricted variational density functional theory (SF-CV(2)-DFT) and is here applied to eight binuclear copper systems. Comparison of the SF-CV(2)-DFT results with experiment and with results obtained from other DFT and wave function based methods has been made. Restricted SF-CV(2)-DFT with the BH&HLYP functional yields consistently J values in excellent agreement with experiment. The results acquired from this scheme are comparable in quality to those obtained by accurate multi-reference wave function methodologies such as difference dedicated configuration interaction and the complete active space with second-order perturbation theory. © 2011 American Institute of Physics

  18. Simulating Afterburn with LLNL Hydrocodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daily, L D

    2004-06-11

    Presented here is a working methodology for adapting a Lawrence Livermore National Laboratory (LLNL) developed hydrocode, ALE3D, to simulate weapon damage effects when afterburn is a consideration in the blast propagation. Experiments have shown that afterburn is of great consequence in enclosed environments (i.e. bomb in tunnel scenario, penetrating conventional munition in a bunker, or satchel charge placed in a deep underground facility). This empirical energy deposition methodology simulates the anticipated addition of kinetic energy that has been demonstrated by experiment (Kuhl, et. al. 1998), without explicitly solving the chemistry, or resolving the mesh to capture small-scale vorticity. This effortmore » is intended to complement the existing capability of either coupling ALE3D blast simulations with DYNA3D or performing fully coupled ALE3D simulations to predict building or component failure, for applications in National Security offensive strike planning as well as Homeland Defense infrastructure protection.« less

  19. Toward a Comprehensive Approach to the Collection and Analysis of Pica Substances, with Emphasis on Geophagic Materials

    PubMed Central

    Young, Sera L.; Wilson, M. Jeffrey; Miller, Dennis; Hillier, Stephen

    2008-01-01

    Background Pica, the craving and subsequent consumption of non-food substances such as earth, charcoal, and raw starch, has been an enigma for more than 2000 years. Currently, there are little available data for testing major hypotheses about pica because of methodological limitations and lack of attention to the problem. Methodology In this paper we critically review procedures and guidelines for interviews and sample collection that are appropriate for a wide variety of pica substances. In addition, we outline methodologies for the physical, mineralogical, and chemical characterization of these substances, with particular focus on geophagic soils and clays. Many of these methods are standard procedures in anthropological, soil, or nutritional sciences, but have rarely or never been applied to the study of pica. Principal Findings Physical properties of geophagic materials including color, particle size distribution, consistency and dispersion/flocculation (coagulation) should be assessed by appropriate methods. Quantitative mineralogical analyses by X-ray diffraction should be made on bulk material as well as on separated clay fractions, and the various clay minerals should be characterized by a variety of supplementary tests. Concentrations of minerals should be determined using X-ray fluorescence for non-food substances and inductively coupled plasma–atomic emission spectroscopy for food-like substances. pH, salt content, cation exchange capacity, organic carbon content and labile forms of iron oxide should also be determined. Finally, analyses relating to biological interactions are recommended, including determination of the bioavailability of nutrients and other bioactive components from pica substances, as well as their detoxification capacities and parasitological profiles. Significance This is the first review of appropriate methodologies for the study of human pica. The comprehensive and multi-disciplinary approach to the collection and analysis of pica substances detailed here is a necessary preliminary step to understanding the nutritional enigma of non-food consumption. PMID:18773081

  20. The prospect of modern thermomechanics in structural integrity calculations of large-scale pressure vessels

    NASA Astrophysics Data System (ADS)

    Fekete, Tamás

    2018-05-01

    Structural integrity calculations play a crucial role in designing large-scale pressure vessels. Used in the electric power generation industry, these kinds of vessels undergo extensive safety analyses and certification procedures before deemed feasible for future long-term operation. The calculations are nowadays directed and supported by international standards and guides based on state-of-the-art results of applied research and technical development. However, their ability to predict a vessel's behavior under accidental circumstances after long-term operation is largely limited by the strong dependence of the analysis methodology on empirical models that are correlated to the behavior of structural materials and their changes during material aging. Recently a new scientific engineering paradigm, structural integrity has been developing that is essentially a synergistic collaboration between a number of scientific and engineering disciplines, modeling, experiments and numerics. Although the application of the structural integrity paradigm highly contributed to improving the accuracy of safety evaluations of large-scale pressure vessels, the predictive power of the analysis methodology has not yet improved significantly. This is due to the fact that already existing structural integrity calculation methodologies are based on the widespread and commonly accepted 'traditional' engineering thermal stress approach, which is essentially based on the weakly coupled model of thermomechanics and fracture mechanics. Recently, a research has been initiated in MTA EK with the aim to review and evaluate current methodologies and models applied in structural integrity calculations, including their scope of validity. The research intends to come to a better understanding of the physical problems that are inherently present in the pool of structural integrity problems of reactor pressure vessels, and to ultimately find a theoretical framework that could serve as a well-grounded theoretical foundation for a new modeling framework of structural integrity. This paper presents the first findings of the research project.

  1. A novel approach to the dynamical complexity of the Earth's magnetosphere at geomagnetic storm time-scales based on recurrences

    NASA Astrophysics Data System (ADS)

    Donner, Reik; Balasis, Georgios; Stolbova, Veronika; Wiedermann, Marc; Georgiou, Marina; Kurths, Jürgen

    2016-04-01

    Magnetic storms are the most prominent global manifestations of out-of-equilibrium magnetospheric dynamics. Investigating the dynamical complexity exhibited by geomagnetic observables can provide valuable insights into relevant physical processes as well as temporal scales associated with this phenomenon. In this work, we introduce several innovative data analysis techniques enabling a quantitative analysis of the Dst index non-stationary behavior. Using recurrence quantification analysis (RQA) and recurrence network analysis (RNA), we obtain a variety of complexity measures serving as markers of quiet- and storm-time magnetospheric dynamics. We additionally apply these techniques to the main driver of Dst index variations, the V BSouth coupling function and interplanetary medium parameters Bz and Pdyn in order to discriminate internal processes from the magnetosphere's response directly induced by the external forcing by the solar wind. The derived recurrence-based measures allow us to improve the accuracy with which magnetospheric storms can be classified based on ground-based observations. The new methodology presented here could be of significant interest for the space weather research community working on time series analysis for magnetic storm forecasts.

  2. Integrated dynamic analysis simulation of space stations with controllable solar array

    NASA Technical Reports Server (NTRS)

    Heinrichs, J. A.; Fee, J. J.

    1972-01-01

    A methodology is formulated and presented for the integrated structural dynamic analysis of space stations with controllable solar arrays and non-controllable appendages. The structural system flexibility characteristics are considered in the dynamic analysis by a synthesis technique whereby free-free space station modal coordinates and cantilever appendage coordinates are inertially coupled. A digital simulation of this analysis method is described and verified by comparison of interaction load solutions with other methods of solution. Motion equations are simulated for both the zero gravity and artificial gravity (spinning) orbital conditions. Closed loop controlling dynamics for both orientation control of the arrays and attitude control of the space station are provided in the simulation by various generic types of controlling systems. The capability of the simulation as a design tool is demonstrated by utilizing typical space station and solar array structural representations and a specific structural perturbing force. Response and interaction load solutions are presented for this structural configuration and indicate the importance of using an integrated type analysis for the predictions of structural interactions.

  3. Temperature Control in a Franz Diffusion Cell Skin Sonoporation Setup

    NASA Astrophysics Data System (ADS)

    Robertson, Jeremy; Becker, Sid

    2017-11-01

    In vitro experimental studies that investigate ultrasound enhanced transdermal drug delivery employ Franz diffusion cells. Because of absorption, the temperature of the coupling fluid often increases drastically during the ultrasound application. The current methodologies for controlling the coupling fluid temperature require either replacement of the coupling fluid during the experiment or the application of a time consuming duty cycle. This paper introduces a novel method for temperature control that allows for a wide variety of coupling fluid temperatures to be maintained. This method employs a peristaltic pump to circulate the coupling fluid through a thermoelectric cooling device. This temperature control method allowed for an investigation into the role of coupling fluid temperature on the inertial cavitation that impacts the skin aperture (inertial cavitation is thought to be the main cause of ultrasound induced skin permeability increase). Both foil pitting and passive cavitation detection experiments indicated that effective inertial cavitation activity decreases with increasing coupling fluid temperature. This finding suggests that greater skin permeability enhancement can be achieved if a lower coupling fluid temperature is maintained during skin insonation.

  4. Pd-mediated rapid cross-couplings using [(11) C]methyl iodide: groundbreaking labeling methods in (11) C radiochemistry.

    PubMed

    Doi, Hisashi

    2015-03-01

    Prof. Bengt Långström is a pioneer in the field of chemistry-driven positron emission tomography (PET) imaging. He has developed a variety of excellent radiolabeling methodologies using the methods of organic chemistry, with the aim of widening the potential of PET in the study of life. Among his groundbreaking achievements in (11) C radiochemistry, there is the discovery of the Pd-mediated rapid cross-coupling reaction using [(11) C]methyl iodide. It was first reported by his Uppsala group in 1994-1995 and was further investigated by his and other groups with a view of enhancing its generality and practicability. This reaction is currently considered one of the basic methods for (11) C-labeling of low-weight organic compounds. This paper presents a short summary of the background and the development of Pd-mediated rapid cross-couplings of [(11) C]methyl iodide, with a focus not only on organostannanes, but also on organoboranes, organozincs, and terminal acetylene compounds. All these reactions have proven to be dependable (11) C-labeling methodologies that use chemically reliable carbon-carbon bond formation reactions. Copyright © 2015 John Wiley & Sons, Ltd.

  5. Cultural and ethical challenges of assisted reproductive technologies in the management of infertility among the Yoruba of southwestern Nigeria.

    PubMed

    Jegede, Ayodele S; Fayemiwo, Adetona S

    2010-06-01

    This paper discusses the cultural and ethical issues arising from the use of Assisted Reproductive Health Technologies. Twenty-five In-depth interviews were conducted with 5 couples of reproductive age who have never conceived or brought pregnancy to term after one year of unprotected intercourse, 4 adult males, 4 adult females, a gyneacologist, a nurse, a herbalist and 2 religious leaders in Ibadan, Nigeria. Content analysis was used for data analysis. Legitimacy of children born through ART, religious obligation, patriarchy, polygamy and value of children are cultural issues surrounding ARTs while decision making about it, discrimination against children born through ART, psychological problems and loss of self esteem, side effects of the technologies and the cost of accessing them are the ethical challenges. The findings have methodological implications for conducting infertility research in non-western societies.

  6. Continuous Trailing-Edge Flaps for Primary Flight Control of a Helicopter Main Rotor

    NASA Technical Reports Server (NTRS)

    Thornburgh, Robert P.; Kreshock, Andrew R.; Wilbur, Matthew L.; Sekula, Martin K.; Shen, Jinwei

    2014-01-01

    The use of continuous trailing-edge flaps (CTEFs) for primary flight control of a helicopter main rotor is studied. A practical, optimized bimorph design with Macro-Fiber Composite actuators is developed for CTEF control, and a coupled structures and computational fluid dynamics methodology is used to study the fundamental behavior of an airfoil with CTEFs. These results are used within a comprehensive rotorcraft analysis model to study the control authority requirements of the CTEFs when utilized for primary flight control of a utility class helicopter. A study of the effect of blade root pitch index (RPI) on CTEF control authority is conducted, and the impact of structural and aerodynamic model complexity on the comprehensive analysis results is presented. The results show that primary flight control using CTEFs is promising; however, a more viable option may include the control of blade RPI, as well.

  7. Numerical simulation of the SAGD process coupled with geomechanical behavior

    NASA Astrophysics Data System (ADS)

    Li, Pingke

    Canada has vast oil sand resources. While a large portion of this resource can be recovered by surface mining techniques, a majority is located at depths requiring the application of in situ recovery technologies. Although a number of in situ recovery technologies exist, the steam assisted gravity drainage (SAGD) process has emerged as one of the most promising technologies to develop the in situ oil sands resources. During the SAGD operations, saturated steam is continuously injected into the oil sands reservoir, which induces pore pressure and stress variations. As a result, reservoir parameters and processes may also vary, particularly when tensile and shear failure occur. This geomechanical effect is obvious for oil sands material because oil sands have the in situ interlocked fabric. The conventional reservoir simulation generally does not take this coupled mechanism into consideration. Therefore, this research is to improve the reservoir simulation techniques of the SAGD process applied in the development of oil sands and heavy oil reservoirs. The analyses of the decoupled reservoir geomechanical simulation results show that the geomechanical behavior in SAGD has obvious impact on reservoir parameters, such as absolute permeability. The issues with the coupled reservoir geomechanical simulations of the SAGD process have been clarified and the permeability variations due to geomechanical behaviors in the SAGD process investigated. A methodology of sequentially coupled reservoir geomechanical simulation technique was developed based on the reservoir simulator, EXOTHERM, and the geomechanical simulator, FLAC. In addition, a representative geomechanical model of oil sands material was summarized in this research. Finally, this reservoir geomechanical simulation methodology was verified with the UTF Phase A SAGD project and applied in a SAGD operation with gas-over-bitumen geometry. Based on this methodology, the geomechanical effect on the SAGD production performance can be quantified. This research program involves the analyses of laboratory testing results obtained from literatures. However, no laboratory testing was conducted in the process of this research.

  8. Spectroscopic and Chemometric Analysis of Binary and Ternary Edible Oil Mixtures: Qualitative and Quantitative Study.

    PubMed

    Jović, Ozren; Smolić, Tomislav; Primožič, Ines; Hrenar, Tomica

    2016-04-19

    The aim of this study was to investigate the feasibility of FTIR-ATR spectroscopy coupled with the multivariate numerical methodology for qualitative and quantitative analysis of binary and ternary edible oil mixtures. Four pure oils (extra virgin olive oil, high oleic sunflower oil, rapeseed oil, and sunflower oil), as well as their 54 binary and 108 ternary mixtures, were analyzed using FTIR-ATR spectroscopy in combination with principal component and discriminant analysis, partial least-squares, and principal component regression. It was found that the composition of all 166 samples can be excellently represented using only the first three principal components describing 98.29% of total variance in the selected spectral range (3035-2989, 1170-1140, 1120-1100, 1093-1047, and 930-890 cm(-1)). Factor scores in 3D space spanned by these three principal components form a tetrahedral-like arrangement: pure oils being at the vertices, binary mixtures at the edges, and ternary mixtures on the faces of a tetrahedron. To confirm the validity of results, we applied several cross-validation methods. Quantitative analysis was performed by minimization of root-mean-square error of cross-validation values regarding the spectral range, derivative order, and choice of method (partial least-squares or principal component regression), which resulted in excellent predictions for test sets (R(2) > 0.99 in all cases). Additionally, experimentally more demanding gas chromatography analysis of fatty acid content was carried out for all specimens, confirming the results obtained by FTIR-ATR coupled with principal component analysis. However, FTIR-ATR provided a considerably better model for prediction of mixture composition than gas chromatography, especially for high oleic sunflower oil.

  9. Comprehensive gas chromatography coupled to mass spectrometry for the separation of pesticides in a very complex matrix.

    PubMed

    Mondello, Luigi; Casilli, Alessandro; Tranchida, Peter Quinto; Lo Presti, Maria; Dugo, Paola; Dugo, Giovanni

    2007-11-01

    The present research is focused on the development of a comprehensive two-dimensional gas chromatography-rapid scanning quadrupole mass spectrometric (GC x GC-qMS) methodology for the analysis of trace-amount pesticides contained in a complex real-world sample. Reliable peak assignment was carried out by using a recently developed, dedicated pesticide MS library (for comprehensive GC analysis), characterized by a twin-filter search procedure, the first based on a minimum degree of spectral similarity and the second on the interactive use of linear retention indices (LRI). The library was constructed by subjecting mixtures of commonly used pesticides to GC x GC-qMS analysis and then deriving their pure mass spectra and LRI values. In order to verify the effectiveness of the approach, a pesticide-contaminated red grapefruit extract was analysed. The certainty of peak assignment was attained by exploiting both the enhanced separation power of dual-oven GC x GC and the highly effective search procedure.

  10. A standard based approach for biomedical knowledge representation.

    PubMed

    Farkash, Ariel; Neuvirth, Hani; Goldschmidt, Yaara; Conti, Costanza; Rizzi, Federica; Bianchi, Stefano; Salvi, Erika; Cusi, Daniele; Shabo, Amnon

    2011-01-01

    The new generation of health information standards, where the syntax and semantics of the content is explicitly formalized, allows for interoperability in healthcare scenarios and analysis in clinical research settings. Studies involving clinical and genomic data include accumulating knowledge as relationships between genotypic and phenotypic information as well as associations within the genomic and clinical worlds. Some involve analysis results targeted at a specific disease; others are of a predictive nature specific to a patient and may be used by decision support applications. Representing knowledge is as important as representing data since data is more useful when coupled with relevant knowledge. Any further analysis and cross-research collaboration would benefit from persisting knowledge and data in a unified way. This paper describes a methodology used in Hypergenes, an EC FP7 project targeting Essential Hypertension, which captures data and knowledge using standards such as HL7 CDA and Clinical Genomics, aligned with the CEN EHR 13606 specification. We demonstrate the benefits of such an approach for clinical research as well as in healthcare oriented scenarios.

