Science.gov

Sample records for coupled biogeochemical processes

  1. Characterization of Coupled Hydrologic-Biogeochemical Processes Using Geophysical Data

    SciTech Connect

    Hubbard, Susan

    2005-06-01

    Biogeochemical and hydrological processes are naturally coupled and variable over a wide range of spatial and temporal scales. Many remediation approaches also induce dynamic transformations in natural systems, such as the generation of gases, precipitates and biofilms. These dynamic transformations are often coupled and can reduce the hydraulic conductivity of the geologic materials, making it difficult to introduce amendments or to perform targeted remediation. Because it is difficult to predict these transformations, our ability to develop effective and sustainable remediation conditions at contaminated sites is often limited. Further complicating the problem is the inability to collect the necessary measurements at a high enough spatial resolution yet over a large enough volume for understanding field-scale transformations.

  2. Electric currents couple spatially separated biogeochemical processes in marine sediment.

    PubMed

    Nielsen, Lars Peter; Risgaard-Petersen, Nils; Fossing, Henrik; Christensen, Peter Bondo; Sayama, Mikio

    2010-02-25

    Some bacteria are capable of extracellular electron transfer, thereby enabling them to use electron acceptors and donors without direct cell contact. Beyond the micrometre scale, however, no firm evidence has previously existed that spatially segregated biogeochemical processes can be coupled by electric currents in nature. Here we provide evidence that electric currents running through defaunated sediment couple oxygen consumption at the sediment surface to oxidation of hydrogen sulphide and organic carbon deep within the sediment. Altering the oxygen concentration in the sea water overlying the sediment resulted in a rapid (<1-h) change in the hydrogen sulphide concentration within the sediment more than 12 mm below the oxic zone, a change explicable by transmission of electrons but not by diffusion of molecules. Mass balances indicated that more than 40% of total oxygen consumption in the sediment was driven by electrons conducted from the anoxic zone. A distinct pH peak in the oxic zone could be explained by electrochemical oxygen reduction, but not by any conventional sets of aerobic sediment processes. We suggest that the electric current was conducted by bacterial nanowires combined with pyrite, soluble electron shuttles and outer-membrane cytochromes. Electrical communication between distant chemical and biological processes in nature adds a new dimension to our understanding of biogeochemistry and microbial ecology.

  3. Coupled Biogeochemical Process Evaluation for Conceptualizing Trichloroethylene Co-Metabolism

    SciTech Connect

    Colwell, Frederick; Radtke, Corey; Newby, Deborah; Delwiche, Mark; Crawf, Ronald L.; Paszczynski, Andrzej; Strap, Janice; Conrad, Mark; Brodic, Eoin; Starr, Robert; Lee, Hope

    2006-04-05

    Chlorinated solvent wastes (e.g., trichloroethene or TCE) often occur as diffuse subsurface plumes in complex geological environments where coupled processes must be understood in order to implement remediation strategies. Monitored natural attenuation (MNA) warrants study as a remediation technology because it minimizes worker and environment exposure to the wastes and because it costs less than other technologies. However, to be accepted MNA requires 'lines of evidence' indicating that the wastes are effectively destroyed. Our research will study the coupled biogeochemical processes that dictate the rate of TCE co-metabolism in contaminated aquifers first at the Idaho National Laboratory and then at Paducah or the Savannah River Site, where natural attenuation of TCE is occurring. We will use flow-through in situ reactors to investigate the rate of methanotrophic co-metabolism of TCE and the coupling of the responsible biological processes with the dissolved methane flux and groundwater flow velocity. We will use new approaches (e.g., stable isotope probing, enzyme activity probes, real-time reverse transcriptase polymerase chain reaction, proteomics) to assay the TCE co-metabolic rates, and interpret these rates in the context of enzyme activity, gene expression, and cellular inactivation related to intermediates of TCE co-metabolism. By determining the rate of TCE co-metabolism at different methane concentrations and groundwater flow velocities, we will derive key modeling parameters for the computational simulations that describe the attenuation, and thereby refine such models while assessing the contribution of microbial relative to other natural attenuation processes. This research will strengthen our ability to forecast the viability of MNA at DOE and other sites that are contaminated with chlorinated hydrocarbons.

  4. Coupled Biogeochemical Process Evaluation for Conceptualizing Trichloroethylene Co-Metabolism

    SciTech Connect

    Rick Colwell; Corey Radtke; Mark Delwiche; Deborah Newby; Lynn Petzke; Mark Conrad; Eoin Brodie; Hope Lee; Bob Starr; Dana Dettmers; Ron Crawford; Andrzej Paszczynski; Nick Bernardini; Ravi Paidisetti; Tonia Green

    2006-06-01

    Chlorinated solvent wastes (e.g., trichloroethene or TCE) often occur as diffuse subsurface plumes in complex geological environments where coupled processes must be understood in order to implement remediation strategies. Monitored natural attenuation (MNA) warrants study as a remediation technology because it minimizes worker and environment exposure to the wastes and because it costs less than other technologies. However, to be accepted MNA requires different ?lines of evidence? indicating that the wastes are effectively destroyed. We are studying the coupled biogeochemical processes that dictate the rate of TCE co-metabolism first in the medial zone (TCE concentration: 1,000 to 20,000 ?g/L) of a plume at the Idaho National Laboratory?s Test Area North (TAN) site and then at Paducah or the Savannah River Site. We will use flow-through in situ reactors (FTISR) to investigate the rate of methanotrophic co-metabolism of TCE and the coupling of the responsible biological processes with the dissolved methane flux and groundwater flow velocity. TCE co-metabolic rates at TAN are being assessed and interpreted in the context of enzyme activity, gene expression, and cellular inactivation related to intermediates of TCE co-metabolism. By determining the rate of TCE co-metabolism at different groundwater flow velocities, we will derive key modeling parameters for the computational simulations that describe the attenuation, and thereby refine such models while assessing the contribution of microbial co-metabolism relative to other natural attenuation processes. This research will strengthen our ability to forecast the viability of MNA at DOE and other sites contaminated with chlorinated hydrocarbons.

  5. Exploring the Influence of Topography on Belowground C Processes Using a Coupled Hydrologic-Biogeochemical Model

    NASA Astrophysics Data System (ADS)

    Shi, Y.; Davis, K. J.; Eissenstat, D. M.; Kaye, J. P.; Duffy, C.; Yu, X.; He, Y.

    2014-12-01

    Belowground carbon processes are affected by soil moisture and soil temperature, but current biogeochemical models are 1-D and cannot resolve topographically driven hill-slope soil moisture patterns, and cannot simulate the nonlinear effects of soil moisture on carbon processes. Coupling spatially-distributed physically-based hydrologic models with biogeochemical models may yield significant improvements in the representation of topographic influence on belowground C processes. We will couple the Flux-PIHM model to the Biome-BGC (BBGC) model. Flux-PIHM is a coupled physically-based land surface hydrologic model, which incorporates a land-surface scheme into the Penn State Integrated Hydrologic Model (PIHM). The land surface scheme is adapted from the Noah land surface model. Because PIHM is capable of simulating lateral water flow and deep groundwater, Flux-PIHM is able to represent the link between groundwater and the surface energy balance, as well as the land surface heterogeneities caused by topography. The coupled Flux-PIHM-BBGC model will be tested at the Susquehanna/Shale Hills critical zone observatory (SSHCZO). The abundant observations, including eddy covariance fluxes, soil moisture, groundwater level, sap flux, stream discharge, litterfall, leaf area index, above ground carbon stock, and soil carbon efflux, make SSHCZO an ideal test bed for the coupled model. In the coupled model, each Flux-PIHM model grid will couple a BBGC cell. Flux-PIHM will provide BBGC with soil moisture and soil temperature information, while BBGC provides Flux-PIHM with leaf area index. Preliminary results show that when Biome- BGC is driven by PIHM simulated soil moisture pattern, the simulated soil carbon is clearly impacted by topography.

  6. Advances in Coupling of Kinetics and Molecular Scale Tools to Shed Light on Soil Biogeochemical Processes

    SciTech Connect

    Sparks, Donald

    2014-09-02

    Biogeochemical processes in soils such as sorption, precipitation, and redox play critical roles in the cycling and fate of nutrients, metal(loid)s and organic chemicals in soil and water environments. Advanced analytical tools enable soil scientists to track these processes in real-time and at the molecular scale. Our review focuses on recent research that has employed state-of-the-art molecular scale spectroscopy, coupled with kinetics, to elucidate the mechanisms of nutrient and metal(loid) reactivity and speciation in soils. We found that by coupling kinetics with advanced molecular and nano-scale tools major advances have been made in elucidating important soil chemical processes including sorption, precipitation, dissolution, and redox of metal(loids) and nutrients. Such advances will aid in better predicting the fate and mobility of nutrients and contaminants in soils and water and enhance environmental and agricultural sustainability.

  7. Multi-scale Characterization and Prediction of Coupled Subsurface Biogeochemical-Hydrological Processes

    SciTech Connect

    Hubbard, Susan; Williams, Ken; Steefel, Carl; Banfield, Jill; Long, Phil; Slater, Lee; Pride, Steve; Jinsong Chen

    2006-06-01

    To advance solutions needed for remediation of DOE contaminated sites, approaches are needed that can elucidate and predict reactions associated with coupled biological, geochemical, and hydrological processes over a variety of spatial scales and in heterogeneous environments. Our previous laboratory experimental experiments, which were conducted under controlled and homogeneous conditions, suggest that geophysical methods have the potential for elucidating system transformations that often occur during remediation. Examples include tracking the onset and aggregation of precipitates associated with sulfate reduction using seismic and complex resistivity methods (Williams et al., 2005; Ntarlagiannis et al., 2005) as well as estimating the volume of evolved gas associated with denitrification using radar velocity. These exciting studies illustrated that geophysical responses correlated with biogeochemical changes, but also that multiple factors could impact the geophysical signature and thus a better understanding as well as integration tools were needed to advance the techniques to the point where they can be used to provide quantitative estimates of system transformations.

  8. Coupled modeling of transport and biogeochemical processes in aquifers - Model requirements, strength and limitations

    NASA Astrophysics Data System (ADS)

    Mayer, K.

    2003-12-01

    Microbially mediated geochemical changes in aquifers may trigger a series of secondary reactions that include aqueous and surface complexation, ion exchange, and mineral dissolution-precipitation. Due to the coupled nature and the multitude of processes involved it is often difficult to identify the reactions controlling the system's overall evolution. Numerical models can be a useful component for identifying gaps and inconsistencies in conceptual models and for performing a more quantitative investigation of these systems. Suitable computer codes must allow for a general description of transport and reaction processes to facilitate the investigation of site-specific conditions. In recent years significant advances have been made in terms of model generality and applicability. Major advances include the consideration of mass balance equations for reactants and reaction products, the integration of biodegradation and thermodynamic models, and the development of novel approaches for simulating biogeochemical processes and reactive transport under variably saturated conditions. MIN3P is one of the codes capable of simulating coupled biogeochemical and hydrological processes on an increasingly mechanistic level. The simulation of column experiments and a hypothetical case study at the field scale illustrate how reactive transport modeling can be used. Modeling column experiments can be particularly fruitful, because detailed data can be collected to support the mechanistic approach. However, analysis of conceptual models is also beneficial on the field scale. The case study considered here describes natural attenuation of a petroleum hydrocarbon spill in an unconfined aquifer by multiple electron acceptors. The simulations also consider geochemical reactions triggered by contaminant degradation including the re-oxidation of reaction products during transport away from the source area. Comparing the results to contaminant plumes described in the literature suggests

  9. Biogeochemical Coupling between Ocean and Sea Ice

    NASA Astrophysics Data System (ADS)

    Wang, S.; Jeffery, N.; Maltrud, M. E.; Elliott, S.; Wolfe, J.

    2016-12-01

    Biogeochemical processes in ocean and sea ice are tightly coupled at high latitudes. Ongoing changes in Arctic and Antarctic sea ice domain likely influence the coupled system, not only through physical fields but also biogeochemical properties. Investigating the system and its changes requires representation of ocean and sea ice biogeochemical cycles, as well as their coupling in Earth System Models. Our work is based on ACME-HiLAT, a new offshoot of the Community Earth System Model (CESM), including a comprehensive representation of marine ecosystems in the form of the Biogeochemical Elemental Cycling Module (BEC). A full vertical column sea ice biogeochemical module has recently been incorporated into the sea ice component. We have further introduced code modifications to couple key growth-limiting nutrients (N, Si, Fe), dissolved and particulate organic matter, and phytoplankton classes that are important in polar regions between ocean and sea ice. The coupling of ocean and sea ice biology-chemistry will enable representation of key processes such as the release of important climate active constituents or seeding algae from melting sea ice into surface waters. Sensitivity tests suggest sea ice and ocean biogeochemical coupling influences phytoplankton competition, biological production, and the CO2 flux. Sea ice algal seeding plays an important role in determining phytoplankton composition of Arctic early spring blooms, since different groups show various responses to the seeding biomass. Iron coupling leads to increased phytoplankton biomass in the Southern Ocean, which also affects carbon uptake via the biological pump. The coupling of macronutrients and organic matter may have weaker influences on the marine ecosystem. Our developments will allow climate scientists to investigate the fully coupled responses of the sea ice-ocean BGC system to physical changes in polar climate.

  10. Three-dimensional approach using two coupled models for description of hydrological and biogeochemical processes at the catchment scale

    NASA Astrophysics Data System (ADS)

    Plesca, Ina; Kraft, Philipp; Haas, Edwin; Klatt, Steffen; Butterbach-Bahl, Klaus; Frede, Hans-Georg; Breuer, Lutz

    2014-05-01

    Hydrological and biogeochemical transport through changing landscapes has been well described during the past years in literature. However, the uncertainties of combined water quality and water quantity models are still challenging, both due to a lack in process understanding as well to spatiotemporal heterogeneity of environmental conditions driving the processes. In order to reduce the uncertainty in water quality and runoff predictions at the catchment scale, a variety of different model approaches from empirical-conceptual to fully physical and process based models have been developed. In this study we present a new modelling approach for the investigation of hydrological processes and nutrient cycles, with a focus on nitrogen in a small catchment from Hessen, Germany. A hydrological model based on the model toolbox Catchment Modelling Framework (CMF) has been coupled with the process based biogeochemical model LandscapeDNDC. States, fluxes and parameters are exchanged between the models at high temporal and spatial resolution using the Python scripting language in order to obtain a 3-dimensional model application. The transport of water and nutrients through the catchment is modelled using a 3D Richards/Darcy approach for subsurface fluxes, a kinematic wave approach for surface runoff and a Penman-Monteith based calculation of evapotranspiration. Biogeochemical processes are modelled by Landscape-DNDC, including plant growth and biomass allocation, organic matter mineralisation, nitrification, denitrification and associated nitrous oxide emissions. The interactions and module connectivity between the two coupled models, as well as the model application on a 3.7 km² catchment with the runoff results and nitrogen quantification will be presented in this study.

  11. Biogeochemical Processes in Microbial Ecosystems

    NASA Technical Reports Server (NTRS)

    DesMarais, David J.; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    The hierarchical organization of microbial ecosystems determines process rates that shape Earth's environment, create the biomarker sedimentary and atmospheric signatures of life and define the stage upon which major evolutionary events occurred. In order to understand how microorganisms have shaped the global environment of Earth and potentially, other worlds, we must develop an experimental paradigm that links biogeochemical processes with ever-changing temporal and spatial distributions of microbial population, and their metabolic properties. Photosynthetic microbial mats offer an opportunity to define holistic functionality at the millimeter scale. At the same time, their Biogeochemistry contributes to environmental processes on a planetary scale. These mats are possibly direct descendents of the most ancient biological communities; communities in which oxygenic photosynthesis might have been invented. Mats provide one of the best natural systems to study how microbial populations associate to control dynamic biogeochemical gradients. These are self-sustaining, complete ecosystems in which light energy absorbed over a diel (24 hour) cycle drives the synthesis of spatially-organized, diverse biomass. Tightly-coupled microorganisms in the mat have specialized metabolisms that catalyze transformations of carbon, nitrogen. sulfur, and a host of other elements.

  12. Autonomous Studies of Coupled Physical-Biogeochemical Processes- Lessons from NAB08 and Prospects for the Future

    NASA Astrophysics Data System (ADS)

    Lee, Craig; D'Asaro, Eric; Perry, Mary Jane

    2013-04-01

    Motivated by the increasing application of autonomous sensors to physical, biological and biogeochemical investigations at the submesoscale, we examine techniques developed during the 2008 North Atlantic Bloom Experiment (NAB08), review successes, failures, and lessons learned, and offer perspectives on how these approaches might evolve in response to near-term shifts in scientific goals and technological advances. NAB08 exploited the persistence of autonomous platforms coupled with the extensive capabilities of a ship-based sampling program to investigate the patch-scale physics, biogeochemistry and community dynamics of a spring phytoplankton bloom. Autonomous platforms (Seagliders following a heavily-instrumented Lagrangian float) collected measurements in a quasi-Lagrangian frame, beginning before bloom initiation and extending well past its demise. This system of autonomous instruments resolved variability at the patch scale while also providing the persistence needed to follow bloom evolution. Biological and biogeochemical measurements were conducted from R/V Knorr during the bloom. An aggressive protocol for sensor calibration and proxy building bridged the ship-based and autonomous efforts, leveraging the intensive but sparse ship-based measurements onto the much more numerous autonomous observations. The combination of sampling in the patch-following frame, persistent, autonomous surveys and focused, aggressive calibration and proxy building produced robust, quantitative estimates of physical and biogeochemical processes. For example, budgets of nitrate, dissolved oxygen and particulate organic carbon (POC) following the patch were used to estimate net community production (NCP) and apparent POC export. Net community production was 805 mmol C?m-2 during the main bloom, with apparent POC export of 564 mmol C?m-2 and 282 mmol C?m-2 lost due to net respiration (70%) and apparent export (30%) on the day following bloom termination. Thus, POC export of roughly

  13. Final Progress Report: Coupled Biogeochemical Process Evaluation for Conceptualizing Trichloroethylene Cometabolism

    SciTech Connect

    Crawford, Ronald L; Paszczynski, Andrzej J

    2010-02-19

    Our goal within the overall project is to demonstrate the presence and abundance of methane monooxygenases (MMOs) enzymes and their genes within the microbial community of the Idaho National Laboratory (INL) Test Area North (TAN) site. MMOs are thought to be the primary catalysts of natural attenuation of trichloroethylene (TCE) in contaminated groundwater at this location. The actual presence of the proteins making up MMO complexes would provide direct evidence for its participation in TCE degradation. The quantitative estimation of MMO genes and their translation products (sMMO and pMMO proteins) and the knowledge about kinetics and substrate specificity of MMOs will be used to develop mathematical models of the natural attenuation process in the TAN aquifer. The model will be particularly useful in prediction of TCE degradation rate in TAN and possibly in the other DOE sites. Bacteria known as methanotrophs produce a set of proteins that assemble to form methane monooxygenase complexes (MMOs), enzymes that oxidize methane as their natural substrate, thereby providing a carbon and energy source for the organisms. MMOs are also capable of co-metabolically transforming chlorinated solvents like TCE into nontoxic end products such as carbon dioxide and chloride. There are two known forms of methane monooxygenase, a membrane-bound particulate form (pMMO) and a cytoplasmic soluble form (sMMO). pMMO consists of two components, pMMOH (a hydroxylase comprised of 47-, 27-, and 24-kDa subunits) and pMMOR (a reductase comprised of 63 and 8-kDa subunits). sMMO consists of three components: a hydroxylase (protein A-250 kDa), a dimer of three subunits (α2β2γ2), a regulatory protein (protein B-15.8 kDa), and a reductase (protein C-38.6 kDa). All methanotrophs will produce a methanol dehydrogenase to channel the product of methane oxidation (methanol) into the central metabolite formaldehyde. University of Idaho (UI) efforts focused on proteomic analyses using mass

  14. Kinetic Modeling of Biogeochemical Processes in Subsurface Environments: Coupling Transport, Microbial Metabolism and Geochemistry

    NASA Astrophysics Data System (ADS)

    Wang, Y.

    2002-12-01

    Microbial reactions play an important role in regulating pore water chemistry (e.g., pH and Eh) as well as secondary mineral distribution in many subsurface systems and therefore directly control trace metal migration and recycling in those systems. In this paper, we present a multicomponent kinetic model that explicitly accounts for the coupling of microbial metabolism, microbial population dynamics, advective/dispersive transport of chemical species, aqueous speciation, and mineral precipitation/dissolution in porous geologic media. A modification to the traditional microbial growth kinetic equation is proposed, to account for the likely achievement of quasi-steady state biomass accumulations in natural environments. A scale dependence of microbial reaction rates is derived based on both field observations and the scaling analysis of reactive transport equations. As an example, we use the model to simulate a subsurface contaminant migration scenario, in which a water flow containing both uranium and a complexing organic ligand is recharged into an oxic carbonate aquifer. The model simulation shows that Mn and Fe oxyhydroxides may vary significantly along a flow path. The simulation also shows that uranium (VI) can be reduced and therefore immobilized in the anoxic zone created by microbial degradation. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy (US DOE) under Contract DE-AC04-94AL85000.

  15. Aggregate-scale spatial heterogeneity in reductive transformation of ferrihydrite resulting from coupled biogeochemical and physical processes

    NASA Astrophysics Data System (ADS)

    Pallud, C.; Masue-Slowey, Y.; Fendorf, S.

    2010-05-01

    Iron (hydr)oxides are ubiquitous in soils and sediments and play a dominant role in the geochemistry of surface and subsurface environments. Their fate depends on local environmental conditions, which in structured soils may vary significantly over short distances due to mass-transfer limitations on solute delivery and metabolite removal. In the present study, artificial soil aggregates were used to investigate the coupling of physical and biogeochemical processes affecting the spatial distribution of iron (Fe) phases resulting from reductive transformation of ferrihydrite. Spherical aggregates made of ferrihydrite-coated sand were inoculated with the dissimilatory Fe-reducing bacterium Shewanella putrefaciens strain CN-32, and placed into a flow reactor, the reaction cell simulates a diffusion-dominated soil aggregate surrounded by an advective flow domain. The spatial and temporal evolution of secondary mineralization products resulting from dissimilatory Fe reduction of ferrihydrite were followed within the aggregates in response to a range of flow rates and lactate concentrations. Strong radial variations in the distribution of secondary phases were observed owing to diffusively controlled delivery of lactate and efflux of Fe(II) and bicarbonate. In the aggregate cortex, only limited formation of secondary Fe phases were observed over 30 d of reaction, despite high rates of ferrihydrite reduction. Under all flow conditions tested, ferrihydrite transformation was limited in the cortex (70-85 mol.% Fe remained as ferrihydrite) because metabolites such as Fe(II) and bicarbonate were efficiently removed in outflow solutes. In contrast, within the inner fractions of the aggregate, limited mass-transfer results in metabolite (Fe(II) and bicarbonate) build-up and the consummate transformation of ferrihydrite - only 15-40 mol.% Fe remained as ferrihydrite after 30 d of reaction. Goethite/lepidocrocite, and minor amounts of magnetite, formed in the aggregate mid

  16. Biogeochemical Processes in Microbial Ecosystems

    NASA Technical Reports Server (NTRS)

    DesMarais, David J.

    2001-01-01

    The hierarchical organization of microbial ecosystems determines process rates that shape Earth's environment, create the biomarker sedimentary and atmospheric signatures of life, and define the stage upon which major evolutionary events occurred. In order to understand how microorganisms have shaped the global environment of Earth and, potentially, other worlds, we must develop an experimental paradigm that links biogeochemical processes with ever-changing temporal and spatial distributions of microbial populations and their metabolic properties. Additional information is contained in the original extended abstract.

  17. Biogeochemical Processes in Microbial Ecosystems

    NASA Technical Reports Server (NTRS)

    DesMarais, David J.

    2001-01-01

    The hierarchical organization of microbial ecosystems determines process rates that shape Earth's environment, create the biomarker sedimentary and atmospheric signatures of life, and define the stage upon which major evolutionary events occurred. In order to understand how microorganisms have shaped the global environment of Earth and, potentially, other worlds, we must develop an experimental paradigm that links biogeochemical processes with ever-changing temporal and spatial distributions of microbial populations and their metabolic properties. Additional information is contained in the original extended abstract.

  18. Dynamic modeling of nitrogen losses in river networks unravels the coupled effects of hydrological and biogeochemical processes

    USGS Publications Warehouse

    Alexander, R.B.; Böhlke, J.K.; Boyer, E.W.; David, M.B.; Harvey, J.W.; Mulholland, P.J.; Seitzinger, S.P.; Tobias, C.R.; Tonitto, C.; Wollheim, W.M.

    2009-01-01

    The importance of lotic systems as sinks for nitrogen inputs is well recognized. A fraction of nitrogen in streamflow is removed to the atmosphere via denitrification with the remainder exported in streamflow as nitrogen loads. At the watershed scale, there is a keen interest in understanding the factors that control the fate of nitrogen throughout the stream channel network, with particular attention to the processes that deliver large nitrogen loads to sensitive coastal ecosystems. We use a dynamic stream transport model to assess biogeochemical (nitrate loadings, concentration, temperature) and hydrological (discharge, depth, velocity) effects on reach-scale denitrification and nitrate removal in the river networks of two watersheds having widely differing levels of nitrate enrichment but nearly identical discharges. Stream denitrification is estimated by regression as a nonlinear function of nitrate concentration, streamflow, and temperature, using more than 300 published measurements from a variety of US streams. These relations are used in the stream transport model to characterize nitrate dynamics related to denitrification at a monthly time scale in the stream reaches of the two watersheds. Results indicate that the nitrate removal efficiency of streams, as measured by the percentage of the stream nitrate flux removed via denitrification per unit length of channel, is appreciably reduced during months with high discharge and nitrate flux and increases during months of low-discharge and flux. Biogeochemical factors, including land use, nitrate inputs, and stream concentrations, are a major control on reach-scale denitrification, evidenced by the disproportionately lower nitrate removal efficiency in streams of the highly nitrate-enriched watershed as compared with that in similarly sized streams in the less nitrate-enriched watershed. Sensitivity analyses reveal that these important biogeochemical factors and physical hydrological factors contribute nearly

  19. Potential for real-time understanding of coupled hydrologic and biogeochemical processes in stream ecosystems: Future integration of telemetered data with process models for glacial meltwater streams

    NASA Astrophysics Data System (ADS)

    McKnight, Diane M.; Cozzetto, Karen; Cullis, James D. S.; Gooseff, Michael N.; Jaros, Christopher; Koch, Joshua C.; Lyons, W. Berry; Neupauer, Roseanna; Wlostowski, Adam

    2015-08-01

    While continuous monitoring of streamflow and temperature has been common for some time, there is great potential to expand continuous monitoring to include water quality parameters such as nutrients, turbidity, oxygen, and dissolved organic material. In many systems, distinguishing between watershed and stream ecosystem controls can be challenging. The usefulness of such monitoring can be enhanced by the application of quantitative models to interpret observed patterns in real time. Examples are discussed primarily from the glacial meltwater streams of the McMurdo Dry Valleys, Antarctica. Although the Dry Valley landscape is barren of plants, many streams harbor thriving cyanobacterial mats. Whereas a daily cycle of streamflow is controlled by the surface energy balance on the glaciers and the temporal pattern of solar exposure, the daily signal for biogeochemical processes controlling water quality is generated along the stream. These features result in an excellent outdoor laboratory for investigating fundamental ecosystem process and the development and validation of process-based models. As part of the McMurdo Dry Valleys Long-Term Ecological Research project, we have conducted field experiments and developed coupled biogeochemical transport models for the role of hyporheic exchange in controlling weathering reactions, microbial nitrogen cycling, and stream temperature regulation. We have adapted modeling approaches from sediment transport to understand mobilization of stream biomass with increasing flows. These models help to elucidate the role of in-stream processes in systems where watershed processes also contribute to observed patterns, and may serve as a test case for applying real-time stream ecosystem models.

  20. Coupled hydrological and biogeochemical processes controlling variability of nitrogen species in streamflow during autumn in an upland forest

    USGS Publications Warehouse

    Sebestyen, Stephen D.; Shanley, James B.; Boyer, Elizabeth W.; Kendall, Carol; Doctor, Daniel H.

    2014-01-01

    Autumn is a season of dynamic change in forest streams of the northeastern United States due to effects of leaf fall on both hydrology and biogeochemistry. Few studies have explored how interactions of biogeochemical transformations, various nitrogen sources, and catchment flow paths affect stream nitrogen variation during autumn. To provide more information on this critical period, we studied (1) the timing, duration, and magnitude of changes to stream nitrate, dissolved organic nitrogen (DON), and ammonium concentrations; (2) changes in nitrate sources and cycling; and (3) source areas of the landscape that most influence stream nitrogen. We collected samples at higher temporal resolution for a longer duration than typical studies of stream nitrogen during autumn. This sampling scheme encompassed the patterns and extremes that occurred during base flow and stormflow events of autumn. Base flow nitrate concentrations decreased by an order of magnitude from 5.4 to 0.7 µmol L−1 during the week when most leaves fell from deciduous trees. Changes to rates of biogeochemical transformations during autumn base flow explained the low nitrate concentrations; in-stream transformations retained up to 72% of the nitrate that entered a stream reach. A decrease of in-stream nitrification coupled with heterotrophic nitrate cycling were primary factors in the seasonal nitrate decline. The period of low nitrate concentrations ended with a storm event in which stream nitrate concentrations increased by 25-fold. In the ensuing weeks, peak stormflow nitrate concentrations progressively decreased over closely spaced, yet similarly sized events. Most stormflow nitrate originated from nitrification in near-stream areas with occasional, large inputs of unprocessed atmospheric nitrate, which has rarely been reported for nonsnowmelt events. A maximum input of 33% unprocessed atmospheric nitrate to the stream occurred during one event. Large inputs of unprocessed atmospheric nitrate

  1. Coupled hydrological and biogeochemical processes controlling variability of nitrogen species in streamflow during autumn in an upland forest

    NASA Astrophysics Data System (ADS)

    Sebestyen, Stephen D.; Shanley, James B.; Boyer, Elizabeth W.; Kendall, Carol; Doctor, Daniel H.

    2014-02-01

    Autumn is a season of dynamic change in forest streams of the northeastern United States due to effects of leaf fall on both hydrology and biogeochemistry. Few studies have explored how interactions of biogeochemical transformations, various nitrogen sources, and catchment flow paths affect stream nitrogen variation during autumn. To provide more information on this critical period, we studied (1) the timing, duration, and magnitude of changes to stream nitrate, dissolved organic nitrogen (DON), and ammonium concentrations; (2) changes in nitrate sources and cycling; and (3) source areas of the landscape that most influence stream nitrogen. We collected samples at higher temporal resolution for a longer duration than typical studies of stream nitrogen during autumn. This sampling scheme encompassed the patterns and extremes that occurred during base flow and stormflow events of autumn. Base flow nitrate concentrations decreased by an order of magnitude from 5.4 to 0.7 µmol L-1 during the week when most leaves fell from deciduous trees. Changes to rates of biogeochemical transformations during autumn base flow explained the low nitrate concentrations; in-stream transformations retained up to 72% of the nitrate that entered a stream reach. A decrease of in-stream nitrification coupled with heterotrophic nitrate cycling were primary factors in the seasonal nitrate decline. The period of low nitrate concentrations ended with a storm event in which stream nitrate concentrations increased by 25-fold. In the ensuing weeks, peak stormflow nitrate concentrations progressively decreased over closely spaced, yet similarly sized events. Most stormflow nitrate originated from nitrification in near-stream areas with occasional, large inputs of unprocessed atmospheric nitrate, which has rarely been reported for nonsnowmelt events. A maximum input of 33% unprocessed atmospheric nitrate to the stream occurred during one event. Large inputs of unprocessed atmospheric nitrate show

  2. Coupling of Flow and Biogeochemical Processes Controlling the Environmental Conditions in the Hyporheic Zone: Implications for the Streambed Habitat

    NASA Astrophysics Data System (ADS)

    Andersen, M. S.; Eberhard, S. M.; Rutlidge, H.; Rau, G. C.; Auhl, A.

    2016-12-01

    The hyporheic zone of streams not only connects groundwater and surface water, but is essential for nutrient and carbon cycling and provides crucial habitat for organisms (termed hyporheos). Here we demonstrate how flow (groundwater discharge and hyporheic exchange) and biogeochemical processes interact to form environmental conditions and habitat for hyporheos. This provides the understanding to assess how hyporheic conditions may be altered by changing flow paths caused by flow perturbations such as groundwater pumping. The studied reaches in the Maules Creek Catchment in New South Wales, Australia, comprise intermittent losing, perennial gaining and perennial losing sections, and are therefore well-suited to study how different flow paths affect water quality. Surface water, hyporheic zone pore water (at depths between 0.4 and 0.8 m), and groundwater from monitoring bores, was sampled and analysed for water quality and hyporheos. For each hyporheic site the hydraulic potential for upwelling or down-welling was measured by the vertical hydraulic head difference. Upwelling regional groundwater was generally oxic with detectable nitrate and low DOC (dissolved organic carbon). On the other hand, hyporheic water in down-welling zones became anoxic at shallow depths (< 1 m), with dissolved reduced species such as Fe2+, Mn2+ and NH4+ and no O2, forming a steep vertical redox gradient from the streambed into the sediment. Upwelling hyporheic water (originating from the stream) was found to have a similar hydrochemical signature. These zones did not support habitat for hyporheic invertebrates because metazoan organisms cannot permanently inhabit anoxic environments. No invertebrates were found for Fe2+ concentrations above 2 mg/L. The hyporheos in these zones appeared to be dominated by anaerobic microbes including Fe-reducing bacteria. Our results show that flow conditions affect water quality, which in turn regulates the habitat of hyporheic invertebrates as they will

  3. Final Report DE-SC0006997; PI Sharp; Coupled Biological and Micro-XAS/XRF Analysis of In Situ Uranium Biogeochemical Processes

    SciTech Connect

    Sharp, Jonathan O.

    2016-03-30

    Project Overview: The impact of the original seed award was substantially increased by leveraging a postdoctoral fellowship (Marie Curie Postdoctoral Fellowship) and parallel funds from (A) synergistic project supported by NSF and (B) with DOE collaborators (PI’s Ranville and Williams) as well as no-cost extension that greatly increased the impact and publications associated with the project. In aligning with SBR priorities, the project’s focus was extended more broadly to explore coupled biogeochemical analysis of metal (im)mobilization processes beyond uranium with a foundation in integrating microbial ecology with geochemical analyses. This included investigations of arsenic and zinc during sulfate reducing conditions in addition to direct microbial reduction of metals. Complimentary work with NSF funding and collaborative DOE interactions further increased the project scope to investigate metal (im)mobilization coupled to biogeochemical perturbations in forest ecosystems with an emphasis on coupled carbon and metal biogeochemistry. In total, the project was highly impactful and resulted in 9 publications and directly supported salary/tuition for 3 graduate students at various stages of their academic careers as well as my promotion to Associate Professor. In going forward, findings provided inspiration for a two subsequent proposals with collaborators at Lawrence Berkeley Laboratory and others that are currently in review (as of March 2016).

