Pfaffian states in coupled atom-cavity systems
NASA Astrophysics Data System (ADS)
Hayward, Andrew L. C.; Martin, Andrew M.
2016-05-01
Coupled atom-cavity arrays, such as those described by the Jaynes-Cummings-Hubbard model, have the potential to emulate a wide range of condensed-matter phenomena. In particular, the strongly correlated states of the fractional quantum Hall effect can be realized. At some filling fractions, the fraction quantum Hall effect has been shown to possess ground states with non-Abelian excitations. The most well studied of these states is the Pfaffian state of Moore and Read G. Moore and N. Read, Nucl. Phys. B 360, 362 (1991), 10.1016/0550-3213(91)90407-O, which is the ground state of a Hall liquid with a three-body interaction. We show how an effective three-body interaction can be generated within the cavity QED framework, and that a Pfaffian-like ground state of these systems exists.
Atomic and Photonic Entanglement Generation in n Coupled Atom-Cavity Systems
NASA Astrophysics Data System (ADS)
Sufiani, R.; Darkhosh, A.
2015-07-01
Based on two-photon Jaynes-Cummings Hamiltonian for the n coupled optical cavities each of them containing a single three level atom, the n-qubit and n-photonic state transfer between the corresponding atoms and cavities is investigated. In fact, we consider that the cavities are located at the nodes (vertices) of the complete network (graph) K n at which all of the nodes are connected, so that the cavities are interact with each other (via two photon exchange) completely. Then, quantum state transfer, photon transition between cavities and entanglement generations between n atoms are discussed. More clearly, by employing the consistency of number of photons and atomic excitations (the symmetry of Hamiltonian), the hamiltonian of the system is reduced from 3 n dimensional space into 2 n dimensional one. Moreover, by introducing suitable basis for the atom-cavity state space based on Fourier transform, the reduced Hamiltonian is block-diagonalized, with 2 dimensional blocks. Then, the initial state of the system is evolved under the corresponding Hamiltonian and the suitable times T at which the initially unentangled atoms, become maximally entangled, are determined in terms of the hopping strength ξ between cavities.
Bi- and uni-photon entanglement in two-way cascaded fiber-coupled atom-cavity systems
NASA Astrophysics Data System (ADS)
Mirza, Imran M.
2015-08-01
We theoretically investigate the two-photon entanglement in fiber-coupled, two-way cascaded atom-cavity systems. In particular, we demonstrate that, it is possible to generate two-photon entanglement in both weak coupling (atom-cavity coupling rate | g | smaller than the cavity leakage rate κ) and strong coupling regimes (κ < | g |) in this system, when both atoms start off in an excited state. By employing the quantum trajectory method, we characterize the two-photon entanglement in terms of von-Neumann entropy and show that the amount of entanglement exceed considerably (almost double) when κ > | g |. We also quantified the amount of entanglement when instead of two excitations there is a single excitation in the system in the beginning.
Low light level all-optical switching in a four-level atom-cavity system
NASA Astrophysics Data System (ADS)
Duan, Yafan; Lin, Gongwei; Zhang, Shicheng; Niu, Yueping; Gong, Shangqing
2016-01-01
We report on an all-optical switching in a double ∧ four-level atom-cavity system both theoretically and experimentally. In this system, an extra coherence between two ground states is induced by two coupling lasers, thus the loss of the cavity field decreases. Then, we can use one weak field to control another weak field at low light levels. Compared to the three-level atom-cavity system, the power of the switching laser can be much weaker in the four-level atom-cavity system.
Li, Wenfang; Du, Jinjin; Wen, Ruijuan; Yang, Pengfei; Li, Gang; Zhang, Tiancai; Liang, Junjun
2014-03-17
We investigate the transmission of single-atom transits based on a strongly coupled cavity quantum electrodynamics system. By superposing the transit transmissions of a considerable number of atoms, we obtain the absorption spectra of the cavity induced by single atoms and obtain the temperature of the cold atom. The number of atoms passing through the microcavity for each release is also counted, and this number changes exponentially along with the atom temperature. Monte Carlo simulations agree closely with the experimental results, and the initial temperature of the cold atom is determined. Compared with the conventional time-of-flight (TOF) method, this approach avoids some uncertainties in the standard TOF and sheds new light on determining temperature of cold atoms by counting atoms individually in a confined space.
Quantum coherence and entanglement control for atom-cavity systems
NASA Astrophysics Data System (ADS)
Shu, Wenchong
Coherence and entanglement play a significant role in the quantum theory. Ideal quantum systems, "closed" to the outside world, remain quantum forever and thus manage to retain coherence and entanglement. Real quantum systems, however, are open to the environment and are therefore susceptible to the phenomenon of decoherence and disentanglement which are major hindrances to the effectiveness of quantum information processing tasks. In this thesis we have theoretically studied the evolution of coherence and entanglement in quantum systems coupled to various environments. We have also studied ways and means of controlling the decay of coherence and entanglement. We have studied the exact qubit entanglement dynamics of some interesting initial states coupled to a high-Q cavity containing zero photon, one photon, two photons and many photons respectively. We have found that an initially correlated environmental state can serve as an enhancer for entanglement decay or generation processes. More precisely, we have demonstrated that the degree of entanglement, including its collapse as well as its revival times, can be significantly modified by the correlated structure of the environmental modes. We have also studied dynamical decoupling (DD) technique --- a prominent strategy of controlling decoherence and preserving entanglement in open quantum systems. We have analyzed several DD control methods applied to qubit systems that can eliminate the system-environment coupling and prolong the quantum coherence time. Particularly, we have proposed a new DD sequence consisting a set of designed control operators that can universally protected an unknown qutrit state against colored phase and amplitude environment noises. In addition, in a non-Markovian regime, we have reformulated the quantum state diffusion (QSD) equation to incorporate the effect of the external control fields. Without any assumptions on the system-environment coupling and the size of environment, we have
Evolution Properties of Atomic Fidelity in the Combined Multi-Atom-Cavity Field System
NASA Astrophysics Data System (ADS)
Wang, Ju-Xia; Zhang, Xiao-Juan; Zhang, Xiu-Xing
2015-06-01
The atom fidelity is investigated in a system consisting of Mtwo-level atoms and M single-mode fields by use of complete quantum theory and numerical evaluation method. The influences of various system parameters on the evolution of atomic fidelity are studied. The results show that the atomic fidelity evolves in a Rabi oscillation manner. The oscillation frequency is mainly modulated by the coupling strength between atoms and light field, the atomic transition probabilities and the average photon numbers. Other factors hardly impact on the atomic fidelity. The present results may provide a useful approach to the maintenance of the atomic fidelity in the atom cavity field systems. Supported by the National Nature Science Foundation of China under Grant No. 11304230, Nature Science Foundation of Shaanxi Province under Grant No. 2013JM1006, the Project of Education Department of Shaanxi Provincial Government under Grant No. 2013JK0634, the Special Subject Construction of Weinan Normal University under Grant Nos. 14TSXK06 and 15ZRRC14
Optical-bistability-enabled control of resonant light transmission for an atom-cavity system
NASA Astrophysics Data System (ADS)
Sawant, Rahul; Rangwala, S. A.
2016-02-01
The control of light transmission through a standing-wave Fabry-Pérot cavity containing atoms is theoretically and numerically investigated, when the cavity mode beam and an intersecting control beam are both close to specific atomic resonances. A four-level atomic system is considered and its interaction with the cavity mode is studied by solving for the cavity field and atomic state populations. The conditions for optical bistability of the atom-cavity system are obtained. The response of the intracavity intensity to an intersecting beam on atomic resonance is understood in the presence of stationary atoms (closed system) and nonstatic atoms (open system) in the cavity. The nonstatic system of atoms is modelled by adjusting the atomic state populations to represent the exchange of atoms in the cavity mode, which corresponds to a thermal environment where atoms are moving in and out of the cavity mode volume. The control behavior with three- and two-level atomic systems is also studied, and the rich physics arising out of these systems for closed and open atomic systems is discussed. The solutions to the models are used to interpret the steady-state and transient behavior observed by Sharma et al. [Phys. Rev. A 91, 043824 (2015)], 10.1103/PhysRevA.91.043824.
Frustrated pulse-area quantization in accelerated superradiant atom-cavity systems
Greiner, C.; Boggs, B.; Mossberg, T. W.
2003-06-01
In self-induced transparency (SIT), as described by the McCall-Hahn area theorem, the area of an optical pulse is modified as it propagates through a resonant absorbing medium, and in the limit of high optical thickness evolves to certain discrete (quantized) output values. We investigate the area evolution experienced by an optical pulse when interacting with an absorbing medium contained within a cavity. In the system studied, the intracavity medium is weakly attenuating on a single-pass basis, but the atom-cavity system's effective optical thickness as viewed from input to output port is generally quite large. Interestingly, at the low end of effective optical thickness we find that the cavity system generates pulse-area evolution closely mirroring that seen in the SIT system, i.e., output pulse areas evolve toward stable values as the effective optical thickness increases. However, when the effective optical thickness increases to certain triggering levels, the output pulse area is seen to drop abruptly toward zero. Our theoretical predictions are experimentally probed using cavity-contained cryogenically coherence-stabilized Tm{sup 3+} ions.
NASA Astrophysics Data System (ADS)
Cao, Cong; Wang, Chuan; Wang, Tie-Jun; Zhang, Ru
2013-12-01
We propose a basic scheme to construct a hybrid controlled phase-flip (CPF) gate between a flying pulse qubit and a stationary atomic qubit, assisted by a cavity input-output process for a low-Q cavity in the atom-cavity intermediate coupling region. The qubits can be encoded on the coherent states and ground states of the single-trapped L-level atom, respectively. We present a theoretical model of the hybrid CPF gate, whose basic strategy is to control the reflectivity of the input coherent optical pulse to obtain a phase shift conditioned by the different internal atomic states by adjusting the parameters of the cavity quantum electrodynamics (CQED) system. The resulting basic scheme can be used to construct nonlocal gates between remote atomic qubits confined in spatially separated cavities, and also for the generation of an atomic cluster state. The performance and experimental feasibilities of the proposed scheme indicate that it is robust against practical noise and feasible with current technologies. Thus, our scheme is applicable for use in large-scale quantum computation.
Fast Excitation and Photon Emission of a Single-Atom-Cavity System
Bochmann, J.; Muecke, M.; Langfahl-Klabes, G.; Erbel, C.; Weber, B.; Specht, H. P.; Moehring, D. L.; Rempe, G.
2008-11-28
We report on the fast excitation of a single atom coupled to an optical cavity using laser pulses that are much shorter than all other relevant processes. The cavity frequency constitutes a control parameter that allows the creation of single photons in a superposition of two tunable frequencies. Each photon emitted from the cavity thus exhibits a pronounced amplitude modulation determined by the oscillatory energy exchange between the atom and the cavity. Our technique constitutes a versatile tool for future quantum networking experiments.
Adiabatic entanglement in two-atom cavity QED
Lazarou, C.; Garraway, B. M.
2008-02-15
We analyze the problem of a single mode field interacting with a pair of two level atoms. The atoms enter and exit the cavity at different times. Instead of using constant coupling, we use time-dependent couplings which represent the spatial dependence of the mode. Although the system evolution is adiabatic for most of the time, a previously unstudied energy crossing plays a key role in the system dynamics when the atoms have a time delay. We show that conditional atom-cavity entanglement can be generated, while for large photon numbers the entangled system has a behavior which can be mapped onto the single atom Jaynes-Cummings model. Exploring the main features of this system we propose simple and fairly robust methods for entangling atoms independently of the cavity, for quantum state mapping, and for implementing SWAP and controlled-NOT (CNOT) gates with atomic qubits.
Quasieigenstate coalescence in an atom-cavity quantum composite.
Choi, Youngwoon; Kang, Sungsam; Lim, Sooin; Kim, Wookrae; Kim, Jung-Ryul; Lee, Jai-Hyung; An, Kyungwon
2010-04-16
We report the first direct observation of an exceptional point (EP) in an open quantum composite of a single atom and a high-Q cavity mode. The atom-cavity coupling constant was made a continuous variable by utilizing the multisublevel nature of a single rubidium atom when it is optimally coupled to the cavity mode. The spectroscopic properties of quasieigenstates of the atom-cavity composite were experimentally investigated near the EP. Branch-point singularity of quasieigenenergies was observed and its 4pi symmetry was demonstrated. Consequently, the cavity transmission at the quasieigenstate was observed to exhibit a critical behavior at the EP. PMID:20481988
Stimulated photon emission and two-photon Raman scattering in a coupled-cavity QED system
Li, C.; Song, Z.
2016-01-01
We study the scattering problem of photon and polariton in a one-dimensional coupled-cavity system. Analytical approximate analysis and numerical simulation show that a photon can stimulate the photon emission from a polariton through polariton-photon collisions. This observation opens the possibility of photon-stimulated transition from insulating to radiative phase in a coupled-cavity QED system. Inversely, we also find that a polariton can be generated by a two-photon Raman scattering process. This paves the way towards single photon storage by the aid of atom-cavity interaction. PMID:26877252
Pfleger, Brian; Mendez-Perez, Daniel
2015-05-19
Disclosed are systems and methods for coupling translation of a target gene to a detectable response gene. A version of the invention includes a translation-coupling cassette. The translation-coupling cassette includes a target gene, a response gene, a response-gene translation control element, and a secondary structure-forming sequence that reversibly forms a secondary structure masking the response-gene translation control element. Masking of the response-gene translation control element inhibits translation of the response gene. Full translation of the target gene results in unfolding of the secondary structure and consequent translation of the response gene. Translation of the target gene is determined by detecting presence of the response-gene protein product. The invention further includes RNA transcripts of the translation-coupling cassettes, vectors comprising the translation-coupling cassettes, hosts comprising the translation-coupling cassettes, methods of using the translation-coupling cassettes, and gene products produced with the translation-coupling cassettes.
Pfleger, Brian; Mendez-Perez, Daniel
2013-11-05
Disclosed are systems and methods for coupling translation of a target gene to a detectable response gene. A version of the invention includes a translation-coupling cassette. The translation-coupling cassette includes a target gene, a response gene, a response-gene translation control element, and a secondary structure-forming sequence that reversibly forms a secondary structure masking the response-gene translation control element. Masking of the response-gene translation control element inhibits translation of the response gene. Full translation of the target gene results in unfolding of the secondary structure and consequent translation of the response gene. Translation of the target gene is determined by detecting presence of the response-gene protein product. The invention further includes RNA transcripts of the translation-coupling cassettes, vectors comprising the translation-coupling cassettes, hosts comprising the translation-coupling cassettes, methods of using the translation-coupling cassettes, and gene products produced with the translation-coupling cassettes.
Magnetically Coupled Transport System
Breshears, S.A.
1999-01-26
Throughout the DOE complex, materials are routinely transported within glovebox processing lines. Cylindrical product cans, crucibles, sample containers, tools, and waste products are all examples of items that are moved between equipment stations during glovebox operations. Traditional transport methods have included manual handling using tongs, chain and belt conveyors, carts with pull wires, and overhead hoists on monorails. These methods rely on hands-on operations and/or utilize high maintenance equipment located inside the gloveboxes, which can lead to high radiation exposure to personnel and can generate large amounts of radioactive waste. One innovative approach incorporates linear induction motors (LIMs) so that high maintenance items are located outside the gloveboxes, but LIMs produce heat, do not move smoothly over a wide range of velocities, and are not locked in position at zero velocity. Savannah River Technology Center (SRTC) engineers have developed and demonstrated a concept for a magnetically coupled transport system to transfer material within process lines and from line to line. This automated system significantly reduces hands-on operations. Linear actuators and lead screws provide smooth horizontal and vertical movement. Rare earth magnetic coupling technology allows the majority of the equipment to be located outside the glovebox, simplifying maintenance and minimizing radioactive waste.
Quantum coherence in a coupled-cavity array
NASA Astrophysics Data System (ADS)
Cao, De-Wei; Zhang, Yixin; Wang, Jicheng; Hu, Zheng-Da
2016-05-01
The dynamical properties of quantum coherence in the system of two-coupled-cavities, each of which resonantly interacts with a two-level atom, is investigated via the relative entropy measure. We focus on the coherences for the atom-atom, atom-cavity and cavity-cavity subsystems and find that the dynamical behaviors of these coherences depend largely on the cavity-cavity coupling, which may indicate the Mott insulator-superfluid transition in the thermodynamic limit. We also study the influences of the initial cavity-cavity correlation on the coherences and show that the initial correlation of the cavity-cavity subsystem can enhance the revival ability for the atom-atom and cavity-cavity coherences while reduce that for the atom-cavity coherence. Besides, we demonstrate the qualitative difference of dynamics between coherence and entanglement. Finally, the influences of dissipations including cavity losses and atomic decays on the coherence are explored.
Magnetically coupled system for mixing
Miller, III, Harlan; Meichel, George; Legere, Edward; Malkiel, Edwin; Woods, Robert Paul; Ashley, Oliver; Katz, Joseph; Ward, Jason; Petersen, Paul
2014-04-01
The invention provides a mixing system comprising a magnetically coupled drive system and a foil for cultivating algae, or cyanobacteria, in an open or enclosed vessel. The invention provides effective mixing, low energy usage, low capital expenditure, and ease of drive system component maintenance while maintaining the integrity of a sealed mixing vessel.
Coupling expert systems and simulation
NASA Technical Reports Server (NTRS)
Kawamura, K.; Beale, G.; Padalkar, S.; Rodriguez-Moscoso, J.; Hsieh, B. J.; Vinz, F.; Fernandez, K. R.
1988-01-01
A prototype coupled system called NESS (NASA Expert Simulation System) is described. NESS assists the user in running digital simulations of dynamic systems, interprets the output data to performance specifications, and recommends a suitable series compensator to be added to the simulation model.
Magnetically coupled system for mixing
Miller, III, Harlan; Meichel, George; Legere, Edward; Malkiel, Edwin; Woods, Robert Paul; Ashley, Oliver; Katz, Joseph; Ward, Jason; Petersen, Paul
2015-09-22
The invention provides a mixing system comprising a magnetically coupled drive system and a foil for cultivating algae, or cyanobacteria, in an open or enclosed vessel. The invention provides effective mixing, low energy usage, low capital expenditure, and ease of drive system component maintenance while maintaining the integrity of a sealed mixing vessel.
Multiobjective synchronization of coupled systems
NASA Astrophysics Data System (ADS)
Tang, Yang; Wang, Zidong; Wong, W. K.; Kurths, Jürgen; Fang, Jian-an
2011-06-01
In this paper, multiobjective synchronization of chaotic systems is investigated by especially simultaneously minimizing optimization of control cost and convergence speed. The coupling form and coupling strength are optimized by an improved multiobjective evolutionary approach that includes a hybrid chromosome representation. The hybrid encoding scheme combines binary representation with real number representation. The constraints on the coupling form are also considered by converting the multiobjective synchronization into a multiobjective constraint problem. In addition, the performances of the adaptive learning method and non-dominated sorting genetic algorithm-II as well as the effectiveness and contributions of the proposed approach are analyzed and validated through the Rössler system in a chaotic or hyperchaotic regime and delayed chaotic neural networks.
Nonclassical radiation from thermal cavities in the ultrastrong coupling regime.
Ridolfo, A; Savasta, S; Hartmann, M J
2013-04-19
Thermal or chaotic light sources emit radiation characterized by a slightly enhanced probability of emitting photons in bunches, described by a zero-delay second-order correlation function g((2))(0)=2. Here we explore photon-coincidence counting statistics of thermal cavities in the ultrastrong coupling regime, where the atom-cavity coupling rate becomes comparable to the cavity resonance frequency. We find that, depending on the system temperature and coupling rate, thermal photons escaping the cavity can display very different statistical behaviors, characterized by second-order correlation functions approaching zero or greatly exceeding two. PMID:23679600
Simulating Topological Effects with Photons in Coupled QED Cavity Arrays
NASA Astrophysics Data System (ADS)
Noh, Changsuk; Angelakis, Dimitris G.
2014-01-01
We provide a pedagogical account of an early proposal realizing fractional quantum Hall effect (FQHE) using coupled quantum electrodynamics (QED) cavity arrays (CQCAs). We start with a brief introduction on the basics of quantum Hall effects and then review the early proposals in the simulation of spin-models and fractional quantum Hall (FQH) physics with photons in coupled atom-cavity arrays. We calculate the energy gap and the overlap between the ground state of the system and the corresponding Laughlin wavefunction to analyze the FQH physics arising in the system and discuss possibilities to reach the ground state using adiabatic methods used in Cavity QED.
PREFACE: Strongly Coupled Coulomb Systems Strongly Coupled Coulomb Systems
NASA Astrophysics Data System (ADS)
Neilson, David; Senatore, Gaetano
2009-05-01
This special issue contains papers presented at the International Conference on Strongly Coupled Coulomb Systems (SCCS), held from 29 July-2 August 2008 at the University of Camerino. Camerino is an ancient hill-top town located in the Apennine mountains of Italy, 200 kilometres northeast of Rome, with a university dating back to 1336. The Camerino conference was the 11th in a series which started in 1977: 1977: Orleans-la-Source, France, as a NATO Advanced Study Institute on Strongly Coupled Plasmas (hosted by Marc Feix and Gabor J Kalman) 1982: Les Houches, France (hosted by Marc Baus and Jean-Pierre Hansen) 1986: Santa Cruz, California, USA (hosted by Forrest J Rogers and Hugh E DeWitt) 1989: Tokyo, Japan (hosted by Setsuo Ichimaru) 1992: Rochester, New York, USA (hosted by Hugh M Van Horn and Setsuo Ichimaru) 1995: Binz, Germany (hosted by Wolf Dietrich Kraeft and Manfred Schlanges) 1997: Boston, Massachusetts, USA (hosted by Gabor J Kalman) 1999: St Malo, France (hosted by Claude Deutsch and Bernard Jancovici) 2002: Santa Fe, New Mexico, USA (hosted by John F Benage and Michael S Murillo) 2005: Moscow, Russia (hosted by Vladimir E Fortov and Vladimir Vorob'ev). The name of the series was changed in 1996 from Strongly Coupled Plasmas to Strongly Coupled Coulomb Systems to reflect a wider range of topics. 'Strongly Coupled Coulomb Systems' encompasses diverse many-body systems and physical conditions. The purpose of the conferences is to provide a regular international forum for the presentation and discussion of research achievements and ideas relating to a variety of plasma, liquid and condensed matter systems that are dominated by strong Coulomb interactions between their constituents. Each meeting has seen an evolution of topics and emphases that have followed new discoveries and new techniques. The field has continued to see new experimental tools and access to new strongly coupled conditions, most recently in the areas of warm matter, dusty plasmas
NASA Astrophysics Data System (ADS)
Zhang, Yu-Qing; Zhu, Zhong-Hua; Peng, Zhao-Hui; Jiang, Chun-Lei; Tan, Lei
2016-07-01
We theoretically investigate the single-photon transport in a hybrid atom-optomechanical system embedded with two dipole-coupled two-level atoms, interacting with a single-mode optical waveguide. The transmission amplitudes for the single-photon propagation in such a hybrid system are obtained via a real-space approach. It is shown that the dipole-dipole interaction can significantly change the amplitudes and symmetries of the single-photon spectra. Interestingly, we find that the dipole-dipole interaction plays a similar role as does the positive atom-cavity detuning. In addition, the influence from the atomic dissipation can be weakened by increasing the dipole-dipole interaction.
System for connecting fluid couplings
NASA Technical Reports Server (NTRS)
Cody, Joseph C. (Inventor); Matthews, Paul R. (Inventor)
1990-01-01
A system for mating fluid transfer couplings is constructed having a male connector which is provided with a pair of opposed rollers mounted to an exterior region thereof. A male half of a fluid transfer coupling is rotatably supported in an opening in an end of the connector and is equipped with an outwardly extending forward portion. The forward portion locks into an engagement and locking region of a female half of the fluid transfer coupling, with female half being rotatably supported in a receptacle. The receptacle has an opening aligned with locking region, with this opening having a pair of concentric, annularly disposed ramps extending around an interior portion of opening. These ramps are inclined toward the interior of the receptacle and are provided with slots through which rollers of the connector pass. After the connector is inserted into the receptacle (engaging forward portion into engagement region), relative rotation between the connector and receptacle causes the rollers to traverse ramps until the rollers abut and are gripped by retainers. This axially forces the forward portion into locked, sealed engagement with the engagement region.
PREFACE: Strongly Coupled Coulomb Systems
NASA Astrophysics Data System (ADS)
Fortov, Vladimir E.; Golden, Kenneth I.; Norman, Genri E.
2006-04-01
This special issue contains papers presented at the International Conference on Strongly Coupled Coulomb Systems (SCCS) which was held during the week of 20 24 June 2005 in Moscow, Russia. The Moscow conference was the tenth in a series of conferences. The previous conferences were organized as follows. 1977: Orleans-la-Source, France, as a NATO Advanced Study Institute on Strongly Coupled Plasmas (organized by Marc Feix and Gabor J Kalman) 1982: Les Houches, France (organized by Marc Baus and Jean-Pierre Hansen) 1986: Santa Cruz, California, USA (hosted by Forrest J Rogers and Hugh E DeWitt) 1989: Tokyo, Japan (hosted by Setsuo Ichimaru) 1992: Rochester, NY, USA (hosted by Hugh M Van Horn and Setsuo Ichimaru) 1995: Binz, Germany (hosted by Wolf Dietrich Kraeft and Manfred Schlanges) 1997: Boston, Massachusetts, USA (hosted by Gabor J Kalman) 1999: St Malo, France (hosted by Claude Deutsch and Bernard Jancovici) 2002: Santa Fe, New Mexico, USA (hosted by John F Benage and Michael S Murillo) After 1995 the name of the series was changed from `Strongly Coupled Plasmas' to the present name in order to extend the topics of the conferences. The planned frequency for the future is once every three years. The purpose of these conferences is to provide an international forum for the presentation and discussion of research accomplishments and ideas relating to a variety of plasma liquid and condensed matter systems, dominated by strong Coulomb interactions between their constituents. Strongly coupled Coulomb systems encompass diverse many-body systems and physical conditions. Each meeting has seen an evolution of topics and emphasis as new discoveries and new methods appear. This year, sessions were organized for invited presentations and posters on dense plasmas and warm matter, astrophysics and dense hydrogen, non-neutral and ultracold plasmas, dusty plasmas, condensed matter 2D and layered charged-particle systems, Coulomb liquids, and statistical theory of SCCS. Within
NASA Astrophysics Data System (ADS)
Li, Jian; Zou, Jian; Shao, Bin
2010-04-01
We consider a fiber coupled cavity array. Each cavity is doped with a single two-level atom. By treating the atom-cavity systems as combined polaritonic qubits, we can transform it into a polaritonic qubit-qubit array in the dispersive regime. We show that the four fiber coupled cavity open chain and ring can both generate the four qubit W state and cluster state, and can both transfer one and two qubit arbitrary states. We also discuss the dynamical behaviors of the four fiber coupled cavity array with unequal couplings.
Mobile inductively coupled plasma system
D`Silva, A.P.; Jaselskis, E.J.
1999-03-30
A system is described for sampling and analyzing a material located at a hazardous site. A laser located remotely from the hazardous site is connected to an optical fiber, which directs laser radiation proximate the material at the hazardous site. The laser radiation abates a sample of the material. An inductively coupled plasma is located remotely from the material. An aerosol transport system carries the ablated particles to a plasma, where they are dissociated, atomized and excited to provide characteristic optical reduction of the elemental constituents of the sample. An optical spectrometer is located remotely from the site. A second optical fiber is connected to the optical spectrometer at one end and the plasma source at the other end to carry the optical radiation from the plasma source to the spectrometer. 10 figs.
A multilingual programming model for coupled systems.
Ong, E. T.; Larson, J. W.; Norris, B.; Tobis, M.; Steder, M.; Jacob, R. L.; Mathematics and Computer Science; Univ. of Wisconsin; Univ. of Chicago; The Australian National Univ.
2008-01-01
Multiphysics and multiscale simulation systems share a common software requirement-infrastructure to implement data exchanges between their constituent parts-often called the coupling problem. On distributed-memory parallel platforms, the coupling problem is complicated by the need to describe, transfer, and transform distributed data, known as the parallel coupling problem. Parallel coupling is emerging as a new grand challenge in computational science as scientists attempt to build multiscale and multiphysics systems on parallel platforms. An additional coupling problem in these systems is language interoperability between their constituent codes. We have created a multilingual parallel coupling programming model based on a successful open-source parallel coupling library, the Model Coupling Toolkit (MCT). This programming model's capabilities reach beyond MCT's native Fortran implementation to include bindings for the C++ and Python programming languages. We describe the method used to generate the interlanguage bindings. This approach enables an object-based programming model for implementing parallel couplings in non-Fortran coupled systems and in systems with language heterogeneity. We describe the C++ and Python versions of the MCT programming model and provide short examples. We report preliminary performance results for the MCT interpolation benchmark. We describe a major Python application that uses the MCT Python bindings, a Python implementation of the control and coupling infrastructure for the community climate system model. We conclude with a discussion of the significance of this work to productivity computing in multidisciplinary computational science.
Novel coupling scheme to control dynamics of coupled discrete systems
NASA Astrophysics Data System (ADS)
Shekatkar, Snehal M.; Ambika, G.
2015-08-01
We present a new coupling scheme to control spatio-temporal patterns and chimeras on 1-d and 2-d lattices and random networks of discrete dynamical systems. The scheme involves coupling with an external lattice or network of damped systems. When the system network and external network are set in a feedback loop, the system network can be controlled to a homogeneous steady state or synchronized periodic state with suppression of the chaotic dynamics of the individual units. The control scheme has the advantage that its design does not require any prior information about the system dynamics or its parameters and works effectively for a range of parameters of the control network. We analyze the stability of the controlled steady state or amplitude death state of lattices using the theory of circulant matrices and Routh-Hurwitz criterion for discrete systems and this helps to isolate regions of effective control in the relevant parameter planes. The conditions thus obtained are found to agree well with those obtained from direct numerical simulations in the specific context of lattices with logistic map and Henon map as on-site system dynamics. We show how chimera states developed in an experimentally realizable 2-d lattice can be controlled using this scheme. We propose this mechanism can provide a phenomenological model for the control of spatio-temporal patterns in coupled neurons due to non-synaptic coupling with the extra cellular medium. We extend the control scheme to regulate dynamics on random networks and adapt the master stability function method to analyze the stability of the controlled state for various topologies and coupling strengths.
NASA Astrophysics Data System (ADS)
Hong-Mei, Zou; Mao-Fa, Fang
2016-07-01
Not Available Supported by the Science and Technology Plan of Hunan Province under Grant No 2010FJ3148, the National Natural Science Foundation of China under Grant No 11374096, and the Doctoral Science Foundation of Hunan Normal University.
Coupled dynamics analysis of wind energy systems
NASA Technical Reports Server (NTRS)
Hoffman, J. A.
1977-01-01
A qualitative description of all key elements of a complete wind energy system computer analysis code is presented. The analysis system addresses the coupled dynamics characteristics of wind energy systems, including the interactions of the rotor, tower, nacelle, power train, control system, and electrical network. The coupled dynamics are analyzed in both the frequency and time domain to provide the basic motions and loads data required for design, performance verification and operations analysis activities. Elements of the coupled analysis code were used to design and analyze candidate rotor articulation concepts. Fundamental results and conclusions derived from these studies are presented.
Barzanjeh, Sh.; Naderi, M. H.; Soltanolkotabi, M.
2011-12-15
In this paper, we study theoretically bipartite and tripartite continuous variable entanglement as well as normal-mode splitting in a single-atom cavity optomechanical system with intensity-dependent coupling. The system under consideration is formed by a Fabry-Perot cavity with a thin vibrating end mirror and a two-level atom in the Gaussian standing wave of the cavity mode. We first derive the general form of the Hamiltonian describing the tripartite intensity-dependent atom-field-mirror coupling due to the presence of the cavity mode structure. We then restrict our treatment to the first vibrational sideband of the mechanical resonator and derive a tripartite atom-field-mirror Hamiltonian. We show that when the optical cavity is intensely driven, one can generate bipartite entanglement between any pair in the tripartite system and that, due to entanglement sharing, atom-mirror entanglement is efficiently generated at the expense of optical-mechanical and optical-atom entanglement. We also find that in such a system, when the Lamb-Dicke parameter is large enough, one can simultaneously observe the normal mode splitting into three modes.
Kinetic Characterization of Strongly Coupled Systems
Knapek, C. A.; Ivlev, A. V.; Klumov, B. A.; Morfill, G. E.; Samsonov, D.
2007-01-05
We propose a simple method to determine the local coupling strength {gamma} experimentally, by linking the individual particle dynamics with the local density and crystal structure of a 2D plasma crystal. By measuring particle trajectories with high spatial and temporal resolution we obtain the first maps of {gamma} and temperature at individual particle resolution. We employ numerical simulations to test this new method, and discuss the implications to characterize strongly coupled systems.
Gradient systems on coupled cell networks
NASA Astrophysics Data System (ADS)
Manoel, Miriam; Roberts, Mark
2015-10-01
For networks of coupled dynamical systems we characterize admissible functions, that is, functions whose gradient is an admissible vector field. The schematic representation of a gradient network dynamical system is of an undirected cell graph, and we use tools from graph theory to deduce the general form of such functions, relating it to the topological structure of the graph defining the network. The coupling of pairs of dynamical systems cells is represented by edges of the graph, and from spectral graph theory we detect the existence and nature of equilibria of the gradient system from the critical points of the coupling function. In particular, we study fully synchronous and 2-state patterns of equilibria on regular graphs. These are two special types of equilibrium configurations for gradient networks. We also investigate equilibrium configurations of {{\\mathbf{S}}1} -invariant admissible functions on a ring of cells.
Relaxation properties of weakly coupled classical systems
Romero-Rochin, V.; Oppenheim, I.
1988-10-01
The relaxation properties of a small classical system weakly coupled to a large classical system which acts as a heat bath are described using a generalized Fokker-Planck equation. The Fokker-Planck equation is derived in general using a modification of the elimination of fast variables techniques previously described. The specific example in which the small system is a harmonic oscillator linearly coupled to the heat bath is treated in detail and it is demonstrated that there is a dynamic frequency shift as well as a statistical shift of the oscillator frequency.
Colorimetric calibration of coupled infrared simulation system
NASA Astrophysics Data System (ADS)
Zhang, Ying; Fei, Jindong; Gao, Yang; Du, Jian
2015-10-01
In order to test 2-color infrared sensors, a coupled infrared simulation system can generate radiometric outputs with wavelengths that range from less than 3 microns to more than 12 microns. There are two channels in the coupled simulation system, optically combined by a diachronic beam combiner. Each channel has an infrared blackbody, a filter, a diaphragm, and diaphragm-motors. The system is projected to the sensor under testing by a collimator. This makes it difficult to calibrate the system with only one-band thermal imager. Errors will be caused in the radiance levels measured by the narrow band thermal imager. This paper describes colorimetric temperature measurement techniques that have been developed to perform radiometric calibrations of these infrared simulation systems above. The calibration system consists of two infrared thermal imagers; one is operated at the wavelength range of MW-IR, and the other at the range of LW-IR.
CAD/CAM-coupled image processing systems
NASA Astrophysics Data System (ADS)
Ahlers, Rolf-Juergen; Rauh, W.
1990-08-01
Image processing systems have found wide application in industry. For most computer integrated manufacturing faci- lities it is necessary to adapt these systems thus that they can automate the interaction with and the integration of CAD and CAM Systems. In this paper new approaches will be described that make use of the coupling of CAD and image processing as well as the automatic generation of programmes for the machining of products.
Control of Intermittently Synchronized Coupled Systems
NASA Astrophysics Data System (ADS)
Olsen, Thomas; Trail, Collin; Wiener, Richard; Snyder, Michael
2001-11-01
We have previously reported on the experimental control of chaotic pattern dynamics in Taylor Vortex Flow(R. J. Wiener, et al., Phys. Rev. Lett. 83), 2340 (1999). and numerical demonstrations of the control of coupled pendula which demonstrate intermittent synchronization in the absence of feedback(T. Olsen, A. Smiley, & R. J. Wiener, Bull. Am. Phys. Soc. 45), 92 (2000).. We now report further numerical studies of attempts to control systems of 2 and more coupled chaotic pendula. We describe methods of obtaining fixed points and OGY control parameters(Ott, C., Grebogi, C., and Yorke, J. A., Phys. Rev. Lett. 64), 1196 (1990). for these systems. We examine the consequences of symmetric and asymmetric couplings. Various interesting phenomenologies have been observed. We discuss the prospects for experimental realization of related phenomenologies in Taylor Vortex Flow and control of spatio-temporal chaos.
Line splitting and modified atomic decay of atoms coupled with N quantized cavity modes
NASA Astrophysics Data System (ADS)
Zhu, Yifu
1992-05-01
We study the interaction of a two-level atom with N non-degenerate quantized cavity modes including dissipations from atomic decay and cavity damps. In the strong coupling regime, the absorption or emission spectrum of weakly excited atom-cavity system possesses N + 1 spectral peaks whose linewidths are the weighted averages of atomic and cavity linewidths. The coupled system shows subnatural (supernatural) atomic decay behavior if the photon loss rates from the N cavity modes are smaller (larger) than the atomic decay rate. If N cavity modes are degenerate, they can be treated effectively as a single mode. In addition, we present numerical calculations for N = 2 to characterize the system evolution from the weak coupling to strong coupling limits.
Coupling system to a microsphere cavity
NASA Technical Reports Server (NTRS)
Iltchenko, Vladimir (Inventor); Maleki, Lute (Inventor); Yao, Steve (Inventor); Wu, Chi (Inventor)
2002-01-01
A system of coupling optical energy in a waveguide mode, into a resonator that operates in a whispering gallery mode. A first part of the operation uses a fiber in its waveguide mode to couple information into a resonator e.g. a microsphere. The fiber is cleaved at an angle .PHI. which causes total internal reflection within the fiber. The energy in the fiber then forms an evanescent field and a microsphere is placed in the area of the evanescent field. If the microsphere resonance is resonant with energy in the fiber, then the information in the fiber is effectively transferred to the microsphere.
Magnetically Coupled Adjustable Speed Drive Systems
Chvala, William D.; Winiarski, David W.
2002-08-18
Adjustable speed drive (ASD) technologies have the ability to precisely control motor sytems output and produce a numbr of benefits including energy and demand savings. This report examines the performance and cost effectiveness of a specific class of ASDs called magnetically-coupled adjustable speed drives (MC-ASD) which use the strength of a magnetic field to control the amount of torque transferred between motor and drive shaft. The MagnaDrive Adjustable Speed Coupling System uses fixed rare-earth magnets and varies the distance between rotating plates in the assembly. the PAYBACK Variable Speed Drive uses an electromagnet to control the speed of the drive
Wave coupling of atmosphere-ionosphere system
NASA Astrophysics Data System (ADS)
Goncharenko, L. P.
2011-12-01
The dynamic coupling of atmosphere-ionosphere system is a complex interdisciplinary problem. Current thinking suggests that the upward propagation of internal atmospheric waves (planetary waves, tides, gravity waves) from the lower atmosphere is an essential source of energy and momentum for the thermosphere and embedded ionosphere. Studies over the last decade presented fascinating experimental and modeling evidence of global coupling from the troposphere to mesosphere, thermosphere and ionosphere. They were enabled by unprecedented availability of satellite data, in particularly from TIMED, MLS, CHAMP, and GRACE, focused experimental campaigns from ground-based instruments, and major advances in global coupling models. This paper will summarize several developments over the past decade, including non-migrating structures in the ionosphere and thermosphere, advances in studies of gravity waves and planetary waves, and their implications for better understanding of ITM. The paper will also identify questions that need to be answered in the future, and outline promising topics of future development.
Experimental system of coupled map lattices
NASA Astrophysics Data System (ADS)
Ma, Yu-Han; Huang, Lan-Qing; Sun, Chu-Min; Li, Xiao-Wen
2015-06-01
We design an optical feedback loop system consisting of a liquid-crystal spatial light modulator (SLM), a lens, polarizers, a CCD camera, and a computer. The system images every SLM pixel onto one camera pixel. The light intensity on the camera pixel shows a nonlinear relationship with the phase shift applied by the SLM. Every pixel behaves as a nonlinear map, and we can control the interaction of pixels. Therefore, this feedback loop system can be regarded as a spatially extended system. This experimental coupled map has variable dimensions, which can be up to 512 by 512. The system can be used to study high-dimensional problems that computer simulations cannot handle.
System for automatically switching transformer coupled lines
NASA Technical Reports Server (NTRS)
Dwinell, W. S. (Inventor)
1979-01-01
A system is presented for automatically controlling transformer coupled alternating current electric lines. The secondary winding of each transformer is provided with a center tap. A switching circuit is connected to the center taps of a pair of secondary windings and includes a switch controller. An impedance is connected between the center taps of the opposite pair of secondary windings. The switching circuit has continuity when the AC lines are continuous and discontinuity with any disconnect of the AC lines. Normally open switching means are provided in at least one AC line. The switch controller automatically opens the switching means when the AC lines become separated.
The characterization of coupled plasmonic systems
NASA Astrophysics Data System (ADS)
Willingham, Britain
In this thesis numerical methods are used to understand the individual and collective optical response of metal nanoparticles (MNPs). In particular, finite 1D assemblies of MNPs are characterized by analytical solutions to Maxwell's equations. Small particle solutions such as the well-established plasmon hybridization scheme as well as a novel circuit model explaining the intrinsic mechanisms of free electron dynamics help to characterize the optical response of single and coupled MNPs. Complex systems of closely spaced MNPs with small interparticle gaps are studied with the help of full scattering solutions to Maxwell's equations. It is shown that higher order plasmon modes facilitate strong near-fields between MNPs, and in linear chains foster specific optical attributes which are present in more complex systems, playing a key role in energy propagation along practical MNP waveguides.
Magnetic stability of novel exchange coupled systems
Inomata, A.; Jiang, J. S.; You, C.-Y.; Pearson, J. E.; Bader, S. D.
1999-11-08
The magnetic stability of two different interracial exchange coupled systems are investigated using the magneto-optic Kerr effect during repeated reversal of the soft layer magnetization by field cycling up to 10{sup 7} times. For Fe/Cr double-superlattice exchange biased systems, small but rapid initial decay of exchange bias field H{sub E} and the remanent magnetization is observed. Also the Sin-Co/Fe bilayers grown epitaxially with uniaxial in-plane anisotropy show similar decay. However, the H{sub E} of biaxial and random in-plane bilayers, shows gradual decay without large reduction of the magnetization. These different decay behaviors explained by their different microstructure and interracial spin configurations.
Dynamics of coupled human-landscape systems
NASA Astrophysics Data System (ADS)
Werner, B. T.; McNamara, D. E.
2007-11-01
A preliminary dynamical analysis of landscapes and humans as hierarchical complex systems suggests that strong coupling between the two that spreads to become regionally or globally pervasive should be focused at multi-year to decadal time scales. At these scales, landscape dynamics is dominated by water, sediment and biological routing mediated by fluvial, oceanic, atmospheric processes and human dynamics is dominated by simplifying, profit-maximizing market forces and political action based on projection of economic effect. Also at these scales, landscapes impact humans through patterns of natural disasters and trends such as sea level rise; humans impact landscapes by the effect of economic activity and changes meant to mitigate natural disasters and longer term trends. Based on this analysis, human-landscape coupled systems can be modeled using heterogeneous agents employing prediction models to determine actions to represent the nonlinear behavior of economic and political systems and rule-based routing algorithms to represent landscape processes. A cellular model for the development of New Orleans illustrates this approach, with routing algorithms for river and hurricane-storm surge determining flood extent, five markets (home, labor, hotel, tourism and port services) connecting seven types of economic agents (home buyers/laborers, home developers, hotel owners/ employers, hotel developers, tourists, port services developer and port services owners/employers), building of levees or a river spillway by political agents and damage to homes, hotels or port services within cells determined by the passage or depth of flood waters. The model reproduces historical aspects of New Orleans economic development and levee construction and the filtering of frequent small-scale floods at the expense of large disasters.
Behavioral analysis of loosely coupled systems
NASA Astrophysics Data System (ADS)
Sandell, Nils F.; Cybenko, George V.
2010-04-01
Techniques for dynamic behavioral analysis and modeling have recently become an increasingly researched topic. In essence, they aim to understand the mechanics of a set of variables over time, allowing for prediction of future data, anomaly or change detection, or estimation of a latent variable. Much of this research has focused on the sequential analysis of individual tracks of data - for example, in multi-target tracking (MTT). In recent years, massive amounts of behavioral and usage data have become available due to the proliferation of online services and their large users bases. The data from these applications can not be said to be monolithically generated - there are many processes and activities occurring simultaneously. However, it also cannot be said that this data consists of a set of independently running processes, as there are often strong correlations among subsets of the variables. Therefore we have a potentially large set of loosely coupled entities that can be modeled neither as a single, large process, or a large set of individual processes. "Static" applications, e.g. rating predictors for recommender systems, have greatly exploited entity to entity correlations through processes such as collaborative filtering. In this paper, we present a probabilistic model for loosely coupled and correlated dynamic data sets and techniques for making inference about the model. Experimental results are presented using data gathered from instrumented wireless access points around a college campus.
Dynamic optical coupled system employing Dammann gratings
NASA Astrophysics Data System (ADS)
Di, Caihui; Zhou, Changhe; Ru, Huayi
2004-10-01
With the increasing of the number of users in optical fiber communications, fiber-to-home project has a larger market value. Then the need of dynamic optical couplers, especially of N broad-band couplers, becomes greater. Though some advanced fiber fusion techniques have been developed, they still have many shortcomings. In this paper we propose a dynamic optical coupled system employing even-numbered Dammann gratings, which have the characteristic that the phase distribution in the first half-period accurately equals to that in the second-period with π phase inversion. In our experiment, we divide a conventional even-numbered Dammann grating into two identical gratings. The system can achieve the beam splitter and combiner as the switch between them according to the relative shift between two complementary gratings. When there is no shift between the gratings, the demonstrated 1×8 dynamic optical coupler achieves good uniformity of 0.06 and insertion loss of around 10.8 dB for each channel as a splitter. When the two gratings have an accurate shift of a half-period between them, our system has a low insertion loss of 0.46 dB as a combiner at a wavelength of 1550 nm.
Coupling analysis of linear vibration energy harvesting systems
NASA Astrophysics Data System (ADS)
Wang, Xu; Liang, Xingyu; Shu, Gequn; Watkins, Simon
2016-03-01
This paper has disclosed the relationship of vibration energy harvester performance with dimensionless force factor. Numerical ranges of the dimensionless force factor have been defined for cases of weak, moderate and strong coupling. The relationships of coupling loss factor, dimensionless force factor, critical coupling strength, coupling quotient, electro-mechanical coupling factor, damping loss factor and modal densities have been established in linear vibration energy harvester systems. The new contribution of this paper is to determine a frequency range where the vibration energy harvesting systems are in a weak coupling and the statistical energy analysis is applicable.
Lithosphere-Atmosphere-Ionosphere Coupling System
NASA Astrophysics Data System (ADS)
Kachakhidze, Manana; Kachakhidze, Nino; Kaladze, Tamaz
2014-06-01
Modern ground-based and satellite methods of viewing enables to reveal those multiple anomalous geophysical phenomena which become evident in the period preceding earthquake and are directly connected with the process of its preparation. Lately special attention is attributed to the electromagnetic emissions fixed during large earthquake, and has already been successfully detected in Japan, America and Europe. Unfortunately there is no electromagnetic emissions detection network in Georgia, but the offered work, based on experimental data of foreign researchers and electrodynamics, presents an important theory about the electromagnetic emissions generation fixed in the earthquake preparation period. The extremely interesting methodology of possible prediction of earthquake is created and all anomalous geophysical phenomena are interpreted which take place some months, days or hours before earthquake in the lithosphereatmosphere-ionosphere coupling system. Most interesting is the idea of the authors to consider the electromagnetic radiation as the main earthquake precursor for the purpose of earthquake prediction, because of its informative nature and to consider all other anomalous geophysical phenomena which accompany the process of earthquake preparation as earthquake indicators. The offered work is the completely novel approach in earthquake problem searching with the view of earthquake prediction. It can form the base for creation of principally new trend in seismology, to be called conditionally "Earthquake Predictology".
Global synchronization in arrays of coupled Lurie systems with both time-delay and hybrid coupling
NASA Astrophysics Data System (ADS)
Li, Tao; Song, Aiguo; Fei, Shumin; Wang, Ting
2011-01-01
In this paper, we propose and study an array of coupled delayed Lurie systems with hybrid coupling, which is composed of constant coupling, state delay coupling, and distributed delay coupling. Together with Lyapunov-Krasovskii functional method and Kronecker product properties, two novel synchronization criteria are presented within linear matrix inequalities based on generalized convex combination, in which these conditions are heavily dependent on the upper and lower bounds of state delay and distributed one. Through adjusting inner coupling matrix parameters in the derived results, we can realize the designing and applications of the addressed systems by referring to Matlab LMI Toolbox. The efficiency and applicability of the proposed criteria can be demonstrated by three numerical examples with simulations.
Multi-disciplinary coupling for integrated design of propulsion systems
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Singhal, S. N.
1993-01-01
Effective computational simulation procedures are described for modeling the inherent multi-disciplinary interactions for determining the true response of propulsion systems. Results are presented for propulsion system responses including multi-discipline coupling effects via (1) coupled multi-discipline tailoring, (2) an integrated system of multidisciplinary simulators, (3) coupled material-behavior/fabrication-process tailoring, (4) sensitivities using a probabilistic simulator, and (5) coupled materials/structures/fracture/probabilistic behavior simulator. The results show that the best designs can be determined if the analysis/tailoring methods account for the multi-disciplinary coupling effects. The coupling across disciplines can be used to develop an integrated interactive multi-discipline numerical propulsion system simulator.
Spin Pumping in Electrodynamically Coupled Magnon-Photon Systems.
Bai, Lihui; Harder, M; Chen, Y P; Fan, X; Xiao, J Q; Hu, C-M
2015-06-01
We use electrical detection, in combination with microwave transmission, to investigate both resonant and nonresonant magnon-photon coupling at room temperature. Spin pumping in a dynamically coupled magnon-photon system is found to be distinctly different from previous experiments. Characteristic coupling features such as modes anticrossing, linewidth evolution, peculiar line shape, and resonance broadening are systematically measured and consistently analyzed by a theoretical model set on the foundation of classical electrodynamic coupling. Our experimental and theoretical approach paves the way for pursuing microwave coherent manipulation of pure spin current via the combination of spin pumping and magnon-photon coupling. PMID:26196640
Vortices in magnetically coupled superconducting layered systems
Mints, Roman G.; Kogan, Vladimir G.; Clem, John R.
2000-01-01
Pancake vortices in stacks of thin superconducting films or layers are considered. It is stressed that in the absence of Josephson coupling topological restrictions upon possible configurations of vortices are removed and various examples of structures forbidden in bulk superconductors are given. In particular, it is shown that vortices may skip surface layers in samples of less than a certain size R{sub c} which might be macroscopic. The Josephson coupling suppresses R{sub c} estimates. (c) 2000 The American Physical Society.
Tightly Coupled Inertial Navigation System/Global Positioning System (TCMIG)
NASA Technical Reports Server (NTRS)
Watson, Michael D.; Jackson, Kurt (Technical Monitor)
2002-01-01
Many NASA applications planned for execution later this decade are seeking high performance, miniaturized, low power Inertial Management Units (IMU). Much research has gone into Micro-Electro-Mechanical System (MEMS) over the past decade as a solution to these needs. While MEMS devices have proven to provide high accuracy acceleration measurements, they have not yet proven to have the accuracy required by many NASA missions in rotational measurements. Therefore, a new solution has been formulated integrating the best of all IMU technologies to address these mid-term needs in the form of a Tightly Coupled Micro Inertial Navigation System (INS)/Global Positioning System (GPS) (TCMIG). The TCMIG consists of an INS and a GPS tightly coupled by a Kalman filter executing on an embedded Field Programmable Gate Array (FPGA) processor. The INS consists of a highly integrated Interferometric Fiber Optic Gyroscope (IFOG) and a MEMS accelerometer. The IFOG utilizes a tightly wound fiber coil to reduce volume and the high level of integration and advanced optical components to reduce power. The MEMS accelerometer utilizes a newly developed deep etch process to increase the proof mass and yield a highly accurate accelerometer. The GPS receiver consists of a low power miniaturized version of the Blackjack receiver. Such an IMU configuration is ideal to meet the mid-term needs of the NASA Science Enterprises and the new launch vehicles being developed for the Space Launch Initiative (SLI).
Surprises of the Transformer as a Coupled Oscillator System
ERIC Educational Resources Information Center
Silva, J. P.; Silvestre, A. J.
2008-01-01
We study a system of two RLC oscillators coupled through a variable mutual inductance. The system is interesting because it exhibits some peculiar features of coupled oscillators: (i) there are two natural frequencies; (ii) in general, the resonant frequencies do not coincide with the natural frequencies; (iii) the resonant frequencies of both…
Coupled Human-Atmosphere-System Thinking
NASA Astrophysics Data System (ADS)
Schmale, Julia; Chabay, Ilan
2014-05-01
minimize atmospheric release, but rather only complies with either climate or air quality requirements. Nor do current narratives promote behavioral change for the overall reduction of emissions (e.g., you can drive your diesel SUV as long as it has a low fuel consumption). This divide and thinking has not only been manifested in policy and regulations and hence media coverage, but has also shaped the public's general perception of this issue. There is no public conceptual understanding regarding humanity's modification of the atmosphere through the continuously and simultaneously released substances by almost any kind of activity and resulting impacts. Here, we propose a conceptual framework that provides a new perspective on the coupled human-atmosphere-system. It makes tangible the inherent linkages between the socio-economic system, the atmospheric physico-chemical changes and impacts, and legal frameworks for sustainable transformations at all levels. To implement HAS-thinking in decision and policy making, both salient disciplinary and interdisciplinary research and comprehensive science-society interactions in the form of transdisciplinary research are necessary. Societal transformations for the sake of a healthy human-atmosphere relationship are highly context dependent and require discussions of normative and value-related issues, which can only be solved through co-designed solutions. We demonstrate the importance of HAS-thinking by examples of sustainable development in the Arctic and Himalayan countries.
Coupled mode theory analysis of mode-splitting in coupled cavity system.
Li, Qiang; Wang, Tao; Su, Yikai; Yan, Min; Qiu, Min
2010-04-12
We analyze transmission characteristics of two coupled identical cavities, of either standing-wave (SW) or traveling-wave (TW) type, based on temporal coupled mode theory.Mode splitting is observed for both directly (cavity-cavity) and indirectly (cavity-waveguide-cavity) coupled cavity systems. The effects of direct and indirect couplings, if coexisting in one system, can offset each other such that no mode splitting occurs and the original single-cavity resonant frequency is retained. By tuning the configuration of the coupled cavity system, one can obtain different characteristics in transmission spectra, including splitting in transmission, zero transmission, Fano-type transmission, electromagnetically-induced-transparency (EIT)-like transmission, and electromagnetically-induced-absorption (EIA)-like transmission. It is also interesting to notice that a side-coupled SW cavity system performs similarly to an under-coupled TW cavity. The results are useful for the design of cavity-based devices for integration in nanophotonics. PMID:20588682
Visually Coupled Systems (VCS): The Virtual Panoramic Display (VPD) System
NASA Technical Reports Server (NTRS)
Kocian, Dean F.
1992-01-01
The development and impact is described of new visually coupled system (VCS) equipment designed to support engineering and human factors research in the military aircraft cockpit environment. VCS represents an advanced man-machine interface (MMI). Its potential to improve aircrew situational awareness seems enormous, but its superiority over the conventional cockpit MMI has not been established in a conclusive and rigorous fashion. What has been missing is a 'systems' approach to technology advancement that is comprehensive enough to produce conclusive results concerning the operational viability of the VCS concept and verify any risk factors that might be involved with its general use in the cockpit. The advanced VCS configuration described here, was ruggedized for use in military aircraft environments and was dubbed the Virtual Panoramic Display (VPD). It was designed to answer the VCS portion of the systems problem, and is implemented as a modular system whose performance can be tailored to specific application requirements. The overall system concept and the design of the two most important electronic subsystems that support the helmet mounted parts, a new militarized version of the magnetic helmet mounted sight and correspondingly similar helmet display electronics, are discussed in detail. Significant emphasis is given to illustrating how particular design features in the hardware improve overall system performance and support research activities.
Nuclear Hybrid Energy System Modeling: RELAP5 Dynamic Coupling Capabilities
Piyush Sabharwall; Nolan Anderson; Haihua Zhao; Shannon Bragg-Sitton; George Mesina
2012-09-01
The nuclear hybrid energy systems (NHES) research team is currently developing a dynamic simulation of an integrated hybrid energy system. A detailed simulation of proposed NHES architectures will allow initial computational demonstration of a tightly coupled NHES to identify key reactor subsystem requirements, identify candidate reactor technologies for a hybrid system, and identify key challenges to operation of the coupled system. This work will provide a baseline for later coupling of design-specific reactor models through industry collaboration. The modeling capability addressed in this report focuses on the reactor subsystem simulation.
Evanescent Wave Coupling in a Geophysical System
NASA Astrophysics Data System (ADS)
Evers, L. G.
2014-12-01
Earthquakes and explosions generate elastic waves in the solid earth, oceans and atmosphere. Underwater earthquakes are one of the dominant sources of hydro-acoustic waves in the oceans. However, atmospheric low frequency sound, i.e., infrasound, from underwater events has not been considered thus far, due to the high impedance contrast of the water-air interface making it almost fully reflective. Here, we report for the first time on atmospheric infrasound from a large underwater earthquake (Mw 8.1). Seismic waves coupled to hydro-acoustic waves at the ocean floor, after which the energy entered the SOund Fixing And Ranging (SOFAR) channel. The energy was diffracted by a sea mount and an oceanic ridge, which acted as a secondary source, into the water column followed by coupling into the atmosphere. The latter results from evanescent wave coupling and the attendant anomalous transparency of the sea surface for very low frequent acoustic waves. Current research focuses on the contribution of underwater sources to ambient atmospheric noise field of infrasonic waves. Such infrasonic energy is expected to be partly absorbed in the upper atmosphere, i.e., mesosphere and thermosphere.
Quantum Phase Transitions in Cavity Coupled Dot systems
NASA Astrophysics Data System (ADS)
Kasisomayajula, Vijay; Russo, Onofrio
2011-03-01
We investigate a Quantum Dot System, in which the transconductance, in part, is due to spin coupling, with each dot subjected to a biasing voltage. When this system is housed in a QED cavity, the cavity dot coupling alters the spin coupling of the coupled dots significantly via the Purcell Effect. In this paper we show the extent to which one can control the various coupling parameters: the inter dot coupling, the individual dots coupling with the cavity and the coupled dots coupling with the cavity as a single entity. We show that the dots coupled to each other and to the cavity, the spin transport can be controlled selectively. We derive the conditions for such control explicitly. Further, we discuss the Quantum phase transition effects due to the charge and spin transport through the dots. The electron transport through the dots, electron-electron spin interaction and the electron-photon interaction are treated using the Non-equilibrium Green's Function Formalism. http://publish.aps.org/search/field/author/Trif_Mircea (Trif Mircea), http://publish.aps.org/search/field/author/Golovach_Vitaly_N (Vitaly N. Golovach), and http://publish.aps.org/search/field/author/Loss_Daniel (Daniel Loss), Phys. Rev. B 75, 085307 (2007)
Ultrastrong coupling in a flux qubit-transmission line system
NASA Astrophysics Data System (ADS)
Forn-Diaz, Pol; Orgiazzi, Jean-Luc; Otto, Martin; Yurtalan, Ali; Peropadre, Borja; Garcia-Ripoll, Juan-Jose; Wilson, Christopher; Lupascu, Adrian
Recent advances in circuit QED have enabled the study of light-matter interactions in new regimes of coupling strength. Experiments based on flux qubits coupled to resonators observed indications of the so-called ultrastrong coupling regime, where the coupling strength is comparable to the qubit energy splitting. We have realized an experiment where a flux qubit is coupled to an open transmission line with an adjustable coupling strength, which can be tuned into the ultrastrong coupling regime. When the coupling strength is low, the qubit behaves like an isolated dipole scatterer, reflecting over 97% of the incident coherent probe. At larger coupling strengths, the qubit linewidth exceeds its energy splitting, indicating that the system operates deeply in the ultrastrong coupling regime. We find that qualitative features of the qubit response evolve with the coupling strength in ways unexpected based on scattering calculations within the rotating-wave approximation. Some features of the evolution can be understood in the broader context of the spin-boson model.
Coupled isothermal polynucleotide amplification and translation system
NASA Technical Reports Server (NTRS)
Joyce, Gerald F. (Inventor)
1998-01-01
A cell-free system for polynucleotide amplification and translation is disclosed. Also disclosed are methods for using the system and a composition which allows the various components of the system to function under a common set of reaction conditions.
Coupling apparatus for ultrasonic medical diagnostic system
NASA Technical Reports Server (NTRS)
Frazer, R. E. (Inventor)
1978-01-01
An apparatus for the ultrasonic scanning of a breast or other tissue is reported that contains a cavity for receiving the breast, a vacuum for drawing the breast into intimate contact with the walls of the cavity, and transducers coupled through a fluid to the cavity to transmit sound waves through the breast. Each transducer lies at the end of a tapered chamber which has flexible walls and which is filled with fluid, so that the transducer can be moved in a raster pattern while the chamber walls flex accordingly, with sound transmission always occurring through the fluid.