  11. Study of archaeological coins of different dynasties using libs coupled with multivariate analysis

    NASA Astrophysics Data System (ADS)

    Awasthi, Shikha; Kumar, Rohit; Rai, G. K.; Rai, A. K.

    2016-04-01

    Laser Induced Breakdown Spectroscopy (LIBS) is an atomic emission spectroscopic technique having unique capability of an in-situ monitoring tool for detection and quantification of elements present in different artifacts. Archaeological coins collected form G.R. Sharma Memorial Museum; University of Allahabad, India has been analyzed using LIBS technique. These coins were obtained from excavation of Kausambi, Uttar Pradesh, India. LIBS system assembled in the laboratory (laser Nd:YAG 532 nm, 4 ns pulse width FWHM with Ocean Optics LIBS 2000+ spectrometer) is employed for spectral acquisition. The spectral lines of Ag, Cu, Ca, Sn, Si, Fe and Mg are identified in the LIBS spectra of different coins. LIBS along with Multivariate Analysis play an effective role for classification and contribution of spectral lines in different coins. The discrimination between five coins with Archaeological interest has been carried out using Principal Component Analysis (PCA). The results show the potential relevancy of the methodology used in the elemental identification and classification of artifacts with high accuracy and robustness.

  12. Ultra-high-performance liquid chromatography-Time-of-flight high resolution mass spectrometry to quantify acidic drugs in wastewater.

    PubMed

    Becerra-Herrera, Mercedes; Honda, Luis; Richter, Pablo

    2015-12-04

    A novel analytical approach involving an improved rotating-disk sorptive extraction (RDSE) procedure and ultra-high-performance liquid chromatography (UHPLC) coupled to an ultraspray electrospray ionization source (UESI) and time-of-flight mass spectrometry (TOF/MS), in trap mode, was developed to identify and quantify four non-steroidal anti-inflammatory drugs (NSAIDs) (naproxen, ibuprofen, ketoprofen and diclofenac) and two anti-cholesterol drugs (ACDs) (clofibric acid and gemfibrozil) that are widely used and typically found in water samples. The method reduced the amount of both sample and reagents used and also the time required for the whole analysis, resulting in a reliable and green analytical strategy. The analytical eco-scale was calculated, showing that this methodology is an excellent green analysis, increasing its ecological worth. The detection limits (LOD) and precision (%RSD) were lower than 90ng/L and 10%, respectively. Matrix effects and recoveries were studied using samples from the influent of a wastewater treatment plant (WWTP). All the compounds exhibited suppression of their signals due to matrix effects, and the recoveries were approximately 100%. The applicability and reliability of this methodology were confirmed through the analysis of influent and effluent samples from a WWTP in Santiago, Chile, obtaining concentrations ranging from 1.1 to 20.5μg/L and from 0.5 to 8.6μg/L, respectively. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Intrinsic frequency for a systems approach to haemodynamic waveform analysis with clinical applications

    PubMed Central

    Pahlevan, Niema M.; Tavallali, Peyman; Rinderknecht, Derek G.; Petrasek, Danny; Matthews, Ray V.; Hou, Thomas Y.; Gharib, Morteza

    2014-01-01

    The reductionist approach has dominated the fields of biology and medicine for nearly a century. Here, we present a systems science approach to the analysis of physiological waveforms in the context of a specific case, cardiovascular physiology. Our goal in this study is to introduce a methodology that allows for novel insight into cardiovascular physiology and to show proof of concept for a new index for the evaluation of the cardiovascular system through pressure wave analysis. This methodology uses a modified version of sparse time–frequency representation (STFR) to extract two dominant frequencies we refer to as intrinsic frequencies (IFs; ω1 and ω2). The IFs are the dominant frequencies of the instantaneous frequency of the coupled heart + aorta system before the closure of the aortic valve and the decoupled aorta after valve closure. In this study, we extract the IFs from a series of aortic pressure waves obtained from both clinical data and a computational model. Our results demonstrate that at the heart rate at which the left ventricular pulsatile workload is minimized the two IFs are equal (ω1 = ω2). Extracted IFs from clinical data indicate that at young ages the total frequency variation (Δω = ω1 − ω2) is close to zero and that Δω increases with age or disease (e.g. heart failure and hypertension). While the focus of this paper is the cardiovascular system, this approach can easily be extended to other physiological systems or any biological signal. PMID:25008087

  14. [The Roots of Idiographic Paleontology: Karl Alfred von Zittel's Methodology and Conception of the Fossil Record].

    PubMed

    Tamborini, Marco

    2015-12-01

    This paper examines Karl Alfred von Zittel’s practice in order to uncover the roots of so-called idiographic paleontology.The great American paleontologist Stephen Jay Gould (1941–2002) defined the discipline of idiographic paleontology as illustration and description of the morphological features of extinct species. However, this approach does not investigate macroevolutionary patterns and processes. On the contrary, the paleobiological revolution of the 1970s implemented an epistemic methodology that illustrates macrovelutionary patterns and laws by combining idiographic data with a nomothetic form of explanation. This article elucidates the features of the idiographic data as well as the acquired knowledge coupled with this approach. First of all, Heinrich G. Bronn’s (1800–1862) statistical method is analyzed. Zittel’s practice arose as a reaction against the approximate conclusions reached by Bronn’s quantitative approach. Second, the details of Zittel’s methodology are described in order to bring out its peculiarities.The microscope played a pivotal role in creating and forming Zittel’s morphological data. This analysis sheds new light on the reasons behind the so-called ideographic paleontology, thus revising Gould’s historical reconstruction, as well as on the notion of paleontological data. However, even though Zittel aimed at reaching precise and stable conclusions,his data cannot be used for elucidating evolutionary mechanisms: they are scientific in a purely descriptive sense, but completely useless for biological investigations. Finally, this paper examines how Zittel’s methodology affects the contemporary paleobiological enterprise and thereby reflects upon the notion of natural history.

  15. Hippocampal coupling with cortical and subcortical structures in the context of memory consolidation.

    PubMed

    Skelin, Ivan; Kilianski, Scott; McNaughton, Bruce L

    2018-04-13

    Memory consolidation is a gradual process through which episodic memories become incorporated into long-term 'semantic' representations. It likely involves reactivation of neural activity encoding the recent experience during non-REM sleep. A critical prerequisite for memory consolidation is precise coordination of reactivation events between the hippocampus and cortical/subcortical structures, facilitated by the coupling of local field potential (LFP) oscillations (slow oscillations, sleep spindles and sharp wave/ripples) between these structures. We review the rapidly expanding literature on the qualitative and quantitative aspects of hippocampal oscillatory and neuronal coupling with cortical/subcortical structures in the context of memory reactivation. Reactivation in the hippocampus and cortical/subcortical structures is tightly coupled with sharp wave/ripples. Hippocampal-cortical/subcortical coupling is rich in dimensionality and this dimensionality is likely underestimated due to the limitations of the current methodology. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Systematic Review of Couple-Based HIV Intervention and Prevention Studies: Advantages, Gaps, and Future Directions

    PubMed Central

    El-Bassel, Nabila

    2015-01-01

    We conducted a systematic review of couple-based HIV biobehavioral (skills-building, VCT, and adherence) and biomedical (ART, circumcision) prevention and intervention studies designed to reduce sexual-and drug-risk behaviors and HIV transmission and acquisition. Of the 11,162 papers identified in the search, 93 peer-reviewed papers met the inclusion criteria and yielded a total of 33 studies conducted globally. Biobehavioral couple-based prevention and intervention studies have been efficacious in reducing sexual- and drug-risk behaviors, increasing access to HIV testing and care, and improving adherence. Biomedical couple-based studies were found to reduce HIV incidence among HIV-negative sex partners and viral load among HIV-positive partners. Despite much progress, couple-based HIV prevention and intervention studies remain limited; a number of methodological gaps exist and studies focusing on MSM, people who inject drugs, and sex workers are scarce. PMID:24980246

  17. Application of laser-induced breakdown spectroscopy to zirconium in aqueous solution

    NASA Astrophysics Data System (ADS)

    Ruas, Alexandre; Matsumoto, Ayumu; Ohba, Hironori; Akaoka, Katsuaki; Wakaida, Ikuo

    2017-05-01

    In the context of the Fukushima Dai-ichi Nuclear Power Plant (F1-NPP) decommissioning process, laser-induced breakdown spectroscopy (LIBS) has many advantages. The purpose of the present work is to demonstrate the on-line monitoring capability of the LIBS coupled with the ultra-thin liquid jet sampling method. The study focuses on zirconium in aqueous solution, considering that it is a major element in the F1-NPP fuel debris that has been subject to only a few LIBS studies in the past. The methodology of data acquisition and processing are described. In particular, two regions of interest with many high intensity zirconium lines have been observed around 350 nm in the case of the ionic lines and 478 nm in the case of atomic lines. The best analytical conditions for zirconium are different depending on the analysis of ionic lines or atomic lines. A low LOD of about 4 mg L- 1 could be obtained, showing that LIBS coupled with the ultra-thin liquid jet sampling technique is a promising alternative for more complex solutions found in the F1-NPP, namely mixtures containing zirconium.

  18. Broadband cross-polarization-based heteronuclear dipolar recoupling for structural and dynamic NMR studies of rigid and soft solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kharkov, B. B.; Chizhik, V. I.; Dvinskikh, S. V., E-mail: sergeid@kth.se

    2016-01-21

    Dipolar recoupling is an essential part of current solid-state NMR methodology for probing atomic-resolution structure and dynamics in solids and soft matter. Recently described magic-echo amplitude- and phase-modulated cross-polarization heteronuclear recoupling strategy aims at efficient and robust recoupling in the entire range of coupling constants both in rigid and highly dynamic molecules. In the present study, the properties of this recoupling technique are investigated by theoretical analysis, spin-dynamics simulation, and experimentally. The resonance conditions and the efficiency of suppressing the rf field errors are examined and compared to those for other recoupling sequences based on similar principles. The experimental datamore » obtained in a variety of rigid and soft solids illustrate the scope of the method and corroborate the results of analytical and numerical calculations. The technique benefits from the dipolar resolution over a wider range of coupling constants compared to that in other state-of-the-art methods and thus is advantageous in studies of complex solids with a broad range of dynamic processes and molecular mobility degrees.« less

  19. Unambiguous characterization of gunshot residue particles using scanning laser ablation and inductively coupled plasma-mass spectrometry.

    PubMed

    Abrego, Zuriñe; Ugarte, Ana; Unceta, Nora; Fernández-Isla, Alberto; Goicolea, M Aranzazu; Barrio, Ramón J

    2012-03-06

    A new method based on scanning laser ablation and inductively coupled plasma-mass spectrometry (LA-ICPMS) for the detection and identification of gunshot residue (GSR) particles from firearms discharges has been developed. Tape lifts were used to collect inorganic residues from skin surfaces. The laser ablation pattern and ICPMS conditions were optimized for the detection of metals present in GSR, such as (121)Sb, (137)Ba, and (208)Pb. Other isotopes ((27)Al, (29)Si, (31)P, (33)S, (35)Cl, (39)K, (44)Ca, (57)Fe, (60)Ni, (63)Cu, (66)Zn, and (118)Sn) were monitored during the ICPMS analyses to obtain additional information to possibly classify the GSR particles as either characteristic of GSR or consistent with GSR. In experiments with real samples, different firearms, calibers, and ammunitions were used. The performed method evaluation confirms that the developed methodology can be used as an alternative to the standard scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) technique, with the significant advantage of drastically reducing the analysis time to less than 66 min.

  20. Fluid-structure analysis of a flexible flapping airfoil at low Reynolds number flow

    NASA Astrophysics Data System (ADS)

    Unger, Ralf; Haupt, Matthias C.; Horst, Peter; Radespiel, Rolf

    2012-01-01

    In this paper, a coupling simulation methodology is applied to investigate the fluid flow around a light and flexible airfoil based on a handfoil of a seagull. A finite element model of the flexible airfoil is fully coupled to the flow solver by using a load and displacement transfer as well as a fluid grid deformation algorithm. The flow field is characterized by a laminar-turbulent transition at a Reynolds number of Re=100 000, which takes place along a laminar separation bubble. An unsteady Reynolds-averaged Navier-Stokes flow solver is used to take this transition process into account by comparison of a critical N-factor with the N-factor computed by the eN-method. Results of computations have shown that the flexibility of the airfoil has a major influence on the thrust efficiency, the mean drag and lift, and the location of laminar-turbulent transition. The thrust efficiency can be considerably improved by increasing the plunging amplitude and by using a time dependent airfoil stiffness, inspired by the muscle contraction of birds.

  1. Fault zone structure determined through the analysis of earthquake arrival times

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michelini, A.

    1991-10-01

    This thesis develops and applies a technique for the simultaneous determination of P and S wave velocity models and hypocenters from a set of arrival times. The velocity models are parameterized in terms of cubic B-splines basis functions which permit the retrieval of smooth models that can be used directly for generation of synthetic seismograms using the ray method. In addition, this type of smoothing limits the rise of instabilities related to the poor resolving power of the data. V{sub P}/V{sub S} ratios calculated from P and S models display generally instabilities related to the different ray-coverages of compressional andmore » shear waves. However, V{sub P}/V{sub S} ratios are important for correct identification of rock types and this study introduces a new methodology based on adding some coupling (i.e., proportionality) between P and S models which stabilizes the V{sub P}/V{sub S} models around some average preset value determined from the data. Tests of the technique with synthetic data show that this additional coupling regularizes effectively the resulting models.« less

  2. Fault zone structure determined through the analysis of earthquake arrival times

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michelini, Alberto

    1991-10-01

    This thesis develops and applies a technique for the simultaneous determination of P and S wave velocity models and hypocenters from a set of arrival times. The velocity models are parameterized in terms of cubic B-splines basis functions which permit the retrieval of smooth models that can be used directly for generation of synthetic seismograms using the ray method. In addition, this type of smoothing limits the rise of instabilities related to the poor resolving power of the data. V P/V S ratios calculated from P and S models display generally instabilities related to the different ray-coverages of compressional andmore » shear waves. However, V P/V S ratios are important for correct identification of rock types and this study introduces a new methodology based on adding some coupling (i.e., proportionality) between P and S models which stabilizes the V P/V S models around some average preset value determined from the data. Tests of the technique with synthetic data show that this additional coupling regularizes effectively the resulting models.« less

  3. An immersed-boundary method for flow–structure interaction in biological systems with application to phonation

    PubMed Central

    Luo, Haoxiang; Mittal, Rajat; Zheng, Xudong; Bielamowicz, Steven A.; Walsh, Raymond J.; Hahn, James K.

    2008-01-01

    A new numerical approach for modeling a class of flow–structure interaction problems typically encountered in biological systems is presented. In this approach, a previously developed, sharp-interface, immersed-boundary method for incompressible flows is used to model the fluid flow and a new, sharp-interface Cartesian grid, immersed boundary method is devised to solve the equations of linear viscoelasticity that governs the solid. The two solvers are coupled to model flow–structure interaction. This coupled solver has the advantage of simple grid generation and efficient computation on simple, single-block structured grids. The accuracy of the solid-mechanics solver is examined by applying it to a canonical problem. The solution methodology is then applied to the problem of laryngeal aerodynamics and vocal fold vibration during human phonation. This includes a three-dimensional eigen analysis for a multi-layered vocal fold prototype as well as two-dimensional, flow-induced vocal fold vibration in a modeled larynx. Several salient features of the aerodynamics as well as vocal-fold dynamics are presented. PMID:19936017

  4. Adjoint-Based Mesh Adaptation for the Sonic Boom Signature Loudness

    NASA Technical Reports Server (NTRS)

    Rallabhandi, Sriram K.; Park, Michael A.

    2017-01-01

    The mesh adaptation functionality of FUN3D is utilized to obtain a mesh optimized to calculate sonic boom ground signature loudness. During this process, the coupling between the discrete-adjoints of the computational fluid dynamics tool FUN3D and the atmospheric propagation tool sBOOM is exploited to form the error estimate. This new mesh adaptation methodology will allow generation of suitable meshes adapted to reduce the estimated errors in the ground loudness, which is an optimization metric employed in supersonic aircraft design. This new output-based adaptation could allow new insights into meshing for sonic boom analysis and design, and complements existing output-based adaptation techniques such as adaptation to reduce estimated errors in off-body pressure functional. This effort could also have implications for other coupled multidisciplinary adjoint capabilities (e.g., aeroelasticity) as well as inclusion of propagation specific parameters such as prevailing winds or non-standard atmospheric conditions. Results are discussed in the context of existing methods and appropriate conclusions are drawn as to the efficacy and efficiency of the developed capability.