  4. Coupled hydrological and biogeochemical processes controlling variability of nitrogen species in streamflow during autumn in an upland forest

    Treesearch

    Stephen D. Sebestyen; James B. Shanley; Elizabeth W. Boyer; Carol Kendall; Daniel H. Doctor

    2014-01-01

    Autumn is a season of dynamic change in forest streams of the northeastern United States due to effects of leaf fall on both hydrology and biogeochemistry. Few studies have explored how interactions of biogeochemical transformations, various nitrogen sources, and catchment flow paths affect stream nitrogen variation during autumn. To provide more information on this...

  5. Eutrophication-induced acidification of coastal waters in the northern Gulf of Mexico: Insights into origin and processes from a coupled physical-biogeochemical model

    NASA Astrophysics Data System (ADS)

    Laurent, Arnaud; Fennel, Katja; Cai, Wei-Jun; Huang, Wei-Jen; Barbero, Leticia; Wanninkhof, Rik

    2017-01-01

    Nutrient inputs from the Mississippi/Atchafalaya River system into the northern Gulf of Mexico promote high phytoplankton production and lead to high respiration rates. Respiration coupled with water column stratification results in seasonal summer hypoxia in bottom waters on the shelf. In addition to consuming oxygen, respiration produces carbon dioxide (CO2), thus lowering the pH and acidifying bottom waters. Here we present a high-resolution biogeochemical model simulating this eutrophication-driven acidification and investigate the dominant underlying processes. The model shows the recurring development of an extended area of acidified bottom waters in summer on the northern Gulf of Mexico shelf that coincides with hypoxic waters. Not reported before, acidified waters are confined to a thin bottom boundary layer where the production of CO2 by benthic metabolic processes is dominant. Despite a reduced saturation state, acidified waters remain supersaturated with respect to aragonite.

  6. A Conceptual Model of Coupled Biogeochemical and Hydrogeological Processes Affected by In Situ Cr(VI) Bioreduction in Groundwater at Hanford 100H Site

    NASA Astrophysics Data System (ADS)

    Faybishenko, B.; Long, P. E.; Hazen, T. C.; Hubbard, S. S.; Williams, K. H.; Peterson, J. E.; Chen, J.; Volkova, E. V.; Newcomer, D. R.; Resch, C. T.; Cantrell, K.; Conrad, M. S.; Brodie, E. L.; Joyner, D. C.; Borglin, S. E.; Chakraborty, R. C.

    2007-05-01

    The overall objective of this presentation is to demonstrate a conceptual multiscale, multidomain model of coupling of biogeochemical and hydrogeological processes during bioremediation of Cr(VI) contaminated groundwater at Hanford 100H site. A slow release polylactate, Hydrogen Release Compound (HRCTM), was injected in Hanford sediments to stimulate immobilization of Cr(VI). The HRC injection induced a 2-order-of- magnitude increase in biomass and the onset of reducing biogeochemical conditions [e.g., redox potential decreased from +240 to -130 mV and dissolved oxygen (DO) was completely removed]. A three-well system, comprised of an injection well and upgradient and downgradient monitoring wells, was used for conducting the in situ biostimulation, one regional flow (no-pumping) tracer test, and five pumping tests along with the Br-tracer injection. Field measurements were conducted using a Br ion-selective electrode and a multiparameter flow cell to collect hourly data on temperature, pH, redox potential, electrical conductivity, and DO. Groundwater sampling was conducted by pumping through specially designed borehole water samplers. Cross-borehole radar tomography and seismic measurements were carried out to assess the site background lithological heterogeneity and the migration pathways of HRC byproducts through groundwater after the HRC injection. Several alternative approaches, including conventional and fractional advective dispersion equations and geostatistical analysis, were used to characterize hydraulic and biogeochemical transport parameters. The results of a joint inversion of cross-borehole geophysical tomography and flow-rate measurements in boreholes indicate the presence of a bimodal distribution of hydraulic conductivity for Hanford sediments. The Br- concentration double-peak BTCs curves indicate that HRC injection caused an increase in the tracer travel time (mainly in the low-permeability zone) over the period of observations of about 2 years

  7. Impact of urban effluents on summer hypoxia in the highly turbid Gironde Estuary, applying a 3D model coupling hydrodynamics, sediment transport and biogeochemical processes

    NASA Astrophysics Data System (ADS)

    Lajaunie-Salla, Katixa; Wild-Allen, Karen; Sottolichio, Aldo; Thouvenin, Bénédicte; Litrico, Xavier; Abril, Gwenaël

    2017-10-01

    Estuaries are increasingly degraded due to coastal urban development and are prone to hypoxia problems. The macro-tidal Gironde Estuary is characterized by a highly concentrated turbidity maximum zone (TMZ). Field observations show that hypoxia occurs in summer in the TMZ at low river flow and a few days after the spring tide peak. In situ data highlight lower dissolved oxygen (DO) concentrations around the city of Bordeaux, located in the upper estuary. Interactions between multiple factors limit the understanding of the processes controlling the dynamics of hypoxia. A 3D biogeochemical model was developed, coupled with hydrodynamics and a sediment transport model, to assess the contribution of the TMZ and the impact of urban effluents through wastewater treatment plants (WWTPs) and sewage overflows (SOs) on hypoxia. Our model describes the transport of solutes and suspended material and the biogeochemical mechanisms impacting oxygen: primary production, degradation of all organic matter (i.e. including phytoplankton respiration, degradation of river and urban watershed matter), nitrification and gas exchange. The composition and the degradation rates of each variable were characterized by in situ measurements and experimental data from the study area. The DO model was validated against observations in Bordeaux City. The simulated DO concentrations show good agreement with field observations and satisfactorily reproduce the seasonal and neap-spring time scale variations around the city of Bordeaux. Simulations show a spatial and temporal correlation between the formation of summer hypoxia and the location of the TMZ, with minimum DO centered in the vicinity of Bordeaux. To understand the contribution of the urban watershed forcing, different simulations with the presence or absence of urban effluents were compared. Our results show that in summer, a reduction of POC from SO would increase the DO minimum in the vicinity of Bordeaux by 3% of saturation. Omitting

  8. Plant impact on the coupled terrestrial biogeochemical cycles of silicon and carbon: Implications for biogeochemical carbon sequestration

    NASA Astrophysics Data System (ADS)

    Song, Zhaoliang; Wang, Hailong; Strong, P. James; Li, Zimin; Jiang, Peikun

    2012-12-01

    The coupled terrestrial biogeochemical cycles of silicon (Si) and carbon (C) that are driven by plant action play a crucial role in the regulation of atmospheric CO2. Generally, the processes involved in the coupled cycles of Si and C include plant-enhanced silicate weathering, phytolith formation and solubilization, secondary aluminosilicate accumulation, phytolith occlusion of C as well as physico-chemical protection of organic C in soils. There is increasing evidence of biological pumping of Si in terrestrial ecosystems, suggesting that complex feedbacks exist amongst the processes within the coupled Si and C cycles. Recent advances in the coupled Si and C cycles offer promising new possibilities for enhancing atmospheric CO2 sequestration. Organic mulching, rock powder amendment, cultivating Si-accumulating plants and partial plant harvesting are potential measures that may allow for long-term manipulation and biogeochemical sequestration of atmospheric CO2 in soil-plant systems.

  9. Estimating the potential of energy saving and carbon emission mitigation of cassava-based fuel ethanol using life cycle assessment coupled with a biogeochemical process model.

    PubMed

    Jiang, Dong; Hao, Mengmeng; Fu, Jingying; Tian, Guangjin; Ding, Fangyu

    2017-09-14

    Global warming and increasing concentration of atmospheric greenhouse gas (GHG) have prompted considerable interest in the potential role of energy plant biomass. Cassava-based fuel ethanol is one of the most important bioenergy and has attracted much attention in both developed and developing countries. However, the development of cassava-based fuel ethanol is still faced with many uncertainties, including raw material supply, net energy potential, and carbon emission mitigation potential. Thus, an accurate estimation of these issues is urgently needed. This study provides an approach to estimate energy saving and carbon emission mitigation potentials of cassava-based fuel ethanol through LCA (life cycle assessment) coupled with a biogeochemical process model-GEPIC (GIS-based environmental policy integrated climate) model. The results indicate that the total potential of cassava yield on marginal land in China is 52.51 million t; the energy ratio value varies from 0.07 to 1.44, and the net energy surplus of cassava-based fuel ethanol in China is 92,920.58 million MJ. The total carbon emission mitigation from cassava-based fuel ethanol in China is 4593.89 million kgC. Guangxi, Guangdong, and Fujian are identified as target regions for large-scale development of cassava-based fuel ethanol industry. These results can provide an operational approach and fundamental data for scientific research and energy planning.

  10. Coupling among Microbial Communities, Biogeochemistry, and Mineralogy across Biogeochemical Facies

    SciTech Connect

    Stegen, James C.; Konopka, Allan; McKinely, Jim; Murray, Christopher J.; Lin, Xueju; Miller, Micah D.; Kennedy, David W.; Miller, Erin A.; Resch, Charles T.; Fredrickson, Jim K.

    2016-07-29

    Physical properties of sediments are commonly used to define subsurface lithofacies and these same physical properties influence subsurface microbial communities. This suggests an (unexploited) opportunity to use the spatial distribution of facies to predict spatial variation in biogeochemically relevant microbial attributes. Here, we characterize three biogeochemical facies—oxidized, reduced, and transition—within one lithofacies and elucidate relationships among facies features and microbial community biomass, diversity, and community composition. Consistent with previous observations of biogeochemical hotspots at environmental transition zones, we find elevated biomass within a biogeochemical facies that occurred at the transition between oxidized and reduced biogeochemical facies. Microbial diversity—the number of microbial taxa—was lower within the reduced facies and was well-explained by a combination of pH and mineralogy. Null modeling revealed that microbial community composition was influenced by ecological selection imposed by redox state and mineralogy, possibly due to effects on nutrient availability or transport. As an illustrative case, we predict microbial biomass concentration across a three-dimensional spatial domain by coupling the spatial distribution of subsurface biogeochemical facies with biomass-facies relationships revealed here. We expect that merging such an approach with hydro-biogeochemical models will provide important constraints on simulated dynamics, thereby reducing uncertainty in model predictions.

  11. Coupling among Microbial Communities, Biogeochemistry, and Mineralogy across Biogeochemical Facies

    NASA Astrophysics Data System (ADS)

    Stegen, James C.; Konopka, Allan; McKinley, James P.; Murray, Chris; Lin, Xueju; Miller, Micah D.; Kennedy, David W.; Miller, Erin A.; Resch, Charles T.; Fredrickson, Jim K.

    2016-07-01

    Physical properties of sediments are commonly used to define subsurface lithofacies and these same physical properties influence subsurface microbial communities. This suggests an (unexploited) opportunity to use the spatial distribution of facies to predict spatial variation in biogeochemically relevant microbial attributes. Here, we characterize three biogeochemical facies—oxidized, reduced, and transition—within one lithofacies and elucidate relationships among facies features and microbial community biomass, richness, and composition. Consistent with previous observations of biogeochemical hotspots at environmental transition zones, we find elevated biomass within a biogeochemical facies that occurred at the transition between oxidized and reduced biogeochemical facies. Microbial richness—the number of microbial taxa—was lower within the reduced facies and was well-explained by a combination of pH and mineralogy. Null modeling revealed that microbial community composition was influenced by ecological selection imposed by redox state and mineralogy, possibly due to effects on nutrient availability or transport. As an illustrative case, we predict microbial biomass concentration across a three-dimensional spatial domain by coupling the spatial distribution of subsurface biogeochemical facies with biomass-facies relationships revealed here. We expect that merging such an approach with hydro-biogeochemical models will provide important constraints on simulated dynamics, thereby reducing uncertainty in model predictions.

  12. Coupling among Microbial Communities, Biogeochemistry, and Mineralogy across Biogeochemical Facies

    PubMed Central

    Stegen, James C.; Konopka, Allan; McKinley, James P.; Murray, Chris; Lin, Xueju; Miller, Micah D.; Kennedy, David W.; Miller, Erin A.; Resch, Charles T.; Fredrickson, Jim K.

    2016-01-01

    Physical properties of sediments are commonly used to define subsurface lithofacies and these same physical properties influence subsurface microbial communities. This suggests an (unexploited) opportunity to use the spatial distribution of facies to predict spatial variation in biogeochemically relevant microbial attributes. Here, we characterize three biogeochemical facies—oxidized, reduced, and transition—within one lithofacies and elucidate relationships among facies features and microbial community biomass, richness, and composition. Consistent with previous observations of biogeochemical hotspots at environmental transition zones, we find elevated biomass within a biogeochemical facies that occurred at the transition between oxidized and reduced biogeochemical facies. Microbial richness—the number of microbial taxa—was lower within the reduced facies and was well-explained by a combination of pH and mineralogy. Null modeling revealed that microbial community composition was influenced by ecological selection imposed by redox state and mineralogy, possibly due to effects on nutrient availability or transport. As an illustrative case, we predict microbial biomass concentration across a three-dimensional spatial domain by coupling the spatial distribution of subsurface biogeochemical facies with biomass-facies relationships revealed here. We expect that merging such an approach with hydro-biogeochemical models will provide important constraints on simulated dynamics, thereby reducing uncertainty in model predictions. PMID:27469056

  13. Coupling among Microbial Communities, Biogeochemistry, and Mineralogy across Biogeochemical Facies.

    PubMed

    Stegen, James C; Konopka, Allan; McKinley, James P; Murray, Chris; Lin, Xueju; Miller, Micah D; Kennedy, David W; Miller, Erin A; Resch, Charles T; Fredrickson, Jim K

    2016-07-29

    Physical properties of sediments are commonly used to define subsurface lithofacies and these same physical properties influence subsurface microbial communities. This suggests an (unexploited) opportunity to use the spatial distribution of facies to predict spatial variation in biogeochemically relevant microbial attributes. Here, we characterize three biogeochemical facies-oxidized, reduced, and transition-within one lithofacies and elucidate relationships among facies features and microbial community biomass, richness, and composition. Consistent with previous observations of biogeochemical hotspots at environmental transition zones, we find elevated biomass within a biogeochemical facies that occurred at the transition between oxidized and reduced biogeochemical facies. Microbial richness-the number of microbial taxa-was lower within the reduced facies and was well-explained by a combination of pH and mineralogy. Null modeling revealed that microbial community composition was influenced by ecological selection imposed by redox state and mineralogy, possibly due to effects on nutrient availability or transport. As an illustrative case, we predict microbial biomass concentration across a three-dimensional spatial domain by coupling the spatial distribution of subsurface biogeochemical facies with biomass-facies relationships revealed here. We expect that merging such an approach with hydro-biogeochemical models will provide important constraints on simulated dynamics, thereby reducing uncertainty in model predictions.

  14. Coupling simultaneous dissolved nitrate measurements with quantum cascade laser based nitrous oxide flux and isotopocule analysis to investigate the biogeochemical processes occurring in a denitrifying bioreactor.

    NASA Astrophysics Data System (ADS)

    Williams, D. J.; Maxwell, B.; Deshmukh, P.; Chen, H.

    2016-12-01

    Denitrifying bioreactors are used to treat nitrogen enriched water from agricultural operations. These systems may also be an important source of nitrous oxide emissions, a potent greenhouse gas. Bioreactors also provide researchers with an opportunity to investigate the biogeochemical processes occurring in soils under controlled conditions. A pilot-scale bioreactor with woodchip media was injected with KNO3 at a constant flow rate through the system. The water-filled-pore-space (WFPS) was varied in separate experiments to create differing aerobic conditions. A quantum cascade laser spectroscopy system was used to determine the flux and isotopic signature of N2O emissions from woodchip bioreactor media over time. Simultaneous nitrate concentration measurements were made using an optical method at multiple points in the bioreactor. Isotopic site-preference (SP) characterization of N2O emissions was used to estimate production sources from soil nitrification and denitrification. A dynamic gas sampling method was used to measure N2O mixing ratios, which required ambient air to equalize chamber atmospheric pressure during sampling. Precise instrument calibration using gas samples of known isotopic abundances, provided by the Swiss Federal Labs (EMPA), together with a Keeling plot method to account for variations in isotopocule composition in ambient air, produced reliable SP estimates. Initial experiments during 100% WFPS show that SP and δ15Nbulk values were varied from -6‰ to 3‰ and -23‰ to -12‰, respectively. The trend of these values indicated that the N2O source was slightly changed from partial nitrification to denitrification during the measuring period of time. The peak rate of nitrous oxide production occurred 7 hours after peak nitrate removal. These results and others to be presented show the utility of coupling real-time dissolved and gas phase measurements for studying nitrogen cycling in soils.

  15. Biogeochemical processes in model estuaries

    NASA Astrophysics Data System (ADS)

    Church, Thomas M.

    Sixty researchers met to evaluate the effects of global change on estuaries and to improve estuarine modeling at the Second International Symposium on the Biogeochemistry of Model Estuaries, held April 15-19, 1991, at Jekyll Island, Ga. The importance of successful sampling in evaluating chemical fluxes and establishing records of estuarine change was articulated, as was the need for tracer tools for improved modeling. The symposium was sponsored by the National Science Foundation, National Oceanic and Atmospheric Administration, and the Department of Energy.Participants discussed particles and sedimentology, trace elements and metals, organic chemistry, and nutrient cycling of estuarine processes. Four days of presentations were followed by a half-day of discussion on advances in these topics and the overall goal of assessing estuarine processes in global change. What follows is a synopsis of this discussion.

  16. Simulation of land-atmosphere gaseous exchange using a coupled land surface-biogeochemical model

    NASA Astrophysics Data System (ADS)

    Gu, C.; Riley, W. J.; Perez, T. J.; Pan, L.

    2009-12-01

    It is important to develop and evaluate biogeochemical models that on the one hand represent vegetation and soil dynamics and on the other hand provide energy and water fluxes in a temporal resolution suitable for biogeochemical processes. In this study, we present a consistent coupling between a common land surface model (CLM3.0) and a recently developed biogeochemical model (TOUGHREACT-N). The model TOUGHREACT-N (TR-N) is one of the few process-based models that simulate green house gases fluxes by using an implicit scheme to solve the diffusion equations governing soil heat and water fluxes. By coupling with CLM3.0, we have significantly improved TR-N by including realistic representations of surface water, energy, and momentum exchanges, through the use of improved formulations for soil evaporation, plant transpiration, vegetation growth, and plant nitrogen uptake embedded in CLM3.0. The coupled CLMTR-N model is a first step for a full coupling of land surface and biogeochemical processes. The model is evaluated with measurements of soil temperature, soil water content, and N2O and N2 gaseous emission data from fallow, corn, and forest sites in Venezuela. The results demonstrate that the CLMTR-N model simulates realistic diurnal variation of soil temperature, soil water content, and N gaseous fluxes. For example, mean differences between predicted and observed midday near-surface soil water content were 8, 11, and 4 % in July, August, and September. The sensitivity of the biogeochemical processes and resulting N emissions to variation in environmental drivers is high, which indicates the need to calculate biogeochemical processes in, at least, two hourly time steps using dynamically updated (rather than daily averaged) soil environmental conditions. The development in CLMTR-N of such a complex representation of processes will allow us to characterize relevant processes and simplifications appropriate for regional to global-scale coupled biogeochemical and

  17. Simulating temporal variations of nitrogen losses in river networks with a dynamic transport model unravels the coupled effects of hydrological and biogeochemical processes

    SciTech Connect

    Mulholland, Patrick J; Alexander, Richard; Bohlke, John; Boyer, Elizabeth; Harvey, Judson; Seitzinger, Sybil; Tobias, Craig; Tonitto, Christina; Wollheim, Wilfred

    2009-01-01

    The importance of lotic systems as sinks for nitrogen inputs is well recognized. A fraction of nitrogen in streamflow is removed to the atmosphere via denitrification with the remainder exported in streamflow as nitrogen loads. At the watershed scale, there is a keen interest in understanding the factors that control the fate of nitrogen throughout the stream channel network, with particular attention to the processes that deliver large nitrogen loads to sensitive coastal ecosystems. We use a dynamic stream transport model to assess biogeochemical (nitrate loadings, concentration, temperature) and hydrological (discharge, depth, velocity) effects on reach-scale denitrification and nitrate removal in the river networks of two watersheds having widely differing levels of nitrate enrichment but nearly identical discharges. Stream denitrification is estimated by regression as a nonlinear function of nitrate concentration, streamflow, and temperature, using more than 300 published measurements from a variety of US streams. These relations are used in the stream transport model to characterize nitrate dynamics related to denitrification at a monthly time scale in the stream reaches of the two watersheds. Results indicate that the nitrate removal efficiency of streams, as measured by the percentage of the stream nitrate flux removed via denitrification per unit length of channel, is appreciably reduced during months with high discharge and nitrate flux and increases during months of low-discharge and flux. Biogeochemical factors, including land use, nitrate inputs, and stream concentrations, are a major control on reach-scale denitrification, evidenced by the disproportionately lower nitrate removal efficiency in streams of the highly nitrate-enriched watershed as compared with that in similarly sized streams in the less nitrate-enriched watershed. Sensitivity analyses reveal that these important biogeochemical factors and physical hydrological factors contribute nearly

  18. Diel biogeochemical processes in terrestrial waters

    USGS Publications Warehouse

    Compiled and Edited by Nimick, David A.; Gammons, Christopher H.

    2011-01-01

    Many biogeochemical processes in rivers and lakes respond to the solar photocycle and produce persistent patterns of measureable phenomena that exhibit a day-night, or 24-h, cycle. Despite a large body of recent literature, the mechanisms responsible for these diel fluctuations are widely debated, with a growing consensus that combinations of physical, chemical, and biological processes are involved. These processes include streamflow variation, photosynthesis and respiration, plant assimilation, and reactions involving photochemistry, adsorption and desorption, and mineral precipitation and dissolution. Diel changes in streamflow and water properties such as temperature, pH, and dissolved oxygen concentration have been widely recognized, and recently, diel studies have focused more widely by considering other constituents such as dissolved and particulate trace metals, metalloids, rare earth elements, mercury, organic matter, dissolved inorganic carbon (DIC), and nutrients. The details of many diel processes are being studied using stable isotopes, which also can exhibit diel cycles in response to microbial metabolism, photosynthesis and respiration, or changes in phase, speciation, or redox state. In addition, secondary effects that diel cycles might have, for example, on biota or in the hyporheic zone are beginning to be considered. This special issue is composed primarily of papers presented at the topical session "Diurnal Biogeochemical Processes in Rivers, Lakes, and Shallow Groundwater" held at the annual meeting of the Geological Society of America in October 2009 in Portland, Oregon. This session was organized because many of the growing number of diel studies have addressed just a small part of the full range of diel cycling phenomena found in rivers and lakes. This limited focus is understandable because (1) fundamental aspects of many diel processes are poorly understood and require detailed study, (2) the interests and expertise of individual

  19. Toward the assimilation of biogeochemical data in the CMEMS BIOMER coupled physical-biogeochemical operational system

    NASA Astrophysics Data System (ADS)

    Lamouroux, Julien; Testut, Charles-Emmanuel; Lellouche, Jean-Michel; Perruche, Coralie; Paul, Julien

    2017-04-01

    The operational production of data-assimilated biogeochemical state of the ocean is one of the challenging core projects of the Copernicus Marine Environment Monitoring Service. In that framework - and with the April 2018 CMEMS V4 release as a target - Mercator Ocean is in charge of improving the realism of its global ¼° BIOMER coupled physical-biogeochemical (NEMO/PISCES) simulations, analyses and re-analyses, and to develop an effective capacity to routinely estimate the biogeochemical state of the ocean, through the implementation of biogeochemical data assimilation. Primary objectives are to enhance the time representation of the seasonal cycle in the real time and reanalysis systems, and to provide a better control of the production in the equatorial regions. The assimilation of BGC data will rely on a simplified version of the SEEK filter, where the error statistics do not evolve with the model dynamics. The associated forecast error covariances are based on the statistics of a collection of 3D ocean state anomalies. The anomalies are computed from a multi-year numerical experiment (free run without assimilation) with respect to a running mean in order to estimate the 7-day scale error on the ocean state at a given period of the year. These forecast error covariances rely thus on a fixed-basis seasonally variable ensemble of anomalies. This methodology, which is currently implemented in the "blue" component of the CMEMS operational forecast system, is now under adaptation to be applied to the biogeochemical part of the operational system. Regarding observations - and as a first step - the system shall rely on the CMEMS GlobColour Global Ocean surface chlorophyll concentration products, delivered in NRT. The objective of this poster is to provide a detailed overview of the implementation of the aforementioned data assimilation methodology in the CMEMS BIOMER forecasting system. Focus shall be put on (1) the assessment of the capabilities of this data

  20. Global Biology Research Program: Biogeochemical Processes in Wetlands

    NASA Technical Reports Server (NTRS)

    Bartlett, D. S. (Editor)

    1984-01-01

    The results of a workshop examining potential NASA contributions to research on wetland processes as they relate to global biogeochemical cycles are summarized. A wetlands data base utilizing remotely sensed inventories, studies of wetland/atmosphere exchange processes, and the extrapolation of local measurements to global biogeochemical cycling processes were identified as possible areas for NASA support.

  1. Processes Controlling Eutrophication-Induced Acidification in the Northern Gulf of Mexico: Current State and Projected Changes from a Coupled Physical-Biogeochemical Model

    NASA Astrophysics Data System (ADS)

    Laurent, A.; Fennel, K.; Barbero, L.; Cai, W. J.; Huang, W. J.; Ko, D. S.; Lehrter, J. C.; Wanninkhof, R. H.

    2016-02-01

    The northern Gulf of Mexico receives excessive nutrient inputs from the Mississippi-Atchafalaya River Basin that promote high phytoplankton production and high respiration rates associated with algal decomposition. In combination with vertical stratification, respiration results in seasonal hypoxia, high dissolved inorganic carbon concentrations and low pH in bottom waters on the Louisiana Shelf. In the future, higher atmospheric CO2 and hydrological and land-use changes in the Mississippi-Atchafalaya River Basin may further compound eutrophication-induced acidification on the Louisiana Shelf. Using a high-resolution, regional circulation-biogeochemical model that simulates the nitrogen cycle, oxygen dynamics and inorganic carbon dynamics in the Northern Gulf of Mexico, we investigate present-day processes controlling acidification on the Louisiana Shelf and project changes for the coming century. Present-day model results show an extended area of acidified bottom waters during summer on the Louisiana Shelf that is primarily due to benthic metabolism. We then discuss projected changes in the size, location and determining factors of acidified bottom waters resulting from climate change.

  2. Biogeochemical redox processes and their impact on contaminant dynamics.

    PubMed

    Borch, Thomas; Kretzschmar, Ruben; Kappler, Andreas; Cappellen, Philippe Van; Ginder-Vogel, Matthew; Voegelin, Andreas; Campbell, Kate

    2010-01-01

    Life and element cycling on Earth is directly related to electron transfer (or redox) reactions. An understanding of biogeochemical redox processes is crucial for predicting and protecting environmental health and can provide new opportunities for engineered remediation strategies. Energy can be released and stored by means of redox reactions via the oxidation of labile organic carbon or inorganic compounds (electron donors) by microorganisms coupled to the reduction of electron acceptors including humic substances, iron-bearing minerals, transition metals, metalloids, and actinides. Environmental redox processes play key roles in the formation and dissolution of mineral phases. Redox cycling of naturally occurring trace elements and their host minerals often controls the release or sequestration of inorganic contaminants. Redox processes control the chemical speciation, bioavailability, toxicity, and mobility of many major and trace elements including Fe, Mn, C, P, N, S, Cr, Cu, Co, As, Sb, Se, Hg, Tc, and U. Redox-active humic substances and mineral surfaces can catalyze the redox transformation and degradation of organic contaminants. In this review article, we highlight recent advances in our understanding of biogeochemical redox processes and their impact on contaminant fate and transport, including future research needs.

  3. Biogeochemical redox processes and their impact on contaminant dynamics

    USGS Publications Warehouse

    Borch, Thomas; Kretzschmar, Ruben; Kappler, Andreas; Van Cappellen, Philippe; Ginder-Vogel, Matthew; Campbell, Kate M.

    2010-01-01

    Life and element cycling on Earth is directly related to electron transfer (or redox) reactions. An understanding of biogeochemical redox processes is crucial for predicting and protecting environmental health and can provide new opportunities for engineered remediation strategies. Energy can be released and stored by means of redox reactions via the oxidation of labile organic carbon or inorganic compounds (electron donors) by microorganisms coupled to the reduction of electron acceptors including humic substances, iron-bearing minerals, transition metals, metalloids, and actinides. Environmental redox processes play key roles in the formation and dissolution of mineral phases. Redox cycling of naturally occurring trace elements and their host minerals often controls the release or sequestration of inorganic contaminants. Redox processes control the chemical speciation, bioavailability, toxicity, and mobility of many major and trace elements including Fe, Mn, C, P, N, S, Cr, Cu, Co, As, Sb, Se, Hg, Tc, and U. Redox-active humic substances and mineral surfaces can catalyze the redox transformation and degradation of organic contaminants. In this review article, we highlight recent advances in our understanding of biogeochemical redox processes and their impact on contaminant fate and transport, including future research needs.

  4. Coupling a terrestrial biogeochemical model to the common land model

    SciTech Connect

    Shi, Xiaoying; Mao, Jiafu; Wang, Yingping; Dai, Yongjiu; Tang, Xuli

    2011-01-01

    A terrestrial biogeochemical model (CASACNP) was coupled to a land surface model (the Common Land Model, CoLM) to simulate the dynamics of carbon substrate in soil and its limitation on soil respiration. The combined model, CoLM-CASACNP, was able to predict long-term carbon sources and sinks that CoLM alone could not. The coupled model was tested using measurements of belowground respiration and surface fluxes from two forest ecosystems. The combined model simulated reasonably well the diurnal and seasonal variations of net ecosystem carbon exchange, as well as seasonal variation in the soil respiration rate of both the forest sites chosen for this study. However, the agreement between model simulations and actual measurements was poorer under dry conditions. The model should be tested against more measurements before being applied globally to investigate the feedbacks between the carbon cycle and climate change.

  5. Monsoon-Driven Biogeochemical Processes in the Arabian Sea

    DTIC Science & Technology

    2005-08-03

    ton-detritus ( NPZD ) ecosystem formulation, Ryabchenko et al. (1998) utilized a more complex ecosystem model that specifically included the microbial...of these observations and the first large- scale physical-biogeochemical modeling attempts, a pre-JGOFS understanding of the Arabian Sea emerged...viewing Wide Field-of-View Sensor ocean color measurements. Analyses of these new data and coupled physical-biogeochemical models have already

  6. Climate change effects on watershed hydrological and biogeochemical processes

    EPA Science Inventory

    Projected changes in climate are widely expected to alter watershed processes. However, the extent of these changes is difficult to predict because complex interactions among affected hydrological and biogeochemical processes will likely play out over many decades and spatial sc...

  7. Climate change effects on watershed hydrological and biogeochemical processes

    EPA Science Inventory

    Projected changes in climate are widely expected to alter watershed processes. However, the extent of these changes is difficult to predict because complex interactions among affected hydrological and biogeochemical processes will likely play out over many decades and spatial sc...

  8. Temporal dynamics of biogeochemical processes at the Norman Landfill site

    USGS Publications Warehouse

    Arora, Bhavna; Mohanty, Binayak P.; McGuire, Jennifer T.; Cozzarelli, Isabelle M.

    2013-01-01

    The temporal variability observed in redox sensitive species in groundwater can be attributed to coupled hydrological, geochemical, and microbial processes. These controlling processes are typically nonstationary, and distributed across various time scales. Therefore, the purpose of this study is to investigate biogeochemical data sets from a municipal landfill site to identify the dominant modes of variation and determine the physical controls that become significant at different time scales. Data on hydraulic head, specific conductance, δ2H, chloride, sulfate, nitrate, and nonvolatile dissolved organic carbon were collected between 1998 and 2000 at three wells at the Norman Landfill site in Norman, OK. Wavelet analysis on this geochemical data set indicates that variations in concentrations of reactive and conservative solutes are strongly coupled to hydrologic variability (water table elevation and precipitation) at 8 month scales, and to individual eco-hydrogeologic framework (such as seasonality of vegetation, surface-groundwater dynamics) at 16 month scales. Apart from hydrologic variations, temporal variability in sulfate concentrations can be associated with different sources (FeS cycling, recharge events) and sinks (uptake by vegetation) depending on the well location and proximity to the leachate plume. Results suggest that nitrate concentrations show multiscale behavior across temporal scales for different well locations, and dominant variability in dissolved organic carbon for a closed municipal landfill can be larger than 2 years due to its decomposition and changing content. A conceptual framework that explains the variability in chemical concentrations at different time scales as a function of hydrologic processes, site-specific interactions, and/or coupled biogeochemical effects is also presented.

  9. Temporal dynamics of biogeochemical processes at the Norman Landfill site

    NASA Astrophysics Data System (ADS)

    Arora, Bhavna; Mohanty, Binayak P.; McGuire, Jennifer T.; Cozzarelli, Isabelle M.

    2013-10-01

    The temporal variability observed in redox sensitive species in groundwater can be attributed to coupled hydrological, geochemical, and microbial processes. These controlling processes are typically nonstationary, and distributed across various time scales. Therefore, the purpose of this study is to investigate biogeochemical data sets from a municipal landfill site to identify the dominant modes of variation and determine the physical controls that become significant at different time scales. Data on hydraulic head, specific conductance, δ2H, chloride, sulfate, nitrate, and nonvolatile dissolved organic carbon were collected between 1998 and 2000 at three wells at the Norman Landfill site in Norman, OK. Wavelet analysis on this geochemical data set indicates that variations in concentrations of reactive and conservative solutes are strongly coupled to hydrologic variability (water table elevation and precipitation) at 8 month scales, and to individual eco-hydrogeologic framework (such as seasonality of vegetation, surface-groundwater dynamics) at 16 month scales. Apart from hydrologic variations, temporal variability in sulfate concentrations can be associated with different sources (FeS cycling, recharge events) and sinks (uptake by vegetation) depending on the well location and proximity to the leachate plume. Results suggest that nitrate concentrations show multiscale behavior across temporal scales for different well locations, and dominant variability in dissolved organic carbon for a closed municipal landfill can be larger than 2 years due to its decomposition and changing content. A conceptual framework that explains the variability in chemical concentrations at different time scales as a function of hydrologic processes, site-specific interactions, and/or coupled biogeochemical effects is also presented.

  10. Biogeochemical Processes Regulating the Mobility of Uranium in Sediments

    SciTech Connect

    Belli, Keaton M.; Taillefert, Martial

    2016-07-01

    This book chapters reviews the latest knowledge on the biogeochemical processes regulating the mobility of uranium in sediments. It contains both data from the literature and new data from the authors.