The Canadian coupled multi-seasonal forecasting system
NASA Astrophysics Data System (ADS)
Sebatian Fontecilla, Juan
2013-04-01
The Canadian coupled multi-seasonal forecasting system Since a year now, the Meteorological Service of Canada has its first coupled operational multi-seasonal forecasting system. The Canadian Meteorological Centre (CMC) in collaboration with the Canadian Centre for Climate Modeling and Analysis (CCCma) has implemented a one-tier climate prediction system which has replaced the old two-tier 4 model forecasting system used for forecasts of months 1 to 4, and the CCA statistical forecasting system used for forecasts of months 4 to 12. The coupled atmosphere-ocean-sea ice system combines ensemble forecasts from the CanCM3 and CanCM4 versions of CCCma's coupled global climate model and provide dynamical atmospheric, oceanic and sea ice predictions for lead times out to 12 months. This system, developed under the second Coupled Historical Forecasting Project (CHFP2) will be described briefly. Forecast skill improvements will be shown. The implementation of this new system permits the issuance of ENSO and arctic sea ice forecasts, which were not possible before. The predictive skill of NINO3.4 index from this new coupled system will compared against the skill from other centers.
Superlinearly scalable noise robustness of redundant coupled dynamical systems
NASA Astrophysics Data System (ADS)
Kohar, Vivek; Kia, Behnam; Lindner, John F.; Ditto, William L.
2016-03-01
We illustrate through theory and numerical simulations that redundant coupled dynamical systems can be extremely robust against local noise in comparison to uncoupled dynamical systems evolving in the same noisy environment. Previous studies have shown that the noise robustness of redundant coupled dynamical systems is linearly scalable and deviations due to noise can be minimized by increasing the number of coupled units. Here, we demonstrate that the noise robustness can actually be scaled superlinearly if some conditions are met and very high noise robustness can be realized with very few coupled units. We discuss these conditions and show that this superlinear scalability depends on the nonlinearity of the individual dynamical units. The phenomenon is demonstrated in discrete as well as continuous dynamical systems. This superlinear scalability not only provides us an opportunity to exploit the nonlinearity of physical systems without being bogged down by noise but may also help us in understanding the functional role of coupled redundancy found in many biological systems. Moreover, engineers can exploit superlinear noise suppression by starting a coupled system near (not necessarily at) the appropriate initial condition.
Bifurcation of transition paths induced by coupled bistable systems.
Tian, Chengzhe; Mitarai, Namiko
2016-06-01
We discuss the transition paths in a coupled bistable system consisting of interacting multiple identical bistable motifs. We propose a simple model of coupled bistable gene circuits as an example and show that its transition paths are bifurcating. We then derive a criterion to predict the bifurcation of transition paths in a generalized coupled bistable system. We confirm the validity of the theory for the example system by numerical simulation. We also demonstrate in the example system that, if the steady states of individual gene circuits are not changed by the coupling, the bifurcation pattern is not dependent on the number of gene circuits. We further show that the transition rate exponentially decreases with the number of gene circuits when the transition path does not bifurcate, while a bifurcation facilitates the transition by lowering the quasi-potential energy barrier. PMID:27276971
EVALUATION OF AN INDUCTIVELY COUPLED PLASMA, MULTICHANNEL SPECTROMETRIC ANALYSIS SYSTEM
An inductively coupled plasma, multielement atomic emission spectrometric analysis system has been evaluated with respect to the Environmental Protection Agency's need for a rapid method for determination of trace elemental concentrations in water. Data are presented on detection...
Bifurcation of transition paths induced by coupled bistable systems
NASA Astrophysics Data System (ADS)
Tian, Chengzhe; Mitarai, Namiko
2016-06-01
We discuss the transition paths in a coupled bistable system consisting of interacting multiple identical bistable motifs. We propose a simple model of coupled bistable gene circuits as an example and show that its transition paths are bifurcating. We then derive a criterion to predict the bifurcation of transition paths in a generalized coupled bistable system. We confirm the validity of the theory for the example system by numerical simulation. We also demonstrate in the example system that, if the steady states of individual gene circuits are not changed by the coupling, the bifurcation pattern is not dependent on the number of gene circuits. We further show that the transition rate exponentially decreases with the number of gene circuits when the transition path does not bifurcate, while a bifurcation facilitates the transition by lowering the quasi-potential energy barrier.
Conservative tightly-coupled simulations of stochastic multiscale systems
NASA Astrophysics Data System (ADS)
Taverniers, Søren; Pigarov, Alexander Y.; Tartakovsky, Daniel M.
2016-05-01
Multiphysics problems often involve components whose macroscopic dynamics is driven by microscopic random fluctuations. The fidelity of simulations of such systems depends on their ability to propagate these random fluctuations throughout a computational domain, including subdomains represented by deterministic solvers. When the constituent processes take place in nonoverlapping subdomains, system behavior can be modeled via a domain-decomposition approach that couples separate components at the interfaces between these subdomains. Its coupling algorithm has to maintain a stable and efficient numerical time integration even at high noise strength. We propose a conservative domain-decomposition algorithm in which tight coupling is achieved by employing either Picard's or Newton's iterative method. Coupled diffusion equations, one of which has a Gaussian white-noise source term, provide a computational testbed for analysis of these two coupling strategies. Fully-converged ("implicit") coupling with Newton's method typically outperforms its Picard counterpart, especially at high noise levels. This is because the number of Newton iterations scales linearly with the amplitude of the Gaussian noise, while the number of Picard iterations can scale superlinearly. At large time intervals between two subsequent inter-solver communications, the solution error for single-iteration ("explicit") Picard's coupling can be several orders of magnitude higher than that for implicit coupling. Increasing the explicit coupling's communication frequency reduces this difference, but the resulting increase in computational cost can make it less efficient than implicit coupling at similar levels of solution error, depending on the communication frequency of the latter and the noise strength. This trend carries over into higher dimensions, although at high noise strength explicit coupling may be the only computationally viable option.
Anticipated synchronization in coupled complex Ginzburg-Landau systems.
Ciszak, Marzena; Mayol, Catalina; Mirasso, Claudio R; Toral, Raul
2015-09-01
We study the occurrence of anticipated synchronization in two complex Ginzburg-Landau systems coupled in a master-slave configuration. Master and slave systems are ruled by the same autonomous function, but the slave system receives the injection from the master and is subject to a negative delayed self-feedback loop. We give evidence that the magnitude of the largest anticipation time, obtained for complex-valued coupling constants, depends on the dynamical regime where the system operates (defect turbulence, phase turbulence, or bichaos) and scales with the linear autocorrelation time of the system. We also provide analytical conditions for the stability of the anticipated synchronization manifold that are in qualitative agreement with those obtained numerically. Finally, we report on the existence of anticipated synchronization in coupled two-dimensional complex Ginzburg-Landau systems. PMID:26465544
Anticipated synchronization in coupled complex Ginzburg-Landau systems
NASA Astrophysics Data System (ADS)
Ciszak, Marzena; Mayol, Catalina; Mirasso, Claudio R.; Toral, Raul
2015-09-01
We study the occurrence of anticipated synchronization in two complex Ginzburg-Landau systems coupled in a master-slave configuration. Master and slave systems are ruled by the same autonomous function, but the slave system receives the injection from the master and is subject to a negative delayed self-feedback loop. We give evidence that the magnitude of the largest anticipation time, obtained for complex-valued coupling constants, depends on the dynamical regime where the system operates (defect turbulence, phase turbulence, or bichaos) and scales with the linear autocorrelation time of the system. We also provide analytical conditions for the stability of the anticipated synchronization manifold that are in qualitative agreement with those obtained numerically. Finally, we report on the existence of anticipated synchronization in coupled two-dimensional complex Ginzburg-Landau systems.
Dynamics of chaotic systems with attractive and repulsive couplings.
Chen, Yuehua; Xiao, Jinghua; Liu, Weiqing; Li, Lixiang; Yang, Yixian
2009-10-01
Together with attractive couplings, repulsive couplings play crucial roles in determining important evolutions in natural systems, such as in learning and oscillatory processes of neural networks. The complex interactions between them have great influence on the systems. A detailed understanding of the dynamical properties under this type of couplings is of practical significance. In this paper, we propose a model to investigate the dynamics of attractive and repulsive couplings, which give rise to rich phenomena, especially for amplitude death (AD). The relationship among various dynamics and possible transitions to AD are illustrated. When the system is in the maximally stable AD, we observe the transient behavior of in-phase (high frequency) and out-of-phase (low frequency) motions. The mechanism behind the phenomenon is given. PMID:19905414
Strong coupling of optical nanoantennas and atomic systems
NASA Astrophysics Data System (ADS)
Słowik, K.; Filter, R.; Straubel, J.; Lederer, F.; Rockstuhl, C.
2013-11-01
An optical nanoantenna and adjacent atomic systems are strongly coupled when an excitation is repeatedly exchanged between these subsystems prior to its eventual dissipation into the environment. It remains challenging to reach the strong-coupling regime but it is equally rewarding. Once they are achieved, promising applications such as signal processing at the nanoscale and at the single-photon level would immediately become available. Here, we study such hybrid configuration from different perspectives. The configuration we consider consists of two identical atomic systems, described in a two-level approximation, which are strongly coupled to an optical nanoantenna. First, we investigate when this hybrid system requires a fully quantum description, and we provide a simple analytical criterion. Second, a design for a nanoantenna is presented that enables the strong-coupling regime. In addition to a vivid time evolution, the strong coupling is documented in experimentally accessible quantities, such as the extinction spectra. The latter are shown to be strongly modified if the hybrid system is weakly driven and operates in the quantum regime. We find that the extinction spectra depend sensitively on the number of atomic systems coupled to the nanoantenna.
Fiber coupled optical spark delivery system
Yalin, Azer; Willson, Bryan; Defoort, Morgan
2008-08-12
A spark delivery system for generating a spark using a laser beam is provided, the spark delivery system including a laser light source and a laser delivery assembly. The laser delivery assembly includes a hollow fiber and a launch assembly comprising launch focusing optics to input the laser beam in the hollow fiber. In addition, the laser delivery assembly includes exit focusing optics that demagnify an exit beam of laser light from the hollow fiber, thereby increasing the intensity of the laser beam and creating a spark. In accordance with embodiments of the present invention, the assembly may be used to create a spark in a combustion engine. In accordance with other embodiments of the present invention, a method of using the spark delivery system is provided. In addition, a method of choosing an appropriate fiber for creating a spark using a laser beam is also presented.
Fiber laser coupled optical spark delivery system
Yalin, Azer; Willson, Bryan; Defoort, Morgan; Joshi, Sachin; Reynolds, Adam
2008-03-04
A spark delivery system for generating a spark using a laser beam is provided, and includes a laser light source and a laser delivery assembly. The laser delivery assembly includes a hollow fiber and a launch assembly comprising launch focusing optics to input the laser beam in the hollow fiber. The laser delivery assembly further includes exit focusing optics that demagnify an exit beam of laser light from the hollow fiber, thereby increasing the intensity of the laser beam and creating a spark. Other embodiments use a fiber laser to generate a spark. Embodiments of the present invention may be used to create a spark in an engine. Yet other embodiments include collecting light from the spark or a flame resulting from the spark and conveying the light for diagnostics. Methods of using the spark delivery systems and diagnostic systems are provided.
Coupled chemical oscillators and emergent system properties.
Epstein, Irving R
2014-09-25
We review recent work on a variety of systems, from the nanometre to the centimetre scale, including microemulsions, microfluidic droplet arrays, gels and flow reactors, in which chemical oscillators interact to generate novel spatiotemporal patterns and/or mechanical motion. PMID:24835430
Discharge transient coupling in large space power systems
NASA Technical Reports Server (NTRS)
Stevens, N. John; Stillwell, R. P.
1990-01-01
Experiments have shown that plasma environments can induce discharges in solar arrays. These plasmas simulate the environments found in low earth orbits where current plans call for operation of very large power systems. The discharges could be large enough to couple into the power system and possibly disrupt operations. Here, the general concepts of the discharge mechanism and the techniques of coupling are discussed. Data from both ground and flight experiments are reviewed to obtain an expected basis for the interactions. These concepts were applied to the Space Station solar array and distribution system as an example of the large space power system. The effect of discharges was found to be a function of the discharge site. For most sites in the array discharges would not seriously impact performance. One location at the negative end of the array was identified as a position where discharges could couple to charge stored in system capacitors. This latter case could impact performance.
A micro-coupling for micro mechanical systems
NASA Astrophysics Data System (ADS)
Li, Wei; Zhou, Zhixiong; Zhang, Bi; Xiao, Yunya
2016-05-01
The error motions of micro mechanical systems, such as micro-spindles, increase with the increasing of the rotational speed, which not only decreases the rotational accuracy, but also promotes instability and limits the maximum operational speed. One effective way to deal with it is to use micro-flexible couplings between the drive and driven shafts so as to reduce error motions of the driven shaft. But the conventional couplings, such as diaphragm couplings, elastomeric couplings, bellows couplings, and grooved couplings, etc, cannot be directly used because of their large and complicated structures. This study presents a novel micro-coupling that consists of a flexible coupling and a shape memory alloy (SMA)-based clamp for micro mechanical systems. It is monolithic and can be directly machined from a shaft. The study performs design optimization and provides manufacturing considerations, including thermo-mechanical training of the SMA ring for the desired Two-Way-Shape-Memory effect (TWSMe). A prototype micro-coupling and a prototype micro-spindle using the proposed coupling are fabricated and tested. The testing results show that the prototype micro-coupling can bear a torque of above 5 N • mm and an axial force of 8.5 N and be fitted with an SMA ring for clamping action at room temperature (15 °C) and unclamping action below-5 °C. At the same time, the prototype micro-coupling can work at a rotational speed of above 200 kr/min with the application to a high-speed precision micro-spindle. Moreover, the radial runout error of the artifact, as a substitute for the micro-tool, is less than 3 μm while that of turbine shaft is above 7 μm. It can be concluded that the micro-coupling successfully accommodates misalignment errors of the prototype micro-spindle. This research proposes a micro-coupling which is featured with an SMA ring, and it is designed to clamp two shafts, and has smooth transmission, simple assembly, compact structure, zero-maintenance and
A micro-coupling for micro mechanical systems
NASA Astrophysics Data System (ADS)
Li, Wei; Zhou, Zhixiong; Zhang, Bi; Xiao, Yunya
2016-04-01
The error motions of micro mechanical systems, such as micro-spindles, increase with the increasing of the rotational speed, which not only decreases the rotational accuracy, but also promotes instability and limits the maximum operational speed. One effective way to deal with it is to use micro-flexible couplings between the drive and driven shafts so as to reduce error motions of the driven shaft. But the conventional couplings, such as diaphragm couplings, elastomeric couplings, bellows couplings, and grooved couplings, etc, cannot be directly used because of their large and complicated structures. This study presents a novel micro-coupling that consists of a flexible coupling and a shape memory alloy (SMA)-based clamp for micro mechanical systems. It is monolithic and can be directly machined from a shaft. The study performs design optimization and provides manufacturing considerations, including thermo-mechanical training of the SMA ring for the desired Two-Way-Shape-Memory effect (TWSMe). A prototype micro-coupling and a prototype micro-spindle using the proposed coupling are fabricated and tested. The testing results show that the prototype micro-coupling can bear a torque of above 5 N • mm and an axial force of 8.5 N and be fitted with an SMA ring for clamping action at room temperature (15 °C) and unclamping action below-5 °C. At the same time, the prototype micro-coupling can work at a rotational speed of above 200 kr/min with the application to a high-speed precision micro-spindle. Moreover, the radial runout error of the artifact, as a substitute for the micro-tool, is less than 3 μm while that of turbine shaft is above 7 μm. It can be concluded that the micro-coupling successfully accommodates misalignment errors of the prototype micro-spindle. This research proposes a micro-coupling which is featured with an SMA ring, and it is designed to clamp two shafts, and has smooth transmission, simple assembly, compact structure, zero-maintenance and
Hawke, B.C.
1963-02-26
This patent relates to a releasable coupling connecting a control rod to a control rod drive. This remotely operable coupling mechanism can connect two elements which are laterally and angviarly misaligned, and provides a means for sensing the locked condition of the elements. The coupling utilizes a spherical bayonet joint which is locked against rotation by a ball detent lock. (AEC)
Theoretical Design of Coupled Organic-Inorganic Systems
NASA Astrophysics Data System (ADS)
Mattioli, G.; Filippone, F.; Giannozzi, P.; Caminiti, R.; Amore Bonapasta, A.
2008-09-01
Metallo-organic molecules with highly conjugated π-electrons, like phthalocyanines (Pc’s), are widely investigated for usage in electronic and electro-optic devices. However, their weak coupling with semiconductors is an obstacle to technological applications. Here we report a first-principle theoretical study of some fundamental features of the Pc-semiconductor interaction. Our results shed light on the general problem of organic-inorganic coupling and show that an effective coupling can be achieved by a careful choice of the Pc-substrate system and the semiconductor doping. Our results also reveal a universal alignment of the Pc electronic levels to the semiconductor band gap and suggest a general procedure for designing efficiently coupled organic-inorganic systems.
Exchange bias in nearly perpendicularly coupled ferromagnetic/ferromagnetic system
NASA Astrophysics Data System (ADS)
Bu, K. M.; Kwon, H. Y.; Oh, S. W.; Won, C.
2012-04-01
Exchange bias phenomena appear not only in ferromagnetic/antiferromagnetic systems but also in ferromagnetic/ferromagnetic systems in which two layers are nearly perpendicularly coupled. We investigated the origin of the symmetry-breaking mechanism and the relationship between the exchange bias and the system's energy parameters. We compared the results of computational Monte Carlo simulations with those of theoretical model calculation. We found that the exchange bias exhibited nonlinear behaviors, including sign reversal and singularities. These complicated behaviors were caused by two distinct magnetization processes depending on the interlayer coupling strength. The exchange bias reached a maximum at the transition between the two magnetization processes.
Asymptotic behavior of coupled linear systems modeling suspension bridges
NASA Astrophysics Data System (ADS)
Dell'Oro, Filippo; Giorgi, Claudio; Pata, Vittorino
2015-06-01
We consider the coupled linear system describing the vibrations of a string-beam system related to the well-known Lazer-McKenna suspension bridge model. For ɛ > 0 and k > 0, the decay properties of the solution semigroup are discussed in dependence of the nonnegative parameters γ and h, which are responsible for the damping effects.
Microcomputer based test system for charge coupled devices
Sidman, S.
1981-02-01
A microcomputer based system for testing analog charge coupled integrated circuits has been developed. It measures device performance for three parameters: dynamic range, baseline shift due to leakage current, and transfer efficiency. A companion board tester has also been developed. The software consists of a collection of BASIC and assembly language routines developed on the test system microcomputer.
Optical coupling system for photon-photon coincidence experiments.
NASA Technical Reports Server (NTRS)
Masterson, K. D.
1973-01-01
An efficient optical coupling system is presented that promises to be useful in experiments where it is necessary to collect a large fraction of emitted photons, as in photon-photon coincidence experiments. Narrow bandpass interference filters are an integral part of the proposed system.
Practical thermodynamics of Yukawa systems at strong coupling
Khrapak, Sergey A.; Kryuchkov, Nikita P.; Yurchenko, Stanislav O.; Thomas, Hubertus M.
2015-05-21
Simple practical approach to estimate thermodynamic properties of strongly coupled Yukawa systems, in both fluid and solid phases, is presented. The accuracy of the approach is tested by extensive comparison with direct computer simulation results (for fluids and solids) and the recently proposed shortest-graph method (for solids). Possible applications to other systems of softly repulsive particles are briefly discussed.
Modal analysis of multistage gear systems coupled with gearbox vibrations
NASA Technical Reports Server (NTRS)
Choy, F. K.; Ruan, Y. F.; Tu, Y. K.; Zakrajsek, J. J.; Townsend, D. P.
1991-01-01
An analytical procedure to simulate vibrations in gear transmission systems is presented. This procedure couples the dynamics of the rotor-bearing gear system with the vibration in the gear box structure. The model synthesis method is used in solving the overall dynamics of the system, and a variable time-stepping integration scheme is used in evaluating the global transient vibration of the system. Locally each gear stage is modeled as a multimass rotor-bearing system using a discrete model. The modal characteristics are calculated using the matrix-transfer technique. The gearbox structure is represented by a finite element models, and modal parameters are solved by using NASTRAN. The rotor-gear stages are coupled through nonlinear compliance in the gear mesh while the gearbox structure is coupled through the bearing supports of the rotor system. Transient and steady state vibrations of the coupled system are examined in both time and frequency domains. A typical three-geared system is used as an example for demonstration of the developed procedure.
Practical thermodynamics of Yukawa systems at strong coupling.
Khrapak, Sergey A; Kryuchkov, Nikita P; Yurchenko, Stanislav O; Thomas, Hubertus M
2015-05-21
Simple practical approach to estimate thermodynamic properties of strongly coupled Yukawa systems, in both fluid and solid phases, is presented. The accuracy of the approach is tested by extensive comparison with direct computer simulation results (for fluids and solids) and the recently proposed shortest-graph method (for solids). Possible applications to other systems of softly repulsive particles are briefly discussed. PMID:26001480
Discrete synchronization of massively connected systems using hierarchical couplings
NASA Astrophysics Data System (ADS)
Poignard, Camille
2016-04-01
We study the synchronization of massively connected dynamical systems for which the interactions come from the succession of couplings forming a global hierarchical coupling process. Motivations of this work come from the growing necessity of understanding properties of complex systems that often exhibit a hierarchical structure. Starting with a set of 2n systems, the couplings we consider represent a two-by-two matching process that gather them in larger and larger groups of systems, providing to the whole set a structure in n stages, corresponding to n scales of hierarchy. This leads us naturally to the synchronization of a Cantor set of systems, indexed by { 0 , 1 } N, using the closed-open sets defined by n-tuples of 0 and 1 that permit us to make the link with the finite previous situation of 2n systems: we obtain a global synchronization result generalizing this case. In the same context, we deal with this question when some defects appear in the hierarchy, that is to say when some couplings among certain systems do not happen at a given stage of the hierarchy. We prove we can accept an infinite number of broken links inside the hierarchy while keeping a local synchronization, under the condition that these defects are present at the N smallest scales of the hierarchy (for a fixed integer N) and they be enough spaced out in those scales.
Lens-coupled x-ray imaging systems
NASA Astrophysics Data System (ADS)
Fan, Helen Xiang
Digital radiography systems are important diagnostic tools for modern medicine. The images are produced when x-ray sensitive materials are coupled directly onto the sensing element of the detector panels. As a result, the size of the detector panels is the same size as the x-ray image. An alternative to the modern DR system is to image the x-ray phosphor screen with a lens onto a digital camera. Potential advantages of this approach include rapid readout, flexible magnification and field of view depending on applications. We have evaluated lens-coupled DR systems for the task of signal detection by analyzing the covariance matrix of the images for three cases, using a perfect detector and lens, when images are affected by blurring due to the lens and screen, and for a signal embedded in a complex random background. We compared the performance of lens-coupled DR systems using three types of digital cameras. These include a scientific CCD, a scientific CMOS, and a prosumer DSLR camera. We found that both the prosumer DSLR and the scientific CMOS have lower noise than the scientific CCD camera by looking at their noise power spectrum. We have built two portable low-cost DR systems, which were used in the field in Nepal and Utah. We have also constructed a lens-coupled CT system, which included a calibration routine and an iterative reconstruction algorithm written in CUDA.
Quasistable states in globally coupled tent map systems
NASA Astrophysics Data System (ADS)
Chawanya, Tsuyoshi
2003-09-01
The characteristics of long lasting but not perpetual chaotic states appear in a wide parameter region in a globally coupled overcritical tent map system are exhibited. The lifetime of the transient state has essential relevance with the system size. In some parameter region, the lifetime saturates at a certain level, while in another region it seems to diverge as the size of the system grows. In order to uncover the dynamical structures in large system size limit, the dynamics of one-body distribution is investigated as an idealized model for the infinitely large coupled map system. Obtained numerical results indicate the correspondence between the characteristics of long transient behavior in finite size system and that of the attractor or the ruin of attractor in the idealized model.
Coupling Identical one-dimensional Many-Body Localized Systems
NASA Astrophysics Data System (ADS)
Bordia, Pranjal; Lüschen, Henrik P.; Hodgman, Sean S.; Schreiber, Michael; Bloch, Immanuel; Schneider, Ulrich
2016-04-01
We experimentally study the effects of coupling one-dimensional many-body localized systems with identical disorder. Using a gas of ultracold fermions in an optical lattice, we artificially prepare an initial charge density wave in an array of 1D tubes with quasirandom on-site disorder and monitor the subsequent dynamics over several thousand tunneling times. We find a strikingly different behavior between many-body localization and Anderson localization. While the noninteracting Anderson case remains localized, in the interacting case any coupling between the tubes leads to a delocalization of the entire system.
Squeezed light and correlated photons from dissipatively coupled optomechanical systems
NASA Astrophysics Data System (ADS)
Kilda, Dainius; Nunnenkamp, Andreas
2016-01-01
We study theoretically the squeezing spectrum and second-order correlation function of the output light for an optomechanical system in which a mechanical oscillator modulates the cavity linewidth (dissipative coupling). We find strong squeezing coinciding with the normal-mode frequencies of the linearized system. In contrast to dispersive coupling, squeezing is possible in the resolved-sideband limit simultaneously with sideband cooling. The second-order correlation function shows damped oscillations, whose properties are given by the mechanical-like, the optical-like normal mode, or both, and can be below shot-noise level at finite times, {g}(2)(τ )\\lt 1.
Existence of a coupled system of fractional differential equations
Ibrahim, Rabha W.; Siri, Zailan
2015-10-22
We manage the existence and uniqueness of a fractional coupled system containing Schrödinger equations. Such a system appears in quantum mechanics. We confirm that the fractional system under consideration admits a global solution in appropriate functional spaces. The solution is shown to be unique. The method is based on analytic technique of the fixed point theory. The fractional differential operator is considered from the virtue of the Riemann-Liouville differential operator.
Complex network synchronization of chaotic systems with delay coupling
Theesar, S. Jeeva Sathya Ratnavelu, K.
2014-03-05
The study of complex networks enables us to understand the collective behavior of the interconnected elements and provides vast real time applications from biology to laser dynamics. In this paper, synchronization of complex network of chaotic systems has been studied. Every identical node in the complex network is assumed to be in Lur’e system form. In particular, delayed coupling has been assumed along with identical sector bounded nonlinear systems which are interconnected over network topology.
Overview of coupled bunch active damper systems at FNAL
Steimel, J.; Crisp, J.; Ma, Hengjie; Marriner, J.; McGinnis, D.
1996-05-01
Beam intensities in all of the accelerators at Fermilab will increase significantly when the Main Injector becomes operational and will cause unstable oscillations in transverse position and energy. Places where the coupled bunch oscillations could dilute emittances include the Booster, Main Injector, and Tevatron. This paper provides an overview of the active feedback system upgrades which will be used to counteract the problem. It will explain the similarities between all the systems and will also explain design differences between longitudinal and transverse systems, fast sweeping systems, and systems for partially filled machines. Results from operational systems will also be shown. 7 refs., 4 figs., 1 tab.
Overview of coupled-bunch active damper systems at FNAL
Steimel, J.; Crisp, J.; Ma, H.; Marriner, J.; McGinnis, D.
1997-01-01
Beam intensities in all of the accelerators at Fermilab will increase significantly when the Main Injector becomes operational and will cause unstable oscillations in transverse position and energy. Places where the coupled bunch oscillations could dilute emittances include the Booster, Main Injector, and Tevatron. This paper provides an overview of the active feedback system upgrades which will be used to counteract the problem. It will explain the similarities between all the systems and will also explain design differences between longitudinal and transverse systems, fast sweeping systems, and systems for partially filled machines. Results from operational systems will also be shown. {copyright} {ital 1997 American Institute of Physics.}
Mesoscale Coupled Ocean-Atmosphere Feedbacks in Boundary Current Systems
NASA Astrophysics Data System (ADS)
Putrasahan, Dian Ariyani
The focus of this dissertation is on studying ocean-atmosphere (OA) interactions in the Humboldt Current System (HCS) and Kuroshio Extension (KE) region using satellite observations and the Scripps Coupled Ocean-Atmosphere Regional (SCOAR) model. Within SCOAR, a new technique is introduced by implementing an interactive 2-D spatial smoother within the SST-flux coupler to remove the mesoscale SST field felt by the atmosphere. This procedure allows large-scale SST coupling to be preserved while extinguishing the mesoscale eddy impacts on the atmospheric boundary layer (ABL). This technique provides insights to spatial-scale dependence of OA coupling, and the impact of mesoscale features on both the ABL and the surface ocean. For the HCS, the use of downscaled forcing from SCOAR, as compared to NCEP Reanalysis 2, proves to be more appropriate in quantifying wind-driven upwelling indices along the coast of Peru and Chile. The difference in their wind stress distribution has significant impact on the wind-driven upwelling processes and total upwelling transport along the coast. Although upwelling induced by coastal Ekman transport dominates the wind-driven upwelling along coastal areas, Ekman pumping can account for 30% of the wind-driven upwelling in several coastal locations. Control SCOAR shows significant SST-wind stress coupling during fall and winter, while Smoothed SCOAR shows insignificant coupling throughout, indicating the important role of ocean mesoscale eddies on air-sea coupling in HCS. The SST-wind stress coupling however, did not produce any rectified response on the ocean eddies. Coupling between SST, wind speed and latent heat flux is insignificant on large-scale coupling and full coupling mode. On the other hand, coupling between these three variables are significant on the mesoscale for most of the model run, which suggests that mesoscale SST affects latent heat through direct flux anomalies as well as indirectly through stability changes on the
Chaos Synchronization of Two Coupled Dynamos Systems with Unknown System Parameters
NASA Astrophysics Data System (ADS)
Agiza, H. N.
This paper addresses the synchronization problem of two coupled dynamos systems in the presence of unknown system parameters. Based on Lyapunov stability theory, an active control law is derived and activated to achieve the state synchronization of two identical coupled dynamos systems. By using Gerschgorin theorem, a simple generic criterion is derived for global synchronization of two coupled dynamos systems with a unidirectional linear error feedback coupling. This simple criterion is applicable to a large class of chaotic systems, where only a few algebraic inequalities are involved. Numerical simulations results are used to demonstrate the effectiveness of the proposed control methods.
Enhancements to the SHARP Build System and NEK5000 Coupling
McCaskey, Alex; Bennett, Andrew R.; Billings, Jay Jay
2014-10-01
The SHARP project for the Department of Energy's Nuclear Energy Advanced Modeling and Simulation (NEAMS) program provides a multiphysics framework for coupled simulations of advanced nuclear reactor designs. It provides an overall coupling environment that utilizes custom interfaces to couple existing physics codes through a common spatial decomposition and unique solution transfer component. As of this writing, SHARP couples neutronics, thermal hydraulics, and structural mechanics using PROTEUS, Nek5000, and Diablo respectively. This report details two primary SHARP improvements regarding the Nek5000 and Diablo individual physics codes: (1) an improved Nek5000 coupling interface that lets SHARP achieve a vast increase in overall solution accuracy by manipulating the structure of the internal Nek5000 spatial mesh, and (2) the capability to seamlessly couple structural mechanics calculations into the framework through improvements to the SHARP build system. The Nek5000 coupling interface now uses a barycentric Lagrange interpolation method that takes the vertex-based power and density computed from the PROTEUS neutronics solver and maps it to the user-specified, general-order Nek5000 spectral element mesh. Before this work, SHARP handled this vertex-based solution transfer in an averaging-based manner. SHARP users can now achieve higher levels of accuracy by specifying any arbitrary Nek5000 spectral mesh order. This improvement takes the average percentage error between the PROTEUS power solution and the Nek5000 interpolated result down drastically from over 23 % to just above 2 %, and maintains the correct power profile. We have integrated Diablo into the SHARP build system to facilitate the future coupling of structural mechanics calculations into SHARP. Previously, simulations involving Diablo were done in an iterative manner, requiring a large amount manual work, and left only as a task for advanced users. This report will detail a new Diablo build system that
The coupled nonlinear dynamics of a lift system
NASA Astrophysics Data System (ADS)
Crespo, Rafael Sánchez; Kaczmarczyk, Stefan; Picton, Phil; Su, Huijuan
2014-12-01
Coupled lateral and longitudinal vibrations of suspension and compensating ropes in a high-rise lift system are often induced by the building motions due to wind or seismic excitations. When the frequencies of the building become near the natural frequencies of the ropes, large resonance motions of the system may result. This leads to adverse coupled dynamic phenomena involving nonplanar motions of the ropes, impact loads between the ropes and the shaft walls, as well as vertical vibrations of the car, counterweight and compensating sheave. Such an adverse dynamic behaviour of the system endangers the safety of the installation. This paper presents two mathematical models describing the nonlinear responses of a suspension/ compensating rope system coupled with the elevator car / compensating sheave motions. The models accommodate the nonlinear couplings between the lateral and longitudinal modes, with and without longitudinal inertia of the ropes. The partial differential nonlinear equations of motion are derived using Hamilton Principle. Then, the Galerkin method is used to discretise the equations of motion and to develop a nonlinear ordinary differential equation model. Approximate numerical solutions are determined and the behaviour of the system is analysed.
Pathological gambling and couple: towards an integrative systemic model.
Cunha, Diana; Relvas, Ana Paula
2014-06-01
This article is a critical literature review of pathological gambling focused in the family factors, particularly in the couple dynamics. Its main goal is to develop an explicative integrative systemic model of pathological gambling, based in these couple dynamics. To achieve that aim, a bibliography search was made, using on-line data bases (e.g., EBSCO Host) and recognized books in pathological gambling subject, as well as in the systemic approach in general. This process privileged the recent works (about 70 % of the reviewed literature was published in the last decade), however, also considered some classic works (the oldest one dates back to 1970). The guiding focus of this literature search evolves according to the following steps: (1) search of general comprehension of pathological gambling (19 references), (2) search specification to the subject "pathological gambling and family" (24 references), (3) search specification to the subject "pathological gambling and couple"(11 references), (4) search of systemic information which integrates the evidence resulted in the previous steps (4 references). The developed model is constituted by different levels of systemic complexity (social context, family of origin, couple and individual) and explains the problem as a signal of perturbation in the marital subsystem vital functions (e.g., power and control) though the regularities of marital dynamics of pathological gamblers. Furthermore, it gives theoretical evidence of the systemic familiar intervention in the pathological gambling. PMID:23423730
The coupled nonlinear dynamics of a lift system
Crespo, Rafael Sánchez E-mail: stefan.kaczmarczyk@northampton.ac.uk E-mail: huijuan.su@northampton.ac.uk; Kaczmarczyk, Stefan E-mail: stefan.kaczmarczyk@northampton.ac.uk E-mail: huijuan.su@northampton.ac.uk; Picton, Phil E-mail: stefan.kaczmarczyk@northampton.ac.uk E-mail: huijuan.su@northampton.ac.uk; Su, Huijuan E-mail: stefan.kaczmarczyk@northampton.ac.uk E-mail: huijuan.su@northampton.ac.uk
2014-12-10
Coupled lateral and longitudinal vibrations of suspension and compensating ropes in a high-rise lift system are often induced by the building motions due to wind or seismic excitations. When the frequencies of the building become near the natural frequencies of the ropes, large resonance motions of the system may result. This leads to adverse coupled dynamic phenomena involving nonplanar motions of the ropes, impact loads between the ropes and the shaft walls, as well as vertical vibrations of the car, counterweight and compensating sheave. Such an adverse dynamic behaviour of the system endangers the safety of the installation. This paper presents two mathematical models describing the nonlinear responses of a suspension/ compensating rope system coupled with the elevator car / compensating sheave motions. The models accommodate the nonlinear couplings between the lateral and longitudinal modes, with and without longitudinal inertia of the ropes. The partial differential nonlinear equations of motion are derived using Hamilton Principle. Then, the Galerkin method is used to discretise the equations of motion and to develop a nonlinear ordinary differential equation model. Approximate numerical solutions are determined and the behaviour of the system is analysed.
Transactive memory systems scale for couples: development and validation
Hewitt, Lauren Y.; Roberts, Lynne D.
2015-01-01
People in romantic relationships can develop shared memory systems by pooling their cognitive resources, allowing each person access to more information but with less cognitive effort. Research examining such memory systems in romantic couples largely focuses on remembering word lists or performing lab-based tasks, but these types of activities do not capture the processes underlying couples’ transactive memory systems, and may not be representative of the ways in which romantic couples use their shared memory systems in everyday life. We adapted an existing measure of transactive memory systems for use with romantic couples (TMSS-C), and conducted an initial validation study. In total, 397 participants who each identified as being a member of a romantic relationship of at least 3 months duration completed the study. The data provided a good fit to the anticipated three-factor structure of the components of couples’ transactive memory systems (specialization, credibility and coordination), and there was reasonable evidence of both convergent and divergent validity, as well as strong evidence of test–retest reliability across a 2-week period. The TMSS-C provides a valuable tool that can quickly and easily capture the underlying components of romantic couples’ transactive memory systems. It has potential to help us better understand this intriguing feature of romantic relationships, and how shared memory systems might be associated with other important features of romantic relationships. PMID:25999873
Studies of Land Atmosphere Coupling Using the Land Information System
NASA Astrophysics Data System (ADS)
Peters-Lidard, C. D.; Santanello, J. A.; Kumar, S. V.; Eastman, J. L.; Tao, W.
2007-05-01
Recent studies have examined aspects of land atmosphere coupling including the roles of soil moisture and vegetation, on the structure of the atmospheric boundary layer and initiation and evolution of clouds. However, due to limits in computational resources and/or theoretical knowledge, many of these studies have utilized highly parameterized representations of these components so that the true nature of land atmosphere coupling is still unknown. The NASA/GSFC Land Information System (LIS; http:lis.gsfc.nasa.gov) has now been successfully coupled to the Weather Research and Forecasting (WRF; http:www.wrfmodel.org) model, and now provides a testbed for conducting studies of land-atmosphere coupling at water and energy cycle process resolving horizontal spatial scales (1km or less). LIS is a high-performance Land Data Assimilation System (LDAS; http:ldas.gsfc.nasa.gov) that encapsulates the capabilities of the North American LDAS (NLDAS) and the Global LDAS (GLDAS) into a single software infrastructure. The original LIS consists of several land surface models (e.g., Noah, CLM, VIC, HySSiB, Catchment) that can be run in two modes: uncoupled or coupled. In uncoupled mode, the atmospheric boundary conditions are prescribed using observationally-based precipitation, radiation and meteorological inputs, while in coupled mode, these inputs are predicted by the WRF model. In both cases, LIS incorporates remotely sensed land surface parameters including Moderate Resolution Imaging Spectroradiometer (MODIS)-based Leaf Area Index (LAI). In this talk, we will present results from various coupled case studies indicating a strong sensitivity of the water and energy cycles to several controls, including soil moisture, vegetation, and the atmospheric boundary layer. We will also demonstrate the value of remotely sensed observations of ecosystem properties on predicting the timing and location of convection.
A Coupled Atmosphere-Ocean-Wave Modeling System
NASA Astrophysics Data System (ADS)
Allard, R. A.; Smith, T.; Rogers, W. E.; Jensen, T. G.; Chu, P.; Campbell, T. J.
2012-12-01
A growing interest in the impacts that large and small scale ocean and atmospheric events (El Niño, hurricanes, etc.) have on weather forecasting has led to the coupling of atmospheric, ocean circulation and ocean wave models. The Coupled Ocean Atmosphere Mesoscale Prediction System (COAMPS™ ) consists of the Navy's atmospheric model coupled to the Navy Coastal Ocean Model (NCOM) and the wave models SWAN (Simulating WAves Nearshore) and WAVEWATCH III (WW3™). In a fully coupled mode, COAMPS, NCOM, and SWAN (or WW3) may be integrated concurrently so that currents and water levels, wave-induced stress, bottom drag, Stokes drift current, precipitation, and surface fluxes of heat, moisture, and momentum are exchanged across the air-wave-sea interface. This coupling is facilitated through the Earth System Modeling Framework (ESMF). The ESMF version of COAMPS is being transitioned to operational production centers at the Naval Oceanographic Office and the Fleet Numerical Meteorology and Oceanography Center. Highlights from validation studies for the Florida Straits, Hurricane Ivan and the Adriatic Sea will be presented. COAMPS® is a registered trademark of the Naval Research Laboratory.
Selective coherence transfers in homonuclear dipolar coupled spin systems
Ramanathan, Chandrasekhar; Sinha, Suddhasattwa; Havel, Timothy F.; Cory, David G.; Baugh, Jonathan
2005-02-01
Controlling the dynamics of a dipolar coupled spin system is critical to the development of solid-state spin-based quantum information processors. Such control remains challenging, as every spin is coupled to a large number of surrounding spins. Here we demonstrate that in an ensemble of spin pairs it is possible to decouple the weaker interactions (weak coupling {omega}{sub D}{sup w}) between different pairs and extend the coherence lifetimes within the two-spin system from 19 {mu}s to 11.1 ms, a factor of 580. This is achieved without decoupling the stronger interaction (strong coupling {omega}{sub D}{sup S}) between the two spins within a pair. An amplitude modulated rf field is applied on resonance with the Larmor frequency of the spins, with amplitude {omega}{sub 1}, and frequency of the modulation matched to the strong coupling. The spin pairs appear isolated from each other in the regime where the rf power satisfies {omega}{sub D}{sup w}<<{omega}{sub 1}<<{omega}{sub D}{sup S}.
Interface solitons in one-dimensional locally coupled lattice systems
Hadzievski, Lj.; Gligoric, G.; Maluckov, A.; Malomed, B. A.
2010-09-15
Fundamental solitons pinned to the interface between two discrete lattices coupled at a single site are investigated. Serially and parallel-coupled identical chains (system 1 and system 2), with self-attractive on-site cubic nonlinearity, are considered in one dimension. In these two systems, which can be readily implemented as arrays of nonlinear optical waveguides, symmetric, antisymmetric, and asymmetric solitons are investigated by means of the variational approximation (VA) and numerical methods. The VA demonstrates that the antisymmetric solitons exist in the entire parameter space, while the symmetric and asymmetric modes can be found below some critical value of the coupling parameter. Numerical results confirm these predictions for the symmetric and asymmetric fundamental modes. The existence region of numerically found antisymmetric solitons is also limited by a certain value of the coupling parameter. The symmetric solitons are destabilized via a supercritical symmetry-breaking pitchfork bifurcation, which gives rise to stable asymmetric solitons, in both systems. The antisymmetric fundamental solitons, which may be stable or not, do not undergo any bifurcation. In bistability regions, stable antisymmetric solitons coexist with either symmetric or asymmetric solitons.
Effects of dynamic characters of the macro-micro fast coupling system in long stroke system
NASA Astrophysics Data System (ADS)
Wu, Jianwei; Yuan, Yong; Cui, Jiwen
2015-02-01
Macro-micro fast coupling system of dual-stage is used for the detachment and coupling of the macro-motion system and the wafer-stage. When the macro-motion system couples with the wafer-stage, the wafer-stage is driven by macro-motor to achieve long stroke motion. In this paper, the bottom air bearings of wafer stage are analyzed when the driving force of macro motor shifts the center of mass of wafer stage in Z direction. The X, Y, Z stiffness of the coupling system are obtained by using ANSYS.
On stochastic control system design methods for weakly coupled large scale linear systems.
NASA Technical Reports Server (NTRS)
Kwong, R.; Chong, C.-Y.; Athans, M.
1972-01-01
This paper considers the problem of decentralized control of two weakly coupled linear stochastic systems, using quadratic performance indices. The basic idea is to have each controller control independently his own system, based upon noisy measurements of his own output. To compensate for the effects of weak coupling upon the resultant performance, fake white plant noise is introduced to each system. The appropriate intensity of the fake plant noise is obtained through the solution of an off-line deterministic matrix optimal control problem. The effects of this design method upon the overall coupled system performance are analyzed as a function of the degree of intersystem coupling.
Sustainability Indicators for Coupled Human-Earth Systems
NASA Astrophysics Data System (ADS)
Motesharrei, S.; Rivas, J. R.; Kalnay, E.
2014-12-01
Over the last two centuries, the Human System went from having a small impact on the Earth System (including the Climate System) to becoming dominant, because both population and per capita consumption have grown extremely fast, especially since about 1950. We therefore argue that Human System Models must be included into Earth System Models through bidirectional couplings with feedbacks. In particular, population should be modeled endogenously, rather than exogenously as done currently in most Integrated Assessment Models. The growth of the Human System threatens to overwhelm the Carrying Capacity of the Earth System, and may be leading to catastrophic climate change and collapse. We propose a set of Ecological and Economic "Sustainability Indicators" that can employ large data-sets for developing and assessing effective mitigation and adaptation policies. Using the Human and Nature Dynamical Model (HANDY) and Coupled Human-Climate-Water Model (COWA), we carry out experiments with this set of Sustainability Indicators and show that they are applicable to various coupled systems including Population, Climate, Water, Energy, Agriculture, and Economy. Impact of nonrenewable resources and fossil fuels could also be understood using these indicators. We demonstrate interconnections of Ecological and Economic Indicators. Coupled systems often include feedbacks and can thus display counterintuitive dynamics. This makes it difficult for even experts to see coming catastrophes from just the raw data for different variables. Sustainability Indicators boil down the raw data into a set of simple numbers that cross their sustainability thresholds with a large time-lag before variables enter their catastrophic regimes. Therefore, we argue that Sustainability Indicators constitute a powerful but simple set of tools that could be directly used for making policies for sustainability.
Shi, JianCheng; Luo, Min; Dong, Tao
2009-11-01
The selectivity of noise and coupling for coherence biresonance (CBR) and array-enhanced coherence biresonance (AECBR) in coupled neural systems has been investigated. It is shown that, depending on the coupling strength and noise intensity, various coherence behaviors and phenomena are exhibited, including CBR, coherence resonance without tuning, AECBR and undamped signal transmission. There exist optimal coupling and noise regions for the occurrence of CBR and AECBR in the transmission of noise-induced oscillations (NIOs). PMID:19615426
Spiral wave chimeras in locally coupled oscillator systems
NASA Astrophysics Data System (ADS)
Li, Bing-Wei; Dierckx, Hans
2016-02-01
The recently discovered chimera state involves the coexistence of synchronized and desynchronized states for a group of identical oscillators. In this work, we show the existence of (inwardly) rotating spiral wave chimeras in the three-component reaction-diffusion systems where each element is locally coupled by diffusion. A transition from spiral waves with the smooth core to spiral wave chimeras is found as we change the local dynamics of the system or as we gradually increase the diffusion coefficient of the activator. Our findings on the spiral wave chimera in the reaction-diffusion systems suggest that spiral chimera states may be found in chemical and biological systems that can be modeled by a large population of oscillators indirectly coupled via a diffusive environment.
Frisch, E.; Johnson, C.G.
1962-05-15
A detachable coupling arrangement is described which provides for varying the length of the handle of a tool used in relatively narrow channels. The arrangement consists of mating the key and keyhole formations in the cooperating handle sections. (AEC)
Non-Markovian approach to globally coupled excitable systems
Prager, T.; Schimansky-Geier, L.; Zaks, M. A.; Falcke, M.
2007-07-15
We consider stochastic excitable units with three discrete states. Each state is characterized by a waiting time density function. This approach allows for a non-Markovian description of the dynamics of separate excitable units and of ensembles of such units. We discuss the emergence of oscillations in a globally coupled ensemble with excitatory coupling. In the limit of a large ensemble we derive the non-Markovian mean-field equations: nonlinear integral equations for the populations of the three states. We analyze the stability of their steady solutions. Collective oscillations are shown to persist in a large parameter region beyond supercritical and subcritical Hopf bifurcations. We compare the results with simulations of discrete units as well as of coupled FitzHugh-Nagumo systems.
Sensitivity Analysis for Coupled Aero-structural Systems
NASA Technical Reports Server (NTRS)
Giunta, Anthony A.
1999-01-01
A novel method has been developed for calculating gradients of aerodynamic force and moment coefficients for an aeroelastic aircraft model. This method uses the Global Sensitivity Equations (GSE) to account for the aero-structural coupling, and a reduced-order modal analysis approach to condense the coupling bandwidth between the aerodynamic and structural models. Parallel computing is applied to reduce the computational expense of the numerous high fidelity aerodynamic analyses needed for the coupled aero-structural system. Good agreement is obtained between aerodynamic force and moment gradients computed with the GSE/modal analysis approach and the same quantities computed using brute-force, computationally expensive, finite difference approximations. A comparison between the computational expense of the GSE/modal analysis method and a pure finite difference approach is presented. These results show that the GSE/modal analysis approach is the more computationally efficient technique if sensitivity analysis is to be performed for two or more aircraft design parameters.
Feedback instability in the magnetosphere-ionosphere coupling system: Revisited
Watanabe, T.-H.
2010-02-15
A coupled set of the reduced magnetohydrodynamic and the two-fluid equations is applied to the magnetosphere-ionosphere (M-I) feedback interactions in relation to growth of quite auroral arcs. A theoretical analysis revisiting the linear feedback instability reveals asymptotic behaviors of the dispersion relation and a non-Hermite property in the M-I coupling. A nonlinear simulation of the feedback instability in the M-I coupling system manifests growth of the Kelvin-Helmholtz-like mode in the magnetosphere as the secondary instability. The distorted vortex and field-aligned current profiles propagating as the shear Alfven waves lead to spontaneous deformation of ionospheric density and current structures associated with auroral arcs.
Coupled Dynamic Modeling of Floating Wind Turbine Systems: Preprint
Wayman, E. N.; Sclavounos, P. D.; Butterfield, S.; Jonkman, J.; Musial, W.
2006-03-01
This article presents a collaborative research program that the Massachusetts Institute of Technology (MIT) and the National Renewable Energy Laboratory (NREL) have undertaken to develop innovative and cost-effective floating and mooring systems for offshore wind turbines in water depths of 10-200 m. Methods for the coupled structural, hydrodynamic, and aerodynamic analysis of floating wind turbine systems are presented in the frequency domain. This analysis was conducted by coupling the aerodynamics and structural dynamics code FAST [4] developed at NREL with the wave load and response simulation code WAMIT (Wave Analysis at MIT) [15] developed at MIT. Analysis tools were developed to consider coupled interactions between the wind turbine and the floating system. These include the gyroscopic loads of the wind turbine rotor on the tower and floater, the aerodynamic damping introduced by the wind turbine rotor, the hydrodynamic damping introduced by wave-body interactions, and the hydrodynamic forces caused by wave excitation. Analyses were conducted for two floater concepts coupled with the NREL 5-MW Offshore Baseline wind turbine in water depths of 10-200 m: the MIT/NREL Shallow Drafted Barge (SDB) and the MIT/NREL Tension Leg Platform (TLP). These concepts were chosen to represent two different methods of achieving stability to identify differences in performance and cost of the different stability methods. The static and dynamic analyses of these structures evaluate the systems' responses to wave excitation at a range of frequencies, the systems' natural frequencies, and the standard deviations of the systems' motions in each degree of freedom in various wind and wave environments. This article in various wind and wave environments. This article explores the effects of coupling the wind turbine with the floating platform, the effects of water depth, and the effects of wind speed on the systems' performance. An economic feasibility analysis of the two concepts
Coupled catastrophes: sudden shifts cascade and hop among interdependent systems.
Brummitt, Charles D; Barnett, George; D'Souza, Raissa M
2015-11-01
An important challenge in several disciplines is to understand how sudden changes can propagate among coupled systems. Examples include the synchronization of business cycles, population collapse in patchy ecosystems, markets shifting to a new technology platform, collapses in prices and in confidence in financial markets, and protests erupting in multiple countries. A number of mathematical models of these phenomena have multiple equilibria separated by saddle-node bifurcations. We study this behaviour in its normal form as fast-slow ordinary differential equations. In our model, a system consists of multiple subsystems, such as countries in the global economy or patches of an ecosystem. Each subsystem is described by a scalar quantity, such as economic output or population, that undergoes sudden changes via saddle-node bifurcations. The subsystems are coupled via their scalar quantity (e.g. trade couples economic output; diffusion couples populations); that coupling moves the locations of their bifurcations. The model demonstrates two ways in which sudden changes can propagate: they can cascade (one causing the next), or they can hop over subsystems. The latter is absent from classic models of cascades. For an application, we study the Arab Spring protests. After connecting the model to sociological theories that have bistability, we use socioeconomic data to estimate relative proximities to tipping points and Facebook data to estimate couplings among countries. We find that although protests tend to spread locally, they also seem to 'hop' over countries, like in the stylized model; this result highlights a new class of temporal motifs in longitudinal network datasets. PMID:26559684
Coupled catastrophes: sudden shifts cascade and hop among interdependent systems
Barnett, George; D'Souza, Raissa M.
2015-01-01
An important challenge in several disciplines is to understand how sudden changes can propagate among coupled systems. Examples include the synchronization of business cycles, population collapse in patchy ecosystems, markets shifting to a new technology platform, collapses in prices and in confidence in financial markets, and protests erupting in multiple countries. A number of mathematical models of these phenomena have multiple equilibria separated by saddle-node bifurcations. We study this behaviour in its normal form as fast–slow ordinary differential equations. In our model, a system consists of multiple subsystems, such as countries in the global economy or patches of an ecosystem. Each subsystem is described by a scalar quantity, such as economic output or population, that undergoes sudden changes via saddle-node bifurcations. The subsystems are coupled via their scalar quantity (e.g. trade couples economic output; diffusion couples populations); that coupling moves the locations of their bifurcations. The model demonstrates two ways in which sudden changes can propagate: they can cascade (one causing the next), or they can hop over subsystems. The latter is absent from classic models of cascades. For an application, we study the Arab Spring protests. After connecting the model to sociological theories that have bistability, we use socioeconomic data to estimate relative proximities to tipping points and Facebook data to estimate couplings among countries. We find that although protests tend to spread locally, they also seem to ‘hop' over countries, like in the stylized model; this result highlights a new class of temporal motifs in longitudinal network datasets. PMID:26559684
A strongly coupled Λ-type micromechanical system
NASA Astrophysics Data System (ADS)
Okamoto, Hajime; Schilling, Ryan; Schütz, Hendrik; Sudhir, Vivishek; Wilson, Dalziel J.; Yamaguchi, Hiroshi; Kippenberg, Tobias J.
2016-04-01
We study a classical Λ-type three-level system based on three high-Q micromechanical beam resonators embedded in a gradient electric field. By modulating the strength of the field at the difference frequency between adjacent beam modes, we realize strong dynamic two-mode coupling, via the dielectric force. Driving adjacent pairs simultaneously, we observe the formation of a purely mechanical "dark" state and an all-phononic analog of coherent population trapping—signatures of strong three-mode coupling. The Λ-type micromechanical system is a natural extension of previously demonstrated "two-level" micromechanical systems and adds to the toolbox for engineering of all-phononic micromechanical circuits and arrays.
Development of a Fieldable Air-Coupled Ultrasonic Inspection System
NASA Astrophysics Data System (ADS)
Peters, J. J.; Barnard, D. J.; Hsu, D. K.
2004-02-01
This paper describes the development of a non-mechanically encoded, simple, field-worthy air-coupled ultrasonic scanning system that gives quantitative information about the size of damage and underlying structure in composite and aluminum aerospace structures. The system consists of the AIRSCAN® air-coupled ultrasonic testing system, the Flock of Birds® real-time motion tracking equipment, a lightweight composite yoke, and laptop PC with data acquisition and processing software. Through transmission C-scan images are generated manually by moving transducers attached to a yoke across the part's surface. The prototype has produced images for a variety of aircraft composite and metal honeycomb structures containing flaws, damages, and repairs. Field tests on commercial and military aircraft as well as rotor blades have begun. Initial test results are shown.
Water Wave Solutions of the Coupled System Zakharov-Kuznetsov and Generalized Coupled KdV Equations
Seadawy, A. R.; El-Rashidy, K.
2014-01-01
An analytic study was conducted on coupled partial differential equations. We formally derived new solitary wave solutions of generalized coupled system of Zakharov-Kuznetsov (ZK) and KdV equations by using modified extended tanh method. The traveling wave solutions for each generalized coupled system of ZK and KdV equations are shown in form of periodic, dark, and bright solitary wave solutions. The structures of the obtained solutions are distinct and stable. PMID:25374940
Water wave solutions of the coupled system Zakharov-Kuznetsov and generalized coupled KdV equations.
Seadawy, A R; El-Rashidy, K
2014-01-01
An analytic study was conducted on coupled partial differential equations. We formally derived new solitary wave solutions of generalized coupled system of Zakharov-Kuznetsov (ZK) and KdV equations by using modified extended tanh method. The traveling wave solutions for each generalized coupled system of ZK and KdV equations are shown in form of periodic, dark, and bright solitary wave solutions. The structures of the obtained solutions are distinct and stable. PMID:25374940
Investigation of capacitively coupled ultrasonic transducer system for nondestructive evaluation.
Zhong, Cheng Huan; Wilcox, Paul D; Croxford, Anthony J
2013-12-01
Capacitive coupling offers a simple solution to wirelessly probe ultrasonic transducers. This paper investigates the theory, feasibility, and optimization of such a capacitively coupled transducer system (CCTS) in the context of nondestructive evaluation (NDE) applications. The noncontact interface relies on an electric field formed between four metal plates-two plates are physically connected to the electrodes of a transducer, the other two are in a separate probing unit connected to the transmit/receive channel of the instrumentation. The complete system is modeled as an electric network with the measured impedance of a bonded piezoelectric ceramic disc representing a transducer attached to an arbitrary solid substrate. A transmission line model is developed which is a function of the physical parameters of the capacitively coupled system, such as the permittivity of the material between the plates, the size of the metal plates, and their relative positions. This model provides immediate prediction of electric input impedance, pulse-echo response, and the effect of plate misalignment. The model has been validated experimentally and has enabled optimization of the various parameters. It is shown that placing a tuning inductor and series resistor on the transmitting side of the circuit can significantly improve the system performance in terms of the signal-to-crosstalk ratio. Practically, bulk-wave CCTSs have been built and demonstrated for underwater and through-composite testing. It has been found that electrical conduction in the media between the plates limits their applications. PMID:24297024
Design of the ALS transverse coupled-bunch feedback system
Barry, W.; Byrd, J.M.; Corlett, J.N.; Hinkson, J.; Johnson, J.; Lambertson, G.R.; Fox, J.D.
1993-05-01
Calculations of transverse coupled bunch growth rates in the Advanced Light Source (ALS), a 1.5 GeV electron storage ring for producing synchrotron radiation, indicate the need for damping via a transverse feedback (TFB) system. We present the design of such a system. The maximum bunch frequency is 500 MHz, requiring that the FB system have a broadband response of at least 250 MHz. We described, in detail, the choice of broadband components such as kickers, pickups, power amplifiers, and electronics.
From globally coupled maps to complex-systems biology
NASA Astrophysics Data System (ADS)
Kaneko, Kunihiko
2015-09-01
Studies of globally coupled maps, introduced as a network of chaotic dynamics, are briefly reviewed with an emphasis on novel concepts therein, which are universal in high-dimensional dynamical systems. They include clustering of synchronized oscillations, hierarchical clustering, chimera of synchronization and desynchronization, partition complexity, prevalence of Milnor attractors, chaotic itinerancy, and collective chaos. The degrees of freedom necessary for high dimensionality are proposed to equal the number in which the combinatorial exceeds the exponential. Future analysis of high-dimensional dynamical systems with regard to complex-systems biology is briefly discussed.
From globally coupled maps to complex-systems biology
Kaneko, Kunihiko
2015-09-15
Studies of globally coupled maps, introduced as a network of chaotic dynamics, are briefly reviewed with an emphasis on novel concepts therein, which are universal in high-dimensional dynamical systems. They include clustering of synchronized oscillations, hierarchical clustering, chimera of synchronization and desynchronization, partition complexity, prevalence of Milnor attractors, chaotic itinerancy, and collective chaos. The degrees of freedom necessary for high dimensionality are proposed to equal the number in which the combinatorial exceeds the exponential. Future analysis of high-dimensional dynamical systems with regard to complex-systems biology is briefly discussed.
Simulating the Dynamic Coupling of Market and Physical System Operations
Widergren, Steven E.; Roop, Joseph M.; Guttromson, Ross T.; Huang, Zhenyu
2004-06-01
Abstract-As energy trading products cover shorter time periods and demand response programs move toward real-time pricing, financial market-based activity impacts ever more directly the physical operation of the system. To begin to understand the complex interactions between the market-driven operation signals, the engineered controlled schemes, and the laws of physics, new system modeling and simulation techniques must be explored. This discussion describes requirements for new simulation tools to address such market transaction control interactions and an approach to capture the dynamic coupling between energy markets and the physical operation of the power system appropriate for dispatcher reaction time frames.
Dissipation Assisted Quantum Memory with Coupled Spin Systems
NASA Astrophysics Data System (ADS)
Jiang, Liang; Verstraete, Frank; Cirac, Ignacio; Lukin, Mikhail
2009-05-01
Dissipative dynamics often destroys quantum coherences. However, one can use dissipation to suppress decoherence. A well-known example is the so-called quantum Zeno effect, in which one can freeze the evolution using dissipative processes (e.g., frequently projecting the system to its initial state). Similarly, the undesired decoherence of quantum bits can also be suppressed using controlled dissipation. We propose and analyze the use of this generalization of quantum Zeno effect for protecting the quantum information encoded in the coupled spin systems. This new approach may potentially enhance the performance of quantum memories, in systems such as nitrogen-vacancy color-centers in diamond.