  5. Hybridation of different chiral separation techniques with ICP-MS detection for the separation and determination of selenomethionine enantiomers: chiral speciation of selenized yeast.

    PubMed

    Méndez, S P; González, E B; Sanz-Medel, A

    2001-05-01

    Enantioseparation and determination of selenomethionine enantiomers in selenized yeast was investigated using chiral separation techniques based on different principles, coupled on-line to inductively coupled plasma mass spectrometry (ICP-MS) for selenium-specific detection. High performance liquid chromatography (HPLC) on a beta-cyclodestrin (beta-CD) column, cyclodextrin-modified micellar electrokinetic chromatography (CD-MEKC), gas chromatography (GC) on a Chirasil-L-Val column, and HPLC on a Chirobiotic T column have been investigated as the chiral separation techniques. For HPLC separation on the beta-CD column, and also for CD-MEKC, selenomethionine enantiomers were derivatized with NDA/CN(-). For chiral separation by GC, selenomethionine enantiomers were converted into their N-trifluoroacetyl (TFA)-O-alkyl esters. The developed hybridation methodologies are compared with respect to enantioselectivity, sensitivity and analysis time. The usefulness of the best-suited method [HPLC (Chirobiotic T)-ICP-MS] was demonstrated by its application to the successful chiral speciation of selenium and D-and L-selenomethionine content determination in selenized yeast. Copyright 2001 John Wiley & Sons, Ltd.

  6. Pitting corrosion as a mixed system: coupled deterministic-probabilistic simulation of pit growth

    NASA Astrophysics Data System (ADS)

    Ibrahim, Israr B. M.; Fonna, S.; Pidaparti, R.

    2018-05-01

    Stochastic behavior of pitting corrosion poses a unique challenge in its computational analysis. However, it also stems from electrochemical activity causing general corrosion. In this paper, a framework for corrosion pit growth simulation based on the coupling of the Cellular Automaton (CA) and Boundary Element Methods (BEM) is presented. The framework assumes that pitting corrosion is controlled by electrochemical activity inside the pit cavity. The BEM provides the prediction of electrochemical activity given the geometrical data and polarization curves, while the CA is used to simulate the evolution of pit shapes based on electrochemical activity provided by BEM. To demonstrate the methodology, a sample case of local corrosion cells formed in pitting corrosion with varied dimensions and polarization functions is considered. Results show certain shapes tend to grow in certain types of environments. Some pit shapes appear to pose a higher risk by being potentially significant stress raisers or potentially increasing the rate of corrosion under the surface. Furthermore, these pits are comparable to commonly observed pit shapes in general corrosion environments.

  7. Thermally coupled moving boundary model for charge-discharge of LiFePO4/C cells

    NASA Astrophysics Data System (ADS)

    Khandelwal, Ashish; Hariharan, Krishnan S.; Gambhire, Priya; Kolake, Subramanya Mayya; Yeo, Taejung; Doo, Seokgwang

    2015-04-01

    Optimal thermal management is a key requirement in commercial utilization of lithium ion battery comprising of phase change electrodes. In order to facilitate design of battery packs, thermal management systems and fast charging profiles, a thermally coupled electrochemical model that takes into account the phase change phenomenon is required. In the present work, an electrochemical thermal model is proposed which includes the biphasic nature of phase change electrodes, such as lithium iron phosphate (LFP), via a generalized moving boundary model. The contribution of phase change to the heat released during the cell operation is modeled using an equivalent enthalpy approach. The heat released due to phase transformation is analyzed in comparison with other sources of heat such as reversible, irreversible and ohmic. Detailed study of the thermal behavior of the individual cell components with changing ambient temperature, rate of operation and heat transfer coefficient is carried out. Analysis of heat generation in the various regimes is used to develop cell design and operating guidelines. Further, different charging protocols are analyzed and a model based methodology is suggested to design an efficient quick charging protocol.

  8. A variational formulation for vibro-acoustic analysis of a panel backed by an irregularly-bounded cavity

    NASA Astrophysics Data System (ADS)

    Xie, Xiang; Zheng, Hui; Qu, Yegao

    2016-07-01

    A weak form variational based method is developed to study the vibro-acoustic responses of coupled structural-acoustic system consisting of an irregular acoustic cavity with general wall impedance and a flexible panel subjected to arbitrary edge-supporting conditions. The structural and acoustical models of the coupled system are formulated on the basis of a modified variational method combined with multi-segment partitioning strategy. Meanwhile, the continuity constraints on the sub-segment interfaces are further incorporated into the system stiffness matrix by means of least-squares weighted residual method. Orthogonal polynomials, such as Chebyshev polynomials of the first kind, are employed as the wholly admissible unknown displacement and sound pressure field variables functions for separate components without meshing, and hence mapping the irregular physical domain into a square spectral domain is necessary. The effects of weighted parameter together with the number of truncated polynomial terms and divided partitions on the accuracy of present theoretical solutions are investigated. It is observed that applying this methodology, accurate and efficient predictions can be obtained for various types of coupled panel-cavity problems; and in weak or strong coupling cases for a panel surrounded by a light or heavy fluid, the inherent principle of velocity continuity on the panel-cavity contacting interface can all be handled satisfactorily. Key parametric studies concerning the influences of the geometrical properties as well as impedance boundary are performed. Finally, by performing the vibro-acoustic analyses of 3D car-like coupled miniature, we demonstrate that the present method seems to be an excellent way to obtain accurate mid-frequency solution with an acceptable CPU time.

  9. Copper-facilitated Suzuki reactions: application to 2-heterocyclic boronates.

    PubMed

    Deng, James Z; Paone, Daniel V; Ginnetti, Anthony T; Kurihara, Hideki; Dreher, Spencer D; Weissman, Steven A; Stauffer, Shaun R; Burgey, Christopher S

    2009-01-15

    The palladium-catalyzed Suzuki-Miyaura reaction has been utilized as one of the most powerful methods for C-C bond formation. However, Suzuki reactions of electron-deficient 2-heterocyclic boronates generally give low conversions and remain challenging. The successful copper(I) facilitated Suzuki coupling of 2-heterocyclic boronates that is broad in scope is reported. Use of this methodology affords greatly enhanced yields of these notoriously difficult couplings. Furthermore, mechanistic investigations suggest a possible role of copper in the catalytic cycle.

  10. Methodology, status and plans for development and assessment of Cathare code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bestion, D.; Barre, F.; Faydide, B.

    1997-07-01

    This paper presents the methodology, status and plans for the development, assessment and uncertainty evaluation of the Cathare code. Cathare is a thermalhydraulic code developed by CEA (DRN), IPSN, EDF and FRAMATOME for PWR safety analysis. First, the status of the code development and assessment is presented. The general strategy used for the development and the assessment of the code is presented. Analytical experiments with separate effect tests, and component tests are used for the development and the validation of closure laws. Successive Revisions of constitutive laws are implemented in successive Versions of the code and assessed. System tests ormore » integral tests are used to validate the general consistency of the Revision. Each delivery of a code Version + Revision is fully assessed and documented. A methodology is being developed to determine the uncertainty on all constitutive laws of the code using calculations of many analytical tests and applying the Discrete Adjoint Sensitivity Method (DASM). At last, the plans for the future developments of the code are presented. They concern the optimization of the code performance through parallel computing - the code will be used for real time full scope plant simulators - the coupling with many other codes (neutronic codes, severe accident codes), the application of the code for containment thermalhydraulics. Also, physical improvements are required in the field of low pressure transients and in the modeling for the 3-D model.« less

  11. Renewable Energy Assessment Methodology for Japanese OCONUS Army Installations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solana, Amy E.; Horner, Jacob A.; Russo, Bryan J.

    2010-08-30

    Since 2005, Pacific Northwest National Laboratory (PNNL) has been asked by Installation Management Command (IMCOM) to conduct strategic assessments at selected US Army installations of the potential use of renewable energy resources, including solar, wind, geothermal, biomass, waste, and ground source heat pumps (GSHPs). IMCOM has the same economic, security, and legal drivers to develop alternative, renewable energy resources overseas as it has for installations located in the US. The approach for continental US (CONUS) studies has been to use known, US-based renewable resource characterizations and information sources coupled with local, site-specific sources and interviews. However, the extent to whichmore » this sort of data might be available for outside the continental US (OCONUS) sites was unknown. An assessment at Camp Zama, Japan was completed as a trial to test the applicability of the CONUS methodology at OCONUS installations. It was found that, with some help from Camp Zama personnel in translating and locating a few Japanese sources, there was relatively little difficulty in finding sources that should provide a solid basis for conducting an assessment of comparable depth to those conducted for US installations. Project implementation will likely be more of a challenge, but the feasibility analysis will be able to use the same basic steps, with some adjusted inputs, as PNNL’s established renewable resource assessment methodology.« less

  12. Accelerated solvent extraction followed by on-line solid-phase extraction coupled to ion trap LC/MS/MS for analysis of benzalkonium chlorides in sediment samples

    USGS Publications Warehouse

    Ferrer, I.; Furlong, E.T.

    2002-01-01

    Benzalkonium chlorides (BACs) were successfully extracted from sediment samples using a new methodology based on accelerated solvent extraction (ASE) followed by an on-line cleanup step. The BACs were detected by liquid chromatography/ion trap mass spectrometry (LC/MS) or tandem mass spectrometry (MS/MS) using an electrospray interface operated in the positive ion mode. This methodology combines the high efficiency of extraction provided by a pressurized fluid and the high sensitivity offered by the ion trap MS/MS. The effects of solvent type and ASE operational variables, such as temperature and pressure, were evaluated. After optimization, a mixture of acetonitrile/water (6:4 or 7:3) was found to be most efficient for extracting BACs from the sediment samples. Extraction recoveries ranged from 95 to 105% for C12 and C14 homologues, respectively. Total method recoveries from fortified sediment samples, using a cleanup step followed by ASE, were 85% for C12BAC and 79% for C14-BAC. The methodology developed in this work provides detection limits in the subnanogram per gram range. Concentrations of BAC homologues ranged from 22 to 206 ??g/kg in sediment samples from different river sites downstream from wastewater treatment plants. The high affinity of BACs for soil suggests that BACs preferentially concentrate in sediment rather than in water.

  13. Deriving injury risk curves using survival analysis from biomechanical experiments.

    PubMed

    Yoganandan, Narayan; Banerjee, Anjishnu; Hsu, Fang-Chi; Bass, Cameron R; Voo, Liming; Pintar, Frank A; Gayzik, F Scott

    2016-10-03

    Injury risk curves from biomechanical experimental data analysis are used in automotive studies to improve crashworthiness and advance occupant safety. Metrics such as acceleration and deflection coupled with outcomes such as fractures and anatomical disruptions from impact tests are used in simple binary regression models. As an improvement, the International Standards Organization suggested a different approach. It was based on survival analysis. While probability curves for side-impact-induced thorax and abdominal injuries and frontal impact-induced foot-ankle-leg injuries are developed using this approach, deficiencies are apparent. The objective of this study is to present an improved, robust and generalizable methodology in an attempt to resolve these issues. It includes: (a) statistical identification of the most appropriate independent variable (metric) from a pool of candidate metrics, measured and or derived during experimentation and analysis processes, based on the highest area under the receiver operator curve, (b) quantitative determination of the most optimal probability distribution based on the lowest Akaike information criterion, (c) supplementing the qualitative/visual inspection method for comparing the selected distribution with a non-parametric distribution with objective measures, (d) identification of overly influential observations using different methods, and (e) estimation of confidence intervals using techniques more appropriate to the underlying survival statistical model. These clear and quantified details can be easily implemented with commercial/open source packages. They can be used in retrospective analysis and prospective design of experiments, and in applications to different loading scenarios such as underbody blast events. The feasibility of the methodology is demonstrated using post mortem human subject experiments and 24 metrics associated with thoracic/abdominal injuries in side-impacts. Published by Elsevier Ltd.

  14. Performance analysis of parallel branch and bound search with the hypercube architecture

    NASA Technical Reports Server (NTRS)

    Mraz, Richard T.

    1987-01-01

    With the availability of commercial parallel computers, researchers are examining new classes of problems which might benefit from parallel computing. This paper presents results of an investigation of the class of search intensive problems. The specific problem discussed is the Least-Cost Branch and Bound search method of deadline job scheduling. The object-oriented design methodology was used to map the problem into a parallel solution. While the initial design was good for a prototype, the best performance resulted from fine-tuning the algorithm for a specific computer. The experiments analyze the computation time, the speed up over a VAX 11/785, and the load balance of the problem when using loosely coupled multiprocessor system based on the hypercube architecture.

  15. Characterization of nutraceuticals and functional foods by innovative HPLC methods.

    PubMed

    Corradini, Claudio; Galanti, Roberta; Nicoletti, Isabella

    2002-04-01

    In recent years there is a growing interest in food and food ingredient which may provide health benefits. Food as well as food ingredients containing health-preserving components, are not considered conventional food, but can be defined as functional food. To characterise such foods, as well as nutraceuticals specific, high sensitive and reproducible analytical methodologies are needed. In light of this importance we set out to develop innovative HPLC methods employing reversed phase narrow bore column and high-performance anion-exchange chromatographic methods coupled with pulsed amperometric detection (HPAEC-PAD), which are specific for carbohydrate analysis. The developed methods were applied for the separation and quantification of citrus flavonoids and to characterize fructooligosaccharide (FOS) and fructans added to functional foods and nutraceuticals.

  16. The "group" in obstetric psychoprophylaxis.

    PubMed

    Volpe, B; Tenaglia, F; Fede, T; Cerutti, R

    1983-01-01

    In the practice of obstetric psychoprophylaxis every method employed considered always the group both from a psychological and a pedagogic point of view. Today the group of pregnant women (or couples) is considered under various aspects: - psychological: the group as a support for members with regard to maternal and parental emotional feelings; - anthropological: the group fills up an empty vital space and becomes a "rite de passage" from a state of social identity to another one; - social: the group is a significative cultural intermediary between health services and the women-patient. The knowledge of these aspects becomes an important methodological support for group conductors. We present an analysis of our experience with groups and how this has affected the Psychoprophylaxis in the last years.

  17. Design Sensitivity for a Subsonic Aircraft Predicted by Neural Network and Regression Models

    NASA Technical Reports Server (NTRS)

    Hopkins, Dale A.; Patnaik, Surya N.

    2005-01-01

    A preliminary methodology was obtained for the design optimization of a subsonic aircraft by coupling NASA Langley Research Center s Flight Optimization System (FLOPS) with NASA Glenn Research Center s design optimization testbed (COMETBOARDS with regression and neural network analysis approximators). The aircraft modeled can carry 200 passengers at a cruise speed of Mach 0.85 over a range of 2500 n mi and can operate on standard 6000-ft takeoff and landing runways. The design simulation was extended to evaluate the optimal airframe and engine parameters for the subsonic aircraft to operate on nonstandard runways. Regression and neural network approximators were used to examine aircraft operation on runways ranging in length from 4500 to 7500 ft.

  18. Diffraction Studies from Minerals to Organics - Lessons Learned from Materials Analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitfield, Pamela S

    2014-01-01

    In many regards the study of materials and minerals by powder diffraction techniques are complimentary, with techniques honed in one field equally applicable to the other. As a long-time materials researcher many of the examples are of techniques developed for materials analysis applied to minerals. However in a couple of cases the study of new minerals was the initiation into techniques later used in materials-based studies. Hopefully they will show that the study of new minerals structures can provide opportunities to add new methodologies and approaches to future problems. In keeping with the AXAA many of the examples have anmore » Australian connection, the materials ranging from organics to battery materials.« less

  19. innoFSPEC: fiber optical spectroscopy and sensing

    NASA Astrophysics Data System (ADS)

    Roth, Martin M.; Löhmannsröben, Hans-Gerd; Kelz, Andreas; Kumke, Michael

    2008-07-01

    innoFSPEC Potsdam is presently being established as in interdisciplinary innovation center for fiber-optical spectroscopy and sensing, hosted by Astrophysikalisches Institut Potsdam and the Physical Chemistry group of Potsdam University, Germany. The center focuses on fundamental research in the two fields of fiber-coupled multi-channel spectroscopy and optical fiber-based sensing. Thanks to its interdisciplinary approach, the complementary methodologies of astrophysics on the one hand, and physical chemistry on the other hand, are expected to spawn synergies that otherwise would not normally become available in more standard research programmes. innoFSPEC targets future innovations for next generation astrophysical instrumentation, environmental analysis, manufacturing control and process monitoring, medical diagnostics, non-invasive imaging spectroscopy, biopsy, genomics/proteomics, high-throughput screening, and related applications.