  11. Benthic-Pelagic Coupling in Biogeochemical and Climate Models: Existing Approaches, Recent developments and Roadblocks

    NASA Astrophysics Data System (ADS)

    Arndt, Sandra

    2016-04-01

    Marine sediments are key components in the Earth System. They host the largest carbon reservoir on Earth, provide the only long term sink for atmospheric CO2, recycle nutrients and represent the most important climate archive. Biogeochemical processes in marine sediments are thus essential for our understanding of the global biogeochemical cycles and climate. They are first and foremost, donor controlled and, thus, driven by the rain of particulate material from the euphotic zone and influenced by the overlying bottom water. Geochemical species may undergo several recycling loops (e.g. authigenic mineral precipitation/dissolution) before they are either buried or diffuse back to the water column. The tightly coupled and complex pelagic and benthic process interplay thus delays recycling flux, significantly modifies the depositional signal and controls the long-term removal of carbon from the ocean-atmosphere system. Despite the importance of this mutual interaction, coupled regional/global biogeochemical models and (paleo)climate models, which are designed to assess and quantify the transformations and fluxes of carbon and nutrients and evaluate their response to past and future perturbations of the climate system either completely neglect marine sediments or incorporate a highly simplified representation of benthic processes. On the other end of the spectrum, coupled, multi-component state-of-the-art early diagenetic models have been successfully developed and applied over the past decades to reproduce observations and quantify sediment-water exchange fluxes, but cannot easily be coupled to pelagic models. The primary constraint here is the high computation cost of simulating all of the essential redox and equilibrium reactions within marine sediments that control carbon burial and benthic recycling fluxes: a barrier that is easily exacerbated if a variety of benthic environments are to be spatially resolved. This presentation provides an integrative overview of

  12. Quantifying Hydro-biogeochemical Model Sensitivity in Assessment of Climate Change Effect on Hyporheic Zone Processes

    NASA Astrophysics Data System (ADS)

    Song, X.; Chen, X.; Dai, H.; Hammond, G. E.; Song, H. S.; Stegen, J.

    2016-12-01

    The hyporheic zone is an active region for biogeochemical processes such as carbon and nitrogen cycling, where the groundwater and surface water mix and interact with each other with distinct biogeochemical and thermal properties. The biogeochemical dynamics within the hyporheic zone are driven by both river water and groundwater hydraulic dynamics, which are directly affected by climate change scenarios. Besides that, the hydraulic and thermal properties of local sediments and microbial and chemical processes also play important roles in biogeochemical dynamics. Thus for a comprehensive understanding of the biogeochemical processes in the hyporheic zone, a coupled thermo-hydro-biogeochemical model is needed. As multiple uncertainty sources are involved in the integrated model, it is important to identify its key modules/parameters through sensitivity analysis. In this study, we develop a 2D cross-section model in the hyporheic zone at the DOE Hanford site adjacent to Columbia River and use this model to quantify module and parametric sensitivity on assessment of climate change. To achieve this purpose, We 1) develop a facies-based groundwater flow and heat transfer model that incorporates facies geometry and heterogeneity characterized from a field data set, 2) derive multiple reaction networks/pathways from batch experiments with in-situ samples and integrate temperate dependent reactive transport modules to the flow model, 3) assign multiple climate change scenarios to the coupled model by analyzing historical river stage data, 4) apply a variance-based global sensitivity analysis to quantify scenario/module/parameter uncertainty in hierarchy level. The objectives of the research include: 1) identifing the key control factors of the coupled thermo-hydro-biogeochemical model in the assessment of climate change, and 2) quantify the carbon consumption in different climate change scenarios in the hyporheic zone.

  13. A General Simulator for Reaction-Based Biogeochemical Processes

    SciTech Connect

    Fang, Yilin; Yabusaki, Steven B.; Yeh, George

    2006-02-01

    As more complex biogeochemical situations are being investigated (e.g., evolving reactivity, passivation of reactive surfaces, dissolution of sorbates), there is a growing need for biogeochemical simulators to flexibly and facilely address new reaction forms and rate laws. This paper presents an approach that accommodates this need to efficiently simulate general biogeochemical processes, while insulating the user from additional code development. The approach allows for the automatic extraction of fundamental reaction stoichiometry and thermodynamics from a standard chemistry database, and the symbolic entry of arbitrarily complex user-specified reaction forms, rate laws, and equilibria. The user-specified equilibrium and kinetic reactions (i.e., reactions not defined in the format of the standardized database) are interpreted by the Maple symbolic mathematical software package. FORTRAN 90 code is then generated by Maple for (1) the analytical Jacobian matrix (if preferred over the numerical Jacobian matrix) used in the Newton-Raphson solution procedure, and (2) the residual functions for user-specified equilibrium expressions and rate laws. Matrix diagonalization eliminates the need to conceptualize the system of reactions as a tableau, while identifying a minimum rank set of basis species with enhanced numerical convergence properties. The newly generated code, which is designed to operate in the BIOGEOCHEM biogeochemical simulator, is then compiled and linked into the BIOGEOCHEM executable. With these features, users can avoid recoding the simulator to accept new equilibrium expressions or kinetic rate laws, while still taking full advantage of the stoichiometry and thermodynamics provided by an existing chemical database. Thus, the approach introduces efficiencies in the specification of biogeochemical reaction networks and eliminates opportunities for mistakes in preparing input files and coding errors. Test problems are used to demonstrate the features of

  14. Dynamic interactions of ecohydrological and biogeochemical processes in water-stressed environments

    NASA Astrophysics Data System (ADS)

    Wang, L.; Manzoni, S.; Ravi, S.; Riveros-Iregui, D. A.; Caylor, K. K.

    2015-12-01

    Water is the essential reactant, catalyst, or medium for many biogeochemical reactions and flows. The coupling between hydrological and biogeochemical processes is particularly evident in drylands, but also in areas with strong seasonal precipitation patterns or in mesic systems during droughts. Moreover, this coupling is apparent at all levels in the ecosystems - from soil microbial cells to whole plants to landscapes. A holistic approach is essential to fully understand function and processes in water-limited ecosystems and to predict their responses to environmental change. We examine some of the mechanisms responsible for microbial and vegetation responses to moisture inputs in water-limited ecosystems through a synthesis of existing literature and we also summarize the modeling advances in addressing these interactions. This paper focuses on three opportunities to advance coupled hydrological and biogeochemical research: (1) improved quantitative understanding of mechanisms linking hydrological and biogeochemical variations in drylands, (2) experimental and theoretical approaches that describe linkages between hydrology and biogeochemistry (particularly across scales), and (3) the use of these tools and insights to address critical dryland issues of societal relevance.

  15. Final Project Report - Coupled Biogeochemical Process Evaluation for Conceptualizing Trichloriethylene Co-Metabolism: Co-Metabolic Enzyme Activity Probes and Modeling Co-Metabolism and Attenuation

    SciTech Connect

    Starr, Robert C; Orr, Brennon R; Lee, M Hope; Delwiche, Mark

    2010-02-26

    Trichloroethene (TCE) (also known as trichloroethylene) is a common contaminant in groundwater. TCE is regulated in drinking water at a concentration of 5 µg/L, and a small mass of TCE has the potential to contaminant large volumes of water. The physical and chemical characteristics of TCE allow it to migrate quickly in most subsurface environments, and thus large plumes of contaminated groundwater can form from a single release. The migration and persistence of TCE in groundwater can be limited by biodegradation. TCE can be biodegraded via different processes under either anaerobic or aerobic conditions. Anaerobic biodegradation is widely recognized, but aerobic degradation is less well recognized. Under aerobic conditions, TCE can be oxidized to non hazardous conditions via cometabolic pathways. This study applied enzyme activity probes to demonstrate that cometabolic degradation of TCE occurs in aerobic groundwater at several locations, used laboratory microcosm studies to determine aerobic degradation rates, and extrapolated lab-measured rates to in situ rates based on concentrations of microorganisms with active enzymes involved in cometabolic TCE degradation. Microcosms were constructed using basalt chips that were inoculated with microorganisms to groundwater at the Idaho National Laboratory Test Area North TCE plume by filling a set of Flow-Through In Situ Reactors (FTISRs) with chips and placing the FTISRs into the open interval of a well for several months. A parametric study was performed to evaluate predicted degradation rates and concentration trends using a competitive inhibition kinetic model, which accounts for competition for enzyme active sites by both a growth substrate and a cometabolic substrate. The competitive inhibition kinetic expression was programmed for use in the RT3D reactive transport package. Simulations of TCE plume evolution using both competitive inhibition kinetics and first order decay were performed.

  16. A 3-D variational assimilation scheme in coupled transport-biogeochemical models: Forecast of Mediterranean biogeochemical properties.

    PubMed

    Teruzzi, Anna; Dobricic, Srdjan; Solidoro, Cosimo; Cossarini, Gianpiero

    2014-01-01

    [1] Increasing attention is dedicated to the implementation of suitable marine forecast systems for the estimate of the state of the ocean. Within the framework of the European MyOcean infrastructure, the pre-existing short-term Mediterranean Sea biogeochemistry operational forecast system has been upgraded by assimilating remotely sensed ocean color data in the coupled transport-biogeochemical model OPATM-BFM using a 3-D variational data assimilation (3D-VAR) procedure. In the present work, the 3D-VAR scheme is used to correct the four phytoplankton functional groups included in the OPATM-BFM in the period July 2007 to September 2008. The 3D-VAR scheme decomposes the error covariance matrix using a sequence of different operators that account separately for vertical covariance, horizontal covariance, and covariance among biogeochemical variables. The assimilation solution is found in a reduced dimensional space, and the innovation for the biogeochemical variables is obtained by the sequential application of the covariance operators. Results show a general improvement in the forecast skill, providing a correction of the basin-scale bias of surface chlorophyll concentration and of the local-scale spatial and temporal dynamics of typical bloom events. Further, analysis of the assimilation skill provides insights into the functioning of the model. The computational costs of the assimilation scheme adopted are low compared to other assimilation techniques, and its modular structure facilitates further developments. The 3D-VAR scheme results especially suitable for implementation within a biogeochemistry operational forecast system.

  17. Modeling biogeochemical cycles in Chesapeake Bay with a coupled physical biological model

    NASA Astrophysics Data System (ADS)

    Xu, Jiangtao; Hood, Raleigh R.

    2006-08-01

    In this paper we describe the development and validation of a relatively simple biogeochemical model of Chesapeake Bay. This model consists of a 3-dimensional, prognostic hydrodynamic model that is coupled to an NPZD-type open ocean ecosystem model, which has been modified by adding additional compartments and parameterizations of biogeochemical processes that are important in estuarine systems. These modifications include an empirical optical model for predicting the diffuse attenuation coefficient Kd, compartments for representing oxygen and suspended sediment concentrations, and parameterizations of phosphorus limitation, denitrification, and seasonal changes in ecosystem structure and temperature effects. To show the overall performance of the coupled physical-biological model, the modeled dissolved inorganic nitrogen, phytoplankton, dissolved oxygen, total suspended solids and light attenuation coefficient in 1995 (a dry year) and 1996 (a very wet year) are examined and compared with observations obtained from the Chesapeake Bay Program. We demonstrate that this relatively simple model is capable of producing the general distribution of each field (both the mean and variability) in the main stem of the Bay. And the model is robust enough to generate reasonable results under both wet and dry conditions. Some significant discrepancies are also observed, such as overestimation of phytoplankton concentrations in shoal regions and overestimation of oxygen concentrations in deep channels, which reveal some deficiencies in the model formulation. Some potential improvements and remedies are suggested. Sensitivity studies on selected parameters are also reported.

  18. Polychlorinated Biphenyls as Probes of Biogeochemical Processes in Rivers

    USGS Publications Warehouse

    Fitzgerald, S.A.; Steuer, J.J.

    1997-01-01

    A field study was conducted to investigate the use of PCB (polychlorinated biphenyl) congener and homolog assemblages as tracers of biogeochemical processes in the Milwaukee and Manitowoc Rivers in southeastern Wisconsin from 1993 to 1995. PCB congeners in the dissolved and suspended particle phases, along with various algal indicators (algal carbon and pigments), were quantitated in the water seasonally. In addition, PCB congener assemblages were determined seasonally in surficial bed sediments. Biogeochemical processes investigated included: determination of the source of suspended particles and bottom sediments by comparison with known Aroclor mixtures, water-solid partitioning, and algal uptake of PCBs. Seasonal differences among the PCB assemblages were observed mainly in the dissolved phase, somewhat less in the suspended particulate phase, and not at all in the bed sediments.

  19. Development of Advanced Eco-hydrologic and Biogeochemical Coupling Model to Re-evaluate Greenhouse Gas Budget of Biosphere

    NASA Astrophysics Data System (ADS)

    Nakayama, T.; Maksyutov, S. S.

    2015-12-01

    Inland waters including rivers, lakes, and groundwater are suggested to act as a transport pathway for water and dissolved substances, and play some role in continental biogeochemical cycling (Cole et al., 2007; Battin et al., 2009). The authors have developed process-based National Integrated Catchment-based Eco-hydrology (NICE) model (2014, 2015, etc.), which includes feedback between hydrologic-geomorphic-ecological processes. In this study, NICE was further developed to couple with various biogeochemical cycle models in biosphere, those for water quality in aquatic ecosystems, and those for carbon weathering. The NICE-biogeochemical coupling model incorporates connectivity of the biogeochemical cycle accompanied by hydrologic cycle between surface water and groundwater, hillslopes and river networks, and other intermediate regions. The model also includes reaction between inorganic and organic carbons, and its relation to nitrogen and phosphorus in terrestrial-aquatic continuum. The coupled model showed to improve the accuracy of inundation stress mechanism such as photosynthesis and primary production, which attributes to improvement of CH4 flux in wetland sensitive to fluctuations of shallow groundwater. The model also simulated CO2 evasion from inland water in global scale, and was relatively in good agreement in empirical relation (Aufdenkampe et al., 2011) which has relatively an uncertainty in the calculated flux because of pCO2 data missing in some region and effect of small tributaries, etc. Further, the model evaluated how the expected CO2 evasion might change as inland waters become polluted with nutrients and eutrophication increases from agriculture and urban areas (Pacheco et al., 2013). This advanced eco-hydrologic and biogeochemical coupling model would play important role to re-evaluate greenhouse gas budget of the biosphere, and to bridge gap between top-down and bottom-up approaches (Battin et al., 2009; Regnier et al., 2013).

  20. Climate-Biogeochemical Coupling in an Antarctic Coastal Ecosystem: Chlorophyll, Nutrient, and Bacterial Production

    NASA Astrophysics Data System (ADS)

    Kim, H.; Doney, S. C.; Iannuzzi, R. A.; Meredith, M. P.; Martinson, D. G.; Ducklow, H. W.

    2016-02-01

    The regional climate and oceanic variability along the West Antarctic Peninsula (WAP) are affected by teleconnections of the El Niño-Southern Oscillation (ENSO) and the Southern Annular Mode (SAM), which in turn cause high seasonal and interannual variability of biogeochemical processes, with sea ice as a mediating physical forcing. Here we investigate a link between climate forcing and biogeochemistry using interdecadal (1992-2014) observations during austral spring-summer (October-March) at Palmer Station (64.8°S, 64.1°W). By employing empirical orthogonal function (EOF) and general linear models (GLMs) via stepwise regression, we examined 1) seasonal and interannual variability of phytoplankton bloom (chlorophyll or Chl), bacterial production (BP), and nutrient (N, P, and Si) drawdown and 2) a scenario of climate and physical forcing mechanisms shaping the variability. Results showed that season-long growth of phytoplankton causes 30% of N, P variability. This variability was predicted by increased water column stability as result of both spring sea ice melt under winter El Niño/-SAM and increased wind forcing due to a +SAM phase in the spring. In contrast, early spring diatom blooms, which cause 20% of Si variability, were predicted by early spring retreat of sea ice. High BP (3H-leucine incorporation) years also appeared under an increased water column stability setting and co-occured with positive Chl anomaly years, demonstrating a close phytoplankton-bacterial coupling, presumably due to consumption of phytoplankton-derived organic matter. Future works focus on quantifying impacts of pure physical processes (e.g. sea ice, meteoric melt fractions, UCDW intrusion) on these biogeochemical parameters using optimal multiparameter (OMP) analysis with salinity and δ18O endmembers. By demonstrating controls of large-scale climate forcing on key biological variables, our findings may provide a better understanding for predicting ecological and biogeochemical

  1. Hyporheic zone as a bioreactor: sediment heterogeneity influencing biogeochemical processes

    NASA Astrophysics Data System (ADS)

    Perujo, Nuria; Romani, Anna M.; Sanchez-Vila, Xavier

    2017-04-01

    Mediterranean fluvial systems are characterized by frequent periods of low flow or even drought. During low flow periods, water from wastewater treatment plants (WWTPs) is proportionally large in fluvial systems. River water might be vertically transported through the hyporheic zone, and then porous medium acts as a complementary treatment system since, as water infiltrates, a suite of biogeochemical processes occurs. Subsurface sediment heterogeneity plays an important role since it influences the interstitial fluxes of the medium and drives biomass growing, determining biogeochemical reactions. In this study, WWTP water was continuously infiltrated for 3 months through two porous medium tanks: one consisting of 40 cm of fine sediment (homogeneous); and another comprised of two layers of different grain size sediments (heterogeneous), 20 cm of coarse sediment in the upper part and 20 cm of fine one in the bottom. Several hydrological, physicochemical and biological parameters were measured periodically (weekly at the start of the experiment and biweekly at the end). Analysed parameters include dissolved nitrogen, phosphorus, organic carbon, and oxygen all measured at the surface, and at 5, 20 and 40 cm depth. Variations in hydraulic conductivity with time were evaluated. Sediment samples were also analysed at three depths (surface, 20 and 40 cm) to determine bacterial density, chlorophyll content, extracellular polymeric substances, and biofilm function (extracellular enzyme activities and carbon substrate utilization profiles). Preliminary results suggest hydraulic conductivity to be the main driver of the differences in the biogeochemical processes occurring in the subsurface. At the heterogeneous tank, a low nutrient reduction throughout the whole medium is measured. In this medium, high hydraulic conductivity allows for a large amount of infiltrating water, but with a small residence time. Since some biological processes are largely time-dependent, small water

  2. Stochastic estimation of biogeochemical parameters from Globcolour ocean colour satellite data in a North Atlantic 3D ocean coupled physical-biogeochemical model

    NASA Astrophysics Data System (ADS)

    Doron, Maéva; Brasseur, Pierre; Brankart, Jean-Michel; Losa, Svetlana N.; Melet, Angélique

    2013-05-01

    Biogeochemical parameters remain a major source of uncertainty in coupled physical-biogeochemical models of the ocean. In a previous study (Doron et al., 2011), a stochastic estimation method was developed to estimate a subset of biogeochemical model parameters from surface phytoplankton observations. The concept was tested in the context of idealised twin experiments performed with a 1/4° resolution model of the North Atlantic ocean. The method was based on ensemble simulations describing the model response to parameter uncertainty. The statistical estimation process relies on nonlinear transformations of the estimated space to cope with the non-Gaussian behaviour of the resulting joint probability distribution of the model state variables and parameters. In the present study, the same method is applied to real ocean colour observations, as delivered by the sensors SeaWiFS, MERIS and MODIS embarked on the satellites OrbView-2, Envisat and Aqua respectively. The main outcome of the present experiments is a set of regionalised biogeochemical parameters. The benefit is quantitatively assessed with an objective norm of the misfits, which automatically adapts to the different ecological regions. The chlorophyll concentration simulated by the model with this set of optimally derived parameters is closer to the observations than the reference simulation using uniform values of the parameters. In addition, the interannual and seasonal robustness of the estimated parameters is tested by repeating the same analysis using ocean colour observations from several months and several years. The results show the overall consistency of the ensemble of estimated parameters, which are also compared to the results of an independent study.

  3. A 3-D variational assimilation scheme in coupled transport-biogeochemical models: Forecast of Mediterranean biogeochemical properties

    PubMed Central

    Teruzzi, Anna; Dobricic, Srdjan; Solidoro, Cosimo; Cossarini, Gianpiero

    2014-01-01

    [1] Increasing attention is dedicated to the implementation of suitable marine forecast systems for the estimate of the state of the ocean. Within the framework of the European MyOcean infrastructure, the pre-existing short-term Mediterranean Sea biogeochemistry operational forecast system has been upgraded by assimilating remotely sensed ocean color data in the coupled transport-biogeochemical model OPATM-BFM using a 3-D variational data assimilation (3D-VAR) procedure. In the present work, the 3D-VAR scheme is used to correct the four phytoplankton functional groups included in the OPATM-BFM in the period July 2007 to September 2008. The 3D-VAR scheme decomposes the error covariance matrix using a sequence of different operators that account separately for vertical covariance, horizontal covariance, and covariance among biogeochemical variables. The assimilation solution is found in a reduced dimensional space, and the innovation for the biogeochemical variables is obtained by the sequential application of the covariance operators. Results show a general improvement in the forecast skill, providing a correction of the basin-scale bias of surface chlorophyll concentration and of the local-scale spatial and temporal dynamics of typical bloom events. Further, analysis of the assimilation skill provides insights into the functioning of the model. The computational costs of the assimilation scheme adopted are low compared to other assimilation techniques, and its modular structure facilitates further developments. The 3D-VAR scheme results especially suitable for implementation within a biogeochemistry operational forecast system. PMID:26213670

  4. Empirical approaches to more accurately predict benthic-pelagic coupling in biogeochemical ocean models

    NASA Astrophysics Data System (ADS)

    Dale, Andy; Stolpovsky, Konstantin; Wallmann, Klaus

    2016-04-01

    The recycling and burial of biogenic material in the sea floor plays a key role in the regulation of ocean chemistry. Proper consideration of these processes in ocean biogeochemical models is becoming increasingly recognized as an important step in model validation and prediction. However, the rate of organic matter remineralization in sediments and the benthic flux of redox-sensitive elements are difficult to predict a priori. In this communication, examples of empirical benthic flux models that can be coupled to earth system models to predict sediment-water exchange in the open ocean are presented. Large uncertainties hindering further progress in this field include knowledge of the reactivity of organic carbon reaching the sediment, the importance of episodic variability in bottom water chemistry and particle rain rates (for both the deep-sea and margins) and the role of benthic fauna. How do we meet the challenge?

  5. Modelling of transport and biogeochemical processes in pollution plumes: literature review and model development

    NASA Astrophysics Data System (ADS)

    Brun, Adam; Engesgaard, Peter

    2002-01-01

    A literature survey shows how biogeochemical (coupled organic and inorganic reaction processes) transport models are based on considering the complete biodegradation process as either a single- or as a two-step process. It is demonstrated that some two-step process models rely on the Partial Equilibrium Approach (PEA). The PEA assumes the organic degradation step, and not the electron acceptor consumption step, is rate limiting. This distinction is not possible in one-step process models, where consumption of both the electron donor and acceptor are treated kinetically. A three-dimensional, two-step PEA model is developed. The model allows for Monod kinetics and biomass growth, features usually included only in one-step process models. The biogeochemical part of the model is tested for a batch system with degradation of organic matter under the consumption of a sequence of electron acceptors. A second paper [J. Hydrol. 256 (2002) 230-249], reports the application of the model to a field study of biogeochemical transport processes in a landfill plume in Denmark (Vejen).

  6. Development of Advanced Eco-hydrologic and Biogeochemical Coupling Model to Constrain Missing Role of Inland Waters on Boundless Biogeochemical Cycle

    NASA Astrophysics Data System (ADS)

    Nakayama, T.; Maksyutov, S. S.

    2016-12-01

    Inland waters including rivers, lakes, and groundwater are suggested to act as a transport pathway for water and dissolved substances, and play some role in continental biogeochemical cycling (Cole et al., 2007; Battin et al., 2009). The authors have developed process-based National Integrated Catchment-based Eco-hydrology (NICE) model (Nakayama, 2014, 2015, etc.), which includes feedback between hydrologic-geomorphic-ecological processes. In this study, NICE was further developed to couple with various biogeochemical cycle models in biosphere, those for water quality in aquatic ecosystems, and those for carbon weathering, etc. (NICE-BGC) (Nakayama, accepted). The new model incorporates connectivity of the biogeochemical cycle accompanied by hydrologic cycle between surface water and groundwater, hillslopes and river networks, and other intermediate regions. The model also includes reaction between inorganic and organic carbons, and its relation to nitrogen and phosphorus in terrestrial-aquatic continuum. The model results of CO2 evasion to the atmosphere, sediment storage, and carbon transport to the ocean (DOC, POC, and DIC flux) were reasonably in good agreement with previous compiled data. The model also showed carbon budget in major river basins and in each continent in global scale. In order to decrease uncertainty about carbon cycle, it became clear the previous empirical estimation by compiled data should be extended to this process-oriented model and higher resolution data to further clarify mechanistic interplay between inorganic and organic carbon and its relationship to nitrogen and phosphorus in terrestrial-aquatic linkages. NICE-BGC would play important role to re-evaluate greenhouse gas budget of the biosphere, and to bridge gap between top-down and bottom-up approaches (Battin et al., 2009; Regnier et al., 2013).

  7. Marine biogeochemical responses to the North Atlantic Oscillation in a coupled climate model

    NASA Astrophysics Data System (ADS)

    Patara, Lavinia; Visbeck, Martin; Masina, Simona; Krahmann, Gerd; Vichi, Marcello

    2011-07-01

    In this study a coupled ocean-atmosphere model containing interactive marine biogeochemistry is used to analyze interannual, lagged, and decadal marine biogeochemical responses to the North Atlantic Oscillation (NAO), the dominant mode of North Atlantic atmospheric variability. The coupled model adequately reproduces present-day climatologies and NAO atmospheric variability. It is shown that marine biogeochemical responses to the NAO are governed by different mechanisms according to the time scale considered. On interannual time scales, local changes in vertical mixing, caused by modifications in air-sea heat, freshwater, and momentum fluxes, are most relevant in influencing phytoplankton growth through light and nutrient limitation mechanisms. At subpolar latitudes, deeper mixing occurring during positive NAO winters causes a slight decrease in late winter chlorophyll concentration due to light limitation and a 10%-20% increase in spring chlorophyll concentration due to higher nutrient availability. The lagged response of physical and biogeochemical properties to a high NAO winter shows some memory in the following 2 years. In particular, subsurface nutrient anomalies generated by local changes in mixing near the American coast are advected along the North Atlantic Current, where they are suggested to affect downstream chlorophyll concentration with 1 year lag. On decadal time scales, local and remote mechanisms act contemporaneously in shaping the decadal biogeochemical response to the NAO. The slow circulation adjustment, in response to NAO wind stress curl anomalies, causes a basin redistribution of heat, freshwater, and biogeochemical properties which, in turn, modifies the spatial structure of the subpolar chlorophyll bloom.

  8. Numerical modeling of watershed-scale radiocesium transport coupled with biogeochemical cycling in forests

    NASA Astrophysics Data System (ADS)

    Mori, K.; Tada, K.; Tawara, Y.; Tosaka, H.; Ohno, K.; Asami, M.; Kosaka, K.

    2015-12-01

    Since the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident, intensive monitoring and modeling works on radionuclide transfer in environment have been carried out. Although Cesium (Cs) concentration has been attenuating due to both physical and environmental half-life (i.e., wash-off by water and sediment), the attenuation rate depends clearly on the type of land use and land cover. In the Fukushima case, studying the migration in forest land use is important for predicting the long-term behavior of Cs because most of the contaminated region is covered by forests. Atmospheric fallout is characterized by complicated behavior in biogeochemical cycle in forests which can be described by biotic/abiotic interactions between many components. In developing conceptual and mathematical model on Cs transfer in forest ecosystem, defining the dominant components and their interactions are crucial issues (BIOMASS, 1997-2001). However, the modeling of fate and transport in geosphere after Cs exports from the forest ecosystem is often ignored. An integrated watershed modeling for simulating spatiotemporal redistribution of Cs that includes the entire region from source to mouth and surface to subsurface, has been recently developed. Since the deposited Cs can migrate due to water and sediment movement, the different species (i.e., dissolved and suspended) and their interactions are key issues in the modeling. However, the initial inventory as source-term was simplified to be homogeneous and time-independent, and biogeochemical cycle in forests was not explicitly considered. Consequently, it was difficult to evaluate the regionally-inherent characteristics which differ according to land uses, even if the model was well calibrated. In this study, we combine the different advantages in modeling of forest ecosystem and watershed. This enable to include more realistic Cs deposition and time series of inventory can be forced over the land surface. These processes are integrated

  9. Silicon and zinc biogeochemical cycles coupled through the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Vance, Derek; Little, Susan H.; de Souza, Gregory F.; Khatiwala, Samar; Lohan, Maeve C.; Middag, Rob

    2017-02-01

    Zinc is vital for the physiology of oceanic phytoplankton. The striking similarity of the depth profiles of zinc to those of silicate suggests that the uptake of both elements into the opaline frustules of diatoms, and their regeneration from these frustules, should be coupled. However, the zinc content of diatom opal is negligible, and zinc is taken up into and regenerated from the organic parts of diatom cells. Thus, since opaline frustules dissolve deep in the water column while organic material is regenerated in the shallow subsurface ocean, there is little reason to expect the observed close similarity between zinc and silicate, and the dissimilarity between zinc and phosphate. Here we combine observations with simulations using a three-dimensional model of ocean circulation and biogeochemistry to show that the coupled distribution of zinc and silicate, as well as the decoupling of zinc and phosphate, can arise in the absence of mechanistic links between the uptake of zinc and silicate, and despite contrasting regeneration length scales. Our simulations indicate that the oceanic zinc distribution is, in fact, a natural result of the interaction between ocean biogeochemistry and the physical circulation through the Southern Ocean hub. Our analysis demonstrates the importance of uptake stoichiometry in controlling ocean biogeochemistry, and the utility of global-scale elemental covariation in the ocean in understanding these controls.

  10. Hydrological Perturbations Drive Biogeochemical Processes in Experimental Soil Columns from the Norman Landfill Site

    NASA Astrophysics Data System (ADS)

    Arora, B.; Mohanty, B. P.; McGuire, J. T.

    2010-12-01

    Fate and transport of contaminants in saturated and unsaturated zones is governed by biogeochemical processes that are complex and non-linearly coupled to each other. A fundamental understanding of the interactions between transport and reaction processes is essential to better characterize contaminant movement in the subsurface. The objectives of this study are to: i) develop quantitative relationships between hydrological (initial and boundary conditions, hydraulic conductivity ratio, and soil layering), geochemical (mineralogy, surface area, redox potential, and organic matter) and microbiological factors (MPN) that alter the biogeochemical processes, and ii) characterize the effect of hydrologic perturbations on coupled processes occurring at the column scale. The perturbations correspond to rainfall intensity, duration of wet and dry conditions, and water chemistry (pH). Soils collected from two locations with significantly different geochemistry at the Norman landfill site are used in this study. Controlled flow experiments were conducted on: i) two homogeneous soil columns, ii) a layered soil column, iii) a soil column with embedded clay lenses, and iv) a soil column with embedded clay lenses and one central macropore. Experimental observations showed enhanced biogeochemical activity at the interface of the layered and lensed columns over the texturally homogeneous soil columns. Multivariate statistical analysis showed that the most important processes were microbial reduction of Fe(III) and SO42-, and oxidation of reduced products in the columns. Modeling results from HP1 indicate least redox activity in the homogeneous sand column while the structurally heterogeneous columns utilize oxygen and nitrate from recharge as well as iron sulfide minerals already present in the columns as electron acceptors. Furthermore, the interface of the layered and lensed soil columns acts as a hotspot of biogeochemical activity due to increased transport timescale as a

  11. High resolution modelling of the biogeochemical processes in the eutrophic Loire River (France)

    NASA Astrophysics Data System (ADS)

    Minaudo, Camille; Moatar, Florentina; Curie, Florence; Gassama, Nathalie; Billen, Gilles

    2016-04-01

    A biogeochemical model was developed, coupling a physically based water temperature model (T-NET) with a semi-mechanistic biogeochemical model (RIVE, used in ProSe and Riverstrahler models) in order to assess at a fine temporal and spatial resolution the biogeochemical processes in the eutrophic Middle Loire hydrosystem (≈10 000 km², 3361 river segments). The code itself allows parallelized computing, which decreased greatly the calculation time (5 hours for simulating 3 years hourly). We conducted a daily survey during the period 2012-2014 at 2 sampling stations located in the Middle Loire of nutrients, chlorophyll pigments, phytoplankton and physic-chemical variables. This database was used as both input data (upstream Loire boundary) and validation data of the model (basin outlet). Diffuse and non-point sources were assessed based on a land cover analysis and WWTP datasets. The results appeared very sensible to the coefficients governing the dynamic of suspended solids and of phosphorus (sorption/desorption processes) within the model and some parameters needed to be estimated numerically. Both the Lagrangian point of view and fluxes budgets at the seasonal and event-based scale evidenced the biogeochemical functioning of the Loire River. Low discharge levels set up favorable physical conditions for phytoplankton growth (long water travel time, limited water depth, suspended particles sedimentation). Conversely, higher discharge levels highly limited the phytoplankton biomass (dilution of the colony, washing-out, limited travel time, remobilization of suspended sediments increasing turbidity), and most biogeochemical species were basically transferred downstream. When hydrological conditions remained favorable for phytoplankton development, P-availability was the critical factor. However, the model evidenced that most of the P in summer was recycled within the water body: on one hand it was assimilated by the algae biomass, and on the other hand it was

  12. Impacts of Hydrological and Biogeochemical Process Synchrony Transcend Scale

    NASA Astrophysics Data System (ADS)

    Spence, C.; Kokelj, S.; McCluskie, M.; Hedstrom, N.

    2015-12-01

    In portions of the circumpolar north, there are documented cases of increases in annual inorganic nitrogen loading. Confounding the explanation of this phenomenon is a lack of accompanying annual trends in streamflow, precipitation or atmospheric nitrogen deposition. Evidence from Canada's subarctic suggests this dichotomy could be due to three key non-linearities in the predominant biogeochemical and hydrological processes. Because snowfall changes to rainfall near the zero degree air temperature isotherm, there has been an increase in late autumn rainfall across the region due to earlier passage of precipitation generating cold fronts. Runoff generation in cold regions is often a storage threshold-mediated process, and the enhanced rainfall results in more common exceedance of these thresholds and higher winter streamflow. Finally, net mineralization rates in regional lakes peak in winter following the onset of ice cover. Subtle increases in monthly rainfall at specific times of the year can permit hydro-chemical process synchrony within watersheds that enhances annual inorganic nitrogen loading, implying that the impacts of process synchrony transcend scale. The presence of shifts in nitrogen export suggests that sustained regular process synchrony can modify system states. Sound understanding of system processes and interactions across scales will be needed to properly predict impacts and make sound decisions when managing watersheds and competing resource demands.

  13. Hyporheic flow and transport processes: mechanisms, models, and biogeochemical implications

    USGS Publications Warehouse

    Boano, Fulvio; Harvey, Judson W.; Marion, Andrea; Packman, Aaron I.; Revelli, Roberto; Ridolfi, Luca; Anders, Wörman

    2014-01-01

    Fifty years of hyporheic zone research have shown the important role played by the hyporheic zone as an interface between groundwater and surface waters. However, it is only in the last two decades that what began as an empirical science has become a mechanistic science devoted to modeling studies of the complex fluid dynamical and biogeochemical mechanisms occurring in the hyporheic zone. These efforts have led to the picture of surface-subsurface water interactions as regulators of the form and function of fluvial ecosystems. Rather than being isolated systems, surface water bodies continuously interact with the subsurface. Exploration of hyporheic zone processes has led to a new appreciation of their wide reaching consequences for water quality and stream ecology. Modern research aims toward a unified approach, in which processes occurring in the hyporheic zone are key elements for the appreciation, management, and restoration of the whole river environment. In this unifying context, this review summarizes results from modeling studies and field observations about flow and transport processes in the hyporheic zone and describes the theories proposed in hydrology and fluid dynamics developed to quantitatively model and predict the hyporheic transport of water, heat, and dissolved and suspended compounds from sediment grain scale up to the watershed scale. The implications of these processes for stream biogeochemistry and ecology are also discussed."