Energy Exchange in Driven Open Quantum Systems at Strong Coupling.
Carrega, Matteo; Solinas, Paolo; Sassetti, Maura; Weiss, Ulrich
2016-06-17
The time-dependent energy transfer in a driven quantum system strongly coupled to a heat bath is studied within an influence functional approach. Exact formal expressions for the statistics of energy dissipation into the different channels are derived. The general method is applied to the driven dissipative two-state system. It is shown that the energy flows obey a balance relation, and that, for strong coupling, the interaction may constitute the major dissipative channel. Results in analytic form are presented for the particular value K=1/2 of strong Ohmic dissipation. The energy flows show interesting behaviors including driving-induced coherences and quantum stochastic resonances. It is found that the general characteristics persists for K near 1/2. PMID:27367367
Energy Exchange in Driven Open Quantum Systems at Strong Coupling
NASA Astrophysics Data System (ADS)
Carrega, Matteo; Solinas, Paolo; Sassetti, Maura; Weiss, Ulrich
2016-06-01
The time-dependent energy transfer in a driven quantum system strongly coupled to a heat bath is studied within an influence functional approach. Exact formal expressions for the statistics of energy dissipation into the different channels are derived. The general method is applied to the driven dissipative two-state system. It is shown that the energy flows obey a balance relation, and that, for strong coupling, the interaction may constitute the major dissipative channel. Results in analytic form are presented for the particular value K =1/2 of strong Ohmic dissipation. The energy flows show interesting behaviors including driving-induced coherences and quantum stochastic resonances. It is found that the general characteristics persists for K near 1/2 .
Dark state in a nonlinear optomechanical system with quadratic coupling
NASA Astrophysics Data System (ADS)
Huang, Yue-Xin; Zhou, Xiang-Fa; Guo, Guang-Can; Zhang, Yong-Sheng
We consider a hybrid system consisting of a cavity optomechanical device with nonlinear quadratic radiation pressure coupled to an atomic ensemble. By considering the collective excitation, we show that this system supports nontrivial, nonlinear dark states. The coupling strength can be tuned via the lasers that ensure the population transfer adiabatically between the mechanical modes and the collective atomic excitations in a controlled way. In addition, we show how to detect the dark-state resonance by calculating the single-photon spectrum of the output fields and the transmission of the probe beam based on two-phonon optomechanically induced transparency. Possible application and extension of the dark states are also discussed. Supported by the National Fundamental Research Program of China (Grants No. 2011CB921200 and No. 2011CBA00200), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB01030200), and NSFC (Grants No. 61275122 and 11474266).
Mediterranea Forecasting System: a focus on wave-current coupling
NASA Astrophysics Data System (ADS)
Clementi, Emanuela; Delrosso, Damiano; Pistoia, Jenny; Drudi, Massimiliano; Fratianni, Claudia; Grandi, Alessandro; Pinardi, Nadia; Oddo, Paolo; Tonani, Marina
2016-04-01
The Mediterranean Forecasting System (MFS) is a numerical ocean prediction system that produces analyses, reanalyses and short term forecasts for the entire Mediterranean Sea and its Atlantic Ocean adjacent areas. MFS became operational in the late 90's and has been developed and continuously improved in the framework of a series of EU and National funded programs and is now part of the Copernicus Marine Service. The MFS is composed by the hydrodynamic model NEMO (Nucleus for European Modelling of the Ocean) 2-way coupled with the third generation wave model WW3 (WaveWatchIII) implemented in the Mediterranean Sea with 1/16 horizontal resolution and forced by ECMWF atmospheric fields. The model solutions are corrected by the data assimilation system (3D variational scheme adapted to the oceanic assimilation problem) with a daily assimilation cycle, using a background error correlation matrix varying seasonally and in different sub-regions of the Mediterranean Sea. The focus of this work is to present the latest modelling system upgrades and the related achieved improvements. In order to evaluate the performance of the coupled system a set of experiments has been built by coupling the wave and circulation models that hourly exchange the following fields: the sea surface currents and air-sea temperature difference are transferred from NEMO model to WW3 model modifying respectively the mean momentum transfer of waves and the wind speed stability parameter; while the neutral drag coefficient computed by WW3 model is passed to NEMO that computes the turbulent component. In order to validate the modelling system, numerical results have been compared with in-situ and remote sensing data. This work suggests that a coupled model might be capable of a better description of wave-current interactions, in particular feedback from the ocean to the waves might assess an improvement on the prediction capability of wave characteristics, while suggests to proceed toward a fully
Eshraghi, Arezoo; Osman, Noor Azuan Abu; Gholizadeh, Hossein; Ahmadian, Jalil; Rahmati, Bizhan; Abas, Wan Abu Bakar Wan
2013-01-01
Individuals with lower limb amputation need a secure suspension system for their prosthetic devices. A new coupling system was developed that is capable of suspending the prosthesis. The system's safety is ensured through an acoustic alarm system. This article explains how the system works and provides an in vivo evaluation of the device with regard to pistoning during walking. The system was designed to be used with silicone liners and is based on the requirements of prosthetic suspension systems. Mechanical testing was performed using a universal testing machine. The pistoning during walking was measured using a motion analysis system. The new coupling device produced significantly less pistoning compared to a common suspension system (pin/lock). The safety alarm system would buzz if the suspension was going to fail. The new coupling system could securely suspend the prostheses in transtibial amputees and produced less vertical movement than the pin/lock system. PMID:23881340
Quantum Brayton cycle with coupled systems as working substance.
Huang, X L; Wang, L C; Yi, X X
2013-01-01
We explore the quantum version of the Brayton cycle with a composite system as the working substance. The actual Brayton cycle consists of two adiabatic and two isobaric processes. Two pressures can be defined in our isobaric process; one corresponds to the external magnetic field (characterized by F(x)) exerted on the system, while the other corresponds to the coupling constant between the subsystems (characterized by F(y)). As a consequence, we can define two types of quantum Brayton cycle for the composite system. We find that the subsystem experiences a quantum Brayton cycle in one quantum Brayton cycle (characterized by F(x)), whereas the subsystem's cycle is quantum Otto cycle in another Brayton cycle (characterized by F(y)). The efficiency for the composite system equals to that for the subsystem in both cases, but the work done by the total system is usually larger than the sum of the work done by the two subsystems. The other interesting finding is that for the cycle characterized by F(y), the subsystem can be a refrigerator, while the total system is a heat engine. The result in this paper can be generalized to a quantum Brayton cycle with a general coupled system as the working substance. PMID:23410319
Quantum Brayton cycle with coupled systems as working substance
NASA Astrophysics Data System (ADS)
Huang, X. L.; Wang, L. C.; Yi, X. X.
2013-01-01
We explore the quantum version of the Brayton cycle with a composite system as the working substance. The actual Brayton cycle consists of two adiabatic and two isobaric processes. Two pressures can be defined in our isobaric process; one corresponds to the external magnetic field (characterized by Fx) exerted on the system, while the other corresponds to the coupling constant between the subsystems (characterized by Fy). As a consequence, we can define two types of quantum Brayton cycle for the composite system. We find that the subsystem experiences a quantum Brayton cycle in one quantum Brayton cycle (characterized by Fx), whereas the subsystem's cycle is quantum Otto cycle in another Brayton cycle (characterized by Fy). The efficiency for the composite system equals to that for the subsystem in both cases, but the work done by the total system is usually larger than the sum of the work done by the two subsystems. The other interesting finding is that for the cycle characterized by Fy, the subsystem can be a refrigerator, while the total system is a heat engine. The result in this paper can be generalized to a quantum Brayton cycle with a general coupled system as the working substance.
Power Coupling Alternatives for the NEP Thermionic Power System
NASA Technical Reports Server (NTRS)
Manda, M. L.; Britt, E. J.; Fitzpatrick, G. O.
1978-01-01
Three output power coupling methods which can eliminate the high temperature insulator from the Nuclear Electric Propulsion (NEP) power system are described and estimates of their effects on the NEP system masses and cooling requirements are presented. Nominal 400 kWe power systems using push-pull and flux reset inductive output coupling are shown to have specific masses of 22.2 kg/kWe and 18.8 kg/kWe, respectively. Series connected heat pipe systems, which use the heat pipe-to-heat pipe resistance to isolate converters on adjacent heat pipes, are shown to have specific masses 0.5 to 1.4 kg/kWe lower than the NEP baseline system. Increasing the number and temperature of the heat pipes in the system without changing the electric output reduces the calculated system specific mass only slightly, whereas increasing the output power significantly reduces the specific mass. Estimates of cooling requirements indicate that 11-45 sq m of power conditioning radiator are needed. A possible location for the power conditioning radiator may be in the present location of the kapton sputter shield.
Geometrical description of nonreciprocity in coupled two-mode systems
NASA Astrophysics Data System (ADS)
Aumentado, Jose; Ranzani, Leonardo
2014-03-01
Traditional microwave and optical devices that break reciprocal symmetry are based on the Faraday effect in anisotropic materials such as ferrites. These devices contain permanent magnets and are therefore not compatible with superconducting quantum circuits. Various nonreciprocal devices that do not employ dc magnetic fields to break reciprocal systems have been discussed in the literature, but it is not obvious if and how these different systems might be connected conceptually. In this talk we explore the concept of nonreciprocity in coupled two-mode systems using a geometric mapping to the Poincaré sphere. In this picture the evolution of the system is described by a rotation sequence of the state vector, where the axis of rotation is determined by the matrix of the coupled-mode system and a different order for the rotations corresponds to a different direction of propagation of the signal. The requirements for reciprocity are then expressed in terms of geometric properties of the rotation axis of the system. We provide a few examples (the microwave circulator, parametric up/down converter, and traveling wave frequency converter) to demonstrate how this general geometric picture can provide insight into specific physical systems.
Equations of motion for coupled n-body systems
NASA Technical Reports Server (NTRS)
Frisch, H. P.
1980-01-01
Computer program, developed to analyze spacecraft attitude dynamics, can be applied to large class of problems involving objects that can be simplified into component parts. Systems of coupled rigid bodies, point masses, symmetric wheels, and elastically flexible bodies can be analyzed. Program derives complete set of non-linear equations of motion in vectordyadic format. Numerical solutions may be printed out. Program is in FORTRAN IV for batch execution and has been implemented on IBM 360.
Cooperative heat transfer and ground coupled storage system
Metz, P.D.
A cooperative heat transfer and ground coupled storage system wherein collected solar heat energy is ground stored and permitted to radiate into the adjacent ground for storage therein over an extended period of time when such heat energy is seasonally maximally available. Thereafter, when said heat energy is seasonally minimally available and has propagated through the adjacent ground a substantial distance, the stored heat energy may be retrieved by a circumferentially arranged heat transfer means having a high rate of heat transfer.
Cooperative heat transfer and ground coupled storage system
Metz, Philip D.
1982-01-01
A cooperative heat transfer and ground coupled storage system wherein collected solar heat energy is ground stored and permitted to radiate into the adjacent ground for storage therein over an extended period of time when such heat energy is seasonally maximally available. Thereafter, when said heat energy is seasonally minimally available and has propagated through the adjacent ground a substantial distance, the stored heat energy may be retrieved by a circumferentially arranged heat transfer means having a high rate of heat transfer.
Investigation of inductively coupled ultrasonic transducer system for NDE.
Zhong, Cheng Huan; Croxford, Anthony J; Wilcox, Paul D
2013-06-01
Inductive coupling offers a simple solution to wirelessly probe ultrasonic transducers. This paper investigates the theory and feasibility of such an inductively coupled transducer system in the context of nondestructive evaluation (NDE) applications. The noncontact interface is based on electromagnetic coupling between three coils; one of the coils is physically connected to the transducer, the other two are in a separate probing unit, where they are connected to the transmit and receive channels of the instrumentation. The complete system is modeled as a three-port network with the measured impedance of a bonded piezoelectric ceramic disc representing a sensor attached to an arbitrary solid substrate. The developed transmission line model is a function of the physical parameters of the electromagnetic system, such as the number of turns and diameter of each coil, and their separation. This model provides immediate predictions of electrical input impedance and pulse-echo response. The model has been validated experimentally and a sensitivity analysis of the input parameters performed. This has enabled optimization of the various parameters. Inductively coupled transducer systems have been built for both bulk and guided wave examples. By using chirped excitation and baseline subtraction, inspection distance of up to 700 mm is achieved in single-shot, guided-wave pulse-echo mode measurements with a 5 mm separation between the probing coils and transducer coil on an aluminum plate structure. In the bulk wave example, a delamination in an 8.9-mm-thick carbon fiber composite specimen is successfully identified from the changes in the arrival time of a reflected pulse. PMID:25004474
A coupled "AB" system: Rogue waves and modulation instabilities
NASA Astrophysics Data System (ADS)
Wu, C. F.; Grimshaw, R. H. J.; Chow, K. W.; Chan, H. N.
2015-10-01
Rogue waves are unexpectedly large and localized displacements from an equilibrium position or an otherwise calm background. For the nonlinear Schrödinger (NLS) model widely used in fluid mechanics and optics, these waves can occur only when dispersion and nonlinearity are of the same sign, a regime of modulation instability. For coupled NLS equations, rogue waves will arise even if dispersion and nonlinearity are of opposite signs in each component as new regimes of modulation instability will appear in the coupled system. The same phenomenon will be demonstrated here for a coupled "AB" system, a wave-current interaction model describing baroclinic instability processes in geophysical flows. Indeed, the onset of modulation instability correlates precisely with the existence criterion for rogue waves for this system. Transitions from "elevation" rogue waves to "depression" rogue waves are elucidated analytically. The dispersion relation as a polynomial of the fourth order may possess double pairs of complex roots, leading to multiple configurations of rogue waves for a given set of input parameters. For special parameter regimes, the dispersion relation reduces to a cubic polynomial, allowing the existence criterion for rogue waves to be computed explicitly. Numerical tests correlating modulation instability and evolution of rogue waves were conducted.
Coupling Efforts to the Accurate and Efficient Tsunami Modelling System
NASA Astrophysics Data System (ADS)
Son, S.
2015-12-01
In the present study, we couple two different types of tsunami models, i.e., nondispersive shallow water model of characteristic form(MOST ver.4) and dispersive Boussinesq model of non-characteristic form(Son et al. (2011)) in an attempt to improve modelling accuracy and efficiency. Since each model deals with different type of primary variables, additional care on matching boundary condition is required. Using an absorbing-generating boundary condition developed by Van Dongeren and Svendsen(1997), model coupling and integration is achieved. Characteristic variables(i.e., Riemann invariants) in MOST are converted to non-characteristic variables for Boussinesq solver without any loss of physical consistency. Established modelling system has been validated through typical test problems to realistic tsunami events. Simulated results reveal good performance of developed modelling system. Since coupled modelling system provides advantageous flexibility feature during implementation, great efficiencies and accuracies are expected to be gained through spot-focusing application of Boussinesq model inside the entire domain of tsunami propagation.
Spin–orbit coupling rule in bound fermion systems
NASA Astrophysics Data System (ADS)
Ebran, J.-P.; Khan, E.; Mutschler, A.; Vretenar, D.
2016-08-01
Spin–orbit coupling characterizes quantum systems such as atoms, nuclei, hypernuclei, quarkonia, etc, and is essential for understanding their spectroscopic properties. Depending on the system, the effect of spin–orbit coupling on shell structure is large in nuclei, small in quarkonia and perturbative in atoms. In the standard non-relativistic reduction of the single-particle Dirac equation, we derive a universal rule for the relative magnitude of the spin–orbit effect that applies to very different quantum systems, regardless of whether the spin–orbit coupling originates from the strong or electromagnetic interaction. It is shown that in nuclei the near equality of the mass of the nucleon and the difference between the large repulsive and attractive potentials explain the fact that spin–orbit splittings are comparable to the energy spacing between major shells. For a specific ratio between the particle mass and the effective potential whose gradient determines the spin–orbit force, we predict the occurrence of giant spin–orbit energy splittings that dominate the single-particle excitation spectrum.
Central- and autonomic nervous system coupling in schizophrenia.
Schulz, Steffen; Bolz, Mathias; Bär, Karl-Jürgen; Voss, Andreas
2016-05-13
The autonomic nervous system (ANS) dysfunction has been well described in schizophrenia (SZ), a severe mental disorder. Nevertheless, the coupling between the ANS and central brain activity has been not addressed until now in SZ. The interactions between the central nervous system (CNS) and ANS need to be considered as a feedback-feed-forward system that supports flexible and adaptive responses to specific demands. For the first time, to the best of our knowledge, this study investigates central-autonomic couplings (CAC) studying heart rate, blood pressure and electroencephalogram in paranoid schizophrenic patients, comparing them with age-gender-matched healthy subjects (CO). The emphasis is to determine how these couplings are composed by the different regulatory aspects of the CNS-ANS. We found that CAC were bidirectional, and that the causal influence of central activity towards systolic blood pressure was more strongly pronounced than such causal influence towards heart rate in paranoid schizophrenic patients when compared with CO. In paranoid schizophrenic patients, the central activity was a much stronger variable, being more random and having fewer rhythmic oscillatory components. This study provides a more in-depth understanding of the interplay of neuronal and autonomic regulatory processes in SZ and most likely greater insights into the complex relationship between psychotic stages and autonomic activity. PMID:27044986
Geometric nonlinear formulation for thermal-rigid-flexible coupling system
NASA Astrophysics Data System (ADS)
Fan, Wei; Liu, Jin-Yang
2013-10-01
This paper develops geometric nonlinear hybrid formulation for flexible multibody system with large deformation considering thermal effect. Different from the conventional formulation, the heat flux is the function of the rotational angle and the elastic deformation, therefore, the coupling among the temperature, the large overall motion and the elastic deformation should be taken into account. Firstly, based on nonlinear strain-displacement relationship, variational dynamic equations and heat conduction equations for a flexible beam are derived by using virtual work approach, and then, Lagrange dynamics equations and heat conduction equations of the first kind of the flexible multibody system are obtained by leading into the vectors of Lagrange multiplier associated with kinematic and temperature constraint equations. This formulation is used to simulate the thermal included hub-beam system. Comparison of the response between the coupled system and the uncoupled system has revealed the thermal chattering phenomenon. Then, the key parameters for stability, including the moment of inertia of the central body, the incident angle, the damping ratio and the response time ratio, are analyzed. This formulation is also used to simulate a three-link system applied with heat flux. Comparison of the results obtained by the proposed formulation with those obtained by the approximate nonlinear model and the linear model shows the significance of considering all the nonlinear terms in the strain in case of large deformation. At last, applicability of the approximate nonlinear model and the linear model are clarified in detail.
Geometric nonlinear formulation for thermal-rigid-flexible coupling system
NASA Astrophysics Data System (ADS)
Fan, Wei; Liu, Jin-Yang
2013-09-01
This paper develops geometric nonlinear hybrid formulation for flexible multibody system with large deformation considering thermal effect. Different from the conventional formulation, the heat flux is the function of the rotational angle and the elastic deformation, therefore, the coupling among the temperature, the large overall motion and the elastic deformation should be taken into account. Firstly, based on nonlinear strain-displacement relationship, variational dynamic equations and heat conduction equations for a flexible beam are derived by using virtual work approach, and then, Lagrange dynamics equations and heat conduction equations of the first kind of the flexible multibody system are obtained by leading into the vectors of Lagrange multiplier associated with kinematic and temperature constraint equations. This formulation is used to simulate the thermal included hub-beam system. Comparison of the response between the coupled system and the uncoupled system has revealed the thermal chattering phenomenon. Then, the key parameters for stability, including the moment of inertia of the central body, the incident angle, the damping ratio and the response time ratio, are analyzed. This formulation is also used to simulate a three-link system applied with heat flux. Comparison of the results obtained by the proposed formulation with those obtained by the approximate nonlinear model and the linear model shows the significance of considering all the nonlinear terms in the strain in case of large deformation. At last, applicability of the approximate nonlinear model and the linear model are clarified in detail.
Modelling of a refrigerating system coupled with a refrigerated room
NASA Astrophysics Data System (ADS)
Wang, Hongwei
1991-08-01
The development of a set of comprehensive computer models to simulate and analyze both steady state and non steady state behavior of a refrigerating system coupled with a refrigerated room is described. The refrigerating system is a single stage vapor compression system consisting of four basic elements: a reciprocating piston compressor, a dry expansion evaporator (or cooler), a shell and tube watercooled condensor and a thermostatic expansion valve. To validate the computer models, a test plant on which steady state and dynamic measurements were carried out, was set up. Experiments to determine several empirical constants encountered in the models were done, and the simulation results were compared with a series of measurements within a wide range of operation conditions. The validated models were applied to the prediction of the air distributions in a cold store and the study of a system with different capacity control systems, proving the capability and reliability of the models.
Head-coupled remote stereoscopic camera system for telepresence applications
NASA Technical Reports Server (NTRS)
Bolas, M. T.; Fisher, S. S.
1990-01-01
The Virtual Environment Workstation Project (VIEW) at NASA's Ames Research Center has developed a remotely controlled stereoscopic camera system that can be used for telepresence research and as a tool to develop and evaluate configurations for head-coupled visual systems associated with space station telerobots and remore manipulation robotic arms. The prototype camera system consists of two lightweight CCD video cameras mounted on a computer controlled platform that provides real-time pan, tilt, and roll control of the camera system in coordination with head position transmitted from the user. This paper provides an overall system description focused on the design and implementation of the camera and platform hardware configuration and the development of control software. Results of preliminary performance evaluations are reported with emphasis on engineering and mechanical design issues and discussion of related psychophysiological effects and objectives.
Semiclassical Landau quantization of spin-orbit coupled systems
NASA Astrophysics Data System (ADS)
Li, Tommy; Horovitz, Baruch; Sushkov, Oleg P.
2016-06-01
A semiclassical quantization condition is derived for Landau levels in general spin-orbit coupled systems. This generalizes the Onsager quantization condition via a matrix-valued phase which describes spin dynamics along the classical cyclotron trajectory. We discuss measurement of the matrix phase via magnetic oscillations and electron spin resonance, which may be used to probe the spin structure of the precessing wave function. We compare the resulting semiclassical spectrum with exact results which are obtained for a variety of spin-orbit interactions in two-dimensional systems.
Optimization of coupled systems: A critical overview of approaches
NASA Technical Reports Server (NTRS)
Balling, R. J.; Sobieszczanski-Sobieski, J.
1994-01-01
A unified overview is given of problem formulation approaches for the optimization of multidisciplinary coupled systems. The overview includes six fundamental approaches upon which a large number of variations may be made. Consistent approach names and a compact approach notation are given. The approaches are formulated to apply to general nonhierarchic systems. The approaches are compared both from a computational viewpoint and a managerial viewpoint. Opportunities for parallelism of both computation and manpower resources are discussed. Recommendations regarding the need for future research are advanced.
First experience with the new Coupling Loss Induced Quench system
NASA Astrophysics Data System (ADS)
Ravaioli, E.; Datskov, V. I.; Dudarev, A. V.; Kirby, G.; Sperin, K. A.; ten Kate, H. H. J.; Verweij, A. P.
2014-03-01
New-generation high-field superconducting magnets pose a challenge relating to the protection of the coil winding pack in the case of a quench. The high stored energy per unit volume calls for a very efficient quench detection and fast quench propagation in order to avoid damage due to overheating. A new protection system called Coupling-Loss Induced Quench (CLIQ) was recently developed and tested at CERN. This method provokes a fast change in the magnet transport current by means of a capacitive discharge. The resulting change in the local magnetic field induces inter-filament and inter-strand coupling losses which heat up the superconductor and eventually initiate a quench in a large fraction of the coil winding pack. The method is extensively tested on a Nb-Ti single-wire test solenoid magnet in the CERN Cryogenic Laboratory in order to assess its performance, optimize its operating parameters, and study new electrical configurations. Each parameter is thoroughly analyzed and its impact on the quench efficiency highlighted. Furthermore, an alternative method is also considered, based on a CLIQ discharge through a resistive coil magnetically coupled with the solenoid but external to it. Due to the strong coupling between the external coil and the magnet, the oscillating current in the external coil changes the magnetic field in the solenoid strands and thus generates coupling losses in the strands. Although for a given charging voltage this configuration usually yields poorer quench performance than a standard CLIQ discharge, it has the advantage of being electrically insulated from the solenoid coil, and thus it can work with much higher voltage.
Spin pumping in electrodynamically coupled magnon-photon systems
NASA Astrophysics Data System (ADS)
Bai, Lihui
The electronics industry is quickly approaching the limitation of Moore's Law due to Joule heating in high density-integrated devices. To achieve new higher-speed devices and reduce energy consumption, researchers are turning to spintronics where the intrinsic spin, rather than the charge of electrons, is used to carry information in devices. Advances in spintronics have led to the discovery of giant magnetoresistance (GMR), spin transfer torque etc. Another subject, cavity electrodynamics, promises a completely new quantum algorithm by studying the properties of a single electron interacting with photons inside of a cavity. By merging both spintronics and cavity electrodynamics, a new cutting edge field called Cavity Spintronics is forming, which draws on the advantages of both subjects to develop new spintronics devices utilizing light-matter interaction. In this work, we use electrical detection, in combination with microwave transmission, to investigate both resonant and nonresonant magnon-photon coupling in a microwave cavity at room temperature. Spin pumping in a dynamically coupled magnon-photon system is found to be distinctly different from previous experiments. Characteristic coupling features such as modes anticrossing, linewidth evolution, peculiar line shape, and resonance broadening are systematically measured and consistently analyzed by a theoretical model set on the foundation of classical electrodynamic coupling. Our experimental and theoretical approach paves the way for pursuing microwave coherent manipulation of pure spin current via the combination of spin pumping and magnon-photon coupling. Co-authored with M. Harder, C.-M. Hu from University of Manitoba, Y. P. Chen, J. Q. Xiao from University of Delaware, and X. Fan from Univeristy of Denver.
QND Measurements in a Resonant Cavity-QED System
NASA Astrophysics Data System (ADS)
Chen, Zilong; Bohnet, Justin G.; Dai; Thompson, James K.
2010-03-01
We demonstrate QND measurements on an ensemble of 10^6 ^87Rb atoms. Quantum state-dependent populations are determined at the projection noise level by measurements of the collective Vacuum Rabi Splitting for the resonantly coupled atom-cavity system. The splitting is measured by simultaneously scanning the frequency of two probes across the two transmission resonances and phase coherently detecting the full IQ response of the reflected electric fields. Measurement back-action imposes AC Stark shifts on the atoms, resulting in a reduction of the Ramsey fringe contrast due to inhomogeneity in the probe-atom coupling. We show that the spin-echo sequences that will be needed to achieve atomic spin-squeezing on the Rb clock transition also strongly suppress these AC stark shifts. The remaining probe-induced decoherence is close to the fundamental limit imposed by free space scattering of the probe photons.
Vibrations of three-dimensional pipe systems with acoustic coupling
NASA Technical Reports Server (NTRS)
El-Raheb, M.
1981-01-01
A general algorithm is developed to calculate the beam-type dynamic response of three dimensional multiplane finite length pipe systems, consisting of elbow and straight ducts with continuous interfaces. Emphasis is on secondary acoustic wave effects giving rise to coupling mechanisms; and the simulation accounts for one-dimensional elastoacoustic coupling from a plane acoustic wave and secondary loads resulting from wave asymmetries. The transfer matrix approach is adopted in modeling the elastodynamics of each duct, with allowance for distribution loads. Secondary loads from plane wave distortion are considered with a solution of the Helmholtz equation in an equivalent rigid waveguide, and effects of path imperfection are introduced as a perturbation from the hypothetical perfectly straight pipe. Computations indicate that the one-dimensional acoustic assumption is valid for frequencies below one-half the first cut-off frequency, and the three-dimensional acoustic effects produce an increase in response levels near and above cut-off.
Surface plasmon polaritons mode conversion via a coupled plasmonic system
NASA Astrophysics Data System (ADS)
Yang, Fan; Tian, Hao
2016-05-01
A coupled plasmonic system for effective mode conversion between single interface surface plasmon polaritons (SPP) in a metal-dielectric waveguide and gap SPP in a metal-dielectric-metal waveguide is proposed. With the modal analysis, it is shown that the interference of the two plasmonic modes in a metal-dielectric-metal-dielectric coupled structure plays the key role in the mode conversion. With typical parameters, the conversion efficiency is as high as 61% (equivalent to 87% of the output total energy flow) at 1μm wavelength, and 1 dB bandwidth is as broad as 300 nm. The proposed structure can be used to implement an SPP mode convertor, router and beam splitter, which enables the interconnection between two important waveguides in plasmonics. The method presented here is fully-analytical, and is tested against fully-vectorial numerical results.
RKKY interaction in a chirally coupled double quantum dot system
Heine, A. W.; Tutuc, D.; Haug, R. J.; Zwicknagl, G.; Schuh, D.; Wegscheider, W.
2013-12-04
The competition between the Kondo effect and the Ruderman-Kittel-Kasuya-Yoshida (RKKY) interaction is investigated in a double quantum dots system, coupled via a central open conducting region. A perpendicular magnetic field induces the formation of Landau Levels which in turn give rise to the so-called Kondo chessboard pattern in the transport through the quantum dots. The two quantum dots become therefore chirally coupled via the edge channels formed in the open conducting area. In regions where both quantum dots exhibit Kondo transport the presence of the RKKY exchange interaction is probed by an analysis of the temperature dependence. The thus obtained Kondo temperature of one dot shows an abrupt increase at the onset of Kondo transport in the other, independent of the magnetic field polarity, i.e. edge state chirality in the central region.
Modulation of magnetotransport in asymmetrically coupled double quantum dot system
NASA Astrophysics Data System (ADS)
Liao, Yan-Hua; Huang, Jin; Wang, Wei-Zhong
2016-01-01
We study the transport properties in double quantum dots asymmetrically coupled to leads in magnetic field. We focus on the situation in which the second dot (QD2) couples with the leads with a weak hybridization function. The results shows that by tuning the energy level 𝜖2 of QD2 one can control the conductance and its spin polarization of the system. In the absence of magnetic field B, with increasing 𝜖2, the conductance shows a dip structure. This behavior of conductance results from a continuous triplet-doublet quantum phase transition. In the presence of magnetic field B, we obtain a perfect spin filtering with a fully-polarized conductance of up-spin or down-spin.
NASA Astrophysics Data System (ADS)
Liu, Lingfeng; Miao, Suoxia; Cheng, Mengfan; Gao, Xiaojing
2016-02-01
A coupled system with varying parameters is proposed to improve the security of optoelectronic delayed feedback system. This system is coupled by two parameter-varied optoelectronic delayed feedback systems with chaotic modulation. Dynamics performance results show that this system has a higher complexity compared to the original one. Furthermore, this system can conceal the time delay effectively against the autocorrelation function and delayed mutual information method and can increase the dimension space of secure parameters to resist brute-force attack by introducing the digital chaotic systems.
Noninvariance groups for many-particle systems: Coupled harmonic oscillators
NASA Astrophysics Data System (ADS)
Kellman, Michael E.
1984-07-01
Noninvariance groups for many-particle systems are investigated in the context of the model problem of the coupling of a pair of harmonic oscillators to give normal modes. First, a recent paper analyzing normal modes in terms of breaking of the SU(2) invariance symmetry of the uncoupled system is reviewed. Next, the noninvariance group description of the one-dimensional oscillator spectrum in terms of infinite-dimensional unitary representations of SU(1,1) is summarized. Then, the analysis of normal modes in terms of a broken noninvariance SU(2,1) group for the two-dimensional problem is carried out. First, the T, U, and V SU(2) subgroup classifications of SU(3) are reviewed in the context of representations for the three-dimensional oscillator. Second, the analogous SU(2) and SU(1,1) subgroup classification of the infinite two-dimensional spectrum is presented. The SU(1,1) groups classify infinite sequences of excitation of the symmetric and antisymmetric stretch, respectively. Then, in an alternate approach, SU(1,1) representations for the spectra of the individual oscillators are coupled, analogous to vector coupling of angular momentum. Normal modes can be obtained in this manner, but only in the limit in which an arbitrary parameter labeling the group representations takes the value infinity. The relation of these results to the theory of group contractions and their implications for the description of truncated spectra (such as coupled Morse oscillators or π-electron spectra of linear polyenes) are briefly discussed.
Tightly Coupled Geodynamic Systems: Software, Implicit Solvers & Applications
NASA Astrophysics Data System (ADS)
May, D.; Le Pourhiet, L.; Brown, J.
2011-12-01
The generic term "multi-physics" is used to define physical processes which are described by a collection of partial differential equations, or "physics". Numerous processes in geodynamics fall into this category. For example, the evolution of viscous fluid flow and heat transport within the mantle (Stokes flow + energy conservation), the dynamics of melt migration (Stokes flow + Darcy flow + porosity evolution) and landscape evolution (Stokes + diffusion/advection over a surface). The development of software to numerically investigate processes that are described through the composition of different physics components are typically (a) designed for one particular set of physics and are never intended to be extended, or coupled to other processes (b) enforce that certain non-linearity's (or coupling) are explicitly removed from the system for reasons of computational efficiency, or due the lack of a robust non-linear solver (e.g. most models in the mantle convection community). We describe a software infrastructure which enables us to easily introduce new physics with minimal code modifications; tightly couple all physics without introducing splitting errors; exploit modern linear/non-linear solvers and permit the re-use of monolithic preconditioners for individual physics blocks (e.g. saddle point preconditioners for Stokes). Here we present a number of examples to illustrate the flexibility and importance of using this software infra-structure. Using the Stokes system as a prototype, we show results illustrating (i) visco-plastic shear banding experiments, (ii) how coupling Stokes flow with the evolution of the material coordinates can yield temporal stability in the free surface evolution and (iii) the discretisation error associated with decoupling Stokes equation from the heat transport equation in models of mantle convection with various rheologies.
Coupled thermal-hydraulic-chemical modelling of enhanced geothermal systems
NASA Astrophysics Data System (ADS)
Bächler, D.; Kohl, T.
2005-05-01
The study investigates thermal-, hydraulic- and chemically coupled processes of enhanced geothermal systems (EGS). On the basis of the two existing numerical codes, the finite element program FRACTURE and the geochemical module of CHEMTOUGH, FRACHEM was developed, to simulate coupled thermal-hydraulic-chemical (THC) processes, accounting for the Soultz specific conditions such as the high salinity of the reservoir fluid and the high temperatures. The finite element part calculates the thermal and hydraulic field and the geochemical module the chemical processes. According to the characteristics of the Soultz EGS reservoir, the geochemical module was modified. (i) The Debye-Huckel approach was replaced by the Pitzer formalism. (ii) New kinetic laws for calcite, dolomite, quartz and pyrite were implemented. (iii) The porosity-permeability relation was replaced by a new relation for fractured rock. (iv) The possibility of re-injecting the produced fluid was implemented. The sequential non-iterative approach (SNIA) was used to couple transport and reactions. Sensitivity analyses proved the proper functionality of FRACHEM, but highlighted the sensitivity of the SNIA approach to time steps. To quantify the FRACHEM results, a comparative simulation with the code SHEMAT was conducted, which validated FRACHEM. Coupled THC processes in a fractured zone in the Soultz reservoir at 3500 m (T0= 165 °C), which occur as a result of the injection of fluid (Tinj= 65 °C) at one end of the zone and the production at the other end, were modelled for 2 yr. Calcite is the most reactive mineral and therefore the porosity and permeability evolution results from the calcite reactions: near the injection point, porosity and permeability increase and near the production well they decrease. After 2 yr, the system seems to be very close to steady-state. Therefore, mineral dissolution and precipitation during the circulation of the fluid in the reservoir do not represent a limiting factor on
NASA Astrophysics Data System (ADS)
Erbe, B.; Schliemann, J.
2010-12-01
We report an unexpected systematic degeneracy between different multiplets in an inversion symmetric system of two coupled Gaudin models with homogeneous couplings, as occurring for example in the context of solid state quantum information processing. We construct the full degenerate subspace (being of macroscopic dimension), which turns out to lie in the kernel of the commutator between the two Gaudin models and the coupling term. Finally we investigate to what extent the degeneracy is related to the inversion symmetry of the system and find that indeed there is a large class of systems showing the same type of degeneracy.
Decadal variability in coupled sea-ice-thermohaline circulation systems
Yang, J.; Neelin, J.D.
1997-12-01
An interdecadal oscillation in a coupled ocean-ice system was identified in a previous study. This paper extends that study to further examine the stability of the oscillation and the sensitivity of its frequency to various parameters and forcing fields. Three models are used: (i) an analytical box model; (ii) a two-dimensional model for the ocean thermohaline circulation (THC) coupled to a thermodynamic ice model, as in the authors` previous study; and (iii) a three-dimensional ocean general circulation model (OGCM) coupled to a similar ice model. The box model is used to elucidate the essential feedbacks that give rise to this oscillation and to identify the most important parameters and processes that determine the period. The counted model becomes more stable toward low coupling, greater diffusion, and weaker THC feedback. Nonlinear effects in the sea-ice model become important in the higher ocean-ice coupling regime where the effective sea-ice damping associated with this nonlinearity stabilizes the model. The 3D OGCM is used to test this coupled ocean-ice mechanism in a more realistic model setting. This model generates an interdecadal oscillation whose characteristics and phase relations among the model variables are similar to the oscillation obtained in the 2D models. The major difference is that the oscillation frequency is considerably lower. The difference can be explained in terms of the analytical box model solution in which the period of oscillation depends on the rate of anomalous density production by melting/cooling of sea ice per SST anomaly, times the rate of warming/cooling by anomalous THC heat advection per change in density anomaly. The 3D model has a smaller THC response to high-latitude density perturbations than the 2D model, and anomalous velocities in the 3D case tend to follow the mean isotherms so anomalous heat advection is reduced. This slows the ocean-ice feedback process, leading to the longer oscillation period. 36 refs., 27 figs.
The Helium Cooling System and Cold Mass Support System for theMICE Coupling Solenoid
Wang, L.; Wu, H.; Li, L.K.; Green, M.A.; Liu, C.S.; Li, L.Y.; Jia, L.X.; Virostek, S.P.
2007-08-27
The MICE cooling channel consists of alternating threeabsorber focus coil module (AFC) and two RF coupling coil module (RFCC)where the process of muon cooling and reacceleration occurs. The RFCCmodule comprises a superconducting coupling solenoid mounted around fourconventional conducting 201.25 MHz closed RF cavities and producing up to2.2T magnetic field on the centerline. The coupling coil magnetic fieldis to produce a low muon beam beta function in order to keep the beamwithin the RF cavities. The magnet is to be built using commercialniobium titanium MRI conductors and cooled by pulse tube coolers thatproduce 1.5 W of cooling capacity at 4.2 K each. A self-centering supportsystem is applied for the coupling magnet cold mass support, which isdesigned to carry a longitudinal force up to 500 kN. This report willdescribe the updated design for the MICE coupling magnet. The cold masssupport system and helium cooling system are discussed indetail.
Robust mean field games for coupled Markov jump linear systems
NASA Astrophysics Data System (ADS)
Moon, Jun; Başar, Tamer
2016-07-01
We consider robust stochastic large population games for coupled Markov jump linear systems (MJLSs). The N agents' individual MJLSs are governed by different infinitesimal generators, and are affected not only by the control input but also by an individual disturbance (or adversarial) input. The mean field term, representing the average behaviour of N agents, is included in the individual worst-case cost function to capture coupling effects among agents. To circumvent the computational complexity and analyse the worst-case effect of the disturbance, we use robust mean field game theory to design low-complexity robust decentralised controllers and to characterise the associated worst-case disturbance. We show that with the individual robust decentralised controller and the corresponding worst-case disturbance, which constitute a saddle-point solution to a generic stochastic differential game for MJLSs, the actual mean field behaviour can be approximated by a deterministic function which is a fixed-point solution to the constructed mean field system. We further show that the closed-loop system is uniformly stable independent of N, and an approximate optimality can be obtained in the sense of ε-Nash equilibrium, where ε can be taken to be arbitrarily close to zero as N becomes sufficiently large. A numerical example is included to illustrate the results.
Orbital maneuvering engine feed system coupled stability investigation
NASA Technical Reports Server (NTRS)
Kahn, D. R.; Schuman, M. D.; Hunting, J. K.; Fertig, K. W.
1975-01-01
A digital computer model used to analyze and predict engine feed system coupled instabilities over a frequency range of 10 to 1000 Hz was developed and verified. The analytical approach to modeling the feed system hydrodynamics, combustion dynamics, chamber dynamics, and overall engineering model structure is described and the governing equations in each of the technical areas are presented. This is followed by a description of the generalized computer model, including formulation of the discrete subprograms and their integration into an overall engineering model structure. The operation and capabilities of the engineering model were verified by comparing the model's theoretical predictions with experimental data from an OMS-type engine with a known feed system/engine chugging history.
Dynamic stabilization of a coupled ultracold atom-molecule system
NASA Astrophysics Data System (ADS)
Li, Sheng-Chang; Ye, Chong
2015-12-01
We numerically demonstrate the dynamic stabilization of a strongly interacting many-body bosonic system which can be realized by coupled ultracold atom-molecule gases. The system is initialized to an unstable equilibrium state corresponding to a saddle point in the classical phase space, where subsequent free evolution gives rise to atom-molecule conversion. To control and stabilize the system, periodic modulation is applied that suddenly shifts the relative phase between the atomic and the molecular modes and limits their further interconversion. The stability diagram for the range of modulation amplitudes and periods that stabilize the dynamics is given. The validity of the phase diagram obtained from the time-average calculation is discussed by using the orbit tracking method, and the difference in contrast with the maximum absolute deviation analysis is shown as well. A brief quantum analysis shows that quantum fluctuations can put serious limitations on the applicability of the mean-field results.
Dynamic stabilization of a coupled ultracold atom-molecule system.
Li, Sheng-Chang; Ye, Chong
2015-12-01
We numerically demonstrate the dynamic stabilization of a strongly interacting many-body bosonic system which can be realized by coupled ultracold atom-molecule gases. The system is initialized to an unstable equilibrium state corresponding to a saddle point in the classical phase space, where subsequent free evolution gives rise to atom-molecule conversion. To control and stabilize the system, periodic modulation is applied that suddenly shifts the relative phase between the atomic and the molecular modes and limits their further interconversion. The stability diagram for the range of modulation amplitudes and periods that stabilize the dynamics is given. The validity of the phase diagram obtained from the time-average calculation is discussed by using the orbit tracking method, and the difference in contrast with the maximum absolute deviation analysis is shown as well. A brief quantum analysis shows that quantum fluctuations can put serious limitations on the applicability of the mean-field results. PMID:26764672
Mode coupling in living systems: implications for biology and medicine.
Swain, John
2008-05-01
Complex systems, and in particular biological ones, are characterized by large numbers of oscillations of widely differing frequencies. Various prejudices tend to lead to the assumption that such oscillators should generically be very weakly interacting. This paper reviews the basic ideas of linearity and nonlinearity as seen by a physicist, but with a view to biological systems. In particular, it is argued that large couplings between different oscillators of disparate frequencies are common, being present even in rather simple systems which are well-known in physics, although this issue is often glossed over. This suggests new experiments and investigations, as well as new approaches to therapies and human-environment interactions which, without the concepts described here, may otherwise seem unlikely to be interesting. The style of the paper is conversational with a minimum of mathematics, and no attempt at a complete list of references. PMID:18697625
Entanglement of Coupled Optomechanical Systems Improved by Optical Parametric Amplifiers
NASA Astrophysics Data System (ADS)
Pan, Guixia; Xiao, Ruijie; Zhou, Ling
2016-04-01
A scheme to generate the stationary entanglement of two distant coupled optical cavities placed optical parametric amplifiers is proposed. We study how the optical parametric amplifiers can affect the entanglement behaviors of the movable mirrors and the cavity fields. With the existence of optical parametric amplifiers, we show that larger stationary entanglement of optical and mechanical modes can be obtained and the entanglement increases with the increasing parametric gain. Especially, the degree of entanglement between the two cavity fields is more pronouncedly enhanced. Moreover, for a fixed parametric gain, the entanglement of distant cavity optomechanical systems increases as the input laser power is increased.
Entanglement of Coupled Optomechanical Systems Improved by Optical Parametric Amplifiers
NASA Astrophysics Data System (ADS)
Pan, Guixia; Xiao, Ruijie; Zhou, Ling
2016-08-01
A scheme to generate the stationary entanglement of two distant coupled optical cavities placed optical parametric amplifiers is proposed. We study how the optical parametric amplifiers can affect the entanglement behaviors of the movable mirrors and the cavity fields. With the existence of optical parametric amplifiers, we show that larger stationary entanglement of optical and mechanical modes can be obtained and the entanglement increases with the increasing parametric gain. Especially, the degree of entanglement between the two cavity fields is more pronouncedly enhanced. Moreover, for a fixed parametric gain, the entanglement of distant cavity optomechanical systems increases as the input laser power is increased.
Synchronization in complex dynamical networks coupled with complex chaotic system
NASA Astrophysics Data System (ADS)
Wei, Qiang; Xie, Cheng-Jun; Wang, Bo
2015-11-01
This paper investigates synchronization in complex dynamical networks with time delay and perturbation. The node of complex dynamical networks is composed of complex chaotic system. A complex feedback controller is designed to realize different component of complex state variable synchronize up to different scaling complex function when complex dynamical networks realize synchronization. The synchronization scaling function is changed from real field to complex field. Synchronization in complex dynamical networks with constant delay and time-varying coupling delay are investigated, respectively. Numerical simulations show the effectiveness of the proposed method.
Modeling Reactive Transport in Coupled Groundwater-Conduit Systems
NASA Astrophysics Data System (ADS)
Spiessl, S. M.; Sauter, M.; Zheng, C.; Viswanathan, H. S.
2002-05-01
Modeling reactive transport in coupled groundwater-conduit systems requires consideration of two transport time scales in the flow and transport models. Consider for example a subsurface mine consisting of a network of highly conductive shafts, drifts or ventilation raises (i.e., conduits) within the considerably less permeable ore material (i.e., matrix). In the conduits, potential contaminants can travel much more rapidly than in the background aquifer (matrix). Since conduits cannot necessarily be regarded as a continuum, double continuum models are only of limited use for simulation of contaminant transport in such coupled groundwater-conduit systems. This study utilizes a "hybrid" flow and transport model in which contaminants can in essence be transported at a slower time scale in the matrix and at a faster time scale in the conduits. The hybrid flow model uses an approach developed by Clemens et al. (1996), which is based on the modelling of flow in a discrete pipe network, coupled to a continuum representing the low-permeability inter-conduit matrix blocks. Laminar or turbulent flow can be simulated in the different pipes depending on the flow conditions in the model domain. The three-dimensional finite-difference groundwater flow model MODFLOW (Harbaugh and McDonald, 1996) is used to simulate flow in the continuum. Contaminant transport within the matrix is simulated with a continuum approach using the three-dimensional multi-species solute transport model MT3DMS (Zheng and Wang, 1999), while that in the conduit system is simulated with a one-dimensional advective transport model. As a first step for reactive transport modeling in such systems, only equilibrium reactions among multiple species are considered by coupling the hybrid transport model to a geochemical speciation package. An idealized mine network developed by Viswanathan and Sauter (2001) is used as a test problem in this study. The numerical experiment is based on reference date collected from
The Application Programming Interface for the PVMEXEC Program and Associated Code Coupling System
Walter L. Weaver III
2005-03-01
This report describes the Application Programming Interface for the PVMEXEC program and the code coupling systems that it implements. The information in the report is intended for programmers wanting to add a new code into the coupling system.
TERATOGENICITY OF CYCLOPHOSPHAMIDE IN A COUPLED MICROSOMAL ACTIVATING/EMBRYO CULTURE SYSTEM
Using the coupled microsomal activating/embryo culture system, in vitro experiments were performed to establish the role of metabolism in the embryo toxicity and teratogenicity of cyclophosphamide. Cyclophosphamide in the coupled microsomal activating/embryo culture system produc...
Status of the seamless coupled modelling system ICON-ART
NASA Astrophysics Data System (ADS)
Vogel, Bernhard; Rieger, Daniel; Schroeter, Jenniffer; Bischoff-Gauss, Inge; Deetz, Konrad; Eckstein, Johannes; Foerstner, Jochen; Gasch, Philipp; Ruhnke, Roland; Vogel, Heike; Walter, Carolin; Weimer, Michael
2016-04-01
The integrated modelling framework ICON-ART [1] (ICOsahedral Nonhydrostatic - Aerosols and Reactive Trace gases) extends the numerical weather prediction modelling system ICON by modules for gas phase chemistry, aerosol dynamics and related feedback processes. The nonhydrostatic global modelling system ICON [2] is a joint development of German Weather Service (DWD) and Max Planck Institute for Meteorology (MPI-M) with local grid refinement down to grid sizes of a few kilometers. It will be used for numerical weather prediction, climate projections and for research purposes. Since January 2016 ICON runs operationally at DWD for weather forecast on the global scale with a grid size of 13 km. Analogous to its predecessor COSMO-ART [3], ICON-ART is designed to account for feedback processes between meteorological variables and atmospheric trace substances. Up to now, ICON-ART contains the dispersion of volcanic ash, radioactive tracers, sea salt aerosol, as well as ozone-depleting stratospheric trace substances [1]. Recently, we have extended ICON-ART by a mineral dust emission scheme with global applicability and nucleation parameterizations which allow the cloud microphysics to explicitly account for prognostic aerosol distributions. Also very recently an emission scheme for volatile organic compounds was included. We present first results of the impact of natural aerosol (i.e. sea salt aerosol and mineral dust) on cloud properties and precipitation as well as the interaction of primary emitted particles with radiation. Ongoing developments are the coupling with a radiation scheme to calculate the photolysis frequencies, a coupling with the RADMKA (1) chemistry and first steps to include isotopologues of water. Examples showing the capabilities of the model system will be presented. This includes a simulation of the transport of ozone depleting short-lived trace gases from the surface into the stratosphere as well as of long-lived tracers. [1] Rieger, D., et al
Implantable flexible pressure measurement system based on inductive coupling.
Oliveira, Cristina C; Sepúlveda, Alexandra T; Almeida, Nuno; Wardle, Brian L; da Silva, José Machado; Rocha, Luís A
2015-02-01
One of the currently available treatments for aortic aneurysms is endovascular aneurysm repair (EVAR). In spite of major advances in the operating techniques, complications still occur and lifelong surveillance is recommended. In order to reduce and even eliminate the commonly used surveillance imaging exams, as well as to reduce follow-up costs, new technological solutions are being pursued. In this paper, we describe the development, including design and performance characterization, of a flexible remote pressure measurement system based on inductive-coupling for post-EVAR monitoring purposes. The telemetry system architecture and operation are described and main performance characteristics discussed. The implantable sensor details are provided and its model is presented. Simulations with the reading circuit and the sensor's model were performed and compared with measurements carried out with air and a phantom as media, in order to characterize the telemetry system and validate the models. The transfer characteristic curve (pressure versus frequency) of the monitoring system was obtained with measurements performed with the sensor inside a controlled pressure vacuum chamber. Additional experimental results which proof the system functionality were obtained within a hydraulic test bench that emulates the aorta. Several innovative aspects, when compared to the state of the art, both in the sensor and in the telemetry system were achieved. PMID:25347867
Instability of Vibration of a Moving-Train Coupling System
NASA Astrophysics Data System (ADS)
Zheng, D. Y.; Fan, S. C.
2002-08-01
This paper presents the derivation of the governing equations for the stability of vibration of an integrated system comprising a moving train and the railway track. The train consists of a convoy of articulated two-axle wagons. The equations are applicable to any arbitrary number of axles at arbitrary spacing. Each axle is modelled as a mass-spring-damper vibration unit. The railway track is an infinitely long Euler beam subjected to an axial compressive force and rests on a visco-elastic foundation. The governing equations for the integrated system are coupled differential equations, which can be transformed to algebraic equations by Fourier and Laplace transforms. Subsequent inverse Fourier transform and contour integration yield the instability equation. Critical parameter is identified. It follows by parametric studies on the instability of vibration due to different train configurations. Illustrative examples for trains having up to 20 wagons or 40 axles are given.
Classification of attractors for systems of identical coupled Kuramoto oscillators
Engelbrecht, Jan R.; Mirollo, Renato
2014-03-15
We present a complete classification of attractors for networks of coupled identical Kuramoto oscillators. In such networks, each oscillator is driven by the same first-order trigonometric function, with coefficients given by symmetric functions of the entire oscillator ensemble. For N≠3 oscillators, there are four possible types of attractors: completely synchronized fixed points or limit cycles, and fixed points or limit cycles where all but one of the oscillators are synchronized. The case N = 3 is exceptional; systems of three identical Kuramoto oscillators can also posses attracting fixed points or limit cycles with all three oscillators out of sync, as well as chaotic attractors. Our results rely heavily on the invariance of the flow for such systems under the action of the three-dimensional group of Möbius transformations, which preserve the unit disc, and the analysis of the possible limiting configurations for this group action.
Emergent Behavior of Coupled Barrier Island - Resort Systems
NASA Astrophysics Data System (ADS)
McNamara, D. E.; Werner, B. T.
2004-12-01
Barrier islands are attractive sites for resorts. Natural barrier islands experience beach erosion and island overwash during storms, beach accretion and dune building during inter-storm periods, and migration up the continental shelf as sea level rises. Beach replenishment, artificial dune building, seawalls, jetties and groins have been somewhat effective in protecting resorts against erosion and overwash during storms, but it is unknown how the coupled system will respond to long-term sea level rise. We investigate coupled barrier island - resort systems using an agent-based model with three components: natural barrier islands divided into a series of alongshore cells; resorts controlled by markets for tourism and hotel purchases; and coupling via storm damage to resorts and resort protection by government agents. Modeled barrier islands change by beach erosion, island overwash and inlet cutting during storms, and beach accretion, tidal delta growth and dune and vegetation growth between storms. In the resort hotel market, developer agents build hotels and hotel owning agents purchase them using predictions of future revenue and property appreciation, with the goal of maximizing discounted utility. In the tourism market, hotel owning agents set room rental prices to maximize profit and tourist agents choose vacation destinations maximizing a utility based on beach width, price and word-of-mouth. Government agents build seawalls, groins and jetties, and widen the beach and build up dunes by adding sand to protect resorts from storms, enhance beach quality, and maximize resort revenue. Results indicate that barrier islands and resorts evolve in a coupled manner to resort size saturation, with resorts protected against small-to-intermediate-scale storms under fairly stable sea level. Under extended, rapidly rising sea level, protection measures enhance the effect of large storms, leading to emergent behavior in the form of limit cycles or barrier submergence
GPCRDB: an information system for G protein-coupled receptors.
Isberg, Vignir; Vroling, Bas; van der Kant, Rob; Li, Kang; Vriend, Gert; Gloriam, David
2014-01-01
For the past 20 years, the GPCRDB (G protein-coupled receptors database; http://www.gpcr.org/7tm/) has been a 'one-stop shop' for G protein-coupled receptor (GPCR)-related data. The GPCRDB contains experimental data on sequences, ligand-binding constants, mutations and oligomers, as well as many different types of computationally derived data, such as multiple sequence alignments and homology models. The GPCRDB also provides visualization and analysis tools, plus a number of query systems. In the latest GPCRDB release, all multiple sequence alignments, and >65,000 homology models, have been significantly improved, thanks to a recent flurry of GPCR X-ray structure data. Tools were introduced to browse X-ray structures, compare binding sites, profile similar receptors and generate amino acid conservation statistics. Snake plots and helix box diagrams can now be custom coloured (e.g. by chemical properties or mutation data) and saved as figures. A series of sequence alignment visualization tools has been added, and sequence alignments can now be created for subsets of sequences and sequence positions, and alignment statistics can be produced for any of these subsets. PMID:24304901
Diffusion Couple Investigation of the Mg-Zn System
Brennan, Sarah; Bermudez, Katrina; Sohn, Yong Ho; Kulkarni, Nagraj S
2012-01-01
Phase layer growth and interdiffusion in the binary Mg-Zn system was investigated utilizing solid-to-solid diffusion couples annealed at 295 , 315 and 325 C for 21, 7 and 5 days, respectively. The diffusion microstructure was examined by scanning electron microscopy and concentration profiles were determined using X-ray energy dispersive spectroscopy and electron microprobe analysis. The Mg solid solution, Mg2Zn11, MgZn2 and Mg2Zn3 in all three couples were observed in addition to the high temperature, Mg51Zn20 phase at 325 C. The MgZn2 phase was observed to grow the thickest layer, followed by the Mg2Zn3 and the Mg2Zn11 phases. Activation energies for the parabolic growth were calculated to be 105 kJ/mol and 207 kJ/mol for the Mg2Zn3 and MgZn2, respectively. Relevant interdiffusion coefficients were calculated for the phases present by analyses of concentration profiles. This study was sponsored by the US Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program (DE-AC05-00OR22725).
Photoionization of few electron systems: a hybrid coupled channels approach
NASA Astrophysics Data System (ADS)
Pramod Majety, Vinay; Zielinski, Alejandro; Scrinzi, Armin
2015-06-01
We present the hybrid anti-symmetrized coupled channels method for the calculation of fully differential photo-electron spectra of multi-electron atoms and small molecules interacting with strong laser fields. The method unites quantum chemical few-body electronic structure with strong-field dynamics by solving the time dependent Schrödinger equation in a fully anti-symmetrized basis composed of multi-electron states from quantum chemistry and a one-electron numerical basis. Photoelectron spectra are obtained via the time dependent surface flux (tSURFF) method. Performance and accuracy of the approach are demonstrated for spectra from the helium and beryllium atoms and the hydrogen molecule in linearly polarized laser fields at wavelengths from 21 to 400 nm. At long wavelengths, helium and the hydrogen molecule at equilibrium inter-nuclear distance can be approximated as single channel systems whereas beryllium needs a multi-channel description.
Long codas of coupled wave systems in seismic basins
NASA Astrophysics Data System (ADS)
Seligman, Thomas H.
2002-11-01
Quite some time ago it was pointed out that the damage patterns and Fourier spectra of the 1985 earthquake in Mexico City are only compatible with a resonant effect of horizontal waves with the approximate speed of sound waves in water [see Flores et al., Nature 326, 783 (1987)]. In a more recent paper it was pointed out that this indeed will occur with a very specific frequency selection for a coupled system of Raleigh waves at the interface of the bottom of the ancient lakebed with the more solid deposits, and an evanescent sound wave in the mud above [see J. Flores et al., Bull. Seismol. Soc. Am. 89, 14-21 (1999)]. In the present talk we shall go over these arguments again and show that strong reflection at the edges of the lake must occur to account for the strong magnification entailing necessarily a long coda, and that the mecanism can be understood in the same terms.
GPCRDB: an information system for G protein-coupled receptors.
Horn, F; Weare, J; Beukers, M W; Hörsch, S; Bairoch, A; Chen, W; Edvardsen, O; Campagne, F; Vriend, G
1998-01-01
The GPCRDB is a G protein-coupled receptor (GPCR) database system aimed at the collection and dissemination of GPCR related data. It holds sequences, mutant data and ligand binding constants as primary (experimental) data. Computationally derived data such as multiple sequence alignments, three dimensional models, phylogenetic trees and two dimensional visualization tools are added to enhance the database's usefulness. The GPCRDB is an EU sponsored project aimed at building a generic molecular class specific database capable of dealing with highly heterogeneous data. GPCRs were chosen as test molecules because of their enormous importance for medical sciences and due to the availability of so much highly heterogeneous data. The GPCRDB is available via the WWW at http://www.gpcr.org/7tm PMID:9399852
Oscillations and Synchronization in a System of Three Reactively Coupled Oscillators
NASA Astrophysics Data System (ADS)
Kuznetsov, Alexander P.; Turukina, Ludmila V.; Chernyshov, Nikolai Yu.; Sedova, Yuliya V.
We consider a system of three interacting van der Pol oscillators with reactive coupling. Phase equations are derived, using proper order of expansion over the coupling parameter. The dynamics of the system is studied by means of the bifurcation analysis and with the method of Lyapunov exponent charts. Essential and physically meaningful features of the reactive coupling are discussed.
Accelerator mass spectrometry with a coupled tandem-linac system
Kutschera, W.
1984-01-01
A coupled system provides higher energies, which allows one to extend AMS to hitherto untouched mass regions. Another important argument is that the complexity, although bothersome for the operation, increases the selectivity of detecting a particular isotope. The higher-energy argument holds for any heavy-ion accelerator which is capable of delivering higher energy than a tandem. The present use of tandem-linac combinations for AMS, rather than cyclotrons, linacs or combinations of these machines, has mainly to do with the fact that this technique was almost exclusively developed around tandem accelerators. Therefore the tandem-linac combination is a natural extension to higher energies. The use of negative ions has some particular advantages in suppressing background from unwanted elements that do not form stable negative ions (e.g., N, Mg, Ar). On the other hand, this limits the detection of isotopes to elements which do form negative ions. For particular problems it may therefore be advantageous to use a positive-ion machine. What really matters most for choosing one or the other machine is to what extent the entire accelerator system can be operated in a truly quantiative way from the ion source to the detection system. 20 references, 4 figures.