  20. Coupled analysis of high and low frequency resonant ultrasound spectroscopy: Application to the detection of defects in ceramic balls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deneuville, Francois; Duquennoy, Marc; Ouaftouh, Mohammadi

    2009-05-15

    A coupled analysis of high and low frequency resonant ultrasound spectroscopy of spheroidal modes is presented in this paper. Experimentally, by using an ultrasonic probe for the excitation (piezoelectric transducer) and a heterodyne optic probe for the receiver (interferometer), it was possible to take spectroscopic measurements of spheroidal vibrations over a large frequency range of 100 kHz-45 MHz in a continuous regime. This wide analysis range enabled variations in velocity due to the presence of defects to be differentiated from the inherent characteristics of the balls and consequently, it offers the possibility of detecting cracks independently of production variations. Thismore » kind of defect is difficult to detect because the C-shaped surface crack is very small and narrow (500x5 {mu}m{sup 2}), and its depth does not exceed 50 {mu}m. The proposed methodology can excite spheroidal vibrations in the ceramic balls and detect such vibrations over a large frequency range. On the one hand, low frequency resonances are used in order to estimate the elastic coefficients of the balls according to various inspection depths. This method has the advantage of providing highly accurate evaluations of the elastic coefficients over a wide frequency range. On the other hand, high frequency vibrations are considered because they are similar to the surface waves propagating in the surface zone of the ceramic balls and consequently can be used to detect C-crack defects.« less

  1. Toward Interactive Scenario Analysis and Exploration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gayle, Thomas R.; Summers, Kenneth Lee; Jungels, John

    2015-01-01

    As Modeling and Simulation (M&S) tools have matured, their applicability and importance have increased across many national security challenges. In particular, they provide a way to test how something may behave without the need to do real world testing. However, current and future changes across several factors including capabilities, policy, and funding are driving a need for rapid response or evaluation in ways that many M&S tools cannot address. Issues around large data, computational requirements, delivery mechanisms, and analyst involvement already exist and pose significant challenges. Furthermore, rising expectations, rising input complexity, and increasing depth of analysis will only increasemore » the difficulty of these challenges. In this study we examine whether innovations in M&S software coupled with advances in ''cloud'' computing and ''big-data'' methodologies can overcome many of these challenges. In particular, we propose a simple, horizontally-scalable distributed computing environment that could provide the foundation (i.e. ''cloud'') for next-generation M&S-based applications based on the notion of ''parallel multi-simulation''. In our context, the goal of parallel multi- simulation is to consider as many simultaneous paths of execution as possible. Therefore, with sufficient resources, the complexity is dominated by the cost of single scenario runs as opposed to the number of runs required. We show the feasibility of this architecture through a stable prototype implementation coupled with the Umbra Simulation Framework [6]. Finally, we highlight the utility through multiple novel analysis tools and by showing the performance improvement compared to existing tools.« less

  2. Metabolite fingerprinting, pathway analyses, and bioactivity correlations for plant species belonging to the Cornaceae, Fabaceae, and Rosaceae families.

    PubMed

    Son, Su Young; Kim, Na Kyung; Lee, Sunmin; Singh, Digar; Kim, Ga Ryun; Lee, Jong Seok; Yang, Hee-Sun; Yeo, Joohong; Lee, Sarah; Lee, Choong Hwan

    2016-09-01

    A multi-parallel approach gauging the mass spectrometry-based metabolite fingerprinting coupled with bioactivity and pathway evaluations could serve as an efficacious tool for inferring plant taxonomic orders. Thirty-four species from three plant families, namely Cornaceae (7), Fabaceae (9), and Rosaceae (18) were subjected to metabolite profiling using gas chromatography-time-of-flight-mass spectrometry (GC-TOF-MS) and ultrahigh performance liquid chromatography-linear trap quadrupole-ion trap-mass spectrometry (UHPLC-LTQ-IT-MS/MS), followed by multivariate analyses to determine the metabolites characteristic of these families. The partial least squares discriminant analysis (PLS-DA) revealed the distinct clustering pattern of metabolites for each family. The pathway analysis further highlighted the relatively higher proportions of flavonols and ellagitannins in the Cornaceae family than in the other two families. Higher levels of phenolic acids and flavan-3-ols were observed among species from the Rosaceae family, while amino acids, flavones, and isoflavones were more abundant among the Fabaceae family members. The antioxidant activities of plant extracts were measured using ABTS, DPPH, and FRAP assays, and indicated that extracts from the Rosaceae family had the highest activity, followed by those from Cornaceae and Fabaceae. The correlation map analysis positively links the proportional concentration of metabolites with their relative antioxidant activities, particularly in Cornaceae and Rosaceae. This work highlights the pre-eminence of the multi-parallel approach involving metabolite profiling and bioactivity evaluations coupled with metabolic pathways as an efficient methodology for the evaluation of plant phylogenies.

  3. LEWIS ACID CATALYZED FORMATION OF TETRAHYDROPYRANS IN IONIC LIQUID

    EPA Science Inventory

    Tetrahydropyrans are integral moieties in innumerable natural products and have inspired the development of a variety of different methodologies. A Prins-type cyclization involving the coupling of a homoallylic alcohol and an aldehyde in the presence of catalytic scandium triflat...

  4. A NON-OSCILLATORY SCHEME FOR OPEN CHANNEL FLOWS. (R825200)

    EPA Science Inventory

    In modeling shocks in open channel flows, the traditional finite difference schemes become inefficient and warrant special numerical treatment for smooth computations. This paper provides a general introduction to the non-oscillatory high-resolution methodology, coupled with the ...

  5. Seeded Fault Bearing Experiments: Methodology and Data Acquisition

    DTIC Science & Technology

    2011-06-01

    electronics piezoelectric ( IEPE ) transducer. Constant current biased transducers require AC coupling for the output signal. The ICP-Type Signal...the outer race I/O input/output IEPE integral electronics piezoelectric LCD liquid crystal display P&D Prognostics and Diagnostics RMS root

  6. Combined brain Fe, Cu, Zn and neurometabolite analysis - a new methodology for unraveling the efficacy of transcranial direct current stimulation (tDCS) in appetite control.

    PubMed

    Ziomber, Agata; Surowka, Artur Dawid; Antkiewicz-Michaluk, Lucyna; Romanska, Irena; Wrobel, Pawel; Szczerbowska-Boruchowska, Magdalena

    2018-03-01

    Obesity is a chronic, multifactorial origin disease that has recently become one of the most frequent lifestyle disorders. Unfortunately, current obesity treatments seem to be ineffective. At present, transcranial direct current brain stimulation (tDCS) represents a promising novel treatment methodology that seems to be efficient, well-tolerated and safe for a patient. Unfortunately, the biochemical action of tDCS remains unknown, which prevents its widespread use in the clinical arena, although neurobiochemical changes in brain signaling and metal metabolism are frequently reported. Therefore, our research aimed at exploring the biochemical response to tDCS in situ, in the brain areas triggering feeding behavior in obese animals. The objective was to propose a novel neurochemical (serotoninergic and dopaminergic signaling) and trace metal analysis of Fe, Cu and Zn. In doing so, we used energy-dispersive X-ray fluorescence (EDXRF) and high-performance liquid chromatography (HPLC). Anodal-type stimulation (atDCS) of the right frontal cortex was utilized to down-regulate food intake and body weight gain in obese rats. EDXRF was coupled with the external standard method in order to quantify the chemical elements within appetite-triggering brain areas. Major dopamine metabolites were assessed in the brains, based on the HPLC assay utilizing the external standard assay. Our study confirms that elemental analysis by EDXRF and brain metabolite assay by HPLC can be considered as a useful tool for the in situ investigation of the interplay between neurochemical and Fe/Cu/Zn metabolism in the brain upon atDCS. With this methodology, an increase in both Cu and Zn in the satiety center of the stimulated group could be reported. In turn, the most significant neurochemical changes involved dopaminergic and serotoninergic signaling in the brain reward system.

  7. A Model-Based Systems Engineering Methodology for Employing Architecture In System Analysis: Developing Simulation Models Using Systems Modeling Language Products to Link Architecture and Analysis

    DTIC Science & Technology

    2016-06-01

    characteristics, experimental design techniques, and analysis methodologies that distinguish each phase of the MBSE MEASA. To ensure consistency... methodology . Experimental design selection, simulation analysis, and trade space analysis support the final two stages. Figure 27 segments the MBSE MEASA...rounding has the potential to increase the correlation between columns of the experimental design matrix. The design methodology presented in Vieira

  8. Coupled multi-group neutron photon transport for the simulation of high-resolution gamma-ray spectroscopy applications

    NASA Astrophysics Data System (ADS)

    Burns, Kimberly Ann

    The accurate and efficient simulation of coupled neutron-photon problems is necessary for several important radiation detection applications. Examples include the detection of nuclear threats concealed in cargo containers and prompt gamma neutron activation analysis for nondestructive determination of elemental composition of unknown samples. In these applications, high-resolution gamma-ray spectrometers are used to preserve as much information as possible about the emitted photon flux, which consists of both continuum and characteristic gamma rays with discrete energies. Monte Carlo transport is the most commonly used modeling tool for this type of problem, but computational times for many problems can be prohibitive. This work explores the use of coupled Monte Carlo-deterministic methods for the simulation of neutron-induced photons for high-resolution gamma-ray spectroscopy applications. RAdiation Detection Scenario Analysis Toolbox (RADSAT), a code which couples deterministic and Monte Carlo transport to perform radiation detection scenario analysis in three dimensions [1], was used as the building block for the methods derived in this work. RADSAT was capable of performing coupled deterministic-Monte Carlo simulations for gamma-only and neutron-only problems. The purpose of this work was to develop the methodology necessary to perform coupled neutron-photon calculations and add this capability to RADSAT. Performing coupled neutron-photon calculations requires four main steps: the deterministic neutron transport calculation, the neutron-induced photon spectrum calculation, the deterministic photon transport calculation, and the Monte Carlo detector response calculation. The necessary requirements for each of these steps were determined. A major challenge in utilizing multigroup deterministic transport methods for neutron-photon problems was maintaining the discrete neutron-induced photon signatures throughout the simulation. Existing coupled neutron-photon cross-section libraries and the methods used to produce neutron-induced photons were unsuitable for high-resolution gamma-ray spectroscopy applications. Central to this work was the development of a method for generating multigroup neutron-photon cross-sections in a way that separates the discrete and continuum photon emissions so the neutron-induced photon signatures were preserved. The RADSAT-NG cross-section library was developed as a specialized multigroup neutron-photon cross-section set for the simulation of high-resolution gamma-ray spectroscopy applications. The methodology and cross sections were tested using code-to-code comparison with MCNP5 [2] and NJOY [3]. A simple benchmark geometry was used for all cases compared with MCNP. The geometry consists of a cubical sample with a 252Cf neutron source on one side and a HPGe gamma-ray spectrometer on the opposing side. Different materials were examined in the cubical sample: polyethylene (C2H4), P, N, O, and Fe. The cross sections for each of the materials were compared to cross sections collapsed using NJOY. Comparisons of the volume-averaged neutron flux within the sample, volume-averaged photon flux within the detector, and high-purity gamma-ray spectrometer response (only for polyethylene) were completed using RADSAT and MCNP. The code-to-code comparisons show promising results for the coupled Monte Carlo-deterministic method. The RADSAT-NG cross-section production method showed good agreement with NJOY for all materials considered although some additional work is needed in the resonance region and in the first and last energy bin. Some cross section discrepancies existed in the lowest and highest energy bin, but the overall shape and magnitude of the two methods agreed. For the volume-averaged photon flux within the detector, typically the five most intense lines agree to within approximately 5% of the MCNP calculated flux for all of materials considered. The agreement in the code-to-code comparisons cases demonstrates a proof-of-concept of the method for use in RADSAT for coupled neutron-photon problems in high-resolution gamma-ray spectroscopy applications. One of the primary motivators for using the coupled method over pure Monte Carlo method is the potential for significantly lower computational times. For the code-to-code comparison cases, the run times for RADSAT were approximately 25--500 times shorter than for MCNP, as shown in Table 1. This was assuming a 40 mCi 252Cf neutron source and 600 seconds of "real-world" measurement time. The only variance reduction technique implemented in the MCNP calculation was forward biasing of the source toward the sample target. Improved MCNP runtimes could be achieved with the addition of more advanced variance reduction techniques.

  9. Aerothermoelastic analysis of a NASP demonstrator model

    NASA Technical Reports Server (NTRS)

    Heeg, Jennifer; Zeiler, Thomas A.; Pototzky, Anthony S.; Spain, Charles V.; Engelund, Walter C.

    1993-01-01

    The proposed National AeroSpace Plane (NASP) is designed to travel at speeds up to Mach 25. Because aerodynamic heating during high-speed flight through the atmosphere could destiffen a structure, significant couplings between the elastic and rigid body modes could result in lower flutter speeds and more pronounced aeroelastic response characteristics. These speeds will also generate thermal loads on the structure. The purpose of this research is develop methodologies applicable to the NASP and to apply them to a representative model to determine its aerothermoelastic characteristics when subjected to these thermal loads. This paper describes an aerothermoelastic analysis of the generic hypersonic vehicle configuration. The steps involved in this analysis were: (1) generating vehicle surface temperatures at the appropriate flight conditions; (2) applying these temperatures to the vehicle's structure to predict changes in the stiffness resulting from material property degradation; (3) predicting the vibration characteristics of the heated structure at the various temperature conditions; (4) performing aerodynamic analyses; and (5) conducting flutter analysis of the heated vehicle. Results of these analyses and conclusions representative of a NASP vehicle are provided in this paper.

  10. Consecutive three-component synthesis of (hetero)arylated propargyl amides by chemoenzymatic aminolysis-Sonogashira coupling sequence.

    PubMed

    Hassan, Sidra; Ullrich, Anja; Müller, Thomas J J

    2015-02-07

    A novel chemoenzymatic three-component synthesis of (hetero)arylated propargyl amides in good yields based upon Novozyme® 435 (Candida antarctica lipase B (CAL-B)) catalyzed aminolysis of methyl carboxylates followed by Sonogashira coupling with (hetero)aryliodides in a consecutive one-pot fashion has been presented. This efficient methodology can be readily concatenated with a CuAAC (Cu catalyzed alkyne azide cycloaddition) as a third consecutive step to furnish 1,4-disubstituted 1,2,3-triazole ligated arylated propargyl amides. This one-pot process can be regarded as a transition metal catalyzed sequence that takes advantage of the copper source still present from the cross-coupling step.

  11. Implementing quantum optics with parametrically driven superconducting circuits

    NASA Astrophysics Data System (ADS)

    Aumentado, Jose

    Parametric coupling has received much attention, in part because it forms the core of many low-noise amplifiers in superconducting quantum information experiments. However, parametric coupling in superconducting circuits is, as a general rule, simple to generate and forms the basis of a methodology for interacting microwave fields at different frequencies. In the quantum regime, this has important consequences, allowing relative novices to do experiments in superconducting circuits today that were previously heroic efforts in quantum optics and cavity-QED. In this talk, I'll give an overview of some of our work demonstrating parametric coupling within the context of circuit-QED as well as some of the possibilities this concept creates in our field.

  12. An investigation of angular stiffness and damping coefficients of an axial spline coupling in high-speed rotating machinery

    NASA Technical Reports Server (NTRS)

    Ku, C.-P. Roger; Walton, James F., Jr.; Lund, Jorgen W.

    1994-01-01

    This paper provided an opportunity to quantify the angular stiffness and equivalent viscous damping coefficients of an axial spline coupling used in high-speed turbomachinery. A unique test methodology and data reduction procedures were developed. The bending moments and angular deflections transmitted across an axial spline coupling were measured while a nonrotating shaft was excited by an external shaker. A rotor dynamics computer program was used to simulate the test conditions and to correlate the angular stiffness and damping coefficients. In addition, sensitivity analyses were performed to show that the accuracy of the dynamic coefficients do not rely on the accuracy of the data reduction procedures.

  13. Decoupling Coupled Constraints Through Utility Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, N; Marden, JR

    2014-08-01

    Several multiagent systems exemplify the need for establishing distributed control laws that ensure the resulting agents' collective behavior satisfies a given coupled constraint. This technical note focuses on the design of such control laws through a game-theoretic framework. In particular, this technical note provides two systematic methodologies for the design of local agent objective functions that guarantee all resulting Nash equilibria optimize the system level objective while also satisfying a given coupled constraint. Furthermore, the designed local agent objective functions fit into the framework of state based potential games. Consequently, one can appeal to existing results in game-theoretic learning tomore » derive a distributed process that guarantees the agents will reach such an equilibrium.« less

  14. The use of time-averaged 3JHH restrained molecular dynamics (tar-MD) simulations for the conformational analysis of five-membered ring systems: methodology and applications.