  14. Hyporheic flow and transport processes: Mechanisms, models, and biogeochemical implications

    NASA Astrophysics Data System (ADS)

    Boano, F.; Harvey, J. W.; Marion, A.; Packman, A. I.; Revelli, R.; Ridolfi, L.; Wörman, A.

    2014-12-01

    Fifty years of hyporheic zone research have shown the important role played by the hyporheic zone as an interface between groundwater and surface waters. However, it is only in the last two decades that what began as an empirical science has become a mechanistic science devoted to modeling studies of the complex fluid dynamical and biogeochemical mechanisms occurring in the hyporheic zone. These efforts have led to the picture of surface-subsurface water interactions as regulators of the form and function of fluvial ecosystems. Rather than being isolated systems, surface water bodies continuously interact with the subsurface. Exploration of hyporheic zone processes has led to a new appreciation of their wide reaching consequences for water quality and stream ecology. Modern research aims toward a unified approach, in which processes occurring in the hyporheic zone are key elements for the appreciation, management, and restoration of the whole river environment. In this unifying context, this review summarizes results from modeling studies and field observations about flow and transport processes in the hyporheic zone and describes the theories proposed in hydrology and fluid dynamics developed to quantitatively model and predict the hyporheic transport of water, heat, and dissolved and suspended compounds from sediment grain scale up to the watershed scale. The implications of these processes for stream biogeochemistry and ecology are also discussed.

  15. Relating hydraulic conductivity and hyporheic zone biogeochemical processing to conserve and restore river ecosystem services.

    PubMed

    Mendoza-Lera, Clara; Datry, Thibault

    2017-02-01

    River management practices commonly attempt to improve habitat and ecological functioning (e.g. biogeochemical processing or retention of pollutants) by restoring hydrological exchange with the hyporheic zone (i.e. hyporheic flow) in an effort to increase mass transfer of solutes (nutrients, carbon and electron acceptors such as oxygen or nitrate). However, even when hyporheic flow is increased, often no significant changes in biogeochemical processing are detected. Some of these apparent paradox result from the simplistic assumption that there is a direct relationship between hyporheic flow and biogeochemical processing. We propose an alternative conceptual model that hyporheic flow is non-linearly related with biogeochemical processing. Based on the different solute mass transfer and area available for colonization among hydraulic conductivities, we hypothesize that biogeochemical processing in the hyporheic zone follows a Gaussian function depending on hyporheic hydraulic conductivity. After presenting the conceptual model and its domain of application, we discuss the potential implications, notably for river restoration and further hyporheic research.

  16. Coupling Isotopic Fractionation to Multiple-Continuum Reactive Transport Models of Biogeochemical Systems

    NASA Astrophysics Data System (ADS)

    Sonnenthal, E. L.; Wanner, C.

    2014-12-01

    Stable isotopic systems often show an unexpected range in observed fractionation factors associated with biogeochemical systems. In particular, the ranges in such isotopic systems as Cr, Ca, Li, and C have often been attributed to kinetic effects as well as different biogeochemical mechanisms. Reactive transport models developed to capture the sub-micron-scale transport and reaction processes within the macroscale system (e.g., biofilm to cm-scale) have been successful in simulating the biogeochemical processes associated with bacterial growth and the resultant changes in pore-fluid chemistry and redox conditions. Once such multicontinuum reactive transport models are extended to include equilibrium and kinetic isotopic fractionation, diffusive transport, and fluid-gas equilibria, it becomes possible to quantitatively interpret the isotopic changes observed in experimental and natural or engineered biogeochemical systems. We combine a solid-solution approach for isotopic substitution in minerals with the multiple-continuum reactive-transport approach to interpret the effective fractionation factor observed in experimental systems. Although such systems often have poorly constrained inputs (such as the equilibrium fractionation factor and many of the parameters associated with bacterial growth), by combining several independent contraints on reaction rates (such as lactate consumption, 13C/12C and 87Sr/86Sr in calcite), the range of possible interpretations can often be greatly narrowed. Here we present examples of the modeling approaches and their application to experimental systems to examine why the observed fractionation factors are often different from the theoretical values.

  17. South Florida wetlands ecosystem; biogeochemical processes in peat

    USGS Publications Warehouse

    Orem, William; ,

    1996-01-01

    The South Florida wetlands ecosystem is an environment of great size and ecological diversity (figs. 1 and 2). The landscape diversity and subtropical setting of this ecosystem provide a habitat for an abundance of plants and wildlife, some of which are unique to South Florida. South Florida wetlands are currently in crisis, however, due to the combined effects of agriculture, urbanization, and nearly 100 years of water management. Serious problems facing this ecosystem include (1) phosphorus contamination producing nutrient enrichment, which is causing changes in the native vegetation, (2) methylmercury contamination of fish and other wildlife, which poses a potential threat to human health, (3) changes in the natural flow of water in the region, resulting in more frequent drying of wetlands, loss of organic soils, and a reduction in freshwater flow to Florida Bay, (4) hypersalinity, massive algal blooms, and seagrass loss in parts of Florida Bay, and (5) a decrease in wildlife populations, especially those of wading birds. This U.S. Geological Survey (USGS) project focuses on the role of organic-rich sediments (peat) of South Florida wetlands in regulating the concentrations and impact of important chemical species in the environment. The cycling of carbon, nitrogen, phosphorus, and sulfur in peat is an important factor in the regulation of water quality in the South Florida wetlands ecosystem. These elements are central to many of the contamination issues facing South Florida wetlands, such as nutrient enrichment, mercury toxicity, and loss of peat. Many important chemical and biological reactions occur in peat and control the fate of chemical species in wetlands. Wetland scientists often refer to these reactions as biogeochemical processes, because they are chemical reactions usually mediated by microorganisms in a geological environment. An understanding of the biogeochemical processes in peat of South Florida wetlands will provide a basis for evaluating the

  18. Characterizing biogeochemical processes in the hyporheic zone using flume experiments and reactive transport modeling

    NASA Astrophysics Data System (ADS)

    Quick, A. M.; Reeder, W. J.; Farrell, T. B.; Feris, K. P.; Tonina, D.; Benner, S. G.

    2015-12-01

    The hyporheic zones of streams are hotspots of biogeochemical cycling, where reactants from surface water and groundwater are continually brought into contact with microbial populations on the surfaces of stream sediments and reaction products are removed by hyporheic flow and degassing. Using large flume experiments we have documented the complex redox dynamics associated with dune-scale hyporheic flow. Observations, coupled with reactive transport modeling, provide insight into how flow dictates spatio-temporal distribution of redox reactions and the associated consumption and production of reactants and products. Dune hyporheic flow was experimentally produced by maintaining control over flow rates, slopes, sediment grain size, bedform geomorphology, and organic carbon content. An extensive in-situ monitoring array combined with sampling events over time elucidated redox-sensitive processes including constraints on the spatial distribution and magnitude of aerobic respiration, organic carbon consumption, sulfide deposition, and denitrification. Reactive transport modeling reveals further insight into the influence of system geometry and reaction rate. As an example application of the model, the relationship between residence times and reaction rates may be used to generate Damköhler numbers that are related to biogeochemical processes, such as the potential of streambed morphology and nitrate loading to influence production of the greenhouse gas nitrous oxide via incomplete denitrification.

  19. Integrating turbulent flow, biogeochemical, and poromechanical processes in rippled coastal sediment (Invited)

    NASA Astrophysics Data System (ADS)

    Cardenas, M. B.; Cook, P. L.; Jiang, H.; Traykovski, P.

    2010-12-01

    Coastal sediments are the locus of multiple coupled processes. Turbulent flow associated with waves and currents induces porewater flow through sediment leading to fluid exchange with the water column. This porewater flow is determined by the hydraulic and elastic properties of the sediment. Porewater flow also ultimately controls biogeochemical reactions in the sediment whose rates depend on delivery of reactants and export of products. We present results from numerical modeling studies directed at integrating these processes with the goal of shedding light on these complex environments. We show how denitrification rates inside ripples are largest at intermediate permeability which represents the optimal balance of reactant delivery and anoxic conditions. It is clear that nutrient cycling and distribution within the sediment is strongly dependent on the character of the multidimensional flow field inside of sediment. More recent studies illustrate the importance of the elastic properties of the saturated sediment on modulating fluid exchange between the water column and the sediment when pressure fluctuations along the sediment-water interface occur at the millisecond scale. Pressure fluctuations occur at this temporal scale due to turbulence and associated shedding of vortices due to the ripple geometry. This suggests that biogeochemical cycling may also be affected by these high-frequency elastic effects. Future studies should be directed towards this and should take advantage of modeling tools such as those we present.

  20. Simulating anchovy's full life cycle in the northern Aegean Sea (eastern Mediterranean): A coupled hydro-biogeochemical-IBM model

    NASA Astrophysics Data System (ADS)

    Politikos, D.; Somarakis, S.; Tsiaras, K. P.; Giannoulaki, M.; Petihakis, G.; Machias, A.; Triantafyllou, G.

    2015-11-01

    A 3-D full life cycle population model for the North Aegean Sea (NAS) anchovy stock is presented. The model is two-way coupled with a hydrodynamic-biogeochemical model (POM-ERSEM). The anchovy life span is divided into seven life stages/age classes. Embryos and early larvae are passive particles, but subsequent stages exhibit active horizontal movements based on specific rules. A bioenergetics model simulates the growth in both the larval and juvenile/adult stages, while the microzooplankton and mesozooplankton fields of the biogeochemical model provide the food for fish consumption. The super-individual approach is adopted for the representation of the anchovy population. A dynamic egg production module, with an energy allocation algorithm, is embedded in the bioenergetics equation and produces eggs based on a new conceptual model for anchovy vitellogenesis. A model simulation for the period 2003-2006 with realistic initial conditions reproduced well the magnitude of population biomass and daily egg production estimated from acoustic and daily egg production method (DEPM) surveys, carried out in the NAS during June 2003-2006. Model simulated adult and egg habitats were also in good agreement with observed spatial distributions of acoustic biomass and egg abundance in June. Sensitivity simulations were performed to investigate the effect of different formulations adopted for key processes, such as reproduction and movement. The effect of the anchovy population on plankton dynamics was also investigated, by comparing simulations adopting a two-way or a one-way coupling of the fish with the biogeochemical model.

  1. Silicon biogeochemical processes in a large river (Cauvery, India)

    NASA Astrophysics Data System (ADS)

    Kameswari Rajasekaran, Mangalaa; Arnaud, Dapoigny; Jean, Riotte; Sarma Vedula, V. S. S.; Nittala, S. Sarma; Sankaran, Subramanian; Gundiga Puttojirao, Gurumurthy; Keshava, Balakrishna; Cardinal, Damien

    2016-04-01

    Silicon (Si), one of the key nutrients for diatom growth in ocean, is principally released during silicate weathering on continents and then exported by rivers. Phytoplankton composition is determined by the availability of Si relative to other nutrients, mainly N and P, which fluxes in estuarine and coastal systems are affected by eutrophication due to land use and industrialization. In order to understand the biogeochemical cycle of Si and its supply to the coastal ocean, we studied a tropical monsoonal river from Southern India (Cauvery) and compare it with other large and small rivers. Cauvery is the 7th largest river in India with a basin covering 85626 sq.km. The major part of the basin (˜66%) is covered by agriculture and inhabited by more than 30 million inhabitants. There are 96 dams built across the basin. As a consequence, 80% of the historical discharge is diverted, mainly for irrigation (Meunier et al. 2015). This makes the Cauvery River a good example of current anthropogenic pressure on silicon biogeochemical cycle. We measured amorphous silica contents (ASi) and isotopic composition of dissolved silicon (δ30Si-DSi) in the Cauvery estuary, including freshwater end-member and groundwater as well as along a 670 km transect along the river course. Other Indian rivers and estuaries have also been measured, including some less impacted by anthropogenic pressure. The average Cauvery δ30Si signature just upstream the estuary is 2.21±0.15 ‰ (n=3) which is almost 1‰ heavier than the groundwater isotopic composition (1.38±0.03). The δ30Si-DSi of Cauvery water is also almost 1‰ heavier than the world river supply to the ocean estimated so far and 0.4‰ heavier than other large Indian rivers like Ganges (Frings et al 2015) and Krishna. On the other hand, the smaller watersheds (Ponnaiyar, Vellar, and Penna) adjacent to Cauvery also display heavy δ30Si-DSi. Unlike the effect of silicate weathering, the heavy isotopic compositions in the river

  2. CALIBRATION OF SUBSURFACE BATCH AND REACTIVE-TRANSPORT MODELS INVOLVING COMPLEX BIOGEOCHEMICAL PROCESSES

    EPA Science Inventory

    In this study, the calibration of subsurface batch and reactive-transport models involving complex biogeochemical processes was systematically evaluated. Two hypothetical nitrate biodegradation scenarios were developed and simulated in numerical experiments to evaluate the perfor...

  3. CALIBRATION OF SUBSURFACE BATCH AND REACTIVE-TRANSPORT MODELS INVOLVING COMPLEX BIOGEOCHEMICAL PROCESSES

    EPA Science Inventory

    In this study, the calibration of subsurface batch and reactive-transport models involving complex biogeochemical processes was systematically evaluated. Two hypothetical nitrate biodegradation scenarios were developed and simulated in numerical experiments to evaluate the perfor...

  4. Quantifying Linkages between Biogeochemical Processes in a Contaminated Aquifer-Wetland System Using Multivariate Statistics and HP1

    NASA Astrophysics Data System (ADS)

    Arora, B.; Mohanty, B. P.; McGuire, J. T.

    2009-12-01

    Fate and transport of contaminants in saturated and unsaturated zones in the subsurface is controlled by complex biogeochemical processes such as precipitation, sorption-desorption, ion-exchange, redox, etc. In dynamic systems such as wetlands and anaerobic aquifers, these processes are coupled and can interact non-linearly with each other. Variability in measured hydrological, geochemical and microbiological parameters thus corresponds to multiple processes simultaneously. To infer the contributing processes, it is important to eliminate correlations and to identify inter-linkages between factors. The objective of this study is to develop quantitative relationships between hydrological (initial and boundary conditions, hydraulic conductivity ratio, and soil layering), geochemical (mineralogy, surface area, redox potential, and organic matter) and microbiological factors (MPN) that alter the biogeochemical processes at the column scale. Data used in this study were collected from controlled flow experiments in: i) two homogeneous soil columns, ii) a layered soil column, iii) a soil column with embedded clay lenses, and iv) a soil column with embedded clay lenses and one central macropore. The soil columns represent increasing level of soil structural heterogeneity to better mimic the Norman Landfill research site. The Norman Landfill is a closed municipal facility with prevalent organic contamination. The sources of variation in the dataset were explored using multivariate statistical techniques and dominant biogeochemical processes were obtained using principal component analysis (PCA). Furthermore, artificial neural networks (ANN) coupled with HP1 was used to develop mathematical rules identifying different combinations of factors that trigger, sustain, accelerate/decelerate, or discontinue the biogeochemical processes. Experimental observations show that infiltrating water triggers biogeochemical processes in all soil columns. Similarly, slow release of water

  5. A Coupled Ocean General Circulation, Biogeochemical, and Radiative Model of the Global Oceans: Seasonal Distributions of Ocean Chlorophyll and Nutrients

    NASA Technical Reports Server (NTRS)

    Gregg, Watson W.; Busalacchi, Antonio (Technical Monitor)

    2000-01-01

    A coupled ocean general circulation, biogeochemical, and radiative model was constructed to evaluate and understand the nature of seasonal variability of chlorophyll and nutrients in the global oceans. Biogeochemical processes in the model are determined from the influences of circulation and turbulence dynamics, irradiance availability. and the interactions among three functional phytoplankton groups (diatoms. chlorophytes, and picoplankton) and three nutrients (nitrate, ammonium, and silicate). Basin scale (greater than 1000 km) model chlorophyll results are in overall agreement with CZCS pigments in many global regions. Seasonal variability observed in the CZCS is also represented in the model. Synoptic scale (100-1000 km) comparisons of imagery are generally in conformance although occasional departures are apparent. Model nitrate distributions agree with in situ data, including seasonal dynamics, except for the equatorial Atlantic. The overall agreement of the model with satellite and in situ data sources indicates that the model dynamics offer a reasonably realistic simulation of phytoplankton and nutrient dynamics on synoptic scales. This is especially true given that initial conditions are homogenous chlorophyll fields. The success of the model in producing a reasonable representation of chlorophyll and nutrient distributions and seasonal variability in the global oceans is attributed to the application of a generalized, processes-driven approach as opposed to regional parameterization and the existence of multiple phytoplankton groups with different physiological and physical properties. These factors enable the model to simultaneously represent many aspects of the great diversity of physical, biological, chemical, and radiative environments encountered in the global oceans.

  6. Effects of ozone-vegetation coupling on surface ozone air quality via biogeochemical and meteorological feedbacks

    NASA Astrophysics Data System (ADS)

    Sadiq, Mehliyar; Tai, Amos P. K.; Lombardozzi, Danica; Martin, Maria Val

    2017-02-01

    Tropospheric ozone is one of the most hazardous air pollutants as it harms both human health and plant productivity. Foliage uptake of ozone via dry deposition damages photosynthesis and causes stomatal closure. These foliage changes could lead to a cascade of biogeochemical and biogeophysical effects that not only modulate the carbon cycle, regional hydrometeorology and climate, but also cause feedbacks onto surface ozone concentration itself. In this study, we implement a semi-empirical parameterization of ozone damage on vegetation in the Community Earth System Model to enable online ozone-vegetation coupling, so that for the first time ecosystem structure and ozone concentration can coevolve in fully coupled land-atmosphere simulations. With ozone-vegetation coupling, present-day surface ozone is simulated to be higher by up to 4-6 ppbv over Europe, North America and China. Reduced dry deposition velocity following ozone damage contributes to ˜ 40-100 % of those increases, constituting a significant positive biogeochemical feedback on ozone air quality. Enhanced biogenic isoprene emission is found to contribute to most of the remaining increases, and is driven mainly by higher vegetation temperature that results from lower transpiration rate. This isoprene-driven pathway represents an indirect, positive meteorological feedback. The reduction in both dry deposition and transpiration is mostly associated with reduced stomatal conductance following ozone damage, whereas the modification of photosynthesis and further changes in ecosystem productivity are found to play a smaller role in contributing to the ozone-vegetation feedbacks. Our results highlight the need to consider two-way ozone-vegetation coupling in Earth system models to derive a more complete understanding and yield more reliable future predictions of ozone air quality.

  7. Diel biogeochemical processes and their effect on the aqueous chemistry of streams: A review

    USGS Publications Warehouse

    Nimick, David A.; Gammons, Christopher H.; Parker, Stephen R.

    2011-01-01

    This review summarizes biogeochemical processes that operate on diel, or 24-h, time scales in streams and the changes in aqueous chemistry that are associated with these processes. Some biogeochemical processes, such as those producing diel cycles of dissolved O2 and pH, were the first to be studied, whereas processes producing diel concentration cycles of a broader spectrum of chemical species including dissolved gases, dissolved inorganic and organic carbon, trace elements, nutrients, stable isotopes, and suspended particles have received attention only more recently. Diel biogeochemical cycles are interrelated because the cyclical variations produced by one biogeochemical process commonly affect another. Thus, understanding biogeochemical cycling is essential not only for guiding collection and interpretation of water-quality data but also for geochemical and ecological studies of streams. Expanded knowledge of diel biogeochemical cycling will improve understanding of how natural aquatic environments function and thus lead to better predictions of how stream ecosystems might react to changing conditions of contaminant loading, eutrophication, climate change, drought, industrialization, development, and other factors.

  8. Prospecting for natural attenuation: Coupled geophysical-biogeochemical studies at DOE's Rifle IFRC site

    NASA Astrophysics Data System (ADS)

    Williams, K. H.; Kukkadapu, R. K.; Long, P. E.; Flores Orozco, A.; Kemna, A.

    2011-12-01

    Research activities at the Rifle Integrated Field Research Challenge (IFRC) site in Rifle, Colorado (USA) are designed to integrate geochemical, biological, and hydrological studies to enhance our understanding of subsurface uranium mobility. While much of the research activities at the site have focused on stimulating subsurface microbial activity through acetate amendment, there is growing interest in the role that natural biogeochemical processes play in constraining uranium mobility in the aquifer. Such processes constitute a form of natural uranium attenuation in the subsurface and are inferred to result from elevated concentrations of natural organic matter associated with alluvial sediments. Referred to as naturally reduced zones (NRZ's), they are characterized by the presence of reduced and/or magnetic mineral phases (e.g. FeS, FeS2, and Fe3O4), elevated Fe(II), and refractory organic carbon compounds (e.g. roots, twigs, and cones). Elevated rates of microbial activity associated with NRZ's and their mineralogical makeup act to sequester uranium from groundwater at levels higher that background alluvium. Their unique composition within a matrix of relatively oxidized, low-bioactivity sediments constitutes a potential target for a variety of exploration geophysical techniques, such as induced polarization and magnetic susceptibility. Both methods have been successfully applied at the Rifle IFRC site to delineate the ubiquity and extent of NRZ's across the floodplain. Sediments recovered from drilling targets identified through the use of exploration geophysical techniques have identified elevated uranium concentrations associated with both magnetite and framboid pyrite; however, the extent to which such minerals are the direct product of in situ microbial activity remains unknown. While diverse, the microbial community composition of NRZ's suggest dominance by fermentative organisms capable of degrading lignitic carbon to low molecular weight organic

  9. Coupled Biogeochemical and Hydrodynamic Measurements over a Palauan Seagrass Bed: Can Seagrasses Mitigate Local Acidification Stress?

    NASA Astrophysics Data System (ADS)

    Hirsh, H.; Torres, W.; Shea, M.

    2016-02-01

    Interest in seagrass beds as a tool to locally mitigate ocean acidification is growing rapidly. Much of the interest in seagrasses is motivated by their root structure, which is able to sequester carbon over interannual and longer timescales. Far less is known about their biogeochemistry on shorter diel timescales, yet we know that diel cycle variation in CO2 chemistry on coral reefs can be quite substantial. Understanding short-term seagrass biogeochemistry is critical to evaluating if, and how, seagrasses may eventually be utilized to mitigate OA on coral reefs. We present the results of a high-resolution, 24-hour control volume experiment conducted in the Republic of Palau covering a 50m x 100m seagrass bed. Our dataset includes diel cycles of hydrodynamic (current profiles and turbulence), biogeochemical (pH, pCO2, TA, DIC, and O2), and environmental (temperature and salinity) parameters. We use these coupled hydrodynamic-biogeochemical measurements to estimate ecosystem metabolism and better quantify the capacity of seagrass to mitigate local acidification through the photosynthetic uptake of CO2. Combining our field observations with box model predictions allows us to gain better insight into the mechanisms that control seagrass metabolism and their ability to buffer CO2 for downstream corals.

  10. Study of the plankton ecosystem variability using a coupled hydrodynamics biogeochemical modelling in the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Kessouri, Fayçal; Ulses, Caroline; Estournel, Claude; Marsaleix, Patrick

    2015-04-01

    The Mediterranean Sea presents a wide variety of trophic regimes since the large and intense spring bloom of the North-Western Mediterranean Sea (NWMS) that follows winter convection to the extreme oligotrophic regions of the South-eastern basin. The Mediterranean Sea displays a strong time variability revealing its high sensitivity to climate and anthropic pressures. In this context, it is crucial to develop tools allowing to understand the evolution of the Mediterranean hydrology and marine ecosystem as a response to external forcing. Numerical coupled hydrodynamic and biogeochemical modelling carefully calibrated in the different regions of the basin is the only tool that can answer this question. However, this important step of calibration is particularly difficult because of the lack of coherent sets of data describing the seasonal evolution of the main parameters characterizing the physical and biogeochemical environment in the different sub-basins. The chlorophyll satellite data from 4km MODIS products, a multiple in situ data from MerMEX MOOSE and DEWEX cruises and Bio-Argo floats from NAOS project are believed to be an opportunity to strongly improve the realism of ecosystem models. The model is a 3D coupled simulation using NemoMed12 for hydrodynamics and ECO 3MS for biogeochemistry and covers the whole Mediterranean Sea and runs at 1/12°. The relevant variables mentioned are phytoplankton, organic and inorganic matters faced to water masses dynamics, over ten years since summer 2003. After a short validation, we will expose two topics: First, through this coupling we quantify the nutrients fluxes across the Mediterranean straits over the years. For example, we found an annual net average around 150 Giga moles NO3 per year at Gibraltar, where we expect low annual fluctuations. In contrast, the Strait of Sicily shows greater annual variability going from 70 to 92 Giga moles NO3 per year. All the fluxes are resumed in a detailed diagram of the transport

  11. Nitrogen and Sulfur Deposition Effects on Forest Biogeochemical Processes.

    NASA Astrophysics Data System (ADS)

    Goodale, C. L.

    2014-12-01

    Chronic atmospheric deposition of nitrogen and sulfur have widely ranging biogeochemical consequences in terrestrial ecosystems. Both N and S deposition can affect plant growth, decomposition, and nitrous oxide production, with sometimes synergistic and sometimes contradictory responses; yet their separate effects are rarely isolated and their interactive biogeochemical impacts are often overlooked. For example, S deposition and consequent acidification and mortality may negate stimulation of plant growth induced by N deposition; decomposition can be slowed by both N and S deposition, though through different mechanisms; and N2O production may be stimulated directly by N and indirectly by S amendments. Recent advances in conceptual models and whole-ecosystem experiments provide novel means for disentangling the impacts of N and S in terrestrial ecosystems. Results from a new whole-ecosystem N x S- addition experiment will be presented in detail, examining differential response of tree and soil carbon storage to N and S additions. These results combine with observations from a broad array of long-term N addition studies, atmospheric deposition gradients, stable isotope tracer studies, and model analyses to inform the magnitude, controls, and stability of ecosystem C storage in response to N and S addition.

  12. The significance of GW-SW interactions for biogeochemical processes in sandy streambeds

    NASA Astrophysics Data System (ADS)

    Arnon, Shai; De Falco, Natalie; Fox, Aryeh; Laube, Gerrit; Schmidt, Christian; Fleckenstein, Jan; Boano, Fulvio

    2015-04-01

    the coupling between flow conditions and biogeochemical processes under highly controlled physical and chemical conditions and are expected to improve our understanding of nutrient cycling in streams.

  13. Carbon sequestration by patch fertilization: A comprehensive assessment using coupled physical-ecological-biogeochemical models

    SciTech Connect

    Sarmiento, Jorge L.; Gnanadesikan, Anand; Gruber, Nicolas; Jin, Xin; Armstrong, Robert

    2007-06-21

    This final report summarizes research undertaken collaboratively between Princeton University, the NOAA Geophysical Fluid Dynamics Laboratory on the Princeton University campus, the State University of New York at Stony Brook, and the University of California, Los Angeles between September 1, 2000, and November 30, 2006, to do fundamental research on ocean iron fertilization as a means to enhance the net oceanic uptake of CO2 from the atmosphere. The approach we proposed was to develop and apply a suite of coupled physical-ecological-biogeochemical models in order to (i) determine to what extent enhanced carbon fixation from iron fertilization will lead to an increase in the oceanic uptake of atmospheric CO2 and how long this carbon will remain sequestered (efficiency), and (ii) examine the changes in ocean ecology and natural biogeochemical cycles resulting from iron fertilization (consequences). The award was funded in two separate three-year installments: September 1, 2000 to November 30, 2003, for a project entitled “Ocean carbon sequestration by fertilization: An integrated biogeochemical assessment.” A final report was submitted for this at the end of 2003 and is included here as Appendix 1; and, December 1, 2003 to November 30, 2006, for a follow-on project under the same grant number entitled “Carbon sequestration by patch fertilization: A comprehensive assessment using coupled physical-ecological-biogeochemical models.” This report focuses primarily on the progress we made during the second period of funding subsequent to the work reported on in Appendix 1. When we began this project, we were thinking almost exclusively in terms of long-term fertilization over large regions of the ocean such as the Southern Ocean, with much of our focus being on how ocean circulation and biogeochemical cycling would interact to control the response to a given fertilization scenario. Our research on these types of scenarios, which was carried out largely during the

  14. Deriving forest fire ignition risk with biogeochemical process modelling☆

    PubMed Central

    Eastaugh, C.S.; Hasenauer, H.

    2014-01-01

    Climate impacts the growth of trees and also affects disturbance regimes such as wildfire frequency. The European Alps have warmed considerably over the past half-century, but incomplete records make it difficult to definitively link alpine wildfire to climate change. Complicating this is the influence of forest composition and fuel loading on fire ignition risk, which is not considered by purely meteorological risk indices. Biogeochemical forest growth models track several variables that may be used as proxies for fire ignition risk. This study assesses the usefulness of the ecophysiological model BIOME-BGC's ‘soil water’ and ‘labile litter carbon’ variables in predicting fire ignition. A brief application case examines historic fire occurrence trends over pre-defined regions of Austria from 1960 to 2008. Results show that summer fire ignition risk is largely a function of low soil moisture, while winter fire ignitions are linked to the mass of volatile litter and atmospheric dryness. PMID:26109905

  15. Hierarchical framework for coupling a biogeochemical trace gas model to a general circulation model

    SciTech Connect

    Miller, N.L.; Foster, I.T.

    1994-04-01

    A scheme is described for the computation of terrestrial biogeochemical trace gas fluxes in the context of a general circulation model. This hierarchical system flux scheme (HSFS) incorporates five major components: (1) a general circulation model (GCM), which provides a medium-resolution (i.e., 1{degrees} by 1{degrees}) simulation of the atmospheric circulation; (2) a procedure for identifying regions of defined homogeneity of surface type within GCM grid cells; (3) a set of surface process models, to be run within each homogeneous region, which include a biophysical model, the Biosphere Atmospheric Transfer Scheme (BATS), and a biogeochemical model (BGCM); (4) an interpolation/integration system that transfers information between the GCM and surface process models with finer resolution; and (5) an interactive data array based on a geographic information system (GIS), which provides land characteristic information via the interpolator. The goals of this detailed investigation are to compute the local and global sensitivities of trace gas fluxes to GCM and BATS variables, the effects of trace gas fluxes on global climate, and the effects of global climate on specific biomes.

  16. Skill assessment of the coupled physical-biogeochemical operational Mediterranean Forecasting System

    NASA Astrophysics Data System (ADS)

    Cossarini, Gianpiero; Clementi, Emanuela; Salon, Stefano; Grandi, Alessandro; Bolzon, Giorgio; Solidoro, Cosimo

    2016-04-01

    The Mediterranean Monitoring and Forecasting Centre (Med-MFC) is one of the regional production centres of the European Marine Environment Monitoring Service (CMEMS-Copernicus). Med-MFC operatively manages a suite of numerical model systems (3DVAR-NEMO-WW3 and 3DVAR-OGSTM-BFM) that provides gridded datasets of physical and biogeochemical variables for the Mediterranean marine environment with a horizontal resolution of about 6.5 km. At the present stage, the operational Med-MFC produces ten-day forecast: daily for physical parameters and bi-weekly for biogeochemical variables. The validation of the coupled model system and the estimate of the accuracy of model products are key issues to ensure reliable information to the users and the downstream services. Product quality activities at Med-MFC consist of two levels of validation and skill analysis procedures. Pre-operational qualification activities focus on testing the improvement of the quality of a new release of the model system and relays on past simulation and historical data. Then, near real time (NRT) validation activities aim at the routinely and on-line skill assessment of the model forecast and relays on the NRT available observations. Med-MFC validation framework uses both independent (i.e. Bio-Argo float data, in-situ mooring and vessel data of oxygen, nutrients and chlorophyll, moored buoys, tide-gauges and ADCP of temperature, salinity, sea level and velocity) and semi-independent data (i.e. data already used for assimilation, such as satellite chlorophyll, Satellite SLA and SST and in situ vertical profiles of temperature and salinity from XBT, Argo and Gliders) We give evidence that different variables (e.g. CMEMS-products) can be validated at different levels (i.e. at the forecast level or at the level of model consistency) and at different spatial and temporal scales. The fundamental physical parameters temperature, salinity and sea level are routinely validated on daily, weekly and quarterly base

  17. The value of automated high-frequency nutrient monitoring in inference of biogeochemical processes, temporal variability and trends

    NASA Astrophysics Data System (ADS)

    Bieroza, Magdalena; Heathwaite, Louise

    2013-04-01

    Stream water quality signals integrate catchment-scale processes responsible for delivery and biogeochemical transformation of the key biotic macronutrients (N, C, P). This spatial and temporal integration is particularly pronounced in the groundwater-dominated streams, as in-stream nutrient dynamics are mediated by the processes occurring within riparian and hyporheic ecotones. In this paper we show long-term high-frequency in-stream macronutrient dynamics from a small agricultural catchment located in the North West England. Hourly in-situ measurements of total and reactive phosphorus (Systea, IT), nitrate (Hach Lange, DE) and physical water quality parameters (turbidity, specific conductivity, dissolved oxygen, temperature, pH; WaterWatch, UK) were carried out on the lowland, gaining reach of the River Leith. High-frequency data show complex non-linear nutrient concentration-discharge relationships. The dominance of hysteresis effects suggests the presence of a temporally varying apportionment of allochthonous and autochthonous nutrient sources. Varying direction, magnitude and dynamics of the hysteretic responses between storm events is driven by the variation in the contributing source areas and shows the importance of the coupling of catchment-scale, in-stream, riparian and hyporheic biogeochemical cycles. The synergistic effect of physical (temperature-driven, the hyporheic exchange controlled by diffusion) and biogeochemical drivers (stream and hyporheic metabolism) on in-stream nutrient concentrations manifests itself in observed diurnal patterns. As inferred from the high-frequency nutrient monitoring, the diurnal dynamics are of the greatest importance under baseflow conditions. Understanding the role and relative importance of these processes can be difficult due to spatial and temporal heterogeneity of the key mechanisms involved. This study shows the importance of in-situ, fine temporal resolution, automated monitoring approaches in providing evidence

  18. Coupling between Pentachlorophenol Dechlorination and Soil Redox As Revealed by Stable Carbon Isotope, Microbial Community Structure, and Biogeochemical Data.

    PubMed

    Xu, Yan; He, Yan; Zhang, Qian; Xu, Jianming; Crowley, David

    2015-05-05

    Carbon isotopic analysis and molecular-based methods were used in conjunction with geochemical data sets to assess the dechlorination of pentachlorophenol (PCP) when coupled to biogeochemical processes in a mangrove soil having no prior history of anthropogenic contamination. The PCP underwent 96% dechlorination in soil amended with acetate, compared to 21% dehalogenation in control soil. Carbon isotope analysis of residual PCP demonstrated an obvious enrichment of 13C (εC, -3.01±0.1%). Molecular and statistical analyses demonstrated that PCP dechlorination and Fe(III) reduction were synergistically combined electron-accepting processes. Microbial community analysis further suggested that enhanced dechlorination of PCP during Fe(III) reduction was mediated by members of the multifunctional family of Geobacteraceae. In contrast, PCP significantly suppressed the growth of SO4(2-) reducers, which, in turn, facilitated the production of CH4 by diversion of electrons from SO4(2-) reduction to methanogenesis. The integrated data regarding stoichiometric alterations in this study gives direct evidence showing PCP, Fe(III), and SO4(2-) reduction, and CH4 production are coupled microbial processes during changes in soil redox.