Simulating forest landscape disturbances as coupled human and natural systems
Wimberly, Michael; Sohl, Terry L.; Liu, Zhihua; Lamsal, Aashis
2015-01-01
Anthropogenic disturbances resulting from human land use affect forest landscapes over a range of spatial and temporal scales, with diverse influences on vegetation patterns and dynamics. These processes fall within the scope of the coupled human and natural systems (CHANS) concept, which has emerged as an important framework for understanding the reciprocal interactions and feedbacks that connect human activities and ecosystem responses. Spatial simulation modeling of forest landscape change is an important technique for exploring the dynamics of CHANS over large areas and long time periods. Landscape models for simulating interactions between human activities and forest landscape dynamics can be grouped into two main categories. Forest landscape models (FLMs) focus on landscapes where forests are the dominant land cover and simulate succession and natural disturbances along with forest management activities. In contrast, land change models (LCMs) simulate mosaics of different land cover and land use classes that include forests in addition to other land uses such as developed areas and agricultural lands. There are also several examples of coupled models that combine elements of FLMs and LCMs. These integrated models are particularly useful for simulating human–natural interactions in landscapes where human settlement and agriculture are expanding into forested areas. Despite important differences in spatial scale and disciplinary scope, FLMs and LCMs have many commonalities in conceptual design and technical implementation that can facilitate continued integration. The ultimate goal will be to implement forest landscape disturbance modeling in a CHANS framework that recognizes the contextual effects of regional land use and other human activities on the forest ecosystem while capturing the reciprocal influences of forests and their disturbances on the broader land use mosaic.
Fiber-coupled laser-driven flyer plates system
Zhao Xinghai; Zhao Xiang; Gao Yang; Shan Guangcun
2011-04-15
A system for the launch of hypervelocity flyer plates has been developed and characterized. Laser-driven flyers were launched from the substrate backed aluminum-alumina-aluminum sandwiched films. A laser-induced plasma is used to drive flyers with typical thickness of 5.5 {mu}m and diameters of less than 1 mm, to achieve velocities of a few km/s. These flyer plates have many applications, from micrometeorite simulation to laser ignition. The flyer plates considered here have up to three layers: an ablation layer, to form plasma; an insulating layer; and a final, thicker layer that forms the final flyer plates. This technique was developed aiming at improving the energy efficiency of the system. The kinetic energy of flyers launched with the additional layer was found to be enhanced by a factor of near 2 (up to 30%). The optical fiber delivery system governs the output spatial profile of the laser spot and power capacity. Moreover, a technique for coupling high-power laser pulses into an optical fiber has been developed. This fiber optic system has been successfully used to launch flyer plates, and the surface finishing quality of the fiber was found to be an important factor. Importantly, measurements of the flyer performance including the mean velocities and planarity were made by an optical time-of-arrival technique using an optical fiber array probe, demonstrating the good planarity of the flyer and the achievable average velocity of 1.7 km/s with approaching 1 mm diameter. Finally, the relationship between flyer velocities and incident laser pulses energy was also investigated.
Fiber Optically Coupled Diode Array Digital Radiography System
NASA Astrophysics Data System (ADS)
Sashin, Donald; Sternglass, Ernest J.; Slasky, B. S.; Bron, Klaus M.; Herron, John M.; Kennedy, William H.; Shabason, Leonard; Boyer, Joseph W.; Pollitt, Alma E.; Latchaw, Richard E.
1982-12-01
A new type of digital radiography system of very high contrast sensitivity and spatial resolution is described which is based on the use of six linear arrays of self-scanning diodes fiber-optically coupled to a phosphor screen. The high detail of the system results from the fact that 6144 discrete diodes, 1024 per array, scan a field of view of 6 inches wide. A contrast sensitivity five times greater than film is achieved due to the high dynamic range of the diodes combined with the scatter rejection associated with the slit geometry. The entrance radiation exposure per image is 100 mR but could be reduced well below that in the future. Initial clinical experience has demonstrated the advantage of being able to display a single image over a wide range of window levels and window widths at the same time having a high contrast sensitivity in both the dark and light areas of the image. The complete digital radiograph is taken in a second, however the motion unsharpness is held to a minimum by virtue of an effective exposure time of 8 milliseconds. Applications to digital chest radiography and digital intravenous subtraction angiography in over 30 patients have shown the clinical value of this new form of radiography.
NASA Astrophysics Data System (ADS)
Ming, Yi; Li, Hui-Min; Ding, Ze-Jun
2016-03-01
Thermal rectification and negative differential thermal conductance were realized in harmonic chains in this work. We used the generalized Caldeira-Leggett model to study the heat flow. In contrast to most previous studies considering only the linear system-bath coupling, we considered the nonlinear system-bath coupling based on recent experiment [Eichler et al., Nat. Nanotech. 6, 339 (2011), 10.1038/nnano.2011.71]. When the linear coupling constant is weak, the multiphonon processes induced by the nonlinear coupling allow more phonons transport across the system-bath interface and hence the heat current is enhanced. Consequently, thermal rectification and negative differential thermal conductance are achieved when the nonlinear couplings are asymmetric. However, when the linear coupling constant is strong, the umklapp processes dominate the multiphonon processes. Nonlinear coupling suppresses the heat current. Thermal rectification is also achieved. But the direction of rectification is reversed compared to the results of weak linear coupling constant.
Domain walls and vortices in linearly coupled systems.
Dror, Nir; Malomed, Boris A; Zeng, Jianhua
2011-10-01
We investigate one- and two-dimensional radial domain-wall (DW) states in the system of two nonlinear-Schrödinger (NLS) or Gross-Pitaevskii (GP) equations, which are couple by linear mixing and by nonlinear XPM (cross-phase-modulation). The system has straightforward applications to two-component Bose-Einstein condensates, and to bimodal light propagation in nonlinear optics. In the former case the two components represent different hyperfine atomic states, while in the latter setting they correspond to orthogonal polarizations of light. Conditions guaranteeing the stability of flat continuous wave (CW) asymmetric bimodal states are established, followed by the study of families of the corresponding DW patterns. Approximate analytical solutions for the DWs are found near the point of the symmetry-breaking bifurcation of the CW states. An exact DW solution is produced for ratio 3:1 of the XPM and SPM (self-phase modulation) coefficients. The DWs between flat asymmetric states, which are mirror images of each other, are completely stable, and all other species of the DWs, with zero crossings in one or two components, are fully unstable. Interactions between two DWs are considered too, and an effective potential accounting for the attraction between them is derived analytically. Direct simulations demonstrate merger and annihilation of the interacting DWs. The analysis is extended for the system including single- and double-peak external potentials. Generic solutions for trapped DWs are obtained in a numerical form, and their stability is investigated. An exact stable solution is found for the DW trapped by a single-peak potential. In the 2D geometry, stable two-component vortices are found, with topological charges s=1,2,3. Radial oscillations of annular DW-shaped pulsons, with s=0,1,2, are studied too. A linear relation between the period of the oscillations and the mean radius of the DW ring is derived analytically. PMID:22181291
Domain walls and vortices in linearly coupled systems
Dror, Nir; Malomed, Boris A.; Zeng Jianhua
2011-10-15
We investigate one- and two-dimensional radial domain-wall (DW) states in the system of two nonlinear-Schroedinger (NLS) or Gross-Pitaevskii (GP) equations, which are couple by linear mixing and by nonlinear XPM (cross-phase-modulation). The system has straightforward applications to two-component Bose-Einstein condensates, and to bimodal light propagation in nonlinear optics. In the former case the two components represent different hyperfine atomic states, while in the latter setting they correspond to orthogonal polarizations of light. Conditions guaranteeing the stability of flat continuous wave (CW) asymmetric bimodal states are established, followed by the study of families of the corresponding DW patterns. Approximate analytical solutions for the DWs are found near the point of the symmetry-breaking bifurcation of the CW states. An exact DW solution is produced for ratio 3:1 of the XPM and SPM (self-phase modulation) coefficients. The DWs between flat asymmetric states, which are mirror images of each other, are completely stable, and all other species of the DWs, with zero crossings in one or two components, are fully unstable. Interactions between two DWs are considered too, and an effective potential accounting for the attraction between them is derived analytically. Direct simulations demonstrate merger and annihilation of the interacting DWs. The analysis is extended for the system including single- and double-peak external potentials. Generic solutions for trapped DWs are obtained in a numerical form, and their stability is investigated. An exact stable solution is found for the DW trapped by a single-peak potential. In the 2D geometry, stable two-component vortices are found, with topological charges s=1,2,3. Radial oscillations of annular DW-shaped pulsons, with s=0,1,2, are studied too. A linear relation between the period of the oscillations and the mean radius of the DW ring is derived analytically.
Photon blockade in the ultrastrong coupling regime.
Ridolfo, A; Leib, M; Savasta, S; Hartmann, M J
2012-11-01
We explore photon coincidence counting statistics in the ultrastrong coupling regime, where the atom-cavity coupling rate becomes comparable to the cavity resonance frequency. In this regime, usual normal order correlation functions fail to describe the output photon statistics. By expressing the electric-field operator in the cavity-emitter dressed basis, we are able to propose correlation functions that are valid for arbitrary degrees of light-matter interaction. Our results show that the standard photon blockade scenario is significantly modified for ultrastrong coupling. We observe parametric processes even for two-level emitters and temporal oscillations of intensity correlation functions at a frequency given by the ultrastrong photon emitter coupling. These effects can be traced back to the presence of two-photon cascade decays induced by counterrotating interaction terms. PMID:23215383
Academic Program Review in a Loosely Coupled System.
ERIC Educational Resources Information Center
DiBiasio, Daniel A.; Ecker, George
The academic program review process that accounts for conceptual properties of loose coupling is analyzed, and organizational theory literature is reviewed with regard to program review and loose coupling. In addition, the academic program review process used at Ohio State University is described in detail, and the elements of loose coupling…
COUPLED TRANSPORT SYSTEMS FOR CONTROL OF HEAVY METAL POLLUTANTS
This report describes a process for separating and concentrating heavy metals from electroplating rinse waters. Metal ions can be 'chemically pumped' across a coupled transport membrane against large concentration gradients by allowing the counterflow of a coupled ion such as hyd...
Multi-disciplinary coupling effects for integrated design of propulsion systems
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Singhal, S. N.
1993-01-01
Effective computational simulation procedures are described for modeling the inherent multi-disciplinary interactions which govern the accurate response of propulsion systems. Results are presented for propulsion system responses including multi-disciplinary coupling effects using coupled multi-discipline thermal, structural, and acoustic tailoring; an integrated system of multi-disciplinary simulators; coupled material behavior/fabrication process tailoring; sensitivities using a probabilistic simulator; and coupled materials, structures, fracture, and probabilistic behavior simulator. The results demonstrate that superior designs can be achieved if the analysis/tailoring methods account for the multi-disciplinary coupling effects. The coupling across disciplines can be used to develop an integrated coupled multi-discipline numerical propulsion system simulator.
Symmetry breaking in linearly coupled Korteweg-de Vries systems.
Espinosa-Cerón, A; Malomed, B A; Fujioka, J; Rodríguez, R F
2012-09-01
We consider solitons in a system of linearly coupled Korteweg-de Vries (KdV) equations, which model two-layer settings in various physical media. We demonstrate that traveling symmetric solitons with identical components are stable at velocities lower than a certain threshold value. Above the threshold, which is found exactly, the symmetric modes are unstable against spontaneous symmetry breaking, which gives rise to stable asymmetric solitons. The shape of the asymmetric solitons is found by means of a variational approximation and in the numerical form. Simulations of the evolution of an unstable symmetric soliton sometimes produce its breakup into two different asymmetric modes. Collisions between moving stable solitons, symmetric and asymmetric ones, are studied numerically, featuring noteworthy features. In particular, collisions between asymmetric solitons with identical polarities are always elastic, while in the case of opposite polarities the collision leads to a switch of the polarities of both solitons. Three-soliton collisions are studied too, featuring quite complex interaction scenarios. PMID:23020484
Meso-/micro-optical system interface coupling solutions.
Armendariz, Marcelino G.; Kemme, Shanalyn A.; Boye, Robert R.
2005-10-01
Optoelectronic microsystems are more and more prevalent as researchers seek to increase transmission bandwidths, implement electrical isolation, enhance security, or take advantage of sensitive optical sensing methods. Board level photonic integration techniques continue to improve, but photonic microsystems and fiber interfaces remain problematic, especially upon size reduction. Optical fiber is unmatched as a transmission medium for distances ranging from tens of centimeters to kilometers. The difficulty with using optical fiber is the small size of the core (approximately 9 {micro}m for the core of single mode telecommunications fiber) and the tight requirement on spot size and input numerical aperture (NA). Coupling to devices such as vertical cavity emitting lasers (VCSELs) and photodetectors presents further difficulties since these elements work in a plane orthogonal to the electronics board and typically require additional optics. This leads to the need for a packaging solution that can incorporate dissimilar materials while maintaining the tight alignment tolerances required by the optics. Over the course of this LDRD project, we have examined the capabilities of components such as VCSELs and photodetectors for high-speed operation and investigated the alignment tolerances required by the optical system. A solder reflow process has been developed to help fulfill these packaging requirements and the results of that work are presented here.
Receptor-coupled effector systems and their interactions
Wiener, E.C.
1988-01-01
We investigated the modulation of intracellular signal generation by receptor-coupled effector systems in B lymphocytes, and whether these alterations are consistent with the effects of prostaglandins. TPA (12-O-tetradecanoyl phorbol-13-acetate) and sn-1,2,-dioctanoylglycerol (diC{sub 8}) substitute for lipid derived signals which activate protein kinase C. Pretreating splenocytes from athymic nude mice with 100nM TPA or 5 {mu}M diC{sub 8} potentiated the forskolin-induced increased in cAMP (measured by radioimmunoassay) 2.5 and 3.0 times (respectively), but they decreased the PGE{sub 1}-induced cAMP rise 48% and 35% (respectively). Goat anti-mouse IgM, which activates diacylglycerol production, potentiated the forskolin-induced cAMP increase by 76%, but reduced that of PGE{sub 1} by 30%. Rabbit anti-mouse IgG, its F(ab{prime}){sub 2} fragment, or goat anti-mouse IGM induced increases in the cytosolic free (Ca{sup 2+}), (Ca{sup 2+}){sub i}, which TPA inhibited. In contrast, TPA potential antibody-induced {sup 3}H-thymidine (85x) and {sup 3}H-uridine (30x) uptake in B lymphocytes.
Learning Management Systems: Coupled Simulations and Assessments in a Digital Systems Course
ERIC Educational Resources Information Center
Wuttke, Heinz-Dietrich; Henke, Karsten
2009-01-01
Purpose: The content, provided in learning management systems (LMS), is often text oriented as in a usual textbook, extended by some animations and links. Hands on activities and experiments are not possible. The paper aims to give an overview about the concept to couple smart simulation and assessment tools with an LMS to provide a more…
Integrability properties of a coupled KdV system and its supersymmetric extension
NASA Astrophysics Data System (ADS)
Sotomayor, Adrián; Restuccia, Alvaro
2016-05-01
We discuss several integrability properties of a coupled KdV system. We obtain a new generalization of the already known static solutions for the system. We then consider the supersymmetric extension of the coupled KdV system, it is a new integrable system. We show that for particular Grassmann algebras the system is the limit of a Clifford algebra valued system with nice stability properties. We briefly discuss the hamiltonian structures of this supersymmetric integrable system.
Single-Quantum Coherence Filter for Strongly Coupled Spin Systems for Localized 1H NMR Spectroscopy
NASA Astrophysics Data System (ADS)
Trabesinger, Andreas H.; Mueller, D. Christoph; Boesiger, Peter
2000-08-01
A pulse sequence for localized in vivo1H NMR spectroscopy is presented, which selectively filters single-quantum coherence built up by strongly coupled spin systems. Uncoupled and weakly coupled spin systems do not contribute to the signal output. Analytical calculations using a product operator description of the strongly coupled AB spin system as well as in vitro tests demonstrate that the proposed filter produces a signal output for a strongly coupled AB spin system, whereas the resonances of a weakly coupled AX spin system and of uncoupled spins are widely suppressed. As a potential application, the detection of the strongly coupled AA‧BB‧ spin system of taurine at 1.5 T is discussed.
Transfer behavior of quantum states between atoms in photonic crystal coupled cavities
NASA Astrophysics Data System (ADS)
Zhang, Ke; Li, Zhi-Yuan
2010-03-01
In this article, we discuss the one-excitation dynamics of a quantum system consisting of two two-level atoms each interacting with one of two coupled single-mode cavities via spontaneous emission. When the atoms and cavities are tuned into resonance, a wide variety of time-evolution behaviors can be realized by modulating the atom-cavity coupling strength g and the cavity-cavity hopping strength λ. The dynamics is solved rigorously via the eigenproblem of an ordinary coupled linear system and simple analytical solutions are derived at several extreme situations of g and λ. In the large hopping limit where g≪λ, the behavior of the system is the linear superposition of a fast and slow periodic oscillation. The quantum state transfers from one atom to the other atom accompanied with weak excitation of the cavity mode. In the large coupling limit where g≫λ, the time-evolution behavior of the system is characterized by the usual slowly varying carrier envelope superimposed upon a fast and violent oscillation. At a certain instant, the energy is fully transferred from the one quantum subsystem to the other. When the two interaction strengths are comparable in magnitude, the dynamics acts as a continuous pulse having irregular frequency and line shape of peaks and valleys, and the complicated time-evolution behaviors are ascribed to the violent competition between all the one-excitation quantum states. The coupled quantum system of atoms and cavities makes a good model to study cavity quantum electrodynamics with great freedoms of many-body interaction.
Couplings between changes in the climate system and biogeochemistry
Menon, Surabi; Denman, Kenneth L.; Brasseur , Guy; Chidthaisong, Amnat; Ciais, Philippe; Cox, Peter M.; Dickinson, Robert E.; Hauglustaine, Didier; Heinze, Christoph; Holland, Elisabeth; Jacob , Daniel; Lohmann, Ulrike; Ramachandran, Srikanthan; Leite da Silva Dias, Pedro; Wofsy, Steven C.; Zhang, Xiaoye
2007-10-01
The Earth's climate is determined by a number of complex connected physical, chemical and biological processes occurring in the atmosphere, land and ocean. The radiative properties of the atmosphere, a major controlling factor of the Earth's climate, are strongly affected by the biophysical state of the Earth's surface and by the atmospheric abundance of a variety of trace constituents. These constituents include long-lived greenhouse gases (LLGHGs) such as carbon dioxide (CO{sub 2}), methane (CH{sub 4}) and nitrous oxide (N{sub 2}O), as well as other radiatively active constituents such as ozone and different types of aerosol particles. The composition of the atmosphere is determined by processes such as natural and anthropogenic emissions of gases and aerosols, transport at a variety of scales, chemical and microphysical transformations, wet scavenging and surface uptake by the land and terrestrial ecosystems, and by the ocean and its ecosystems. These processes and, more generally the rates of biogeochemical cycling, are affected by climate change, and involve interactions between and within the different components of the Earth system. These interactions are generally nonlinear and may produce negative or positive feedbacks to the climate system. An important aspect of climate research is to identify potential feedbacks and assess if such feedbacks could produce large and undesired responses to perturbations resulting from human activities. Studies of past climate evolution on different time scales can elucidate mechanisms that could trigger nonlinear responses to external forcing. The purpose of this chapter is to identify the major biogeochemical feedbacks of significance to the climate system, and to assess current knowledge of their magnitudes and trends. Specifically, this chapter will examine the relationships between the physical climate system and the land surface, the carbon cycle, chemically reactive atmospheric gases and aerosol particles. It also
Tunable spin-orbit coupling via strong driving in ultracold-atom systems.
Jiménez-García, K; LeBlanc, L J; Williams, R A; Beeler, M C; Qu, C; Gong, M; Zhang, C; Spielman, I B
2015-03-27
Spin-orbit coupling is an essential ingredient in topological materials, conventional and quantum-gas-based alike. Engineered spin-orbit coupling in ultracold-atom systems-unique in their experimental control and measurement opportunities-provides a major opportunity to investigate and understand topological phenomena. Here we experimentally demonstrate and theoretically analyze a technique for controlling spin-orbit coupling in a two-component Bose-Einstein condensate using amplitude-modulated Raman coupling. PMID:25860752
Spin dynamical phase and antiresonance in a strongly coupled magnon-photon system
NASA Astrophysics Data System (ADS)
Harder, Michael; Hyde, Paul; Bai, Lihui; Match, Christophe; Hu, Can-Ming
2016-08-01
We experimentally studied a strongly coupled magnon-photon system via microwave transmission measurements. An antiresonance, i.e., the suppression of the microwave transmission, is observed, indicating a relative phase change between the magnon response and the driving microwave field. We show that this antiresonance feature can be used to interpret the phase evolution of the coupled magnon-microwave system and apply this technique to reveal the phase evolution of magnon dark modes. Our work provides a standard procedure for the phase analysis of strongly coupled systems, enabling the phase characterization of each subsystem, and can be generally applied to other strongly coupled systems.
A novel approach to synchronization of nonlinearly coupled network systems with delays
NASA Astrophysics Data System (ADS)
Tseng, Jui-Pin
2016-06-01
In this investigation, a novel approach to establishing the global synchronization of coupled network systems is presented. Under this approach, individual subsystems can be non-autonomous, and the coupling configuration is rather general. The coupling terms can be non-diffusive, nonlinear, time-dependent, asymmetric, and with time delays. With an iteration scheme, the problem of synchronization is transformed into solving a corresponding linear system of algebraic equations. Subsequently, delay-dependent and delay-independent criteria for global synchronization can be established. We implement the present approach to analyze synchronization of the FitzHugh-Nagumo systems under delayed and nonlinear sigmoidal coupling. Two examples are presented to demonstrate new dynamical scenarios, where oscillatory behavior and multistability emerge or are suppressed as the coupled neurons synchronize under the synchronization criterion. In addition, asynchrony induced by the coupling strength or coupling delay occurs while the synchronization criterion is violated.
NASA Astrophysics Data System (ADS)
Pitchappa, Prakash; Manjappa, Manukumara; Ho, Chong Pei; Qian, You; Singh, Ranjan; Singh, Navab; Lee, Chengkuo
2016-03-01
We experimentally report a structurally reconfigurable metamaterial for active switching of near-field coupling in conductively coupled, orthogonally twisted split ring resonators (SRRs) operating in the terahertz spectral region. Out-of-plane reconfigurable microcantilevers integrated into the dark SRR geometry are used to provide active frequency tuning of dark SRR resonance. The geometrical parameters of individual SRRs are designed to have identical inductive-capacitive resonant frequency. This allows for the excitation of classical analogue of electromagnetically induced transparency (EIT) due to the strong conductive coupling between the SRRs. When the microcantilevers are curved up, the resonant frequency of dark SRR blue-shifts and the EIT peak is completely modulated while the SRRs are still conductively connected. EIT modulation contrast of ˜50% is experimentally achieved with actively switchable group delay of ˜2.5 ps. Electrical control, miniaturized size, and readily integrable fabrication process of the proposed structurally reconfigurable metamaterial make it an ideal candidate for the realization of various terahertz communication devices such as electrically controllable terahertz delay lines, buffers, and tunable data-rate channels.
Effective quantum dynamics of interacting systems with inhomogeneous coupling
Lopez, C. E.; Retamal, J. C.; Christ, H.; Solano, E.
2007-03-15
We study the quantum dynamics of a single mode (particle) interacting inhomogeneously with a large number of particles and introduce an effective approach to find the accessible Hilbert space, where the dynamics takes place. Two relevant examples are given: the inhomogeneous Tavis-Cummings model (e.g., N atomic qubits coupled to a single cavity mode, or to a motional mode in trapped ions) and the inhomogeneous coupling of an electron spin to N nuclear spins in a quantum dot.
Performance comparison of air- and ground-coupled heat pump systems. Final report
Parker, J.D.; Kavanaugh, S.; Ramanathan, R.
1984-01-01
Research initiated in 1979 to compare the performance of air-coupled and ground-coupled heat pumps is described. Three heat pump systems were installed in small, neighboring all-electric residences served by the Oklahoma Gas and Electric Company in Perkins, Oklahoma. An air-coupled heat pump and two ground-coupled heat pumps - one with solar assistance - were field tested. However, equipment and instrumentation problems precluded gathering meaningful data for the solar-assisted ground-coupled system. Generally, the unassisted ground-coupled heat pump system proved superior to the air-coupled system, both in reducing peak demand and in consuming less energy on an annual basis. The unassisted ground-coupled system reduced summer and winter peak demand, and experienced no performance degradation due to buildup of rejected waste heat in the ground well. A polyethylene U-tube ground heat exchanger was installed in both ground-coupled systems midway through the project, replacing a five-inch annular PVC pipe arrangement that had functioned poorly. The U-tube performed well throughout the remainder of research. Differing lifestyles and thermostat changes by building occupants during the monitoring period produced quite different demands and loads in the test houses, but when results were normalized through simulation, the superior performance of the unassisted ground-coupled heat pump was confirmed.
Duality relation among the Hamiltonian structures of a parametric coupled Korteweg-de Vries system
NASA Astrophysics Data System (ADS)
Restuccia, Alvaro; Sotomayor, Adrián
2016-03-01
We obtain the full Hamiltonian structure for a parametric coupled KdV system. The coupled system arises from four different real basic lagrangians. The associated Hamiltonian functionals and the corresponding Poisson structures follow from the geometry of a constrained phase space by using the Dirac approach for constrained systems. The overall algebraic structure for the system is given in terms of two pencils of Poisson structures with associated Hamiltonians depending on the parameter of the Poisson pencils. The algebraic construction we present admits the most general space of observables related to the coupled system. We then construct two master lagrangians for the coupled system whose field equations are the ɛ-parametric Gardner equations obtained from the coupled KdV system through a Gardner transformation. In the weak limit ɛ → 0 the lagrangians reduce to the ones of the coupled KdV system while, after a suitable redefinition of the fields, in the strong limit ɛ → ∞ we obtain the lagrangians of the coupled modified KdV system. The Hamiltonian structures of the coupled KdV system follow from the Hamiltonian structures of the master system by taking the two limits ɛ → 0 and ɛ → ∞.
NASA Astrophysics Data System (ADS)
Zhang, Yu-Xiang; Wu, Shengjun; Chen, Zeng-Bing; Shikano, Yutaka
2016-08-01
In the optomechanical cooling of a dispersively coupled oscillator, it is only possible to reach the oscillator ground state in the resolved sideband regime, where the cavity-mode linewidth is smaller than the resonant frequency of the mechanical oscillator being cooled. In this paper, we show that the dispersively coupled system can be cooled to the ground state in the unresolved sideband regime using an ancillary oscillator, which has a high quality factor and is coupled to the same optical mode via dissipative interaction. The ancillary oscillator has a resonant frequency close to that of the target oscillator; thus, the ancillary oscillator is also in the unresolved sideband regime. We require only a single blue-detuned laser mode to drive the cavity.
NASA Astrophysics Data System (ADS)
Du, Han; Zhang, Xingwang; Chen, Guoqiang; Deng, Jie; Chau, Fook Siong; Zhou, Guangya
2016-04-01
Photonic molecules have a range of promising applications including quantum information processing, where precise control of coupling strength is critical. Here, by laterally shifting the center-to-center offset of coupled photonic crystal nanobeam cavities, we demonstrate a method to precisely and dynamically control the coupling strength of photonic molecules through integrated nanoelectromechanical systems with a precision of a few GHz over a range of several THz without modifying the nature of their constituent resonators. Furthermore, the coupling strength can be tuned continuously from negative (strong coupling regime) to zero (weak coupling regime) and further to positive (strong coupling regime) and vice versa. Our work opens a door to the optimization of the coupling strength of photonic molecules in situ for the study of cavity quantum electrodynamics and the development of efficient quantum information devices.
Du, Han; Zhang, Xingwang; Chen, Guoqiang; Deng, Jie; Chau, Fook Siong; Zhou, Guangya
2016-01-01
Photonic molecules have a range of promising applications including quantum information processing, where precise control of coupling strength is critical. Here, by laterally shifting the center-to-center offset of coupled photonic crystal nanobeam cavities, we demonstrate a method to precisely and dynamically control the coupling strength of photonic molecules through integrated nanoelectromechanical systems with a precision of a few GHz over a range of several THz without modifying the nature of their constituent resonators. Furthermore, the coupling strength can be tuned continuously from negative (strong coupling regime) to zero (weak coupling regime) and further to positive (strong coupling regime) and vice versa. Our work opens a door to the optimization of the coupling strength of photonic molecules in situ for the study of cavity quantum electrodynamics and the development of efficient quantum information devices. PMID:27097883
Du, Han; Zhang, Xingwang; Chen, Guoqiang; Deng, Jie; Chau, Fook Siong; Zhou, Guangya
2016-01-01
Photonic molecules have a range of promising applications including quantum information processing, where precise control of coupling strength is critical. Here, by laterally shifting the center-to-center offset of coupled photonic crystal nanobeam cavities, we demonstrate a method to precisely and dynamically control the coupling strength of photonic molecules through integrated nanoelectromechanical systems with a precision of a few GHz over a range of several THz without modifying the nature of their constituent resonators. Furthermore, the coupling strength can be tuned continuously from negative (strong coupling regime) to zero (weak coupling regime) and further to positive (strong coupling regime) and vice versa. Our work opens a door to the optimization of the coupling strength of photonic molecules in situ for the study of cavity quantum electrodynamics and the development of efficient quantum information devices. PMID:27097883
Estimation of coupling between time-delay systems from time series
NASA Astrophysics Data System (ADS)
Prokhorov, M. D.; Ponomarenko, V. I.
2005-07-01
We propose a method for estimation of coupling between the systems governed by scalar time-delay differential equations of the Mackey-Glass type from the observed time series data. The method allows one to detect the presence of certain types of linear coupling between two time-delay systems, to define the type, strength, and direction of coupling, and to recover the model equations of coupled time-delay systems from chaotic time series corrupted by noise. We verify our method using both numerical and experimental data.
Ferromagnetic resonance investigation of the residual coupling in spin-valve systems
NASA Astrophysics Data System (ADS)
Rodríguez-Suárez, R. L.; Rezende, S. M.; Azevedo, A.
2005-06-01
The ferromagnetic resonance (FMR) technique has been used to investigate the properties of spin-valve systems. We derive the FMR dispersion relation taking into account the competition that appears between the direct exchange bias coupling and the indirect interlayer coupling. For uncoupled ferromagnetic (FM) layers, the system exhibits a dispersion relation corresponding to two independent systems: a single FM layer (free layer) and an exchange-coupled bilayer (reference/antiferromagnetic layers). In the interlayer coupled regime a unidirectional anisotropy is induced in the free layer and the FMR field is overall downshifted. Both features are observed experimentally and the results are compared with the model.
NASA Astrophysics Data System (ADS)
Ishida, Toyohiko; Sugita, Ayumu
2016-07-01
We study nonequilibrium steady states (NESSs) in quantum spin-1/2 chains in contact with two heat baths at different temperatures. We consider the weak-coupling limit both for spin-spin coupling in the system and for system-bath coupling. This setting allows us to treat NESSs with a nonzero temperature gradient analytically. We develop a perturbation theory for this weak-coupling situation and show a simple condition for the existence of nonzero temperature gradient. This condition is independent of the integrability of the system.
Causality Analysis: Identifying the Leading Element in a Coupled Dynamical System.
BozorgMagham, Amir E; Motesharrei, Safa; Penny, Stephen G; Kalnay, Eugenia
2015-01-01
Physical systems with time-varying internal couplings are abundant in nature. While the full governing equations of these systems are typically unknown due to insufficient understanding of their internal mechanisms, there is often interest in determining the leading element. Here, the leading element is defined as the sub-system with the largest coupling coefficient averaged over a selected time span. Previously, the Convergent Cross Mapping (CCM) method has been employed to determine causality and dominant component in weakly coupled systems with constant coupling coefficients. In this study, CCM is applied to a pair of coupled Lorenz systems with time-varying coupling coefficients, exhibiting switching between dominant sub-systems in different periods. Four sets of numerical experiments are carried out. The first three cases consist of different coupling coefficient schemes: I) Periodic-constant, II) Normal, and III) Mixed Normal/Non-normal. In case IV, numerical experiment of cases II and III are repeated with imposed temporal uncertainties as well as additive normal noise. Our results show that, through detecting directional interactions, CCM identifies the leading sub-system in all cases except when the average coupling coefficients are approximately equal, i.e., when the dominant sub-system is not well defined. PMID:26125157
Coupling geodynamic with thermodynamic modelling for reconstructions of magmatic systems
NASA Astrophysics Data System (ADS)
Rummel, Lisa; Kaus, Boris J. P.; White, Richard
2016-04-01
Coupling geodynamic with petrological models is fundamental for understanding magmatic systems from the melting source in the mantle to the point of magma crystallisation in the upper crust. Most geodynamic codes use very simplified petrological models consisting of a single, fixed, chemistry. Here, we develop a method to better track the petrological evolution of the source rock and corresponding volcanic and plutonic rocks by combining a geodynamic code with a thermodynamic model for magma generation and evolution. For the geodynamic modelling a finite element code (MVEP2) solves the conservation of mass, momentum and energy equations. The thermodynamic modelling of phase equilibria in magmatic systems is performed with pMELTS for mantle-like bulk compositions. The thermodynamic dependent properties calculated by pMELTS are density, melt fraction and the composition of the liquid and solid phase in the chemical system: SiO2-TiO2-Al2O3-Fe2O3-Cr2O3-FeO-MgO-CaO-Na2O-K2O-P2O5-H2O. In order to take into account the chemical depletion of the source rock with increasing melt extraction events, calculation of phase diagrams is performed in two steps: 1) With an initial rock composition density, melt fraction as well as liquid and solid composition are computed over the full upper mantle P-T range. 2) Once the residual rock composition (equivalent to the solid composition after melt extraction) is significantly different from the initial rock composition and the melt fraction is lower than a critical value, the residual composition is used for next calculations with pMELTS. The implementation of several melt extraction events take the change in chemistry into account until the solidus is shifted to such high temperatures that the rock cannot be molten anymore under upper mantle conditions. An advantage of this approach is that we can track the change of melt chemistry with time, which can be compared with natural constraints. In the thermo-mechanical code the
NASA Astrophysics Data System (ADS)
Wang, Xu
2016-02-01
This paper establishes coupling loss factor of linear vibration energy harvesting systems in a framework of statistical energy analysis under parameter variations and random excitations. The new contributions of this paper are to define the numerical ranges of the dimensionless force factor for the weak, moderate and strong coupling and to study the connections of dimensionless force factor, coupling loss factor, coupling quotient, critical coupling strength, electro-mechanical coupling factor, damping loss factor and modal densities in linear vibration energy harvesting systems. The motivation of this paper is to enable statistical energy analysis of linear vibration energy harvesting systems for reliable performance predictions and design optimisation under parameter variations of materials and manufacturing processes and random ambient environmental excitations.
Wormhole solution in coupled Yang-Mills--axion system
Das, A. Department of Astronomy, University of Rochester, Rochester, New York 14627 ); Maharana, J. )
1990-01-15
We show that wormhole solutions arise naturally in the effective action, resulting from a heterotic string theory, in which Einstein gravity is coupled to the antisymmetric tensor and an SU(2) Yang-Mills field. The Peccei-Quinn scale in this case gets related to the string tension which is natural in any string compactification.
Closed system of coupling effects in generalized thermo-elastoplasticity
NASA Astrophysics Data System (ADS)
Śloderbach, Z.
2016-05-01
In this paper, the field equations of the generalized coupled thermoplasticity theory are derived using the postulates of classical thermodynamics of irreversible processses. Using the Legendre transformations two new thermodynamics potentials P and S depending upon internal thermodynamic forces Π are introduced. The most general form for all the thermodynamics potentials are assumed instead of the usually used additive form. Due to this assumption, it is possible to describe all the effects of thermomechanical couples and also the elastic-plastic coupling effects observed in such materials as rocks, soils, concretes and in some metalic materials. In this paper not only the usual postulate of existence of a dissipation qupotential (the Gyarmati postulate) is used to derive the velocity equation. The plastic flow constitutive equations have the character of non-associated flow laws even when the Gyarmati postulate is assumed. In general formulation, the plastic strain rate tensor is normal to the surface of the generalized function of plastic flow defined in the the space of internal thermodynamic forces Π but is not normal to the yield surface. However, in general formulation and after the use the Gyarmati postulate, the direction of the sum of the plastic strain rate tensor and the coupled elastic strain rate tensor is normal to the yield surface.
On the continuous limits and integrability of a new coupled semidiscrete mKdV system
Zhu Zuonong; Zhao Haiqiong; Wu Xiaonan
2011-04-15
In this paper, we aim to get more insight on the relation between semidiscrete coupled mKdV system (where ''semidiscrete'' means that the system is discrete in the space variable and continuous in time) and the coupled mKdV equations; to this purpose, we propose a new coupled semidiscrete mKdV system. The Lax pairs, the Darboux transformation, soliton solutions and conservation laws for the coupled semidiscrete mKdV system are given. The coupled mKdV theory including the Lax pairs, the Darboux transformation, soliton solutions, and conservation laws is recovered through the continuous limits of corresponding theory for the new semidiscrete mKdV system.
NASA Astrophysics Data System (ADS)
Abdalla, M. Sebawe; Ahmed, M. M. A.; Khalil, E. M.; Obada, A. S.-F.
2016-01-01
We introduce the problem of three types of interaction between an N-level quantum system and a two-level atom where three coupling parameters are involved. The system can be deduced from the Heisenberg chain. The canonical transformation is used to remove two coupling parameters from the system and consequently it is reduced to atom-atom interaction. The wave function is calculated using the evolution operator and hence we have managed to obtain the expectation value of some dynamical operators. During our study of the atomic inversion we noted that the collapses period is shifted up when we take the effect of λ2 into consideration. While it is shifted up and down in the presence of λ3. The atomic angle plays a crucial role for controlling the degree of entanglement. For the variance squeezing we noted that the coupling parameter λ2 shows amounts of squeezing more than the case of λ3. Similar behavior is noted for the entropy squeezing.
Control of A Five-axle, Three-steering Coupled-vehicle System
NASA Astrophysics Data System (ADS)
Yamaguchi, Hiroaki; Mori, Masato; Kawakami, Atsushi
This paper presents a new type of coupled-vehicle system: a five-axle, three-steering coupled-vehicle system and its path following feedback control law. The coupled-vehicle system consists of two car-like mobile robots, two carriers and a steering system. One of the two car-like mobile robots is coupled by one of the two carriers via a revolute joint passively rotating and the other car-like mobile robot is also coupled by one remaining carrier via a passive revolute joint, and the two carriers are coupled via another passive revolute joint. The steering system is attached to one of the carriers and its steering axis is located at the same position of the rotating axis of the passive revolute joint coupling the two carriers. We first show that, by assuming virtual mechanical elements, it is possible to convert the kinematical equation of the coupled-vehicle system into three-chain, single-generator chained form in a coordinate system in which a path two times differentiable is an axis and a straight line perpendicular to the tangent of the path is another axis. Based on chained form, we secondly derive the path following feedback control law which enables the orientations of the two carriers relative to the tangent of the path to be controllable. By the feedback control law, it is possible to cause the two carriers to form a line-shaped composed carrier or a V-shaped composed carrier and to cause them to keep such shapes while performing a path following behavior, which means that the coupled-vehicle system is able to adapt the shape of the composed carrier to the shape of a transported object. The validity of the mechanical design of the coupled-vehicle system and its path following feedback control law has been verified experimentally.
On Shape Optimization for an Evolution Coupled System
Leugering, G.; Novotny, A. A. Perla Menzala, G.
2011-12-15
A shape optimization problem in three spatial dimensions for an elasto-dynamic piezoelectric body coupled to an acoustic chamber is introduced. Well-posedness of the problem is established and first order necessary optimality conditions are derived in the framework of the boundary variation technique. In particular, the existence of the shape gradient for an integral shape functional is obtained, as well as its regularity, sufficient for applications e.g. in modern loudspeaker technologies. The shape gradients are given by functions supported on the moving boundaries. The paper extends results obtained by the authors in (Math. Methods Appl. Sci. 33(17):2118-2131, 2010) where a similar problem was treated without acoustic coupling.
Jiang, Ping; Yang, Huajun; Mao, Shengqian
2015-10-01
A Cassegrain antenna system and an optical fiber coupling system which consists of a plano-concave lens and a plano-convex lens are designed based on the vector theory of reflection and refraction, so as to improve the transmission performance of the optical antenna and fiber coupling system. Three-dimensional ray tracing simulation are performed and results of the optical aberrations calculation and the experimental test show that the aberrations caused by on-axial defocusing, off-axial defocusing and deflection of receiving antenna can be well corrected by the optical fiber coupling system. PMID:26480125
Effect of breakup coupling on fusion for 6,7Li+24Mg systems
NASA Astrophysics Data System (ADS)
Pradhan, M. K.; Mukherjee, A.; Dasmahapatra, B.
2015-01-01
To study the effect of breakup coupling on fusion we have derived fusion cross sections in the framework of continuum discretised coupled channels (CDCC) method using the coupled channels code FRESCO for the systems 6,7Li+24Mg. The CDCC predicted fusion cross sections for the 7Li+24Mg system agree well with the experimental fusion data whereas for the 6Li+24Mg system the agreement is reasonable at below barrier energies. However, within the limits of the present work no definite conclusion could be obtained from the quality of agreement at above barrier energies for the 6Li+24Mg system.
Shot noise in a quantum dot system coupled with Majorana bound states
NASA Astrophysics Data System (ADS)
Chen, Qiao; Chen, Ke-Qiu; Zhao, Hong-Kang
2014-08-01
We investigate the spectral density of shot noise and current for the system of a quantum dot coupled to Majorana bound states (MBS) employing the nonequilibrium Green’s function. The Majorana bound states at the end of the wire strongly affect the shot noise. There are two types of coupling in the system: dot-MBS and MBS-MBS coupling. The curves of shot noise and current versus coupling strength have novel steps owing to the energy-level splitting caused by dot-MBS coupling. The magnitude of these steps increases with the strength of dot-MBS coupling λ but decreases with the strength of MBS-MBS coupling. The steps shift toward the large ∣eV∣ region as λ or ɛM increases. In addition, dot-MBS coupling enhances the shot noise while MBS-MBS coupling suppresses the shot noise. In the absence of MBS-MBS coupling, a sharp jump emerges in the curve of the Fano factor at zero bias owing to the differential conductance being reduced by a factor of 1/2. This provides a novel technique for the detection of Majorana fermions.
Shot noise in a quantum dot system coupled with Majorana bound states.
Chen, Qiao; Chen, Ke-Qiu; Zhao, Hong-Kang
2014-08-01
We investigate the spectral density of shot noise and current for the system of a quantum dot coupled to Majorana bound states (MBS) employing the nonequilibrium Green's function. The Majorana bound states at the end of the wire strongly affect the shot noise. There are two types of coupling in the system: dot-MBS and MBS-MBS coupling. The curves of shot noise and current versus coupling strength have novel steps owing to the energy-level splitting caused by dot-MBS coupling. The magnitude of these steps increases with the strength of dot-MBS coupling λ but decreases with the strength of MBS-MBS coupling. The steps shift toward the large ∣eV∣ region as λ or ϵ(M) increases. In addition, dot-MBS coupling enhances the shot noise while MBS-MBS coupling suppresses the shot noise. In the absence of MBS-MBS coupling, a sharp jump emerges in the curve of the Fano factor at zero bias owing to the differential conductance being reduced by a factor of 1/2. This provides a novel technique for the detection of Majorana fermions. PMID:25016999
Time Delay Effect in a Living Coupled Oscillator System with the Plasmodium of Physarum polycephalum
NASA Astrophysics Data System (ADS)
Takamatsu, Atsuko; Fujii, Teruo; Endo, Isao
2000-08-01
A living coupled oscillator system was constructed by a cell patterning method with a plasmodial slime mold, in which parameters such as coupling strength and distance between the oscillators can be systematically controlled. Rich oscillation phenomena between the two-coupled oscillators, namely, desynchronizing and antiphase/in-phase synchronization were observed according to these parameters. Both experimental and theoretical approaches showed that these phenomena are closely related to the time delay effect in interactions between the oscillators.
A coupled and workflow integrated modeling system applications for earth system science
NASA Astrophysics Data System (ADS)
Utku Turuncoglu, Ufuk; Dalfes, Nuzhet; Murphy, Sylvia; Deluca, Cecelia
2010-05-01
The complexity of earth system models and their applications are getting increase because of the continued development of computational resources, storage systems and distributed high-resolution observation networks. Therefore, the multi component earth system models that are used to develop these applications need to be designed in a new programming approach to make easy interaction among those model components and in between other third party applications. For this purpose, the common interfaces of earth system models can be standardized and also self-describing modeling systems can be built to increase interoperability between models and third party applications such as workflow systems, metadata/data portals, web services and scientific gateways. Fortunately, many efforts are currently underway to create standardized and easy to use multi-component earth system models and their applications such as Earth System Curator and Earth System Framework (ESMF). In this study, it is presented and analyzed a new methodology to combine scientific workflow and modeling framework approach together to create a standardized work environment. The methodology uses the ESMF library to create and self-describing and standardized coupled modeling systems and Kepler scientific workflow application to integrate modeling system to a workflow environment. The proposed methodology is tested using two typical and realistic earth system modeling application. The results of example workflows that are based on the proposed methodology are a part of this study. The first example allows running and analyzing a global circulation model on both a grid computing environment (TeraGrid) and a cluster system with meaningful abstraction of used model and computing environment. The development version of NCAR Community Climate System Model (CCSM4) model is used for this purpose. In this application example, the collection of provenance information has the added benefit of documenting a run in far
Fully coupled Pauli-Fierz systems at zero and positive temperature
Møller, Jacob Schach
2014-07-15
These notes provide an introduction to the spectral analysis of Pauli-Fierz systems at zero and positive temperature. More precisely, we study finite dimensional quantum systems linearly coupled to a single reservoir, a massless scalar quantum field. We emphasize structure results valid at arbitrary system-reservoir coupling strength. The notes contain a mixture of known, refined, and new results and each section ends with a discussion of open problems.
Wang, Chuan; Zhang, Yong; Zhang, Ru
2011-12-01
We theoretically investigate an entanglement purification protocol with photon and electron hybrid entangled state resorting to quantum-dot spin and microcavity coupled system. The present system is used to construct the parity check gate which allows a quantum non-demolition measurement on the spin parity. The cavity-spin coupled system provides a novel experimental platform of quantum information processing with photon and solid qubit. PMID:22273961
Cavity QED Based on Collective Magnetic Dipole Coupling: Spin Ensembles as Hybrid Two-Level Systems
NASA Astrophysics Data System (ADS)
Imamoǧlu, Atac
2009-02-01
We analyze the magnetic dipole coupling of an ensemble of spins to a superconducting microwave stripline structure, incorporating a Josephson junction based transmon qubit. We show that this system is described by an embedded Jaynes-Cummings model: in the strong coupling regime, collective spin-wave excitations of the ensemble of spins pick up the nonlinearity of the cavity mode, such that the two lowest eigenstates of the coupled spin wave-microwave cavity-Josephson junction system define a hybrid two-level system. The proposal described here enables new avenues for nonlinear optics using optical photons coupled to spin ensembles via Raman transitions. The possibility of strong coupling cavity QED with magnetic dipole transitions also opens up the possibility of extending quantum information processing protocols to spins in silicon or graphene, without the need for single-spin confinement.
Ultrafast Polariton-Phonon Dynamics of Strongly Coupled Quantum Dot-Nanocavity Systems
NASA Astrophysics Data System (ADS)
Müller, Kai; Fischer, Kevin A.; Rundquist, Armand; Dory, Constantin; Lagoudakis, Konstantinos G.; Sarmiento, Tomas; Kelaita, Yousif A.; Borish, Victoria; Vučković, Jelena
2015-07-01
We investigate the influence of exciton-phonon coupling on the dynamics of a strongly coupled quantum dot-photonic crystal cavity system and explore the effects of this interaction on different schemes for nonclassical light generation. By performing time-resolved measurements, we map out the detuning-dependent polariton lifetime and extract the spectrum of the polariton-to-phonon coupling with unprecedented precision. Photon-blockade experiments for different pulse-length and detuning conditions (supported by quantum optical simulations) reveal that achieving high-fidelity photon blockade requires an intricate understanding of the phonons' influence on the system dynamics. Finally, we achieve direct coherent control of the polariton states of a strongly coupled system and demonstrate that their efficient coupling to phonons can be exploited for novel concepts in high-fidelity single-photon generation.
Influence of torsional-lateral coupling on stability behavior of geared rotor systems
NASA Technical Reports Server (NTRS)
Schwibinger, P.; Nordmann, R.
1987-01-01
In high-performance turbomachinery trouble often arises because of unstable nonsynchronous lateral vibrations. The instabilities are mostly caused by oil-film bearings, clearance excitation, internal damping, annular pressure seals in pumps, or labyrinth seals in turbocompressors. In recent times the coupling between torsional and lateral vibrations has been considered as an additional influence. This coupling is of practical importance in geared rotor systems. The literature describes some field problems in geared drive trains where unstable lateral vibrations occurred together with torsional oscillations. This paper studies the influence of the torsional-lateral coupling on the stability behavior of a simple geared system supported by oil-film bearings. The coupling effect is investigated by parameter studies and a sensitivity analysis for the uncoupled and coupled systems.
Service-Oriented Approach to Coupling Earth System Models and Modeling Frameworks
NASA Astrophysics Data System (ADS)
Goodall, J. L.; Saint, K. D.; Ercan, M. B.; Briley, L. J.; Murphy, S.; You, H.; DeLuca, C.; Rood, R. B.
2012-12-01
Modeling water systems often requires coupling models across traditional Earth science disciplinary boundaries. While there has been significant effort within various Earth science disciplines (e.g., atmospheric science, hydrology, and Earth surface dynamics) to create models and, more recently, modeling frameworks, there has been less work on methods for coupling across disciplinary-specific models and modeling frameworks. We present work investigating one possible method for coupling across disciplinary-specific Earth system models and modeling frameworks: service-oriented architectures. In a service-oriented architecture, models act as distinct units or components within a system and are designed to pass well defined messages to consumers of the service. While the approach offers the potential to couple heterogeneous computational models by allowing a high degree of autonomy across models of the Earth system, there are significant scientific and technical challenges to be addressed when coupling models designed for different communities and built for different modeling frameworks. We have addressed some of these challenges through a case study where we coupled a hydrologic model compliant with the OpenMI standard with an atmospheric model compliant with the EMSF standard. In this case study, the two models were coupled through data exchanges of boundary conditions enabled by exposing the atmospheric model as a web service. A discussion of the technical and scientific challenges, some that we have addressed and others that remain open, will be presented including differences in computer architectures, data semantics, and spatial scales between the coupled models.
Coupled Pendulums: A Physical System for Laboratory Investigations at Upper Secondary School
ERIC Educational Resources Information Center
Picciarelli, Vittorio; Stella, Rosa
2010-01-01
The topic of coupled oscillations is rich in physical content which is both interesting and complex. The study of the time evolution of coupled oscillator systems involves a mathematical formalization beyond the level of the upper secondary school student's competence. Here, we present an original approach, suitable even for secondary students, to…
Formulation of the aeroelastic stability and response problem of coupled rotor/support systems
NASA Technical Reports Server (NTRS)
Warmbrodt, W.; Friedmann, P.
1979-01-01
The consistent formulation of the governing nonlinear equations of motion for a coupled rotor/support system is presented. Rotor/support coupling is clearly documented by enforcing dynamic equilibrium between the rotor and the moving flexible support. The nonlinear periodic coefficient equations of motion are applicable to both coupled rotor/fuselage aeroelastic problems of helicopters in hover or forward flight and coupled rotor/tower dynamics of a large horizontal axis wind turbine (HAWT). Finally, the equations of motion are used to study the influence of flexible supports and nonlinear terms on rotor aeroelastic stability and response of a large two-bladed HAWT.
NASA Astrophysics Data System (ADS)
Mooney, P.; Mulligan, F. J.; Bruyere, C. L.; Bonnlander, B.
2014-12-01
We examine the influence of physics parameterizations and ocean coupling on the ability of the Weather Research and Forecasting (WRF) model to simulate the storm track and intensity of 2011 storms Irene and Ophelia. Of the physics parameterizations investigated - cumulus parameterizations, planetary boundary layer, microphysics, radiation, and land surface models - cumulus parameterizations have the greatest impact on WRF's ability to reproduce the two storms, particularly storm intensity. We also investigated the influence of coupling the Regional Ocean Modelling System (ROMS) to the WRF model. This was achieved using the Coupled Ocean Atmosphere Wave Sediment Transport (COAWST) modeling system which couples ROMS to WRF using the Model Coupling Toolkit (MCT). Simulated storm intensity and track are modified as a result of coupling ROMS to WRF, but coupling will not compensate for a poor initial parameterization selection.
Quantum impurities develop fractional local moments in spin-orbit coupled systems
NASA Astrophysics Data System (ADS)
Agarwala, Adhip; Shenoy, Vijay B.
2016-06-01
Systems with spin-orbit coupling have the potential to realize exotic quantum states which are interesting both from fundamental and technological perspectives. We investigate the physics that arises when a correlated spin-1/2 quantum impurity hybridizes with a spin-orbit coupled Fermi system. The intriguing aspect uncovered is that, in contrast to unit local moments in conventional systems, the impurity here develops a fractional local moment of 2/3. The concomitant Kondo effect has a high Kondo temperature (TK). Our theory explains these features including the origins of the fractional local moment and provides a recipe to use spin-orbit coupling (λ ) to enhance the Kondo temperature (TK˜λ4 /3 ). Even as our finding of such rich phenomena in a simple looking many-body system is of interest in itself, we also point out opportunities for systems with tunable spin-orbit coupling (such as cold atoms) to explore this physics.
Coupled Solar Wind-Magnetosphere-Ionosphere-Thermosphere System by QFT
NASA Astrophysics Data System (ADS)
Chen, Shao-Guang
shoot to Sun from the center of Galaxy. The dynamic balance of forces on the solar surface plasma at once is broken and the plasma will upwards eject as the solar wind with redundant negative charge, at the same time, the solar surface remain a cavity as a sunspot whorl with the positive electric potential relative to around. The whorl caused by that the reaction of plasma eject front and upwards with the different velocity at different latitude of solar rotation, leads to the cavity around in the downwards and backwards helix movement. The solar rotation more slow, when the cavity is filled by around plasma in the reverse turn direction, the Jupiter at front had been produced a new cavity, so that we had observe the sunspot pair with different whorl directions and different magnetic polarity. Jupiter possess half mass of all planets in solar system, its action to stop net nuν _{0} flux is primary, so that Jupiter’s period of 11.8 sidereal years accord basically with the period of sunspot eruptions. The solar wind is essentially the plasma with additional electrons flux ejected from the solar surface: its additional electrons come from the ionosphere again eject into the ionosphere and leads to the direct connect between the solar wind and the ionosphere; its magnetism from its redundant negative charge and leads to the connect between the solar wind and the magnetosphere; it possess the high temperature of the solar surface and ejecting kinetic energy leads to the thermo-exchange connect between the solar wind and the thermosphere. Through the solar wind ejecting into and cross over the outside atmosphere carry out the electromagnetic, particles material and thermal exchanges, the Coupled Solar Wind-Magnetosphere-Ionosphere-Thermosphere System to be came into being. This conclusion is inferred only by QFT.
NASA Astrophysics Data System (ADS)
Du, Peng; Li, Michael Y.
2014-10-01
The global dynamics of coupled systems of differential equations defined on an interaction network are investigated. Local dynamics at each vertex, when interactions are absent, are assumed to be simple: solutions to each vertex system are assumed to converge to an equilibrium, either on the boundary or in the interior of the feasible region. The interest is to investigate the collective behaviours of the coupled system when interactions among vertex systems are present. It was shown in Li and Shuai (2010) that, if the interaction network is strongly connected, then solutions to the coupled system synchronize at a single equilibrium. We focus on the case when the underlying network is not strongly connected and the coupled system may have mixed equilibria whose coordinates are in the interior at some vertices while on the boundary at others. We show that solutions on a strongly connected component of the network will synchronize. Considering a condensed digraph by collapsing each strongly connected component, we are able to introduce a partial order on the set P of all equilibria, and show that all solutions of the coupled system converge to a unique equilibrium P∗ that is the maximizer in P. We further establish that behaviours of the coupled system at minimal elements of the condensed digraph determine whether the global limit P∗ is a mixed equilibrium. The theory are applied to mathematical models from epidemiology and spatial ecology.
Three-phase inductive-coupled structures for contactless PHEV charging system
NASA Astrophysics Data System (ADS)
Lee, Jia-You; Shen, Hung-Yu; Li, Cheng-Bin
2016-07-01
In this article, a new-type three-phase inductive-coupled structure is proposed for the contactless plug-in hybrid electric vehicle (PHEV) charging system regarding with SAE J-1773. Four possible three-phase core structures are presented and subsequently investigated by the finite element analysis. To study the correlation between the core geometric parameter and the coupling coefficient, the magnetic equivalent circuit model of each structure is also established. In accordance with the simulation results, the low reluctance and the sharing of flux path in the core material are achieved by the proposed inductive-coupled structure with an arc-shape and three-phase symmetrical core material. It results in a compensation of the magnetic flux between each phase and a continuous flow of the output power in the inductive-coupled structure. Higher coupling coefficient between inductive-coupled structures is achieved. A comparison of coupling coefficient, mutual inductance, and self-inductance between theoretical and measured results is also performed to verify the proposed model. A 1 kW laboratory scale prototype of the contactless PHEV charging system with the proposed arc-shape three-phase inductive-coupled structure is implemented and tested. An overall system efficiency of 88% is measured when two series lithium iron phosphate battery packs of 25.6 V/8.4 Ah are charged.
Low power, compact charge coupled device signal processing system
NASA Technical Reports Server (NTRS)
Bosshart, P. W.; Buss, D. D.; Eversole, W. L.; Hewes, C. R.; Mayer, D. J.
1980-01-01
A variety of charged coupled devices (CCDs) for performing programmable correlation for preprocessing environmental sensor data preparatory to its transmission to the ground were developed. A total of two separate ICs were developed and a third was evaluated. The first IC was a CCD chirp z transform IC capable of performing a 32 point DFT at frequencies to 1 MHz. All on chip circuitry operated as designed with the exception of the limited dynamic range caused by a fixed pattern noise due to interactions between the digital and analog circuits. The second IC developed was a 64 stage CCD analog/analog correlator for performing time domain correlation. Multiplier errors were found to be less than 1 percent at designed signal levels and less than 0.3 percent at the measured smaller levels. A prototype IC for performing time domain correlation was also evaluated.
GPCRdb: an information system for G protein-coupled receptors
Isberg, Vignir; Mordalski, Stefan; Munk, Christian; Rataj, Krzysztof; Harpsøe, Kasper; Hauser, Alexander S.; Vroling, Bas; Bojarski, Andrzej J.; Vriend, Gert; Gloriam, David E.
2016-01-01
Recent developments in G protein-coupled receptor (GPCR) structural biology and pharmacology have greatly enhanced our knowledge of receptor structure-function relations, and have helped improve the scientific foundation for drug design studies. The GPCR database, GPCRdb, serves a dual role in disseminating and enabling new scientific developments by providing reference data, analysis tools and interactive diagrams. This paper highlights new features in the fifth major GPCRdb release: (i) GPCR crystal structure browsing, superposition and display of ligand interactions; (ii) direct deposition by users of point mutations and their effects on ligand binding; (iii) refined snake and helix box residue diagram looks; and (iii) phylogenetic trees with receptor classification colour schemes. Under the hood, the entire GPCRdb front- and back-ends have been re-coded within one infrastructure, ensuring a smooth browsing experience and development. GPCRdb is available at http://www.gpcrdb.org/ and it's open source code at https://bitbucket.org/gpcr/protwis. PMID:26582914
Effect of Propellant Feed System Coupling and Hydraulic Parameters on Analysis of Chugging
NASA Technical Reports Server (NTRS)
Wood, Don J.; Dorsch, Robert G.
1967-01-01
A digital distributed parameter model was used to study the effects of propellant-feed- system coupling and various hydraulic parameters on the analytical prediction of chugging instabilities. Coupling between the combustion chamber and feed system was controlled by varying the compliance of the injector-dome region. The coupling with the feed system above the pump was varied by changing the amount of cavitation compliance at the pump inlet. The stability limits and chugging frequencies proved to be strongly dependent on the degree of feed-system coupling. The maximum stability condition occurred with intermediate coupling. Under conditions of a high degree of feed-system-combustor coupling, the stability limits and chugging frequencies were primarily dependent on the feed-system characteristics; the responses were characterized by beating patterns. For the system analyzed, the pump suction line had little effect on the stability limits or chugging frequencies. Beating, present under the condition of near zero injector -dome compliance, was eliminated when the suction line was decoupled by employing a sufficiently high value of pump-inlet compliance. Under conditions of maximum feed-system coupling, the magnitude and distribution of line losses in the discharge line had a significant effect on the stability limits but had negligible effect on the chugging frequency and beating characteristics. Also, the length of the discharge line greatly affected the stability limits, chugging frequency, and beating characteristics. The length of the suction line, however, had little effect on the stability limits and chugging frequency but did influence the beating pattern. A resistive-shunt device attached to the pump discharge line to suppress chugging was investigated. The analysis showed that the device was effective under conditions of high feed-system coupling.
System Simulation by Recursive Feedback: Coupling a Set of Stand-Alone Subsystem Simulations
NASA Technical Reports Server (NTRS)
Nixon, D. D.