    PubMed

    Hendrickx, Pieter M S; Corzana, Francisco; Depraetere, Stefaan; Tourwé, Dirk A; Augustyns, Koen; Martins, José C

    2010-02-01

    Because of its presence in many molecules of biological relevance, the conformational analysis of five-membered rings using (3)J(HH) scalar coupling data from NMR is a topic of considerable interest. Typically, conformational analysis involves the use of a well-established mathematical procedure, originally developed by de Leeuw et al., that fits two rigid conformations to the available experimental data. This so-called pseudorotation analysis approach is not without problems, however, as chemically unrealistic conformations are sometimes generated from the data. Here, we present our investigations in the use of time-averaged restrained molecular dynamics simulations as a generic tool to determine the conformations that agree with experimental (3)J(HH) scalar coupling data. For this purpose, a set of six ribose-based molecules has been used as model compounds. The influence of several modeling parameters is assessed and optimized values are proposed. The results obtained with the tar-MD approach are compared to those obtained from the two conformer fitting procedure. Interpretation of the latter is facilitated by the introduction of a fitting error analysis that allows mapping the solution space of the fitting procedure. The relative merits of both methods and the advantages that result from the use of a force field and a time-averaged restraint potential for the experimental data are discussed. When combined, both techniques allow an enhanced understanding of the molecules' conformational behavior and prevent possible overinterpretation. In view of the very reasonable computational burden of a tar-MD simulation for the systems investigated here, the approach should be generally applicable. Copyright 2009 Wiley Periodicals, Inc.

  15. Application of multiwalled carbon nanotubes as sorbents for the extraction of mycotoxins in water samples and infant milk formula prior to high performance liquid chromatography mass spectrometry analysis.

    PubMed

    Socas-Rodríguez, Bárbara; González-Sálamo, Javier; Hernández-Borges, Javier; Rodríguez Delgado, Miguel Ángel

    2016-05-01

    In this work, a simple and environmental friendly methodology has been developed for the analysis of a group of six mycotoxins with estrogenic activity produced by Fusarium species (i.e. zearalanone, zearalenone, α-zearalanol, β-zearalanol, α-zearalenol, and β-zearalenol), using microdispersive SPE the symbol micro should de before dSPE with multiwalled carbon nanotubes as sorbent. Separation, determination, and quantification were achieved by HPLC coupled to ion trap MS with an ESI interface. Parameters affecting the extraction efficiency of µ-dSPE such as pH of the sample, amount of multiwalled carbon nanotubes, and type and volume of elution solvent, were studied and optimized. The methodology was validated for mineral, pond, and wastewater as well as for powdered infant milk using 17β-estradiol-2,4,16,16,17-d5 (17β-E2 -D5 ) as internal standard, obtaining recoveries ranging from 85 to 120% for the three types of water samples and from 77 to 115% for powdered infant milk. RSD values were lower than 10%. The LOQs achieved were in the range 0.05-2.90 μg/L for water samples and 2.02-31.9 μg/L for powdered infant milk samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Radiation from advanced solid rocket motor plumes

    NASA Technical Reports Server (NTRS)

    Farmer, Richard C.; Smith, Sheldon D.; Myruski, Brian L.

    1994-01-01

    The overall objective of this study was to develop an understanding of solid rocket motor (SRM) plumes in sufficient detail to accurately explain the majority of plume radiation test data. Improved flowfield and radiation analysis codes were developed to accurately and efficiently account for all the factors which effect radiation heating from rocket plumes. These codes were verified by comparing predicted plume behavior with measured NASA/MSFC ASRM test data. Upon conducting a thorough review of the current state-of-the-art of SRM plume flowfield and radiation prediction methodology and the pertinent data base, the following analyses were developed for future design use. The NOZZRAD code was developed for preliminary base heating design and Al2O3 particle optical property data evaluation using a generalized two-flux solution to the radiative transfer equation. The IDARAD code was developed for rapid evaluation of plume radiation effects using the spherical harmonics method of differential approximation to the radiative transfer equation. The FDNS CFD code with fully coupled Euler-Lagrange particle tracking was validated by comparison to predictions made with the industry standard RAMP code for SRM nozzle flowfield analysis. The FDNS code provides the ability to analyze not only rocket nozzle flow, but also axisymmetric and three-dimensional plume flowfields with state-of-the-art CFD methodology. Procedures for conducting meaningful thermo-vision camera studies were developed.

  17. Zero side force volute development

    NASA Technical Reports Server (NTRS)

    Anderson, P. G.; Franz, R. J.; Farmer, R. C.; Chen, Y. S.

    1995-01-01

    Collector scrolls on high performance centrifugal pumps are currently designed with methods which are based on very approximate flowfield models. Such design practices result in some volute configurations causing excessive side loads even at design flowrates. The purpose of this study was to develop and verify computational design tools which may be used to optimize volute configurations with respect to avoiding excessive loads on the bearings. The new design methodology consisted of a volute grid generation module and a computational fluid dynamics (CFD) module to describe the volute geometry and predict the radial forces for a given flow condition, respectively. Initially, the CFD module was used to predict the impeller and the volute flowfields simultaneously; however, the required computation time was found to be excessive for parametric design studies. A second computational procedure was developed which utilized an analytical impeller flowfield model and an ordinary differential equation to describe the impeller/volute coupling obtained from the literature, Adkins & Brennen (1988). The second procedure resulted in 20 to 30 fold increase in computational speed for an analysis. The volute design analysis was validated by postulating a volute geometry, constructing a volute to this configuration, and measuring the steady radial forces over a range of flow coefficients. Excellent agreement between model predictions and observed pump operation prove the computational impeller/volute pump model to be a valuable design tool. Further applications are recommended to fully establish the benefits of this new methodology.

  18. Development and Implementation of Dynamic Scripts to Execute Cycled WRF/GSI Forecasts

    NASA Technical Reports Server (NTRS)

    Zavodsky, Bradley; Srikishen, Jayanthi; Berndt, Emily; Li, Quanli; Watson, Leela

    2014-01-01

    Automating the coupling of data assimilation (DA) and modeling systems is a unique challenge in the numerical weather prediction (NWP) research community. In recent years, the Development Testbed Center (DTC) has released well-documented tools such as the Weather Research and Forecasting (WRF) model and the Gridpoint Statistical Interpolation (GSI) DA system that can be easily downloaded, installed, and run by researchers on their local systems. However, developing a coupled system in which the various preprocessing, DA, model, and postprocessing capabilities are all integrated can be labor-intensive if one has little experience with any of these individual systems. Additionally, operational modeling entities generally have specific coupling methodologies that can take time to understand and develop code to implement properly. To better enable collaborating researchers to perform modeling and DA experiments with GSI, the Short-term Prediction Research and Transition (SPoRT) Center has developed a set of Perl scripts that couple GSI and WRF in a cycling methodology consistent with the use of real-time, regional observation data from the National Centers for Environmental Prediction (NCEP)/Environmental Modeling Center (EMC). Because Perl is open source, the code can be easily downloaded and executed regardless of the user's native shell environment. This paper will provide a description of this open-source code and descriptions of a number of the use cases that have been performed by SPoRT collaborators using the scripts on different computing systems.

  19. Developpement energetique par modelisation et intelligence territoriale: Un outil de prise de decision participative pour le developpement durable des projets eoliens

    NASA Astrophysics Data System (ADS)

    Vazquez Rascon, Maria de Lourdes

    This thesis focuses on the implementation of a participatory and transparent decision making tool about the wind farm projects. This tool is based on an (argumentative) framework that reflects the stakeholder's values systems involved in these projects and it employs two multicriteria methods: the multicriteria decision aide and the participatory geographical information systems, making it possible to represent this value systems by criteria and indicators to be evaluated. The stakeholder's values systems will allow the inclusion of environmental, economic and social-cultural aspects of wind energy projects and, thus, a sustainable development wind projects vision. This vision will be analyzed using the 16 sustainable principles included in the Quebec's Sustainable Development Act. Four specific objectives have been instrumented to favor a logical completion work, and to ensure the development of a successfultool : designing a methodology to couple the MCDA and participatory GIS, testing the developed methodology by a case study, making a robustness analysis to address strategic issues and analyzing the strengths, weaknesses, opportunities and threads of the developed methodology. Achieving the first goal allowed us to obtain a decision-making tool called Territorial Intelligence Modeling for Energy Development (TIMED approach). The TIMED approach is visually represented by a figure expressing the idea of a co-construction decision and where ail stakeholders are the focus of this methodology. TIMED is composed of four modules: Multi-Criteria decision analysis, participatory geographic Information systems, active involvement of the stakeholders and scientific knowledge/local knowledge. The integration of these four modules allows for the analysis of different implementation scenarios of wind turbines in order to choose the best one based on a participatory and transparent decision-making process that takes into account stakeholders' concerns. The second objective enabled the testing of TIMED in an ex-post experience of a wind farm in operation since 2006. In this test, II people participated representing four stakeholder' categories: the private sector, the public sector, experts and civil society. This test allowed us to analyze the current situation in which wind projects are currently developed in Quebec. The concerns of some stakeholders regarding situations that are not considered in the current context were explored through a third goal. This third objective allowed us to make simulations taking into account the assumptions of strategic levels. Examples of the strategic level are the communication tools used to approach the host community and the park property type. Finally, the fourth objective, a SWOT analysis with the participation of eight experts, allowed us to verify the extent to which TIMED approach succeeded in constructing four fields for participatory decision-making: physical, intellectual, emotional and procedural. From these facts, 116 strengths, 28 weaknesses, 32 constraints and 54 opportunities were identified. Contributions, applications, limitations and extensions of this research are based on giving a participatory decision-making methodology taking into account socio-cultural, environmental and economic variables; making reflection sessions on a wind farm in operation; acquiring MCDA knowledge for participants involved in testing the proposed methodology; taking into account the physical, intellectual, emotional and procedural spaces to al1iculate a participatory decision; using the proposed methodology in renewable energy sources other than wind; the need to an interdisciplinary team for the methodology application; access to quality data; access to information technologies; the right to public participation; the neutrality of experts; the relationships between experts and non-experts; cultural constraints; improvement of designed indicators; the implementation of a Web platform for participatory decision-making and writing a manual on the use of the developed methodology. Keywords: wind farm, multicriteria decision, geographic information systems, TIMED approach, sustainable wind energy projects development, renewable energy, social participation, robustness concern, SWOT analysis.

  20. Free and Convectively Coupled Equatorial Waves Simulated by CMIP5 Climate Models

    NASA Astrophysics Data System (ADS)

    Marques, Carlos A. F.; Castanheira, José M.

    2015-04-01

    It is well known that precipitation in the equatorial belt does not occur randomly, but is often organized into synoptic to planetary-scale disturbances with time scales smaller than a season. Several studies have shown that a large fraction of the convection variability in such disturbances is associated with dynamical Equatorial Waves, such as the Kelvin, Equatorial Rossby, Mixed Rossby-Gravity, Eastward and Westward Inertio-Gravity waves (e.g. Kiladis et al., Rev. Geophys., 2009). The horizontal structures and dispersion characteristics of such Convectively Coupled Equatorial Waves (CCEWs) correspond to the solutions of the shallow water (SW) equations on an equatorial β-plane obtained by Matsuno (J. Meteor. Soc. Japan, 1966). CCEWs have broad impacts within the tropics, but their simulation in general circulation models is still problematic. Using space-time spectral analyses of a proxy field for tropical convection (e.g. outgoing long wave radiation (OLR)), it has been shown the existence of spectral peaks aligned along the dispersion curves of equatorially trapped wave modes of SW theory, which have been interpreted as the effect of equatorial wave processes (e.g. Takayabu, J. Meteor. Soc. Japan, 1994; Wheeler and Kiladis, JAS, 1999). However, different equatorial modes may not be well separated in the wavenumber-frequency domain due to a vertical variation of the horizontal basic flow, that may introduce Doppler shiftings and changes in the vertical heating profiles which may distort the theoretical dispersion curves (Yang et al., JAS, 2003). In this communication, we present a new methodology for the diagnosis of CCEWs, which is based on a pre-filtering of the geopotential and horizontal wind, via three-dimensional (3-D) normal mode functions of the adiabatic linearized equations of a resting atmosphere, followed by a space-time power and cross spectral analysis applied to the 3-D normal mode filtered fields and the OLR (or other fields that may be proxies of tropical convection) to identify the spectral regions of coherence. The advantage of such an approach is that the theoretical vertical as well as horizontal structure functions are taken into account in the projection method, and so the structures obtained are better defined with respect to the theoretical normal modes of a 3-D atmosphere compared to other approaches. The methodology has been applied to the (u,v,φ) and OLR fields simulated by various of the most recent climate models (CMIP5). The methodology has been also applied to the ERA-Interim geopotential and horizontal wind fields and to the interpolated OLR data produced by the National Oceanic and Atmospheric Administration, against which model simulations are evaluated. This new diagnosis method permits a direct detection of various types of equatorial waves, compares the dispersion characteristics of the coupled waves with the theoretical dispersion curves and allows an identification of which vertical modes are more involved in the convection. Moreover, it is able to show the existence of free dry waves and moist coupled waves with a common vertical structure, which is in conformity with the effect of convective heating/cooling on the effective static stability, as deduced from the gross moist stability concept (Kiladis et al., Rev. Geophys., 2009). The methodology is also sensitive to wave's interactions. Deficiencies found in the models' simulations should help the identification of which physical processes need to be improved in climate models.

  1. Concepts in Biochemistry: Chemical Synthesis of DNA.

    ERIC Educational Resources Information Center

    Caruthers, Marvin H.

    1989-01-01

    Outlines the chemistry of the rapid synthesis of relatively large DNA fragments (100-200 monomers each) with yields exceeding 99 percent per coupling. DNA synthesis methodologies are outlined and a polymer-supported synthesis of DNA using deoxynucleoside phosphoramidites is described with structural formulas. (YP)

  2. Coupled Physics Environment (CouPE) library - Design, Implementation, and Release

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahadevan, Vijay S.

    Over several years, high fidelity, validated mono-­physics solvers with proven scalability on peta-­scale architectures have been developed independently. Based on a unified component-­based architecture, these existing codes can be coupled with a unified mesh-­data backplane and a flexible coupling-­strategy-­based driver suite to produce a viable tool for analysts. In this report, we present details on the design decisions and developments on CouPE, an acronym that stands for Coupled Physics Environment that orchestrates a coupled physics solver through the interfaces exposed by MOAB array-­based unstructured mesh, both of which are part of SIGMA (Scalable Interfaces for Geometry and Mesh-­Based Applications) toolkit.more » The SIGMA toolkit contains libraries that enable scalable geometry and unstructured mesh creation and handling in a memory and computationally efficient implementation. The CouPE version being prepared for a full open-­source release along with updated documentation will contain several useful examples that will enable users to start developing their applications natively using the native MOAB mesh and couple their models to existing physics applications to analyze and solve real world problems of interest. An integrated multi-­physics simulation capability for the design and analysis of current and future nuclear reactor models is also being investigated as part of the NEAMS RPL, to tightly couple neutron transport, thermal-­hydraulics and structural mechanics physics under the SHARP framework. This report summarizes the efforts that have been invested in CouPE to bring together several existing physics applications namely PROTEUS (neutron transport code), Nek5000 (computational fluid-dynamics code) and Diablo (structural mechanics code). The goal of the SHARP framework is to perform fully resolved coupled physics analysis of a reactor on heterogeneous geometry, in order to reduce the overall numerical uncertainty while leveraging available computational resources. The design of CouPE along with motivations that led to implementation choices are also discussed. The first release of the library will be different from the current version of the code that integrates the components in SHARP and explanation on the need for forking the source base will also be provided. Enhancements in the functionality and improved user guides will be available as part of the release. CouPE v0.1 is scheduled for an open-­source release in December 2014 along with SIGMA v1.1 components that provide support for language-agnostic mesh loading, traversal and query interfaces along with scalable solution transfer of fields between different physics codes. The coupling methodology and software interfaces of the library are presented, along with verification studies on two representative fast sodium-­cooled reactor demonstration problems to prove the usability of the CouPE library.« less

  3. Coupled Transcriptome and Proteome Analysis of Human Lymphotropic Tumor Viruses: Insights on the Detection and Discovery of Viral Genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dresang, Lindsay R.; Teuton, Jeremy R.; Feng, Huichen

    Kaposi's sarcoma-associated herpesvirus (KSHV) and Epstein-Barr virus (EBV) are related human tumor viruses that cause primary effusion lymphomas (PEL) and Burkitt's lymphomas (BL), respectively. Viral genes expressed in naturally-infected cancer cells contribute to disease pathogenesis; knowing which viral genes are expressed is critical in understanding how these viruses cause cancer. To evaluate the expression of viral genes, we used high-resolution separation and mass spectrometry coupled with custom tiling arrays to align the viral proteomes and transcriptomes of three PEL and two BL cell lines under latent and lytic culture conditions. Results The majority of viral genes were efficiently detected atmore » the transcript and/or protein level on manipulating the viral life cycle. Overall the correlation of expressed viral proteins and transcripts was highly complementary in both validating and providing orthogonal data with latent/lytic viral gene expression. Our approach also identified novel viral genes in both KSHV and EBV, and extends viral genome annotation. Several previously uncharacterized genes were validated at both transcript and protein levels. Conclusions This systems biology approach coupling proteome and transcriptome measurements provides a comprehensive view of viral gene expression that could not have been attained using each methodology independently. Detection of viral proteins in combination with viral transcripts is a potentially powerful method for establishing virus-disease relationships.« less

  4. Semiautomated determination of neonicotinoids and characteristic metabolite in urine samples using TurboFlow™ coupled to ultra high performance liquid chromatography coupled to Orbitrap analyzer.