  19. Development of an advanced eco-hydrologic and biogeochemical coupling model aimed at clarifying the missing role of inland water in the global biogeochemical cycle

    NASA Astrophysics Data System (ADS)

    Nakayama, Tadanobu

    2017-04-01

    Recent research showed that inland water including rivers, lakes, and groundwater may play some role in carbon cycling, although its contribution has remained uncertain due to limited amount of reliable data available. In this study, the author developed an advanced model coupling eco-hydrology and biogeochemical cycle (National Integrated Catchment-based Eco-hydrology (NICE)-BGC). This new model incorporates complex coupling of hydrologic-carbon cycle in terrestrial-aquatic linkages and interplay between inorganic and organic carbon during the whole process of carbon cycling. The model could simulate both horizontal transports (export from land to inland water 2.01 ± 1.98 Pg C/yr and transported to ocean 1.13 ± 0.50 Pg C/yr) and vertical fluxes (degassing 0.79 ± 0.38 Pg C/yr, and sediment storage 0.20 ± 0.09 Pg C/yr) in major rivers in good agreement with previous researches, which was an improved estimate of carbon flux from previous studies. The model results also showed global net land flux simulated by NICE-BGC (-1.05 ± 0.62 Pg C/yr) decreased carbon sink a little in comparison with revised Lund-Potsdam-Jena Wetland Hydrology and Methane (-1.79 ± 0.64 Pg C/yr) and previous materials (-2.8 to -1.4 Pg C/yr). This is attributable to CO2 evasion and lateral carbon transport explicitly included in the model, and the result suggests that most previous researches have generally overestimated the accumulation of terrestrial carbon and underestimated the potential for lateral transport. The results further implied difference between inverse techniques and budget estimates suggested can be explained to some extent by a net source from inland water. NICE-BGC would play an important role in reevaluation of greenhouse gas budget of the biosphere, quantification of hot spots, and bridging the gap between top-down and bottom-up approaches to global carbon budget.

  20. Seasonal Distributions of Global Ocean Chlorophyll and Nutrients: Analysis with a Coupled Ocean General Circulation Biogeochemical, and Radiative Model

    NASA Technical Reports Server (NTRS)

    Gregg, Watson W.

    1999-01-01

    A coupled general ocean circulation, biogeochemical, and radiative model was constructed to evaluate and understand the nature of seasonal variability of chlorophyll and nutrients in the global oceans. The model is driven by climatological meteorological conditions, cloud cover, and sea surface temperature. Biogeochemical processes in the model are determined from the influences of circulation and turbulence dynamics, irradiance availability, and the interactions among three functional phytoplankton groups (diatoms, chorophytes, and picoplankton) and three nutrient groups (nitrate, ammonium, and silicate). Phytoplankton groups are initialized as homogeneous fields horizontally and vertically, and allowed to distribute themselves according to the prevailing conditions. Basin-scale model chlorophyll results are in very good agreement with CZCS pigments in virtually every global region. Seasonal variability observed in the CZCS is also well represented in the model. Synoptic scale (100-1000 km) comparisons of imagery are also in good conformance, although occasional departures are apparent. Agreement of nitrate distributions with in situ data is even better, including seasonal dynamics, except for the equatorial Atlantic. The good agreement of the model with satellite and in situ data sources indicates that the model dynamics realistically simulate phytoplankton and nutrient dynamics on synoptic scales. This is especially true given that initial conditions are homogenous chlorophyll fields. The success of the model in producing a reasonable representation of chlorophyll and nutrient distributions and seasonal variability in the global oceans is attributed to the application of a generalized, processes-driven approach as opposed to regional parameterization, and the existence of multiple phytoplankton groups with different physiological and physical properties. These factors enable the model to simultaneously represent the great diversity of physical, biological

  1. Reactive transport modelling of biogeochemical processes and carbon isotope geochemistry inside a landfill leachate plume.

    PubMed

    van Breukelen, Boris M; Griffioen, Jasper; Röling, Wilfred F M; van Verseveld, Henk W

    2004-06-01

    The biogeochemical processes governing leachate attenuation inside a landfill leachate plume (Banisveld, the Netherlands) were revealed and quantified using the 1D reactive transport model PHREEQC-2. Biodegradation of dissolved organic carbon (DOC) was simulated assuming first-order oxidation of two DOC fractions with different reactivity, and was coupled to reductive dissolution of iron oxide. The following secondary geochemical processes were required in the model to match observations: kinetic precipitation of calcite and siderite, cation exchange, proton buffering and degassing. Rate constants for DOC oxidation and carbonate mineral precipitation were determined, and other model parameters were optimized using the nonlinear optimization program PEST by means of matching hydrochemical observations closely (pH, DIC, DOC, Na, K, Ca, Mg, NH4, Fe(II), SO4, Cl, CH4, saturation index of calcite and siderite). The modelling demonstrated the relevance and impact of various secondary geochemical processes on leachate plume evolution. Concomitant precipitation of siderite masked the act of iron reduction. Cation exchange resulted in release of Fe(II) from the pristine anaerobic aquifer to the leachate. Degassing, triggered by elevated CO2 pressures caused by carbonate precipitation and proton buffering at the front of the plume, explained the observed downstream decrease in methane concentration. Simulation of the carbon isotope geochemistry independently supported the proposed reaction network.

  2. Reactive transport modelling of biogeochemical processes and carbon isotope geochemistry inside a landfill leachate plume

    NASA Astrophysics Data System (ADS)

    van Breukelen, Boris M.; Griffioen, Jasper; Röling, Wilfred F. M.; van Verseveld, Henk W.

    2004-06-01

    The biogeochemical processes governing leachate attenuation inside a landfill leachate plume (Banisveld, the Netherlands) were revealed and quantified using the 1D reactive transport model PHREEQC-2. Biodegradation of dissolved organic carbon (DOC) was simulated assuming first-order oxidation of two DOC fractions with different reactivity, and was coupled to reductive dissolution of iron oxide. The following secondary geochemical processes were required in the model to match observations: kinetic precipitation of calcite and siderite, cation exchange, proton buffering and degassing. Rate constants for DOC oxidation and carbonate mineral precipitation were determined, and other model parameters were optimized using the nonlinear optimization program PEST by means of matching hydrochemical observations closely (pH, DIC, DOC, Na, K, Ca, Mg, NH 4, Fe(II), SO 4, Cl, CH 4, saturation index of calcite and siderite). The modelling demonstrated the relevance and impact of various secondary geochemical processes on leachate plume evolution. Concomitant precipitation of siderite masked the act of iron reduction. Cation exchange resulted in release of Fe(II) from the pristine anaerobic aquifer to the leachate. Degassing, triggered by elevated CO 2 pressures caused by carbonate precipitation and proton buffering at the front of the plume, explained the observed downstream decrease in methane concentration. Simulation of the carbon isotope geochemistry independently supported the proposed reaction network.

  3. A flexible numerical component to simulate surface runoff transport and biogeochemical processes through dense vegetation

    NASA Astrophysics Data System (ADS)

    Munoz-Carpena, R.; Perez-Ovilla, O.

    2012-12-01

    Methods to estimate surface runoff pollutant removal using dense vegetation buffers (i.e. vegetative filter strips) usually consider a limited number of factors (i.e. filter length, slope) and are in general based on empirical relationships. When an empirical approach is used, the application of the model is limited to those conditions of the data used for the regression equations. The objective of this work is to provide a flexible numerical mechanistic tool to simulate dynamics of a wide range of surface runoff pollutants through dense vegetation and their physical, chemical and biological interactions based on equations defined by the user as part of the model inputs. A flexible water quality model based on the Reaction Simulation Engine (RSE) modeling component is coupled to a transport module based on the traditional Bubnov -Galerkin finite element method to solve the advection-dispersion-reaction equation using the alternating split-operator technique. This coupled transport-reaction model is linked to the VFSMOD-W (http://abe.ufl.edu/carpena/vfsmod) program to mechanistically simulate mobile and stabile pollutants through dense vegetation based on user-defined conceptual models (differential equations written in XML language as input files). The key factors to consider in the creation of a conceptual model are the components in the buffer (i.e. vegetation, soil, sediments) and how the pollutant interacts with them. The biogeochemical reaction component was tested successfully with laboratory and field scale experiments. One of the major advantages when using this tool is that the pollutant transport and removal thought dense vegetation is related to physical and biogeochemical process occurring within the filter. This mechanistic approach increases the range of use of the model to a wide range of pollutants and conditions without modification of the core model. The strength of the model relies on the mechanistic approach used for simulating the removal of

  4. Net greenhouse gas balance in response to nitrogen enrichment: perspectives from a coupled biogeochemical model.

    PubMed

    Lu, Chaoqun; Tian, Hanqin

    2013-02-01

    Increasing reactive nitrogen (N) input has been recognized as one of the important factors influencing climate system through affecting the uptake and emission of greenhouse gases (GHG). However, the magnitude and spatiotemporal variations of N-induced GHG fluxes at regional and global scales remain far from certain. Here we selected China as an example, and used a coupled biogeochemical model in conjunction with spatially explicit data sets (including climate, atmospheric CO2 , O3 , N deposition, land use, and land cover changes, and N fertilizer application) to simulate the concurrent impacts of increasing atmospheric and fertilized N inputs on balance of three major GHGs (CO2 , CH4 , and N2 O). Our simulations showed that these two N enrichment sources in China decreased global warming potential (GWP) through stimulating CO2 sink and suppressing CH4 emission. However, direct N2 O emission was estimated to offset 39% of N-induced carbon (C) benefit, with a net GWP of three GHGs averaging -376.3 ± 146.4 Tg CO2  eq yr(-1) (the standard deviation is interannual variability of GWP) during 2000-2008. The chemical N fertilizer uses were estimated to increase GWP by 45.6 ± 34.3 Tg CO2  eq yr(-1) in the same period, and C sink was offset by 136%. The largest C sink offset ratio due to increasing N input was found in Southeast and Central mainland of China, where rapid industrial development and intensively managed crop system are located. Although exposed to the rapidly increasing N deposition, most of the natural vegetation covers were still showing decreasing GWP. However, due to extensive overuse of N fertilizer, China's cropland was found to show the least negative GWP, or even positive GWP in recent decade. From both scientific and policy perspectives, it is essential to incorporate multiple GHGs into a coupled biogeochemical framework for fully assessing N impacts on climate changes. © 2012 Blackwell Publishing Ltd.

  5. A Unified Multi-scale Model for Cross-Scale Evaluation and Integration of Hydrological and Biogeochemical Processes

    NASA Astrophysics Data System (ADS)

    Liu, C.; Yang, X.; Bailey, V. L.; Bond-Lamberty, B. P.; Hinkle, C.

    2013-12-01

    Mathematical representations of hydrological and biogeochemical processes in soil, plant, aquatic, and atmospheric systems vary with scale. Process-rich models are typically used to describe hydrological and biogeochemical processes at the pore and small scales, while empirical, correlation approaches are often used at the watershed and regional scales. A major challenge for multi-scale modeling is that water flow, biogeochemical processes, and reactive transport are described using different physical laws and/or expressions at the different scales. For example, the flow is governed by the Navier-Stokes equations at the pore-scale in soils, by the Darcy law in soil columns and aquifer, and by the Navier-Stokes equations again in open water bodies (ponds, lake, river) and atmosphere surface layer. This research explores whether the physical laws at the different scales and in different physical domains can be unified to form a unified multi-scale model (UMSM) to systematically investigate the cross-scale, cross-domain behavior of fundamental processes at different scales. This presentation will discuss our research on the concept, mathematical equations, and numerical execution of the UMSM. Three-dimensional, multi-scale hydrological processes at the Disney Wilderness Preservation (DWP) site, Florida will be used as an example for demonstrating the application of the UMSM. In this research, the UMSM was used to simulate hydrological processes in rooting zones at the pore and small scales including water migration in soils under saturated and unsaturated conditions, root-induced hydrological redistribution, and role of rooting zone biogeochemical properties (e.g., root exudates and microbial mucilage) on water storage and wetting/draining. The small scale simulation results were used to estimate effective water retention properties in soil columns that were superimposed on the bulk soil water retention properties at the DWP site. The UMSM parameterized from smaller

  6. The effect of tidal forcing on biogeochemical processes in intertidal salt marsh sediments

    PubMed Central

    Taillefert, Martial; Neuhuber, Stephanie; Bristow, Gwendolyn

    2007-01-01

    Background Early diagenetic processes involved in natural organic matter (NOM) oxidation in marine sediments have been for the most part characterized after collecting sediment cores and extracting porewaters. These techniques have proven useful for deep-sea sediments where biogeochemical processes are limited to aerobic respiration, denitrification, and manganese reduction and span over several centimeters. In coastal marine sediments, however, the concentration of NOM is so high that the spatial resolution needed to characterize these processes cannot be achieved with conventional sampling techniques. In addition, coastal sediments are influenced by tidal forcing that likely affects the processes involved in carbon oxidation. Results In this study, we used in situ voltammetry to determine the role of tidal forcing on early diagenetic processes in intertidal salt marsh sediments. We compare ex situ measurements collected seasonally, in situ profiling measurements, and in situ time series collected at several depths in the sediment during tidal cycles at two distinct stations, a small perennial creek and a mud flat. Our results indicate that the tides coupled to the salt marsh topography drastically influence the distribution of redox geochemical species and may be responsible for local differences noted year-round in the same sediments. Monitoring wells deployed to observe the effects of the tides on the vertical component of porewater transport reveal that creek sediments, because of their confinements, are exposed to much higher hydrostatic pressure gradients than mud flats. Conclusion Our study indicates that iron reduction can be sustained in intertidal creek sediments by a combination of physical forcing and chemical oxidation, while intertidal mud flat sediments are mainly subject to sulfate reduction. These processes likely allow microbial iron reduction to be an important terminal electron accepting process in intertidal coastal sediments. PMID:17567893

  7. A Virtual Soil System to Study Macroscopic Manifestation of Pore-Scale Biogeochemical Processes

    NASA Astrophysics Data System (ADS)

    Liu, C.; Fang, Y.; Shang, J.; Bailey, V. L.

    2012-12-01

    Mechanistic soil biogeochemical processes occur at the pore-scale that fundamentally control the moisture and CO2 fluxes at the soil and atmosphere interface. This presentation will present an on-going research to investigate pore-scale moisture migration and biogeochemical processes of organic carbon degradation, and their macroscopic manifestation in soils. Soil cores collected from Rattlesnake Mountain in southeastern Washington, USA, where a field experiment was conducted to investigate dynamic response of soil biogeochemistry to changing climate conditions, were used as an example for this study. The cores were examined using computerized x-ray tomography (XCT) to determine soil pore structures. The XCT imaging, together with various measurements of soil properties such as porosity, moisture content, organic carbon, biochemistry, etc are used to establish a virtual soil core with a high spatial resolution (~20um). The virtual soil system is then used to simulate soil moisture migration and organic carbon degradation, to identify important physical and biogeochemical factors controlling macroscopic moisture and CO2 fluxes in response to changing climate conditions, and to develop and evaluate pragmatic biogeochemical process models for larger scale applications. Core-scale measurements of CO2 flux and moisture change are used for development and validation of the process models.

  8. Switchgrass influences soil biogeochemical processes in dryland region of the Pacific Northwest

    USDA-ARS?s Scientific Manuscript database

    Switchgrass and other perennial grasses have been promoted as biomass crops for production of renewable fuels. The objective of this study was to evaluate the effect of biomass removal on soil biogeochemical processes. A three year field study consisting of three levels of net primary productivity (...

  9. Effects of hydrologic conditions on biogeochemical processes and organic pollutant degradation in salt marsh sediments

    Treesearch

    W. James Catallo

    2000-01-01

    This work addressed the influence of tidal vs. static hydrologic conditions on biogeochemical processes and the transformation of pollutant organic chemicals (eight representative N-, O-, and S-heterocycles (NOSHs) from coal chemicals, crude oils, and pyrogenic mixtures) in salt marsh sediments. The goals were to: (1) determine the effects of static (flooded, drained)...

  10. Do antibiotics have environmental side-effects? Impact of synthetic antibiotics on biogeochemical processes.

    PubMed

    Roose-Amsaleg, Céline; Laverman, Anniet M

    2016-03-01

    Antibiotic use in the early 1900 vastly improved human health but at the same time started an arms race of antibiotic resistance. The widespread use of antibiotics has resulted in ubiquitous trace concentrations of many antibiotics in most environments. Little is known about the impact of these antibiotics on microbial processes or "non-target" organisms. This mini-review summarizes our knowledge of the effect of synthetically produced antibiotics on microorganisms involved in biogeochemical cycling. We found only 31 articles that dealt with the effects of antibiotics on such processes in soil, sediment, or freshwater. We compare the processes, antibiotics, concentration range, source, environment, and experimental approach of these studies. Examining the effects of antibiotics on biogeochemical processes should involve environmentally relevant concentrations (instead of therapeutic), chronic exposure (versus acute), and monitoring of the administered antibiotics. Furthermore, the lack of standardized tests hinders generalizations regarding the effects of antibiotics on biogeochemical processes. We investigated the effects of antibiotics on biogeochemical N cycling, specifically nitrification, denitrification, and anammox. We found that environmentally relevant concentrations of fluoroquinolones and sulfonamides could partially inhibit denitrification. So far, the only documented effects of antibiotic inhibitions were at therapeutic doses on anammox activities. The most studied and inhibited was nitrification (25-100 %) mainly at therapeutic doses and rarely environmentally relevant. We recommend that firm conclusions regarding inhibition of antibiotics at environmentally relevant concentrations remain difficult due to the lack of studies testing low concentrations at chronic exposure. There is thus a need to test the effects of these environmental concentrations on biogeochemical processes to further establish the possible effects on ecosystem functioning.

  11. Connections between physical, optical and biogeochemical processes in the Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Xiu, Peng; Chai, Fei

    2014-03-01

    A new biogeochemical model has been developed and coupled to a three-dimensional physical model in the Pacific Ocean. With the explicitly represented dissolved organic pools, this new model is able to link key biogeochemical processes with optical processes. Model validation against satellite and in situ data indicates the model is robust in reproducing general biogeochemical and optical features. Colored dissolved organic matter (CDOM) has been suggested to play an important role in regulating underwater light field. With the coupled model, physical and biological regulations of CDOM in the euphotic zone are analyzed. Model results indicate seasonal variability of CDOM is mostly determined by biological processes, while the importance of physical regulation manifests in the annual mean terms. Without CDOM attenuating light, modeled depth-integrated primary production is about 10% higher than the control run when averaged over the entire basin, while this discrepancy is highly variable in space with magnitudes reaching higher than 100% in some locations. With CDOM dynamics integrated in physical-biological interactions, a new mechanism by which physical processes affect biological processes is suggested, namely, physical transport of CDOM changes water optical properties, which can further modify underwater light field and subsequently affect the distribution of phytoplankton chlorophyll. This mechanism tends to occur in the entire Pacific basin but with strong spatial variability, implying the importance of including optical processes in the coupled physical-biogeochemical model. If ammonium uptake is sufficient to permit utilization of DOM, that is, UB∗⩾-U{U}/{U}-{(1-r_b)}/{RB}, then bacteria uptake of DOM has the form of FB=(1-r_b){U}/{RB}, bacteria respiration, SB=r_b×U, remineralization by bacteria, EB=UC{UN}/{UC}-{(1-r_b)}/{RB}. If EB > 0, then UB = 0; otherwise, UB = -EB. If there is insufficient ammonium, that is, UB∗<-U{U}/{U}-{(1-r_b)}/{RB}, then

  12. Improving the physics of a coupled physical biogeochemical model of the North Atlantic through data assimilation: Impact on the ecosystem

    NASA Astrophysics Data System (ADS)

    Berline, Léo; Brankart, Jean-Michel; Brasseur, Pierre; Ourmières, Yann; Verron, Jacques

    2007-01-01

    Several studies on coupled physical-biogeochemical models have shown that major deficiencies in the biogeochemical fields arise from the deficiencies in the physical flow fields. This paper examines the improvement of the physics through data assimilation, and the subsequent impact on the ecosystem response in a coupled model of the North Atlantic. Sea surface temperature and sea surface height data are assimilated with a sequential method based on the SEEK filter adapted to the coupling needs. The model domain covers the Atlantic from 20°S to 70°N at eddy-permitting resolution. The biogeochemical model is a NPZD-DOM model based on the P3ZD formulation. The results of an annual assimilated simulation are compared with an annual free simulation. With assimilation, the representation of the mixed layer depth is significantly improved in mid latitudes, even though the mixed layer depth is generally overestimated compared to the observations. The representation of the mean and variance of the currents is also significantly improved. The nutrient input in the euphotic zone is used to assess the data assimilation impact on the ecosystem. Data assimilation results in a 50% reduction of the input due to vertical mixing in mid-latitudes, and in a four- to six-fold increase of the advective fluxes in mid-latitudes and subtropics. Averaged zonally, the net impact is a threefold increase for the subtropical gyre, and a moderate (20-30%) decrease at mid and high latitudes. Surface chlorophyll concentration increases along the subtropical gyre borders, but little changes are detected at mid and high latitudes. An increase of the primary production appears along the Gulf Stream path, but it represents only 12% on average for mid and high latitudes. In the subtropical gyre centre, primary production is augmented but stays underestimated (20% of observations). These experiments show the benefits of physical data assimilation in coupled physical-biogeochemical applications.

  13. Identifying microorganisms responsible for ecologically significant biogeochemical processes.

    PubMed

    Madsen, Eugene L

    2005-05-01

    Throughout evolutionary time, and each day in every habitat throughout the globe, microorganisms have been responsible for maintaining the biosphere. Despite the crucial part that they play in the cycling of nutrients in habitats such as soils, sediments and waters, only rarely have the microorganisms actually responsible for key processes been identified. Obstacles that have traditionally impeded fundamental microbial ecology inquiries are now yielding to technical advancements that have important parallels in medical microbiology. The pace of new discoveries that document ecological processes and their causative agents will no doubt accelerate in the near future, and might assist in ecosystem management.

  14. Impact of satellite data assimilation in a coupled physical-biogeochemical model of the North Atlantic

    NASA Astrophysics Data System (ADS)

    Berline, L.; Brankart, J.-M.; Brasseur, P.

    The general objective of this work is to examine how the assimilation of data in a circulation model can improve the biological response simulated by a coupled physical-ecosystem model. In this work, the focus will be on the impact of altimetric, SST and SSS data assimilation in an eddy-permitting coupled model of the North Atlantic. The physical model is a z-coordinate, rigid lid, primitive-equation model based on the OPA code [Madec et al, 1998]. The horizontal resolution is 1/3° and there are 43 vertical levels with refinement near the surface. The biogeochemical model is the P3ZD biogeochemical model [Aumont et al., 1998] that describes the cycling of carbon, silica and calcium. The simulations are performed using realistic forcings during 1998. The assimilation method is based on a Kalman filter with reduced order error covariance matrix, known as the SEEK filter [ Pham et al., 1998]. The sequential scheme has been modified recently using the concept of "incremental analysis update" to enforce temporal continuity of the assimilation run. In order to evaluate how the assimilation can improve the representation of the biological fields, comparisons are made between free runs and simulations with assimilation. A first comparison with the assimilation run obtained using the scheme developed by Testut et al. [2003] indicates the excessive supply of nutrients in the euphotic zone through spurious mixing and advection mechanisms. This can be partly attributed to several factors, e.g. the statistical method which is unable to maintain the model constraint of hydrostatic stability, the discontinuous nature of the sequential algorithm, or the lack of consistent corrections between the physical and biological components of the state vector. Several variants of the assimilation algorithm are implemented in order to improve the representation of the model dynamics and its subsequent impact on the biological variables. A comparison between the assimilation runs obtained

  15. Impact of Large-Scale Climate Variability on Biogeochemical Processes in the Northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Gomez, F. A.; Lee, S. K.; Liu, Y.; Lamkin, J. T.; Hernandez, F., Jr.

    2016-12-01

    Regional high-resolution modeling studies in the Gulf of Mexico (GoM) suggest that significant changes may occur in the ocean circulations and hydrography due to anthropogenic greenhouse climate changes within this century. Particularly, surface temperatures in the northern GoM shelf are expected to increase more than 3°C at the end of the 21st century in a high CO2 emission scenario. Those changes most likely will have a strong impact on nutrient cycles, primary production, and dissolved oxygen concentration over the shelf, and cross-shelf exchanges of biological and chemical properties. However, we currently have a very limited understanding of how ocean biogeochemical processes in the northern GoM are influenced by large-scale climate variability in the region. In order to shed some light into this problem, we carried out a historical ocean-biogeochemical simulation for the period 1979 - 2015 using a high-resolution ( 8 km horizontally) ocean-biogeochemical model. This model is built on the Regional Ocean Model System (ROMS), nested to a 25 km resolution global ocean-sea ice model, and forced with realistic surface fluxes from the ERA-interim reanalysis. River discharge is explicitly represented based on historical records. Nitrogen and oxygen cycles are simulated with the Fennel biogeochemical model. Here, we describe dominant plankton responses to interannual changes in wind-driven ocean circulations and river run-off over the northern GoM shelf, linking the main patterns of variability to relevant modes of climate variability, particularly El Nino-Southern Oscillation (ENSO), North Atlantic Oscillation (NAO) and Atlantic Multi-decadal Oscillation (AMO). This study attempts to advance our understanding of the interplay between physical and biogeochemical processes that determine ecosystem variability in the GoM, and thus will help us better project the GoM ecosystem responses to anthropogenic climate changes.

  16. Development of a 3D coupled physical-biogeochemical model for the Marseille coastal area (NW Mediterranean Sea): what complexity is required in the coastal zone?

    PubMed

    Fraysse, Marion; Pinazo, Christel; Faure, Vincent Martin; Fuchs, Rosalie; Lazzari, Paolo; Raimbault, Patrick; Pairaud, Ivane

    2013-01-01

    Terrestrial inputs (natural and anthropogenic) from rivers, the atmosphere and physical processes strongly impact the functioning of coastal pelagic ecosystems. The objective of this study was to develop a tool for the examination of these impacts on the Marseille coastal area, which experiences inputs from the Rhone River and high rates of atmospheric deposition. Therefore, a new 3D coupled physical/biogeochemical model was developed. Two versions of the biogeochemical model were tested, one model considering only the carbon (C) and nitrogen (N) cycles and a second model that also considers the phosphorus (P) cycle. Realistic simulations were performed for a period of 5 years (2007-2011). The model accuracy assessment showed that both versions of the model were able of capturing the seasonal changes and spatial characteristics of the ecosystem. The model also reproduced upwelling events and the intrusion of Rhone River water into the Bay of Marseille well. Those processes appeared to greatly impact this coastal oligotrophic area because they induced strong increases in chlorophyll-a concentrations in the surface layer. The model with the C, N and P cycles better reproduced the chlorophyll-a concentrations at the surface than did the model without the P cycle, especially for the Rhone River water. Nevertheless, the chlorophyll-a concentrations at depth were better represented by the model without the P cycle. Therefore, the complexity of the biogeochemical model introduced errors into the model results, but it also improved model results during specific events. Finally, this study suggested that in coastal oligotrophic areas, improvements in the description and quantification of the hydrodynamics and the terrestrial inputs should be preferred over increasing the complexity of the biogeochemical model.

  17. Development of a 3D Coupled Physical-Biogeochemical Model for the Marseille Coastal Area (NW Mediterranean Sea): What Complexity Is Required in the Coastal Zone?

    PubMed Central

    Fraysse, Marion; Pinazo, Christel; Faure, Vincent Martin; Fuchs, Rosalie; Lazzari, Paolo; Raimbault, Patrick; Pairaud, Ivane

    2013-01-01

    Terrestrial inputs (natural and anthropogenic) from rivers, the atmosphere and physical processes strongly impact the functioning of coastal pelagic ecosystems. The objective of this study was to develop a tool for the examination of these impacts on the Marseille coastal area, which experiences inputs from the Rhone River and high rates of atmospheric deposition. Therefore, a new 3D coupled physical/biogeochemical model was developed. Two versions of the biogeochemical model were tested, one model considering only the carbon (C) and nitrogen (N) cycles and a second model that also considers the phosphorus (P) cycle. Realistic simulations were performed for a period of 5 years (2007–2011). The model accuracy assessment showed that both versions of the model were able of capturing the seasonal changes and spatial characteristics of the ecosystem. The model also reproduced upwelling events and the intrusion of Rhone River water into the Bay of Marseille well. Those processes appeared to greatly impact this coastal oligotrophic area because they induced strong increases in chlorophyll-a concentrations in the surface layer. The model with the C, N and P cycles better reproduced the chlorophyll-a concentrations at the surface than did the model without the P cycle, especially for the Rhone River water. Nevertheless, the chlorophyll-a concentrations at depth were better represented by the model without the P cycle. Therefore, the complexity of the biogeochemical model introduced errors into the model results, but it also improved model results during specific events. Finally, this study suggested that in coastal oligotrophic areas, improvements in the description and quantification of the hydrodynamics and the terrestrial inputs should be preferred over increasing the complexity of the biogeochemical model. PMID:24324589

  18. Biogeochemical processes driving mercury cycling in estuarine ecosystems

    NASA Astrophysics Data System (ADS)

    Schartup, A. T.

    2015-12-01

    Mercury (Hg) is a naturally occurring element that has been enriched in the environment through human activities, particularly in the coastal zone. Bioaccumulation of methylmercury (MeHg) in marine fishposes health risks for fish-consuming populations and is a worldwide health concern. A broader understanding of major environmental processes controlling Hg cycling and MeHg production and bioaccumulation in estuaries is therefore needed. Recent fieldwork and modeling show diverse sources of MeHg production in estuaries. We present geochemical modeling results for Hg and MeHg acrossmultiple estuaries with contrasting physical, chemical and biological characteristics. We report new measurements of water column and sediment mercury speciation and methylation data from the subarctic (Lake Melville, Labrador Canada) and temperate latitudes (Long Island Sound, Delaware Bay, Chesapeake Bay). We find that benthic sediment is a relatively small source of MeHg to the water column in all systems. Water column methylation drives MeHg levels in Lake Melville, whereas in more impacted shallow systems such as Chesapeake Bay and Long Island Sound, external inputs and sediment resuspension are more dominant. All systems are a net source of MeHg to the ocean through tidal exchange. In light of these inter-system differences, we will evaluate timescales of coastal ecosystem responses to changes in Hg loading that can help predict potential responses to future perturbations.

  19. Evidence of biogeochemical processes in iron duricrust formation

    NASA Astrophysics Data System (ADS)

    Levett, Alan; Gagen, Emma; Shuster, Jeremiah; Rintoul, Llew; Tobin, Mark; Vongsvivut, Jitraporn; Bambery, Keith; Vasconcelos, Paulo; Southam, Gordon

    2016-11-01

    Canga is a moderately hard iron-rich duricrust primarily composed of goethite as a result of the weathering of banded iron formations. Canga duricrusts lack a well-developed soil profile and consequently form an innate association with rupestrian plants that may become ferruginised, contributing to canga possessing macroscopic biological features. Examination of polished canga using a field emission scanning electron microscope (FE-SEM) revealed the biological textures associated with canga extended to the sub-millimetre scale in petrographic sections and polished blocks. Laminae that formed by abiotic processes and regions where goethite cements were formed in association with microorganisms were observed in canga. Biological cycling of iron within canga has resulted in two distinct forms of microbial fossilisation: permineralisation of multispecies biofilms and mineralisation of cell envelopes. Goethite permineralised biofilms frequently formed around goethite-rich kaolinite grains in close proximity to goethite bands and were composed of micrometre-scale rod-shaped, cocci and filamentous microfossils. In contrast, the cell envelopes immobilised by authigenic iron oxides were primarily of rod-shaped microorganisms, were not permineralised and occurred in pore spaces within canga. Complete mineralisation of intact rod-shaped casts and the absence of permineralisation suggested mineralised cell envelopes may represent fossilised iron-oxidising bacteria in the canga ecosystem. Replication of these iron-oxidising bacteria appeared to infill the porous regions within canga. Synchrotron-based Fourier transform infrared (FTIR) microspectroscopy demonstrated that organic biomarkers were poorly preserved with only weak bands indicative of aliphatic methylene (CH2) associated with permineralised microbial biofilms. High resolution imaging of microbial fossils in canga that had been etched with oxalic acid supported the poor preservation of organic biomarkers within canga

  20. HYDROBIOGEOCHEM: A coupled model of HYDROlogic transport and mixed BIOGEOCHEMical kinetic/equilibrium reactions in saturated-unsaturated media

    SciTech Connect

    Yeh, G.T.; Salvage, K.M.; Gwo, J.P.; Zachara, J.M.; Szecsody, J.E.

    1998-07-01

    The computer program HYDROBIOGEOCHEM is a coupled model of HYDROlogic transport and BIOGEOCHEMical kinetic and/or equilibrium reactions in saturated/unsaturated media. HYDROBIOGEOCHEM iteratively solves the two-dimensional transport equations and the ordinary differential and algebraic equations of mixed biogeochemical reactions. The transport equations are solved for all aqueous chemical components and kinetically controlled aqueous species. HYDROBIOGEOCHEM is designed for generic application to reactive transport problems affected by both microbiological and geochemical reactions in subsurface media. Input to the program includes the geometry of the system, the spatial distribution of finite elements and nodes, the properties of the media, the potential chemical and microbial reactions, and the initial and boundary conditions. Output includes the spatial distribution of chemical and microbial concentrations as a function of time and space, and the chemical speciation at user-specified nodes.

  1. Geo- and biogeochemical processes in a heliothermal hypersaline lake

    NASA Astrophysics Data System (ADS)

    Zachara, John M.; Moran, James J.; Resch, Charles T.; Lindemann, Stephen R.; Felmy, Andrew R.; Bowden, Mark E.; Cory, Alexandra B.; Fredrickson, James K.

    2016-05-01

    precipitation in the mixolimnion and metalimnion, but the absence of calcareous sediments at depth suggests dissolution and recycling during winter months. Dissolved carbon concentrations [dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC)] increased with depth, reaching ∼0.04 mol/L at the metalimnion-monimolimnion boundary. DIC concentrations were seasonally variable in the mixolimnion and metalimnion, and were influenced by calcium carbonate precipitation. DOC concentrations mimicked those of conservative salts (e.g., Na+-Cl-) in the mixolimnion and metalimnion, but decreased in the monimolimnion where mass loss by anaerobic microbial processes is implied. Biogenic reduced solutes originating in monimolimnion (H2S and CH4) were biologically oxidized in the metalimnion as they were not observed in more shallow lake waters. Multi-year solute inventory calculations indicated that Hot Lake is a stable, albeit seasonally and annually dynamic feature, with inorganic solutes cycled between lake waters and sediments depending on annual recharge, temperature, and lake water dilution state. With its extreme geochemical and thermal regime, Hot Lake functions as analog of early earth and extraterrestrial life environments.

  2. Geo- and Biogeochemical Processes in a Heliothermal Hypersaline Lake

    SciTech Connect

    Zachara, John M.; Moran, James J.; Resch, Charles T.; Lindemann, Stephen R.; Felmy, Andrew R.; Bowden, Mark E.; Cory, Alexandra B.; Fredrickson, Jim K.