2001-01-01
Conventional construction of digital dynamic system simulations often involves collecting differential equations that model each subsystem, arran g them to a standard form, and obtaining their numerical gin solution as a single coupled, total-system simultaneous set. Simulation by numerical coupling of independent stand-alone subsimulations is a fundamentally different approach that is attractive because, among other things, the architecture naturally facilitates high fidelity, broad scope, and discipline independence. Recursive feedback is defined and discussed as a candidate approach to multidiscipline dynamic system simulation by numerical coupling of self-contained, single-discipline subsystem simulations. A satellite motion example containing three subsystems (orbit dynamics, attitude dynamics, and aerodynamics) has been defined and constructed using this approach. Conventional solution methods are used in the subsystem simulations. Distributed and centralized implementations of coupling have been considered. Numerical results are evaluated by direct comparison with a standard total-system, simultaneous-solution approach.
Algorithmic requirements for swarm intelligence in differently coupled collective systems.
Stradner, Jürgen; Thenius, Ronald; Zahadat, Payam; Hamann, Heiko; Crailsheim, Karl; Schmickl, Thomas
2013-05-01
Swarm systems are based on intermediate connectivity between individuals and dynamic neighborhoods. In natural swarms self-organizing principles bring their agents to that favorable level of connectivity. They serve as interesting sources of inspiration for control algorithms in swarm robotics on the one hand, and in modular robotics on the other hand. In this paper we demonstrate and compare a set of bio-inspired algorithms that are used to control the collective behavior of swarms and modular systems: BEECLUST, AHHS (hormone controllers), FGRN (fractal genetic regulatory networks), and VE (virtual embryogenesis). We demonstrate how such bio-inspired control paradigms bring their host systems to a level of intermediate connectivity, what delivers sufficient robustness to these systems for collective decentralized control. In parallel, these algorithms allow sufficient volatility of shared information within these systems to help preventing local optima and deadlock situations, this way keeping those systems flexible and adaptive in dynamic non-deterministic environments. PMID:23805030
Algorithmic requirements for swarm intelligence in differently coupled collective systems
Stradner, Jürgen; Thenius, Ronald; Zahadat, Payam; Hamann, Heiko; Crailsheim, Karl; Schmickl, Thomas
2013-01-01
Swarm systems are based on intermediate connectivity between individuals and dynamic neighborhoods. In natural swarms self-organizing principles bring their agents to that favorable level of connectivity. They serve as interesting sources of inspiration for control algorithms in swarm robotics on the one hand, and in modular robotics on the other hand. In this paper we demonstrate and compare a set of bio-inspired algorithms that are used to control the collective behavior of swarms and modular systems: BEECLUST, AHHS (hormone controllers), FGRN (fractal genetic regulatory networks), and VE (virtual embryogenesis). We demonstrate how such bio-inspired control paradigms bring their host systems to a level of intermediate connectivity, what delivers sufficient robustness to these systems for collective decentralized control. In parallel, these algorithms allow sufficient volatility of shared information within these systems to help preventing local optima and deadlock situations, this way keeping those systems flexible and adaptive in dynamic non-deterministic environments. PMID:23805030
A spacecraft cooling system for a charged coupled device
NASA Technical Reports Server (NTRS)
Walker, Mary S.; Tulkoff, Philip
1986-01-01
This paper describes the thermal analysis, design, and testing of a dedicated cooling system for a Spartan spacecraft payload. A simple reliable design that requires minimum power consumption and minimum weight was developed. The payload has a CCD detector that must be maintained at a temperature of approximately -40 C or colder. The cooling system consists of a fin radiator, dual redundant heat pipes, and a thermal electric device (TED). The system was analytically modeled through the use of the Simplified Shuttle Payload Thermal Analyzer (SSPTA) computer program. A thermal test of the system simulating flight conditions was conducted to correlate the computer model and verify performance specifications.
Analysis and design of coupled-oscillator arrays for microwave systems
NASA Astrophysics Data System (ADS)
Moussounda, Renaud
The concept of synchronized nonlinear coupled oscillators is applied to microwave and antenna engineering for the analysis and design of wireless communication and sensing systems operating at the microwave and/or millimeter (mm)-wave frequencies. The significance of such approach is justified from the potential gain in efficiency, weight, cost and functionality although technical challenges stand in the way. Unlike typical phased array systems, which are currently used to construct such systems, coupled-oscillator systems present additional challenges that mainly arise from maintaining stability and synchronization as the the coupled nonlinear system is operated. Linear systems do not present such stability issues and are consequently faster since they do not rely on any gradual synchronization mechanism in order to function. However, at significantly higher frequencies in the quasi-optical domain, coupled-oscillator systems can make up for the speed difference and present significant efficiency advantages over typical phased array architectures. In addition, coupled nonlinear systems possess inherent analog properties that can be used for a multitude of functions. This dissertation advances the topic of coupled-oscillator arrays by 1) developing an alternative set of techniques for designing the oscillating unit cells called active integrated antennas (AIAs) at microwave or mm-wave frequencies, 2) developing a more accurate description of the dynamics of the array, 3) developing and implementing a new topology for a coupling network that is able to extend stability, 4) implementing a fully non-reciprocally coupled array able to produce large scan angle without loss of stability, 5) proposing an architecture based on a single phase-locked loop (PLL) and containing a self-calibration mechanism, and finally 6) implementing a phase-boosting mechanism using simple circuits to amplify the phase difference between adjacent radiating antennas in order to increase
Micromagnetic Simulations of Anisotropies in Coupled and Uncoupled Ferromagnetic Nanowire Systems
Blachowicz, T.; Ehrmann, A.
2013-01-01
The influence of a variation of spatial relative orientations onto the coupling dynamics and subsequent magnetic anisotropies was modeled in ferromagnetic nanowires. The wires were analyzed in the most elementary configurations, thus, arranged in pairs perpendicular to each other, leading to one-dimensional (linear) and zero-dimensional (point-like) coupling. Different distances within each elementary pair of wires and between the pairs give rise to varying interactions between parallel and perpendicular wires, respectively. Simulated coercivities show an exchange of easy and hard axes for systems with different couplings. Additionally, two of the systems exhibit a unique switching behavior which can be utilized for developing new functionalities. PMID:24228005
NASA Astrophysics Data System (ADS)
Zhao, Guo-Zhong; Chen, Gang; Kang, Zhan
2012-04-01
This paper analyzes the random response of structural-acoustic coupled systems. Most existing works on coupled structural-acoustic analysis are limited to systems under deterministic excitations due to high computational cost required by a random response analysis. To reduce the computational burden involved in the coupled random analysis, an iterative procedure based on the Pseudo excitation method has been developed. It is found that this algorithm has an overwhelming advantage in computing efficiency over traditional methods, as demonstrated by some numerical examples given in this paper.
NASA Astrophysics Data System (ADS)
Hwang, Myung-Joong; Kim, M. S.; Choi, Mahn-Soo
2016-04-01
We explore the photon population dynamics in two coupled circuit QED systems. For a sufficiently weak intercavity photon hopping, as the photon-cavity coupling increases, the dynamics undergoes double transitions first from a delocalized to a localized phase and then from the localized to another delocalized phase. The latter delocalized phase is distinguished from the former one; instead of oscillating between the two cavities, the photons rapidly quasiequilibrate over the two cavities. These intriguing features are attributed to an interplay between two qualitatively distinctive nonlinear behaviors of the circuit QED systems in the utrastrong coupling regime, whose distinction has been widely overlooked.
Hwang, Myung-Joong; Kim, M S; Choi, Mahn-Soo
2016-04-15
We explore the photon population dynamics in two coupled circuit QED systems. For a sufficiently weak intercavity photon hopping, as the photon-cavity coupling increases, the dynamics undergoes double transitions first from a delocalized to a localized phase and then from the localized to another delocalized phase. The latter delocalized phase is distinguished from the former one; instead of oscillating between the two cavities, the photons rapidly quasiequilibrate over the two cavities. These intriguing features are attributed to an interplay between two qualitatively distinctive nonlinear behaviors of the circuit QED systems in the utrastrong coupling regime, whose distinction has been widely overlooked. PMID:27127967
Coupling plant growth and waste recycling systems in a controlled life support system (CELSS)
NASA Technical Reports Server (NTRS)
Garland, Jay L.
1992-01-01
The development of bioregenerative systems as part of the Controlled Ecological Life Support System (CELSS) program depends, in large part, on the ability to recycle inorganic nutrients, contained in waste material, into plant growth systems. One significant waste (resource) stream is inedible plant material. This research compared wheat growth in hydroponic solutions based on inorganic salts (modified Hoagland's) with solutions based on the soluble fraction of inedible wheat biomass (leachate). Recycled nutrients in leachate solutions provided the majority of mineral nutrients for plant growth, although additions of inorganic nutrients to leachate solutions were necessary. Results indicate that plant growth and waste recyling systems can be effectively coupled within CELSS based on equivalent wheat yield in leachate and Hoagland solutions, and the rapid mineralization of waste organic material in the hydroponic systems. Selective enrichment for microbial communities able to mineralize organic material within the leachate was necessary to prevent accumulation of dissolved organic matter in leachate-based solutions. Extensive analysis of microbial abundance, growth, and activity in the hydroponic systems indicated that addition of soluble organic material from plants does not cause excessive microbial growth or 'biofouling', and helped define the microbially-mediated flux of carbon in hydroponic solutions.
Lunar electric power systems utilizing the SP-100 reactor coupled to dynamic conversion systems
NASA Astrophysics Data System (ADS)
Harty, Richard B.; Durand, Richard E.; Mason, Lee S.
1991-09-01
An integration study was performed by coupling an SP-100 reactor to either a Brayton or Stirling power conversion subsystem. The application was for a surface power system to supply power requirements to a lunar base. A power level of 550 kWe was selected based on the NASA Space Exploration Initiative 90-day study. Reliability studies were initially performed to determine optimum power-conversion redundancy. This study resulted in selecting three operating engines and one standby unit. Integratiaon-design studies indicated that either the Brayton or Stirling power conversion subsystem could be integrated with the SP-100 reactor. The Stirling system had an integration advantage because of smaller piping size and fewer components. The Stirling engine, however, is more complex and heavier than the Brayton rotating unit, which tends to offset the Stirling integration advantage. From a performance consideration, the Brayton had a 9-percent mass advantage and the Stirling a 50-percent radiator-area advantage.
Adiabatic geometric phase for a Bose-Einstein condensate coupled to a cavity
Li Shengchang; Fu Libin; Liu Jie
2011-11-15
We investigate the geometric phase in a model of a Bose-Einstein condensate coupled to an optical cavity in which both the condensate and the cavity are described with coherent states. When the argument of the atom-cavity coupling term varies in time slowly from zero to 2{pi}, we calculate the geometric phase accumulated by the ground state and obtain its analytic expression in explicit form. We find that the adiabatic geometric phase jumps from zero to nontrivial {pi} at a critical value that corresponds to the normal-superradiant phase-transition point. The magneticlike flux interpretation of the geometric phase is also discussed.
NASA Astrophysics Data System (ADS)
Tezuka, Miwa; Kanno, Kazutaka; Bunsen, Masatoshi
2016-08-01
Reservoir computing is a machine-learning paradigm based on information processing in the human brain. We numerically demonstrate reservoir computing with a slowly modulated mask signal for preprocessing by using a mutually coupled optoelectronic system. The performance of our system is quantitatively evaluated by a chaotic time series prediction task. Our system can produce comparable performance with reservoir computing with a single feedback system and a fast modulated mask signal. We showed that it is possible to slow down the modulation speed of the mask signal by using the mutually coupled system in reservoir computing.
Solving non-Markovian open quantum systems with multi-channel reservoir coupling
Broadbent, Curtis J.; Jing, Jun; Yu, Ting; Eberly, Joseph H.
2012-08-15
We extend the non-Markovian quantum state diffusion (QSD) equation to open quantum systems which exhibit multi-channel coupling to a harmonic oscillator reservoir. Open quantum systems which have multi-channel reservoir coupling are those in which canonical transformation of reservoir modes cannot reduce the number of reservoir operators appearing in the interaction Hamiltonian to one. We show that the non-Markovian QSD equation for multi-channel reservoir coupling can, in some cases, lead to an exact master equation which we derive. We then derive the exact master equation for the three-level system in a vee-type configuration which has multi-channel reservoir coupling and give the analytical solution. Finally, we examine the evolution of the three-level vee-type system with generalized Ornstein-Uhlenbeck reservoir correlations numerically. - Highlights: Black-Right-Pointing-Pointer The concept of multi-channel vs. single-channel reservoir coupling is rigorously defined. Black-Right-Pointing-Pointer The non-Markovian quantum state diffusion equation for arbitrary multi-channel reservoir coupling is derived. Black-Right-Pointing-Pointer An exact time-local master equation is derived under certain conditions. Black-Right-Pointing-Pointer The analytical solution to the three-level system in a vee-type configuration is found. Black-Right-Pointing-Pointer The evolution of the three-level system under generalized Ornstein-Uhlenbeck noise is plotted for many parameter regimes.
Advancing coupled human-earth system models: The integrated Earth System Model Project
NASA Astrophysics Data System (ADS)
Thomson, A. M.; Edmonds, J. A.; Collins, W.; Thornton, P. E.; Hurtt, G. C.; Janetos, A. C.; Jones, A.; Mao, J.; Chini, L. P.; Calvin, K. V.; Bond-Lamberty, B. P.; Shi, X.
2012-12-01
As human and biogeophysical models develop, opportunities for connections between them evolve and can be used to advance our understanding of human-earth systems interaction in the context of a changing climate. One such integration is taking place with the Community Earth System Model (CESM) and the Global Change Assessment Model (GCAM). A multi-disciplinary, multi-institution team has succeeded in integrating the GCAM integrated assessment model of human activity into CESM to dynamically represent the feedbacks between changing climate and human decision making, in the context of greenhouse gas mitigation policies. The first applications of this capability have focused on the feedbacks between climate change impacts on terrestrial ecosystem productivity and human decisions affecting future land use change, which are in turn connected to human decisions about energy systems and bioenergy production. These experiments have been conducted in the context of the RCP4.5 scenario, one of four pathways of future radiative forcing being used in CMIP5, which constrains future human-induced greenhouse gas emissions from energy and land activities to stabilize radiative forcing at 4.5 W/m2 (~650 ppm CO2 -eq) by 2100. When this pathway is run in GCAM with the climate feedback on terrestrial productivity from CESM, there are implications for both the land use and energy system changes required for stabilization. Early findings indicate that traditional definitions of radiative forcing used in scenario development are missing a critical component of the biogeophysical consequences of land use change and their contribution to effective radiative forcing. Initial full coupling of the two global models has important implications for how climate impacts on terrestrial ecosystems changes the dynamics of future land use change for agriculture and forestry, particularly in the context of a climate mitigation policy designed to reduce emissions from land use as well as energy systems
High-precision digital charge-coupled device TV system
NASA Astrophysics Data System (ADS)
Vishnevsky, Grigory I.; Ioffe, S. A.; Berezin, V. Y.; Rybakov, M. I.; Mikhaylov, A. V.; Belyaev, L. V.
1991-06-01
In certain test, measurement, and research applications of CCD TV systems, the greater accuracy than usual 8-bit frame-grabbers can provide is demanded without the system being too expensive. The paper presents the concept and features of the high-precision low-cost digital CCD TV system intended for obtaining 12-bit monochrome images of immobile or relatively slow moving objects. The increase in accuracy is achieved by the specific digitization procedure -- one column per frame, which combines the benefits of a slow A/D converter with real-time TV imaging compatibility. To reduce speed restrictions on sample- and-hold circuits, a zoomed pixel read out cycle, corresponding to the pixel to be digitized, is proposed. The system provides great flexibility in choice of integration times and readout rates by means of a programmable readout sequencer, and is easily adaptable to various user demands and CCDs types.
Robert Podgorney; Hai Huang; Derek Gaston
2010-02-01
Development of enhanced geothermal systems (EGS) will require creation of a reservoir of sufficient volume to enable commercial-scale heat transfer from the reservoir rocks to the working fluid. A key assumption associated with reservoir creation/stimulation is that sufficient rock volumes can be hydraulically fractured via both tensile and shear failure, and more importantly by reactivation of naturally existing fractures (by shearing) to create the reservoir. The advancement of EGS greatly depends on our understanding of the dynamics of the intimately coupled rock-fracture-fluid system and our ability to reliably predict how reservoirs behave under stimulation and production. In order to increase our understanding of how reservoirs behave under these conditions, we have developed a physics-based rock deformation and fracture propagation simulator by coupling a discrete element model (DEM) for fracturing with a continuum multiphase flow and heat transport model. In DEM simulations, solid rock is represented by a network of discrete elements (often referred as particles) connected by various types of mechanical bonds such as springs, elastic beams or bonds that have more complex properties (such as stress-dependent elastic constants). Fracturing is represented explicitly as broken bonds (microcracks), which form and coalesce into macroscopic fractures when external load is applied. DEM models have been applied to a very wide range of fracturing processes from the molecular scale (where thermal fluctuations play an important role) to scales on the order of 1 km or greater. In this approach, the continuum flow and heat transport equations are solved on an underlying fixed finite element grid with evolving porosity and permeability for each grid cell that depends on the local structure of the discrete element network (such as DEM particle density). The fluid pressure gradient exerts forces on individual elements of the DEM network, which therefore deforms and
Illustrating the coupled human–environment system for vulnerability analysis: Three case studies
Turner, B. L.; Matson, Pamela A.; McCarthy, James J.; Corell, Robert W.; Christensen, Lindsey; Eckley, Noelle; Hovelsrud-Broda, Grete K.; Kasperson, Jeanne X.; Kasperson, Roger E.; Luers, Amy; Martello, Marybeth L.; Mathiesen, Svein; Naylor, Rosamond; Polsky, Colin; Pulsipher, Alexander; Schiller, Andrew; Selin, Henrik; Tyler, Nicholas
2003-01-01
The vulnerability framework of the Research and Assessment Systems for Sustainability Program explicitly recognizes the coupled human–environment system and accounts for interactions in the coupling affecting the system's responses to hazards and its vulnerability. This paper illustrates the usefulness of the vulnerability framework through three case studies: the tropical southern Yucatán, the arid Yaqui Valley of northwest Mexico, and the pan-Arctic. Together, these examples illustrate the role of external forces in reshaping the systems in question and their vulnerability to environmental hazards, as well as the different capacities of stakeholders, based on their access to social and biophysical capital, to respond to the changes and hazards. The framework proves useful in directing attention to the interacting parts of the coupled system and helps identify gaps in information and understanding relevant to reducing vulnerability in the systems as a whole. PMID:12815106
Master-slave synchronization and invariant manifolds for coupled stochastic systems
Chueshov, Igor; Schmalfuss, Bjoern
2010-10-15
We deal with abstract systems of two coupled nonlinear stochastic (infinite dimensional) equations subjected to additive white noise type process. This kind of systems may describe various interaction phenomena in a continuum random medium. Under suitable conditions we prove the existence of an exponentially attracting random invariant manifold for the coupled system and show that this system can be reduced to a single equation with modified nonlinearity. This result means that under some conditions, we observe (nonlinear) synchronization phenomena in the coupled system. Our applications include stochastic systems consisting of (i) parabolic and hyperbolic equations, (ii) two hyperbolic equations, and (iii) Klein-Gordon and Schroedinger equations. We also show that the random manifold constructed converges to its deterministic counterpart when the intensity of noise tends to zero.
A refined computer program for the transient simulation of ground coupled heat pump systems
NASA Astrophysics Data System (ADS)
Andrews, J. W.; Metz, P. D.; Saunders, J. H.
1983-04-01
The use of the earth as a heat source/sink or storage medium for various heat pump based space conditioning systems were investigated. A computer program ground coupled system (GROCS) was developed to model the behavior of ground coupling devices. The GROCS was integrated with TRNSYS, the solar system simulation program, to permit the simulation of complete ground coupled heat pump systems. Experimental results were compared to GROCS simulation results for model validation. It is found that the model has considerable validity. A refined version of the GROCS-TRNSYS program developed to model vertical or horizontal earth coil systems, which considers system cycling is described. The design of the program and its interaction with TRNSYS are discussed.
All-optical signal amplifier and distributor using cavity-atom coupling systems
NASA Astrophysics Data System (ADS)
Duan, Yafan; Lin, Gongwei; Niu, Yueping; Gong, Shangqing
2016-05-01
We report an all-optical signal amplifier and a signal distributor using cavity-atom coupling systems. In this system we couple atoms with an optical cavity and realize the great enhancement of a control laser by the cavity with the help of two high coupling lasers. By this effect, we can use one weak control field to control another strong target field and the intensity changes are linear with our experimental conditions. This can be used as an all-optical signal amplifier, also known as a ‘transphasor’. In our experiment, the gain of the weak field to strong field can be as high as 60. Furthermore, we can realize the distribution of optical signals, if we coordinate multiple cavity-atom coupling systems.
Normal-Mode Splitting in the Coupled System of Hybridized Nuclear Magnons and Microwave Photons.
Abdurakhimov, L V; Bunkov, Yu M; Konstantinov, D
2015-06-01
In the weak ferromagnetic MnCO_{3} system, a low-frequency collective spin excitation (magnon) is the hybridized oscillation of nuclear and electron spins coupled through the hyperfine interaction. By using a split-ring resonator, we performed transmission spectroscopy measurements of the MnCO_{3} system and observed avoided crossing between the hybridized nuclear magnon mode and the resonator mode in the NMR-frequency range. The splitting strength is quite large due to the large spin density of ^{55}Mn, and the cooperativity value C=0.2 (the magnon-photon coupling parameter) is close to the conditions of strong coupling. The results reveal a new class of spin systems, in which the coupling between nuclear spins and photons is mediated by electron spins via the hyperfine interaction. PMID:26196633
Decouple a coupled KdV system of Nutku and Og˜uz
NASA Astrophysics Data System (ADS)
Hu, Heng Chun; Liu, Q. P.
2002-02-01
A coupled KdV system with a free parameter proposed by Nutku and Og˜uz is considered. It is shown that the system passes the WTC's Painlevé test for arbitrary value of the parameter. A further analysis yields that the parameter can be removed and the system can be decoupled.
NASA Astrophysics Data System (ADS)
Chen, Yonghong; Rangarajan, Govindan; Ding, Mingzhou
2006-12-01
In arbitrarily coupled dynamical systems (maps or ordinary differential equations), the stability of synchronized states (including equilibrium point, periodic orbit or chaotic attractor) and the formation of patterns from loss of stability of the synchronized states are two problems of current research interest. These two problems are often treated separately in the literature. Here, we present a unified framework in which we show that the eigenvalues of the coupling matrix determine the stability of the synchronized state, while the eigenvectors correspond to patterns emerging from desynchronization. Based on this simple framework three results are derived: First, general approaches are developed that yield constraints directly on the coupling strengths which ensure the stability of synchronized dynamics. Second, when the synchronized state becomes unstable spatial patterns can be selectively realized by varying the coupling strengths. Distinct temporal evolution of the spatial pattern can be obtained depending on the bifurcating synchronized state. Third, given a desired spatiotemporal pattern, one is able to design coupling schemes which give rise to that pattern as the coupled system evolves. Systems with specific coupling schemes are used as examples to illustrate the general methods.
Hopf normal form with SN symmetry and reduction to systems of nonlinearly coupled phase oscillators
NASA Astrophysics Data System (ADS)
Ashwin, Peter; Rodrigues, Ana
2016-06-01
Coupled oscillator models where N oscillators are identical and symmetrically coupled to all others with full permutation symmetry SN are found in a variety of applications. Much, but not all, work on phase descriptions of such systems consider the special case of pairwise coupling between oscillators. In this paper, we show this is restrictive-and we characterize generic multi-way interactions between oscillators that are typically present, except at the very lowest order near a Hopf bifurcation where the oscillations emerge. We examine a network of identical weakly coupled dynamical systems that are close to a supercritical Hopf bifurcation by considering two parameters, ɛ (the strength of coupling) and λ (an unfolding parameter for the Hopf bifurcation). For small enough λ > 0 there is an attractor that is the product of N stable limit cycles; this persists as a normally hyperbolic invariant torus for sufficiently small ɛ > 0. Using equivariant normal form theory, we derive a generic normal form for a system of coupled phase oscillators with SN symmetry. For fixed N and taking the limit 0 < ɛ ≪ λ ≪ 1, we show that the attracting dynamics of the system on the torus can be well approximated by a coupled phase oscillator system that, to lowest order, is the well-known Kuramoto-Sakaguchi system of coupled oscillators. The next order of approximation generically includes terms with up to four interacting phases, regardless of N. Using a normalization that maintains nontrivial interactions in the limit N → ∞, we show that the additional terms can lead to new phenomena in terms of coexistence of two-cluster states with the same phase difference but different cluster size.
Phase-flip bifurcation in a coupled Josephson junction neuron system
NASA Astrophysics Data System (ADS)
Segall, Kenneth; Guo, Siyang; Crotty, Patrick; Schult, Dan; Miller, Max
2014-12-01
Aiming to understand group behaviors and dynamics of neural networks, we have previously proposed the Josephson junction neuron (JJ neuron) as a fast analog model that mimics a biological neuron using superconducting Josephson junctions. In this study, we further analyze the dynamics of the JJ neuron numerically by coupling one JJ neuron to another. In this coupled system we observe a phase-flip bifurcation, where the neurons synchronize out-of-phase at weak coupling and in-phase at strong coupling. We verify this by simulation of the circuit equations and construct a bifurcation diagram for varying coupling strength using the phase response curve and spike phase difference map. The phase-flip bifurcation could be observed experimentally using standard digital superconducting circuitry.
Terminal guidance sensor system. [space shuttle coupling to orbiting satellites
NASA Technical Reports Server (NTRS)
Bejczy, A. K. (Inventor)
1981-01-01
A system is described for guiding a claw to the proper distance and into the proper orientation in yaw and pitch, to engage a grappling fixture. The system includes four proximity sensors on the claw, that are arranged at corners of an imaginary square, which sense the distance to the top surface of the grappling fixture. If a pair of sensors at opposite corners of the square sense a different distance to the top surface of the grappling fixture, then it is known that the claw is rotated about a corresponding axis with respect to the plane of the grappling fixture.
Modeling dynamically coupled fluid-duct systems with finite line elements
NASA Technical Reports Server (NTRS)
Saxon, J. B.
1994-01-01
Structural analysis of piping systems, especially dynamic analysis, typically considers the duct structure and the contained fluid column separately. Coupling of these two systems, however, forms a new dynamic system with characteristics not necessarily described by the superposition of the two component system's characteristics. Methods for modeling the two coupled components simultaneously using finite line elements are presented. Techniques for general duct intersections, area or direction changes, long radius bends, hydraulic losses, and hydraulic impedances are discussed. An example problem and results involving time transients are presented. Additionally, a program to enhance post-processing of line element models is discussed.
Lattice-Based Studies of Weakly Coupled Atom-Reservoir Systems
NASA Astrophysics Data System (ADS)
Krinner, Ludwig; Stewart, Michael; Pazmino, Arturo; Schneble, Dominik
2016-05-01
The coupling of a small quantum system to a much larger one (serving as a reservoir) can give rise to both coherent and dissipative behavior. We report our progress on characterizing a system composed of atoms trapped in a state-dependent optical lattice subject to coupling to a variable bosonic background. This system is predicted to display both polaronic energy shifts and spin-boson-type dissipative dynamics, phenomena that can be studied in our system utilizing precise magnetic field control. Work supported by NSF Grant No. PHY-1205894.
Ultracold atoms coupled to micro- and nanomechanical oscillators: towards hybrid quantum systems
NASA Astrophysics Data System (ADS)
Treutlein, Philipp
2009-05-01
Micro- and nanomechanical oscillators are presently approaching the quantum regime, driven by the continuous improvement of techniques to read out and cool mechanical motion. For trapped ultracold atoms, a rich toolbox of quantum control techniques already exists. By coupling mechanical oscillators to ultracold atoms, hybrid quantum systems could be formed, in which the atoms are used to cool, read out, and coherently manipulate the oscillators' state. In our work, we investigate different coupling mechanisms between ultracold atoms and mechanical oscillators. In a first experiment, we use atom-surface forces to couple the vibrations of a mechanical cantilever to the motion of a Bose-Einstein condensate in a magnetic microtrap on a chip. The atoms are trapped at sub-micrometer distance from the cantilever surface. We make use of the coupling to read out the cantilever vibrations with the atoms. Coupling via surface forces could be employed to couple atoms to molecular-scale oscillators such as carbon nanotubes. In a second experiment, we investigate coupling via a 1D optical lattice that is formed by a laser beam retroreflected from the cantilever tip. The optical lattice serves as a transfer rod which couples vibrations of the cantilever to the atoms and vice versa. Finally, we investigate magnetic coupling between the spin of ultracold atoms and the vibrations of a nanoscale cantilever with a magnetic tip. Theoretical investigations show that at low temperatures, the backaction of the atoms onto the cantilever is significant and the system represents a mechanical analog of cavity quantum electrodynamics in the strong coupling regime.
Lunar electric power systems utilizing the SP-100 reactor coupled to dynamic conversion systems
NASA Astrophysics Data System (ADS)
Harty, Richard B.; Durand, Richard E.
1993-03-01
An integration study was performed by Rocketdyne under contract to NASA-LeRC. The study was concerned with coupling an SP-0100 reactor to either a Brayton or Stirling power conversion system. The application was for a surface power system to supply power requirements to a lunar base. A power level of 550 kWe was selected based on the NASA Space Exploration Initiative 90-day study. Reliability studies were initially performed to determine optimum power conversion redundancy. This study resulted in selecting three operating engines and one stand-by unit. Integration design studies indicated that either the Brayton or Stirling power conversion systems could be integrated with the PS-100 reactor. The Stirling system had an integration advantage because of smaller piping size and fewer components. The Stirling engine, however, is more complex and heavier than the Brayton rotating unit, which tends to off-set the Stirling integration advantage. From a performance consideration, the Brayton had a 9 percent mass advantage, and the Stirling had a 50 percent radiator advantage.
Harty, R.B.; Durand, R.E.
1993-03-01
An integration study was performed by Rocketdyne under contract to NASA-LeRC. The study was concerned with coupling an SP-0100 reactor to either a Brayton or Stirling power conversion system. The application was for a surface power system to supply power requirements to a lunar base. A power level of 550 kWe was selected based on the NASA Space Exploration Initiative 90-day study. Reliability studies were initially performed to determine optimum power conversion redundancy. This study resulted in selecting three operating engines and one stand-by unit. Integration design studies indicated that either the Brayton or Stirling power conversion systems could be integrated with the PS-100 reactor. The Stirling system had an integration advantage because of smaller piping size and fewer components. The Stirling engine, however, is more complex and heavier than the Brayton rotating unit, which tends to off-set the Stirling integration advantage. From a performance consideration, the Brayton had a 9 percent mass advantage, and the Stirling had a 50 percent radiator advantage.
Lunar electric power systems utilizing the SP-100 reactor coupled to dynamic conversion systems
NASA Technical Reports Server (NTRS)
Harty, Richard B.; Durand, Richard E.
1993-01-01
An integration study was performed by Rocketdyne under contract to NASA-LeRC. The study was concerned with coupling an SP-0100 reactor to either a Brayton or Stirling power conversion system. The application was for a surface power system to supply power requirements to a lunar base. A power level of 550 kWe was selected based on the NASA Space Exploration Initiative 90-day study. Reliability studies were initially performed to determine optimum power conversion redundancy. This study resulted in selecting three operating engines and one stand-by unit. Integration design studies indicated that either the Brayton or Stirling power conversion systems could be integrated with the PS-100 reactor. The Stirling system had an integration advantage because of smaller piping size and fewer components. The Stirling engine, however, is more complex and heavier than the Brayton rotating unit, which tends to off-set the Stirling integration advantage. From a performance consideration, the Brayton had a 9 percent mass advantage, and the Stirling had a 50 percent radiator advantage.
Coupled pendulums: a physical system for laboratory investigations at upper secondary school
NASA Astrophysics Data System (ADS)
Picciarelli, Vittorio; Stella, Rosa
2010-07-01
The topic of coupled oscillations is rich in physical content which is both interesting and complex. The study of the time evolution of coupled oscillator systems involves a mathematical formalization beyond the level of the upper secondary school student's competence. Here, we present an original approach, suitable even for secondary students, to investigate a coupled pendulum system through a series of carefully designed hands-on and minds-on modelling activities. We give a detailed description of these activities and of the strategy developed to promote both the understanding of this complex system and a sound epistemological framework. Students are actively engaged (1) in system exploration; (2) in simple model building and its implementation with an Excel spreadsheet; and (3) in comparing the measurements of the system behaviour with predictions from the model.
Ice-ocean-atmosphere coupling in the Regional Arctic System Model
NASA Astrophysics Data System (ADS)
Roberts, A.; Brunke, M.; Cassano, J. J.; Craig, A.; Duvivier, A.; Hughes, M.; Maslowski, W.; Nijssen, B.; Osinski, R.
2013-12-01
This work demonstrates the sea ice model performance in the latest version of the Regional Arctic System Model (RASM), which is a fully coupled regional climate model developed by a group of U.S. institutions as a regional counterpart to the Community Earth System Model (CESM). RASM is comprised of the Parallel Ocean Program (POP), Los Alamos Sea Ice Model (CICE), Variable Infiltration Capacity (VIC) hydrology model and the Weather Research and Forecasting (WRF) Model. It uses the same coupling infrastructure as CESM, with important physics differences that we have found to be important in our high-resolution model. Model evaluations using SSM/I sea ice extent and concentration, ICESat sea ice thickness measurements, ice-ocean buoys, and satellite retrievals of sea ice drift and deformation, lead us to adjust the standard CESM Monin-Obukhov ice-ocean-atmospheric coupling and ice-ocean stress term used for coupling with POP-CICE at eddy-permitting resolution of 1/12 degree with the 50km resolution WRF and VIC models. Evaluation metrics based on scaling laws and wavelet techniques illustrate that 20-minute coupling produces deformation and drift statistics commensurate with high temporal and spatial resolution measurements. However, dynamical interactions are compromised when typical radiative settings are used as in stand-alone POP-CICE and WRF. This highlights the limitations of surface polar boundary conditions in stand-alone models relative to fully coupled interactions. Our results suggest that use of uncoupled models as testbeds for improved polar components of next-generation global Earth System Models may introduce biases into fully coupled systems, and these can be reduced using a regional coupled climate system model, such as RASM, as a testbed instead.
Detecting weak coupling in mesoscopic systems with a nonequilibrium Fano resonance
NASA Astrophysics Data System (ADS)
Xiao, S.; Yoon, Y.; Lee, Y.-H.; Bird, J. P.; Ochiai, Y.; Aoki, N.; Reno, J. L.; Fransson, J.
2016-04-01
A critical aspect of quantum mechanics is the nonlocal nature of the wave function, a characteristic that may yield unexpected coupling of nominally isolated systems. The capacity to detect this coupling can be vital in many situations, especially those in which its strength is weak. In this work, we address this problem in the context of mesoscopic physics, by implementing an electron-wave realization of a Fano interferometer using pairs of coupled quantum point contacts (QPCs). Within this scheme, the discrete level required for a Fano resonance is provided by pinching off one of the QPCs, thereby inducing the formation of a quasibound state at the center of its self-consistent potential barrier. Using this system, we demonstrate a form of nonequilibrium Fano resonance (NEFR), in which nonlinear electrical biasing of the interferometer gives rise to pronounced distortions of its Fano resonance. Our experimental results are captured well by a quantitative theoretical model, which considers a system in which a standard two-path Fano interferometer is coupled to an additional, intruder, continuum. According to this theory, the observed distortions in the Fano resonance arise only in the presence of coupling to the intruder, indicating that the NEFR provides a sensitive means to infer the presence of weak coupling between mesoscopic systems.
Design of a kW-output fiber coupled diode laser system
NASA Astrophysics Data System (ADS)
Wu, Hualing; Guo, Linhui; Yu, Junhong; Gao, Songxin; Wu, Deyong
2015-10-01
Fiber-coupled diode laser pumping source is one of the key components of high-power fiber laser system. Its performance is significant to the output power of fiber laser system. A 1.8kW fiber-coupled diode laser system is designed by using ZEMAX optical design software. The technologies of high-precision beam collimation, spatial multiplexing, polarization multiplexing, beam expanding, focusing and coupling are used to couple the beams of 42 diode laser bars into a fiber with a core diameter of 200μm and NA 0.22. Every beam emit from diode laser bar is single polarization, and its central wavelength is 976nm @ 55W. The desigh result showed the fiber output power could reach 1800W, and the fiber-coupling efficiency was 78%, the brightness was 37MW/（cm2·sr）,corresponding. This fiber-coupled system can be used in fiber pumping, material process and many other areas.
Direct coupling of microbore HPLC columns to MS systems
NASA Technical Reports Server (NTRS)
Mcnair, H. M.
1985-01-01
A detailed investigation using electron microscopy was conducted which examined the conditions of materials used in the construction of stable, high performance microbore liquid chromatography (LC) columns. Small details proved to be important. The effects of temperature on the elution of several homologous series used as probe compounds was examined in reverse phase systems. They showed that accessible temperature changes provide roughly half the increase in solvent strength that would be obtained going from a 100% aqueous to a 100% organic mobile phase, which is sufficient to warrant their use in many analyses requiring the use of gradients. Air circulation temperature control systems provide the easiest means of obtaining rapid, wide range changes in column temperature. However, slow heat transfer from the gas leads to thermal nonuniformity in the column and a decrease in resolution as the temperature program progresses.
Adato, Ronen; Artar, Alp; Erramilli, Shyamsunder; Altug, Hatice
2013-06-12
Coupled plasmonic resonators have become the subject of significant research interest in recent years as they provide a route to dramatically enhanced light-matter interactions. Often, the design of these coupled mode systems draws intuition and inspiration from analogies to atomic and molecular physics systems. In particular, they have been shown to mimic quantum interference effects, such as electromagnetically induced transparency (EIT) and Fano resonances. This analogy also been used to describe the surface-enhanced absorption effect where a plasmonic resonance is coupled to a weak molecular resonance. These important phenomena are typically described using simple driven harmonic (or linear) oscillators (i.e., mass-on-a-spring) coupled to each other. In this work, we demonstrate the importance of an essential interdependence between the rate at which the system can be driven by an external field and its damping rate through radiative loss. This link is required in systems exhibiting time-reversal symmetry and energy conservation. Not only does it ensure an accurate and physically consistent description of resonant systems but leads directly to interesting new effects. Significantly, we demonstrate this dependence to predict a transition between EIT and electromagnetically induced absorption that is solely a function of the ratio of the radiative to intrinsic loss rates in coupled resonator systems. Leveraging the temporal coupled mode theory, we introduce a unique and intuitive picture that accurately describes these effects in coupled plasmonic/molecular and fully plasmonic systems. We demonstrate our approach's key features and advantages analytically as well as experimentally through surface-enhanced absorption spectroscopy and plasmonic metamaterial applications. PMID:23647070
NSLS-II BPM System Protection from Rogue Mode Coupling
Blednykh, A.; Bach, B.; Borrelli, A.; Ferreira, M.; Hseuh, H.-C.; Hetzel, C.; Kosciuk, B.; Krinsky, S.; Singh, O.; Vetter, K.
2011-03-28
Rogue mode RF shielding has been successfully designed and implemented into the production multipole vacuum chambers. In order to avoid systematic errors in the NSLS-II BPM system we introduced frequency shift of HOM's by using RF metal shielding located in the antechamber slot of each multipole vacuum chamber. To satisfy the pumping requirement the face of the shielding has been perforated with roughly 50 percent transparency. It stays clear of synchrotron radiation in each chamber.
A distributed architecture for a loosely coupled virtual microscopy system
NASA Astrophysics Data System (ADS)
Sánchez, César; Romero, Eduardo
2011-03-01
Virtual microscopy systems are typically implemented following standard client-server architectures, under which the server must store a huge quantity of data. The server must attend requests from many clients as several Regions of Interest (RoIs) at any desired levels of magnification and quality. The communication bandwidth limitation, the I/O image data accesses, the decompression processing and specific raw image data operations such as clipping or zooming to a desired magnification, are highly time-consuming processes. All this together may result in poor navigation experiences with annoying effects produced by the delayed response times. This article presents a virtual microscope system with a distributed storage system and parallel processing. The system attends each request in parallel, using a clustered java virtual machine and a distributed filesystem. Images are stored in JPEG2000 which allows natural parallelization by splitting the image data into a set of small codeblocks that contain independent information of an image patch, namely, a particular magnification, a specific image location and a pre-established quality level. The compressed J2K file is replicated within the Distributed Filesystem, providing fault tolerance and fast access. A requested RoI is split into stripes which are independently decoded for the distributed filesystem, using an index file which allows to easily locate the particular node containing the required set of codeblocks. When comparing with a non-parallelized version of the virtual microscope software, user experience is improved by speeding up RoI displaying in about 60 % using two computers.
Electrical Dissipative Structures in Membrane-Coupled Compartment Systems
NASA Astrophysics Data System (ADS)
Feudel, U.; Feistel, R.; Ebeling, W.
Reaction-diffusion systems with charged particles are studied. Conditions for the arising of electrical dissipative structures in a compartment system consisting of two boxes separated by a membrane are derived. The appearance of a polar dissipative structure is proved for a simple capacitor model in combination with a simple second order chemical kinetics which leads to an analytically solvable problem. Electrical dissipative structures can in principle be considered as non equilibrium electrical batteries. The theoretical efficiency of such batteries is estimated.Translated AbstractElektrische Dissipative Strukturen in Membrangekoppelten SystemenEs werden Reaktions-Diffusionssysteme mit geladenen Teilchen studiert. Bedingungen für die Entstehung elektrischer dissipativer Strukturen in einem Kompartment-System, bestehend aus zwei durch eine Membran getrennten Zellen werden abgeleitet. Die Entstehung einer polaren dissipativen Struktur wird für ein einfaches Kondensatorenmodell in Kombination mit einer einfachen chemischen Kinetik, das analytische Lösbarkeit gestattet, nachgewiesen. Elektrische dissipative Strukturen können im Prinzip als elektrische Batterien fern von Gleichgewicht betrachtet werden. Der theoretische Wirkungsgrad einer solchen Batterie wird berechnet.
Recent advances in the vertical coupling in the Atmosphere-Ionosphere System
NASA Astrophysics Data System (ADS)
Knížová, Petra Koucká; Georgieva, Katya; Ward, William; Yiğit, Erdal
2015-12-01
Welcome to this special issue of the Journal of Atmospheric and Solar-Terrestrial Physics, dedicated to the investigation of the coupling phenomena in the neutral Atmosphere-Ionosphere System. This special issue covers processes in the Atmosphere-Ionosphere System that significantly influence and/or rule the coupling within the regions. Earth's atmospheric regions are intricately coupled to one another via various dynamical, chemical, and electrodynamic processes. The coupling effects can be seen on the modulation of the waves from the lower to upper atmosphere as well as from low- to high-latitudes, electrodynamic and compositional changes, and plasma irregularities at different latitudinal regions around the globe due to the varying energy inputs. A special attention is paid to the Mesosphere-Lower Thermosphere region that represents a critical region in various coupling processes between the lower/middle atmosphere and the upper atmosphere/ionosphere since it forms physical processes filter and shape the flux of waves ascending through the mesosphere into the overlying thermosphere. Varying energy inputs from the Sun and from the lower atmosphere is one of the topics. Processes contributing to the vertical coupling in the atmosphere are discussed on theoretical basis and with respect to recent and long-term experimental measurements as well. Solar activity represents an important factor that directly or indirectly modulates the coupling processes.
The Met Office Coupled Atmosphere/Land/Ocean/Sea-Ice Data Assimilation System
NASA Astrophysics Data System (ADS)
Lea, Daniel; Mirouze, Isabelle; King, Robert; Martin, Matthew; Hines, Adrian
2015-04-01
The Met Office has developed a weakly-coupled data assimilation (DA) system using the global coupled model HadGEM3 (Hadley Centre Global Environment Model, version 3). At present the analysis from separate ocean and atmosphere DA systems are combined to produced coupled forecasts. The aim of coupled DA is to produce a more consistent analysis for coupled forecasts which may lead to less initialisation shock and improved forecast performance. The HadGEM3 coupled model combines the atmospheric model UM (Unified Model) at 60 km horizontal resolution on 85 vertical levels, the ocean model NEMO (Nucleus for European Modelling of the Ocean) at 25 km (at the equator) horizontal resolution on 75 vertical levels, and the sea-ice model CICE at the same resolution as NEMO. The atmosphere and the ocean/sea-ice fields are coupled every 1-hour using the OASIS coupler. The coupled model is corrected using two separate 6-hour window data assimilation systems: a 4D-Var for the atmosphere with associated soil moisture content nudging and snow analysis schemes on the one hand, and a 3D-Var FGAT for the ocean and sea-ice on the other hand. The background information in the DA systems comes from a previous 6-hour forecast of the coupled model. To isolate the impact of the coupled DA, 13-month experiments have been carried out, including 1) a full atmosphere/land/ocean/sea-ice coupled DA run, 2) an atmosphere-only run forced by OSTIA SSTs and sea-ice with atmosphere and land DA, and 3) an ocean-only run forced by atmospheric fields from run 2 with ocean and sea-ice DA. In addition, 5-day and 10-day forecast runs, have been produced from initial conditions generated by either run 1 or a combination of runs 2 and 3. The different results have been compared to each other and, whenever possible, to other references such as the Met Office atmosphere and ocean operational analyses or the OSTIA SST data. The performance of the coupled DA is similar to the existing separate ocean and atmosphere
Reid, David W; Doell, Faye K; Dalton, E Jane; Ahmad, Saunia
2008-12-01
The systemic-constructivist approach to studying and benefiting couples was derived from qualitative and quantitative research on distressed couples over the past 10 years. Systemic-constructivist couple therapy (SCCT) is the clinical intervention that accompanies the approach. SCCT guides the therapist to work with both the intrapersonal and the interpersonal aspects of marriage while also integrating the social-environmental context of the couple. The theory that underlies SCCT is explained, including concepts such as we-ness and interpersonal processing. The primary components of the therapy are described. Findings described previously in an inaugural monograph containing extensive research demonstrating the long-term utility of SCCT are reviewed. (PsycINFO Database Record (c) 2010 APA, all rights reserved). PMID:22122535
Coupling vs decoupling approaches for PDE/ODE systems modeling intercellular signaling
NASA Astrophysics Data System (ADS)
Carraro, Thomas; Friedmann, Elfriede; Gerecht, Daniel
2016-06-01
We consider PDE/ODE systems for the simulation of intercellular signaling in multicellular environments. The intracellular processes for each cell described here by ODEs determine the long-time dynamics, but the PDE part dominates the solving effort. Thus, it is not clear if commonly used decoupling methods can outperform a coupling approach. Based on a sensitivity analysis, we present a systematic comparison between coupling and decoupling approaches for this class of problems and show numerical results. For biologically relevant configurations of the model, our quantitative study shows that a coupling approach performs much better than a decoupling one.
NASA Astrophysics Data System (ADS)
Bi, Siwei; Liu, Chengbu; Hu, Haiquan; Zhang, Changqiao
2001-12-01
The magnetic coupling interaction for Cu(II) binuclear systems with bridging groups C2O4 2- , C2O2( NH) 2 2- ( cis), C2O2( NH) 2 2- ( trans) and C2S2( NH) 2 2- ( trans) was studied by the broken symmetry (BS) approach within the framework of the density functional theory (DFT). The influence of different coordination atoms and geometry on magnetic coupling interaction was theoretically analyzed. Both of the calculated and experimental results were compared. The variation trends of coupling interaction calculated are in agreement with experimental ones.
NASA Astrophysics Data System (ADS)
Bill, E.; Bominaar, E. L.; Ding, X.-Q.; Trautwein, A. X.; Winkler, H.; Mandon, D.; Weiss, R.; Gold, A.; Jayaraj, K.; Toney, G. E.
1990-07-01
Magnetic properties of frozen solutions of highly oxidized iron porphyrin complexes were investigated by EPR and Mössbauer spectroscopy. The Mössbauer spectra, recorded at low temperatures in various magnetic fields, were analyzed on the basis of spin Hamiltonian simulations. Spin coupling between ferryl iron (FeIV) and porphyrin cation radical was taken into account explicitly. Hyperfine and spin-coupling parameters are given for several complexes, together with zero-field parameters. One of the complexes exhibits weak spin coupling, it is the first model system exhibiting properties comparable to those of the oxoferryl cation radical enzyme Horse Radish Peroxidase I.
An Exact SU(2) Symmetry and Persistent Spin Helix ina Spin-orbit Coupled System
Bernevig, B.A.; Orenstein, J.; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.
2007-01-22
Spin-orbit coupled systems generally break the spin rotation symmetry. However, for a model with equal Rashba and Dresselhauss coupling constant (the ReD model), and for the [110] Dresselhauss model, a new type of SU(2) spin rotation symmetry is discovered. This symmetry is robust against spin-independent disorder and interactions, and is generated by operators whose wavevector depends on the coupling strength. It renders the spin lifetime infinite at this wavevector, giving rise to a Persistent Spin Helix (PSH). We obtain the spin fluctuation dynamics at, and away, from the symmetry point, and suggest experiments to observe the PSH.
Kristensen, Philip Trøst; de Lasson, Jakob Rosenkrantz; Gregersen, Niels
2014-11-15
We show how one can use a nonlocal boundary condition, which is compatible with standard frequency domain methods, for numerical calculation of quasinormal modes in optical cavities coupled to waveguides. In addition, we extend the definition of the quasinormal mode norm by use of the theory of divergent series to provide a framework for modeling of optical phenomena in such coupled cavity-waveguide systems. As example applications, we calculate the Purcell factor and study perturbative changes in the complex resonance frequency of a photonic crystal cavity coupled to a defect waveguide. PMID:25490468
An Exact SU(2) Symmetry and Persistent Spin Helix in a Spin-Orbit Coupled System
Bernevig, Andrei
2010-02-10
Spin-orbit coupled systems generally break the spin rotation symmetry. However, for a model with equal Rashba and Dresselhauss coupling constant (the ReD model), and for the [110] Dresselhauss model, a new type of SU(2) spin rotation symmetry is discovered. This symmetry is robust against spin-independent disorder and interactions, and is generated by operators whose wavevector depends on the coupling strength. It renders the spin lifetime infinite at this wavevector, giving rise to a Persistent Spin Helix (PSH). We obtain the spin fluctuation dynamics at, and away, from the symmetry point, and suggest experiments to observe the PSH.
Stability analysis and simulations of coupled bulk-surface reaction–diffusion systems
Madzvamuse, Anotida; Chung, Andy H. W.; Venkataraman, Chandrasekhar
2015-01-01
In this article, we formulate new models for coupled systems of bulk-surface reaction–diffusion equations on stationary volumes. The bulk reaction–diffusion equations are coupled to the surface reaction–diffusion equations through linear Robin-type boundary conditions. We then state and prove the necessary conditions for diffusion-driven instability for the coupled system. Owing to the nature of the coupling between bulk and surface dynamics, we are able to decouple the stability analysis of the bulk and surface dynamics. Under a suitable choice of model parameter values, the bulk reaction–diffusion system can induce patterning on the surface independent of whether the surface reaction–diffusion system produces or not, patterning. On the other hand, the surface reaction–diffusion system cannot generate patterns everywhere in the bulk in the absence of patterning from the bulk reaction–diffusion system. For this case, patterns can be induced only in regions close to the surface membrane. Various numerical experiments are presented to support our theoretical findings. Our most revealing numerical result is that, Robin-type boundary conditions seem to introduce a boundary layer coupling the bulk and surface dynamics. PMID:25792948
Addressing two-level systems variably coupled to an oscillating field.
Navon, Nir; Kotler, Shlomi; Akerman, Nitzan; Glickman, Yinnon; Almog, Ido; Ozeri, Roee
2013-08-16
We propose a simple method to spectrally resolve an array of identical two-level systems coupled to an inhomogeneous oscillating field. The addressing protocol uses a dressing field with a spatially dependent coupling to the atoms. We validate this scheme experimentally by realizing single-spin addressing of a linear chain of trapped ions that are separated by ~3 μm, dressed by a laser field that is resonant with the micromotion sideband of a narrow optical transition. PMID:23992060
An Incorporate Ultrasonic Coupling Device for Long-Focal- Zone Photoacoustic Imaging System
NASA Astrophysics Data System (ADS)
Peng, Dong-qing; Peng, Yuan-yuan; Wu, Shu-lian; Li, Hui
2016-01-01
An incorporate ultrasonic coupling device for extended focal zone focused photoacoustic imaging was designed. Phantom experimental imaging was carried out. The results show that, with the incorporate ultrasonic coupling device,accurate imaging position of absorber in the sample can be achieved. And it is worth mentioning that without the large water tank,the photoacoustic imaging experimental system become simple. Our work has a potential application in the noninvasive photoacoustic imaging of bio-tissue.
Addressing Two-Level Systems Variably Coupled to an Oscillating Field
NASA Astrophysics Data System (ADS)
Navon, Nir; Kotler, Shlomi; Akerman, Nitzan; Glickman, Yinnon; Almog, Ido; Ozeri, Roee
2013-08-01
We propose a simple method to spectrally resolve an array of identical two-level systems coupled to an inhomogeneous oscillating field. The addressing protocol uses a dressing field with a spatially dependent coupling to the atoms. We validate this scheme experimentally by realizing single-spin addressing of a linear chain of trapped ions that are separated by ˜3μm, dressed by a laser field that is resonant with the micromotion sideband of a narrow optical transition.
Existence of solutions for a Schrödinger system with linear and nonlinear couplings
NASA Astrophysics Data System (ADS)
Li, Kui; Zhang, Zhitao
2016-08-01
We study an important system of Schrödinger equations with linear and nonlinear couplings arising from Bose-Einstein condensates. We use the Nehari manifold to prove the existence of a ground state solution; moreover, we give the sign of the solutions depending on linear coupling; by using index theory and Nehari manifold, we prove that there exist infinitely many positive bound state solutions.
NASA Charge Coupled Device (CCD) Spectrometer System (NCSS)
NASA Technical Reports Server (NTRS)
Wright, C. W.; Bailey, S. A.; Piazza, C. R.
1988-01-01
A small lightweight NCSS was designed, constructed, and is now being bench tested at Wallops. The unit provides 256, 2.7 nm wide channels in the visible spectrum from approximately 400 to 1100 nm. The present input slit provides a spectral impulse response of about 10 nm. Up to five NCSS sensors may be bused to one data system interface. The NCSS contains a high speed, 16 bit analog to digital converter (ADC) with an integral wide-band sample-and-hold amplifier. The NCSS was developed primarily for use with the Airbone Oceanographic Lidar (AOL). A prototype NCSS is presently interfaced to the AOL. The AOL will use two new NCSS units onboard the Goddard P-3A aircraft. They will provide the AOL with high resolution sky and ocean spectra. The up-looking NCSS will provide the AOL data system (AOLDS) with down-welling solar radiance, and the down-looking NCSS will provide ocean color spectra. The solar radiance will be used to correct various ocean color algorithms now being researched.
NASA Charge Coupled Device (CCD) Spectrometer System (NCSS)
NASA Astrophysics Data System (ADS)
Wright, C. W.; Bailey, S. A.; Piazza, C. R.
A small lightweight NCSS was designed, constructed, and is now being bench tested at Wallops. The unit provides 256, 2.7 nm wide channels in the visible spectrum from approximately 400 to 1100 nm. The present input slit provides a spectral impulse response of about 10 nm. Up to five NCSS sensors may be bused to one data system interface. The NCSS contains a high speed, 16 bit analog to digital converter (ADC) with an integral wide-band sample-and-hold amplifier. The NCSS was developed primarily for use with the Airbone Oceanographic Lidar (AOL). A prototype NCSS is presently interfaced to the AOL. The AOL will use two new NCSS units onboard the Goddard P-3A aircraft. They will provide the AOL with high resolution sky and ocean spectra. The up-looking NCSS will provide the AOL data system (AOLDS) with down-welling solar radiance, and the down-looking NCSS will provide ocean color spectra. The solar radiance will be used to correct various ocean color algorithms now being researched.
Toward quantifying robustness-performance tradeoffs in coupled natural-human systems
NASA Astrophysics Data System (ADS)
Muneepeerakul, R.; Anderies, J. M.
2015-12-01
The concept of robustness has increasingly been applied to coupled natural-human systems, but its systematic quantification is lacking. Here, through a simple model, we mathematically operationalize a conceptual framework (Anderies, Janssen, & Ostrom, Ecology & Society 2004) that couples resource, human, and infrastructure together. The model links how micromotivators—derived from resource availability, infrastructure functionality, and outside opportunities—affect resulting societal outcomes. Conditions under which the coupled system is sustainable or collapses are clearly derived in terms of the system's social and biophysical factors. Based on these conditions, we can quantitatively describe the tradeoffs between system performance and its robustness against fluctuation of external forcings. In this talk, model development and preliminary results are briefly reported, and potential future analyses discussed. This work is a first step toward systematically quantifying robustness, which is needed if the concept of robustness is to be used in a more meaningful way and achieve more tangible policy outcomes.
Triple-effect absorption refrigeration system with double-condenser coupling
DeVault, Robert C.; Biermann, Wendell J.
1993-01-01
A triple effect absorption refrigeration system is provided with a double-condenser coupling and a parallel or series circuit for feeding the refrigerant-containing absorbent solution through the high, medium, and low temperature generators utilized in the triple-effect system. The high temperature condenser receiving vaporous refrigerant from the high temperature generator is double coupled to both the medium temperature generator and the low temperature generator to enhance the internal recovery of heat within the system and thereby increase the thermal efficiency thereof.
Surface acoustic wave regulated single photon emission from a coupled quantum dot-nanocavity system
NASA Astrophysics Data System (ADS)
Weiß, M.; Kapfinger, S.; Reichert, T.; Finley, J. J.; Wixforth, A.; Kaniber, M.; Krenner, H. J.
2016-07-01
A coupled quantum dot-nanocavity system in the weak coupling regime of cavity-quantumelectrodynamics is dynamically tuned in and out of resonance by the coherent elastic field of a fSAW ≃ 800 MHz surface acoustic wave. When the system is brought to resonance by the sound wave, light-matter interaction is strongly increased by the Purcell effect. This leads to a precisely timed single photon emission as confirmed by the second order photon correlation function, g(2). All relevant frequencies of our experiment are faithfully identified in the Fourier transform of g(2), demonstrating high fidelity regulation of the stream of single photons emitted by the system.
Triple-effect absorption refrigeration system with double-condenser coupling
DeVault, R.C.; Biermann, W.J.
1993-04-27
A triple effect absorption refrigeration system is provided with a double-condenser coupling and a parallel or series circuit for feeding the refrigerant-containing absorbent solution through the high, medium, and low temperature generators utilized in the triple-effect system. The high temperature condenser receiving vaporous refrigerant from the high temperature generator is double coupled to both the medium temperature generator and the low temperature generator to enhance the internal recovery of heat within the system and thereby increase the thermal efficiency thereof.
Advances in Modeling of Coupled Hydrologic-Socioeconomic Systems
NASA Astrophysics Data System (ADS)
Amadio, Mattia; Mysiak, Jaroslav; Pecora, Silvano; Agnetti, Alberto
2013-04-01
River flooding is the most common natural disaster in Europe, causing deaths and huge amount of economic losses. Disastrous flood events are often related to extreme meteorological conditions; therefore, climate change is expected to have an important influence over the intensity and frequency of major floods. While approximated large-scale assessments of flood risk scenarios have been carried out, the knowledge of the effects at smaller scales is poor or incomplete, with few localized studies. Also, the methods are still coarse and uneven. The approach of this study starts from the definition of the risk paradigm and the elaboration of local climatic scenarios to track a methodology aimed at elaborating and combining the three elements concurring to the determination of risk: hydrological hazard, value exposure and vulnerability. First, hydrological hazard scenarios are provided by hydrological and hydrodynamic models, used in to a flood forecasting system capable to define "what-if" scenario in a flexible way. These results are then integrated with land-use data (exposure) and depth-damage functions (vulnerability) in a GIS environment, to assess the final risk value (potential flood damage) and visualize it in form of risk maps. In this paper results from a pilot study in the Polesine area are presented, where four simulated levee breach scenarios are compared. The outcomes of the analysis may be instrumental to authorities to increase the knowledge of possible direct losses and guide decision making and planning processes also. As future perspective, the employed methodology can also be extended at the basin scale through integration with the existent flood warning system to gain a real-time estimate of floods direct costs.
Quantum Impurities develop Fractional Local Moments in Spin-Orbit Coupled Systems
NASA Astrophysics Data System (ADS)
Agarwala, Adhip; Shenoy, Vijay B.
Systems with spin-orbit coupling have the potential to realize exotic quantum states which are interesting both from fundamental and technological perspectives. We investigate the new physics that arises when a correlated spin-1/2 quantum impurity hybridizes with a spin-orbit coupled Fermi system. The intriguing aspect uncovered is that, in contrast to unit local moment in conventional systems, the impurity here develops a fractional local moment of 2/3. The concomitant Kondo effect has a high Kondo temperature (TK). Our theory explains these novel features including the origins of the fractional local moment and provides a recipe to use spin-orbit coupling(λ) to enhance Kondo temperature (TK ~λ 4 / 3). These results will be useful in shedding light on a range of experiments, including those of magnetic impurities at oxide interfaces. Our predictions can also be directly tested in cold-atom systems where the spin-orbit coupling can be engendered via a uniform synthetic non-Abelian gauge field. In addition, this work opens up new directions of research in spin-orbit coupled Kondo lattice systems. Reference: arXiv:1509.07328 Work supported by CSIR, DST and DAE.
Eremeev, Sergey V.; Tsirkin, Stepan S.; Nechaev, Ilya A.; Echenique, Pedro M.; Chulkov, Evgueni V.