    PubMed

    López-García, Marina; Romero-González, Roberto; Lacasaña, Marina; Garrido Frenich, Antonia

    2017-11-30

    A semiautomated method based on ultra-high performance liquid chromatography (UHPLC) coupled to Orbitrap high resolution mass spectrometry has been developed for the determination of neonicotinoids (imidacloprid, acetamiprid, clothianidin, dinotefuran, nitenpyram, thiacloprid and thiamethoxam) and the metabolite acetamiprid-n-desmethyl in urine samples. Two automated methods were tested (solid-phase extraction "SPE" and turbulent flow chromatography "TurboFlow™"), obtaining the best results when TurboFlow™ was applied. The total analysis time for the developed method was 14min. The optimized method was validated, obtaining suitable results for all validation parameters. Recoveries ranged from 78% to 116% meanwhile repeatability and reproducibility were evaluated obtaining values lower than 10% and 20% respectively (except for dinotefuran and nitenpyram at 0.2μgL -1 ). The limit of quantification (LOQ) for all compounds was established at 0.2μgL -1 . The proposed analytical methodology was applied to analyze the target compounds in thirty six urine samples from pregnant women living in agricultural areas of Almería (Spain). Imidacloprid, acetamiprid and acetamiprid-n-desmethyl were detected in some of the samples at concentrations ranging from 0.23 to 1.57μgL -1 . Furthermore, dinotefuran was identified in two samples at trace levels. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Aeroelastic System Development Using Proper Orthogonal Decomposition and Volterra Theory

    NASA Technical Reports Server (NTRS)

    Lucia, David J.; Beran, Philip S.; Silva, Walter A.

    2003-01-01

    This research combines Volterra theory and proper orthogonal decomposition (POD) into a hybrid methodology for reduced-order modeling of aeroelastic systems. The out-come of the method is a set of linear ordinary differential equations (ODEs) describing the modal amplitudes associated with both the structural modes and the POD basis functions for the uid. For this research, the structural modes are sine waves of varying frequency, and the Volterra-POD approach is applied to the fluid dynamics equations. The structural modes are treated as forcing terms which are impulsed as part of the uid model realization. Using this approach, structural and uid operators are coupled into a single aeroelastic operator. This coupling converts a free boundary uid problem into an initial value problem, while preserving the parameter (or parameters) of interest for sensitivity analysis. The approach is applied to an elastic panel in supersonic cross ow. The hybrid Volterra-POD approach provides a low-order uid model in state-space form. The linear uid model is tightly coupled with a nonlinear panel model using an implicit integration scheme. The resulting aeroelastic model provides correct limit-cycle oscillation prediction over a wide range of panel dynamic pressure values. Time integration of the reduced-order aeroelastic model is four orders of magnitude faster than the high-order solution procedure developed for this research using traditional uid and structural solvers.

  6. Methodological quality and scientific impact of quantitative nursing education research over 18 months.

    PubMed

    Yucha, Carolyn B; Schneider, Barbara St Pierre; Smyer, Tish; Kowalski, Susan; Stowers, Eva

    2011-01-01

    The methodological quality of nursing education research has not been rigorously studied. The purpose of this study was to evaluate the methodological quality and scientific impact of nursing education research reports. The methodological quality of 133 quantitative nursing education research articles published between July 2006 and December 2007 was evaluated using the Medical Education Research Study Quality Instrument (MERSQI).The mean (+/- SD) MERSQI score was 9.8 +/- 2.2. It correlated (p < .05) with several scientific impact indicators: citation counts from Scopus (r = .223), Google Scholar (r = .224), and journal impact factor (r = .216); it was not associated with Web of Science citation count, funding, or h Index. The similarities between this study's MERSQI ratings for nursing literature and those reported for the medical literature, coupled with the association with citation counts, suggest that the MERSQI is an appropriate instrument to evaluate the quality of nursing education research.

  7. Extraction of the gate capacitance coupling coefficient in floating gate non-volatile memories: Statistical study of the effect of mismatching between floating gate memory and reference transistor in dummy cell extraction methods

    NASA Astrophysics Data System (ADS)

    Rafhay, Quentin; Beug, M. Florian; Duane, Russell

    2007-04-01

    This paper presents an experimental comparison of dummy cell extraction methods of the gate capacitance coupling coefficient for floating gate non-volatile memory structures from different geometries and technologies. These results show the significant influence of mismatching floating gate devices and reference transistors on the extraction of the gate capacitance coupling coefficient. In addition, it demonstrates the accuracy of the new bulk bias dummy cell extraction method and the importance of the β function, introduced recently in [Duane R, Beug F, Mathewson A. Novel capacitance coupling coefficient measurement methodology for floating gate non-volatile memory devices. IEEE Electr Dev Lett 2005;26(7):507-9], to determine matching pairs of floating gate memory and reference transistor.

  8. Interfacing comprehensive rotorcraft analysis with advanced aeromechanics and vortex wake models

    NASA Astrophysics Data System (ADS)

    Liu, Haiying

    This dissertation describes three aspects of the comprehensive rotorcraft analysis. First, a physics-based methodology for the modeling of hydraulic devices within multibody-based comprehensive models of rotorcraft systems is developed. This newly proposed approach can predict the fully nonlinear behavior of hydraulic devices, and pressure levels in the hydraulic chambers are coupled with the dynamic response of the system. The proposed hydraulic device models are implemented in a multibody code and calibrated by comparing their predictions with test bench measurements for the UH-60 helicopter lead-lag damper. Predicted peak damping forces were found to be in good agreement with measurements, while the model did not predict the entire time history of damper force to the same level of accuracy. The proposed model evaluates relevant hydraulic quantities such as chamber pressures, orifice flow rates, and pressure relief valve displacements. This model could be used to design lead-lag dampers with desirable force and damping characteristics. The second part of this research is in the area of computational aeroelasticity, in which an interface between computational fluid dynamics (CFD) and computational structural dynamics (CSD) is established. This interface enables data exchange between CFD and CSD with the goal of achieving accurate airloads predictions. In this work, a loose coupling approach based on the delta-airloads method is developed in a finite-element method based multibody dynamics formulation, DYMORE. To validate this aerodynamic interface, a CFD code, OVERFLOW-2, is loosely coupled with a CSD program, DYMORE, to compute the airloads of different flight conditions for Sikorsky UH-60 aircraft. This loose coupling approach has good convergence characteristics. The predicted airloads are found to be in good agreement with the experimental data, although not for all flight conditions. In addition, the tight coupling interface between the CFD program, OVERFLOW-2, and the CSD program, DYMORE, is also established. The ability to accurately capture the wake structure around a helicopter rotor is crucial for rotorcraft performance analysis. In the third part of this thesis, a new representation of the wake vortex structure based on Non-Uniform Rational B-Spline (NURBS) curves and surfaces is proposed to develop an efficient model for prescribed and free wakes. NURBS curves and surfaces are able to represent complex shapes with remarkably little data. The proposed formulation has the potential to reduce the computational cost associated with the use of Helmholtz's law and the Biot-Savart law when calculating the induced flow field around the rotor. An efficient free-wake analysis will considerably decrease the computational cost of comprehensive rotorcraft analysis, making the approach more attractive to routine use in industrial settings.

  9. A strategy to couple the material point method (MPM) and smoothed particle hydrodynamics (SPH) computational techniques

    NASA Astrophysics Data System (ADS)

    Raymond, Samuel J.; Jones, Bruce; Williams, John R.

    2018-01-01

    A strategy is introduced to allow coupling of the material point method (MPM) and smoothed particle hydrodynamics (SPH) for numerical simulations. This new strategy partitions the domain into SPH and MPM regions, particles carry all state variables and as such no special treatment is required for the transition between regions. The aim of this work is to derive and validate the coupling methodology between MPM and SPH. Such coupling allows for general boundary conditions to be used in an SPH simulation without further augmentation. Additionally, as SPH is a purely particle method, and MPM is a combination of particles and a mesh. This coupling also permits a smooth transition from particle methods to mesh methods, where further coupling to mesh methods could in future provide an effective farfield boundary treatment for the SPH method. The coupling technique is introduced and described alongside a number of simulations in 1D and 2D to validate and contextualize the potential of using these two methods in a single simulation. The strategy shown here is capable of fully coupling the two methods without any complicated algorithms to transform information from one method to another.

  10. Vibration and aeroelastic analysis of highly flexible HALE aircraft

    NASA Astrophysics Data System (ADS)

    Chang, Chong-Seok

    The highly flexible HALE (High Altitude Long Endurance) aircraft analysis methodology is of interest because early studies indicated that HALE aircraft might have different vibration and aeroelastic characteristics from those of conventional aircraft. Recently the computer code Nonlinear Aeroelastic Trim And Stability of HALE Aircraft (NATASHA) was developed under NASA sponsorship. NATASHA can predict the flight dynamics and aeroelastic behavior for HALE aircraft with a flying wing configuration. Further analysis improvements for NATASHA were required to extend its capability to the ground vibration test (GVT) environment and to both GVT and aeroelastic behavior of HALE aircraft with other configurations. First, the analysis methodology, based on geometrically exact fully intrinsic beam theory, was extended to treat other aircraft cofigurations. Conventional aircraft with flexible fuselage and tail can now be modeled by treating the aircraft as an assembly of beam elements. NATASHA is now applicable to any aircraft cofiguration that can be modeled this way. The intrinsic beam formulation, which is a fundamental structural modeling approach, is now capable of being applying to a structure consisting of multiple beams by relating the virtual displacements and rotations at points where two or more beam elements are connected to each other. Additional aspects are also considered in the analysis such as auxiliary elevator input in the horizontal tail and fuselage aerodynamics. Second, the modeling approach was extended to treat the GVT environment for HALE aircraft, which have highly flexible wings. GVT has its main purpose to provide modal characteristics for model validation. A bungee formulation was developed by the augmented Lagrangian method and coupled to the intrinsic beam formulation for the GVT modeling. After the coupling procedure, the whole formulation cannot be fully intrinsic because the geometric constraint by bungee cords makes the system statically indeterminate. Displacement and rotation variables need to be introduced, but only at points to which bungee cords are attached. Third, because many HALE aircraft are propeller driven, the structural modeling was extended to include an engine/nacelle/propeller system using a two-degree-of-freedom model with pitch and yaw angles. This step was undertaken to predict a dynamic instability called "whirl flutter," which can be exhibited in such HALE aircraft. It can investigate how the nacelle whirling and wing motions affect each other. For simplicity, two fundamental assumptions are made regarding the propeller aerodynamics and inertia matrix of two-bladed propeller system. The propeller airloads are evaluated by the constant approximation which uses the averaged values for one revolution per blade. Periodic side forces and hub moments are evaluated based on how they affect the trim condition determined by the constant approximation. The next assumption is for certain HALE aircraft which can use a two-bladed propeller system. The inertia matrix appears as periodic in time in the governing equations. If the periodic inertia effect is negligible, then the inertia matrix can be replaced by that of equivalent three-bladed propeller system so that the stability analysis can obviate the need for Floquet theory. These new development have been fully integrated into the current version of NATASHA. Finally, a parametric study for representative HALE aircraft is presented to show how the current methodology can be utilized as a unified preliminary analysis tool for the vibration and aeroelastic analysis of highly flexible HALE aircraft.

  11. Sexual Transmission of Hepatitis C Virus Between HIV Infected Subjects and Their Main Heterosexual Partners

    PubMed Central

    Alipour, Abbas; Rezaianzadeh, Abbas; Hasanzadeh, Jafar; Rajaeefard, Abdorreza; Davarpanah, Mohammad Ali

    2013-01-01

    Background Overall, 60-70% of the hepatitis c virus (HCV) transmission routes is parenteral, and in 30-40% of the cases is unknown (e.g. sexual route). Knowing these routes in HIV infected dyads is very important due to clinical and methodological reasons. Objectives The present study aimed to identify and quantitatively investigate HIV-infected individuals and their main heterosexual partners regarding the risk factors of HCV transmission. Patients and Methods One hundred sixty eight of 984 couples were chosen through random generated numbers using a computer program from behavioral consultation center in Shiraz, Iran. We used actor partner independent model (APIM) and multilevel analysis to assess multiple risk factors for HCV, while partitioning the source of risk at the individual and couple levels. Results Age of the index samples was 38.71 ± 7 years, and 33.2 ± 6.3 for their main heterosexual partners; the mean duration of sexual relationship for couples was 11.9 (median = 8.5) years. Multivariate analysis showed that actor risk factor of intravenous drug using (IDU) (AOR= 13.03; 95% CI: 3.9- 43.82) and actor cofactors of HIV positivity (AOR = 7.1; 95% CI: 1.37- 36.97), razor sharing (AOR = 4.81; 95% CI: 1.84- 12.55), sex (AOR = 8.83; 95% CI: 3.16- 24.87), and condom use in sexual activity with main partner (AOR = 0.15; 95% CI: 0.02- 0.44) were associated with actor HCV positivity. Conclusions Health care providers need to pay special attention to sexual transmission of HCV among HIV-infected individuals, and should recommend control/preventive measures for HCV sexual transmission. PMID:24348647

  12. Solving the Tautomeric Equilibrium of Purine Through the Analysis of the Complex Hyperfine Structure of the Four 14N Nuclei

    NASA Astrophysics Data System (ADS)

    Cocinero, Emilio J.; Uriarte, Iciar; Ecija, Patricia; Favero, Laura B.; Spada, Lorenzo; Calabrese, Camilla; Caminati, Walther

    2016-06-01

    Microwave spectroscopy has been restricted to the investigation of small molecules in the last years. However, with the advent of FTMW and CP-FTMW spectroscopies coupled with laser vaporization techniques it has turned into a very competitive methodology in the studies of moderate-size biomolecules. Here, we present the study of purine, characterized by two aromatic rings, one six- and one five-membered, fused together to give a planar aromatic bicycle. Biologically, it is the mainframe of two of the five nucleobases of DNA and RNA. Two tautomers were observed by FTMW spectroscopy coupled to UV ultrafast laser vaporization system. The population ratio of the two main tautomers [N(7)H]/[N(9)H] is about 1/40 in the gas phase. It contrasts with the solid state where only the N(7)H species is present, or in solution where a mixture of both tautomers is observed. For both species, a full quadrupolar hyperfine analysis has been performed. This has led to the determination of the full sets of diagonal quadrupole coupling constants of the four 14N atoms, which have provided crucial information for the unambiguous identification of both species. T. J. Balle and W. H. Flygare Rev. Sci. Instrum. 52, 33-45, 1981 J.-U. Grabow, W. Stahl and H. Dreizler Rev. Sci. Instrum. 67, 4072-4084, 1996 G. G. Brown, B. D. Dian, K. O. Douglass, S. M. Geyer, S. T. Shipman and B. H. Pate Rev. Sci. Instrum. 79, 0531031/1-053103/13, 2008 E. J. Cocinero, A. Lesarri, P. écija, F. J. Basterretxea, J. U. Grabow, J. A. Fernández and F. Castaño Angew. Chem. Int. Ed. 51, 3119-3124, 2012

  13. FINDING A METHOD FOR THE MADNESS: A COMPARATIVE ANALYSIS OF STRATEGIC DESIGN METHODOLOGIES

    DTIC Science & Technology

    2017-06-01

    FINDING A METHOD FOR THE MADNESS: A COMPARATIVE ANALYSIS OF STRATEGIC DESIGN METHODOLOGIES BY AMANDA DONNELLY A THESIS...work develops a comparative model for strategic design methodologies, focusing on the primary elements of vision, time, process, communication and...collaboration, and risk assessment. My analysis dissects and compares three potential design methodologies including, net assessment, scenarios and

  14. A Methodology for Loading the Advanced Test Reactor Driver Core for Experiment Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cowherd, Wilson M.; Nielsen, Joseph W.; Choe, Dong O.