    2016-03-17

    exchange, and lower winter lake temperatures. Solubility calculations indicated seasonal biogenic and thermogenic aragonite precipitation in the upper and lower mixolimnion, but the absence of calcareous sediments at depth suggested dissolution and recycling during winter months. Carbon concentrations were high in Hot Lake (e.g., 0 to 450 mg/L for both DOC and DIC) and increased with depth. DIC concentrations were variable and influenced by calcium carbonate precipitation, but DOC concentrations remained constant except in the monimolimnion where mass loss by anaerobic microbial processes was implied. Biogenic reduced solutes originating in monimolimnion (H2S and CH4) appeared to be biologically oxidized in the metalimnion as they were not observed in more shallow lake waters. Multi-year solute inventory calculations indicated that Hot Lake is a stable, albeit seasonally and annually dynamic feature, with inorganic solutes cycled between lake waters and sediments depending on annual recharge, temperature, and lake water dilution state. Hot Lake with its extreme geochemical and thermal regime functions as analogue of early earth and extraterrestrial life environments.

  3. 239,240Pu/137Cs ratios in the water column of the North Pacific: a proxy of biogeochemical processes.

    PubMed

    Hirose, Katsumi; Aoyama, Michio; Povinec, Pavel P

    2009-03-01

    Anthropogenic radionuclides in seawater have been used as transient tracers of processes in the marine environment. Especially, plutonium in seawater is considered to be a valuable tracer of biogeochemical processes due to its particle-reactive properties. However, its behavior in the ocean is also affected by physical processes such as advection, mixing and diffusion. Here we introduce Pu/(137)Cs ratio as a proxy of biogeochemical processes and discuss its trends in the water column of the North Pacific Ocean. We observed that the (239,240)Pu/(137)Cs ratio in seawater exponentially increased with increasing depth (depth range: 100-1000 m). This finding suggests that the profiles of the (239,240)Pu/(137)Cs ratios in shallower waters directly reflect biogeochemical processes in the water column. A half-regeneration depth deduced from the curve fitting the observed data, showed latitudinal and longitudinal distributions, also related to biogeochemical processes in the water column.

  4. Rn as a geochemical tool for estimating residence times in the hyporheic zone and its application to biogeochemical processes

    NASA Astrophysics Data System (ADS)

    Gilfedder, Benjamin; Dörner, Sebastian; Ebertshäuser, Marlene Esther; Glaser, Barbara; Klug, Maria; Pittroff, Marco; Pieruschka, Ines; Waldemer, Carolin

    2014-05-01

    The hyporheic zone is at the interface between groundwater and surface water systems. It is also often a geochemical and redox boundary between typically reduced groundwater and oxic surface water. It experiences dynamic physical and chemical conditions as both groundwater fluxes and surface water levels vary in time and space. This can be particularly important for processes such as biogeochemical processing of nutrients and carbon. There has recently been an increasing focus on coupling residence times of surface water in the hyporheic zone with biogeochemical reactions. While geochemical profiles can be readily measured using established geochemical sampling techniques (e.g. peepers), quantifying surface water residence times and flow paths within the hyporheic zone is more elusive. The nobel gas radon offers a method for quantification of surface water residence times in the hyporheic zone. Radon activities are typically low in surface waters due to degassing to the atmosphere and decay. However once the surface water flows into the hyporheic zone radon accumulates along the flow path due to emanation from the sediments. Using simple analytical equations the water residence time can be calculated based on the difference between measured 222Rn activities and 222Rn activities at secular equilibrium, with a maximum limit of about 20 days (depending on measurement precision). Rn is particularly suited to residence time measurements in the hyporheic zone since it does not require addition of tracers to the stream nor does it require complex simulations and assumptions (such as 1D vertical flow) as for temperature measurements. As part of the biogeochemistry course at the University of Bayreuth, we have investigated the coupling of redox processes and water residence times in the hyporheic zone using 222Rn as a tracer for residence time. Of particular interest were nitrate and sulfate reduction and methane and CO2 production. Measurements were made in a sandy section

  5. Towards coupled physical-biogeochemical models of the ocean carbon cycle

    NASA Technical Reports Server (NTRS)

    Rintoul, Stephen R.

    1992-01-01

    The purpose of this review is to discuss the critical gaps in our knowledge of ocean dynamics and biogeochemical cycles. It is assumed that the ultimate goal is the design of a model of the earth system that can predict the response to changes in the external forces driving climate.

  6. Modelling of transport and biogeochemical processes in pollution plumes: Vejen landfill, Denmark

    NASA Astrophysics Data System (ADS)

    Brun, Adam; Engesgaard, Peter; Christensen, Thomas H.; Rosbjerg, Dan

    2002-01-01

    A biogeochemical transport code is used to simulate leachate attenuation, biogeochemical processes, and development of redox zones in a pollution plume downstream of the Vejen landfill in Denmark. Calibration of the degradation parameters resulted in a good agreement with the observed distribution in the plume of a number of species, such as dissolved organic carbon (DOC), Fe 2+, NO 3-, HCO 3-, SO 42-, CH 4, and pH. The simulated redox zones agree with observations confirming that the Fe-reducing zone played an important role in the attenuation of the DOC plume. Effective first-order rate constants for every redox zone were determined giving DOC half-lives ranging from 100 to 1-2 days going from the methanogenic to the aerobic zone. The order of decrease in DOC half-lives from the anaerobic to the aerobic zone corresponds to findings at other landfills.

  7. Cyclic biogeochemical processes and nitrogen fate beneath a subtropical stormwater infiltration basin.

    PubMed

    O'Reilly, Andrew M; Chang, Ni-Bin; Wanielista, Martin P

    2012-05-15

    A stormwater infiltration basin in north-central Florida, USA, was monitored from 2007 through 2008 to identify subsurface biogeochemical processes, with emphasis on N cycling, under the highly variable hydrologic conditions common in humid, subtropical climates. Cyclic variations in biogeochemical processes generally coincided with wet and dry hydrologic conditions. Oxidizing conditions in the subsurface persisted for about one month or less at the beginning of wet periods with dissolved O(2) and NO(3)(-) showing similar temporal patterns. Reducing conditions in the subsurface evolved during prolonged flooding of the basin. At about the same time O(2) and NO(3)(-) reduction concluded, Mn, Fe and SO(4)(2-) reduction began, with the onset of methanogenesis one month later. Reducing conditions persisted up to six months, continuing into subsequent dry periods until the next major oxidizing infiltration event. Evidence of denitrification in shallow groundwater at the site is supported by median NO(3)(-)-N less than 0.016 mg L(-1), excess N(2) up to 3 mg L(-1) progressively enriched in δ(15)N during prolonged basin flooding, and isotopically heavy δ(15)N and δ(18)O of NO(3)(-) (up to 25‰ and 15‰, respectively). Isotopic enrichment of newly infiltrated stormwater suggests denitrification was partially completed within two days. Soil and water chemistry data suggest that a biogeochemically active zone exists in the upper 1.4m of soil, where organic carbon was the likely electron donor supplied by organic matter in soil solids or dissolved in infiltrating stormwater. The cyclic nature of reducing conditions effectively controlled the N cycle, switching N fate beneath the basin from NO(3)(-) leaching to reduction in the shallow saturated zone. Results can inform design of functionalized soil amendments that could replace the native soil in a stormwater infiltration basin and mitigate potential NO(3)(-) leaching to groundwater by replicating the biogeochemical

  8. Cyclic biogeochemical processes and nitrogen fate beneath a subtropical stormwater infiltration basin

    USGS Publications Warehouse

    O'Reilly, Andrew M.; Chang, Ni-Bin; Wanielista, Martin P.

    2012-01-01

    A stormwater infiltration basin in north–central Florida, USA, was monitored from 2007 through 2008 to identify subsurface biogeochemical processes, with emphasis on N cycling, under the highly variable hydrologic conditions common in humid, subtropical climates. Cyclic variations in biogeochemical processes generally coincided with wet and dry hydrologic conditions. Oxidizing conditions in the subsurface persisted for about one month or less at the beginning of wet periods with dissolved O2 and NO3- showing similar temporal patterns. Reducing conditions in the subsurface evolved during prolonged flooding of the basin. At about the same time O2 and NO3- reduction concluded, Mn, Fe and SO42- reduction began, with the onset of methanogenesis one month later. Reducing conditions persisted up to six months, continuing into subsequent dry periods until the next major oxidizing infiltration event. Evidence of denitrification in shallow groundwater at the site is supported by median NO3-–N less than 0.016 mg L-1, excess N2 up to 3 mg L-1 progressively enriched in δ15N during prolonged basin flooding, and isotopically heavy δ15N and δ18O of NO3- (up to 25‰ and 15‰, respectively). Isotopic enrichment of newly infiltrated stormwater suggests denitrification was partially completed within two days. Soil and water chemistry data suggest that a biogeochemically active zone exists in the upper 1.4 m of soil, where organic carbon was the likely electron donor supplied by organic matter in soil solids or dissolved in infiltrating stormwater. The cyclic nature of reducing conditions effectively controlled the N cycle, switching N fate beneath the basin from NO3- leaching to reduction in the shallow saturated zone. Results can inform design of functionalized soil amendments that could replace the native soil in a stormwater infiltration basin and mitigate potential NO3- leaching to groundwater by replicating the biogeochemical conditions under the observed basin.

  9. Modeling greenhouse gas emissions and nutrient transport in managed arable soils with a fully coupled hydrology-biogeochemical modeling system

    NASA Astrophysics Data System (ADS)

    Haas, Edwin; Klatt, Steffen; Kiese, Ralf; Butterbach-Bahl, Klaus; Kraft, Philipp; Breuer, Lutz

    2015-04-01

    evapotranspiration is based on Penman-Monteith. Biogeochemical processes are modelled by LandscapeDNDC, including soil microclimate, plant growth and biomass allocation, organic matter mineralisation, nitrification, denitrification, chemodenitrification and methanogenesis producing and consuming soil based greenhouse gases. The model application will present first results of the coupled model to simulate soil based greenhouse gas emissions as well as nitrate discharge from the Yanting catchment. The model application will also present the effects of different management practices (fertilization rates and timings, tilling, residues management) on the redistribution of N surplus within the catchment causing biomass productivity gradients and different levels of indirect N2O emissions along topographical gradients.

  10. Global Biogeochemical Cycle of Si: Its Coupling to the Perturbed C-N-P cycles in Industrial Time

    NASA Astrophysics Data System (ADS)

    Lerman, A.; Li, D. D.; MacKenzie, F. T.

    2010-12-01

    The importance of silicon (Si) in global biogeochemical cycles is demonstrated by its abundance in the land and aquatic biomass, where Si/C is 0.02 in land plants and 0.15 in marine organisms. Estimates show that Si-bioproduction accounts for ~1.5% of terrestrial primary production, and ~4.5% in the coastal ocean. Human land-use activities have substantially changed regional patterns of vegetation distribution, soil conditions, and nutrient fluxes via runoff to the coastal ocean. Anthropogenic chemical fertilization of the land has caused a significant increase in fluvial nitrogen (N) and phosphorus (P) transport, whereas land-use and vegetation mass changes have caused variations in the riverine Si input, all eventually affecting the cycling of nutrients in the marine environment. We developed a global biogeochemical model of the Si cycle as coupled to the global C-N-P cycle model, TOTEM II (Terrestrial-Ocean-aTmosphere-Ecosystem-Model). In the model analysis from year 1700, taken as the start of the Anthropocene, to 2050, the bioproduction of Si on land and in the ocean is coupled to the bioproduction of C, perturbed by the atmospheric CO2 rise, land-use changes, and chemical fertilization. Also, temperature rise affects the Si cycling on land through bioproduction rates, terrestrial organic matter remineralization, and weathering, thereby affecting its delivery to the coastal zone. The results show that biouptake and subsequent release of Si on land strongly affect the Si river flux to the coastal ocean. During the 350-year period, Si river discharge has increased by ~10% until ~1940, decreasing since then to below its 1700 value and continuing to drop, under the current IPCC IS92 projections of CO2, temperature and other forcings. From 1700 to ~1950, land-use changes, associated with slash and burn of large areas of high-productivity land, caused a decrease of global land vegetation. Dissolution of Si in soil humus and weathering of silicate minerals are the

  11. Characterization of eco-hydraulic habitats for examining biogeochemical processes in rivers

    NASA Astrophysics Data System (ADS)

    McPhillips, L. E.; O'Connor, B. L.; Harvey, J. W.

    2009-12-01

    Spatial variability in biogeochemical reaction rates in streams is often attributed to sediment characteristics such as particle size, organic material content, and biota attached to or embedded within the sediments. Also important in controlling biogeochemical reaction rates are hydraulic conditions, which influence mass transfer of reactants from the stream to the bed, as well as hyporheic exchange within near-surface sediments. This combination of physical and ecological variables has the potential to create habitats that are unique not only in sediment texture but also in their biogeochemical processes and metabolism rates. In this study, we examine the two-dimensional (2D) variability of these habitats in an agricultural river in central Iowa. The streambed substratum was assessed using a grid-based survey identifying dominant particle size classes, as well as aerial coverage of green algae, benthic organic material, and coarse woody debris. Hydraulic conditions were quantified using a calibrated 2D model, and hyporheic exchange was assessed using a scaling relationship based on sediment and hydraulic characteristics. Point-metabolism rates were inferred from measured sediment dissolved oxygen profiles using an effective diffusion model and compared to traditional whole-stream measurements of metabolism. The 185 m study reach had contrasting geomorphologic and hydraulic characteristics in the upstream and downstream portions of an otherwise relatively straight run of a meandering river. The upstream portion contained a large central gravel bar (50 m in length) flanked by riffle-run segments and the downstream portion contained a deeper, fairly uniform channel cross-section. While relatively high flow velocities and gravel sediments were characteristic of the study river, the upstream island bar separated channels that differed with sandy gravels on one side and cobbley gravels on the other. Additionally, green algae was almost exclusively found in riffle

  12. EFFECT OF NUTRIENT LOADING ON BIOGEOCHEMICAL AND MICROBIAL PROCESSES IN A NEW ENGLAND HIGH SALT MARSH, SPARTINA PATNES, (AITON MUHL)

    EPA Science Inventory

    Coastal marshes represent an important transitional zone between uplands and estuaries and can assimilate nutrient inputs from uplands. We examined the effects of nitrogen (N) and phosphorus (P) fertilization on biogeochemical and microbial processes during the summer growing sea...

  13. EFFECT OF NUTRIENT LOADING ON BIOGEOCHEMICAL AND MICROBIAL PROCESSES IN A NEW ENGLAND HIGH SALT MARSH, SPARTINA PATNES, (AITON MUHL)

    EPA Science Inventory

    Coastal marshes represent an important transitional zone between uplands and estuaries and can assimilate nutrient inputs from uplands. We examined the effects of nitrogen (N) and phosphorus (P) fertilization on biogeochemical and microbial processes during the summer growing sea...

  14. Comparing soil biogeochemical processes in novel and natural boreal forest ecosystems

    NASA Astrophysics Data System (ADS)

    Quideau, S. A.; Swallow, M. J. B.; Prescott, C. E.; Grayston, S. J.; Oh, S.-W.

    2013-08-01

    Emulating the variability that exists in the natural landscape prior to disturbance should be a goal of soil reconstruction and land reclamation efforts following resource extraction. Long-term ecosystem sustainability within reclaimed landscapes can only be achieved with the re-establishment of biogeochemical processes between reconstructed soils and plants. In this study, we assessed key soil biogeochemical attributes (nutrient availability, organic matter composition, and microbial communities) in reconstructed, novel, anthropogenic ecosystems, covering different reclamation treatments following open-cast mining for oil extraction. We compared the attributes to those present in a range of natural soils representative of mature boreal forest ecosystems in the same area of Northern Alberta. Soil nutrient availability was determined in situ with resin probes, organic matter composition was described with 13C nuclear magnetic resonance spectroscopy and soil microbial community structure was characterized using phospholipid fatty acid analysis. Significant differences among natural ecosystems were apparent in nutrient availability and seemed more related to the dominant tree cover than to soil type. When analyzed together, all natural forests differed significantly from the novel ecosystems, in particular with respect to soil organic matter composition. However, there was some overlap between the reconstructed soils and some of the natural ecosystems in nutrient availability and microbial communities, but not in organic matter characteristics. Hence, our results illustrate the importance of considering the range of natural landscape variability and including several soil biogeochemical attributes when comparing novel, anthropogenic ecosystems to the mature ecosystems that constitute ecological targets.

  15. Comparing soil biogeochemical processes in novel and natural boreal forest ecosystems

    NASA Astrophysics Data System (ADS)

    Quideau, S. A.; Swallow, M. J. B.; Prescott, C. E.; Grayston, S. J.; Oh, S.-W.

    2013-04-01

    Emulating the variability that exists in the natural landscape prior to disturbance should be a goal of soil reconstruction and land reclamation efforts following resource extraction. Long-term ecosystem sustainability within reclaimed landscapes can only be achieved with the re-establishment of biogeochemical processes between reconstructed soils and plants. In this study, we assessed key soil biogeochemical attributes (nutrient availability, organic matter composition, and microbial communities) in reconstructed, novel, anthropogenic ecosystems covering different reclamation treatments following open-cast mining for oil extraction. We compared the attributes to those present in a range of natural soils representative of mature boreal forest ecosystems in the same area of northern Alberta. Soil nutrient availability was determined in situ with resin probes, organic matter composition was described with 13C nuclear magnetic resonance spectroscopy and soil microbial community structure was characterized using phospholipid fatty acid analysis. Significant differences among natural ecosystems were apparent in nutrient availability and seemed more related to the dominant tree cover than to soil type. When analyzed together, all natural forests differed significantly from the novel ecosystems, in particular with respect to soil organic matter composition. However, there was some overlap between the reconstructed soils and some of the natural ecosystems in nutrient availability and microbial communities, but not in organic matter characteristics. Hence, our results illustrate the importance of considering the range of natural landscape variability, and including several soil biogeochemical attributes when comparing novel, anthropogenic ecosystems to the mature ecosystems that constitute ecological targets.

  16. Biogeochemical processes on tree islands in the greater everglades: Initiating a new paradigm

    USGS Publications Warehouse

    Wetzel, P.R.; Sklar, Fred H.; Coronado, C.A.; Troxler, T.G.; Krupa, S.L.; Sullivan, P.L.; Ewe, S.; Price, R.M.; Newman, S.; Orem, W.H.

    2011-01-01

    Scientists' understanding of the role of tree islands in the Everglades has evolved from a plant community of minor biogeochemical importance to a plant community recognized as the driving force for localized phosphorus accumulation within the landscape. Results from this review suggest that tree transpiration, nutrient infiltration from the soil surface, and groundwater flow create a soil zone of confluence where nutrients and salts accumulate under the head of a tree island during dry periods. Results also suggest accumulated salts and nutrients are flushed downstream by regional water flows during wet periods. That trees modulate their environment to create biogeochemical hot spots and strong nutrient gradients is a significant ecological paradigm shift in the understanding of the biogeochemical processes in the Everglades. In terms of island sustainability, this new paradigm suggests the need for distinct dry-wet cycles as well as a hydrologic regime that supports tree survival. Restoration of historic tree islands needs further investigation but the creation of functional tree islands is promising. Copyright ?? 2011 Taylor & Francis Group, LLC.

  17. A general paradigm to model reaction-based biogeochemical processes in batch systems

    NASA Astrophysics Data System (ADS)

    Fang, Yilin; Yeh, Gour-Tsyh; Burgos, William D.

    2003-04-01

    This paper presents the development and illustration of a numerical model of reaction-based geochemical and biochemical processes with mixed equilibrium and kinetic reactions. The objective is to provide a general paradigm for modeling reactive chemicals in batch systems, with expectations that it is applicable to reactive chemical transport problems. The unique aspects of the paradigm are to simultaneously (1) facilitate the segregation (isolation) of linearly independent kinetic reactions and thus enable the formulation and parameterization of individual rates one reaction by one reaction when linearly dependent kinetic reactions are absent, (2) enable the inclusion of virtually any type of equilibrium expressions and kinetic rates users want to specify, (3) reduce problem stiffness by eliminating all fast reactions from the set of ordinary differential equations governing the evolution of kinetic variables, (4) perform systematic operations to remove redundant fast reactions and irrelevant kinetic reactions, (5) systematically define chemical components and explicitly enforce mass conservation, (6) accomplish automation in decoupling fast reactions from slow reactions, and (7) increase the robustness of numerical integration of the governing equations with species switching schemes. None of the existing models to our knowledge has included these scopes simultaneously. This model (BIOGEOCHEM) is a general computer code to simulate biogeochemical processes in batch systems from a reaction-based mechanistic standpoint, and is designed to be easily coupled with transport models. To make the model applicable to a wide range of problems, programmed reaction types include aqueous complexation, adsorption-desorption, ion-exchange, oxidation-reduction, precipitation-dissolution, acid-base reactions, and microbial mediated reactions. In addition, user-specified reaction types can be programmed into the model. Any reaction can be treated as fast/equilibrium or slow

  18. Coupled biogeochemical cycles in riparian zones with contrasting hydrogeomorphic characteristics in the US Midwest

    NASA Astrophysics Data System (ADS)

    Liu, X.

    2012-12-01

    In this study we aims to understand what drives the fate and transport of multiple contaminants sensitive to soil redox condition across hydrogeomorphic (HGM) gradient and evaluate overall biogeochemical functions of riparian zones regarding those contaminants. We conducted monthly field work for 19 consecutive months from November 2009 to May 2011 at three study sites representative for main HGM types at the US Midwest. We collected the parameters from different sources which include field parameters, such as topography, water table depth, oxidation reduction potential (ORP) and dissolved oxygen (DO), and groundwater chemistry, such as NH4+, NO3-, PO43-, SO42-, CI- , and Hg and MeHg. Our results demonstrated that seasonal water table fluctuations and groundwater flows characteristics at three sites are strongly affected by their HGM setting. Specifically, the convergence of quick rise of water table, high ORP and sharp decrease in concentrations of NO3- and SO42 from field edge to stream edge (60-90% at LWD and 90% at WR) in spring after snowmelt and early May, which could be explained by that snow melt and early summer rainfall are major drivers of fluctuations of water table, variations of ORP and transport and transformation of contaminants. Riparian zones removed NO3- and SO42- during high water table but released Mercury in summer at both LWD and WR, and sulfate reduction, ammonia production and MeHg production all occurred when ORP and water tables were low in summer. These results might reflect the strong ORP control on these processes at landscape scale. These findings supported our hypothesis. Other findings however contrast to our hypothesis. For instances, unusual high concentrations of nitrate and Hg at WR suggest that the transport and fate of multiple contaminants relate not only to HGM settings but geographic location and land use. Negligible variations of P concentration in groundwater indicate that the transformation of P is not sensitive to soil

  19. Study of the Tagus estuarine plume using coupled hydro and biogeochemical models

    NASA Astrophysics Data System (ADS)

    Vaz, Nuno; Leitão, Paulo C.; Juliano, Manuela; Mateus, Marcos; Dias, João. Miguel; Neves, Ramiro

    2010-05-01

    Plumes of buoyant water produced by inflow from rivers and estuaries are common on the continental shelf. Buoyancy associated with estuarine waters is a key mediating factor in the transport and transformation of dissolved and particulate materials in coastal margins. The offshore displacement of the plume is influenced greatly by the local alongshore wind, which will tend to advect the plume either offshore or onshore, consistently with the Ekman transport. Other factor affecting the propagation of an estuarine plume is the freshwater inflow on the landward boundary. In this paper, a coupled three-dimensional ocean circulation and biogeochemical model with realistic high and low frequency forcing is used to get insight on how the Tagus River plume responds to wind and freshwater discharge during winter and spring. A nesting approach based on the MOHID numerical system was implemented for the Tagus estuary near shelf. Realistic hindcast simulations were performed, covering a period from January to June 2007. Model results were evaluated using in-situ and satellite imagery data. The numerical model was implemented using a three level nesting model. The model domain includes the whole Portuguese coast, the Tagus estuary near shelf and the Tagus River estuary, using a realistic coastline and bottom topography. River discharge and wind forcing are considered as landward and surface boundary conditions, respectively. Initial ocean stratification is from the MERCATOR solution. Ambient shelf conditions include tidal motion. As a prior validation, models outputs of salinity and water temperature were compared to available data (January 30th and May 30th, 2007) and were found minor differences between model outputs and data. On January 30th, outside the estuary, the model results reveal a stratified water column, presenting salinity stratification of the order of 3-4. The model also reproduces the hydrography for the May 30th observations. In May, near the Tagus mouth

  20. Coupled Hydrological and Biogeochemical Controls on Methylmercury Production and Export from a Boreal Wetland

    NASA Astrophysics Data System (ADS)

    Heyes, A.; Krabbenhoft, D. P.; Branfireun, B. A.; Gilmour, C. C.; Mitchell, C. P.; Tate, M. T.; Richardson, M.

    2007-12-01

    Through long-term addition of a mercury (Hg) stable isotope to a wetland, we have begun to unravel the complexity of Hg and methylmercury (MeHg) cycling in a Boreal wetland. As part of the METAALICUS project being conducted at the Experimental Lakes Area, the lake 658 wetland was annually amended from 2001-2006 with a mercury isotope at a level approximately 5 times the annual anthropogenic deposition. However, wetlands not only receive Hg directly from atmospheric deposition, but also from upland runoff and from adjacent water bodies during periods of inundation. As METAALICUS is a whole watershed experiment, both the adjacent lake and uplands were each amended with a different mercury isotope. This has allowed us to study the cycling of Hg within the wetland in a watershed context. What is clear from this integrated approach is Hg cycling is dependent on the complex interplay of hydrodynamic and biogeochemical factors which will form the focus of this presentation. The Lake 658 wetland is classified as a basin oligotrophic swamp, and is surrounded on three sides by steeply sloping uplands and on the fourth by a lake. The morphology of the wetland causes large portions of the wetland to be hydrologically disconnected for long periods during dry periods in the summer and by ice in winter. When flow occurs, it is along defined channels rather than by sheet flow, which is partially an artifact of the basin morphology. Thus, wetland form influences the wetland volume that contributes to Hg and MeHg export. The majority of the Hg isotope added to the wetland has been retained in the vegetation and upper few centimeters of peat, with less than 1% exported despite the substantial export of both inorganic ambient Hg and MeHg. As little newly deposited Hg, represented by the amended isotope has been exported, we hypothesize that Hg export from wetlands is strongly coupled to decomposition and the fate of dissolved organic carbon which binds both Hg and MeHg. While MeHg is

  1. Volume reduction outweighs biogeochemical processes in controlling phosphorus treatment in aged detention systems

    NASA Astrophysics Data System (ADS)

    Shukla, Asmita; Shukla, Sanjay; Annable, Michael D.; Hodges, Alan W.

    2017-08-01

    Stormwater detention areas (SDAs) play an important role in treating end-of-the-farm runoff in phosphorous (P) limited agroecosystems. Phosphorus transport from the SDAs, including those through subsurface pathways, are not well understood. The prevailing understanding of these systems assumes that biogeochemical processes play the primary treatment role and that subsurface losses can be neglected. Water and P fluxes from a SDA located in a row-crop farm were measured for two years (2009-2011) to assess the SDA's role in reducing downstream P loads. The SDA treated 55% (497 kg) and 95% (205 kg) of the incoming load during Year 1 (Y1, 09-10) and Year 2 (Y2, 10-11), respectively. These treatment efficiencies were similar to surface water volumetric retention (49% in Y1 and 84% in Y2) and varied primarily with rainfall. Similar water volume and P retentions indicate that volume retention is the main process controlling P loads. A limited role of biogeochemical processes was supported by low to no remaining soil P adsorption capacity due to long-term drainage P input. The fact that outflow P concentrations (Y1 = 368.3 μg L- 1, Y2 = 230.4 μg L- 1) could be approximated by using a simple mixing of rainfall and drainage P input further confirmed the near inert biogeochemical processes. Subsurface P losses through groundwater were 304 kg (27% of inflow P) indicating that they are an important source for downstream P. Including subsurface P losses reduces the treatment efficiency to 35% (from 61%). The aboveground biomass in the SDA contained 42% (240 kg) of the average incoming P load suggesting that biomass harvesting could be a cost-effective alternative for reviving the role of biogeochemical processes to enhance P treatment in aged, P-saturated SDAs. The 20-year present economic value of P removal through harvesting was estimated to be 341,000, which if covered through a cost share or a payment for P treatment services program could be a positive outcome for both

  2. Technical note: Sampling and processing of mesocosm sediment trap material for quantitative biogeochemical analysis

    NASA Astrophysics Data System (ADS)

    Boxhammer, Tim; Bach, Lennart T.; Czerny, Jan; Riebesell, Ulf

    2016-05-01

    Sediment traps are the most common tool to investigate vertical particle flux in the marine realm. However, the spatial and temporal decoupling between particle formation in the surface ocean and particle collection in sediment traps at depth often handicaps reconciliation of production and sedimentation even within the euphotic zone. Pelagic mesocosms are restricted to the surface ocean, but have the advantage of being closed systems and are therefore ideally suited to studying how processes in natural plankton communities influence particle formation and settling in the ocean's surface. We therefore developed a protocol for efficient sample recovery and processing of quantitatively collected pelagic mesocosm sediment trap samples for biogeochemical analysis. Sedimented material was recovered by pumping it under gentle vacuum through a silicon tube to the sea surface. The particulate matter of these samples was subsequently separated from bulk seawater by passive settling, centrifugation or flocculation with ferric chloride, and we discuss the advantages and efficiencies of each approach. After concentration, samples were freeze-dried and ground with an easy to adapt procedure using standard lab equipment. Grain size of the finely ground samples ranged from fine to coarse silt (2-63 µm), which guarantees homogeneity for representative subsampling, a widespread problem in sediment trap research. Subsamples of the ground material were perfectly suitable for a variety of biogeochemical measurements, and even at very low particle fluxes we were able to get a detailed insight into various parameters characterizing the sinking particles. The methods and recommendations described here are a key improvement for sediment trap applications in mesocosms, as they facilitate the processing of large amounts of samples and allow for high-quality biogeochemical flux data.

  3. MODELING COUPLED HYDROLOGICAL AND CHEMICAL PROCESSES: LONG-TERM URANIUM TRANSPORT FOLLOWING PHOSPHOROUS-FERTILIZATION

    USDA-ARS?s Scientific Manuscript database

    Contaminants in the vadose zone are affected by the physical processes of water flow, heat movement and multicomponent transport, as well as generally by a range of interacting biogeochemical processes. Coupling these various processes within one integrated numerical simulator provides a process-ba...

  4. Technical Note: Sampling and processing of mesocosm sediment trap material for quantitative biogeochemical analysis

    NASA Astrophysics Data System (ADS)

    Boxhammer, T.; Bach, L. T.; Czerny, J.; Riebesell, U.

    2015-11-01

    Sediment traps are the most common tool to investigate vertical particle flux in the marine realm. However, the spatial decoupling between particle formation and collection often handicaps reconciliation of these two processes even within the euphotic zone. Pelagic mesocosms have the advantage of being closed systems and are therefore ideally suited to study how processes in natural plankton communities influence particle formation and settling in the ocean's surface. We therefore developed a protocol for efficient sample recovery and processing of quantitatively collected pelagic mesocosm sediment trap samples. Sedimented material was recovered by pumping it under gentle vacuum through a silicon tube to the sea surface. The particulate matter of these samples was subsequently concentrated by passive settling, centrifugation or flocculation with ferric chloride and we discuss the advantages of each approach. After concentration, samples were freeze-dried and ground with an easy to adapt procedure using standard lab equipment. Grain size of the finely ground samples ranges from fine to coarse silt (2-63 μm), which guarantees homogeneity for representative subsampling, a widespread problem in sediment trap research. Subsamples of the ground material were perfectly suitable for a variety of biogeochemical measurements and even at very low particle fluxes we were able to get a detailed insight on various parameters characterizing the sinking particles. The methods and recommendations described here are a key improvement for sediment trap applications in mesocosms, as they facilitate processing of large amounts of samples and allow for high-quality biogeochemical flux data.

  5. Spatio-temporal evolution of biogeochemical processes at a landfill site

    NASA Astrophysics Data System (ADS)

    Arora, B.; Mohanty, B. P.; McGuire, J. T.

    2011-12-01

    Predictions of fate and transport of contaminants are strongly dependent on spatio-temporal variability of soil hydraulic and geochemical properties. This study focuses on time-series signatures of hydrological and geochemical properties at different locations within the Norman landfill site. Norman Landfill is a closed municipal landfill site with prevalent organic contamination. Monthly data at the site include specific conductance, δ18O, δ2H, dissolved organic carbon (DOC) and anions (chloride, sulfate, nitrate) from 1998-2006. Column scale data on chemical concentrations, redox gradients, and flow parameters are also available on daily and hydrological event (infiltration, drainage, etc.) scales. Since high-resolution datasets of contaminant concentrations are usually unavailable, Wavelet and Fourier analyses were used to infer the dominance of different biogeochemical processes at different spatio-temporal scales and to extract linkages between transport and reaction processes. Results indicate that time variability controls the progression of reactions affecting biodegradation of contaminants. Wavelet analysis suggests that iron-sulfide reduction reactions had high seasonal variability at the site, while fermentation processes dominated at the annual time scale. Findings also suggest the dominance of small spatial features such as layered interfaces and clay lenses in driving biogeochemical reactions at both column and landfill scales. A conceptual model that caters to increased understanding and remediating structurally heterogeneous variably-saturated media is developed from the study.

  6. Biotic Interactions in Microbial Communities as Modulators of Biogeochemical Processes: Methanotrophy as a Model System

    PubMed Central

    Ho, Adrian; Angel, Roey; Veraart, Annelies J.; Daebeler, Anne; Jia, Zhongjun; Kim, Sang Yoon; Kerckhof, Frederiek-Maarten; Boon, Nico; Bodelier, Paul L. E.

    2016-01-01

    Microbial interaction is an integral component of microbial ecology studies, yet the role, extent, and relevance of microbial interaction in community functioning remains unclear, particularly in the context of global biogeochemical cycles. While many studies have shed light on the physico-chemical cues affecting specific processes, (micro)biotic controls and interactions potentially steering microbial communities leading to altered functioning are less known. Yet, recent accumulating evidence suggests that the concerted actions of a community can be significantly different from the combined effects of individual microorganisms, giving rise to emergent properties. Here, we exemplify the importance of microbial interaction for ecosystem processes by analysis of a reasonably well-understood microbial guild, namely, aerobic methane-oxidizing bacteria (MOB). We reviewed the literature which provided compelling evidence for the relevance of microbial interaction in modulating methane oxidation. Support for microbial associations within methane-fed communities is sought by a re-analysis of literature data derived from stable isotope probing studies of various complex environmental settings. Putative positive interactions between active MOB and other microbes were assessed by a correlation network-based analysis with datasets covering diverse environments where closely interacting members of a consortium can potentially alter the methane oxidation activity. Although, methanotrophy is used as a model system, the fundamentals of our postulations may be applicable to other microbial guilds mediating other biogeochemical processes. PMID:27602021

  7. Hybrid Multiscale Simulation of Hydrologic and Biogeochemical Processes in the River-Groundwater Interaction Zone

    NASA Astrophysics Data System (ADS)

    Yang, X.; Scheibe, T. D.; Chen, X.; Hammond, G. E.; Song, X.