2015-01-01
Intriguing phenomena and novel physics predicted for two-dimensional (2D) systems formed by electrons in Dirac or Rashba states motivate an active search for new materials or combinations of the already revealed ones. Being very promising ingredients in themselves, interplaying Dirac and Rashba systems can provide a base for next generation of spintronics devices, to a considerable extent, by mixing their striking properties or by improving technically significant characteristics of each other. Here, we demonstrate that in BiTeI@PbSb2Te4 composed of a BiTeI trilayer on top of the topological insulator (TI) PbSb2Te4 weakly- and strongly-coupled Dirac-Rashba hybrid systems are realized. The coupling strength depends on both interface hexagonal stacking and trilayer-stacking order. The weakly-coupled system can serve as a prototype to examine, e.g., plasmonic excitations, frictional drag, spin-polarized transport, and charge-spin separation effect in multilayer helical metals. In the strongly-coupled regime, within ~100 meV energy interval of the bulk TI projected bandgap a helical state substituting for the TI surface state appears. This new state is characterized by a larger momentum, similar velocity, and strong localization within BiTeI. We anticipate that our findings pave the way for designing a new type of spintronics devices based on Rashba-Dirac coupled systems. PMID:26239268
Eremeev, Sergey V; Tsirkin, Stepan S; Nechaev, Ilya A; Echenique, Pedro M; Chulkov, Evgueni V
2015-01-01
Intriguing phenomena and novel physics predicted for two-dimensional (2D) systems formed by electrons in Dirac or Rashba states motivate an active search for new materials or combinations of the already revealed ones. Being very promising ingredients in themselves, interplaying Dirac and Rashba systems can provide a base for next generation of spintronics devices, to a considerable extent, by mixing their striking properties or by improving technically significant characteristics of each other. Here, we demonstrate that in BiTeI@PbSb2Te4 composed of a BiTeI trilayer on top of the topological insulator (TI) PbSb2Te4 weakly- and strongly-coupled Dirac-Rashba hybrid systems are realized. The coupling strength depends on both interface hexagonal stacking and trilayer-stacking order. The weakly-coupled system can serve as a prototype to examine, e.g., plasmonic excitations, frictional drag, spin-polarized transport, and charge-spin separation effect in multilayer helical metals. In the strongly-coupled regime, within ~100 meV energy interval of the bulk TI projected bandgap a helical state substituting for the TI surface state appears. This new state is characterized by a larger momentum, similar velocity, and strong localization within BiTeI. We anticipate that our findings pave the way for designing a new type of spintronics devices based on Rashba-Dirac coupled systems. PMID:26239268
Spatiotemporal dynamics of a digital phase-locked loop based coupled map lattice system
Banerjee, Tanmoy Paul, Bishwajit; Sarkar, B. C.
2014-03-15
We explore the spatiotemporal dynamics of a coupled map lattice (CML) system, which is realized with a one dimensional array of locally coupled digital phase-locked loops (DPLLs). DPLL is a nonlinear feedback-controlled system widely used as an important building block of electronic communication systems. We derive the phase-error equation of the spatially extended system of coupled DPLLs, which resembles a form of the equation of a CML system. We carry out stability analysis for the synchronized homogeneous solutions using the circulant matrix formalism. It is shown through extensive numerical simulations that with the variation of nonlinearity parameter and coupling strength the system shows transitions among several generic features of spatiotemporal dynamics, viz., synchronized fixed point solution, frozen random pattern, pattern selection, spatiotemporal intermittency, and fully developed spatiotemporal chaos. We quantify the spatiotemporal dynamics using quantitative measures like average quadratic deviation and spatial correlation function. We emphasize that instead of using an idealized model of CML, which is usually employed to observe the spatiotemporal behaviors, we consider a real world physical system and establish the existence of spatiotemporal chaos and other patterns in this system. We also discuss the importance of the present study in engineering application like removal of clock-skew in parallel processors.
Stability and Hopf Bifurcation for Two Advertising Systems, Coupled with Delay
NASA Astrophysics Data System (ADS)
Sterpu, Mihaela; Rocşoreanu, Carmen
2007-09-01
Two advertising systems were linearly coupled via the first variable, with time delay. The stability and the Hopf bifurcation corresponding to the symmetric equilibrium point (the origin) in the 4D system are analyzed. Different types of oscillations corresponding to the limit cycles are compared.
Operational coupled atmosphere - ocean - ice forecast system for the Gulf of St. Lawrence, Canada
NASA Astrophysics Data System (ADS)
Faucher, M.; Roy, F.; Desjardins, S.; Fogarty, C.; Pellerin, P.; Ritchie, H.; Denis, B.
2009-09-01
A fully interactive coupled atmosphere-ocean-ice forecasting system for the Gulf of St. Lawrence (GSL) has been running in experimental mode at the Canadian Meteorological Centre (CMC) for the last two winter seasons. The goal of this project is to provide more accurate weather and sea ice forecasts over the GSL and adjacent coastal areas by including atmosphere-oceanice interactions in the CMC operational forecast system using a formal coupling strategy between two independent modeling components. The atmospheric component is the Canadian operational GEM model (Côté et al. 1998) and the oceanic component is the ocean-ice model for the Gulf of St. Lawrence developed at the Maurice Lamontagne Institute (IML) (Saucier et al. 2003, 2004). The coupling between those two models is achieved by exchanging surface fluxes and variables through MPI communication. The re-gridding of the variables is done with a package developed at the Recherche en Prevision Numerique centre (RPN, Canada). Coupled atmosphere - ocean - ice forecasts are issued once a day based on 00GMT data. Results for the past two years have demonstrated that the coupled system produces improved forecasts in and around the GSL during all seasons, proving that atmosphere-ocean-ice interactions are indeed important even for short-term Canadian weather forecasts. This has important implications for other coupled modeling and data assimilation partnerships that are in progress involving EC, the Department of Fisheries and Oceans (DFO) and the National Defense (DND). Following this experimental phase, it is anticipated that this GSL system will be the first fully interactive coupled system to be implemented at CMC.
Statistical Physics of Neural Systems with Nonadditive Dendritic Coupling
NASA Astrophysics Data System (ADS)
Breuer, David; Timme, Marc; Memmesheimer, Raoul-Martin
2014-01-01
How neurons process their inputs crucially determines the dynamics of biological and artificial neural networks. In such neural and neural-like systems, synaptic input is typically considered to be merely transmitted linearly or sublinearly by the dendritic compartments. Yet, single-neuron experiments report pronounced supralinear dendritic summation of sufficiently synchronous and spatially close-by inputs. Here, we provide a statistical physics approach to study the impact of such nonadditive dendritic processing on single-neuron responses and the performance of associative-memory tasks in artificial neural networks. First, we compute the effect of random input to a neuron incorporating nonlinear dendrites. This approach is independent of the details of the neuronal dynamics. Second, we use those results to study the impact of dendritic nonlinearities on the network dynamics in a paradigmatic model for associative memory, both numerically and analytically. We find that dendritic nonlinearities maintain network convergence and increase the robustness of memory performance against noise. Interestingly, an intermediate number of dendritic branches is optimal for memory functionality.
Deep strong coupling in a circuit QED system (1) - Introduction
NASA Astrophysics Data System (ADS)
Semba, Kouichi; Fuse, Tomoko; Yoshihara, Fumiki; Ashhab, Sahel
Recently, light-matter interaction at the single-photon level has been demonstrated in superconducting circuits (circuit-QED). The interaction energy between a superconducting artificial atom and an excitation quantum of a harmonic oscillator in the microwave region has been shown to be very large, at least a few thousand times that of the atom-photon interaction obtained using Rydberg atoms. It is also intriguing that, depending on the circuit design, the relevant physical parameters of this system can be controlled at will. In particular, an interaction energy as large as the transition energy of a superconducting artificial atom or a harmonic oscillator is possible, where totally new states, such as a spontaneously generated Schrödinger-cat-like correlated ground state of light and matter, have been predicted. In this talk, I will introduce the motivation and the significance of the research, methods to achieve such a strong interaction, and a brief overview of the obtained results. This work was supported by JSPS KAKENHI Grant Number 25220601.
Coupled MEMS Nuclear Battery and FEEP Thruster System
NASA Astrophysics Data System (ADS)
Zillmer, Andrew J.; Santarius, John F.; Blanchard, James P.
2004-02-01
This paper describes research on combining a microelectromechanical system (MEMS) nuclear battery with a field-emission electric propulsion (FEEP) thruster, thereby providing potentially attractive solutions to precise satellite stationkeeping and propulsion requirements. The MEMS nuclear battery, under development at the University of Wisconsin, consists of multiple layers of a radioisotope source alternating with pn junction semiconductor energy converters. Many radioisotopes were assessed for this purpose, typically with average beta-particle energies of 50-250 eV, and the beta-emitter Cs-137 tentatively has been identified as most suitable. A slit-style, cesium-propellant FEEP thruster was chosen for the present study because it is a relatively mature technology. For use with a FEEP thruster, many modular MEMS nuclear batteries must be arrayed in series in order to achieve a sufficiently high voltage (~10 kV). Critical issues include achieving an attractively high MEMS nuclear battery efficiency, maximizing the battery's lifetime against radiation damage, producing the relatively high voltage (~10 kV) required for a FEEP thruster, and providing an effective interface between the MEMS nuclear battery modules and the FEEP thruster.
Mechanisms of Fano resonances in coupled plasmonic systems.
Lovera, Andrea; Gallinet, Benjamin; Nordlander, Peter; Martin, Olivier J F
2013-05-28
Fano resonances in hybridized systems formed from the interaction of bright modes only are reported. Despite precedent works, we demonstrate theoretically and experimentally that Fano resonances can be obtained by destructive interference between two bright dipolar modes out of phase. A simple oscillator model is provided to predict and fit the far-field scattering. The predictions are verified with numerical calculations using a surface integral equation method for a wide range of geometrical parameters. The validity of the model is then further demonstrated with experimental dark-field scattering measurements on actual nanostructures in the visible range. A remarkable set of properties like crossings, avoided crossings, inversion of subradiant and superradiant modes and a plasmonic equivalent of a bound state in the continuum are presented. The nanostructure, that takes advantage of the combination of Fano resonance and nanogap effects, also shows high tunability and strong near-field enhancement. Our study provides a general understanding of Fano resonances as well as a simple tool for engineering their spectral features. PMID:23614396
Towards a Fine-Resolution Global Coupled Climate System for Prediction on Decadal/Centennial Scales
McClean, Julie L.
2013-11-14
The over-arching goal of this project was to contribute to the realization of a fully coupled fine resolution Earth System Model simulation in which a weather-scale atmosphere is coupled to an ocean in which mesoscale eddies are largely resolved. Both a prototype fine-resolution fully coupled ESM simulation and a first-ever multi-decadal forced fine-resolution global coupled ocean/ice simulation were configured, tested, run, and analyzed as part of this grant. Science questions focused on the gains from the use of high horizontal resolution, particularly in the ocean and sea-ice, with respect to climatically important processes. Both these fine resolution coupled ocean/sea ice and fully-coupled simulations and precedent stand-alone eddy-resolving ocean and eddy-permitting coupled ocean/ice simulations were used to explore the high resolution regime. Overall, these studies showed that the presence of mesoscale eddies significantly impacted mixing processes and the global meridional overturning circulation in the ocean simulations. Fourteen refereed publications and a Ph.D. dissertation resulted from this grant.
Zheng, Hai-Xue; Jin, Ye; Yin, Shuang-Hui; Guo, Hui-Chen; Shang, You-Jun; Bai, Xing-Wen; Liu, Xiang-Tao; Xie, Qing-Ge
2007-09-01
To make transcription of the target gene be driven by T7 RNA polymerase (T7 RNAP) in the eukaryotic cells, and the transcripts be CAP-independent translated. Firstly, the T7 RNAP was introduced into eukaryotic cells by two methods: (1) the BHK-21 cells were contransfected by the plasmid expressing T7 RNAP and pIERS-EGFP-ET vector; (2) by transfection of the cell line stably expressing T7 RNAP. The internal ribosome entry site (IRES) element from FMDV was cloned into the downstream of the T7 promoter sequence of the prokaryotic expressing vector pET-40a-c (+), resulted in the plasmid would express the transcripts carrying the IERS element at its 5' end. The enhanced green fluorescent protein (EGFP) gene was cloned into the downstream of the IERS element, resulted in plasmid pIERS-EGFP-ET. Then, the two kinds of cells expressing T7 RANP were transfected by pIERS-EGFP-ET. The green fluorescence in the transfected cells was observed under a fluorescence microscope equipped with a video documentation system. And the expressional efficiency was analyzed with flow cytometry (FCM). The results show that the IRES element from FMDV has the role of initiating CAP-independent translation, and lay foundation for researching function of the element and interrelated proteins. It would be potential for expressing target gene by the T7 RNAP couple expression system. PMID:18051880
Gao, Zhouzheng; Zhang, Hongping; Ge, Maorong; Niu, Xiaoji; Shen, Wenbin; Wickert, Jens; Schuh, Harald
2015-01-01
The continuity and reliability of precise GNSS positioning can be seriously limited by severe user observation environments. The Inertial Navigation System (INS) can overcome such drawbacks, but its performance is clearly restricted by INS sensor errors over time. Accordingly, the tightly coupled integration of GPS and INS can overcome the disadvantages of each individual system and together form a new navigation system with a higher accuracy, reliability and availability. Recently, ionosphere-constrained (IC) precise point positioning (PPP) utilizing raw GPS observations was proven able to improve both the convergence and positioning accuracy of the conventional PPP using ionosphere-free combined observations (LC-PPP). In this paper, a new mode of tightly coupled integration, in which the IC-PPP instead of LC-PPP is employed, is implemented to further improve the performance of the coupled system. We present the detailed mathematical model and the related algorithm of the new integration of IC-PPP and INS. To evaluate the performance of the new tightly coupled integration, data of both airborne and vehicle experiments with a geodetic GPS receiver and tactical grade inertial measurement unit are processed and the results are analyzed. The statistics show that the new approach can further improve the positioning accuracy compared with both IC-PPP and the tightly coupled integration of the conventional PPP and INS. PMID:25763647
NASA Astrophysics Data System (ADS)
Luo, Qing; Li, Dongxu; Jiang, Jianping
2014-01-01
Control moment gyros (CMGs) are widely used as actuators for attitude control in spacecraft. However, micro-vibrations produced by CMGs will degrade the pointing performance of high-sensitivity instruments on-board the spacecraft. This paper addresses dynamic modelling and performs an analysis on the micro-vibration isolation for a single gimbal CMG (SGCMG) cluster. First, an analytical model was developed to describe both the coupled SGCMG cluster and the multi-axis isolation system that can express the dynamic outputs. This analytical model accurately reflects the mass and inertia properties, the gyroscopic effects and flexible modes of the coupled system, which can be generalized for isolation applications of SGCMG clusters. Second, the analytical model was validated using MSC.NASTRAN software based on the finite element technique. The dynamic characteristics of the coupled system are affected by the mass distribution and the gyroscopic effects of the SGCMGs. The gyroscopic effects produced by the rotary flywheel will stiffen or soften several of the structural modes of the coupled system. In addition, the gyroscopic effect of each SGCMG can interact with or counteract that of others, which induce vibration modes coupled together. Finally, the performance of the passive isolation was analysed. It was demonstrated that the gyroscopic effects should be considered in isolation studies on SGCMG clusters; otherwise, the isolation performance will be underestimated if they are ignored.
Gao, Zhouzheng; Zhang, Hongping; Ge, Maorong; Niu, Xiaoji; Shen, Wenbin; Wickert, Jens; Schuh, Harald
2015-01-01
The continuity and reliability of precise GNSS positioning can be seriously limited by severe user observation environments. The Inertial Navigation System (INS) can overcome such drawbacks, but its performance is clearly restricted by INS sensor errors over time. Accordingly, the tightly coupled integration of GPS and INS can overcome the disadvantages of each individual system and together form a new navigation system with a higher accuracy, reliability and availability. Recently, ionosphere-constrained (IC) precise point positioning (PPP) utilizing raw GPS observations was proven able to improve both the convergence and positioning accuracy of the conventional PPP using ionosphere-free combined observations (LC-PPP). In this paper, a new mode of tightly coupled integration, in which the IC-PPP instead of LC-PPP is employed, is implemented to further improve the performance of the coupled system. We present the detailed mathematical model and the related algorithm of the new integration of IC-PPP and INS. To evaluate the performance of the new tightly coupled integration, data of both airborne and vehicle experiments with a geodetic GPS receiver and tactical grade inertial measurement unit are processed and the results are analyzed. The statistics show that the new approach can further improve the positioning accuracy compared with both IC-PPP and the tightly coupled integration of the conventional PPP and INS. PMID:25763647
Land-Atmosphere Coupling Studies Using the LIS-WRF System
NASA Astrophysics Data System (ADS)
Santanello, Joseph A., Jr.; Peters-Lidard, Christa D.; Kumar, Sujay V.
2011-01-01
Land-atmosphere interactions play a critical role in determining the diurnal evolution of both planetary boundary layer (PBL) and land surface temperature and moisture states. The strength of coupling between the land surface and PBL in numerical weather prediction and climate models remains largely unexplored and undiagnosed due to the complex interactions and feedbacks present across a range of scales. In this study, a framework for diagnosing local land-atmosphere coupling (LoCo) at the process-level is presented using a coupled mesoscale model with a suite of PBL and land surface model (LSM) options along with observations from the U. S. Southern Great Plains. Specifically, the Weather Research and Forecasting (WRF) model has been coupled to NASA's Land Information System (LIS), which provides a flexible and high-resolution representation and initialization of land surface physics and states. Coupling diagnostics based on the evolution of near-surface temperature and humidity are examined along with the sensitivity of a range of PBL-LSM combinations to perturbations in soil moisture. Ultimately, this work provides a testbed to study factors controlling LoCo using the LIS-WRF system, in an effort to develop and evaluate coupling diagnostics within the community.
Influence of Coupling Delay on Noise Induced Coherent Oscillations in Excitable Systems
NASA Astrophysics Data System (ADS)
Burić, Nikola; Grozdanović, Ines; Todorović, Kristina; Vasović, Nebojša
2011-10-01
Influence of small time-delays in coupling between noisy excitable systems on the coherence resonance and self-induced stochastic resonance is studied. Parameters of delayed coupled deterministic excitable units are chosen such that the system has only one attractor, namely the stationary state, for any value of the coupling and the time-lag. Addition of white noise induces qualitatively different types of coherent oscillations, and we analyzed the influence of coupling time-delay on the properties of these coherent oscillations. The main conclusion is that time-lag τ≥1, but still smaller than the refractory period, and sufficiently strong coupling drastically change signal to noise ratio in the quantitative and qualitative way. An interval of noise values implies quite large signal to noise ratio and different types of noise induced coherence are greatly enhanced. We also observed coincident spiking for small noise intensity and time-lag proportional to the inter-spike interval of the coherent spike trains. On the other hand, time-lags τ<1 and/or weak coupling induce negligible changes in the properties of the stochastic coherence.
Brogi, Bharat Bhushan Ahluwalia, P. K.; Chand, Shyam
2015-06-24
Theoretical study of the Coulomb blockade effect on transport properties (Transmission Probability and I-V characteristics) for varied configuration of coupled quantum dot system has been studied by using Non Equilibrium Green Function(NEGF) formalism and Equation of Motion(EOM) method in the presence of magnetic flux. The self consistent approach and intra-dot Coulomb interaction is being taken into account. As the key parameters of the coupled quantum dot system such as dot-lead coupling, inter-dot tunneling and magnetic flux threading through the system can be tuned, the effect of asymmetry parameter and magnetic flux on this tuning is being explored in Coulomb blockade regime. The presence of the Coulomb blockade due to on-dot Coulomb interaction decreases the width of transmission peak at energy level ε + U and by adjusting the magnetic flux the swapping effect in the Fano peaks in asymmetric and symmetric parallel configuration sustains despite strong Coulomb blockade effect.
Friction-induced noise of gear system with lead screw and nut: Mode-coupling instability
NASA Astrophysics Data System (ADS)
Kang, Jaeyoung
2015-11-01
The mode-coupling instability in the gear system with a lead screw and nut is investigated. The actual gear geometry and the contact kinematics are developed in analytical the model. The complete set of vibration modes including axial, torsion and transverse displacements is applied to seek the solution of the linearized gear system. From the linear stability analysis, the bending mode pair as well as the torsion and axial mode pair have the strong tendency towards the mode-coupling instability. It points out that squeak noise in the lead screw system can occur even for a constant friction coefficient without the negative-friction velocity slope. The closed-form solution and numerical calculation also show that the rotating direction can drastically change the onset of mode-coupling instability.
Direct and inverse relationships between Riccati systems coupled with multiplicative terms.
Navickas, Z; Vilkas, R; Telksnys, T; Ragulskis, M
2016-01-01
An analytical and computational framework for the derivation of solitary solutions to biological systems describing the cooperation and competition of species and expressed by the system of Riccati equations coupled with multiplicative terms is presented in this paper. It is demonstrated that relationships between these solitary solutions can be either direct or inverse. Thus, an infinitesimal perturbation of one population would lead to an infinitesimal change in the other population - if only both solitary solutions are coupled with the direct relationship. But, in general, that is not true if solitary solutions are coupled with the inverse relationship - an infinitesimal perturbation of one population may result into a non-infinitesimal change in the other population. Necessary and sufficient conditions for the existence of solitary solutions are derived in the space of the system's parameters and initial conditions. PMID:27159649
NASA Technical Reports Server (NTRS)
Schreiber, Henry D.; Merkel, Robert C., Jr.; Schreiber, V. Lea; Balazs, G. Bryan
1987-01-01
The mutual interactions via electron exchange of redox couples in glass-forming melts were investigated both theoretically and experimentally. A thermodynamic approach for considering the mutual interactions leads to conclusion that the degree of mutual interaction in the melt should be proportional in part to the difference in relative reduction potentials of the interacting redox couples. Experimental studies verify this conclusion for numerous redox couples in several composition/temperature/oxygen fugacity regimes. Geochemical systems simultaneously possess many potentially multivalent elements; the stabilized redox states in the resulting magmas can be explained in part by mutual interactions and by redox buffering through the central Fe(III)- Fe(II) couples in the melts. The significance of these results for basaltic magmas of the earth, moon, and meteorites is addressed.
Li, Shilei; Zhang, Yunyun; Song, Xiaokang; Wang, Yilin; Yu, Li
2016-07-11
In this paper, an asymmetric plasmonic structure composed of two MIM (metal-insulator-metal) waveguides and two rectangular cavities is reported, which can support triple Fano resonances originating from three different mechanisms. And the multimode interference coupled mode theory (MICMT) including coupling phases is proposed based on single mode coupled mode theory (CMT), which is used for describing and explaining the multiple Fano resonance phenomenon in coupled plasmonic resonator systems. Just because the triple Fano resonances originate from three different mechanisms, each Fano resonance can be tuned independently or semi-independently by changing the parameters of the two rectangular cavities. Such, a narrow 'M' type of double Lorentzian-like line-shape transmission windows with the position and the full width at half maximum (FWHM) can be tuned freely is constructed by changing the parameters of the two cavities appropriately, which can find widely applications in sensors, nonlinear and slow-light devices. PMID:27410811
Magnetodielectric coupling in frustrated spin systems: the spinels MCr₂O₄ (M = Mn, Co and Ni).
Mufti, N; Nugroho, A A; Blake, G R; Palstra, T T M
2010-02-24
We have studied the magnetodieletric coupling of polycrystalline samples of the spinels MCr(2)O(4) (M = Mn, Co and Ni). Dielectric anomalies are clearly observed at the onset of the magnetic spiral structure (T(s)) and at the 'lock-in' transition (T(f)) in MnCr(2)O(4) and CoCr(2)O(4), and also at the onset of the canted structure (T(s)) in NiCr(2)O(4). The strength of the magnetodielectric coupling in this system can be explained by spin-orbit coupling. Moreover, the dielectric response in an applied magnetic field scales with the square of the magnetization for all three samples. Thus, the magnetodielectric coupling in this state appears to originate from the P(2)M(2) term in the free energy. PMID:21386397
Generic behavior of master-stability functions in coupled nonlinear dynamical systems
NASA Astrophysics Data System (ADS)
Huang, Liang; Chen, Qingfei; Lai, Ying-Cheng; Pecora, Louis M.
2009-09-01
Master-stability functions (MSFs) are fundamental to the study of synchronization in complex dynamical systems. For example, for a coupled oscillator network, a necessary condition for synchronization to occur is that the MSF at the corresponding normalized coupling parameters be negative. To understand the typical behaviors of the MSF for various chaotic oscillators is key to predicting the collective dynamics of a network of these oscillators. We address this issue by examining, systematically, MSFs for known chaotic oscillators. Our computations and analysis indicate that it is generic for MSFs being negative in a finite interval of a normalized coupling parameter. A general scheme is proposed to classify the typical behaviors of MSFs into four categories. These results are verified by direct simulations of synchronous dynamics on networks of actual coupled oscillators.
Cross Coupling Compensation Strategy and System Test of Dual-Driving Synchronous Control
NASA Astrophysics Data System (ADS)
Lu, Hong; Fan, Wei; Xie, Shitong
This paper focus on the synchronous control of dual-driving system, a cross coupling compensation strategy is proposed to guarantee the synchronization. Based on the stable single servo system, dual-driving synchronous control system is designed. The performance of the dual-driving system adopted cross-coupled strategy' is theoretically analyzed and simulated. Furthermore, the parameters of the speed loop and position loop is regulated to optimize the system. By using frequency domain analysis method to tune parameters of control system, dual-driving synchronous motion is finally well achieved. The results of the performance analysis and the simulation test indicates that this synchronous control scheme has fast response, small dynamic error and robustness to external disturbance.
Pythagorean coupling: Complete population transfer in a four-state system
Suchowski, Haim; Silberberg, Yaron; Uskov, Dmitry B.
2011-07-15
Complete population transfer in a four-coupled-modes system is analyzed from a geometrical point of view. An analytical solution of the dynamics is written by the use of two distinct frequencies, the generalization of the single Rabi frequency of the two-state dynamics. We also present its visualization on two separate Bloch spheres with two independent torque equations. With this scheme we analytically derive the requirements for complete population transfer in a four-state quantum system. Interestingly, the solutions are found to be linked to fundamental number theory, whereas complete population transfer occurs only if the ratios between coupling coefficients exactly match a set of Pythagorean triples.
On the joint inversion of geophysical data for models of the coupled core-mantle system
NASA Technical Reports Server (NTRS)
Voorhies, Coerte V.
1991-01-01
Joint inversion of magnetic, earth rotation, geoid, and seismic data for a unified model of the coupled core-mantle system is proposed and shown to be possible. A sample objective function is offered and simplified by targeting results from independent inversions and summary travel time residuals instead of original observations. These data are parameterized in terms of a very simple, closed model of the topographically coupled core-mantle system. Minimization of the simplified objective function leads to a nonlinear inverse problem; an iterative method for solution is presented. Parameterization and method are emphasized; numerical results are not presented.
Control of Oscillation Patterns in a Symmetric Coupled Biological Oscillator System
NASA Astrophysics Data System (ADS)
Takamatsu, Atsuko; Tanaka, Reiko; Yamamoto, Takatoki; Fujii, Teruo
2003-08-01
A chain of three-oscillator system was constructed with living biological oscillators of phasmodial slime mold, Physarum polycehalum and the oscillation patterns were analyzed by the symmetric Hopf bifurcation theory using group theory. Multi-stability of oscillation patterns was observed, even when the coupling strength was fixed. This suggests that the coupling strength is not an effective parameter to obtain a desired oscillation pattern among the multiple patterns. Here we propose a method to control oscillation patterns using resonance to external stimulus and demonstrate pattern switching induced by frequency resonance given to only one of oscillators in the system.
NASA Astrophysics Data System (ADS)
Omrani, Nour-Eddine
2016-04-01
There is increasing evidence that the response to future anthropogenic climate changes in Northern hemisphere is characterized by weakening of high-latitude westerlies in the coupled stratosphere/troposphere-system and strengthening of mid-latitude tropospheric eddy-driven jet with strong impact on large-scale precipitation. Here we show using different model experiments and wave geometry diagnostics that the overall dynamics of this response can be understood in the framework of two competing atmospheric bridges. One bridge is located in the stratosphere and connect the tropical Sea Surface Temperature (SST) with the coupled high-latitude stratosphere/troposphere system through changes in the upper flank of subtropical jet and downward stratosphere/troposphere dynamical coupling. This bridge is responsible for the weakening of the westerlies in high latitude stratosphere/troposphere system. The second bridge is in the troposphere and connects the tropical ocean warming with the extra-tropics trough changes in the static stability. This bridge is responsible for the wave-induced strengthening of the tropospheric eddy-driven jet. It is shown that the large-scale precipitation response in mid-to-high latitudes results mainly from the dynamical adjustment to wave-driven changes in the tropospheric meridional overturning circulation. The competing interaction between the stratospheric and tropospheric pathway constitutes another aspect of stratosphere/troposphere dynamical coupling. Her we will show how that such coupling can help understanding model discrepancies in the Northern Hemisphere future climate change.
A comparison of iterative methods for a model coupled system of elliptic equations
Donato, J.M.
1993-08-01
Many interesting areas of current industry work deal with non-linear coupled systems of partial differential equations. We examine iterative methods for the solution of a model two-dimensional coupled system based on a linearized form of the two carrier drift-diffusion equations from semiconductor modeling. Discretizing this model system yields a large non-symmetric indefinite sparse matrix. To solve the model system various point and block methods, including the hybrid iterative method Alternate Block Factorization (ABF), are applied. We also employ GMRES with various preconditioners, including block and point incomplete LU (ILU) factorizations. The performance of these methods is compared. It is seen that the preferred ordering of the grid variables and the choice of iterative method are dependent upon the magnitudes of the coupling parameters. For this model, ABF is the most robust of the non-accelerated iterative methods. Among the preconditioners employed with GMRES, the blocked ``by grid point`` version of both the ILU and MILU preconditioners are the most robust and the most time efficient over the wide range of parameter values tested. This information may aid in the choice of iterative methods and preconditioners for solving more complicated, yet analogous, coupled systems.
Geometry of Basins of Attraction and Heteroclinic Connections in Coupled Bistable Systems
NASA Astrophysics Data System (ADS)
Lyons, Daniel; Mahaffy, Joseph M.; Wang, Sara; Palacios, Antonio; in, Visarath
The fundamental principle of bistability is widely used across various disciplines, including biology, chemistry, mechanics, physics, electronics and materials science. As the need for more powerful, efficient and sensitive complex-engineered systems grow, networks of coupled bistable systems have gained significant attention in recent years. Modeling and analysis of such higher-dimensional systems is usually focused on finding conditions for the existence and stability of typical invariant sets, i.e. steady states, periodic solutions and chaotic sets. High-dimensionality leads to complex patterns of collective behavior. Which type of behavior is exhibited by a network depends greatly on the initial conditions. Thus, it is also important to study the geometric structure and evolution of the basins of attraction of such patterns. In this manuscript, a complete study of the basins of attraction of a ring of bistable systems, coupled unidirectionally, is presented. 3D visualizations are included to aid the discussion of the changes in the basins of attraction as the coupling parameter varies. The results are broad enough that they can be applied to a wide range of systems with similar coupling topologies.
Sarman, Sten; Wang, Yong-Lei; Laaksonen, Aatto
2016-06-22
Thermomechanical coupling in cholesteric liquid crystals, i.e. when a temperature gradient parallel to the cholesteric axis rotates the director, has been studied in a model system of soft ellipsoids where the interaction potential has been augmented by a chiral potential. More specifically, the cross coupling coefficient between the temperature gradient and the director angular velocity, or Leslie coefficient, has been obtained as a function of the pitch by evaluating the corresponding Green-Kubo relation by molecular dynamics simulation. The product of the Leslie coefficient and the pitch has been found to be constant within the statistical uncertainty. This is in accordance with a symmetry condition originally proposed by de Gennes and it means that the Leslie coefficient of systems with longer pitches can be obtained from systems with shorter pitches. Since the pitches of realistic systems are usually very long, it becomes possible to study thermomechanical coupling in these systems which otherwise would have required prohibitively long simulations. Since we also have obtained rather accurate data on the cross correlation function between the director angular velocity and the heat current density, it becomes possible to analyse the mechanism of thermomechanical coupling to some extent. PMID:27279499
Rogue waves for a system of coupled derivative nonlinear Schrödinger equations
NASA Astrophysics Data System (ADS)
Chan, H. N.; Malomed, B. A.; Chow, K. W.; Ding, E.
2016-01-01
Rogue waves (RWs) are unexpectedly strong excitations emerging from an otherwise tranquil background. The nonlinear Schrödinger equation (NLSE), a ubiquitous model with wide applications to fluid mechanics, optics, plasmas, etc., exhibits RWs only in the regime of modulation instability (MI) of the background. For a system of multiple waveguides, the governing coupled NLSEs can produce regimes of MI and RWs, even if each component has dispersion and cubic nonlinearity of opposite signs. A similar effect is demonstrated here for a system of coupled derivative NLSEs (DNLSEs) where the special feature is the nonlinear self-steepening of narrow pulses. More precisely, these additional regimes of MI and RWs for coupled DNLSEs depend on the mismatch in group velocities between the components, and the parameters for cubic nonlinearity and self-steepening. RWs considered in this paper differ from those of the NLSEs in terms of the amplification ratio and criteria of existence. Applications to optics and plasma physics are discussed.
The dynamics of the Schrödinger-Newton system with self-field coupling
NASA Astrophysics Data System (ADS)
Franklin, J.; Guo, Y.; Cole Newton, K.; Schlosshauer, M.
2016-04-01
We probe the dynamics of a modified form of the Schrödinger-Newton (SN) system of gravity coupled to single particle quantum mechanics. At the masses of interest here, the ones associated with the onset of ‘collapse’ (where the gravitational attraction is competitive with the quantum mechanical dissipation), we show that the Schrödinger ground state energies match the Dirac ones with an error of ˜ 10%. At the Planck mass scale, we predict the critical mass at which a potential collapse could occur for the self-coupled gravitational case, m≈ 3.3 Planck mass, and show that gravitational attraction opposes Gaussian spreading at around this value, which is a factor of two higher than the one predicted (and verified) for the SN system. Unlike the SN dynamics, we do not find that the self-coupled case tends to decay towards its ground state; there is no collapse in this case.
NASA Astrophysics Data System (ADS)
Ooi, K. J. A.; Bai, P.; Gu, M. X.; Ang, L. K.
2012-07-01
A plasmonic coupled-cavity system, which consists of a quarter-wave coupler cavity, a resonant Fabry-Pérot detector nanocavity, and an off-resonant reflector cavity, is used to enhance the localization of surface plasmons in a plasmonic detector. The coupler cavity is designed based on transmission line theory and wavelength scaling rules in the optical regime, while the reflector cavity is derived from off-resonant resonator structures to attenuate transmission of plasmonic waves. We observed strong coupling of the cavities in simulation results, with an 86% improvement of surface plasmon localization achieved. The plasmonic coupled-cavity system may find useful applications in areas of nanoscale photodetectors, sensors, and an assortment of plasmonic-circuit devices.
Optical phase dynamics in mutually coupled diode laser systems exhibiting power synchronization
NASA Astrophysics Data System (ADS)
Pal, Vishwa; Prasad, Awadhesh; Ghosh, R.
2011-12-01
We probe the physical mechanism behind the known phenomenon of power synchronization of two diode lasers that are mutually coupled via their delayed optical fields. In a diode laser, the amplitude and the phase of the optical field are coupled by the so-called linewidth enhancement factor, α. In this work, we explore the role of optical phases of the electric fields in amplitude (and hence power) synchronization through α in such mutually delay-coupled diode laser systems. Our numerical results show that the synchronization of optical phases drives the powers of lasers to synchronized death regimes. We also find that as α varies for different diode lasers, the system goes through a sequence of in-phase amplitude-death states. Within the windows between successive amplitude-death regions, the cross-correlation between the field amplitudes exhibits a universal power-law behaviour with respect to α.
Dynamics of quantum Fisher information in a two-level system coupled to multiple bosonic reservoirs
NASA Astrophysics Data System (ADS)
Wang, Guo-You; Guo, You-Neng; Zeng, Ke
2015-11-01
We consider the optimal parameter estimation for a two-level system coupled to multiple bosonic reservoirs. By using quantum Fisher information (QFI), we investigate the effect of the Markovian reservoirs’ number N on QFI in both weak and strong coupling regimes for a two-level system surrounded by N zero-temperature reservoirs of field modes initially in the vacua. The results show that the dynamics of QFI non-monotonically decays to zero with revival oscillations at some time in the weak coupling regime depending on the reservoirs’ parameters. Furthermore, we also present the relations between the QFI flow, the flows of energy and information, and the sign of the decay rate to gain insight into the physical processes characterizing the dynamics. Project supported by the Hunan Provincial Innovation Foundation for Postgraduate, China (Grant No. CX2014B194) and the Scientific Research Foundation of Hunan Provincial Education Department, China (Grant No. 13C039).
Loss function used in optimization of array of coupled tracking radioelectronic systems
NASA Astrophysics Data System (ADS)
Vagapov, V. B.
1984-05-01
A loss function is defined as a criterion for optimization of coupled multidimensional tracking systems, in preference to the two conventional complementary loss functions relative to the maximum tracking accuracy and the permissible range of tracking error respectively. The penalty of error is calculated accordingly by solution of the corresponding equation of motion for the tracking system, specifically a second-order (velocity-acceleration) tracking system in which the discriminator output signal is an additive mixture of tracking error and interference. First, such a one dimensional tracking system is considered and next, a two dimensional system consisting of two such one dimensional ones coupled through the error of their identical respective tracking loops. The mathematical expectation of this loss function was calculated as a function of the slope of the discriminator characteristic, the curves for n = 2,4,8 were normalized to minimum values of the corresponding loss function.
Numerical and experimental analysis of structure-borne sound transmission in coupled systems
NASA Astrophysics Data System (ADS)
Cao, Xiaodong; Backhaus, Stefan-Georg; Scheidl, Rudolf; Rembe, Christian
2016-06-01
The vibration-power transmission is often applied as a quantity to describe the structure-borne sound transmission in a vibration system and is, therefore, of major interest for machine manufactures. Well-developed theories about power transfer for multi-point coupled systems exist, especially, for structure-borne sound characterization. However, a theoretic analysis of area coupled systems is still a research topic because a direct measurement of vibration-power transmission in the contact interface for such systems is not possible. This paper introduces a strategy to investigate the vibration power transmission in such systems by using a finite element model which is updated by the so-called "model updating technique" based on experimental modal analysis, which is performed by a laser scanning Doppler vibrometer, in opposite to conventionally by accelerometer. The strategy is demonstrated on a simple test assembly and the estimated power transmission is derived.
A hybrid system of a membrane oscillator coupled to ultracold atoms
NASA Astrophysics Data System (ADS)
Kampschulte, Tobias
2015-05-01
The control over micro- and nanomechanical oscillators has recently made impressive progress. First experiments demonstrated ground-state cooling and single-phonon control of high-frequency oscillators using cryogenic cooling and techniques of cavity optomechanics. Coupling engineered mechanical structures to microscopic quantum system with good coherence properties offers new possibilities for quantum control of mechanical vibrations, precision sensing and quantum-level signal transduction. Ultracold atoms are an attractive choice for such hybrid systems: Mechanical can either be coupled to the motional state of trapped atoms, which can routinely be ground-state cooled, or to the internal states, for which a toolbox of coherent manipulation and detection exists. Furthermore, atomic collective states with non-classical properties can be exploited to infer the mechanical motion with reduced quantum noise. Here we use trapped ultracold atoms to sympathetically cool the fundamental vibrational mode of a Si3N4 membrane. The coupling of membrane and atomic motion is mediated by laser light over a macroscopic distance and enhanced by an optical cavity around the membrane. The observed cooling of the membrane from room temperature to 650 +/- 230 mK shows that our hybrid mechanical-atomic system operates at a large cooperativity. Our scheme could provide ground-state cooling and quantum control of low-frequency oscillators such as levitated nanoparticles, in a regime where purely optomechanical techniques cannot reach the ground state. Furthermore, we will present a scheme where an optomechanical system is coupled to internal states of ultracold atoms. The mechanical motion is translated into a polarization rotation which drives Raman transitions between atomic ground states. Compared to the motional-state coupling, the new scheme enables to couple atoms to high-frequency structures such as optomechanical crystals.
NASA Astrophysics Data System (ADS)
Yousif, Taha; Zhou, Wenjun; Zhou, Ling
2014-08-01
We investigate coupled two-cavity optomechanical systems to show their potential usages by revealing the physical processes. Under two conditions, we deduce the correspondingly effective Hamiltonian with beam splitter type and nondegenerate parametric-down conversion type, respectively. Including the whole interactions, we show that the state transfer and the stationary entanglement between the two mechanical resonators can be achieved.
ERIC Educational Resources Information Center
Firestone, William A.; Herriott, Robert E.
According to organizational theory, the administrative structure of schools has an effect on the feasibility and ease of improving their operation. To determine whether schools are better characterized as rational bureaucracies or as loosely coupled systems or whether some schools belong to each model, four dimensions were operationalized (goal…
Non-Markovian dynamics of an open quantum system with nonstationary coupling
Kalandarov, S. A.; Adamian, G. G.; Kanokov, Z.; Antonenko, N. V.; Scheid, W.
2011-04-15
The spectral, dissipative, and statistical properties of the damped quantum oscillator are studied in the case of non-Markovian and nonstationary system-heat bath coupling. The dissipation of collective energy is shown to be slowed down, and the decoherence rate and entropy grow with modulation frequency.
Existence results for a system of coupled hybrid fractional differential equations.
Ahmad, Bashir; Ntouyas, Sotiris K; Alsaedi, Ahmed
2014-01-01
This paper studies the existence of solutions for a system of coupled hybrid fractional differential equations with Dirichlet boundary conditions. We make use of the standard tools of the fixed point theory to establish the main results. The existence and uniqueness result is elaborated with the aid of an example. PMID:25215320
Liu, Jingliang; Yang, Hujiang; Wang, Chuan; Xu, Kun; Xiao, Jinghua
2016-01-01
Here we experimentally demonstrated the electromagnetically induced transparency (EIT) and Autler-Townes splitting (ATS) effects in mechanical coupled pendulums. The analogue of EIT and ATS has been studied in mechanical systems and the intrinsic physics between these two phenomena are also been discussed. Exploiting the Akaike Information Criterion, we discern the ATS effect from EIT effect in our experimental results. PMID:26751738
Comparison of Integrated Systemic and Emotionally Focused Approaches to Couples Therapy.
ERIC Educational Resources Information Center
Goldman, A.; Greenberg, L.
1992-01-01
Compared couples receiving 2 marital therapy approaches and control group over 10-week treatment period. Integrated systemic therapy (IST) and emotionally focused approach (EFT) both were found to be superior to control and to be equally effective in alleviating marital distress, facilitating conflict resolution and goal attainment, and reducing…
NUTRIENT SOUIRCES, TRANSPORT, AND FATE IN COUPLED WATERSHED-ESTUARINE SYSTEMS OF COASTAL ALABAMA
The processes regulating sources, transport, and fate of nutrients were studied in 3 coupled watershed-estuarine systems that varied mainly by differences in the dominant land use-land cover (LULC), i.e. Weeks Bay -- agriculture, Dog River -- urban, and Fowl River -- forest. Mea...
NASA Astrophysics Data System (ADS)
Liu, Jingliang; Yang, Hujiang; Wang, Chuan; Xu, Kun; Xiao, Jinghua
2016-01-01
Here we experimentally demonstrated the electromagnetically induced transparency (EIT) and Autler-Townes splitting (ATS) effects in mechanical coupled pendulums. The analogue of EIT and ATS has been studied in mechanical systems and the intrinsic physics between these two phenomena are also been discussed. Exploiting the Akaike Information Criterion, we discern the ATS effect from EIT effect in our experimental results.
Stability of the solitary wave solutions to a coupled BBM system
NASA Astrophysics Data System (ADS)
Chen, Hongqiu; Wang, Xiaojun
2016-07-01
In this work, we present a stability criteria for the solitary wave solutions to a BBM system that contains coupled nonlinear terms. Using the idea by Bona, Chen and Karakashian [5] and exploiting the accurate point spectrum information of the associated Schrödinger operator, we improve the stability results previously gotten by Pereira [15].
Development of a coupled soil erosion and large-scale hydrology modeling system
Technology Transfer Automated Retrieval System (TEKTRAN)
The impact of frozen soil on soil erosion is becoming increasingly important for sustainable management of soil resources, especially in regions where agricultural land use is dominant. A newly developed coupled modeling system that integrates the Variable Infiltration Capacity (VIC) model and the p...
Ground-Coupled Heating-Cooling Systems in Urban Areas: How Sustainable Are They?
ERIC Educational Resources Information Center
Younger, Paul L.
2008-01-01
Ground-coupled heating-cooling systems (GCHCSs) exchange heat between the built environment and the subsurface using pipework buried in trenches or boreholes. If heat pumps in GCHCSs are powered by "green electricity," they offer genuine carbon-free heating-cooling; for this reason, there has been a surge in the technology in recent years.…
Non-Markovian dynamics of an open quantum system with nonstationary coupling.
Kalandarov, S A; Kanokov, Z; Adamian, G G; Antonenko, N V; Scheid, W
2011-04-01
The spectral, dissipative, and statistical properties of the damped quantum oscillator are studied in the case of non-Markovian and nonstationary system-heat bath coupling. The dissipation of collective energy is shown to be slowed down, and the decoherence rate and entropy grow with modulation frequency. PMID:21599112
Fluctuations in a coupled-oscillator model of the cardiovascular system
NASA Astrophysics Data System (ADS)
González, Jorge A.; Suárez-Vargas, Jose J.; Stefanovska, Aneta; McClintock, Peter V. E.
2007-06-01
We present a model of the cardiovascular system (CVS) based on a system of coupled oscillators. Using this approach we can describe several complex physiological phenomena that can have a range of applications. For instance, heart rate variability (HRV), can have a new deterministic explanation. The intrinsic dynamics of the HRV is controlled by deterministic couplings between the physiological oscillators in our model and without the need to introduce external noise as is commonly done. This new result provides potential applications not only for physiological systems but also for the design of very precise electronic generators where the frequency stability is crucial. Another important phenomenon is that of oscillation death. We show that in our CVS model the mechanism leading to the quenching of the oscillations can be controlled, not only by the coupling parameter, but by a more general scheme. In fact, we propose that a change in the relative current state of the cardiovascular oscillators can lead to a cease of the oscillations without actually changing the strength of the coupling among them. We performed real experiments using electronic oscillators and show them to match the theoretical and numerical predictions. We discuss the relevance of the studied phenomena to real cardiovascular systems regimes, including the explanation of certain pathologies, and the possible applications in medical practice.
Mode-selective coupling structures for monolithic integrated waveguide-detector systems
NASA Astrophysics Data System (ADS)
Koster, Tom M.; Houtsma, V. E.; Lambeck, Paul V.; Klunder, Dion J.; Popma, Th. J. A.; Holleman, J.
1999-03-01
Microsystems are presented in which a SiON based optical waveguiding system is monolithically integrated with photodiodes, which are implemented in the Si substrate. Coupling structures of various type enable to transfer whether (part of) the power of one selected mode or the power of all modi propagating through the waveguide, to the photodiode. Here we focus on coupling structures for use in integrated optical absorption sensor systems, where information can be obtained from both the TE0 and TM0 mode, propagating simultaneously through the waveguide system. The coupling into the photodiodes is achieved by thinning down the thickness of the core layer in the region above the photodiode, which results in a mode specific modewidth expansion of the propagating modi. It will be shown that in asymmetrical layer systems, within a certain interaction length all TM0 power can be absorbed by the Si detector, while the TE0 mode shows only a negligible attenuation. The selectivity of the coupling can be strongly enhanced by implementing an additional substrate layer, having a refractive index in between that of the TE0 and TM0 mode. Both theoretical and experimental results will be presented.
Unified interzone and system coupling methodology for building energy analysis. Final report
Sullivan, R.; Nozaki, S.; Cumali, Z.O.
1981-02-16
The methodology used for analyzing interzone and system coupling phenomenon in building heat transfer processes is documented. A discussion is presented describing the current techniques employed by two public domain energy analysis simulation programs: DOE-1/2 (weighting factor) and BLAST (thermal balance). Although these programs perform their primary function quite well, the applicability of the methods to situations in which there exists strong coupling between the zones and systems in a building, is open to question. Particularly for passive solar design schemes, the approximations utilized would seem to be somewhat unreliable. Alternative coupling techniques are next discussed, which amounted to extensions of the basic algorithms involved to yield simultaneous solutions among the zones and systems. Both the weighting factor and thermal balance approaches are treated in addition to the concepts of radiosity and mean radiant temperature. The decision was made to utilize the modified thermal balance coding revisions to DOE-2.0 developed at LASL and LBL as a base for testing the techniques described. Modifications were therefore made to version DOE-2.1 such that four thermal load calculation schemes can now be studied: weighting factor, modified thermal balance, mean radiant temperature and radiosity. These techniques have been implemented for a fully coupled N-zone problem with system integration, to include the modeling of a Trombe wall algorithm.
Development of Operational Wave-Tide-Storm surges Coupling Prediction System
NASA Astrophysics Data System (ADS)
You, S. H.; Park, S. W.; Kim, J. S.; Kim, K. L.
2009-04-01
The Korean Peninsula is surrounded by the Yellow Sea, East China Sea, and East Sea. This complex oceanographic system includes large tides in the Yellow Sea and seasonally varying monsoon and typhoon events. For Korea's coastal regions, floods caused by wave and storm surges are among the most serious threats. To predict more accurate wave and storm surges, the development of coupling wave-tide-storm surges prediction system is essential. For the time being, wave and storm surges predictions are still made separately in KMA (Korea Meteorological Administration) and most operational institute. However, many researchers have emphasized the effects of tides and storm surges on wind waves and recommended further investigations into the effects of wave-tide-storm surges interactions and coupling module. In Korea, especially, tidal height and current give a great effect on the wave prediction in the Yellow sea where is very high tide and related research is not enough. At present, KMA has operated the wave (RWAM : Regional Wave Model) and storm surges/tide prediction system (STORM : Storm Surges/Tide Operational Model) for ocean forecasting. The RWAM is WAVEWATCH III which is a third generation wave model developed by Tolman (1989). The STORM is based on POM (Princeton Ocean Model, Blumberg and Mellor, 1987). The RWAM and STORM cover the northwestern Pacific Ocean from 115°E to 150°E and from 20°N to 52°N. The horizontal grid intervals are 1/12° in both latitudinal and longitudinal directions. These two operational models are coupled to simulate wave heights for typhoon case. The sea level and current simulated by storm surge model are used for the input of wave model with 3 hour interval. The coupling simulation between wave and storm surge model carried out for Typhoon Nabi (0514), Shanshan(0613) and Nari (0711) which were effected on Korea directly. We simulated significant wave height simulated by wave model and coupling model and compared difference between
Orbital Maneuvering Engine Feed System Coupled Stability Investigation, Computer User's Manual
NASA Technical Reports Server (NTRS)
Schuman, M. D.; Fertig, K. W.; Hunting, J. K.; Kahn, D. R.
1975-01-01
An operating manual for the feed system coupled stability model was given, in partial fulfillment of a program designed to develop, verify, and document a digital computer model that can be used to analyze and predict engine/feed system coupled instabilities in pressure-fed storable propellant propulsion systems over a frequency range of 10 to 1,000 Hz. The first section describes the analytical approach to modelling the feed system hydrodynamics, combustion dynamics, chamber dynamics, and overall engineering model structure, and presents the governing equations in each of the technical areas. This is followed by the program user's guide, which is a complete description of the structure and operation of the computerized model. Last, appendices provide an alphabetized FORTRAN symbol table, detailed program logic diagrams, computer code listings, and sample case input and output data listings.
Spin dynamics under local gauge fields in chiral spin-orbit coupling systems
NASA Astrophysics Data System (ADS)
Tan, S. G.; Jalil, M. B. A.; Fujita, T.; Liu, X. J.
2011-02-01
We present a theoretical description of local spin dynamics in magnetic systems with a chiral spin texture and finite spin-orbit coupling (SOC). Spin precession about the relativistic effective magnetic field in a SOC system gives rise to a non-Abelian SU(2) gauge field reminiscent of the Yang-Mills field. In addition, the adiabatic relaxation of electron spin along the local spin yields an U(1) ⊗ U(1) topological gauge (Berry) field. We derive the corresponding equation of motion i.e. modified Landau-Lifshitz-Gilbert (LLG) equation, for the local spin under the influence of these effects. Focusing on the SU(2) gauge, we obtain the spin torque magnitude, and the amplitude and frequency of spin oscillations in this system. Our theoretical estimates indicate significant spin torque and oscillations in systems with large spin-orbit coupling, which may be utilized in technological applications such as current-induced magnetization-switching and tunable microwave oscillators.
Vibrational spectroscopy of a harmonic oscillator system nonlinearly coupled to a heat bath
NASA Astrophysics Data System (ADS)
Kato, Tsuyoshi; Tanimura, Yoshitaka
2002-10-01
Vibrational relaxation of a harmonic oscillator nonlinearly coupled to a heat bath is investigated by the Gaussian-Markovian quantum Fokker-Planck equation approach. The system-bath interaction is assumed to be linear in the bath coordinate, but linear plus square in the system coordinate modeling the elastic and inelastic relaxation mechanisms. Interplay of the two relaxation processes induced by the linear-linear and square-linear interactions in Raman or infrared spectra is discussed for various system-bath couplings, temperatures, and correlation times for the bath fluctuations. The one-quantum coherence state created through the interaction with the pump laser pulse relaxes through different pathways in accordance with the mechanisms of the system-bath interactions. Relations between the present theory, Redfield theory, and stochastic theory are also discussed.
Mixed quantum-classical versus full quantum dynamics: Coupled quasiparticle-oscillator system
NASA Astrophysics Data System (ADS)
Schanz, Holger; Esser, Bernd
1997-05-01
The relation between the dynamical properties of a coupled quasiparticle-oscillator system in the mixed quantum-classical and fully quantized descriptions is investigated. The system is considered as a model for applying a stepwise quantization. Features of the nonlinear dynamics in the mixed description such as the presence of a separatrix structure or regular and chaotic motion are shown to be reflected in the evolu- tion of the quantum state vector of the fully quantized system. In particular, it is demonstrated how wave packets propagate along the separatrix structure of the mixed description, and that chaotic dynamics leads to a strongly entangled quantum state vector. Special emphasis is given to viewing the system from a dyn- amical Born-Oppenheimer approximation defining integrable reference oscillators, and elucidating the role of the nonadiabatic couplings which complement this approximation into a rigorous quantization scheme.
Nonequilibrium steady state transport of collective-qubit system in strong coupling regime
NASA Astrophysics Data System (ADS)
Wang, Chen; Sun, Ke-Wei
2015-11-01
We investigate the steady state photon transport in a nonequilibrium collective-qubit model. By adopting the noninteracting blip approximation, which is applicable in the strong photon-qubit coupling regime, we describe the essential contribution of indirect qubit-qubit interaction to the population distribution, mediated by the photonic baths. The linear relations of both the optimal flux and noise power with the qubits system size are obtained. Moreover, the inversed power-law style for the finite-size scaling of the optimal photon-qubit coupling strength is exhibited, which is proposed to be universal.
Kuświk, Piotr; Gastelois, Pedro Lana; Głowiński, Hubert; Przybylski, Marek; Kirschner, Jürgen
2016-10-26
The influence of interface exchange coupling on magnetic anisotropy in the antiferromagnetic oxide/Ni system is investigated. We show how interfacial exchange coupling can be employed not only to pin the magnetization of the ferromagnetic layer but also to support magnetic anisotropy to orient the easy magnetization axis perpendicular to the film plane. The fact that this effect is only observed below the Néel temperature of all investigated antiferromagnetic oxides with significantly different magnetocrystalline anisotropies gives evidence that antiferromagnetic ordering is a source of the additional contribution to the perpendicular effective magnetic anisotropy. PMID:27589202
Electronic systems for transverse coupled-bunch feedback in the Advanced Light Source (ALS)
Barry, W.; Lambertson, G.R.; Lo, C.C.
1993-10-01
In order to effectively control a large number of transverse coupled-bunch modes in the LBL Advanced Light Source (ALS) storage ring, a broad-band, bunch-by-bunch feedback system has been designed, and is beginning to undergo testing and commissioning. This paper addresses, in some detail, the major electronic components of the feedback system. In particular, the components described include: broad-band microwave position detection receivers, closed orbit offset signal rejection circuitry, and baseband quadrature processing circuitry.
Travelling wave solutions of a coupled Korteweg-de Vries-Burgers system
NASA Astrophysics Data System (ADS)
Motsepa, Tanki; Khalique, Chaudry Masood
2016-02-01
In this paper we study a coupled Korteweg-de Vries-Burgers system which arises in mathematical physics and has a wide range of scientific applications. We obtain new travelling wave solutions of this system by employing the (G'/G)-expansion method. The solutions that will be obtained are going to be expressed in two different forms, viz., hyperbolic functions and trigonometric functions.
Blowup results for the KGS system with higher order Yukawa coupling
Shi, Qi-Hong; Li, Wan-Tong; Wang, Shu
2015-10-15
In this paper, we investigate the Klein-Gordon-Schrödinger (KGS) system with higher order Yukawa coupling in spatial dimensions N ≥ 3. We establish a perturbed virial type identity and prove blowup results relied on Lyapunov functionals for KGS system with a negative energy level. Additionally, we give a result with respect to the blowup rate in finite time for the radial solution in 3 spatial dimensions.
Hu, Peng; Ben-David, Yehoshoa; Milstein, David
2016-01-18
A novel and simple hydrogen storage system was developed, based on the dehydrogenative coupling of inexpensive ethylenediamine with ethanol to form diacetylethylenediamine. The system is rechargeable and utilizes the same ruthenium pincer catalyst for both hydrogen loading and unloading procedures. It is efficient and uses a low catalyst loading. Repetitive reversal reactions without addition of new catalyst result in excellent conversions in both the dehydrogenation and hydrogenation procedures in three cycles. PMID:26211515
Spin dynamics under local gauge fields in chiral spin-orbit coupling systems
Tan, S.G.; Jalil, M.B.A.; Fujita, T.; Liu, X.J.
2011-02-15
Research Highlights: > We derive a modified LLG equation in magnetic systems with spin-orbit coupling (SOC). > Our results are applied to magnetic multilayers, and DMS and magnetic Rashba systems. > SOC mediated magnetization switching is predicted in rare earth metals (large SOC). > The magnetization trajectory and frequency can be modulated by applied voltage. > This facilitates potential application as tunable microwave oscillators. - Abstract: We present a theoretical description of local spin dynamics in magnetic systems with a chiral spin texture and finite spin-orbit coupling (SOC). Spin precession about the relativistic effective magnetic field in a SOC system gives rise to a non-Abelian SU(2) gauge field reminiscent of the Yang-Mills field. In addition, the adiabatic relaxation of electron spin along the local spin yields an U(1) x U(1) topological gauge (Berry) field. We derive the corresponding equation of motion i.e. modified Landau-Lifshitz-Gilbert (LLG) equation, for the local spin under the influence of these effects. Focusing on the SU(2) gauge, we obtain the spin torque magnitude, and the amplitude and frequency of spin oscillations in this system. Our theoretical estimates indicate significant spin torque and oscillations in systems with large spin-orbit coupling, which may be utilized in technological applications such as current-induced magnetization-switching and tunable microwave oscillators.
Quantum Coherence of Optomechanical Systems in the Single-photon Strong Coupling Regime
NASA Astrophysics Data System (ADS)
Hu, Dan; Huang, Shang-Yu; Liao, Jie-Qiao; Tian, Lin; Goan, Hsi-Sheng
2015-03-01
Optomechanical systems with ultrastrong coupling could demonstrate nonlinear optical effects such as photon blockade. The system-bath couplings in these systems play an essential role in observing these effects. In this work, we use a dressed-state master equation approach to study the quantum coherence of an optomechanical system. In this approach, the system-bath couplings are decomposed in terms of the eigenbasis of the optomechanical system, where the mechanical state is displaced by finite photon occupation. Compared with the standard master equation often seen in the literature, our master equation includes photon-number-dependent terms that induce dephasing. We calculate cavity dephasing, second-order photon correlation, and two-cavity entanglement using the dressed-state master equation. At high temperature, our master equation predicts faster decay of the quantum coherence than with the standard master equation. The second-order photon correlation derived with our master equation shows less antibunching than that with the standard master equation. This work is supported by awards from DARPA, NSF, JSPS (Japan), MOST (Taiwan) and NTU (Taiwan).
Coupled-Mode Flutter of a Cleaning Blade System in a Laser Printer
NASA Astrophysics Data System (ADS)
Kasama, Minoru; Yoshizawa, Masatsugu; Yu, Yimei; Itoh, Tomoyuki; Itoh, Yoshiaki
This paper discusses a mechanism of a self-excited vibration of a cleaning blade in a laser printer. We present a coupled-mode flutter model using a finite element model. A stability analysis based on the proposed model is carried out. From this result, it is clarified that two modes couple each other with increasing coefficient of friction. At that time, the natural frequency of the coupled-mode is corresponding to the frequency of the self-excited vibration. This root locus reveals a typical argand diagram for coupled-mode flutter of an undamped system via so-called Hamiltonian-Hopf bifurcation. Furthermore, we discuss about the steady-state amplitude of the self-excited vibration. First, we present a nonlinear amplitude equation by extracting the unstable modes with introduction of the adjoint vector to the eigenvector of the system. Second, from consideration about the nonlinear term which is able to restrain an increasing of amplitude, we decide the nonlinear term referring to the Rayleigh's equation. Then, the unstable mode solution obtained by the method of multiple scales is reconstructed in 2-DOF system by referring to Herrmann and Roussellet's method in pipes conveying fluid. Finally, we present the theoretical equation of the steady-state amplitude. We reveal a validity of our study by a comparison between an experiment and a numerical simulation of some modified blades.