    In support of experiments in the ATR, a new methodology was devised for loading the ATR Driver Core. This methodology will replace the existing methodology used by the INL Neutronic Analysis group to analyze experiments. Studied in this paper was the as-run analysis for ATR Cycle 152B, specifically comparing measured lobe powers and eigenvalue calculations.

  15. Discourse Analysis and the Study of Educational Leadership

    ERIC Educational Resources Information Center

    Anderson, Gary; Mungal, Angus Shiva

    2015-01-01

    Purpose: The purpose of this paper is to provide an overview of the current and past work using discourse analysis in the field of educational administration and of discourse analysis as a methodology. Design/Methodology/Approach: Authors reviewed research in educational leadership that uses discourse analysis as a methodology. Findings: While…

  16. 76 FR 30139 - Federal Need Analysis Methodology for the 2012-2013 Award Year

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-24

    ... DEPARTMENT OF EDUCATION Federal Need Analysis Methodology for the 2012-2013 Award Year AGENCY: Federal Student Aid, Department of Education. ACTION: Notice of revision of the Federal Need Analysis...; 84.268; 84.379]. Federal Need Analysis Methodology for the 2012-2013 award year; Federal Pell Grant...

  17. Stepwise syntheses of bisporphyrins, bischlorins, and biscorroles and of porphyrin-chlorin and porphyrin-corrole heterodimers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paolesse, R.; Pandey, R.K.; Forsyth, T.P.

    The stepwise syntheses and characterization of a series of symmetrical and unsymmetrical bisporphyrins, bischlorins, and biscorroles, and of porphyrin-chlorin and porphyrin-corrole dyads possessing ethylene, phenyl, and stilbene linking units are described. The methodology for synthesis of 10-substituted corroles 2 and their cobalt complexes 9 via a,c-biladiene salts 1 was first developed, and then extended to provide biscorroles (e.g., 4 and 5) linked through the 10-positions with phenyl linker units. Using a similar methodology, phenyl-linked corrole-porphyrin dyads 28 and 30 were also prepared. By way of intermediate phenyl-linked unsymmetrical bisdipyrromethanes, a completely unsymmetrical heterobimetallic bisporphyrin system, 45, was synthesized. Low-valent titaniummore » coupling (McMurry) reactions were used to prepare stilbene-linked bisdipyrromethanes (e.g., 46) which were subsequently transformed into stilbene-linked bisporphyrins (e.g., 48). McMurry cross-coupling reactions of porphyrins bearing p-formylphenyl substituents also afforded an unsymmetrically substituted bisporphyrinylstilbene, 60, as well as the corresponding homodimers 56 and 59. Likewise, McMurry cross-coupling of a p-formylphenyl-substituted porphyrin, 62, with a formylchlorin, 63, afforded a stilbene-linked bisporphyrin, 64, a bischlorin, 66, and a novel porphyrin-chlorin heterodimer, 65. 54 refs., 1 fig., 1 tab.« less

  18. Parameter estimation in a structural acoustic system with fully nonlinear coupling conditions

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Smith, Ralph C.

    1994-01-01

    A methodology for estimating physical parameters in a class of structural acoustic systems is presented. The general model under consideration consists of an interior cavity which is separated from an exterior noise source by an enclosing elastic structure. Piezoceramic patches are bonded to or embedded in the structure; these can be used both as actuators and sensors in applications ranging from the control of interior noise levels to the determination of structural flaws through nondestructive evaluation techniques. The presence and excitation of patches, however, changes the geometry and material properties of the structure as well as involves unknown patch parameters, thus necessitating the development of parameter estimation techniques which are applicable in this coupled setting. In developing a framework for approximation, parameter estimation and implementation, strong consideration is given to the fact that the input operator is unbonded due to the discrete nature of the patches. Moreover, the model is weakly nonlinear. As a result of the coupling mechanism between the structural vibrations and the interior acoustic dynamics. Within this context, an illustrating model is given, well-posedness and approximations results are discussed and an applicable parameter estimation methodology is presented. The scheme is then illustrated through several numerical examples with simulations modeling a variety of commonly used structural acoustic techniques for systems excitations and data collection.

  19. On the continuity of mean total normal stress in geometrical multiscale cardiovascular problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blanco, Pablo J., E-mail: pjblanco@lncc.br; INCT-MACC, Instituto Nacional de Ciência e Tecnologia em Medicina Assistida por Computação Científica, Petrópolis; Deparis, Simone, E-mail: simone.deparis@epfl.ch

    2013-10-15

    In this work an iterative strategy to implicitly couple dimensionally-heterogeneous blood flow models accounting for the continuity of mean total normal stress at interface boundaries is developed. Conservation of mean total normal stress in the coupling of heterogeneous models is mandatory to satisfy energetic consistency between them. Nevertheless, existing methodologies are based on modifications of the Navier–Stokes variational formulation, which are undesired when dealing with fluid–structure interaction or black box codes. The proposed methodology makes possible to couple one-dimensional and three-dimensional fluid–structure interaction models, enforcing the continuity of mean total normal stress while just imposing flow rate data or evenmore » the classical Neumann boundary data to the models. This is accomplished by modifying an existing iterative algorithm, which is also able to account for the continuity of the vessel area, when required. Comparisons are performed to assess differences in the convergence properties of the algorithms when considering the continuity of mean normal stress and the continuity of mean total normal stress for a wide range of flow regimes. Finally, examples in the physiological regime are shown to evaluate the importance, or not, of considering the continuity of mean total normal stress in hemodynamics simulations.« less

  20. A study of vibrational spectra and investigations of charge transfer and chemical bonding features of 2-chloro benzimidazole based on DFT computations

    NASA Astrophysics Data System (ADS)

    Muthunatesan, S.; Ragavendran, V.

    2015-01-01

    Benzimidazoles are bicyclic heteroatomic molecules. Polycyclic heteroatomic molecules have extensive coupling of different modes leading to strong coupling of force constants associated with the various chemical bonds of the molecules. To carry out a detailed vibrational spectroscopic analysis of such a bicyclic heteroatomic molecule, FT-IR and FT-Raman spectra of 2-chloro benzimidazole (CBZ) have been recorded in the condensed phase. Density Functional Theory calculations in the B3LYP/6-31G* level have been carried out to determine the optimized geometry and vibrational frequencies. In order to obtain a close agreement between theoretical and observed frequencies and hence to perform a reliable assignment, the theoretical DFT force field was transformed from Cartesian to local symmetry co-ordinates and then scaled empirically using SQM methodology. The SQM treatment resulted in a RMS deviation of 9.4 cm-1. For visual comparison, the observed and calculated spectra are presented on a common wavenumber scale. From the NBO analysis, the electron density (ED) charge transfers in the σ* and π* antibonding orbitals and second order delocalization energies E(2) confirms the occurrence of intramolecular charge transfer (ICT) within the molecule. The calculated Homo and Lumo energies show that charge transfer occurs within the molecule. The results obtained from the vibrational, NBO and HOMO-LUMO analyses have been properly tabulated.

  1. Quantitative Evaluation of Cisplatin Uptake in Sensitive and Resistant Individual Cells by Single-Cell ICP-MS (SC-ICP-MS).

    PubMed

    Corte Rodríguez, M; Álvarez-Fernández García, R; Blanco, E; Bettmer, J; Montes-Bayón, M

    2017-11-07

    One of the main limitations to the Pt-therapy in cancer is the development of associated drug resistance that can be associated with a significant reduction of the intracellular platinum concentration. Thus, intracellular Pt concentration could be considered as a biomarker of cisplatin resistance. In this work, an alternative method to address intracellular Pt concentration in individual cells is explored to permit the evaluation of different cell models and alternative therapies in a relatively fast way. For this aim, total Pt analysis in single cells has been implemented using a total consumption nebulizer coupled to inductively coupled plasma mass spectrometric detection (ICP-MS). The efficiency of the proposed device has been evaluated in combination with flow cytometry and turned out to be around 25% (cells entering the ICP-MS from the cells in suspension). Quantitative uptake studies of a nontoxic Tb-containing compound by individual cells were conducted and the results compared to those obtained by bulk analysis of the same cells. Both sets of data were statistically comparable. Thus, final application of the developed methodology to the comparative uptake of Pt-species in cisplatin resistant and sensitive cell lines (A2780cis and A2780) was conducted. The results obtained revealed the potential of this analytical strategy to differentiate between different cell lines of different sensitivity to the drug which might be of high medical interest.

  2. Coevolutionary modeling of protein sequences: Predicting structure, function, and mutational landscapes

    NASA Astrophysics Data System (ADS)

    Weigt, Martin

    Over the last years, biological research has been revolutionized by experimental high-throughput techniques, in particular by next-generation sequencing technology. Unprecedented amounts of data are accumulating, and there is a growing request for computational methods unveiling the information hidden in raw data, thereby increasing our understanding of complex biological systems. Statistical-physics models based on the maximum-entropy principle have, in the last few years, played an important role in this context. To give a specific example, proteins and many non-coding RNA show a remarkable degree of structural and functional conservation in the course of evolution, despite a large variability in amino acid sequences. We have developed a statistical-mechanics inspired inference approach - called Direct-Coupling Analysis - to link this sequence variability (easy to observe in sequence alignments, which are available in public sequence databases) to bio-molecular structure and function. In my presentation I will show, how this methodology can be used (i) to infer contacts between residues and thus to guide tertiary and quaternary protein structure prediction and RNA structure prediction, (ii) to discriminate interacting from non-interacting protein families, and thus to infer conserved protein-protein interaction networks, and (iii) to reconstruct mutational landscapes and thus to predict the phenotypic effect of mutations. References [1] M. Figliuzzi, H. Jacquier, A. Schug, O. Tenaillon and M. Weigt ''Coevolutionary landscape inference and the context-dependence of mutations in beta-lactamase TEM-1'', Mol. Biol. Evol. (2015), doi: 10.1093/molbev/msv211 [2] E. De Leonardis, B. Lutz, S. Ratz, S. Cocco, R. Monasson, A. Schug, M. Weigt ''Direct-Coupling Analysis of nucleotide coevolution facilitates RNA secondary and tertiary structure prediction'', Nucleic Acids Research (2015), doi: 10.1093/nar/gkv932 [3] F. Morcos, A. Pagnani, B. Lunt, A. Bertolino, D. Marks, C. Sander, R. Zecchina, J.N. Onuchic, T. Hwa, M. Weigt, ''Direct-coupling analysis of residue co-evolution captures native contacts across many protein families'', Proc. Natl. Acad. Sci. 108, E1293-E1301 (2011).

  3. Fast determination of phenoxy acid herbicides in carrots and apples using liquid chromatography coupled triple quadrupole mass spectrometry.

    PubMed

    Santilio, Angela; Stefanelli, Patrizia; Dommarco, Roberto

    2009-08-01

    A fast, simple and inexpensive method has been developed for the analysis of phenoxy acid herbicides: 2,4-dichlorophenoxyacetic acid (2,4-D), 4-chloro-2-methylphenoxyacetic acid (MCPA), 2-(4-chloro-o-tolyloxy)propionic acid (MCPP), 2-(4-aryloxyphenoxy)propionic acid (Fluazifop) and 2-(4-aryloxyphenoxy)propionic acid (Haloxyfop) in carrots and apples by liquid chromatography coupled to triple quadrupole mass spectrometry (LC/MS/MS). The compounds were analyzed by QuEChERS (quick, easy, cheap, effective, rugged, safe) methodology without cleanup. The recoveries were performed at two spiked levels (0.05 and 0.5 mg/kg) for both matrices with six replicates for each level. The mean recoveries ranged from 70-92% for both apples and carrots. The precision of the method expressed as relative standard deviation (RSD%) was found to be in the range 3-15%. For all compounds, good linearity (r(2) > 0.99) was obtained over the range of concentration from 0.05 micro g/mL to 0.5 micro g/mL, corresponding to the pesticide concentrations of 0.05 mg/kg and 0.5 mg/kg, respectively. The determination limits (LOQs) ranged from 0.01 ng/mL to 1.3 ng/mL in solvent, whereas, the LOQs calculated in matrix ranged from 0.05 ng/g to 21.0 ng/g for apples and from 0.06 ng/g to 10.2 ng/g for carrots. The developed methodology combines the advantages of both QuEChERS and LC/MS/MS producing a very rapid, sensitive and cheap method useful for the routine analytical laboratories.

  4. Optical characterization of multi-scale morphologically complex heterogeneous media - Application to snow with soot impurities

    NASA Astrophysics Data System (ADS)

    Dai, Xiaoyu; Haussener, Sophia

    2018-02-01

    A multi-scale methodology for the radiative transfer analysis of heterogeneous media composed of morphologically-complex components on two distinct scales is presented. The methodology incorporates the exact morphology at the various scales and utilizes volume-averaging approaches with the corresponding effective properties to couple the scales. At the continuum level, the volume-averaged coupled radiative transfer equations are solved utilizing (i) effective radiative transport properties obtained by direct Monte Carlo simulations at the pore level, and (ii) averaged bulk material properties obtained at particle level by Lorenz-Mie theory or discrete dipole approximation calculations. This model is applied to a soot-contaminated snow layer, and is experimentally validated with reflectance measurements of such layers. A quantitative and decoupled understanding of the morphological effect on the radiative transport is achieved, and a significant influence of the dual-scale morphology on the macroscopic optical behavior is observed. Our results show that with a small amount of soot particles, of the order of 1ppb in volume fraction, the reduction in reflectance of a snow layer with large ice grains can reach up to 77% (at a wavelength of 0.3 μm). Soot impurities modeled as compact agglomerates yield 2-3% lower reduction of the reflectance in a thick show layer compared to snow with soot impurities modeled as chain-like agglomerates. Soot impurities modeled as equivalent spherical particles underestimate the reflectance reduction by 2-8%. This study implies that the morphology of the heterogeneities in a media significantly affects the macroscopic optical behavior and, specifically for the soot-contaminated snow, indicates the non-negligible role of soot on the absorption behavior of snow layers. It can be equally used in technical applications for the assessment and optimization of optical performance in multi-scale media.

  5. Survey of Key Concepts in Enactivist Theory and Methodology

    ERIC Educational Resources Information Center

    Reid, David A.; Mgombelo, Joyce

    2015-01-01

    This article discusses key concepts within enactivist writing, focussing especially on concepts involved in the enactivist description of cognition as embodied action: perceptually guided action, embodiment, and structural coupling through recurrent sensorimotor patterns. Other concepts on which these concepts depend are also discussed, including…

  6. Think Global/Design Glocal

    ERIC Educational Resources Information Center

    Zuiker, Steven J.

    2010-01-01

    The technologies underlying virtual environments like videogames and the methodologies of the learning sciences create an important intersection for work in educational technology. Coupling these fields enables us to consider participatory learning in terms of the ways that "context" shapes a process of making meaning. In this article,…

  7. Rapid ultra-trace analysis of sucralose in multiple-origin aqueous samples by online solid-phase extraction coupled to high-resolution mass spectrometry.

    PubMed

    Batchu, Sudha Rani; Ramirez, Cesar E; Gardinali, Piero R

    2015-05-01

    Because of its widespread consumption and its persistence during wastewater treatment, the artificial sweetener sucralose has gained considerable interest as a proxy to detect wastewater intrusion into usable water resources. The molecular resilience of this compound dictates that coastal and oceanic waters are the final recipient of this compound with unknown effects on ecosystems. Furthermore, no suitable methodologies have been reported for routine, ultra-trace detection of sucralose in seawater as the sensitivity of traditional liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis is limited by a low yield of product ions upon collision-induced dissociation (CID). In this work, we report the development and field test of an alternative analysis tool for sucralose in environmental waters, with enough sensitivity for the proper quantitation and confirmation of this analyte in seawater. The methodology is based on automated online solid-phase extraction (SPE) and high-resolving-power orbitrap MS detection. Operating in full scan (no CID), detection of the unique isotopic pattern (100:96:31 for [M-H](-), [M-H+2](-), and [M-H+4](-), respectively) was used for ultra-trace quantitation and analyte identification. The method offers fast analysis (14 min per run) and low sample consumption (10 mL per sample) with method detection and confirmation limits (MDLs and MCLs) of 1.4 and 5.7 ng/L in seawater, respectively. The methodology involves low operating costs due to virtually no sample preparation steps or consumables. As an application example, samples were collected from 17 oceanic and estuarine sites in Broward County, FL, with varying salinity (6-40 PSU). Samples included the ocean outfall of the Southern Regional Wastewater Treatment Plant (WWTP) that serves Hollywood, FL. Sucralose was detected above MCL in 78% of the samples at concentrations ranging from 8 to 148 ng/L, with the exception of the WWTP ocean outfall (at pipe end, 28 m below the surface) where the measured concentration was 8418 ± 3813 ng/L. These results demonstrate the applicability of this monitoring tool for the trace-level detection of this wastewater marker in very dilute environmental waters.