    2015-12-01

    The zone in which river water and groundwater mix plays an important role in natural ecosystems as it regulates the mixing of nutrients that control biogeochemical transformations. Subsurface heterogeneity leads to local hotspots of microbial activity that are important to system function yet difficult to resolve computationally. To address this challenge, we are testing a hybrid multiscale approach that couples models at two distinct scales, based on field research at the U. S. Department of Energy's Hanford Site. The region of interest is a 400 x 400 x 20 m macroscale domain that intersects the aquifer and the river and contains a contaminant plume. However, biogeochemical activity is high in a thin zone (mud layer, <1 m thick) immediately adjacent to the river. This microscale domain is highly heterogeneous and requires fine spatial resolution to adequately represent the effects of local mixing on reactions. It is not computationally feasible to resolve the full macroscale domain at the fine resolution needed in the mud layer, and the reaction network needed in the mud layer is much more complex than that needed in the rest of the macroscale domain. Hence, a hybrid multiscale approach is used to efficiently and accurately predict flow and reactive transport at both scales. In our simulations, models at both scales are simulated using the PFLOTRAN code. Multiple microscale simulations in dynamically defined sub-domains (fine resolution, complex reaction network) are executed and coupled with a macroscale simulation over the entire domain (coarse resolution, simpler reaction network). The objectives of the research include: 1) comparing accuracy and computing cost of the hybrid multiscale simulation with a single-scale simulation; 2) identifying hot spots of microbial activity; and 3) defining macroscopic quantities such as fluxes, residence times and effective reaction rates.

  8. Biogeochemical processes governing natural pyrite oxidation and release of acid metalliferous drainage.

    PubMed

    Chen, Ya-ting; Li, Jin-tian; Chen, Lin-xing; Hua, Zheng-shuang; Huang, Li-nan; Liu, Jun; Xu, Bi-bo; Liao, Bin; Shu, Wen-sheng

    2014-05-20

    The oxidative dissolution of sulfide minerals (principally pyrite) is responsible for the majority of acid metalliferous drainage from mine sites, which represents a significant environmental problem worldwide. Understanding the complex biogeochemical processes governing natural pyrite oxidation is critical not only for solving this problem but also for understanding the industrial bioleaching of sulfide minerals. To this end, we conducted a simulated experiment of natural pyrite oxidative dissolution. Pyrosequencing analysis of the microbial community revealed a distinct succession across three stages. At the early stage, a newly proposed genus, Tumebacillus (which can use sodium thiosulfate and sulfite as the sole electron donors), dominated the microbial community. At the midstage, Alicyclobacillus (the fifth most abundant genus at the early stage) became the most dominant genus, whereas Tumebacillus was still ranked as the second most abundant. At the final stage, the microbial community was dominated by Ferroplasma (the tenth most abundant genus at the early stage). Our geochemical and mineralogical analyses indicated that exchangeable heavy metals increased as the oxidation progressed and that some secondary sulfate minerals (including jarosite and magnesiocopiapite) were formed at the final stage of the oxidation sequence. Additionally, we propose a comprehensive model of biogeochemical processes governing the oxidation of sulfide minerals.

  9. Emergent archetype patterns of coupled hydrologic and biogeochemical responses in catchments

    NASA Astrophysics Data System (ADS)

    Musolff, A.; Fleckenstein, J. H.; Rao, P. S. C.; Jawitz, J. W.

    2017-05-01

    Relationships between in-stream dissolved solute concentrations (C) and discharge (Q) are useful indicators of catchment-scale processes. We combine a synthesis of observational records with a parsimonious stochastic modeling approach to test how C-Q relationships arise from spatial heterogeneity in catchment solute sources coupled with different timescales of reactions. Our model indicates that the dominant driver of emergent archetypical dilution, enrichment, and constant C-Q patterns was structured heterogeneity of solute sources implemented as correlation of source concentration to travel time. Regardless of the C-Q pattern, with weak correlation between solute-source concentration and travel time, we consistently find lower variability in C than in Q, such that the predominant solute export regime is chemostatic. Consequently, the variance in exported loads is determined primarily by variance of Q. Efforts to improve stream water quality and ecological integrity in intensely managed catchments should lead away from landscape homogenization by introducing structured source heterogeneity.

  10. Significant Findings: Seasonal Distributions of Global Ocean Chlorophyll and Nutrients With a Coupled Ocean General Circulation, Biogeochemical, and Radiative Model. 2; Comparisons With Satellite and In Situ Data

    NASA Technical Reports Server (NTRS)

    Gregg, Watson W.; Busalacchi, Antonio (Technical Monitor)

    2000-01-01

    A coupled ocean general circulation, biogeochemical, and radiative model was constructed to evaluate and understand the nature of seasonal variability of chlorophyll and nutrients in the global oceans. Biogeochemical processes in the model were determined from the influences of circulation and turbulence dynamics, irradiance availability, and the interactions among three functional phytoplankton groups (diatoms, chlorophytes, and picoplankton) and three nutrients (nitrate, ammonium, and silicate). Basin scale (>1000 km) model chlorophyll seasonal distributions were statistically positively correlated with CZCS chlorophyll in 10 of 12 major oceanographic regions, and with SeaWiFS in all 12. Notable disparities in magnitudes occurred, however, in the tropical Pacific, the spring/summer bloom in the Antarctic, autumn in the northern high latitudes, and during the southwest monsoon in the North Indian Ocean. Synoptic scale (100-1000 km) comparisons of satellite and in situ data exhibited broad agreement, although occasional departures were apparent. Model nitrate distributions agreed with in situ data, including seasonal dynamics, except for the equatorial Atlantic. The overall agreement of the model with satellite and in situ data sources indicated that the model dynamics offer a reasonably realistic simulation of phytoplankton and nutrient dynamics on basin and synoptic scales.

  11. Molecular organic tracers of biogeochemical processes in a saline meromictic lake (Ace Lake)

    NASA Astrophysics Data System (ADS)

    Schouten, S.; Rijpstra, W. I. C.; Kok, M.; Hopmans, E. C.; Summons, R. E.; Volkman, J. K.; Sinninghe Damsté, J. S.

    2001-05-01

    The chemical structures, distribution and stable carbon isotopic compositions of lipids in a sediment core taken in meromictic Ace Lake (Antarctica) were analyzed to trace past biogeochemical cycling. Biomarkers from methanogenic archaea, methanotrophic bacteria and photosynthetic green sulfur bacteria were unambiguously assigned using organic geochemical understanding and by reference to what is known about the lake's present-day ecosystem. For instance, saturated and unsaturated 2,6,10,15,19-pentamethylicosane, archaeol and sn2-hydroxyarchaeol were derived from methanogenic archaea. Carotenoid analysis revealed chlorobactene and isorenieratene derived from the green-colored and brown-colored strains of the green sulfur bacteria (Chlorobiaceae); isotopic analyses showed that they were 13C-enriched. Phytenes appear to be derived from photoautotrophs that use the Calvin-Benson cycle, while phytane has a different source, possibly within the archaea. The most 13C-depleted compounds (ca. -55‰) identified were 4-methyl-5α-cholest-8(14)-en-3β-ol, identified using an authentic standard, and co-occurring 4-methylsteradienes: these originate from the aerobic methanotrophic bacterium Methylosphaera hansonii. Lipids of photoautotrophic origin, steranes and alkenones, are relatively depleted (ca. -28 to -36‰) whilst archaeal biomarkers are relatively enriched in 13C (ca. -17 to -25‰). The structural and carbon isotope details of sedimentary lipids thus revealed aspects of in situ biogeochemical processes such as methane generation and oxidation and phototrophic sulfide oxidation.

  12. Quantifying the surface subsurface biogeochemical coupling during the VERTIGO ALOHA and K2 studies

    NASA Astrophysics Data System (ADS)

    Boyd, Philip W.; Gall, Mark P.; Silver, Mary W.; Coale, Susan L.; Bidigare, Robert R.; Bishop, James L. K. B.

    2008-07-01

    A central question addressed by the VERtical Transport In the Global Ocean (VERTIGO) study was 'What controls the efficiency of particle export between the surface and subsurface ocean'? Here, we present data from sites at ALOHA (N Central Pacific Gyre) and K2 (NW subarctic Pacific) on phytoplankton processes, and relate them via a simple planktonic foodweb model, to subsurface particle export (150-500 m). Three key factors enable quantification of the surface-subsurface coupling: a sampling design to overcome the temporal lag and spatial displacement between surface and subsurface processes; data on the size partitioning of net primary production (NPP) and subsequent transformations prior to export; estimates of the ratio of algal- to faecal-mediated vertical export flux. At ALOHA, phytoplankton were characterized by low stocks, NPP, Fv/ Fm (N-limited), and were dominated by picoplankton. The HNLC waters at K2 were characterized by both two-fold changes in NPP and floristic shifts (high to low proportion of diatoms) between deployment 1 and 2. Prediction of export exiting the euphotic zone was based on size partitioning of NPP, a copepod-dominated foodweb and a ratio of 0.2 (ALOHA) and 0.1 (K2) for algal:faecal particle flux. Predicted export was 20-22 mg POC m -2 d -1 at ALOHA (i.e. 10-11% NPP (0-125 m); 1.1-1.2×export flux at 150 m ( E150). At K2, export was 111 mg C m -2 d -1 (21% NPP (0-50 m); 1.8× E150) and 33 mg POC m -2 d -1 (11% NPP, 0-55 m); 1.4× E150) for deployments 1 and 2, respectively. This decrease in predicted export at K2 matches the observed trend for E150. Also, the low attenuation of export flux from 60 to 150 m is consistent with that between 150 and 500 m. This strong surface-subsurface coupling suggests that phytoplankton productivity and floristics play a key role at K2 in setting export flux, and moreover that pelagic particle transformations by grazers strongly influence to what extent sinking particles are further broken down in the

  13. Quantifying the surface-subsurface biogeochemical coupling during the VERTIGO ALOHA and K2 studies

    SciTech Connect

    Boyd, P.W.; Gall, M.P.; Silver, M.W.; Bishop, J.K.B.; Coale, Susan L.; Bidigare, Robert R.

    2008-02-25

    A central question addressed by the VERTIGO (VERtical Transport In the Global Ocean) study was 'What controls the efficiency of particle export between the surface and subsurface ocean'? Here, we present data from sites at ALOHA (N Central Pacific Gyre) and K2 (NW subarctic Pacific) on phytoplankton processes, and relate them via a simple planktonic foodweb model, to subsurface particle export (150-500 m). Three key factors enable quantification of the surface-subsurface coupling: a sampling design to overcome the temporal lag and spatial displacement between surface and subsurface processes; data on the size-partitioning of Net Primary Production (NPP) and subsequent transformations prior to export; estimates of the ratio of algal- to faecal-mediated vertical export flux. At ALOHA, phytoplankton were characterized by low stocks, NPP, F{sub v}/F{sub m} (N-limited), and were dominated by picoplankton. The HNLC waters at K2 were characterized by both two-fold changes in NPP and floristic shifts (high to low proportion of diatoms) between deployment 1 and 2. Prediction of export exiting the euphotic zone was based on size-partitioning of NPP, a copepod-dominated foodweb and a ratio of 0.2 (ALOHA) and 0.1 (K2) for algal:faecal particle flux. Predicted export was 20-22 mg POC m{sup -2} d{sup -1} at ALOHA (i.e. 10-11% NPP (0-125 m); 1.1-1.2 x export flux at 150 m (E{sub 150}). At K2, export was 111 mg C m{sup -2} d{sup -1} (21% NPP (0-50 m); 1.8 x E{sub 150}) and 33 mg POC m{sup -2} d{sup -1} (11% NPP, 0-55 m); 1.4 x E{sub 150}) for deployments 1 and 2, respectively. This decrease in predicted export at K2 matches the observed trend for E{sub 150}. Also, the low attenuation of export flux from 60 to 150 m is consistent with that between 150 to 500 m. This strong surface-subsurface coupling suggests that phytoplankton productivity and floristics play a key role at K2 in setting export flux, and moreover that pelagic particle transformations by grazers strongly influence

  14. Nitrogen transfers off Walvis Bay: a 3-D coupled physical/biogeochemical modeling approach in the Namibian upwelling system

    NASA Astrophysics Data System (ADS)

    Gutknecht, E.; Dadou, I.; Marchesiello, P.; Cambon, G.; Le Vu, B.; Sudre, J.; Garçon, V.; Machu, E.; Rixen, T.; Kock, A.; Flohr, A.; Paulmier, A.; Lavik, G.

    2013-06-01

    Eastern boundary upwelling systems (EBUS) are regions of high primary production often associated with oxygen minimum zones (OMZs). They represent key regions for the oceanic nitrogen (N) cycle. By exporting organic matter (OM) and nutrients produced in the coastal region to the open ocean, EBUS can play an important role in sustaining primary production in subtropical gyres. However, losses of fixed inorganic N through denitrification and anammox processes take place in oxygen depleted environments such as EBUS, and can potentially mitigate the role of these regions as a source of N to the open ocean. EBUS can also represent a considerable source of nitrous oxide (N2O) to the atmosphere, affecting the atmospheric budget of N2O. In this paper a 3-D coupled physical/biogeochemical model (ROMS/BioEBUS) is used to investigate the N budget in the Namibian upwelling system. The main processes linked to EBUS and associated OMZs are taken into account. The study focuses on the northern part of the Benguela upwelling system (BUS), especially the Walvis Bay area (between 22° S and 24° S) where the OMZ is well developed. Fluxes of N off the Walvis Bay area are estimated in order to understand and quantify (1) the total N offshore export from the upwelling area, representing a possible N source that sustains primary production in the South Atlantic subtropical gyre; (2) export production and subsequent losses of fixed N via denitrification and anammox under suboxic conditions (O2 < 25 mmol O2 m-3); and (3) the N2O emission to the atmosphere in the upwelling area. In the mixed layer, the total N offshore export is estimated as 8.5 ± 3.9 × 1010 mol N yr-1 at 10° E off the Walvis Bay area, with a mesoscale contribution of 20%. Extrapolated to the whole BUS, the coastal N source for the subtropical gyre corresponds to 0.1 ± 0.04 mol N m-2 yr-1. This N flux represents a major source of N for the gyre compared with other N sources, and contributes 28% of the new primary

  15. Biogeochemical Hotspots: Role of Small Wetlands in Nutrient Processing at the Watershed Scale

    NASA Astrophysics Data System (ADS)

    Cheng, F. Y.; Basu, N. B.

    2016-12-01

    Increased loading of nutrients (nitrogen N and phosphorus P) from agricultural and urban intensification in the Anthropocene has led to severe degradation of inland and coastal waters. Amongst aquatic ecosystems, wetlands receive and retain significant quantities of nutrients and thus are important regulators of nutrient transport in watersheds. While the factors controlling N and P retention in wetlands is relatively well known, there is a lack of quantitative understanding on the relative contributions of the different factors on nutrient retention. There is also a deficiency in knowledge of how these processes behave across system size and type. In our study, we synthesized nutrient retention data from wetlands, lakes, and reservoirs to gain insight on the relationship between hydrologic and biogeochemical controls on nutrient retention. Our results indicated that the first-order reaction rate constant, k [T-1], is inversely proportional to the hydraulic residence time, τ, across six orders of magnitude in residence time for total nitrogen, total phosphorus, nitrate and phosphate. We hypothesized that the consistency of the relationship across constituent and system types points to the strong hydrologic control on biogeochemical processing. The hypothesis was tested using a two-compartment mechanistic model that links the nutrient removal processes (denitrification for N and sedimentation for P) with the system size. Finally, the k-τ relationships were upscaled with a regional size-frequency distribution to demonstrate the disproportionately large role of small wetlands in watershed-scale nutrient processing. Our results highlight the importance of hydrological controls as the dominant modifiers of nutrient removal mechanisms and the need for a stronger focus on small lentic ecosystems like wetlands as major nutrient sinks in the landscape.

  16. Modeling the Oxygen Cycle in the Equatorial Pacific: Regulation of Physical and Biogeochemical Processes

    NASA Astrophysics Data System (ADS)

    Wang, X.; Murtugudde, R. G.; Zhang, D.

    2016-12-01

    Photosynthesis and respiration are important processes in all ecosystems on the Earth, in which carbon and oxygen are the two main elements. However, the oxygen cycle has received much less attention (relative to the carbon cycle) despite its big role in the earth system. Oxygen is a sensitive indicator of physical and biogeochemical processes in the ocean thus a key parameter for understanding the ocean's ecosystem and biogeochemistry. The Oxygen-Minimum-Zone (OMZ), often seen below 200 m, is a profound feature in the world oceans. There has been evidence of OMZ expansion over the past few decades in the tropical oceans. Climate models project that there would be a continued decline in dissolved oxygen (DO) and an expansion of the tropical OMZs under future warming conditions, which is of great concern because of the implications for marine organisms. We employ a validated three-dimensional model that simulates physical transport (circulation and vertical mixing), biological processes (O2 production and consumption) and ocean-atmosphere O2 exchange to quantify various sources and sinks of DO over 1980-2015. We show how we use observational data to improve our model simulation. Then we assess the spatial and temporal variability in simulated DO in the tropical Pacific Ocean, and explore the impacts of physical and biogeochemical processes on the DO dynamics, with a focus on the MOZ. Our analyses indicate that DO in the OMZ has a positive relationship with the 13ºC isotherm depth and a negative relationship with the concentration of dissolved organic material.

  17. Biogeochemical hotspots: Role of small water bodies in landscape nutrient processing

    NASA Astrophysics Data System (ADS)

    Cheng, Frederick Y.; Basu, Nandita B.

    2017-06-01

    Increased loading of nitrogen (N) and phosphorus (P) from agricultural and urban intensification has led to severe degradation of inland and coastal waters. Lakes, reservoirs, and wetlands (lentic systems) retain these nutrients, thus regulating their delivery to downstream waters. While the processes controlling N and P retention are relatively well-known, there is a lack of quantitative understanding of how these processes manifest across spatial scales. We synthesized data from 600 lentic systems around the world to gain insight into the relationship between hydrologic and biogeochemical controls on nutrient retention. Our results indicate that the first-order reaction rate constant, k [T-1], is inversely proportional to the hydraulic residence time, τ [T], across 6 orders of magnitude in residence time for total N, total P, nitrate, and phosphate. We hypothesized that the consistency of the relationship points to a strong hydrologic control on biogeochemical processing, and validated our hypothesis using a sediment-water model that links major nutrient removal processes with system size. Finally, the k-τ relationships were upscaled to the landscape scale using a wetland size-frequency distribution. Results suggest that small wetlands play a disproportionately large role in landscape-scale nutrient processing—50% of nitrogen removal occurs in wetlands smaller than 102.5 m2 in our example. Thus, given the same loss in wetland area, the nutrient retention potential lost is greater when smaller wetlands are preferentially lost from the landscape. Our study highlights the need for a stronger focus on small lentic systems as major nutrient sinks in the landscape.

  18. Compound-specific isotopic analyses: a novel tool for reconstruction of ancient biogeochemical processes

    NASA Technical Reports Server (NTRS)

    Hayes, J. M.; Freeman, K. H.; Popp, B. N.; Hoham, C. H.

    1990-01-01

    Patterns of isotopic fractionation in biogeochemical processes are reviewed and it is suggested that isotopic fractionations will be small when substrates are large. If so, isotopic compositions of biomarkers will reflect those of their biosynthetic precursors. This prediction is tested by consideration of results of analyses of geoporphyrins and geolipids from the Greenhorn Formation (Cretaceous, Western Interior Seaway of North America) and the Messel Shale (Eocene, lacustrine, southern Germany). It is shown (i) that isotopic compositions of porphyrins that are related to a common source, but which have been altered structurally, cluster tightly and (ii) that isotopic differences between geolipids and porphyrins related to a common source are equal to those observed in modern biosynthetic products. Both of these observations are consistent with preservation of biologically controlled isotopic compositions during diagenesis. Isotopic compositions of individual compounds can thus be interpreted in terms of biogeochemical processes in ancient depositional environments. In the Cretaceous samples, isotopic compositions of n-alkanes are covariant with those of total organic carbon, while delta values for pristane and phytane are covariant with those of porphyrins. In this unit representing an open marine environment, the preserved acyclic polyisoprenoids apparently derive mainly from primary material, while the extractable, n-alkanes derive mainly from lower levels of the food chain. In the Messel Shale, isotopic compositions of individual biomarkers range from -20.9 to -73.4% vs PDB. Isotopic compositions of specific compounds can be interpreted in terms of origin from methylotrophic, chemautotrophic, and chemolithotrophic microorganisms as well as from primary producers that lived in the water column and sediments of this ancient lake.

  19. Compound-specific isotopic analyses: a novel tool for reconstruction of ancient biogeochemical processes

    NASA Technical Reports Server (NTRS)

    Hayes, J. M.; Freeman, K. H.; Popp, B. N.; Hoham, C. H.

    1990-01-01

    Patterns of isotopic fractionation in biogeochemical processes are reviewed and it is suggested that isotopic fractionations will be small when substrates are large. If so, isotopic compositions of biomarkers will reflect those of their biosynthetic precursors. This prediction is tested by consideration of results of analyses of geoporphyrins and geolipids from the Greenhorn Formation (Cretaceous, Western Interior Seaway of North America) and the Messel Shale (Eocene, lacustrine, southern Germany). It is shown (i) that isotopic compositions of porphyrins that are related to a common source, but which have been altered structurally, cluster tightly and (ii) that isotopic differences between geolipids and porphyrins related to a common source are equal to those observed in modern biosynthetic products. Both of these observations are consistent with preservation of biologically controlled isotopic compositions during diagenesis. Isotopic compositions of individual compounds can thus be interpreted in terms of biogeochemical processes in ancient depositional environments. In the Cretaceous samples, isotopic compositions of n-alkanes are covariant with those of total organic carbon, while delta values for pristane and phytane are covariant with those of porphyrins. In this unit representing an open marine environment, the preserved acyclic polyisoprenoids apparently derive mainly from primary material, while the extractable, n-alkanes derive mainly from lower levels of the food chain. In the Messel Shale, isotopic compositions of individual biomarkers range from -20.9 to -73.4% vs PDB. Isotopic compositions of specific compounds can be interpreted in terms of origin from methylotrophic, chemautotrophic, and chemolithotrophic microorganisms as well as from primary producers that lived in the water column and sediments of this ancient lake.

  20. Evidence of linked biogeochemical and hydrological processes in homogeneous and layered vadose zone systems

    NASA Astrophysics Data System (ADS)

    McGuire, J. T.; Hansen, D. J.; Mohanty, B. P.

    2010-12-01

    Understanding chemical fate and transport in the vadose zone is critical to protect groundwater resources and preserve ecosystem health. However, prediction can be challenging due to the dynamic hydrologic and biogeochemical nature of the vadose zone. Additional controls on hydrobiogeochemical processes are added by subsurface structural heterogeneity. This study uses repacked soil column experiments to quantify linkages between microbial activity, geochemical cycling and hydrologic flow. Three “short” laboratory soil columns were constructed to evaluate the effects of soil layering: a homogenized medium-grained sand, homogenized organic-rich loam, and a sand-over-loam layered column. In addition, two “long” columns were constructed using either gamma-irradiated (sterilized) or untreated sediments to evaluate the effects of both soil layers and the presence of microorganisms. The long columns were packed identically; a medium-grained sand matrix with two vertically separated and horizontally offset lenses of organic-rich loam. In all 5 columns, downward and upward infiltration of water was evaluated to simulate rainfall and rising water table events respectively. In-situ colocated probes were used to measure soil water content, matric potential, Eh, major anions, ammonium, Fe2+, and total sulfide. Enhanced biogeochemical cycling was observed in the short layered column versus the short, homogeneous columns, and enumerations of iron and sulfate reducing bacteria were 1-2 orders of magnitude greater. In the long columns, microbial activity caused mineral bands and produced insoluble gases that impeded water flow through the pores of the sediment. Capillary barriers, formed around the lenses due to soil textural differences, retarded water flow rates through the lenses. This allowed reducing conditions to develop, evidenced by the production of Fe2+ and S2-. At the fringes of the lenses, Fe2+ oxidized to form Fe(III)-oxide bands that further retarded water

  1. Spatial dynamics of biogeochemical processes in the St. Louis River freshwater estuary

    EPA Science Inventory

    In the Great Lakes, river-lake transition zones within freshwater estuaries are hydrologically and biogeochemically dynamic areas that regulate nutrient and energy fluxes between rivers and Great Lakes. The goal of our study was to characterize the biogeochemical properties of th...

  2. Spatial dynamics of biogeochemical processes in the St. Louis River freshwater estuary

    EPA Science Inventory

    In the Great Lakes, river-lake transition zones within freshwater estuaries are hydrologically and biogeochemically dynamic areas that regulate nutrient and energy fluxes between rivers and Great Lakes. The goal of our study was to characterize the biogeochemical properties of th...

  3. Isotope biogeochemical assessment of natural biodegradation processes in open cast pit mining landscapes

    NASA Astrophysics Data System (ADS)

    Jeschke, Christina; Knöller, Kay; Koschorreck, Matthias; Ussath, Maria; Hoth, Nils

    2014-05-01

    In Germany, a major share of the energy production is based on the burning of lignite from open cast pit mines. The remediation and re-cultivation of the former mining areas in the Lusatian and Central German lignite mining district is an enormous technical and economical challenge. After mine closures, the surrounding landscapes are threatened by acid mine drainage (AMD), i.e. the acidification and mineralization of rising groundwater with metals and inorganic contaminants. The high content of sulfur (sulfuric acid, sulfate), nitrogen (ammonium) and iron compounds (iron-hydroxides) deteriorates the groundwater quality and decelerates sustainable development of tourism in (former) mining landscapes. Natural biodegradation or attenuation (NA) processes of inorganic contaminants are considered to be a technically low impact and an economically beneficial solution. The investigations of the stable isotope compositions of compounds involved in NA processes helps clarify the dynamics of natural degradation and provides specific informations on retention processes of sulfate and nitrogen-compounds in mine dump water, mine dump sediment, and residual pit lakes. In an active mine dump we investigated zones where the process of bacterial sulfate reduction, as one very important NA process, takes place and how NA can be enhanced by injecting reactive substrates. Stable isotopes signatures of sulfur and nitrogen components were examined and evaluated in concert with hydrogeochemical data. In addition, we delineated the sources of ammonium pollution in mine dump sediments and investigated nitrification by 15N-labeling techniques to calculate the limit of the conversion of harmful ammonium to nitrate in residual mining lakes. Ultimately, we provided an isotope biogeochemical assessment of natural attenuation of sulfate and ammonium at mine dump sites and mining lakes. Also, we estimated the risk potential for water in different compartments of the hydrological system. In

  4. Evaluation of Boundless Biogeochemical Cycle through Development of Process-Based Eco-Hydrological and Biogeochemical Cycle Model to Incorporate Terrestrial-Aquatic Continuum

    NASA Astrophysics Data System (ADS)

    Nakayama, T.; Maksyutov, S. S.

    2014-12-01

    Inland water might act as important transport pathway for continental biogeochemical cycle although its contribution has remained uncertain yet due to a paucity of data (Battin et al. 2009). The author has developed process-based National Integrated Catchment-based Eco-hydrology (NICE) model (Nakayama, 2008a-b, 2010, 2011a-b, 2012a-c, 2013; Nakayama and Fujita, 2010; Nakayama and Hashimoto, 2011; Nakayama and Shankman, 2013a-b; Nakayama and Watanabe, 2004, 2006, 2008a-b; Nakayama et al., 2006, 2007, 2010, 2012), which incorporates surface-groundwater interactions, includes up- and down-scaling processes between local-regional-global scales, and can simulate iteratively nonlinear feedback between hydrologic-geomorphic-ecological processes. Because NICE incorporates 3-D groundwater sub-model and expands from previous 1- or 2-D or steady state, the model can simulate the lateral transport pronounced at steeper-slope or riparian/floodplain with surface-groundwater connectivity. River discharge and groundwater level simulated by NICE agreed reasonably with those in previous researches (Niu et al., 2007; Fan et al., 2013) and extended to clarify lateral subsurface also has important role on global hydrologic cycle (Nakayama, 2011b; Nakayama and Shankman, 2013b) though the resolution was coarser. NICE was further developed to incorporate biogeochemical cycle including reaction between inorganic and organic carbons in terrestrial and aquatic ecosystems. The missing role of carbon cycle simulated by NICE, for example, CO2 evasion from inland water (global total flux was estimated as about 1.0 PgC/yr), was relatively in good agreement in that estimated by empirical relation using previous pCO2 data (Aufdenkampe et al., 2011; Laruelle et al., 2013). The model would play important role in identification of greenhouse gas balance of the biosphere and spatio-temporal hot spots, and bridging gap between top-down and bottom-up approaches (Cole et al. 2007; Frei et al. 2012).

  5. Saltwater intrusion into tidal freshwater marshes alters the biogeochemical processing of organic carbon

    NASA Astrophysics Data System (ADS)

    Neubauer, S. C.; Franklin, R. B.; Berrier, D. J.

    2013-12-01

    Environmental perturbations in wetlands affect the integrated plant-microbial-soil system, causing biogeochemical responses that can manifest at local to global scales. The objective of this study was to determine how saltwater intrusion affects carbon mineralization and greenhouse gas production in coastal wetlands. Working with tidal freshwater marsh soils that had experienced ~ 3.5 yr of in situ saltwater additions, we quantified changes in soil properties, measured extracellular enzyme activity associated with organic matter breakdown, and determined potential rates of anaerobic carbon dioxide (CO2) and methane (CH4) production. Soils from the field plots treated with brackish water had lower carbon content and higher C : N ratios than soils from freshwater plots, indicating that saltwater intrusion reduced carbon availability and increased organic matter recalcitrance. This was reflected in reduced activities of enzymes associated with the hydrolysis of cellulose and the oxidation of lignin, leading to reduced rates of soil CO2 and CH4 production. The effects of long-term saltwater additions contrasted with the effects of short-term exposure to brackish water during three-day laboratory incubations, which increased rates of CO2 production but lowered rates of CH4 production. Collectively, our data suggest that the long-term effect of saltwater intrusion on soil CO2 production is indirect, mediated through the effects of elevated salinity on the quantity and quality of autochthonous organic matter inputs to the soil. In contrast, salinity, organic matter content, and enzyme activities directly influence CH4 production. Our analyses demonstrate that saltwater intrusion into tidal freshwater marshes affects the entire process of carbon mineralization, from the availability of organic carbon through its terminal metabolism to CO2 and/or CH4, and illustrate that long-term shifts in biogeochemical functioning are not necessarily consistent with short

  6. Saltwater intrusion into tidal freshwater marshes alters the biogeochemical processing of organic carbon

    NASA Astrophysics Data System (ADS)

    Neubauer, S. C.; Franklin, R. B.; Berrier, D. J.

    2013-07-01

    Environmental perturbations in wetlands affect the integrated plant-microbial-soil system, causing biogeochemical responses that can manifest at local to global scales. The objective of this study was to determine how saltwater intrusion affects carbon mineralization and greenhouse gas production in coastal wetlands. Working with tidal freshwater marsh soils that had experienced roughly 3.5 yr of in situ saltwater additions, we quantified changes in soil properties, measured extracellular enzyme activity associated with organic matter breakdown, and determined potential rates of anaerobic carbon dioxide (CO2) and methane (CH4) production. Soils from the field plots treated with brackish water had lower carbon content and higher C : N ratios than soils from freshwater plots, indicating that saltwater intrusion reduced carbon availability and increased organic matter recalcitrance. This was reflected in reduced activities of enzymes associated with the hydrolysis of cellulose and the oxidation of lignin, leading to reduced rates of soil CO2 and CH4 production. The effects of long-term saltwater additions contrasted with the effects of short-term exposure to brackish water during three-day laboratory incubations, which increased rates of CO2 production but lowered rates of CH4 production. Collectively, our data suggest that the long-term effect of saltwater intrusion on soil CO2 production is indirect, mediated through the effects of elevated salinity on the quantity and quality of autochthonous organic matter inputs to the soil. In contrast, salinity, organic matter content, and enzyme activities directly influence CH4 production. Our analyses demonstrate that saltwater intrusion into tidal freshwater marshes affects the entire process of carbon mineralization, from the availability of organic carbon through its terminal metabolism to CO2 and/or CH4, and illustrate that long-term shifts in biogeochemical functioning are not necessarily consistent with short

  7. Analyzing early exo-Earths with a coupled atmosphere biogeochemical model

    NASA Astrophysics Data System (ADS)

    Gebauer, Stefanie; Grenfell, John Lee; Stock, Joachim; Lehmann, Ralph; Godolt, Mareike; von Paris, Philip; Rauer, Heike

    2017-04-01

    Investigating Earth-like extrasolar planets with atmospheric models is a central focus in planetary science. Taking the development of Earth as a reference for Earth-like planets we investigate interactions between the atmosphere, planetary surface and organisms. The Great Oxidation Event (GOE) is related to feedbacks between these three. Its origin and controlling mechanisms are not well defined - requiring interdisciplinary, coupled models. We present results from our newly-developed Coupled Atmosphere Biogeochemistry (CAB) model which is unique in the literature. Applying a unique tool (Pathway Analysis Program), ours is the first quantitative analysis of catalytic cycles governing O2 in early Earth's atmosphere near the GOE. Complicated oxidation pathways play a key role in destroying O2 whereas in the upper atmosphere, most O2 is formed abiotically via CO2 photolysis.

  8. Biogeochemical Coupling of Fe and Tc Speciation in Subsurface Sediments: Implications to Long-Term Tc Immobilization

    SciTech Connect

    Jim K. Fredrickson; C. I. Steefel; R. K. Kukkadapu; S. M. Heald

    2006-06-01

    The project has been focused on biochemical processes in subsurface sediments involving Fe that control the valence state, solubility, and effective mobility of 99Tc. Our goal has been to understand the Tc biogeochemistry as it may occur in suboxic and biostimulated subsurface environments. Two objectives have been pursued: (1) To determine the relative reaction rates of 99Tc(VII)O2(aq) with metal reducing bacteria and biogenic Fe(II); and to characterize the identity, structure, and molecular speciation of Tc(IV) products formed through reaction with both biotic and abiotic reductants. (2) To quantify the biogeochemical factors controlling the reaction rate of O2 with Tc(IV)O2?nH2O in sediment resulting from the direct enzymatic reduction of Tc(VII) by DIRB and/or the reaction of Tc(VII) with the various types of biogenic Fe(II) produced by DIRB.

  9. Integrated Biogeochemical and Hydrologic Processes Driving Arsenic Release from Shallow Sediments to Groundwaters of the Mekong Delta

    SciTech Connect

    Kocar, Benjamin D.; Polizzotto, Matthew L.; Benner, Shawn G.; Ying, Samantha C.; Ung, Mengieng; Ouch, Kagna; Samreth, Sopheap; Suy, Bunseang; Phan, Kongkea; Sampson, Michael; Fendorf, Scott

    2008-11-01

    Arsenic is contaminating the groundwater of Holocene aquifers throughout South and Southeast Asia. To examine the biogeochemical and hydrological processes influencing dissolved concentrations and transport of As within soils/sediments in the Mekong River delta, a ~50 km₂ field site was established near Phnom Penh, Cambodia, where aqueous As concentrations are dangerously high and where groundwater retrieval for irrigation is minimal. Dissolved As concentrations vary spatially, ranging up to 1300 µg/L in aquifer groundwater and up to 600 µg/L in surficial clay pore water. Groundwaters with high As concentrations are reducing with negligible dissolved O₂ and high concentrations of Fe(II), NH⁺₄ , and dissolved organic C. Within near-surface environments, these conditions are most pronounced in sediments underlying permanent wetlands, often found within oxbow channels near the Mekong River. There, labile C, co-deposited with As-bearing Fe (hydr)oxides under reducing conditions, drives the reductive mobilization (inclusive of Fe and As reduction) of As. Here, conditions are described under which As is mobilized from these sediments, and near-surface As release is linked to aquifer contamination over long time periods (100s to 1000s of years). Site biogeochemistry is coupled with extensive hydrologic measurements, and, accordingly, a comprehensive interpretation of spatial As release and transport within a calibrated hydraulic flow-field is provided of an As-contaminated aquifer that is representative of those found throughout South and Southeast Asia.