NASA Astrophysics Data System (ADS)
Geng, S. M.; Briggs, M. H.; Hervol, D. S.
A pair of 1kWe free-piston Stirling power convertors has been modified into a thermodynamically coupled configuration, and performance map testing has been completed. This is the same configuration planned for the full-scale 12 kWe power conversion unit (PCU) that will be used in the Fission Power System Technology Demonstration Unit (TDU). The 1-kWe convertors were operated over a range of conditions to evaluate the effects of thermodynamic coupling on convertor performance and to identify any possible control challenges. The thermodynamically coupled convertor showed no measurable difference in performance from the baseline data collected when the engines were separate and no major control issues were encountered during operation. The results of this test are guiding controller development and instrumentation selection for the TDU.
Cooled electronic system with thermal spreaders coupling electronics cards to cold rails
Chainer, Timothy J; Gaynes, Michael A; Graybill, David P; Iyengar, Madhusudan K; Kamath, Vinod; Kochuparambil, Bejoy J; Schmidt, Roger R; Schultz, Mark D; Simco, Daniel P; Steinke, Mark E
2013-07-23
Liquid-cooled electronic systems are provided which include an electronic assembly having an electronics card and a socket with a latch at one end. The latch facilitates securing of the card within the socket or removal of the card from the socket. A liquid-cooled cold rail is disposed at the one end of the socket, and a thermal spreader couples the electronics card to the cold rail. The thermal spreader includes first and second thermal transfer plates coupled to first and second surfaces on opposite sides of the card, and thermally conductive extensions extending from end edges of the plates, which couple the respective transfer plates to the liquid-cooled cold rail. The thermally conductive extensions are disposed to the sides of the latch, and the card is securable within or removable from the socket using the latch without removing the cold rail or the thermal spreader.
NASA Technical Reports Server (NTRS)
Geng, Steven M.; Briggs, Maxwell H.; Hervol, David S.
2011-01-01
A pair of 1-kWe free-piston Stirling power convertors has been modified into a thermodynamically coupled configuration, and performance map testing has been completed. This is the same configuration planned for the full-scale 12-kWe power conversion unit (PCU) that will be used in the Fission Power System Technology Demonstration Unit (TDU). The 1-kWe convertors were operated over a range of conditions to evaluate the effects of thermodynamic coupling on convertor performance and to identify any possible control challenges. The thermodynamically coupled convertor showed no measureable difference in performance from the baseline data collected when the engines were separate, and no major control issues were encountered during operation. The results of this test are guiding controller development and instrumentation selection for the TDU.
Coupled wave-ocean modeling system experiments in the Mediterranean Sea
NASA Astrophysics Data System (ADS)
Clementi, Emanuela; Oddo, Paolo; Korres, Gerasimos; Pinardi, Nadia; Drudi, Massimiliano; Tonani, Marina; Grandi, Alessandro; Adani, Mario
2015-04-01
Wind waves and oceanic circulation processes are of major interest in determining accurate sea state predictions and their interactions are very important for individual dynamic processes. This work presents a coupled wave-current numerical modelling system composed by the ocean circulation model NEMO (Nucleus for European Modelling of the Ocean) and the third generation wave model WaveWatchIII (WW3) implemented in the Mediterranean Sea with 1/16° horizontal resolution and forced by ECMWF atmospheric fields. In order to evaluate the performance of the coupled model, two sets of numerical experiments have been performed and described in this work. A first set of experiments has been built by coupling the wave and circulation models that hourly exchange the following fields: the sea surface currents and air-sea temperature difference are transferred from NEMO model to WW3 model modifying respectively the mean momentum transfer of waves and the wind speed stability parameter; while the neutral drag coefficient computed by WW3 model is passed to NEMO that computes the turbulent component. Five years (2009-2013) numerical experiments have been carried out in both uncoupled and coupled modes. In order to validate the modelling system, numerical results have been compared with coastal and drifting buoys and remote sensing data. Comparison results demonstrate that the WW3 model can fairly reproduce the observed wave characteristics and show that the wave-current interactions improve the representation of the wave spectrum. Minor improvements have been reached by comparing coupled and uncoupled circulation NEMO model results with observations. A second set of numerical experiments has been performed by considering NEMO model one-way coupled with WW3 model. The hydrodynamic model receives from the wave model the neutral drag coefficient and a set of wave fields used to calculate the wave-induced vertical mixing according to Qiao et al. (2010) formulation. Two experiments
MOOSE: A parallel computational framework for coupled systems of nonlinear equations.
Derek Gaston; Chris Newman; Glen Hansen; Damien Lebrun-Grandie
2009-10-01
Systems of coupled, nonlinear partial differential equations (PDEs) often arise in simulation of nuclear processes. MOOSE: Multiphysics Object Oriented Simulation Environment, a parallel computational framework targeted at the solution of such systems, is presented. As opposed to traditional data-flow oriented computational frameworks, MOOSE is instead founded on the mathematical principle of Jacobian-free Newton-Krylov (JFNK) solution methods. Utilizing the mathematical structure present in JFNK, physics expressions are modularized into `Kernels,'' allowing for rapid production of new simulation tools. In addition, systems are solved implicitly and fully coupled, employing physics based preconditioning, which provides great flexibility even with large variance in time scales. A summary of the mathematics, an overview of the structure of MOOSE, and several representative solutions from applications built on the framework are presented.
Decoherence and dissipation of a quantum harmonic oscillator coupled to two-level systems
Schlosshauer, Maximilian; Hines, A. P.; Milburn, G. J.
2008-02-15
We derive and analyze the Born-Markov master equation for a quantum harmonic oscillator interacting with a bath of independent two-level systems. This hitherto virtually unexplored model plays a fundamental role as one of the four 'canonical' system-environment models for decoherence and dissipation. To investigate the influence of further couplings of the environmental spins to a dissipative bath, we also derive the master equation for a harmonic oscillator interacting with a single spin coupled to a bosonic bath. Our models are experimentally motivated by quantum-electromechanical systems and micron-scale ion traps. Decoherence and dissipation rates are found to exhibit temperature dependencies significantly different from those in quantum Brownian motion. In particular, the systematic dissipation rate for the central oscillator decreases with increasing temperature and goes to zero at zero temperature, but there also exists a temperature-independent momentum-diffusion (heating) rate.
Bifurcation and chaos analysis of a nonlinear electromechanical coupling relative rotation system
NASA Astrophysics Data System (ADS)
Liu, Shuang; Zhao, Shuang-Shuang; Sun, Bao-Ping; Zhang, Wen-Ming
2014-09-01
Hopf bifurcation and chaos of a nonlinear electromechanical coupling relative rotation system are studied in this paper. Considering the energy in air-gap field of AC motor, the dynamical equation of nonlinear electromechanical coupling relative rotation system is deduced by using the dissipation Lagrange equation. Choosing the electromagnetic stiffness as a bifurcation parameter, the necessary and sufficient conditions of Hopf bifurcation are given, and the bifurcation characteristics are studied. The mechanism and conditions of system parameters for chaotic motions are investigated rigorously based on the Silnikov method, and the homoclinic orbit is found by using the undetermined coefficient method. Therefore, Smale horseshoe chaos occurs when electromagnetic stiffness changes. Numerical simulations are also given, which confirm the analytical results.
Lasing and transport in a multilevel double quantum dot system coupled to a microwave oscillator
NASA Astrophysics Data System (ADS)
Karlewski, Christian; Heimes, Andreas; Schön, Gerd
2016-01-01
We study a system of two quantum dots, each with several discrete levels, which are coherently coupled to a microwave oscillator. They are attached to electronic leads and coupled to a phonon bath, both leading to inelastic processes. For a simpler system with a single level in each dot it has been shown that a population inversion can be created by electron tunneling, which in a resonance situation leads to lasing-type properties of the oscillator. In the multilevel system several resonance situations may arise, some of them relying on a sequence of tunneling processes which also involve nonresonant, inelastic transitions. The resulting photon number in the oscillator and the current-voltage characteristic are highly sensitive to these properties and accordingly can serve as a probe for microscopic details.
Luo, Weiwei; Cai, Wei; Xiang, Yinxiao; Wang, Lei; Ren, Mengxin; Zhang, Xinzheng; Xu, Jingjun
2016-03-21
General actively tunable near-field plasmon-induced transparency (PIT) systems based on couplings between localized plasmon resonances of graphene nanostructures not only suffer from interantenna separations of smaller than 20 nm, but also lack switchable effect about the transparency window. Here, the performance of an active PIT system based on graphene grating-sheet with near-field coupling distance of more than 100 nm is investigated in mid-infrared. The transparency window in spectrum is analyzed objectively and proved to be more likely stemmed from Aulter-Townes splitting. The proposed system exhibits flexible tunability in slow-light and electro-optical switches, promising for practical active photonic devices. PMID:27136776
Coupled Low-thrust Trajectory and System Optimization via Multi-Objective Hybrid Optimal Control
NASA Technical Reports Server (NTRS)
Vavrina, Matthew A.; Englander, Jacob Aldo; Ghosh, Alexander R.
2015-01-01
The optimization of low-thrust trajectories is tightly coupled with the spacecraft hardware. Trading trajectory characteristics with system parameters ton identify viable solutions and determine mission sensitivities across discrete hardware configurations is labor intensive. Local independent optimization runs can sample the design space, but a global exploration that resolves the relationships between the system variables across multiple objectives enables a full mapping of the optimal solution space. A multi-objective, hybrid optimal control algorithm is formulated using a multi-objective genetic algorithm as an outer loop systems optimizer around a global trajectory optimizer. The coupled problem is solved simultaneously to generate Pareto-optimal solutions in a single execution. The automated approach is demonstrated on two boulder return missions.
Co-Simulation Research of the Mechanical-Hydraulic-Control Coupling System of ITER Tractor
NASA Astrophysics Data System (ADS)
Yang, Xiuqing; Luo, Minzhou; Mei, Tao; Yao, Damao
2009-06-01
The virtual prototyping models of the mechanical, hydraulic and control system of the ITER tractor were built with CATIA, ADAMS and MATLAB/Simulink respectively according to its heavy load and high precision characteristics, and the data transfer between the different models was accomplished by the integration interface between different software. Consequently the virtual experimental platform for the multi-disciplinary co-simulation was established. A co-simulation study of the mechanical-hydraulic-control coupling system of the ITER tractor was carried out. The synchronization servo control of parallel hydraulic cylinders was implemented, and the tracking control of the preconcerted trajectory of the hydraulic cylinders was realized on the established experimental platform. This paper presents the optimization design and technology rebuilding for the complicated coupling system with its theoretic foundation and co-simulation virtual experimental platform.
Dipolar glass and strong magneto-electric coupling within a purely organic system
NASA Astrophysics Data System (ADS)
Berlie, Adam; Terry, Ian; Liu, Yun; Szablewski, Marek
There is much interest in the search for novel materials that show ferroelectric as well as magneto-electric coupling, such as that observed in multiferroics. Within organic based materials the electronic polarisation can come from a charge distribution across a molecule or molecules and so one must search for systems that have a electronic (and magnetic) dipole that is intrinsic. One such material is tetraethylammonium bis-7,7,8,8-tetracyanoquinodimethane (TEA(TCNQ)2) which is a charge transfer system where there is a single electron delocalised across a TCNQ dimer. We show that dielectric measurements yield anomalies at the Peierls structural distortion and on going through the spin-Peierls transition. In both cases the electric response is glassy and at low temperature the corresponding magnetic measurements evidence the strong magneto-electric coupling within the material showing analogies to spin glass systems.
Yang, Yuan; Solis-Escalante, Teodoro; Yao, Jun; Daffertshofer, Andreas; Schouten, Alfred C; van der Helm, Frans C T
2016-02-01
Interaction between distant neuronal populations is essential for communication within the nervous system and can occur as a highly nonlinear process. To better understand the functional role of neural interactions, it is important to quantify the nonlinear connectivity in the nervous system. We introduce a general approach to measure nonlinear connectivity through phase coupling: the multi-spectral phase coherence (MSPC). Using simulated data, we compare MSPC with existing phase coupling measures, namely n : m synchronization index and bi-phase locking value. MSPC provides a system description, including (i) the order of the nonlinearity, (ii) the direction of interaction, (iii) the time delay in the system, and both (iv) harmonic and (v) intermodulation coupling beyond the second order; which are only partly revealed by other methods. We apply MSPC to analyze data from a motor control experiment, where subjects performed isotonic wrist flexions while receiving movement perturbations. MSPC between the perturbation, EEG and EMG was calculated. Our results reveal directional nonlinear connectivity in the afferent and efferent pathways, as well as the time delay (43 ± 8 ms) between the perturbation and the brain response. In conclusion, MSPC is a novel approach capable to assess high-order nonlinear interaction and timing in the nervous system. PMID:26404514
Friedmann, Thomas Aquinas; Czaplewski, David A.; Sullivan, John Patrick; Modine, Normand Arthur; Wendt, Joel Robert; Aslam, Dean (Michigan State University, Lansing, MI); Sepulveda-Alancastro, Nelson (University of Puerto Rico, Mayaguez, PR)
2007-01-01
Understanding internal dissipation in resonant mechanical systems at the micro- and nanoscale is of great technological and fundamental interest. Resonant mechanical systems are central to many sensor technologies, and microscale resonators form the basis of a variety of scanning probe microscopies. Furthermore, coupled resonant mechanical systems are of great utility for the study of complex dynamics in systems ranging from biology to electronics to photonics. In this work, we report the detailed experimental study of internal dissipation in micro- and nanomechanical oscillators fabricated from amorphous and crystalline diamond materials, atomistic modeling of dissipation in amorphous, defect-free, and defect-containing crystalline silicon, and experimental work on the properties of one-dimensional and two-dimensional coupled mechanical oscillator arrays. We have identified that internal dissipation in most micro- and nanoscale oscillators is limited by defect relaxation processes, with large differences in the nature of the defects as the local order of the material ranges from amorphous to crystalline. Atomistic simulations also showed a dominant role of defect relaxation processes in controlling internal dissipation. Our studies of one-dimensional and two-dimensional coupled oscillator arrays revealed that it is possible to create mechanical systems that should be ideal for the study of non-linear dynamics and localization.
Portable fiber optic coupled doppler interferometer system for detonation and shock wave diagnostics
Fleming, K.J.
1993-03-01
Testing and analysis of shock wave characteristics such as produced by detonators and ground shock propagation frequently require a method of measuring velocity and displacement of the surface of interest. One method of measurement is doppler interferometry. The VISAR (Velocity Interferometer System for Any Reflector) uses doppler interferometry and has pined wide acceptance as the preferred tool for shock measurement. An important asset of VISAR is that it measures velocity and displacement non intrusively. The conventional VISAR is not well suited for portability because of its sensitive components, large power and cooling requirements, and hazardous laser beam. A new VISAR using the latest technology in solid state lasers and detectors has been developed and tested. To further enhance this system`s versatility, the unit is fiber optic coupled which allows remote testing, permitting the VISAR to be placed over a kilometer away from the target being measured. Because the laser light is contained in the fiber optic, operation of the system around personnel is far less hazardous. A software package for data reduction has also been developed for use with a personal computer. These new advances have produced a very versatile system with full portability which can be totally powered by batteries or a small generator. This paper describes the solid state VISAR and its peripheral components, fiber optic coupling methods and the fiber optic coupled sensors used for sending and receiving laser radiation.
Design and analysis of a coupled solid oxide fuel cell and metal hydride bed system
NASA Astrophysics Data System (ADS)
Song, Ke
Solid oxide fuel cells have exhibited excellent performance at high temperature for a few years. However, the fuel supply and the practical fuel cell application need to be improved especially for transportation or stand-alone facility usage. Two modified hydrogen storage models (two vessel and three vessel hydrogen storage system) are presented in this study. The gravimetric density and volumetric density are calculated in order to meet the DOE requirements. Furthermore, the time dependence model of hydrogen releasing in metal hydride bed (MHB) is built up. And the simulations are carried on in isothermal and adiabatic conditions. The simulation results indicate: the isothermal model can provide sufficient hydrogen flow until the MHB is emptied; the adiabatic model can only last short period because of the fast temperature decreasing in MHB. The steady state and time dependence model of coupled solid oxide fuel cells (SOFC) and MHB system are also investigated. The steady state model focuses on the heat recycle process for coupled system. The calculation shows the heat generated in system can provide enough energy for inner recycle. On the other hand, the time de-pendence model mainly concerns the time delay in such a coupled system. The simu-lation shows the time delay mainly comes from hydrogen feed.
NASA Astrophysics Data System (ADS)
Mooney, Priscilla A.; Mulligan, Frank J.
2013-04-01
We investigate the ability of a coupled regional atmosphere-ocean modelling system to simulate two extreme events in the North Atlantic. In this study we use the Coupled-Ocean-Atmosphere-Wave-Sediment Transport (COAWST; Warner et al.) modelling system with only the atmosphere and ocean models activated. COAWST couples the atmosphere model (Weather Research and Forecasting model; WRF) to the ocean model (Regional Ocean Modelling System; ROMS) with the Model Coupling Toolkit. Results from the coupled system are compared with atmosphere only simulations of North Atlantic storms to evaluate the performance of the coupled modelling system. Two extreme events (Hurricane Katia and Hurricane Irene) were chosen to assess the level of improvement (or otherwise) arising from coupling WRF with ROMS. These two hurricanes involve different dynamics and present different challenges to the modeling system. This provides a robust assessment of the advantages or disadvantages of coupling WRF with ROMS for regional climate modelling studies of extreme events in the North Atlantic. We examine the ability of the coupled modelling system to simulate these two extreme events by comparing modelled storm tracks, storm intensities, wind speeds and sea surface temperatures with observations in all cases. The effect of domain size, and two different planetary boundary layers used in WRF are also reported.
A semiclassical generalized quantum master equation for an arbitrary system-bath coupling
NASA Astrophysics Data System (ADS)
Shi, Qiang; Geva, Eitan
2004-06-01
The Nakajima-Zwanzig generalized quantum master equation (GQME) provides a general, and formally exact, prescription for simulating the reduced dynamics of a quantum system coupled to a, possibly anharmonic, quantum bath. In this equation, a memory kernel superoperator accounts for the influence of the bath on the dynamics of the system. In a previous paper [Q. Shi and E. Geva, J. Chem. Phys. 119, 12045 (2003)] we proposed a new approach to calculating the memory kernel, in the case of arbitrary system-bath coupling. Within this approach, the memory kernel is obtained by solving a set of two integral equations, which requires a new type of two-time system-dependent bath correlation functions as input. In the present paper, we consider the application of the linearized semiclassical (LSC) approximation for calculating those correlation functions, and subsequently the memory kernel. The new approach is tested on a benchmark spin-boson model. Application of the LSC approximation for calculating the relatively short-lived memory kernel, followed by a numerically exact solution of the GQME, is found to provide an accurate description of the relaxation dynamics. The success of the proposed LSC-GQME methodology is contrasted with the failure of both the direct application of the LSC approximation and the weak coupling treatment to provide an accurate description of the dynamics, for the same model, except at very short times. The feasibility of the new methodology to anharmonic systems is also demonstrated in the case of a two level system coupled to a chain of Lennard-Jones atoms.
Dynamics of atom-field probability amplitudes in a coupled cavity system with Kerr non-linearity
Priyesh, K. V.; Thayyullathil, Ramesh Babu
2014-01-28
We have investigated the dynamics of two cavities coupled together via photon hopping, filled with Kerr non-linear medium and each containing a two level atom in it. The evolution of various atom (field) state probabilities of the coupled cavity system in two excitation sub space are obtained numerically. Detailed analysis has been done by taking different initial conditions of the system, with various coupling strengths and by varying the susceptibility of the medium. The role of susceptibility factor, on the dynamics atom field probability has been examined. In a coupled cavity system with strong photon hopping it is found that the susceptibility factor modifies the behaviour of probability amplitudes.
Trajectory-probed instability and statistics of desynchronization events in coupled chaotic systems
Oliveira, Gilson F. de Chevrollier, Martine; Oriá, Marcos; Passerat de Silans, Thierry; Souza Cavalcante, Hugo L. D. de
2015-11-15
Complex systems, such as financial markets, earthquakes, and neurological networks, exhibit extreme events whose mechanisms of formation are not still completely understood. These mechanisms may be identified and better studied in simpler systems with dynamical features similar to the ones encountered in the complex system of interest. For instance, sudden and brief departures from the synchronized state observed in coupled chaotic systems were shown to display non-normal statistical distributions similar to events observed in the complex systems cited above. The current hypothesis accepted is that these desynchronization events are influenced by the presence of unstable object(s) in the phase space of the system. Here, we present further evidence that the occurrence of large events is triggered by the visitation of the system's phase-space trajectory to the vicinity of these unstable objects. In the system studied here, this visitation is controlled by a single parameter, and we exploit this feature to observe the effect of the visitation rate in the overall instability of the synchronized state. We find that the probability of escapes from the synchronized state and the size of those desynchronization events are enhanced in attractors whose shapes permit the chaotic trajectories to approach the region of strong instability. This result shows that the occurrence of large events requires not only a large local instability to amplify noise, or to amplify the effect of parameter mismatch between the coupled subsystems, but also that the trajectories of the system wander close to this local instability.
Trajectory-probed instability and statistics of desynchronization events in coupled chaotic systems
NASA Astrophysics Data System (ADS)
de Oliveira, Gilson F.; Chevrollier, Martine; Passerat de Silans, Thierry; Oriá, Marcos; de Souza Cavalcante, Hugo L. D.
2015-11-01
Complex systems, such as financial markets, earthquakes, and neurological networks, exhibit extreme events whose mechanisms of formation are not still completely understood. These mechanisms may be identified and better studied in simpler systems with dynamical features similar to the ones encountered in the complex system of interest. For instance, sudden and brief departures from the synchronized state observed in coupled chaotic systems were shown to display non-normal statistical distributions similar to events observed in the complex systems cited above. The current hypothesis accepted is that these desynchronization events are influenced by the presence of unstable object(s) in the phase space of the system. Here, we present further evidence that the occurrence of large events is triggered by the visitation of the system's phase-space trajectory to the vicinity of these unstable objects. In the system studied here, this visitation is controlled by a single parameter, and we exploit this feature to observe the effect of the visitation rate in the overall instability of the synchronized state. We find that the probability of escapes from the synchronized state and the size of those desynchronization events are enhanced in attractors whose shapes permit the chaotic trajectories to approach the region of strong instability. This result shows that the occurrence of large events requires not only a large local instability to amplify noise, or to amplify the effect of parameter mismatch between the coupled subsystems, but also that the trajectories of the system wander close to this local instability.
Reverberant acoustic energy in auditoria that comprise systems of coupled rooms
NASA Astrophysics Data System (ADS)
Summers, Jason Erik
A frequency-dependent model for levels and decay rates of reverberant energy in systems of coupled rooms is developed and compared with measurements conducted in a 1:10 scale model and in Bass Hall, Fort Worth, TX. Schroeder frequencies of subrooms, fSch, characteristic size of coupling apertures, a, relative to wavelength lambda, and characteristic size of room surfaces, l, relative to lambda define the frequency regions. At high frequencies [HF (f >> f Sch, a >> lambda, l >> lambda)], this work improves upon prior statistical-acoustics (SA) coupled-ODE models by incorporating geometrical-acoustics (GA) corrections for the model of decay within subrooms and the model of energy transfer between subrooms. Previous researchers developed prediction algorithms based on computational GA. Comparisons of predictions derived from beam-axis tracing with scale-model measurements indicate that systematic errors for coupled rooms result from earlier tail-correction procedures that assume constant quadratic growth of reflection density. A new algorithm is developed that uses ray tracing rather than tail correction in the late part and is shown to correct this error. At midfrequencies [MF (f >> f Sch, a ˜ lambda)], HF models are modified to account for wave effects at coupling apertures by including analytically or heuristically derived power transmission coefficients tau. This work improves upon prior SA models of this type by developing more accurate estimates of random-incidence tau. While the accuracy of the MF models is difficult to verify, scale-model measurements evidence the expected behavior. The Biot-Tolstoy-Medwin-Svensson (BTMS) time-domain edge-diffraction model is newly adapted to study transmission through apertures. Multiple-order BTMS scattering is theoretically and experimentally shown to be inaccurate due to the neglect of slope diffraction. At low frequencies (f ˜ f Sch), scale-model measurements have been qualitatively explained by application of
Human Tracking Performance in Uncoupled and Coupled Two-Axis Systems
NASA Technical Reports Server (NTRS)
Todosiev, E. P.; Rose, R. E.; Bekey, G. A.; Williams, H. L.
1965-01-01
This report presents tile results of an experimental and analytical study of human performance in uncoupled and coupled control systems. Human pilot performance in single and two-axis systems was mathematically modeled by linear second-order describing functions. Model parameters were determined using model matching techniques. Analysis of the models showed that the amplitude ratio and phase lead of the describing function increased with training indicating an increase in open loop bandwidth. The phase margin also decreased with training. Increasing the plant lag time constant resulted in an increase in the model lead time constant and a decrease in the zero frequency gain. No significant difference was found to exist in the normalized tracking error per axis between the two-axis tasks and the single-axis tasks. However tile model lead time constant was significantly greater in two-axis tracking. Manual tracking of two-axis systems with cross-coupling was studied experimentally and analytically. Approximate methods for modeling two-axis performance were developed and checked using a precise spectral analysis approach. Coupled and uncoupled, symmetrical and asymmetrical two-axis performance was compared. The results show that modeling of cross-coupled systems is feasible and that trained subjects are capable of decoupling the axes of some systems. A methodology study compared the identification performance of continuous, iterative, and extrapolation model matching techniques. An iterative technique employing sensitivity equations for the generation of influence coefficients was found to be the best technique due to its excellent identification accuracy and ease of implementation. Convergence in iterative techniques can be improved substantially by equalizing the parameter adjustment rates and limiting the maximum correction per iteration.
Supersymmetry in quantum optics and in spin-orbit coupled systems.
Tomka, Michael; Pletyukhov, Mikhail; Gritsev, Vladimir
2015-01-01
Light-matter interaction is naturally described by coupled bosonic and fermionic subsystems. This suggests that a certain Bose-Fermi duality is naturally present in the fundamental quantum mechanical description of photons interacting with atoms. We reveal submanifolds in parameter space of a basic light-matter interacting system where this duality is promoted to a supersymmetry (SUSY) which remains unbroken. We show that SUSY is robust with respect to decoherence and dissipation. In particular, the stationary density matrix at the supersymmetric lines in parameter space has a degenerate subspace. The dimension of this subspace is given by the Witten index and thus is topologically protected. As a consequence, the dissipative dynamics is constrained by a robust additional conserved quantity which translates information about an initial state into the stationary state. In addition, we demonstrate that the same SUSY structures are present in condensed matter systems with spin-orbit couplings of Rashba and Dresselhaus types, and therefore spin-orbit coupled systems at the SUSY lines should be robust with respect to various types of disorder. Our findings suggest that optical and condensed matter systems at the SUSY points can be used for quantum information technology and can open an avenue for quantum simulation of SUSY field theories. PMID:26287123
The effect of quenched disorder on dynamical transitions in systems of coupled cells
NASA Astrophysics Data System (ADS)
Xu, Jinshan; Singh, Rajeev; Garnier, Nicolas B.; Sinha, Sitabhra; Pumir, Alain
2013-09-01
Non-equilibrium systems are characterized by a rich variety of dynamical behaviors, which may sensitively depend on control parameters. Here, we investigate and provide a quantitative analysis of the role of disorder on the transitions between different dynamical regimes in extended heterogeneous systems of excitable and passive cells, induced by varying the strength of the coupling between cells. The random distribution of passive cells provides a quenched disorder in important biological contexts, such as the appearance of contractions in the pregnant uterus. We observe a large variability between different realizations of the disorder (replicas) in a lattice of excitable cells, each cell being coupled to a random number of passive cells. The statistics of these large disorder-induced fluctuations are related to the properties of the coarse-grained distribution of passive cells, in particular, to its extreme values. We show that these fluctuations can be characterized by a simple scaling relation, involving the strength of the coupling between excitable cells, the mean passive cell density and the logarithm of the system size. Our results provide a quantitative understanding of the important effect of a quenched disorder in the transition between dynamical regimes in extended dynamical systems.
Systemic risk in multiplex networks with asymmetric coupling and threshold feedback
NASA Astrophysics Data System (ADS)
Burkholz, Rebekka; Leduc, Matt V.; Garas, Antonios; Schweitzer, Frank
2016-06-01
We study cascades on a two-layer multiplex network, with asymmetric feedback that depends on the coupling strength between the layers. Based on an analytical branching process approximation, we calculate the systemic risk measured by the final fraction of failed nodes on a reference layer. The results are compared with the case of a single layer network that is an aggregated representation of the two layers. We find that systemic risk in the two-layer network is smaller than in the aggregated one only if the coupling strength between the two layers is small. Above a critical coupling strength, systemic risk is increased because of the mutual amplification of cascades in the two layers. We even observe sharp phase transitions in the cascade size that are less pronounced on the aggregated layer. Our insights can be applied to a scenario where firms decide whether they want to split their business into a less risky core business and a more risky subsidiary business. In most cases, this may lead to a drastic increase of systemic risk, which is underestimated in an aggregated approach.
Analysis of light propagation in slotted resonator based systems via coupled-mode theory.
Hiremath, Kirankumar R; Niegemann, Jens; Busch, Kurt
2011-04-25
Optical devices with a slot configuration offer the distinct feature of strong electric field confinement in a low refractive index region and are, therefore, of considerable interest in many applications. In this work we investigate light propagation in a waveguide-resonator system where the resonators consist of slotted ring cavities. Owing to the presence of curved material interfaces and the vastly different length scales associated with the sub-wavelength sized slots and the waveguide-resonator coupling regions on the one hand, and the spatial extent of the ring on the other hand, this prototypical system provides significant challenges to both direct numerical solvers and semi-analytical approaches. We address these difficulties by modeling the slot resonators via a frequency-domain spatial Coupled-Mode Theory (CMT) approach, and compare its results with a Discontinuous Galerkin Time-Domain (DGTD) solver that is equipped with curvilinear finite elements. In particular, the CMT model is built on the underlying physical properties of the slotted resonators, and turns out to be quite efficient for analyzing the device characteristics. We also discuss the advantages and limitations of the CMT approach by comparing the results with the numerically exact solutions obtained by the DGTD solver. Besides providing considerable physical insight, the CMT model thus forms a convenient basis for the efficient analysis of more complex systems with slotted resonators such as entire arrays of waveguide-coupled resonators and systems with strongly nonlinear optical properties. PMID:21643116
Supersymmetry in quantum optics and in spin-orbit coupled systems
Tomka, Michael; Pletyukhov, Mikhail; Gritsev, Vladimir
2015-01-01
Light-matter interaction is naturally described by coupled bosonic and fermionic subsystems. This suggests that a certain Bose-Fermi duality is naturally present in the fundamental quantum mechanical description of photons interacting with atoms. We reveal submanifolds in parameter space of a basic light-matter interacting system where this duality is promoted to a supersymmetry (SUSY) which remains unbroken. We show that SUSY is robust with respect to decoherence and dissipation. In particular, the stationary density matrix at the supersymmetric lines in parameter space has a degenerate subspace. The dimension of this subspace is given by the Witten index and thus is topologically protected. As a consequence, the dissipative dynamics is constrained by a robust additional conserved quantity which translates information about an initial state into the stationary state. In addition, we demonstrate that the same SUSY structures are present in condensed matter systems with spin-orbit couplings of Rashba and Dresselhaus types, and therefore spin-orbit coupled systems at the SUSY lines should be robust with respect to various types of disorder. Our findings suggest that optical and condensed matter systems at the SUSY points can be used for quantum information technology and can open an avenue for quantum simulation of SUSY field theories. PMID:26287123
NASA Astrophysics Data System (ADS)
di, L.; Yu, G.; Chen, N.
2007-12-01
The self-adaptation concept is the central piece of the control theory widely and successfully used in engineering and military systems. Such a system contains a predictor and a measurer. The predictor takes initial condition and makes an initial prediction and the measurer then measures the state of a real world phenomenon. A feedback mechanism is built in that automatically feeds the measurement back to the predictor. The predictor takes the measurement against the prediction to calculate the prediction error and adjust its internal state based on the error. Thus, the predictor learns from the error and makes a more accurate prediction in the next step. By adopting the self-adaptation concept, we proposed the Self-adaptive Earth Predictive System (SEPS) concept for enabling the dynamic coupling between the sensor web and the Earth system models. The concept treats Earth System Models (ESM) and Earth Observations (EO) as integral components of the SEPS coupled by the SEPS framework. EO measures the Earth system state while ESM predicts the evolution of the state. A feedback mechanism processes EO measurements and feeds them into ESM during model runs or as initial conditions. A feed-forward mechanism analyzes the ESM predictions against science goals for scheduling optimized/targeted observations. The SEPS framework automates the Feedback and Feed-forward mechanisms (the FF-loop). Based on open consensus-based standards, a general SEPS framework can be developed for supporting the dynamic, interoperable coupling between ESMs and EO. Such a framework can support the plug-in-and-play capability of both ESMs and diverse sensors and data systems as long as they support the standard interfaces. This presentation discusses the SEPS concept, the service-oriented architecture (SOA) of SEPS framework, standards of choices for the framework, and the implementation. The presentation also presents examples of SEPS to demonstrate dynamic, interoperable, and live coupling of
A semi-discrete integrable multi-component coherently coupled nonlinear Schrödinger system
NASA Astrophysics Data System (ADS)
Zhao, Hai-qiong; Yuan, Jinyun
2016-07-01
A new integrable semi-discrete version is proposed for the multi-component coherently coupled nonlinear Schrödinger equation. The integrability of the semi-discrete system is confirmed by existence of Lax pair and infinite number of conservation laws. With the aid of gauge transformations, explicit formulas for N-fold Darboux transformations are derived whereby some physically important solutions of the system are presented. Furthermore, the theory of the semi-discrete system including Lax pair, Darboux transformations, exact solutions and infinite number of conservation laws are shown for their continuous counterparts in the continuous limit.
Dynamical equivalence of networks of coupled dynamical systems: I. Asymmetric inputs
NASA Astrophysics Data System (ADS)
Agarwal, N.; Field, M.
2010-06-01
We give a simple necessary and sufficient condition for the dynamical equivalence of two coupled cell networks. The results are applicable to both continuous and discrete dynamical systems and are framed in terms of what we term input and output equivalence. We also give an algorithm that allows explicit construction of the cells in a system with a given network architecture in terms of the cells from an equivalent system with different network architecture. Details of proofs are provided for the case of cells with asymmetric inputs—details for the case of symmetric inputs are provided in a companion paper.
Deposition Of Materials Using A Simple Planar Coil Radio Frequency Inductively Coupled Plasma System
Ng, K. H.; Wong, C. S.; Yap, S. L.; Gan, S. N.
2009-07-07
A planar coil RF inductively coupled plasma (PC-RFICP) systems is set up for the purpose of thin film deposition. The system is powered by a 13.56 MHz, 550 W, 50 OMEGA RF generator. The RF power is transferred to the plasma via a planar induction coil. The impedance matching unit consists of an air core step-down transformer and a tunable vacuum capacitor. This system is used for the plasma enhanced chemical vapor deposition (PECVD) of diamond-like carbon (DLC) film on silicon substrate, and hydrogenated amorphous carbon (a-C:H) film.
System Simulation of Nuclear Power Plant by Coupling RELAP5 and Matlab/Simulink
Meng Lin; Dong Hou; Zhihong Xu; Yanhua Yang; Ronghua Zhang
2006-07-01
Since RELAP5 code has general and advanced features in thermal-hydraulic computation, it has been widely used in transient and accident safety analysis, experiment planning analysis, and system simulation, etc. So we wish to design, analyze, verify a new Instrumentation And Control (I and C) system of Nuclear Power Plant (NPP) based on the best-estimated code, and even develop our engineering simulator. But because of limited function of simulating control and protection system in RELAP5, it is necessary to expand the function for high efficient, accurate, flexible design and simulation of I and C system. Matlab/Simulink, a scientific computation software, just can compensate the limitation, which is a powerful tool in research and simulation of plant process control. The software is selected as I and C part to be coupled with RELAP5 code to realize system simulation of NPPs. There are two key techniques to be solved. One is the dynamic data exchange, by which Matlab/Simulink receives plant parameters and returns control results. Database is used to communicate the two codes. Accordingly, Dynamic Link Library (DLL) is applied to link database in RELAP5, while DLL and S-Function is applied in Matlab/Simulink. The other problem is synchronization between the two codes for ensuring consistency in global simulation time. Because Matlab/Simulink always computes faster than RELAP5, the simulation time is sent by RELAP5 and received by Matlab/Simulink. A time control subroutine is added into the simulation procedure of Matlab/Simulink to control its simulation advancement. Through these ways, Matlab/Simulink is dynamically coupled with RELAP5. Thus, in Matlab/Simulink, we can freely design control and protection logic of NPPs and test it with best-estimated plant model feedback. A test will be shown to illuminate that results of coupling calculation are nearly the same with one of single RELAP5 with control logic. In practice, a real Pressurized Water Reactor (PWR) is
Quantum thermalization of two coupled two-level systems in eigenstate and bare-state representations
Liao Jieqiao; Huang Jinfeng; Kuang Leman
2011-05-15
We study analytically the quantum thermalization of two coupled two-level systems (TLSs), which are connected with either two independent heat baths (IHBs) or a common heat bath (CHB). We understand the quantum thermalization in eigenstate and bare-state representations when the coupling between the two TLSs is stronger and weaker than the TLS-bath couplings, respectively. In the IHB case, we find that, when the two IHBs have the same temperatures, the two coupled TLSs in eigenstate representation can be thermalized with the same temperature as those of the IHBs. However, in the case of two IHBs at different temperatures, just when the energy detuning between the two TLSs satisfies a special condition, the two coupled TLSs in eigenstate representation can be thermalized with an immediate temperature between those of the two IHBs. In bare-state representation, we find a counterintuitive phenomenon that, under some conditions, the temperature of the TLS connected with the high-temperature bath is lower than that of the other TLS, which is connected with the low-temperature bath. In the CHB case, the coupled TLSs in eigenstate representation can be thermalized with the same temperature as that of the CHB in nonresonant cases. In bare-state representation, the TLS with a larger energy separation can be thermalized to a thermal equilibrium with a lower temperature. In the resonant case, we find a phenomenon of antithermalization. We also study the steady-state entanglement between the two TLSs in both the IHB and CHB cases.
Coupled circuit numerical analysis of eddy currents in an open MRI system
NASA Astrophysics Data System (ADS)
Akram, Md. Shahadat Hossain; Terada, Yasuhiko; Keiichiro, Ishi; Kose, Katsumi
2014-08-01
We performed a new coupled circuit numerical simulation of eddy currents in an open compact magnetic resonance imaging (MRI) system. Following the coupled circuit approach, the conducting structures were divided into subdomains along the length (or width) and the thickness, and by implementing coupled circuit concepts we have simulated transient responses of eddy currents for subdomains in different locations. We implemented the Eigen matrix technique to solve the network of coupled differential equations to speed up our simulation program. On the other hand, to compute the coupling relations between the biplanar gradient coil and any other conducting structure, we implemented the solid angle form of Ampere’s law. We have also calculated the solid angle for three dimensions to compute inductive couplings in any subdomain of the conducting structures. Details of the temporal and spatial distribution of the eddy currents were then implemented in the secondary magnetic field calculation by the Biot-Savart law. In a desktop computer (Programming platform: Wolfram Mathematica 8.0®, Processor: Intel(R) Core(TM)2 Duo E7500 @ 2.93 GHz; OS: Windows 7 Professional; Memory (RAM): 4.00 GB), it took less than 3 min to simulate the entire calculation of eddy currents and fields, and approximately 6 min for X-gradient coil. The results are given in the time-space domain for both the direct and the cross-terms of the eddy current magnetic fields generated by the Z-gradient coil. We have also conducted free induction decay (FID) experiments of eddy fields using a nuclear magnetic resonance (NMR) probe to verify our simulation results. The simulation results were found to be in good agreement with the experimental results. In this study we have also conducted simulations for transient and spatial responses of secondary magnetic field induced by X-gradient coil. Our approach is fast and has much less computational complexity than the conventional electromagnetic numerical
Coupled circuit numerical analysis of eddy currents in an open MRI system.
Akram, Md Shahadat Hossain; Terada, Yasuhiko; Keiichiro, Ishi; Kose, Katsumi
2014-08-01
We performed a new coupled circuit numerical simulation of eddy currents in an open compact magnetic resonance imaging (MRI) system. Following the coupled circuit approach, the conducting structures were divided into subdomains along the length (or width) and the thickness, and by implementing coupled circuit concepts we have simulated transient responses of eddy currents for subdomains in different locations. We implemented the Eigen matrix technique to solve the network of coupled differential equations to speed up our simulation program. On the other hand, to compute the coupling relations between the biplanar gradient coil and any other conducting structure, we implemented the solid angle form of Ampere's law. We have also calculated the solid angle for three dimensions to compute inductive couplings in any subdomain of the conducting structures. Details of the temporal and spatial distribution of the eddy currents were then implemented in the secondary magnetic field calculation by the Biot-Savart law. In a desktop computer (Programming platform: Wolfram Mathematica 8.0®, Processor: Intel(R) Core(TM)2 Duo E7500 @ 2.93GHz; OS: Windows 7 Professional; Memory (RAM): 4.00GB), it took less than 3min to simulate the entire calculation of eddy currents and fields, and approximately 6min for X-gradient coil. The results are given in the time-space domain for both the direct and the cross-terms of the eddy current magnetic fields generated by the Z-gradient coil. We have also conducted free induction decay (FID) experiments of eddy fields using a nuclear magnetic resonance (NMR) probe to verify our simulation results. The simulation results were found to be in good agreement with the experimental results. In this study we have also conducted simulations for transient and spatial responses of secondary magnetic field induced by X-gradient coil. Our approach is fast and has much less computational complexity than the conventional electromagnetic numerical simulation
An NADPH-dependent microsomal-activating system has been coupled to a rat embryo culture in vitro. No embryonic morphological abnormalities or decrease in final yolk sac or embryo DNA and protein contents occurred when 0.2 mM NADPH was used in this coupled system. In contrast, 1....
A Coupled System of Integrodifferential Equations Arising in Liquidity Risk Model
Pham, Huyen Tankov, Peter
2009-04-15
We study the mathematical aspects of the portfolio/consumption choice problem in a market model with liquidity risk introduced in (Pham and Tankov, Math. Finance, 2006, to appear). In this model, the investor can trade and observe stock prices only at exogenous Poisson arrival times. He may also consume continuously from his cash holdings, and his goal is to maximize his expected utility from consumption. This is a mixed discrete/continuous time stochastic control problem, nonstandard in the literature. We show how the dynamic programming principle leads to a coupled system of Integro-Differential Equations (IDE), and we prove an analytic characterization of this control problem by adapting the concept of viscosity solutions. This coupled system of IDE may be numerically solved by a decoupling algorithm, and this is the topic of a companion paper (Pham and Tankov, Math. Finance, 2006, to appear)
Alexandrov, Elina O; Cowan, Philip A; Cowan, Carolyn Pape
2005-06-01
This study investigates links between adult attachment and marital quality in 73 married couples, using a new Couple Attachment Interview that was modeled after the Adult Attachment Interview but focuses on the relationship between the partners. A coding system (CAICS) comparing the interview protocol to prototypes for secure, dismissing, and preoccupied attachment styles yielded continuous ratings of all three styles, and categorical classifications of secure/insecure for each partner. The study found direct links between couple attachment and both self-reported and observed marital quality, with all three continuous scores contributing uniquely to the equations. In most cases, the continuous scores explained variation in marital quality after the categorical security scores were entered into the regressions, although categorical scores also contributed uniquely to the explanation of marital quality. Pairing of partners' scores explained significant variance in both self-reported and observed evaluations of the couple relationship. Security of couple attachment served as a mediator in the link between self-reported marital satisfaction and observed marital quality. The results illustrated the interconnection of methodological choices and theoretical advances in the study of attachment and couple relationship quality. PMID:16096190
Stability switches and multistability coexistence in a delay-coupled neural oscillators system.
Song, Zigen; Xu, Jian
2012-11-21
In this paper, we present a neural network system composed of two delay-coupled neural oscillators, where each of these can be regarded as the dynamical system describing the average activity of neural population. Analyzing the corresponding characteristic equation, the local stability of rest state is studied. The system exhibits the switch phenomenon between the rest state and periodic activity. Furthermore, the Hopf bifurcation is analyzed and the bifurcation curve is given in the parameters plane. The stability of the bifurcating periodic solutions and direction of the Hopf bifurcation are exhibited. Regarding time delay and coupled weight as the bifurcation parameters, the Fold-Hopf bifurcation is investigated in detail in terms of the central manifold reduction and normal form method. The neural system demonstrates the coexistence of the rest states and periodic activities in the different parameter regions. Employing the normal form of the original system, the coexistence regions are illustrated approximately near the Fold-Hopf singularity point. Finally, numerical simulations are performed to display more complex dynamics. The results illustrate that system may exhibit the rich coexistence of the different neuro-computational properties, such as the rest states, periodic activities, and quasi-periodic behavior. In particular, some periodic activities can evolve into the bursting-type behaviors with the varying time delay. It implies that the coexistence of the quasi-periodic activity and bursting-type behavior can be obtained if the suitable value of system parameter is chosen. PMID:22921877
NASA Astrophysics Data System (ADS)
Vervaeke, Michael; Moens, Els; Meuret, Youri; Ottevaere, Heidi; Van Buggenhout, Carl; De Pauw, Piet; Thienpont, Hugo
2010-05-01
The advent of Plastic Optical Fibre (POF) opened perspectives for numerous applications in the field of datacommunications. POF is increasingly popular in the automotive industry as a robust, lightweight, electromagnetic interference free, easy and cheap to install alternative to electrical wiring for high-speed entertainment, navigation and data acquisition systems in cars. The main challenge for the introduction of datacommunication systems based on POF is imposed by the working conditions of automotive applications: systems should remain fully functional in a temperature range from -40 °C to +115 °C . Furthermore, standardisation and mechanical design considerations put a number of other boundary conditions. We designed a misalignment-tolerant optical coupling system according to the Media Oriented Systems Transport standard (MOST) to convey the divergent beam from a Resonant Cavity Light Emitting Diode (RCLED) into a Step-Index (SI) multimode POF mounted in a detachable ferrule. In this contribution we describe the methodology to synthesize the dimensions and tolerances on the optical components in the coupling system. A Monte Carlo optimisation algorithm on the full three-dimensional (3D) description of the complete RCLED package and detachable POF ferrule was used to allow a realistic modelling of all misalignments that could occur in the production chain. We select the best suited system according to manufacturing and assembly capabilities as well as its suitability for automotive applications.
Recent progress on correlated electron systems with strong spin-orbit coupling.
Schaffer, Robert; Kin-Ho Lee, Eric; Yang, Bohm-Jung; Kim, Yong Baek
2016-09-01
The emergence of novel quantum ground states in correlated electron systems with strong spin-orbit coupling has been a recent subject of intensive studies. While it has been realized that spin-orbit coupling can provide non-trivial band topology in weakly interacting electron systems, as in topological insulators and semi-metals, the role of electron-electron interaction in strongly spin-orbit coupled systems has not been fully understood. The availability of new materials with significant electron correlation and strong spin-orbit coupling now makes such investigations possible. Many of these materials contain 5d or 4d transition metal elements; the prominent examples are iridium oxides or iridates. In this review, we succinctly discuss recent theoretical and experimental progress on this subject. After providing a brief overview, we focus on pyrochlore iridates and three-dimensional honeycomb iridates. In pyrochlore iridates, we discuss the quantum criticality of the bulk and surface states, and the relevance of the surface/boundary states in a number of topological and magnetic ground states, both in the bulk and thin film configurations. Experimental signatures of these boundary and bulk states are discussed. Domain wall formation and strongly-direction-dependent magneto-transport are also discussed. In regard to the three-dimensional honeycomb iridates, we consider possible quantum spin liquid phases and unusual magnetic orders in theoretical models with strongly bond-dependent interactions. These theoretical ideas and results are discussed in light of recent resonant x-ray scattering experiments on three-dimensional honeycomb iridates. We also contrast these results with the situation in two-dimensional honeycomb iridates. We conclude with the outlook on other related systems. PMID:27540689
Charge-coupled device data processor for an airborne imaging radar system
NASA Technical Reports Server (NTRS)
Arens, W. E. (Inventor)
1977-01-01
Processing of raw analog echo data from synthetic aperture radar receiver into images on board an airborne radar platform is discussed. Processing is made feasible by utilizing charge-coupled devices (CCD). CCD circuits are utilized to perform input sampling, presumming, range correlation and azimuth correlation in the analog domain. These radar data processing functions are implemented for single-look or multiple-look imaging radar systems.
Recent progress on correlated electron systems with strong spin–orbit coupling
NASA Astrophysics Data System (ADS)
Schaffer, Robert; Kin-Ho Lee, Eric; Yang, Bohm-Jung; Kim, Yong Baek
2016-09-01
The emergence of novel quantum ground states in correlated electron systems with strong spin–orbit coupling has been a recent subject of intensive studies. While it has been realized that spin–orbit coupling can provide non-trivial band topology in weakly interacting electron systems, as in topological insulators and semi-metals, the role of electron–electron interaction in strongly spin–orbit coupled systems has not been fully understood. The availability of new materials with significant electron correlation and strong spin–orbit coupling now makes such investigations possible. Many of these materials contain 5d or 4d transition metal elements; the prominent examples are iridium oxides or iridates. In this review, we succinctly discuss recent theoretical and experimental progress on this subject. After providing a brief overview, we focus on pyrochlore iridates and three-dimensional honeycomb iridates. In pyrochlore iridates, we discuss the quantum criticality of the bulk and surface states, and the relevance of the surface/boundary states in a number of topological and magnetic ground states, both in the bulk and thin film configurations. Experimental signatures of these boundary and bulk states are discussed. Domain wall formation and strongly-direction-dependent magneto-transport are also discussed. In regard to the three-dimensional honeycomb iridates, we consider possible quantum spin liquid phases and unusual magnetic orders in theoretical models with strongly bond-dependent interactions. These theoretical ideas and results are discussed in light of recent resonant x-ray scattering experiments on three-dimensional honeycomb iridates. We also contrast these results with the situation in two-dimensional honeycomb iridates. We conclude with the outlook on other related systems.
Electric field controlled spin interference in a system with Rashba spin-orbit coupling
NASA Astrophysics Data System (ADS)
Ciftja, Orion
2016-05-01
There have been intense research efforts over the last years focused on understanding the Rashba spin-orbit coupling effect from the perspective of possible spintronics applications. An important component of this line of research is aimed at control and manipulation of electron's spin degrees of freedom in semiconductor quantum dot devices. A promising way to achieve this goal is to make use of the tunable Rashba effect that relies on the spin-orbit interaction in a two-dimensional electron system embedded in a host semiconducting material that lacks inversion-symmetry. This way, the Rashba spin-orbit coupling effect may potentially lead to fabrication of a new generation of spintronic devices where control of spin, thus magnetic properties, is achieved via an electric field and not a magnetic field. In this work we investigate theoretically the electron's spin interference and accumulation process in a Rashba spin-orbit coupled system consisting of a pair of two-dimensional semiconductor quantum dots connected to each other via two conducting semi-circular channels. The strength of the confinement energy on the quantum dots is tuned by gate potentials that allow "leakage" of electrons from one dot to another. While going through the conducting channels, the electrons are spin-orbit coupled to a microscopically generated electric field applied perpendicular to the two-dimensional system. We show that interference of spin wave functions of electrons travelling through the two channels gives rise to interference/conductance patterns that lead to the observation of the geometric Berry's phase. Achieving a predictable and measurable observation of Berry's phase allows one to control the spin dynamics of the electrons. It is demonstrated that this system allows use of a microscopically generated electric field to control Berry's phase, thus, enables one to tune the spin-dependent interference pattern and spintronic properties with no need for injection of spin
Cluster Consensus of Nonlinearly Coupled Multi-Agent Systems in Directed Graphs
NASA Astrophysics Data System (ADS)
Lu, Xiao-Qing; Francis, Austin; Chen, Shi-Hua
2010-05-01
We investigate the cluster consensus problem in directed networks of nonlinearly coupled multi-agent systems by using pinning control. Depending on the community structure generated by the group partition of the underlying digraph, various clusters can be made coherently independent by applying feedback injections to a fraction of the agents. Sufficient conditions for cluster consensus are obtained using algebraic graph theory and matrix theory and some simulations results are included to illustrate the method.
NASA Astrophysics Data System (ADS)
Jia, Bing
2014-05-01
The coexistence of a resting condition and period-1 firing near a subcritical Hopf bifurcation point, lying between the monostable resting condition and period-1 firing, is often observed in neurons of the central nervous systems. Near such a bifurcation point in the Morris—Lecar (ML) model, the attraction domain of the resting condition decreases while that of the coexisting period-1 firing increases as the bifurcation parameter value increases. With the increase of the coupling strength, and parameter and initial value dependent synchronization transition processes from non-synchronization to compete synchronization are simulated in two coupled ML neurons with coexisting behaviors: one neuron chosen as the resting condition and the other the coexisting period-1 firing. The complete synchronization is either a resting condition or period-1 firing dependent on the initial values of period-1 firing when the bifurcation parameter value is small or middle and is period-1 firing when the parameter value is large. As the bifurcation parameter value increases, the probability of the initial values of a period-1 firing neuron that lead to complete synchronization of period-1 firing increases, while that leading to complete synchronization of the resting condition decreases. It shows that the attraction domain of a coexisting behavior is larger, the probability of initial values leading to complete synchronization of this behavior is higher. The bifurcations of the coupled system are investigated and discussed. The results reveal the complex dynamics of synchronization behaviors of the coupled system composed of neurons with the coexisting resting condition and period-1 firing, and are helpful to further identify the dynamics of the spatiotemporal behaviors of the central nervous system.
Gain selection method and model for coupled propulsion and airframe systems
NASA Technical Reports Server (NTRS)
Murphy, P. C.
1982-01-01
A longitudinal model is formulated for an advanced fighter from three subsystem models: the inlet, the engine, and the airframe. Notable interaction is found in the coupled system. A procedure, based on eigenvalue sensitivities, is presented which indicates the importance of the feedback gains to the optimal solution. This allows ineffectual gains to be eliminated; thus, hardware and expense may be saved in the realization of the physical controller.
NASA Astrophysics Data System (ADS)
Wang, Yixiao; Wolfer, Tim; Lange, Alex; Overmeyer, Ludger
2016-05-01
Large scale, planar optronic systems allowing spatially distributed functionalities can be well used in diverse sensor networks, such as for monitoring the environment by measuring various physical quantities in medicine or aeronautics. In these systems, mechanically flexible and optically transparent polymeric foils, e.g. polymethyl methacrylate (PMMA) and polyethylene terephthalate (PET), are employed as carrier materials. A benefit of using these materials is their low cost. The optical interconnections from light sources to light transmission structures in planar optronic systems occupy a pivotal position for the sensing functions. As light sources, we employ the optoelectronic components, such as edgeemitting laser diodes, in form of bare chips, since their extremely small structures facilitate a high integration compactness and ensure sufficient system flexibility. Flexographically printed polymer optical waveguides are deployed as light guiding structures for short-distance communication in planar optronic systems. Printing processes are utilized for this generation of waveguides to achieve a cost-efficient large scale and high-throughput production. In order to attain a high-functional optronic system for sensing applications, one of the most essential prerequisites is the high coupling efficiency between the light sources and the waveguides. Therefore, in this work, we focus on the multimode polymer waveguide with a parabolic cross-section and investigate its optical coupling with the bare laser diode. We establish the geometrical model of the alignment based on the previous works on the optodic bonding of bare laser diodes and the fabrication process of polymer waveguides with consideration of various parameters, such as the beam profile of the laser diode, the employed polymer properties of the waveguides as well as the carrier substrates etc. Accordingly, the optical coupling of the bare laser diodes and the polymer waveguides was simulated
Shaft-Torsion and Blade-Bending Coupling Vibrations in a Rotor System with Grouped Blades
NASA Astrophysics Data System (ADS)
Huang, Shyh-Chin; Chiu, Yi-Jui
This paper discussed the shaft-torsion and blade-bending coupling vibrations of a rotor system, in which the blades were grouped with lacing wires. Massless tension springs were used for modeling the lacing wires. An energy principle in conjunction with the assumed modes method was employed to yield the discrete equations of motion. The natural frequencies and the mode shapes of the system were solved for five- and six-blade cases as examples. Numerical results showed how the natural frequencies varied with the wire stiffness, connecting position, and the rotational speed. The diagrams of the coupling mode shapes and FRF's were drawn. From the results, it was found that lacing wire did not affect the SB (shaft-blades) coupling modes, but the BB (inter-blades) modes were indeed affected by the lacing wire. At moderate range of wire stiffness, the repeated BB modes split into more distinct modes. As expected, increasing the wire stiffness or connecting near outer edge would strengthen the system structure and increasing the natural frequencies of BB modes.
Colet, Pere; Matías, Manuel A; Gelens, Lendert; Gomila, Damià
2014-01-01
The present work studies the influence of nonlocal spatial coupling on the existence of localized structures in one-dimensional extended systems. We consider systems described by a real field with a nonlocal coupling that has a linear dependence on the field. Leveraging spatial dynamics we provide a general framework to understand the effect of the nonlocality on the shape of the fronts connecting two stable states. In particular we show that nonlocal terms can induce spatial oscillations in the front tails, allowing for the creation of localized structures, that emerge from pinning between two fronts. In parameter space the region where fronts are oscillatory is limited by three transitions: the modulational instability of the homogeneous state, the Belyakov-Devaney transition in which monotonic fronts acquire spatial oscillations with infinite wavelength, and a crossover in which monotonically decaying fronts develop spatial oscillations with a finite wavelength. We show how these transitions are organized by codimension 2 and 3 points and illustrate how by changing the parameters of the nonlocal coupling it is possible to bring the system into the region where localized structures can be formed. PMID:24580304
Cooperative dynamics in coupled systems of fast and slow phase oscillators
NASA Astrophysics Data System (ADS)
Sakaguchi, Hidetsugu; Okita, Takayuki
2016-02-01
We propose a coupled system of fast and slow phase oscillators. We observe two-step transitions to quasiperiodic motions by direct numerical simulations of this coupled oscillator system. A low-dimensional equation for order parameters is derived using the Ott-Antonsen ansatz. The applicability of the ansatz is checked by the comparison of numerical results of the coupled oscillator system and the reduced low-dimensional equation. We investigate further several interesting phenomena in which mutual interactions between the fast and slow oscillators play an essential role. Fast oscillations appear intermittently as a result of excitatory interactions with slow oscillators in a certain parameter range. Slow oscillators experience an oscillator-death phenomenon owing to their interaction with fast oscillators. This oscillator death is explained as a result of saddle-node bifurcation in a simple phase equation obtained using the temporal average of the fast oscillations. Finally, we show macroscopic synchronization of the order 1 :m between the slow and fast oscillators.
Dendrimer-coupled sonophoresis-mediated transdermal drug-delivery system for diclofenac
Huang, Bin; Dong, Wei-Jiang; Yang, Gao-Yi; Wang, Wei; Ji, Cong-Hua; Zhou, Fei-Ni
2015-01-01
The purpose of the present study was to develop a novel transdermal drug-delivery system comprising a polyamidoamine dendrimer coupled with sonophoresis to enhance the permeation of diclofenac (DF) through the skin. The novel transdermal drug-delivery system was developed by using a statistical Plackett–Burman design. Hairless male Wistar rat skin was used for the DF-permeation study. Coupling media concentration, ultrasound-application time, duty cycle, distance from probe to skin, and a third-generation polyamidoamine-dendrimer concentration were selected as independent variables, while in vitro drug release was selected as a dependent variable. Independent variables were found to be statistically significant (P<0.05). DF gel without dendrimer and ultrasound treatment to skin (passive delivery, run 13) showed 56.69 µg/cm2 cumulative drug permeated through the skin, while the DF-dendrimer gel without sonophoresis treatment (run 14) showed 257.3 µg/cm2 cumulative drug permeated through the skin after 24 hours. However, when the same gel was applied to sonophoresis-treated skin, drastic permeation enhancement was observed. In the case of run 3, the cumulative drug that permeated through the skin was 935.21 µg/cm2. It was concluded that dendrimer-coupled sonophoresis-mediated transdermal drug delivery system has the potential to enhance the permeation of DF through the skin. PMID:26229447
D0 dimuon charge asymmetry from Bs system with Z' couplings and the recent LHCb result
NASA Astrophysics Data System (ADS)
Kim, Hyung Do; Kim, Sung-Gi; Shin, Seodong
2013-07-01
The D0 collaboration has announced the observation of the like-sign dimuon charge asymmetry since 2010, which has a difference of more than 3σ from the Standard Model prediction. One of the promising explanations is considering the existence of flavor-changing Z' couplings to the b and s quarks which can contribute to the off-diagonal decay width in the Bs-B¯s mixing. Model construction is highly constrained by the recent LHCb data of 1fb-1 integrated luminosity. In this paper, we analyze the experimental constraints on constructing new physics models to explain the dimuon charge asymmetry from the CP violation of the Bs system. We present limits on Z' couplings and show that it is impossible to obtain the 1σ range of the dimuon charge asymmetry without the new contribution in the Bd system. Even with an arbitrary contribution in the Bd system, the new couplings must be in the fine-tuned region.