  8. Parametric Optimization of Thermoelectric Generators for Waste Heat Recovery

    NASA Astrophysics Data System (ADS)

    Huang, Shouyuan; Xu, Xianfan

    2016-10-01

    This paper presents a methodology for design optimization of thermoelectric-based waste heat recovery systems called thermoelectric generators (TEGs). The aim is to maximize the power output from thermoelectrics which are used as add-on modules to an existing gas-phase heat exchanger, without negative impacts, e.g., maintaining a minimum heat dissipation rate from the hot side. A numerical model is proposed for TEG coupled heat transfer and electrical power output. This finite-volume-based model simulates different types of heat exchangers, i.e., counter-flow and cross-flow, for TEGs. Multiple-filled skutterudites and bismuth-telluride-based thermoelectric modules (TEMs) are applied, respectively, in higher and lower temperature regions. The response surface methodology is implemented to determine the optimized TEG size along and across the flow direction and the height of thermoelectric couple legs, and to analyze their covariance and relative sensitivity. A genetic algorithm is employed to verify the globality of the optimum. The presented method will be generally useful for optimizing heat-exchanger-based TEG performance.

  9. Starch extraction process coupled to protein recovery from leguminous tuberous roots (Pachyrhizus ahipa).

    PubMed

    Díaz, Andrea; Dini, Cecilia; Viña, Sonia Z; García, María A

    2016-11-05

    The objective of this work was to fit together the starch extraction from Pachyrhizus ahipa roots and the recovery of the proteins present in these storage organs, making an improved use of this novel raw material. The replacement of water by buffer PO4(-3)/NaCl as solvent in the first extraction steps improved protein extraction without lowering the starch yield. The starches obtained from the traditional and the proposed methods exhibited some differences in appearance and technological and thermal properties, which were endorsed to the adjustment in the methodology of extraction rather than to the use of buffer as solvent. Thus, P. ahipa starch obtaining procedure could be coupled to protein extraction with a minimum change in the methodology. This innovation did not significantly shift the characteristics of the starch obtained and allowed to obtain a protein yield of 135.7mg BSA equivalent protein/100g of fresh roots. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Coupled, Simultaneous Displacement and Dealloying Reactions into Fe-Ni-Co Nanowires for Thinning Nanowire Segments.

    PubMed

    Geng, Xiaohua; Podlaha, Elizabeth J

    2016-12-14

    A new methodology is reported to shape template-assisted electrodeposition of Fe-rich, Fe-Ni-Co nanowires to have a thin nanowire segment using a coupled displacement reaction with a more noble elemental ion, Cu(II), and at the same time dealloying predominantly Fe from Fe-Ni-Co by the reduction of protons (H + ), followed by a subsequent etching step. The displacement/dealloyed layer was sandwiched between two trilayers of Fe-Ni-Co to facilitate the characterization of the reaction front, or penetration length. The penetration length region was found to be a function of the ratio of proton and Cu(II) concentration, and a ratio of 0.5 was found to provide the largest penetration rate, and hence the larger thinned length of the nanowire. Altering the etching time affected the diameter of the thinned region. This methodology presents a new way to thin nanowire segments connected to larger nanowire sections and also introduces a way to study the propagation of a reaction front into a nanowire.

  11. Unified Theory for Aircraft Handling Qualities and Adverse Aircraft-Pilot Coupling

    NASA Technical Reports Server (NTRS)

    Hess, R. A.

    1997-01-01

    A unified theory for aircraft handling qualities and adverse aircraft-pilot coupling or pilot-induced oscillations is introduced. The theory is based on a structural model of the human pilot. A methodology is presented for the prediction of (1) handling qualities levels; (2) pilot-induced oscillation rating levels; and (3) a frequency range in which pilot-induced oscillations are likely to occur. Although the dynamics of the force-feel system of the cockpit inceptor is included, the methodology will not account for effects attributable to control sensitivity and is limited to single-axis tasks and, at present, to linear vehicle models. The theory is derived from the feedback topology of the structural model and an examination of flight test results for 32 aircraft configurations simulated by the U.S. Air Force/CALSPAN NT-33A and Total In-Flight Simulator variable stability aircraft. An extension to nonlinear vehicle dynamics such as that encountered with actuator saturation is discussed.

  12. Synthesis of heterocycles: Indolo (2,1-a) isoquinolines, renewables, and aptamer ligands for cellular imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beasley, Jonathan

    2013-01-01

    In this thesis, we explore both total syntheses and methodologies of several aromatic heterocyclic molecules. Extensions of the Kraus indole synthesis toward 2-substituted and 2,3-disubstituted indoles, as well as biologically attractive indolo[2,1-a]isoquinolines are described. Recent renewable efforts directed to commodity maleic acid and the first reported furan-based ionic liquids are described. Our total synthesis of mRNA aptamer ligand PDC-Gly, and its dye coupled forms, plus aminoglycoside dye coupled ligands used in molecular imaging, are described.

  13. Improved Reversibility of Fe3+ /Fe4+ Redox Couple in Sodium Super Ion Conductor Type Na3 Fe2 (PO4 )3 for Sodium-Ion Batteries.

    PubMed

    Rajagopalan, Ranjusha; Chen, Bo; Zhang, Zhicheng; Wu, Xing-Long; Du, Yonghua; Huang, Ying; Li, Bing; Zong, Yun; Wang, Jie; Nam, Gwang-Hyeon; Sindoro, Melinda; Dou, Shi Xue; Liu, Hua Kun; Zhang, Hua

    2017-03-01

    The methodology employed here utilizes the sodium super ion conductor type sodium iron phosphate wrapped with conducting carbon network to generate a stable Fe 3+ /Fe 4+ redox   couple, thereby exhibiting higher operating voltage and energy density of sodium-ion batteries. This new class of sodium iron phosphate wrapped by carbon also displays a cycling stability with >96% capacity retention after 200 cycles. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Numerical parametric studies of spray combustion instability

    NASA Technical Reports Server (NTRS)

    Pindera, M. Z.

    1993-01-01

    A coupled numerical algorithm has been developed for studies of combustion instabilities in spray-driven liquid rocket engines. The model couples gas and liquid phase physics using the method of fractional steps. Also introduced is a novel, efficient methodology for accounting for spray formation through direct solution of liquid phase equations. Preliminary parametric studies show marked sensitivity of spray penetration and geometry to droplet diameter, considerations of liquid core, and acoustic interactions. Less sensitivity was shown to the combustion model type although more rigorous (multi-step) formulations may be needed for the differences to become apparent.

  15. Buckling and weight optimization for non-coupled antisymmetric laminates

    NASA Astrophysics Data System (ADS)

    Bhatnagar, Aditi

    This research work describes the application of genetic algorithms to weight minimization and buckling load maximization of the non-coupled antisymmetric composite laminated plates. Previous studies of composite tailoring were limited to symmetric and balanced laminates. With the availability of many methodologies for composite tailoring, genetic algorithm is preferably used because of its ability to handle discrete design variable and attain multiple near optimum design solutions. A comparative study is made between optimum symmetric-balanced laminate designs and optimum non-coupled antisymmetric laminate designs, both of which are subjected to biaxial in-plane compressive loads. With the implementation of various genetic algorithm operators such as selection, crossover and mutation, critical buckling load factors are obtained for the optimum stacking sequence for both types of laminates. The mechanical properties for non-coupled antisymmetric laminates is independent of all types of coupling effects such as bending-twisting coupling, bending-extension coupling, and shear-extension coupling, thus giving the laminate a non-coupling behavior. This is in contrast to that of symmetric-balanced laminates where finite bending-twisting coupling terms are present. Optimized laminate layups satisfying the constraints of balance, buckling and adjoining were obtained for two types of graphite epoxy rectangular composite laminated plates. The current research augments the laminate thickness minimization designs with both odd and even number of layers, and the optimum buckling load maximization designs by the introduction of non-coupled antisymmetric laminates.

  16. Potential of capillary-column-switching liquid chromatography-tandem mass spectrometry for the quantitative trace analysis of small molecules. Application to the on-line screening of drugs in water.

    PubMed

    Pitarch, Elena; Hernandez, Felix; ten Hove, Jan; Meiring, Hugo; Niesing, Willem; Dijkman, Ellen; Stolker, Linda; Hogendoorn, Elbert

    2004-03-26

    We have investigated the potential of capillary-column-switching liquid chromatography coupled to tandem mass spectrometry (cLC-MS-MS) for the quantitative on-line trace analysis of target compounds in aqueous solutions. The technical design of the nano-scale cLC system developed at our Institute for peptide and protein identification has been tested and evaluated for the direct trace analysis of drugs in water samples. Sulphametoxazole, bezafibrate, metoprolol, carbamazepine and bisoprolol occurring frequently in Dutch waters, were selected as test compounds. Adequate conditions for trapping, elution and MS-MS detection were investigated by employing laboratory made 200 microm i.d. capillary columns packed with 5 microm aqua C18 material. In the final cLC-MS-MS conditions, a 1 cm length trapping column and a 4 cm length analytical column were selected. Under these conditions, the target compounds could be directly determined in water down to a level of around 50 ng/l employing only 25 microl of water sample. Validation was done by recovery experiments in ground-, surface- and drinking-water matrices as well as by the analysis of water samples with incurred residues and previously analyzed with a conventional procedure involving off-line solid-phase extraction and narrow-bore LC with MS-MS detection. The new methodology provided recoveries (50-500 ng/l level) between 50 and 114% with RSDs (n = 3, each level) below 20% for most of the compounds. Despite the somewhat less analytical performance in comparison to the conventional procedure, the on-line approach of the new methodology is very suitable for screening of drugs in aqueous samples.

  17. Long Term Precipitation Pattern Identification and Derivation of Non Linear Precipitation Trend in a Catchment using Singular Spectrum Analysis

    NASA Astrophysics Data System (ADS)

    Unnikrishnan, Poornima; Jothiprakash, Vinayakam

    2017-04-01

    Precipitation is the major component in the hydrologic cycle. Awareness of not only the total amount of rainfall pertaining to a catchment, but also the pattern of its spatial and temporal distribution are equally important in the management of water resources systems in an efficient way. Trend is the long term direction of a time series; it determines the overall pattern of a time series. Singular Spectrum Analysis (SSA) is a time series analysis technique that decomposes the time series into small components (eigen triples). This property of the method of SSA has been utilized to extract the trend component of the rainfall time series. In order to derive trend from the rainfall time series, we need to select components corresponding to trend from the eigen triples. For this purpose, periodogram analysis of the eigen triples have been proposed to be coupled with SSA, in the present study. In the study, seasonal data of England and Wales Precipitation (EWP) for a time period of 1766-2013 have been analyzed and non linear trend have been derived out of the precipitation data. In order to compare the performance of SSA in deriving trend component, Mann Kendall (MK) test is also used to detect trends in EWP seasonal series and the results have been compared. The result showed that the MK test could detect the presence of positive or negative trend for a significance level, whereas the proposed methodology of SSA could extract the non-linear trend present in the rainfall series along with its shape. We will discuss further the comparison of both the methodologies along with the results in the presentation.

  18. Brain connectivity analysis from EEG signals using stable phase-synchronized states during face perception tasks

    NASA Astrophysics Data System (ADS)

    Jamal, Wasifa; Das, Saptarshi; Maharatna, Koushik; Pan, Indranil; Kuyucu, Doga

    2015-09-01

    Degree of phase synchronization between different Electroencephalogram (EEG) channels is known to be the manifestation of the underlying mechanism of information coupling between different brain regions. In this paper, we apply a continuous wavelet transform (CWT) based analysis technique on EEG data, captured during face perception tasks, to explore the temporal evolution of phase synchronization, from the onset of a stimulus. Our explorations show that there exists a small set (typically 3-5) of unique synchronized patterns or synchrostates, each of which are stable of the order of milliseconds. Particularly, in the beta (β) band, which has been reported to be associated with visual processing task, the number of such stable states has been found to be three consistently. During processing of the stimulus, the switching between these states occurs abruptly but the switching characteristic follows a well-behaved and repeatable sequence. This is observed in a single subject analysis as well as a multiple-subject group-analysis in adults during face perception. We also show that although these patterns remain topographically similar for the general category of face perception task, the sequence of their occurrence and their temporal stability varies markedly between different face perception scenarios (stimuli) indicating toward different dynamical characteristics for information processing, which is stimulus-specific in nature. Subsequently, we translated these stable states into brain complex networks and derived informative network measures for characterizing the degree of segregated processing and information integration in those synchrostates, leading to a new methodology for characterizing information processing in human brain. The proposed methodology of modeling the functional brain connectivity through the synchrostates may be viewed as a new way of quantitative characterization of the cognitive ability of the subject, stimuli and information integration/segregation capability.

  19. How do the methodological choices of your climate change study affect your results? A hydrologic case study across the Pacific Northwest

    NASA Astrophysics Data System (ADS)

    Chegwidden, O.; Nijssen, B.; Rupp, D. E.; Kao, S. C.; Clark, M. P.

    2017-12-01

    We describe results from a large hydrologic climate change dataset developed across the Pacific Northwestern United States and discuss how the analysis of those results can be seen as a framework for other large hydrologic ensemble investigations. This investigation will better inform future modeling efforts and large ensemble analyses across domains within and beyond the Pacific Northwest. Using outputs from the Coupled Model Intercomparison Project Phase 5 (CMIP5), we provide projections of hydrologic change for the domain through the end of the 21st century. The dataset is based upon permutations of four methodological choices: (1) ten global climate models (2) two representative concentration pathways (3) three meteorological downscaling methods and (4) four unique hydrologic model set-ups (three of which entail the same hydrologic model using independently calibrated parameter sets). All simulations were conducted across the Columbia River Basin and Pacific coastal drainages at a 1/16th ( 6 km) resolution and at a daily timestep. In total, the 172 distinct simulations offer an updated, comprehensive view of climate change projections through the end of the 21st century. The results consist of routed streamflow at 400 sites throughout the domain as well as distributed spatial fields of relevant hydrologic variables like snow water equivalent and soil moisture. In this presentation, we discuss the level of agreement with previous hydrologic projections for the study area and how these projections differ with specific methodological choices. By controlling for some methodological choices we can show how each choice affects key climatic change metrics. We discuss how the spread in results varies across hydroclimatic regimes. We will use this large dataset as a case study for distilling a wide range of hydroclimatological projections into useful climate change assessments.

  20. Time series of GNSS-derived ionospheric maps to detect anomalies as possible precursors of high magnitude earthquakes

    NASA Astrophysics Data System (ADS)

    Barbarella, M.; De Giglio, M.; Galeandro, A.; Mancini, F.

    2012-04-01

    The modification of some atmospheric physical properties prior to a high magnitude earthquake has been recently debated within the Lithosphere-Atmosphere-Ionosphere (LAI) Coupling model. Among this variety of phenomena the ionization of air at the higher level of the atmosphere, called ionosphere, is investigated in this work. Such a ionization occurrences could be caused by possible leaking of gases from earth crust and their presence was detected around the time of high magnitude earthquakes by several authors. However, the spatial scale and temporal domain over which such a disturbances come into evidence is still a controversial item. Even thought the ionospheric activity could be investigated by different methodologies (satellite or terrestrial measurements), we selected the production of ionospheric maps by the analysis of GNSS (Global Navigation Satellite Data) data as possible way to detect anomalies prior of a seismic event over a wide area around the epicentre. It is well known that, in the GNSS sciences, the ionospheric activity could be probed by the analysis of refraction phenomena occurred on the dual frequency signals along the satellite to receiver path. The analysis of refraction phenomena affecting data acquired by the GNSS permanent trackers is able to produce daily to hourly maps representing the spatial distribution of the ionospheric Total Electron Content (TEC) as an index of the ionization degree in the upper atmosphere. The presence of large ionospheric anomalies could be therefore interpreted in the LAI Coupling model like a precursor signal of a strong earthquake, especially when the appearance of other different precursors (thermal anomalies and/or gas fluxes) could be detected. In this work, a six-month long series of ionospheric maps produced from GNSS data collected by a network of 49 GPS permanent stations distributed within an area around the city of L'Aquila (Abruzzi, Italy), where an earthquake (M = 6.3) occurred on April 6, 2009, were investigated. Basically, the proposed methodology is able to perform a time series analysis of the TEC maps and, eventually, define the spatial and temporal domains of ionospheric disturbances. This goal was achieved by a time series analysis of the spatial dataset able to compare a local pattern of ionospheric activity with its historical mean value and detect areas where the TEC content exhibits anomalous values. This data processing shows some 1 to 2 days long anomalies about 20 days before of the seismic event (confirming also results provided in recent studies by means of ionospheric soundings).

Top