NASA Astrophysics Data System (ADS)
Rotstein, Horacio G.; Wu, Hui
2012-09-01
We use simulations and dynamical systems tools to investigate the mechanisms of generation of phase-locked and localized oscillatory cluster patterns in a globally coupled Oregonator model where the activator receives global feedback from the inhibitor, mimicking experimental results observed in the photosensitive Belousov-Zhabotinsky reaction. A homogeneous two-cluster system (two clusters with equal cluster size) displays antiphase patterns. Heterogenous two-cluster systems (two clusters with different sizes) display both phase-locked and localized patterns depending on the parameter values. In a localized pattern the oscillation amplitude of the largest cluster is roughly an order of magnitude smaller than the oscillation amplitude of the smaller cluster, reflecting the effect of self-inhibition exerted by the global feedback term. The transition from phase-locked to localized cluster patterns occurs as the intensity of global feedback increases. Three qualitatively different basic mechanisms, described previously for a globally coupled FitzHugh-Nagumo model, are involved in the generation of the observed patterns. The swing-and-release mechanism is related to the canard phenomenon (canard explosion of limit cycles) in relaxation oscillators. The hold-and-release and hold-and-escape mechanisms are related to the release and escape mechanisms in synaptically connected neural models. The methods we use can be extended to the investigation of oscillatory chemical reactions with other types of non-local coupling.
Rotstein, Horacio G; Wu, Hui
2012-09-14
We use simulations and dynamical systems tools to investigate the mechanisms of generation of phase-locked and localized oscillatory cluster patterns in a globally coupled Oregonator model where the activator receives global feedback from the inhibitor, mimicking experimental results observed in the photosensitive Belousov-Zhabotinsky reaction. A homogeneous two-cluster system (two clusters with equal cluster size) displays antiphase patterns. Heterogenous two-cluster systems (two clusters with different sizes) display both phase-locked and localized patterns depending on the parameter values. In a localized pattern the oscillation amplitude of the largest cluster is roughly an order of magnitude smaller than the oscillation amplitude of the smaller cluster, reflecting the effect of self-inhibition exerted by the global feedback term. The transition from phase-locked to localized cluster patterns occurs as the intensity of global feedback increases. Three qualitatively different basic mechanisms, described previously for a globally coupled FitzHugh-Nagumo model, are involved in the generation of the observed patterns. The swing-and-release mechanism is related to the canard phenomenon (canard explosion of limit cycles) in relaxation oscillators. The hold-and-release and hold-and-escape mechanisms are related to the release and escape mechanisms in synaptically connected neural models. The methods we use can be extended to the investigation of oscillatory chemical reactions with other types of non-local coupling. PMID:22979891
[Production of sugar syrup containing rare sugar using dual-enzyme coupled reaction system].
Han, Wenjia; Zhu, Yueming; Bai, Wei; Izumori, Ken; Zhang, Tongcun; Sun, Yuanxia
2014-01-01
Enzymatic conversion is very important to produce functional rare sugars, but the conversion rate of single enzymes is generally low. To increase the conversion rate, a dual-enzyme coupled reaction system was developed. Dual-enzyme coupled reaction system was constructed using D-psicose-3-epimerase (DPE) and L-rhamnose isomerase (L-RhI), and used to convert D-fructose to D-psicose and D-allose. The ratio of DPE and L-RhI was 1:10 (W/W), and the concentration of DPE was 0.05 mg/mL. The optimum temperature was 60 degrees C and pH was 9.0. When the concentration of D-fructose was 2%, the reaction reached its equilibrium after 10 h, and the yield of D-psicose and D-allose was 5.12 and 2.04 g/L, respectively. Using the dual-enzymes coupled system developed in the current study, we could obtain sugar syrup containing functional rare sugar from fructose-rich raw material, such as high fructose corn syrup. PMID:24818483
Breaking of Ergodicity in Expanding Systems of Globally Coupled Piecewise Affine Circle Maps
NASA Astrophysics Data System (ADS)
Fernandez, Bastien
2014-02-01
To identify and to explain coupling-induced phase transitions in coupled map lattices (CML) has been a lingering enigma for about two decades. In numerical simulations, this phenomenon has always been observed preceded by a lowering of the Lyapunov dimension, suggesting that the transition might require changes of linear stability. Yet, recent proofs of co-existence of several phases in specially designed models work in the expanding regime where all Lyapunov exponents remain positive. In this paper, we consider a family of CML composed by piecewise expanding individual map, global interaction and finite number of sites, in the weak coupling regime where the CML is uniformly expanding. We show, mathematically for and numerically for , that a transition in the asymptotic dynamics occurs as the coupling strength increases. The transition breaks the (Milnor) attractor into several chaotic pieces of positive Lebesgue measure, with distinct empiric averages. It goes along with various symmetry breaking, quantified by means of magnetization-type characteristics. Despite that it only addresses finite-dimensional systems, to some extend, this result reconciles the previous ones as it shows that loss of ergodicity/symmetry breaking can occur in basic CML, independently of any decay in the Lyapunov dimension.
Synchronisation in networks of delay-coupled type-I excitable systems
NASA Astrophysics Data System (ADS)
Keane, A.; Dahms, T.; Lehnert, J.; Suryanarayana, S. A.; Hövel, P.; Schöll, E.
2012-12-01
We use a generic model for type-I excitability (known as the SNIPER or SNIC model) to describe the local dynamics of nodes within a network in the presence of non-zero coupling delays. Utilising the method of the Master Stability Function, we investigate the stability of the zero-lag synchronised dynamics of the network nodes and its dependence on the two coupling parameters, namely the coupling strength and delay time. Unlike in the FitzHugh-Nagumo model (a model for type-II excitability), there are parameter ranges where the stability of synchronisation depends on the coupling strength and delay time. One important implication of these results is that there exist complex networks for which the adding of inhibitory links in a small-world fashion may not only lead to a loss of stable synchronisation, but may also restabilise synchronisation or introduce multiple transitions between synchronisation and desynchronisation. To underline the scope of our results, we show using the Stuart-Landau model that such multiple transitions do not only occur in excitable systems, but also in oscillatory ones.
Preliminary Study on Coupling Wave-Tide-Storm Surges Prediction System
NASA Astrophysics Data System (ADS)
You, S.; Park, S.; Seo, J.; Kim, K.
2008-12-01
The Korean Peninsula is surrounded by the Yellow Sea, East China Sea, and East Sea. This complex oceanographic system includes large tides in the Yellow Sea and seasonally varying monsoon and typhoon events. For Korea's coastal regions, floods caused by wave and storm surges are among the most serious threats. To predict more accurate wave and storm surge, the development of coupling wave-tide-storm surges prediction system is essential. For the time being, wave and storm surges predictions are still made separately in KMA (Korea Meteorological Administration) and most operational institute. However, many researchers have emphasized the effects of tides and storm surges on wind waves and recommended further investigations into the effects of wave-tide-storm surges interactions and coupling module on wave heights. However, tidal height and current give a great effect on the wave prediction in the Yellow sea where is very high tide and related research is not enough. At present, KMA has operated the wave (RWAM : Regional Wave Model) and storm surges/tide prediction system (RTSM : Regional Tide/Storm Surges Model) for ocean forecasting. The RWAM is WAVEWATCH III which is a third generation wave model developed by Tolman (1989). The RTSM is based on POM (Princeton Ocean Model, Blumberg and Mellor, 1987). The RWAM and RTSM cover the northwestern Pacific Ocean from 115°E to 150°E and from 20°N to 52°N. The horizontal grid intervals are 1/12° in both latitudinal and longitudinal directions. The development, testing and application of a coupling module in which wave-tide-storm surges are incorporated within the frame of KMA Ocean prediction system, has been considered as a step forward in respect of ocean forecasting. In addition, advanced wave prediction model will be applicable to the effect of ocean in the weather forecasting system. The main purpose of this study is to show how the coupling module developed and to report on a series of experiments dealing with the
Advances in coupled safety modeling using systems analysis and high-fidelity methods.
Fanning, T. H.; Thomas, J. W.; Nuclear Engineering Division
2010-05-31
The potential for a sodium-cooled fast reactor to survive severe accident initiators with no damage has been demonstrated through whole-plant testing in EBR-II and FFTF. Analysis of the observed natural protective mechanisms suggests that they would be characteristic of a broad range of sodium-cooled fast reactors utilizing metal fuel. However, in order to demonstrate the degree to which new, advanced sodium-cooled fast reactor designs will possess these desired safety features, accurate, high-fidelity, whole-plant dynamics safety simulations will be required. One of the objectives of the advanced safety-modeling component of the Reactor IPSC is to develop a science-based advanced safety simulation capability by utilizing existing safety simulation tools coupled with emerging high-fidelity modeling capabilities in a multi-resolution approach. As part of this integration, an existing whole-plant systems analysis code has been coupled with a high-fidelity computational fluid dynamics code to assess the impact of high-fidelity simulations on safety-related performance. With the coupled capabilities, it is possible to identify critical safety-related phenomenon in advanced reactor designs that cannot be resolved with existing tools. In this report, the impact of coupling is demonstrated by evaluating the conditions of outlet plenum thermal stratification during a protected loss of flow transient. Outlet plenum stratification was anticipated to alter core temperatures and flows predicted during natural circulation conditions. This effect was observed during the simulations. What was not anticipated, however, is the far-reaching impact that resolving thermal stratification has on the whole plant. The high temperatures predicted at the IHX inlet due to thermal stratification in the outlet plenum forces heat into the intermediate system to the point that it eventually becomes a source of heat for the primary system. The results also suggest that flow stagnation in the
The research of 1D / 3D coupling simulation on pump and pipe system
NASA Astrophysics Data System (ADS)
Wu, D. Z.; Liu, Q. L.; Wu, P.; Wang, L. Q.; Paulus, T.; Wang, B. G.; Oesterle, M.
2012-11-01
The research of performances of hydraulic mechanical depends on static complete characteristic curves, which have great difference compared with the actual work condition and have accidents potential. So we need a new way to compute the dynamic system, which is more reasonable. So the method to couple one dimensional simulation and three dimensional CFD analysis based on Flowmaster and Fluent is explored, and the dynamic characteristics and internal flow of the pumping system are analyzed. First, a pipe system model is created in Flowmaster and a pump model is created in Fluent; then VB code and scheme code are used to realize the automated operation for Flowmaster and Fluent; at last, the exchange of data between these two parts is realized by an interface program. In this paper, the interaction between pumps and pipe system are analyzed by coupling one-dimensional and three-dimensional simulations. This study would be helpful to identify the influences of the rapid adjustment process on stability of system and provide guides for design of pump system.
Chasing boundaries and cascade effects in a coupled barrier - marshes - lagoon system
NASA Astrophysics Data System (ADS)
Lorenzo Trueba, J.; Mariotti, G.
2015-12-01
Low-lying coasts are often characterized by barriers islands, shore-parallel stretches of sand separated from the mainland by marshes and lagoons. We built an exploratory numerical model to examine the morphological feedbacks within an idealized barrier - marshes -lagoon system and predict its evolution under projected rates of sea level rise and sediment supply to the backbarrier environment. Our starting point is a recently developed morphodynamic model, which couples shoreface evolution and overwash processes in a dynamic framework. As such, the model is able to capture dynamics not reproduced by morphokinematic models, which advect geometries without specific concern to processes. These dynamics include periodic barrier retreat due to time lags in the shoreface response to barrier overwash, height drowning due to insufficient overwash fluxes as sea level rises, and width drowning, which occurs when the shoreface response rate is insufficient to maintain the barrier geometry during overwash-driven landward migration. We extended the model by coupling the barrier model with a model for the evolution of the marsh platform and the boundary between the marsh and the adjacent lagoon. The coupled model explicitly describes marsh edge processes and accounts for the modification of the wave regime associated with lagoon width (fetch). Model results demonstrate that changes in factors that are not typically associated with the dynamics of coastal barriers, such as the lagoon width and the rate of export/import of sediments from and to the lagoon, can lead to previously unidentified complex responses of the coupled system. In particular, a wider lagoon in the backbarrier, and/or a reduction in the supply of muddy sediments to the backbarrier, can increase barrier retreat rates and even trigger barrier drowning. Overall, our findings highlight the importance of incorporating backbarrier dynamics in models that aim at predicting the response of barrier systems.
NASA Technical Reports Server (NTRS)
Santanello, Joseph
2011-01-01
NASA's Land Information System (LIS; lis.gsfc.nasa.gov) is a flexible land surface modeling and data assimilation framework developed over the past decade with the goal of integrating satellite- and ground-based observational data products and advanced land surface modeling techniques to produce optimal fields of land surface states and fluxes. LIS features a high performance and flexible design, and operates on an ensemble of land surface models for extension over user-specified regional or global domains. The extensible interfaces of LIS allow the incorporation of new domains, land surface models (LSMs), land surface parameters, meteorological inputs, data assimilation and optimization algorithms. In addition, LIS has also been demonstrated for parameter estimation and uncertainty estimation, and has been coupled to the Weather Research and Forecasting (WRF) mesoscale model. A visiting fellowship is currently underway to implement JULES into LIS and to undertake some fundamental science on the feedbacks between the land surface and the atmosphere. An overview of the LIS system, features, and sample results will be presented in an effort to engage the community in the potential advantages of LIS-JULES for a range of applications. Ongoing efforts to develop a framework for diagnosing land-atmosphere coupling will also be presented using the suite of LSM and PBL schemes available in LIS and WRF along with observations from the U. S .. Southern Great Plains. This methodology provides a potential pathway to study factors controlling local land-atmosphere coupling (LoCo) using the LIS-WRF system, which will serve as a testbed for future experiments to evaluate coupling diagnostics within the community.
NASA Astrophysics Data System (ADS)
Nori, Franco; Ashhab, Sahel
2011-03-01
We consider a system composed of a two-level system (i.e. a qubit) and a harmonic oscillator in the ultrastrong-coupling regime, where the coupling strength is comparable to the qubit and oscillator energy scales. We explore the possibility of preparing nonclassical states in this system, especially in the ground state of the combined system. The nonclassical states that we consider include squeezed states, Schrodinger-cat states and entangled states. We also analyze the nature of the change in the ground state as the coupling strength is increased, going from a separable ground state in the absence of coupling to a highly entangled ground state in the case of very strong coupling. Reference: S. Ashhab and F. Nori, Phys. Rev. A 81, 042311 (2010). We thank support from DARPA, AFOSR, NSA, LPS, ARO, NSF, MEXT, JSPS, FIRST, and JST.
Emission characteristics of laser-driven dissipative coupled-cavity systems
Knap, Michael; Arrigoni, Enrico; Linden, Wolfgang von der; Cole, Jared H.
2011-02-15
We consider a laser-driven and dissipative system of two coupled cavities with Jaynes-Cummings nonlinearity. In particular, we investigate both incoherent and coherent laser driving, corresponding to different experimental situations. We employ Arnoldi time evolution as a numerical tool to solve exactly the many-body master equation describing the nonequilibrium quantum system. We evaluate the fluorescence spectrum and the spectrum of the second-order correlation function of the emitted light field. Finally, we relate the measured spectra of the dissipative quantum system to excitations of the corresponding nondissipative quantum system. Our results demonstrate how to interpret spectra obtained from dissipative quantum systems and specify what information is contained therein.
Fleming, K.J.; Crump, O.B.
1994-03-01
VISAR (Velocity Interferometer System for Any Reflector) is a specialized Doppler interferometer system that is gaining world-wide acceptance as the standard for shock phenomena analysis. The VISAR`s large power and cooling requirements, and the sensitive and complex nature of the interferometer cavity have restricted the traditional system to the laboratory. This paper describes the new portable VISAR, its peripheral sensors, and the role it played in optically measuring ground shock of an underground nuclear detonation. The solid State VISAR uses a prototype diode pumped ND:YAG laser and solid state detectors that provide a suitcase-size system with low power requirements. A special window and sensors were developed for fiber optic coupling (1 kilometer long) to the VISAR. The system has proven itself as a reliable, easy to use instrument that is capable of field test use and rapid data reduction using only a notebook personal computer (PC).
Interdependency Assessment of Coupled Natural Gas and Power Systems in Energy Market
NASA Astrophysics Data System (ADS)
Yang, Hongzhao; Qiu, Jing; Zhang, Sanhua; Lai, Mingyong; Dong, Zhao Yang
2015-12-01
Owing to the technological development of natural gas exploration and the increasing penetration of gas-fired power generation, gas and power systems inevitably interact with each other from both physical and economic points of view. In order to effectively assess the two systems' interdependency, this paper proposes a systematic modeling framework and constructs simulation platforms for coupled gas and power systems in an energy market environment. By applying the proposed approach to the Australian national electricity market (NEM) and gas market, the impacts of six types of market and system factors are quantitatively analyzed, including power transmission limits, gas pipeline contingencies, gas pipeline flow constraints, carbon emission constraints, power load variations, and non-electric gas load variations. The important interdependency and infrastructure weakness for the two systems are well studied and identified. Our work provides a quantitative basis for grid operators and policy makers to support and guide operation and investment decisions for electric power and natural gas industries.
NASA Astrophysics Data System (ADS)
Fleming, K. J.; Crump, O. B.
1993-05-01
VISAR (Velocity Interferometer System for Any Reflector) is a specialized Doppler interferometer system that is gaining world-wide acceptance as the standard for shock phenomena analysis. The VISAR's large power and cooling requirements, and the sensitive and complex nature of the interferometer cavity, has restricted the traditional system to the laboratory. This paper describes the new portable VISAR, its peripheral sensors, and the role it played in optically measuring ground shock of an underground nuclear detonation (UGT). The Solid State VISAR uses a prototype diode pumped ND:YAG laser and solid state detectors that provide a suitcase-size system with low power requirements. A special window and sensor was developed for fiber optic coupling (1 kilometer long) to the VISAR. The system has proven itself as a reliable, easy-to-use instrument that is capable of field test use and rapid data reduction employing only a personal computer (PC).
NASA Technical Reports Server (NTRS)
Fleming, K. J.; Crump, O. B.
1994-01-01
VISAR (Velocity Interferometer System for Any Reflector) is a specialized Doppler interferometer system that is gaining world-wide acceptance as the standard for shock phenomena analysis. The VISAR's large power and cooling requirements, and the sensitive and complex nature of the interferometer cavity have restricted the traditional system to the laboratory. This paper describes the new portable VISAR, its peripheral sensors, and the role it played in optically measuring ground shock of and underground nuclear detonation. The Solid State VISAR uses a prototype diode pumped Nd:YAG laser and solid state detectors that provide a suitcase-size system with low power requirements. A special window and sensors were developed for fiber optic coupling (1 kilometer long) to the VISAR. The system has proven itself as a reliable, easy to use instrument that is capable of field test use and rapid data reduction using only a notebook personal computer (PC).
Ramírez, Ximena María Vargas; Mejía, Gina Maria Hincapié; López, Kelly Viviana Patiño; Vásquez, Gloria Restrepo; Sepúlveda, Juan Miguel Marín
2012-01-01
A coupled system of the photo-Fenton advanced oxidation technique and an aerobic sequential batch reactor (SBR) was used to treat wastewater from biodiesel production using either palm or castor oil. The photo-Fenton reaction and biological process were evaluated individually and were effective at treating the wastewater; nevertheless, each process required longer degradation times for the wastewater pollutants compared with the coupled system. The proposed coupled photo-Fenton/aerobic SBR system obtained a 90% reduction of the chemical oxygen demand (COD) in half of the time required for the biological system individually. PMID:22766873
A semi-discrete Kadomtsev-Petviashvili equation and its coupled integrable system
NASA Astrophysics Data System (ADS)
Li, Chun-Xia; Lafortune, Stéphane; Shen, Shou-Feng
2016-05-01
We establish connections between two cascades of integrable systems generated from the continuum limits of the Hirota-Miwa equation and its remarkable nonlinear counterpart under the Miwa transformation, respectively. Among these equations, we are mainly concerned with the semi-discrete bilinear Kadomtsev-Petviashvili (KP) equation which is seldomly studied in literature. We present both of its Casorati and Grammian determinant solutions. Through the Pfaffianization procedure proposed by Hirota and Ohta, we are able to derive the coupled integrable system for the semi-discrete KP equation.
Tightly coupled long baseline/ultra-short baseline integrated navigation system
NASA Astrophysics Data System (ADS)
Batista, Pedro; Silvestre, Carlos; Oliveira, Paulo
2016-06-01
This paper proposes a novel integrated navigation filter based on a combined long baseline/ultra short baseline acoustic positioning system with application to underwater vehicles. With a tightly coupled structure, the position, linear velocity, attitude, and rate gyro bias are estimated, considering the full nonlinear system dynamics without resorting to any algebraic inversion or linearisation techniques. The resulting solution ensures convergence of the estimation error to zero for all initial conditions, exponentially fast. Finally, it is shown, under simulation environment, that the filter achieves very good performance in the presence of sensor noise.
Kocher, Brandon; Piwnica-Worms, David
2013-01-01
Bioluminescent imaging (BLI) is a powerful non-invasive tool that has dramatically accelerated the in vivo interrogation of cancer systems and longitudinal analysis of mouse models of cancer over the past decade. Various luciferase enzymes have been genetically engineered into mouse models (GEMMs) of cancer which permit investigation of cellular and molecular events associated with oncogenic transcription, post-transcriptional processing, protein-protein interactions, transformation and oncogene addiction in live cells and animals. Luciferase-coupled GEMMs ultimately serve as a non-invasive, repetitive, longitudinal, and physiological means by which cancer systems and therapeutic responses can be investigated accurately within the autochthonous context of a living animal. PMID:23585416
Berges, Jürgen; Rothkopf, Alexander; Schmidt, Jonas
2008-07-25
Strongly correlated systems far from equilibrium can exhibit scaling solutions with a dynamically generated weak coupling. We show this by investigating isolated systems described by relativistic quantum field theories for initial conditions leading to nonequilibrium instabilities, such as parametric resonance or spinodal decomposition. The nonthermal fixed points prevent fast thermalization if classical-statistical fluctuations dominate over quantum fluctuations. We comment on the possible significance of these results for the heating of the early Universe after inflation and the question of fast thermalization in heavy-ion collision experiments. PMID:18764319
System Design for Ocean Sensor Data Transmission Based on Inductive Coupling
NASA Astrophysics Data System (ADS)
Xu, Ming; Liu, Fei; Zong, Yuan; Hong, Feng
Ocean observation is the precondition to explore and utilize ocean. How to acquire ocean data in a precise, efficient and real-time way is the key question of ocean surveillance. Traditionally, there are three types of methods for ocean data transmission: underwater acoustic, GPRS via mobile network and satellite communication. However, none of them can meet the requirements of efficiency, accuracy, real-time and low cost at the same time. In this paper, we propose a new wireless transmission system for underwater sensors, which established on FGR wireless modules, combined with inductive coupling lab and offshore experiments confirmed the feasibility and effectiveness of the proposed wireless transmission system.
A coupled nuclear reactor thermal energy storage system for enhanced load following operation
NASA Astrophysics Data System (ADS)
Alameri, Saeed A.
Nuclear power plants usually provide base-load electric power and operate most economically at a constant power level. In an energy grid with a high fraction of renewable energy sources, future nuclear reactors may be subject to significantly variable power demands. These variable power demands can negatively impact the effective capacity factor of the reactor and result in severe economic penalties. Coupling the reactor to a large Thermal Energy Storage (TES) block will allow the reactor to better respond to variable power demands. In the system described in this thesis, a Prismatic-core Advanced High Temperature Reactor (PAHTR) operates at constant power with heat provided to a TES block that supplies power as needed to a secondary energy conversion system. The PAHTR is designed to have a power rating of 300 MW th, with 19.75 wt% enriched Tri-Structural-Isotropic UO 2 fuel and a five year operating cycle. The passive molten salt TES system will operate in the latent heat region with an energy storage capacity of 150 MWd. Multiple smaller TES blocks are used instead of one large block to enhance the efficiency and maintenance complexity of the system. A transient model of the coupled reactor/TES system is developed to study the behavior of the system in response to varying load demands. The model uses six-delayed group point kinetics and decay heat models coupled to thermal-hydraulic and heat transfer models of the reactor and TES system. Based on the transient results, the preferred TES design consists of 1000 blocks, each containing 11000 LiCl phase change material tubes. A safety assessment of major reactor events demonstrates the inherent safety of the coupled system. The loss of forced circulation study determined the minimum required air convection heat removal rate from the reactor core and the lowest possible reduced primary flow rate that can maintain the reactor in a safe condition. The loss of ultimate heat sink study demonstrated the ability of the TES
NASA Astrophysics Data System (ADS)
Wang, Bohui; Wang, Jingcheng; Zhang, Langwen; Ge, Yang
2016-04-01
This paper studies the joining consensus of networked multi-agent systems subject to nonlinear couplings and weighted directed graphs via pinning control. A weighted-average consensus protocol is proposed to achieve the collective decision by interacting with the local information of some pinned agents. By proposing a novel joining consensus protocol, average consensus and general consensus strategies are joined to achieve an agreement for the weighting networked system. Furthermore, by calculating a proper consensus gain and using finite control Lyapunov controllers, an efficient joining consensus protocol is presented to improve the consensus speed. Sufficient conditions for achieving the consensuses asymptotically are proved. Finally, theoretical results are validated via simulations.
On the bifurcation structure of the mean-field fluctuation in the globally coupled tent map systems
NASA Astrophysics Data System (ADS)
Chawanya, Tsuyoshi; Morita, Satoru
1998-05-01
A theoretical analysis on the behavior of the globally coupled tent map systems based on the kinetics of the mean-field value is presented. We investigated the nature of the mean-field fluctuation in large system size limit, and uncovered the existence of a complicated bifurcation structure that leads the appearance of collective motion with the increase of the coupling strength. The way to the appearance of the collective motion sensitively depends on the gradient a of individual tent-maps. For a belonging to a set which is dense in ( 2, 2 ), the collective motion appears when the coupling strength exceeds a certain threshold value, while for a belonging to another dense set in ( 2, 2 ), any non-zero coupling will induce the collective motion. The dependence of the amplitude of mean-field fluctuation on the coupling strength is also obtained as a function of the parameter a and the coupling strength.
Reprint of: First experience with the new Coupling Loss Induced Quench system
NASA Astrophysics Data System (ADS)
Ravaioli, E.; Datskov, V. I.; Dudarev, A. V.; Kirby, G.; Sperin, K. A.; ten Kate, H. H. J.; Verweij, A. P.
2014-09-01
New-generation high-field superconducting magnets pose a challenge relating to the protection of the coil winding pack in the case of a quench. The high stored energy per unit volume calls for a very efficient quench detection and fast quench propagation in order to avoid damage due to overheating. A new protection system called Coupling-Loss Induced Quench (CLIQ) was recently developed and tested at CERN. This method provokes a fast change in the magnet transport current by means of a capacitive discharge. The resulting change in the local magnetic field induces inter-filament and inter-strand coupling losses which heat up the superconductor and eventually initiate a quench in a large fraction of the coil winding pack. The method is extensively tested on a Nb-Ti single-wire test solenoid magnet in the CERN Cryogenic Laboratory in order to assess its performance, optimize its operating parameters, and study new electrical configurations. Each parameter is thoroughly analyzed and its impact on the quench efficiency highlighted. Furthermore, an alternative method is also considered, based on a CLIQ discharge through a resistive coil magnetically coupled with the solenoid but external to it. Due to the strong coupling between the external coil and the magnet, the oscillating current in the external coil changes the magnetic field in the solenoid strands and thus generates coupling losses in the strands. Although for a given charging voltage this configuration usually yields poorer quench performance than a standard CLIQ discharge, it has the advantage of being electrically insulated from the solenoid coil, and thus it can work with much higher voltage.
NASA Astrophysics Data System (ADS)
Gueven, I.; Steeb, H.; Luding, S.
2014-12-01
Electrokinetic waves describe the coupling between seismic and electromagnetic waves that exist in porous media. The coupling between them arise from an electrochemical boundary layer between grain and fluid interface of saturated porous media. Acoustical waves cause a disturbance of the electrical fluid charge within the double layer, which therefore creates an electric streaming current (seismoelectric effect). Inversely, electromagnetic waves can generate mechanical signals (electroseismic effect). Electrokinetic conversion potentially combines high seismic resolution with good electromagnetic hydrocarbon sensitivity. The (stationary and frequency-dependent) streaming potential coefficient is a key property, which gives rise to the coupling between electromagnetic and acoustical waves. It depends strongly on the fluid conductivity, porosity, tortuosity, permeability, pore throat and zeta potential of porous media. We examine experimentally both, the stationary and dynamic permeabilities and coupling coefficients of sintered glass bead systems. For this purpose a multi-purpose measuring cell was developed which allows us to carry out - besides common ultrasound experiments - also to perform stationary and frequency-dependent permeability and coupling coefficient measurements. For the experiments sintered mono- and slightly polydisperse glass bead samples with different glass bead diameters between 0.4 and 8mm and porosities ranging between 21 and 39% were used. The stationary and dynamic permeability and streaming potential measurements are supported by μCT scans which enable us a deeper insight into the porous medium. Based on the μCT scans of the produced sintered glass bead samples essential influence parameters, like tortuosity, porosity, effective particle diameters and pore throats in different regions of the entire scanned region have been analyzed in detail to understand the laboratory experiments, cf. Illustration 1. In addition lattice Boltzmann
Development of a coupled soil erosion and large-scale hydrology modeling system
NASA Astrophysics Data System (ADS)
Mao, Dazhi; Cherkauer, Keith A.; Flanagan, Dennis C.
2010-08-01
Soil erosion models are usually limited in their application to the field scale; however, the management of land resources requires information at the regional scale. Large-scale physically based land surface schemes (LSS) provide estimates of regional scale hydrologic processes that contribute to erosion. If scaling issues are adequately addressed, coupling an LSS to a physically based erosion model can provide a tool to study the regional impact of soil erosion. A coupling scheme was developed using the Variable Infiltration Capacity (VIC) model to produce hydrologic inputs for the stand-alone Water Erosion Prediction Project-Hillslope Erosion (WEPP-HE) program, accounting for both temporal and spatial scaling issues. Precipitation events were disaggregated from daily to hourly and used with the VIC model to generate hydrologic fluxes. Slope profiles were downscaled from 30 arc second to 30 m hillslopes. Additionally, soil texture and erodibility were adjusted with simplified assumptions based on the full WEPP model. Soil erosion at the large scale was represented on a VIC model grid cell basis by applying WEPP-HE to subsamples of 30 m hillslopes. On an average annual basis, results showed that the coupled model was comparable with full WEPP model predictions. On an event basis, the coupled model system captured more small erosion events, with erodibility adjustments of the same magnitude as from the full WEPP model simulations. Differences in results can be attributed to discrepancies in hydrologic data calculations and simplified assumptions in vegetation and soil erodibility. Overall, the coupled model demonstrated the feasibility of erosion prediction for large river basins.
NASA Astrophysics Data System (ADS)
Misra, Gaurav; Izadi, Maziar; Sanyal, Amit; Scheeres, Daniel
2016-04-01
The effects of dynamical coupling between the rotational (attitude) and translational (orbital) motion of spacecraft near small Solar System bodies is investigated. This coupling arises due to the weak gravity of these bodies, as well as solar radiation pressure. The traditional approach assumes a point-mass spacecraft model to describe the translational motion of the spacecraft, while the attitude motion is considered to be completely decoupled from the translational motion. The model used here to describe the rigid-body spacecraft dynamics includes the non-uniform rotating gravity field of the small body up to second degree and order along with the attitude dependent terms, solar tide, and solar radiation pressure. This model shows that the second degree and order gravity terms due to the small body affect the dynamics of the spacecraft to the same extent as the orbit-attitude coupling due to the primary gravity (zeroth order) term. Variational integrators are used to simulate the dynamics of both the rigid spacecraft and the point mass. The small bodies considered here are modeled after Near-Earth Objects (NEO) 101955 Bennu, and 25143 Itokawa, and are assumed to be triaxial ellipsoids with uniform density. Differences in the numerically obtained trajectories of a rigid spacecraft and a point mass are then compared, to illustrate the impact of the orbit-attitude coupling on spacecraft dynamics in proximity of small bodies. Possible implications on the performance of model-based spacecraft control and on the station-keeping budget, if the orbit-attitude coupling is not accounted for in the model of the dynamics, are also discussed. An almost globally asymptotically stable motion estimation scheme based solely on visual/optical feedback that estimates the relative motion of the asteroid with respect to the spacecraft is also obtained. This estimation scheme does not require a model of the dynamics of the asteroid, which makes it perfectly suited for asteroids whose
Quantum Interference Induced Photon Blockade in a Coupled Single Quantum Dot-Cavity System
Tang, Jing; Geng, Weidong; Xu, Xiulai
2015-01-01
We propose an experimental scheme to implement a strong photon blockade with a single quantum dot coupled to a nanocavity. The photon blockade effect can be tremendously enhanced by driving the cavity and the quantum dot simultaneously with two classical laser fields. This enhancement of photon blockade is ascribed to the quantum interference effect to avoid two-photon excitation of the cavity field. Comparing with Jaynes-Cummings model, the second-order correlation function at zero time delay g(2)(0) in our scheme can be reduced by two orders of magnitude and the system sustains a large intracavity photon number. A red (blue) cavity-light detuning asymmetry for photon quantum statistics with bunching or antibunching characteristics is also observed. The photon blockade effect has a controllable flexibility by tuning the relative phase between the two pumping laser fields and the Rabi coupling strength between the quantum dot and the pumping field. Moreover, the photon blockade scheme based on quantum interference mechanism does not require a strong coupling strength between the cavity and the quantum dot, even with the pure dephasing of the system. This simple proposal provides an effective way for potential applications in solid state quantum computation and quantum information processing. PMID:25783560
Devolder, T. Le Goff, A.; Eimer, S.; Adam, J.-P.
2015-04-28
We study the influence of the insertion of a vanadium spacer layer between an FeCoB layer and a [Co/Ni] multilayer in an MgO substrate-based system mimicking the reference system of a perpendicular anisotropy magnetic tunnel junction. The anisotropy of the [Co/Ni] multilayer gradually improves with the vanadium thicknesses t, up to an optimized state for t = 8 Å, with little influence of the thermal annealing. The interlayer exchange coupling is ferromagnetic and very strong for t≤6 Å. It can be adjusted by thermal treatment at t = 8 Å from no coupling in the as-grown state to more than 2 mJ/m{sup 2} after 250 °C annealing. For this spacer thickness, the magnetic properties are consistent with the occurrence of a bcc (001) to an fcc (111) crystalline structure transition at the vanadium spacer. The remaining interlayer exchange coupling at t = 8 Å is still substantially higher than the one formerly obtained with a Tantalum spacer, which holds promise for further optimization of the reference layers of tunnel junctions meant for magnetic random access memories.
Simple System for Isothermal DNA Amplification Coupled to Lateral Flow Detection
Roskos, Kristina; Hickerson, Anna I.; Lu, Hsiang-Wei; Ferguson, Tanya M.; Shinde, Deepali N.; Klaue, Yvonne; Niemz, Angelika
2013-01-01
Infectious disease diagnosis in point-of-care settings can be greatly improved through integrated, automated nucleic acid testing devices. We have developed an early prototype for a low-cost system which executes isothermal DNA amplification coupled to nucleic acid lateral flow (NALF) detection in a mesofluidic cartridge attached to a portable instrument. Fluid handling inside the cartridge is facilitated through one-way passive valves, flexible pouches, and electrolysis-driven pumps, which promotes a compact and inexpensive instrument design. The closed-system disposable prevents workspace amplicon contamination. The cartridge design is based on standard scalable manufacturing techniques such as injection molding. Nucleic acid amplification occurs in a two-layer pouch that enables efficient heat transfer. We have demonstrated as proof of principle the amplification and detection of Mycobacterium tuberculosis (M.tb) genomic DNA in the cartridge, using either Loop Mediated Amplification (LAMP) or the Exponential Amplification Reaction (EXPAR), both coupled to NALF detection. We envision that a refined version of this cartridge, including upstream sample preparation coupled to amplification and detection, will enable fully-automated sample-in to answer-out infectious disease diagnosis in primary care settings of low-resource countries with high disease burden. PMID:23922706
NASA Astrophysics Data System (ADS)
Devolder, T.; Le Goff, A.; Eimer, S.; Adam, J.-P.
2015-04-01
We study the influence of the insertion of a vanadium spacer layer between an FeCoB layer and a [Co/Ni] multilayer in an MgO substrate-based system mimicking the reference system of a perpendicular anisotropy magnetic tunnel junction. The anisotropy of the [Co/Ni] multilayer gradually improves with the vanadium thicknesses t, up to an optimized state for t = 8 Å, with little influence of the thermal annealing. The interlayer exchange coupling is ferromagnetic and very strong for t ≤6 Å. It can be adjusted by thermal treatment at t = 8 Å from no coupling in the as-grown state to more than 2 mJ/m2 after 250 °C annealing. For this spacer thickness, the magnetic properties are consistent with the occurrence of a bcc (001) to an fcc (111) crystalline structure transition at the vanadium spacer. The remaining interlayer exchange coupling at t = 8 Å is still substantially higher than the one formerly obtained with a Tantalum spacer, which holds promise for further optimization of the reference layers of tunnel junctions meant for magnetic random access memories.
Lukic, Luka; Santos-Victor, José; Billard, Aude
2014-04-01
We investigate the role of obstacle avoidance in visually guided reaching and grasping movements. We report on a human study in which subjects performed prehensile motion with obstacle avoidance where the position of the obstacle was systematically varied across trials. These experiments suggest that reaching with obstacle avoidance is organized in a sequential manner, where the obstacle acts as an intermediary target. Furthermore, we demonstrate that the notion of workspace travelled by the hand is embedded explicitly in a forward planning scheme, which is actively involved in detecting obstacles on the way when performing reaching. We find that the gaze proactively coordinates the pattern of eye-arm motion during obstacle avoidance. This study provides also a quantitative assessment of the coupling between the eye-arm-hand motion. We show that the coupling follows regular phase dependencies and is unaltered during obstacle avoidance. These observations provide a basis for the design of a computational model. Our controller extends the coupled dynamical systems framework and provides fast and synchronous control of the eyes, the arm and the hand within a single and compact framework, mimicking similar control system found in humans. We validate our model for visuomotor control of a humanoid robot. PMID:24570352
Simple system for isothermal DNA amplification coupled to lateral flow detection.
Roskos, Kristina; Hickerson, Anna I; Lu, Hsiang-Wei; Ferguson, Tanya M; Shinde, Deepali N; Klaue, Yvonne; Niemz, Angelika
2013-01-01
Infectious disease diagnosis in point-of-care settings can be greatly improved through integrated, automated nucleic acid testing devices. We have developed an early prototype for a low-cost system which executes isothermal DNA amplification coupled to nucleic acid lateral flow (NALF) detection in a mesofluidic cartridge attached to a portable instrument. Fluid handling inside the cartridge is facilitated through one-way passive valves, flexible pouches, and electrolysis-driven pumps, which promotes a compact and inexpensive instrument design. The closed-system disposable prevents workspace amplicon contamination. The cartridge design is based on standard scalable manufacturing techniques such as injection molding. Nucleic acid amplification occurs in a two-layer pouch that enables efficient heat transfer. We have demonstrated as proof of principle the amplification and detection of Mycobacterium tuberculosis (M.tb) genomic DNA in the cartridge, using either Loop Mediated Amplification (LAMP) or the Exponential Amplification Reaction (EXPAR), both coupled to NALF detection. We envision that a refined version of this cartridge, including upstream sample preparation coupled to amplification and detection, will enable fully-automated sample-in to answer-out infectious disease diagnosis in primary care settings of low-resource countries with high disease burden. PMID:23922706
Bayesian characterization of multiple-slope sound energy decays in coupled-volume systems.
Xiang, Ning; Goggans, Paul; Jasa, Tomislav; Robinson, Philip
2011-02-01
Due to recent developments in concert hall design, there is an increasing interest in the analysis of sound energy decays consisting of multiple exponential decay rates. It has been considered challenging to estimate parameters associated with double-rate (slope) decay characteristics, and even more challenging when the coupled-volume systems contain more than two decay processes. To meet the need of characterizing energy decays of multiple decay processes, this work investigates coupled-volume systems using acoustic scale-models of three coupled rooms. Two Bayesian formulations are compared using the experimentally measured sound energy decay data. A fully parameterized Bayesian formulation has been found to be capable of characterization of multiple-slope decays beyond the single-slope and double-slope energy decays. Within the Bayesian framework using this fully parameterized formulation, an in-depth analysis of likelihood distributions over multiple-dimensional decay parameter space motivates the use of Bayesian information criterion, an efficient approach to solving Bayesian model selection problems that are suitable for estimating the number of exponential decays. The analysis methods are then applied to a geometric-acoustics simulation of a conceptual concert hall. Sound energy decays more complicated than single-slope and double-slope nature, such as triple-slope decays have been identified and characterized. PMID:21361433
A Framework of Computing Multipolar Exchange Interactions in Systems with Strong Spin-Orbit Coupling
NASA Astrophysics Data System (ADS)
Pi, Shu-Ting
We intro duce a theoretical framework for computations of anisotropic multipolar exchange interactions found in many spin-orbit coupled magnetic systems and propose a method to extract these coupling constants using a density functional total energy calculation. This method is develop ed using a multipolar expansion of lo cal density matrices for correlated orbitals that are responsible for magnetic degrees of freedom. Within the mean-field approximation, we show that each coupling constant can b e recovered from a series of total energy calculations via what we call the "pair-flip" technique. This technique flips the relative phase of a pair of multipoles and computes the corresponding total energy cost associated with the given exchange constant. To test it, we apply our method to Uranium Dioxide, which is a system known to have pseudospin J = 1 superexchange induced dipolar, and superexchange plus spin-lattice induced quadrupolar orderings. Our calculation reveals that the superexchange and spin-lattice contributions to the quadrupolar exchange interactions are about the same order with ferro- and antiferro-magnetic contributions, respectively. This highlights a competition rather than a cooperation between them. Our method could be a promising tool to explore magnetic properties of rare-earth compounds and hidden-order materials.
Anisotropic multipolar exchange interactions in systems with strong spin-orbit coupling
NASA Astrophysics Data System (ADS)
Pi, Shu-Ting; Nanguneri, Ravindra; Savrasov, Sergey
2014-07-01
We introduce a theoretical framework for computations of anisotropic multipolar exchange interactions found in many spin-orbit coupled magnetic systems and propose a method to extract these coupling constants using a density functional total energy calculation. This method is developed using a multipolar expansion of local density matrices for correlated orbitals that are responsible for magnetic degrees of freedom. Within the mean-field approximation, we show that each coupling constant can be recovered from a series of total energy calculations via what we call the "pair-flip" technique. This technique flips the relative phase of a pair of multipoles and computes the corresponding total energy cost associated with the given exchange constant. To test it, we apply our method to uranium dioxide, which is a system known to have pseudospin J =1 superexchange induced dipolar, and superexchange plus spin-lattice induced quadrupolar orderings. Our calculation reveals that the superexchange and spin-lattice contributions to the quadrupolar exchange interactions are about the same order with ferro- and antiferromagnetic contributions, respectively. This highlights a competition rather than a cooperation between them. Our method could be a promising tool to explore magnetic properties of rare-earth compounds and hidden-order materials.
Agent-based Model for the Coupled Human-Climate System
NASA Astrophysics Data System (ADS)
Zvoleff, A.; Werner, B.
2006-12-01
Integrated assessment models have been used to predict the outcome of coupled economic growth, resource use, greenhouse gas emissions and climate change, both for scientific and policy purposes. These models generally have employed significant simplifications that suppress nonlinearities and the possibility of multiple equilibria in both their economic (DeCanio, 2005) and climate (Schneider and Kuntz-Duriseti, 2002) components. As one step toward exploring general features of the nonlinear dynamics of the coupled system, we have developed a series of variations on the well studied RICE and DICE models, which employ different forms of agent-based market dynamics and "climate surprises." Markets are introduced through the replacement of the production function of the DICE/RICE models with an agent-based market modeling the interactions of producers, policymakers, and consumer agents. Technological change and population growth are treated endogenously. Climate surprises are representations of positive (for example, ice sheet collapse) or negative (for example, increased aerosols from desertification) feedbacks that are turned on with probability depending on warming. Initial results point toward the possibility of large amplitude instabilities in the coupled human-climate system owing to the mismatch between short outlook market dynamics and long term climate responses. Implications for predictability of future climate will be discussed. Supported by the Andrew W Mellon Foundation and the UC Academic Senate.
On the coupling of hyperbolic and parabolic systems: Analytical and numerical approach
NASA Technical Reports Server (NTRS)
Gastaldi, Fabio; Quarteroni, Alfio
1988-01-01
The coupling of hyperbolic and parabolic systems is discussed in a domain Omega divided into two distinct subdomains omega(+) and omega(-). The main concern is to find the proper interface conditions to be fulfilled at the surface separating the two domains. Next, they are used in the numerical approximation of the problem. The justification of the interface conditions is based on a singular perturbation analysis, i.e., the hyperbolic system is rendered parabolic by adding a small artifical viscosity. As this goes to zero, the coupled parabolic-parabolic problem degenerates into the original one, yielding some conditions at the interface. These are taken as interface conditions for the hyperbolic-parabolic problem. Actually, two alternative sets of interface conditions are discussed according to whether the regularization procedure is variational or nonvariational. It is shown how these conditions can be used in the frame of a numerical approximation to the given problem. Furthermore, a method of resolution is discussed which alternates the resolution of the hyperbolic problem within omega(-) and of the parabolic one within omega(+). The spectral collocation method is proposed, as an example of space discretization (different methods could be used as well); both explicit and implicit time-advancing schemes are considered. The present study is a preliminary step toward the analysis of the coupling between Euler and Navier-Stokes equations for compressible flows.
NASA Astrophysics Data System (ADS)
Wang, Chengjie; Eldredge, Jeff D.
2015-08-01
A strong coupling algorithm is presented for simulating the dynamic interactions between incompressible viscous flows and rigid-body systems in both two- and three-dimensional problems. In this work, the Navier-Stokes equations for incompressible flow are solved on a uniform Cartesian grid by the vorticity-based immersed boundary projection method of Colonius and Taira. Dynamical equations for arbitrary rigid-body systems are also developed. The proposed coupling method attempts to unify the treatment of constraints in the fluid and structure-the incompressibility of the fluid, the linkages in the rigid-body system, and the conditions at the interface-through the use of Lagrange multipliers. The resulting partitioned system of equations is solved with a simple relaxation scheme, based on an identification of virtual inertia from the fluid. The scheme achieves convergence in only 2 to 5 iterations per time step for a wide variety of mass ratios. The formulation requires that only a subset of the discrete fluid equations be solved in each iteration. Several two- and three-dimensional numerical tests are conducted to validate and demonstrate the method, including a falling cylinder, flapping of flexible wings, self-excited oscillations of a system of many linked plates in a free stream, and passive pivoting of a finite aspect ratio plate under the influence of gravity in a free stream. The results from the current method are compared with previous experimental and numerical results and good agreement is achieved.
NASA Astrophysics Data System (ADS)
Scott, C. A.
2014-12-01
This presentation reviews conceptual advances in the emerging field of socio-hydrology that focuses on coupled human and water systems. An important current challenge is how to better couple the bidirectional influences between human and water systems, which lead to emergent dynamics. The interactions among (1) the structure and dynamics of systems with (2) human values and norms lead to (3) outcomes, which in turn influence subsequent interactions. Human influences on hydrological systems are relatively well understood, chiefly resulting from developments in the field of water resources. The ecosystem-service concept of cultural value has expanded understanding of decision-making beyond economic rationality criteria. Hydrological impacts on social processes are less well developed conceptually, but this is changing with growing attention to vulnerability, adaptation, and resilience, particularly in the face of climate change. Methodological limitations, especially in characterizing the range of human responses to hydrological events and drivers, still pose challenges to modeling bidirectional human-water influences. Evidence from multiple case studies, synthesized in more broadly generic syndromes, helps surmount these methodological limitations and offers the potential to improve characterization and quantification of socio-hydrological systems.
Radionuclide transport coupled with bentonite extrusion in a saturated fracture system
NASA Astrophysics Data System (ADS)
Borrelli, Robert Angelo
The study in this dissertation focuses on the characterization of radionuclide migration in a water saturated fracture. The near field of a high level radioactive waste repository contains the engineered barrier system, which provides manufactured components designed to limit radionuclide releases to the environment. A major component in this system involves the utilization of bentonite as a buffer to protect the degraded waste package and limit release of radionuclides into intersecting fractures that pose possible pathways for transport to the environment. A model is derived for radionuclide migration through this fracture. The model incorporates the features of bentonite: extrusion into the fracture, sorption, and the effect of bentonite swelling on groundwater flow. The resulting derivation of this model is a coupled system of differential equations. The differential equation describing the mass conservation of radionuclides is coupled to the equation system for bentonite extrusion. The models are coupled through the parameters in the radionuclide transport model, which are dependent on the spatial distribution of solid material in the domain. Numerical evaluations of the solution to this radionuclide transport model were conducted for neptunium, a weakly sorbing radionuclide and americium, a strongly sorbing radionuclide. Results were presented in terms normalized spatial distribution of radionuclide concentration in the fluid phase and normalized radionuclide release rate in the fluid phase. Major findings of the study conducted for this dissertation are provided. (1) Bentonite extrusion affects fluid phase advection resulting in groundwater flow countercurrent to the direction of extrusion to the direction of radionuclide migration. (2) The sorption distribution coefficient is the most important parameter affecting radionuclide behavior in this system for this model. (3) Simulations of the model for americium, a highly sorbing radionuclide, indicate that
NRC-BNL BENCHMARK PROGRAM ON EVALUATION OF METHODS FOR SEISMIC ANALYSIS OF COUPLED SYSTEMS.
XU,J.
1999-08-15
A NRC-BNL benchmark program for evaluation of state-of-the-art analysis methods and computer programs for seismic analysis of coupled structures with non-classical damping is described. The program includes a series of benchmarking problems designed to investigate various aspects of complexities, applications and limitations associated with methods for analysis of non-classically damped structures. Discussions are provided on the benchmarking process, benchmark structural models, and the evaluation approach, as well as benchmarking ground rules. It is expected that the findings and insights, as well as recommendations from this program will be useful in developing new acceptance criteria and providing guidance for future regulatory activities involving licensing applications of these alternate methods to coupled systems.
Strong effects of network architecture in the entrainment of coupled oscillator systems
NASA Astrophysics Data System (ADS)
Kori, Hiroshi; Mikhailov, Alexander S.
2006-12-01
Random networks of coupled phase oscillators, representing an approximation for systems of coupled limit-cycle oscillators, are considered. Entrainment of such networks by periodic external forcing applied to a subset of their elements is numerically and analytically investigated. For a large class of interaction functions, we find that the entrainment window with a tongue shape becomes exponentially narrow for networks with higher hierarchical organization. However, the entrainment is significantly facilitated if the networks are directionally biased—i.e., closer to the feedforward networks. Furthermore, we show that the networks with high entrainment ability can be constructed by evolutionary optimization processes. The neural network structure of the master clock of the circadian rhythm in mammals is discussed from the viewpoint of our results.
Laser sampling system for an inductively-coupled atomic emission spectrometer. Final report
1998-02-15
A laser sampling system was attached to a Perkin Elmer Optima 3000 inductively-coupled plasma, atomic emission spectrometer that was already installed and operating in the Chemistry and Geochemistry Department at the Colorado School of Mines. The use of the spectrometer has been highly successful. Graduate students and faculty from at least four different departments across the CSM campus have used the instrument. The final report to NSF is appended to this final report. Appendices are included which summarize several projects utilizing this instrument: acquisition of an inductively-coupled plasma atomic emission spectrometer for the geochemistry program; hydrogen damage susceptibility assessment for high strength steel weldments through advanced hydrogen content analysis, 1996 and 1997 annual reports; and methods for determination of hydrogen distribution in high strength steel welds.
Implicit time-integration method for simultaneous solution of a coupled non-linear system
NASA Astrophysics Data System (ADS)
Watson, Justin Kyle
Historically large physical problems have been divided into smaller problems based on the physics involved. This is no different in reactor safety analysis. The problem of analyzing a nuclear reactor for design basis accidents is performed by a handful of computer codes each solving a portion of the problem. The reactor thermal hydraulic response to an event is determined using a system code like TRAC RELAP Advanced Computational Engine (TRACE). The core power response to the same accident scenario is determined using a core physics code like Purdue Advanced Core Simulator (PARCS). Containment response to the reactor depressurization in a Loss Of Coolant Accident (LOCA) type event is calculated by a separate code. Sub-channel analysis is performed with yet another computer code. This is just a sample of the computer codes used to solve the overall problems of nuclear reactor design basis accidents. Traditionally each of these codes operates independently from each other using only the global results from one calculation as boundary conditions to another. Industry's drive to uprate power for reactors has motivated analysts to move from a conservative approach to design basis accident towards a best estimate method. To achieve a best estimate calculation efforts have been aimed at coupling the individual physics models to improve the accuracy of the analysis and reduce margins. The current coupling techniques are sequential in nature. During a calculation time-step data is passed between the two codes. The individual codes solve their portion of the calculation and converge to a solution before the calculation is allowed to proceed to the next time-step. This thesis presents a fully implicit method of simultaneous solving the neutron balance equations, heat conduction equations and the constitutive fluid dynamics equations. It discusses the problems involved in coupling different physics phenomena within multi-physics codes and presents a solution to these problems
NASA Astrophysics Data System (ADS)
Berec, V.
2016-02-01
We study the coupling and control adaptation of a hybrid electron-nuclear spin system using the laser mediated proton beam in MeV energy regime. The asymmetric control mechanism is based on exact optimization of both: the measure of exchange interaction and anisotropy of the hyperfine interaction induced in the resonance with optimal channeled protons (CP) superfocused field, allowing manipulation over arbitrary localized spatial centers while addressing only the electron spin. Using highly precise and coherent proton channeling regime we have obtained efficient pulse shaping separator technique aimed for spatio-temporal engineering of quantum states, introducing a method for control of nuclear spins, which are coupled via anisotropic hyperfine interactions in isolated electron spin manifold, without radio wave (RW) pulses. The presented method can be efficiently implemented in synchronized spin networks with the purpose to facilitate preservation and efficient transfer of experimentally observed quantum particle states, contributing to the overall background noise reduction.
Hybrid Alfven resonant mode generation in the magnetosphere-ionosphere coupling system
Hiraki, Yasutaka; Watanabe, Tomo-Hiko
2012-10-15
Feedback unstable Alfven waves involving global field-line oscillations and the ionospheric Alfven resonator (IAR) were comprehensively studied to clarify their properties of frequency dispersion, growth rate, and eigenfunctions. It is discovered that a new mode called here the hybrid Alfven resonant (HAR) mode can be destabilized in the magnetosphere-ionosphere coupling system with a realistic Alfven velocity profile. The HAR mode found in a high frequency range over 0.3 Hz is caused by coupling of IAR modes with strong dispersion and magnetospheric cavity resonances. The harmonic relation of HAR eigenfrequencies is characterized by a constant frequency shift from those of IAR modes. The three modes are robustly found even if effects of two-fluid process and ionospheric collision are taken into account and thus are anticipated to be detected by magnetic field observations in a frequency range of 0.3-1 Hz in auroral and polar-cap regions.
Time domain simulation of nonlinear response of a coupled TLP system in random seas
Kim, C.H.; Kim, M.H.; Liu, Y.H.; Zhao, C.T.
1994-12-31
This paper presents a result of an analysis of the nonlinear interaction and response of the coupled ISSC-TLP System to the random seas in the time domain. The environmental load also includes the effect of the concurrent steady winds and currents. The first- and second-order wave-exciting forces are calculated using a robust higher-order boundary element method (HOBEM), while the nonlinear tendon dynamic analysis is performed using the three-dimensional hybrid element method with the upgated Lagrangian formulation. The Morison equation is employed for the wave and current load on slender structures. The analysis is focused on the nonlinear responses due to the nonlinear environmental load and nonlinear interaction between the platform and tendons that includes the offset, setdown, large coupled surge-heave motion in the low frequency and resonant heave/pitch responses with the springing loads in the high frequency.
NASA Astrophysics Data System (ADS)
Schmidt, C.; Lloret Fuentes, E.; Buchholz, M.
2015-11-01
Wireless Power Transfer (WPT) with simultaneous data transmission through coupled magnetic resonators is investigated in this paper. The development of this system is dedicated to serve as a basis for applications in the field of Ambient Assisted Living (AAL), for example tracking vital parameters remotely, charge and control sensors and so on. Due to these different scenarios we consider, it is important to have a system which is reliable under the circumstance of changing positioning of the receiving device. State of the art radio systems would be able to handle this. Nevertheless, energy harvesting from far field sources is not sufficient to power the devices additionally on mid-range distances. For this reason, coupled magnetic resonant circuits are proposed as a promising alternative, although suffering from more complex positioning dependency. Based on measurements on a simple prototype system, an equivalent circuit description is used to model the transmission system dependent on different transmission distances and impedance matching conditions. Additionally, the simulation model is used to extract system parameters such as coupling coefficients, coil resistance and self-capacitance, which cannot be calculated in a simple and reliable way. Furthermore, a mathematical channel model based on the schematic model has been built in MATLAB©. It is used to point out the problems occurring in a transmission system with variable transmission distance, especially the change of the passband's centre frequency and its bandwidth. Existing solutions dealing with this distance dependent behaviour, namely the change of the transmission frequency dependent on distance and the addition of losses to the resonators to increase the bandwidth, are considered as not inventive. First, changing the transmission frequency increases the complexity in the data transmission system and would use a disproportional total bandwidth compared to the actually available bandwidth
Signal-Coupled Subthreshold Hopf-Type Systems Show a Sharpened Collective Response
NASA Astrophysics Data System (ADS)
Gomez, Florian; Lorimer, Tom; Stoop, Ruedi
2016-03-01
Astounding properties of biological sensors can often be mapped onto a dynamical system below the occurrence of a bifurcation. For mammalian hearing, a Hopf bifurcation description has been shown to work across a whole range of scales, from individual hair bundles to whole regions of the cochlea. We reveal here the origin of this scale invariance, from a general level, applicable to all dynamics in the vicinity of a Hopf bifurcation (embracing, e.g., neuronal Hodgkin-Huxley equations). When subject to natural "signal coupling," ensembles of Hopf systems below the bifurcation threshold exhibit a collective Hopf bifurcation. This collective Hopf bifurcation occurs at parameter values substantially below where the average of the individual systems would bifurcate, with a frequency profile that is sharpened if compared to the individual systems.
Inner-shell correlations and Sturm expansions in coupled perturbation calculations of atomic systems
Sherstyuk, A.I.; Solov`eva, G.S.
1995-04-01
It is shown that virtual Hartree-Fock orbitals in Sturm-type expansions can be used to calculate the response of atomic systems to an external field within the framework of the coupled perturbation theory with allowance for correlation effects. The corrected electron-electron interaction in a system with field-distorted orbitals is considered by adding a nonlocal potential to a one-electron Hartree-Fock operator within each group of equivalent elections. The remaining correlation effects are calculated by solving a system of equations for corrections to the radial functions. The system is solved iteratively, with each subsequent iteration corresponding to a correction of an increasingly higher order in the electron--electron interaction. The explicit expression derived for the polarizability contains one-and two-particle radial integrals of the Sturm functions.
Signal-Coupled Subthreshold Hopf-Type Systems Show a Sharpened Collective Response.
Gomez, Florian; Lorimer, Tom; Stoop, Ruedi
2016-03-11
Astounding properties of biological sensors can often be mapped onto a dynamical system below the occurrence of a bifurcation. For mammalian hearing, a Hopf bifurcation description has been shown to work across a whole range of scales, from individual hair bundles to whole regions of the cochlea. We reveal here the origin of this scale invariance, from a general level, applicable to all dynamics in the vicinity of a Hopf bifurcation (embracing, e.g., neuronal Hodgkin-Huxley equations). When subject to natural "signal coupling," ensembles of Hopf systems below the bifurcation threshold exhibit a collective Hopf bifurcation. This collective Hopf bifurcation occurs at parameter values substantially below where the average of the individual systems would bifurcate, with a frequency profile that is sharpened if compared to the individual systems. PMID:27015509
Ito, Soichi; Nagami, Takanori; Nakano, Masayoshi
2016-08-11
We theoretically investigate the singlet fission in three types of covalently-linked systems, that is, ortho-, meta- and para-linked pentacene dimers, where these are shown to have significantly different singlet fission rates. Each molecule is composed of two chromophores (pentacenes), which are active sites for singlet fission, and covalent bridges linking them. We clarify the origin of the difference in the electronic couplings in these systems, which are found to well support a recent experimental observation. It is also found that the next-nearest-neighbor interaction is indispensable for intramolecular singlet fission in these systems. On the basis of these results, we present design principles for efficient intramolecular singlet fission in covalently-linked systems and demonstrate the performance by using several novel conjugated linkers. PMID:27448100