  10. The effect of gold mining and processing on biogeochemical cycles in Muteh area, Isfahan province, Iran

    NASA Astrophysics Data System (ADS)

    Keshavarzi, B.; Moore, F.

    2009-04-01

    The environmental impacts of gold mining and processing on geochemical and biogeochemical cycles in Muteh region located northwest of Esfahan province and northeast of Golpaygan city is investigated. For this purpose systematic sampling was carried out in, rock, soil, water, and sediment environments along with plant, livestocks and human hair samples. Mineralogical and Petrological studies show that ore mineral such as pyrite and arsenopyrite along with fluorine-bearing minerals like tremolite, actinolite, biotite and muscovite occur in green schist, amphibolite and lucogranitic rocks in the area. The hydrochemistry of the analysed water samples indicate that As and F display the highest concentrations among the analysed elements. Indeed arsenic has the highest concentration in both topsoil and subsoil samples when compared with other potentially toxic elements. Anthropogenic activity also have it s greatest effect on increasing arsenic concentration among the analysed samples. The concentration of the majority of the analysed elements in the shoots and leaves of two local plants of the region i.e Artemesia and Penagum is higher than their concentration in the roots. Generally speaking, Artemesia has a greater tendency for bioaccumulating heavy metals. The results of cyanide analysis in soil samples show that cyanide concentration in the soils near the newly built tailing dam is much higher than that in the vicinity of the old tailing dam. The high concentration of fluorine in the drinking water of the Muteh village is the main reason of the observed dental fluorosis symptoms seen in the inhabitants. One of the two drinking water wells which is located near the metamorphic complex and supplies part of the tap water in the village, probably has the greatest impact in this regard. A decreasing trend in fluorine concentration is illustrated with increasing distance from the metamorphic complex. Measurements of As concentration in human hair specimens indicate that As

  11. Bio-mineralization and potential biogeochemical processes in bauxite deposits: genetic and ore quality significance

    NASA Astrophysics Data System (ADS)

    Laskou, Magdalini; Economou-Eliopoulos, Maria

    2013-08-01

    The Parnassos-Ghiona bauxite deposit in Greece of karst type is the 11th largest bauxite producer in the world. The mineralogical, major and trace-element contents and δ18O, δ12C, δ34S isotopic compositions of bauxite ores from this deposit and associated limestone provide valuable evidence for their origin and biogeochemical processes resulting in the beneficiation of low grade bauxite ores. The organic matter as thin coal layers, overlying the bauxite deposits, within limestone itself (negative δ12C isotopic values) and the negative δ34S values in sulfides within bauxite ores point to the existence of the appropriate circumstances for Fe bio-leaching and bio-mineralization. Furthermore, a consortium of microorganisms of varying morphological forms (filament-like and spherical to lenticular at an average size of 2 μm), either as fossils or presently living and producing enzymes, is a powerful factor to catalyze the redox reactions, expedite the rates of metal extraction and provide alternative pathways for metal leaching processes resulting in the beneficiation of bauxite ore.

  12. Rhizosphere Processes Are Quantitatively Important Components of Terrestrial Biogeochemical Cycles: Data & Models

    NASA Astrophysics Data System (ADS)

    Finzi, A.

    2016-12-01

    The rhizosphere is a hot spot and hot moment for biogeochemical cycles. Microbial activity, extracellular enzyme activity and element cycles are greatly enhanced by root derived carbon inputs. As such the rhizosphere may be an important driver of ecosystem responses to global changes such as rising temperatures and atmospheric CO2 concentrations. Empirical research on the rhizosphere is extensive but extrapolation of rhizosphere processes to large spatial and temporal scales is largely uninterrogated. Using a combination of field studies, meta-analysis and numerical models we have found good reason to think that scaling is possible. In this talk I discuss the results of this research and focus on the results of a new modeling effort that explicitly links root distribution and architecture with a model of microbial physiology to assess the extent to which rhizosphere processes may affect ecosystem responses to global change. Results to date suggest that root inputs of C and possibly nutrients (ie, nitrogen) impact the fate of new C inputs to the soil (ie, accumulation or loss) in response to warming and enhanced productivity at elevated CO2. The model also provides qualitative guidance on incorporating the known effects of ectomycorrhizal fungi on decomposition and rates of soil C and N cycling.

  13. The interplay between estuarine transport and biogeochemical processes in determining the nutrient conditions in bottom layers of non-tidal Gulf of Finland

    NASA Astrophysics Data System (ADS)

    Kõuts, Mariliis; Raudsepp, Urmas; Maljutenko, Ilja

    2017-04-01

    In coastal areas, especially estuaries, spatial distribution and seasonal cycling of chemical and biological variables is largely determined by local biogeochemical processes and water transport of different properties. In tidal estuaries, however, biogeochemical processes are affected by tides as frequent water exchange alters nutrient and oxygen concentrations. In wide and deep non-tidal estuary-type marginal seas spatial distribution and seasonal cycling are determined by the mixture of water transport and local biogeochemistry. The Baltic Sea is a stratified water basin where halocline divides the water column into two parts: upper layer, which is horizontally uniform in terms of distribution of chemical and biological parameters, and has clear seasonal cycle; and bottom part, where nutrient and oxygen dynamics is more complex. There water transport and sediment-water interface fluxes play a major role. Our prime focus is the Gulf of Finland in the Baltic Sea. It is a wide, non-tidal and stratified sub-basin known for its high nutrient concentrations and severe oxygen deficiency in summer. We modelled the Baltic Sea (including Gulf of Finland) using ERGOM, a biogeochemical model coupled with circulation model GETM. Seasonal cycling and water circulation were observed with a 40-year simulation from 1966 to 2006. Our results show that in shallow areas above halocline the seasonal cycle of phytoplankton, nutrients and oxygen concentrations is uniform in space. Water circulation does not create inhomogeneous distribution pattern of biogeochemical parameters and their seasonal cycle. The circulation in the Gulf of Finland is strongly modulated by the seasonality of estuarine transport. Below the halocline saline low-oxygen and nutrient-rich water is transported from the open Baltic Proper to the Gulf of Finland in spring and early summer. This results in the highest nutrient concentrations and the poorest oxygen conditions by the end of August. In the shallow area

  14. Determination of dominant biogeochemical processes in a contaminated aquifer-wetland system using multivariate statistical analysis

    USGS Publications Warehouse

    Baez-Cazull, S. E.; McGuire, J.T.; Cozzarelli, I.M.; Voytek, M.A.

    2008-01-01

    Determining the processes governing aqueous biogeochemistry in a wetland hydrologically linked to an underlying contaminated aquifer is challenging due to the complex exchange between the systems and their distinct responses to changes in precipitation, recharge, and biological activities. To evaluate temporal and spatial processes in the wetland-aquifer system, water samples were collected using cm-scale multichambered passive diffusion samplers (peepers) to span the wetland-aquifer interface over a period of 3 yr. Samples were analyzed for major cations and anions, methane, and a suite of organic acids resulting in a large dataset of over 8000 points, which was evaluated using multivariate statistics. Principal component analysis (PCA) was chosen with the purpose of exploring the sources of variation in the dataset to expose related variables and provide insight into the biogeochemical processes that control the water chemistry of the system. Factor scores computed from PCA were mapped by date and depth. Patterns observed suggest that (i) fermentation is the process controlling the greatest variability in the dataset and it peaks in May; (ii) iron and sulfate reduction were the dominant terminal electron-accepting processes in the system and were associated with fermentation but had more complex seasonal variability than fermentation; (iii) methanogenesis was also important and associated with bacterial utilization of minerals as a source of electron acceptors (e.g., barite BaSO4); and (iv) seasonal hydrological patterns (wet and dry periods) control the availability of electron acceptors through the reoxidation of reduced iron-sulfur species enhancing iron and sulfate reduction. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  15. Hydromechanical coupling in geologic processes

    USGS Publications Warehouse

    Neuzil, C.E.

    2003-01-01

    Earth's porous crust and the fluids within it are intimately linked through their mechanical effects on each other. This paper presents an overview of such "hydromechanical" coupling and examines current understanding of its role in geologic processes. An outline of the theory of hydromechanics and rheological models for geologic deformation is included to place various analytical approaches in proper context and to provide an introduction to this broad topic for nonspecialists. Effects of hydromechanical coupling are ubiquitous in geology, and can be local and short-lived or regional and very long-lived. Phenomena such as deposition and erosion, tectonism, seismicity, earth tides, and barometric loading produce strains that tend to alter fluid pressure. Resulting pressure perturbations can be dramatic, and many so-called "anomalous" pressures appear to have been created in this manner. The effects of fluid pressure on crustal mechanics are also profound. Geologic media deform and fail largely in response to effective stress, or total stress minus fluid pressure. As a result, fluid pressures control compaction, decompaction, and other types of deformation, as well as jointing, shear failure, and shear slippage, including events that generate earthquakes. By controlling deformation and failure, fluid pressures also regulate states of stress in the upper crust. Advances in the last 80 years, including theories of consolidation, transient groundwater flow, and poroelasticity, have been synthesized into a reasonably complete conceptual framework for understanding and describing hydromechanical coupling. Full coupling in two or three dimensions is described using force balance equations for deformation coupled with a mass conservation equation for fluid flow. Fully coupled analyses allow hypothesis testing and conceptual model development. However, rigorous application of full coupling is often difficult because (1) the rheological behavior of geologic media is complex

  16. Potential Impact of North Atlantic Climate Variability on Ocean Biogeochemical Processes

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Muhling, B.; Lee, S. K.; Muller-Karger, F. E.; Enfield, D. B.; Lamkin, J. T.; Roffer, M. A.

    2016-02-01

    Previous studies have shown that upper ocean circulations largely determine primary production in the euphotic layers, here the global ocean model with biogeochemistry (GFDL's Modular Ocean Model with TOPAZ biogeochemistry) forced with the ERA-Interim is used to simulate the natural variability of biogeochemical processes in global ocean during 1979-present. Preliminary results show that the surface chlorophyll is overall underestimated in MOM-TOPAZ, but its spatial pattern is fairly realistic. Relatively high chlorophyll variability is shown in the subpolar North Atlantic, northeastern tropical Atlantic, and equatorial Atlantic. Further analysis suggests that the chlorophyll variability in the North Atlantic Ocean is affected by long-term climate variability. For the subpolar North Atlantic region, the chlorophyll variability is light-limited and is significantly correlated with North Atlantic Oscillation. A dipole pattern of chlorophyll variability is found between the northeastern tropical Atlantic and equatorial Atlantic. For the northeastern North Atlantic, the chlorophyll variability is significantly correlated with Atlantic Meridional Mode (AMM) and Atlantic Multidecadal Oscillation (AMO). During the negative phase of AMM and AMO, the increased trade wind in the northeast North Atlantic can lead to increased upwelling of nutrients. In the equatorial Atlantic region, the chlorophyll variability is largely link to Atlantic-Niño and associated equatorial upwelling of nutrients. The potential impact of climate variability on the distribution of pelagic fishes (i.e. yellowfin tuna) are discussed.

  17. Biogeochemical processes controlling density stratification in an iron-meromictic lake

    NASA Astrophysics Data System (ADS)

    Nixdorf, E.; Boehrer, B.

    2015-06-01

    Biogeochemical processes and mixing regime of a lake can control each other mutually. The prominent case of iron meromixis is investigated in Waldsee near Doebern, a small lake that originated from surface mining of lignite. From a four years data set of monthly measured electrical conductivity profiles, we calculated summed conductivity as a quantitative variable reflecting the amount of electro-active substances in the entire lake. Seasonal variations followed changing chemocline height. Coinciding changes of electrical conductivities in the monimolimnion indicated that a considerable share of substances, precipitated by the advancing oxygenated epilimnion, re-dissolved in the remaining anoxic deep waters and contributed considerably to the density stratification. In addition, we constructed a lab experiment, in which aeration of monimolimnetic waters removed iron compounds and organic material. Precipitates could be identified by visual inspection. Introduced air bubbles ascended through the water column and formed a water mass similar to the mixolimnetic Waldsee water. The remaining less dense water remained floating on the nearly unchanged monimolimnetic water. In conclusion, iron meromixis as seen in Waldsee did not require two different sources of incoming waters, but the inflow of iron rich deep groundwater and the aeration through the lake surface were fully sufficient.

  18. Seasonal Variation in Floodplain Biogeochemical Processing in a Restored Headwater Stream.

    PubMed

    Jones, C Nathan; Scott, Durelle T; Guth, Christopher; Hester, Erich T; Hession, W Cully

    2015-11-17

    Stream and river restoration activities have recently begun to emphasize the enhancement of biogeochemical processing within river networks through the restoration of river-floodplain connectivity. It is generally accepted that this practice removes pollutants such as nitrogen and phosphorus because the increased contact time of nutrient-rich floodwaters with reactive floodplain sediments. Our study examines this assumption in the floodplain of a recently restored, low-order stream through five seasonal experiments. During each experiment, a floodplain slough was artificially inundated for 3 h. Both the net flux of dissolved nutrients and nitrogen uptake rate were measured during each experiment. The slough was typically a source of dissolved phosphorus and dissolved organic matter, a sink of NO3(-), and variable source/sink of ammonium. NO3(-) uptake rates were relatively high when compared to riverine uptake, especially during the spring and summer experiments. However, when scaled up to the entire 1 km restoration reach with a simple inundation model, less than 0.5-1.5% of the annual NO3(-) load would be removed because of the short duration of river-floodplain connectivity. These results suggest that restoring river-floodplain connectivity is not necessarily an appropriate best management practice for nutrient removal in low-order streams with legacy soil nutrients from past agricultural landuse.

  19. Linking Food Webs and Biogeochemical Processes in Wetlands: Insights From Sulfur Isotopes

    NASA Astrophysics Data System (ADS)

    Stricker, C. A.; Guntenspergen, G. R.; Rye, R. O.

    2005-05-01

    To better understand the transfer of nutrients into prairie wetland food webs we have investigated the cycling of S (via S isotope systematics and geochemistry) in a prairie wetland landscape by characterizing sources (ground water, interstitial water, surface water) and processes in a small catchment comprised of four wetlands in eastern South Dakota. We focused on S to derive process information that is not generally available from carbon isotopes alone. The wetlands chosen for study spanned a considerable range in SO4 concentration (0.1-13.6 mM), which corresponded with landscape position. Ground water δ34SSO4 values remained relatively constant (mean = -13.2 per mil) through time. However, δ34SSO4 values of wetland surface waters ranged from -2.9 to -30.0 per mil (CDT) and were negatively correlated with SO4 concentrations (p<0.05). The isotopic variability of surface water SO4 resulted from mixing with re-oxidized sulfides associated with recently flushed wetland soils. The δ34S signatures of wetland primary (Gastropoda: Stagnicola elodes) and secondary (Odonata: Anax sp.) consumers were significantly related to surface water δ34SSO4 values (p<0.05) suggesting that food web components were responding to changes in the isotopic composition of the S source. Both primary and secondary consumer δ34S signatures differed between wetlands (ANOVA, p<0.05). These data illustrate the complexity of S cycling in prairie wetlands and the influence of wetland hydrologic and biogeochemical processes on prairie wetland food webs. Additionally, this work has demonstrated that sulfur isotopes can provide unique source and process information that cannot be derived from traditional carbon and nitrogen isotope studies.

  20. New HYDRUS Modules for Simulating Preferential Flow, Colloid-Facilitated Contaminant Transport, and Various Biogeochemical Processes in Soils

    NASA Astrophysics Data System (ADS)

    Simunek, J.; Sejna, M.; Jacques, D.; Langergraber, G.; Bradford, S. A.; van Genuchten, M. Th.

    2012-04-01

    We have dramatically expanded the capabilities of the HYDRUS (2D/3D) software package by developing new modules to account for processes not available in the standard HYDRUS version. These new modules include the DualPerm, C-Hitch, HP2/3, Wetland, and Unsatchem modules. The dual-permeability modeling approach of Gerke and van Genuchten [1993] simulating preferential flow and transport is implemented into the DualPerm module. Colloid transport and colloid-facilitated solute transport, the latter often observed for many contaminants, such as heavy metals, radionuclides, pharmaceuticals, pesticides, and explosives [Šimůnek et al., 2006] are implemented into the C-Hitch module. HP2 and HP3 are the two and three-dimensional alternatives of the HP1 module, currently available with HYDRUS-1D [Jacques and Šimůnek, 2005], that couple HYDRUS flow and transport routines with the generic geochemical model PHREEQC of Parkhurst and Appelo [1999]. The Wetland module includes two alternative approaches (CW2D of Langergraber and Šimůnek [2005] and CWM1 of Langergraber et al. [2009]) for modeling aerobic, anaerobic, and anoxic biogeochemical processes in natural and constructed wetlands. Finally, the Unsatchem module simulates the transport and reactions of major ions in a soil profile. Brief descriptions and an application of each module will be presented. Except for HP3, all modules simulate flow and transport processes in two-dimensional transport domains. All modules are fully supported by the HYDRUS graphical user interface. Further development of these modules, as well as of several other new modules (such as Overland), is still envisioned. Continued feedback from the research community is encouraged.

  1. Understanding system disturbance and ecosystem services in restored saltmarshes: Integrating physical and biogeochemical processes

    NASA Astrophysics Data System (ADS)

    Spencer, K. L.; Harvey, G. L.

    2012-06-01

    Coastal saltmarsh ecosystems occupy only a small percentage of Earth's land surface, yet contribute a wide range of ecosystem services that have significant global economic and societal value. These environments currently face significant challenges associated with climate change, sea level rise, development and water quality deterioration and are consequently the focus of a range of management schemes. Increasingly, soft engineering techniques such as managed realignment (MR) are being employed to restore and recreate these environments, driven primarily by the need for habitat (re)creation and sustainable coastal flood defence. Such restoration schemes also have the potential to provide additional ecosystem services including climate regulation and waste processing. However, these sites have frequently been physically impacted by their previous land use and there is a lack of understanding of how this 'disturbance' impacts the delivery of ecosystem services or of the complex linkages between ecological, physical and biogeochemical processes in restored systems. Through the exploration of current data this paper determines that hydrological, geomorphological and hydrodynamic functioning of restored sites may be significantly impaired with respects to natural 'undisturbed' systems and that links between morphology, sediment structure, hydrology and solute transfer are poorly understood. This has consequences for the delivery of seeds, the provision of abiotic conditions suitable for plant growth, the development of microhabitats and the cycling of nutrients/contaminants and may impact the delivery of ecosystem services including biodiversity, climate regulation and waste processing. This calls for a change in our approach to research in these environments with a need for integrated, interdisciplinary studies over a range of spatial and temporal scales incorporating both intensive and extensive research design.

  2. Biogeochemical processes and buffering capacity concurrently affect acidification in a seasonally hypoxic coastal marine basin

    NASA Astrophysics Data System (ADS)

    Hagens, M.; Slomp, C. P.; Meysman, F. J. R.; Seitaj, D.; Harlay, J.; Borges, A. V.; Middelburg, J. J.

    2014-11-01

    Coastal areas are impacted by multiple natural and anthropogenic processes and experience stronger pH fluctuations than the open ocean. These variations can weaken or intensify the ocean acidification signal induced by increasing atmospheric pCO2. The development of eutrophication-induced hypoxia intensifies coastal acidification, since the CO2 produced during respiration decreases the buffering capacity of the hypoxic bottom water. To assess the combined ecosystem impacts of acidification and hypoxia, we quantified the seasonal variation in pH and oxygen dynamics in the water column of a seasonally stratified coastal basin (Lake Grevelingen, the Netherlands). Monthly water column chemistry measurements were complemented with estimates of primary production and respiration using O2 light-dark incubations, in addition to sediment-water fluxes of dissolved inorganic carbon (DIC) and total alkalinity (TA). The resulting dataset was used to set up a proton budget on a seasonal scale. Temperature-induced seasonal stratification combined with a high community respiration was responsible for the depletion of oxygen in the bottom water in summer. The surface water showed strong seasonal variation in process rates (primary production, CO2 air-sea exchange), but relatively small seasonal pH fluctuations (0.46 units on the total hydrogen ion scale). In contrast, the bottom water showed less seasonality in biogeochemical rates (respiration, sediment-water exchange), but stronger pH fluctuations (0.60 units). This marked difference in pH dynamics could be attributed to a substantial reduction in the acid-base buffering capacity of the hypoxic bottom water in the summer period. Our results highlight the importance of acid-base buffering in the pH dynamics of coastal systems and illustrate the increasing vulnerability of hypoxic, CO2-rich waters to any acidifying process.

  3. Biogeochemical processes and buffering capacity concurrently affect acidification in a seasonally hypoxic coastal marine basin

    NASA Astrophysics Data System (ADS)

    Hagens, M.; Slomp, C. P.; Meysman, F. J. R.; Seitaj, D.; Harlay, J.; Borges, A. V.; Middelburg, J. J.

    2015-03-01

    Coastal areas are impacted by multiple natural and anthropogenic processes and experience stronger pH fluctuations than the open ocean. These variations can weaken or intensify the ocean acidification signal induced by increasing atmospheric pCO2. The development of eutrophication-induced hypoxia intensifies coastal acidification, since the CO2 produced during respiration decreases the buffering capacity in any hypoxic bottom water. To assess the combined ecosystem impacts of acidification and hypoxia, we quantified the seasonal variation in pH and oxygen dynamics in the water column of a seasonally stratified coastal basin (Lake Grevelingen, the Netherlands). Monthly water-column chemistry measurements were complemented with estimates of primary production and respiration using O2 light-dark incubations, in addition to sediment-water fluxes of dissolved inorganic carbon (DIC) and total alkalinity (TA). The resulting data set was used to set up a proton budget on a seasonal scale. Temperature-induced seasonal stratification combined with a high community respiration was responsible for the depletion of oxygen in the bottom water in summer. The surface water showed strong seasonal variation in process rates (primary production, CO2 air-sea exchange), but relatively small seasonal pH fluctuations (0.46 units on the total hydrogen ion scale). In contrast, the bottom water showed less seasonality in biogeochemical rates (respiration, sediment-water exchange), but stronger pH fluctuations (0.60 units). This marked difference in pH dynamics could be attributed to a substantial reduction in the acid-base buffering capacity of the hypoxic bottom water in the summer period. Our results highlight the importance of acid-base buffering in the pH dynamics of coastal systems and illustrate the increasing vulnerability of hypoxic, CO2-rich waters to any acidifying process.

  4. Cumulative Significance of Hyporheic Exchange and Biogeochemical Processing in River Networks

    NASA Astrophysics Data System (ADS)

    Harvey, J. W.; Gomez-Velez, J. D.

    2014-12-01

    Biogeochemical reactions in rivers that decrease excessive loads of nutrients, metals, organic compounds, etc. are enhanced by hydrologic interactions with microbially and geochemically active sediments of the hyporheic zone. The significance of reactions in individual hyporheic flow paths has been shown to be controlled by the contact time between river water and sediment and the intrinsic reaction rate in the sediment. However, little is known about how the cumulative effects of hyporheic processing in large river basins. We used the river network model NEXSS (Gomez-Velez and Harvey, submitted) to simulate hyporheic exchange through synthetic river networks based on the best available models of network topology, hydraulic geometry and scaling of geomorphic features, grain size, hydraulic conductivity, and intrinsic reaction rates of nutrients and metals in river sediment. The dimensionless reaction significance factor, RSF (Harvey et al., 2013) was used to quantify the cumulative removal fraction of a reactive solute by hyporheic processing. SF scales reaction progress in a single pass through the hyporheic zone with the proportion of stream discharge passing through the hyporheic zone for a specified distance. Reaction progress is optimal where the intrinsic reaction timescale in sediment matches the residence time of hyporheic flow and is less efficient in longer residence time hyporheic flow as a result of the decreasing proportion of river flow that is processed by longer residence time hyporheic flow paths. In contrast, higher fluxes through short residence time hyporheic flow paths may be inefficient because of the repeated surface-subsurface exchanges required to complete the reaction. Using NEXSS we found that reaction efficiency may be high in both small streams and large rivers, although for different reasons. In small streams reaction progress generally is dominated by faster pathways of vertical exchange beneath submerged bedforms. Slower exchange

  5. Budget of organic carbon in the North-Western Mediterranean open sea over the period 2004-2008 using 3-D coupled physical-biogeochemical modeling

    NASA Astrophysics Data System (ADS)

    Ulses, C.; Auger, P.-A.; Soetaert, K.; Marsaleix, P.; Diaz, F.; Coppola, L.; Herrmann, M. J.; Kessouri, F.; Estournel, C.

    2016-09-01

    A 3-D hydrodynamic-biogeochemical coupled model has been used to estimate a budget of organic carbon and its interannual variability over the 5 year period 2004-2008 in the North-Western Mediterranean Open Sea (NWMOS). The comparison of its results with in situ and satellite observations reveals that the timing and the magnitude of the convection and bloom processes during the study period, marked by contrasted atmospheric conditions, are reasonably well reproduced by the model. Model outputs show that the amount of nutrients annually injected into the surface layer is clearly linked to the intensity of the events of winter convection. During cold winters, primary production is reduced by intense mixing events but then spectacularly increases when the water column restratifies. In contrast, during mild winters, the primary production progressively and continuously increases, sustained by moderate new production followed by regenerated production. Overall, interannual variability in the annual primary production is low. The export in subsurface and at middepth is however affected by the intensity of the convection process, with annual values twice as high during cold winters than during mild winters. Finally, the estimation of a global budget of organic carbon reveals that the NWMOS acts as a sink for the shallower areas and as a source for the Algerian and Balearic subbasins.

  6. Biogeochemical cycles of Chernobyl-born radionuclides in the contaminated forest ecosystems: long-term dynamics of the migration processes

    NASA Astrophysics Data System (ADS)

    Shcheglov, Alexey; Tsvetnova, Ol'ga; Klyashtorin, Alexey

    2013-04-01

    Biogeochemical migration is a dominant factor of the radionuclide transport through the biosphere. In the early XX century, V.I. Vernadskii, a Russian scientist known, noted about a special role living things play in transport and accumulation of natural radionuclide in various environments. The role of biogeochemical processes in migration and redistribution of technogenic radionuclides is not less important. In Russia, V. M. Klechkovskii and N.V. Timofeev-Ressovskii showed some important biogeochemical aspects of radionuclide migration by the example of global fallout and Kyshtym accident. Their followers, R.M. Alexakhin, M.A. Naryshkin, N.V. Kulikov, F.A. Tikhomirov, E.B. Tyuryukanova, and others also contributed a lot to biogeochemistry of radionuclides. In the post-Chernobyl period, this area of knowledge received a lot of data that allowed building the radioactive element balance and flux estimation in various biogeochemical cycles [Shcheglov et al., 1999]. Regrettably, many of recent radioecological studies are only focused on specific radionuclide fluxes or pursue some applied tasks, missing the holistic approach. Most of the studies consider biogeochemical fluxes of radioactive isotopes in terms of either dose estimation or radionuclide migration rates in various food chains. However, to get a comprehensive picture and develop a reliable forecast of environmental, ecological, and social consequences of radioactive pollution in a vast contaminated area, it is necessary to investigate all the radionuclide fluxes associated with the biogeochemical cycles in affected ecosystems. We believe such an integrated approach would be useful to study long-term environmental consequences of the Fukushima accident as well. In our long-term research, we tried to characterize the flux dynamics of the Chernobyl-born radionuclides in the contaminated forest ecosystems and landscapes as a part of the integrated biogeochemical process. Our field studies were started in June of

  7. Linking Inundation Patterns and Dynamics in a Permafrost Landscape to Hydrologic, Thermal, Biogeochemical and Ecosystem Processes

    NASA Astrophysics Data System (ADS)

    Wilson, C. J.; Hinzman, L. D.; Iwahana, G.; Lara, M. J.; Liljedahl, A.; Painter, S. L.; Romanovsky, V. E.; Wullschleger, S. D.

    2014-12-01

    The Arctic coastal plain is characterized by multi-scale geomorphic features including thaw lakes, drained thaw lake basins, and clusters of ice wedge polygons composed of troughs, centers, and rims. The topographic and subsurface properties of these features control the lateral and vertical drainage pathways of snow melt and precipitation as well as the spatial and temporal dynamics of standing water in the landscape. The Next Generation Ecosystem Experiment, NGEE-Arctic, project combines multi-scale in-situ and remote surface and subsurface observations that quantify the interactions between landscape structure, hydrology, the carbon cycle and energy balance of Arctic permafrost environments, with the aim of improving representation of Arctic ecosystem processes in global climate models. Data and models from the project show distinct relationships exist between the hydro-geomorphic features mapped on the ground and observed in remote sensing imagery, and the measured in-situ thermal, biogeochemical and ecosystem responses coincident with those features. The relationships between micro-topographic setting, snow distribution, inundation, subsurface temperature and thaw depth observed at the NGEE Barrow field sites are now well reproduced in process resolving models such as Pflotran and the Arctic Terrestrial Simulator. Current modeling efforts are investigating how topographically controlled thermal-hydrologic dynamics impact the carbon cycle. The next challenge is to scale these relationships for application in a global climate model grid cell to enable pan-Arctic predictions of future change, including the change in topography and inundation resulting from thawing permafrost and melting ground ice. NGEE-Arctic is funded by the DOE Office of Science, Biological and Environmental Research program.

  8. Significant Findings: Tracking the SeaWiFS Record with a Coupled Physical/Biogeochemical/Radiative Model of the Global Oceans

    NASA Technical Reports Server (NTRS)

    Watson, Gregg W.

    2000-01-01

    The Sea-Viewing Wide Field-of-view Sensor (SeaWiFS) has observed 2.5 years of routine global chlorophyll observations from space. The mission was launched into a record El Nino event, which eventually gave way to one of the most intensive and longest-lasting La Nina events ever recorded. The SeaWiFS chlorophyll record captured the response of ocean phytoplankton to these significant events in the tropical Indo-Pacific basins, but also indicated significant interannual variability unrelated to the El Nino/La Nina events. This included large variability in the North Atlantic and Pacific basins, in the North Central and equatorial Atlantic, and milder patterns in the North Central Pacific. This SeaWiFS record was tracked with a coupled physical/biogeochemical/radiative model of the global oceans using near-real-time forcing data such as wind stresses, sea surface temperatures, and sea ice. This provided an opportunity to offer physically and biogeochemically meaningful explanations of the variability observed in the SeaWiFS data set, since the causal mechanisms and interrelationships of the model are completely understood. The coupled model was able to represent the seasonal distributions of chlorophyll during the SeaWiFS era, and was capable of differentiating among the widely different processes and dynamics occurring in the global oceans. The model was also reasonably successful in representing the interannual signal, especially when it was large, such as, the El Nino and La Nina events in the tropical Pacific and Indian Oceans. The model provided different phytoplankton group responses for the different events in these regions: diatoms were predominant in the tropical Pacific during the La Nina but other groups were predominant during El Nino. The opposite condition occurred in the tropical Indian Ocean. Both situations were due to the different responses of the basins to El Nino. The interannual variability in the North Atlantic, which was exhibited in Sea

  9. Biogeochemical responses following coral mass spawning on the Great Barrier Reef: pelagic-benthic coupling

    NASA Astrophysics Data System (ADS)

    Wild, C.; Jantzen, C.; Struck, U.; Hoegh-Guldberg, O.; Huettel, M.

    2008-03-01

    This study quantified how the pulse of organic matter from the release of coral gametes triggered a chain of pelagic and benthic processes during an annual mass spawning event on the Australian Great Barrier Reef. Particulate organic matter (POM) concentrations in reef waters increased by threefold to 11-fold the day after spawning and resulted in a stimulation of pelagic oxygen consumption rates that lasted for at least 1 week. Water column microbial communities degraded the organic carbon of gametes of the broadcast-spawning coral Acropora millepora at a rate of >15% h-1, which is about three times faster than the degradation rate measured for larvae of the brooding coral Stylophora pistillata. Stable isotope signatures of POM in the water column reflected the fast transfer of organic matter from coral gametes into higher levels of the food chain, and the amount of POM reaching the seafloor immediately increased after coral spawning and then tailed-off in the next 2 weeks. Short-lasting phytoplankton blooms developed within a few days after the spawning event, indicating a prompt recycling of nutrients released through the degradation of spawning products. These data show the profound effects of coral mass spawning on the reef community and demonstrate the tight recycling of nutrients in this oligotrophic ecosystem.

  10. An assessment of net primary productivity estimates using coupled physical-biogeochemical/earth system models in the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Lee, Y. J.; Matrai, P.; Friedrichs, M. A.; Saba, V. S.

    2016-02-01

    Net primary production (NPP) is the major source of energy for the Arctic Ocean (AO) ecosystem, as in most ecosystems. Reproducing current patterns of NPP is essential to understand the physical and biogeochemical controls in the present and the future AO. The Primary Productivity Algorithm Round Robin (PPARR) activity provides a framework to evaluate the skill and sensitivity of NPP as estimated by coupled global/regional climate models and earth system models in the AO. Here we compare results generated from 18 global/regional climate models and three earth system models with observations from a unique pan-Arctic data set (1959-2011) that includes in situ NPP (N=928 stations) and nitrate (N=678 stations). Models results showed a distribution similar to the in situ data distribution, except for the high values of integrated NPP data. Model skill of integrated NPP exhibited little difference as a function of sea ice condition (ice-free vs. ice-covered) and depth (shallow vs. deep), but performance of models varied significantly as a function of seasons. For example, simulated integrated NPP was underestimated in the beginning of the production season (April-June) compared to mid-summer (July and August) and had the highest variability in late summer and early fall (September-October). While models typically underestimated mean NPP, nitrate concentrations were overestimated. Overall, models performed better in reproducing nitrate than NPP in terms of differences in variability. The model performance was similar at all depths within the top 100 m, both in NPP and nitrate. Continual feedback, modification and improvement of the participating models and the resulting increase in model skill are the primary goals of the PPARR-5 AO exercise.

  11. A skill assessment of the biogeochemical model REcoM2 coupled to the finite element sea-ice ocean model (FESOM 1.3)

    NASA Astrophysics Data System (ADS)

    Schourup-Kristensen, V.; Sidorenko, D.; Wolf-Gladrow, D. A.; Völker, C.

    2014-07-01

    In coupled ocean-biogeochemical models, the choice of numerical schemes in the ocean circulation component can have a large influence on the distribution of the biological tracers. Biogeochemical models are traditionally coupled to ocean general circulation models (OGCMs), which are based on dynamical cores employing quasi regular meshes, and therefore utilize limited spatial resolution in a global setting. An alternative approach is to use an unstructured-mesh ocean model, which allows variable mesh resolution. Here, we present initial results of a coupling between the Finite Element Sea-ice Ocean Model (FESOM) and the biogeochemical model REcoM2, with special focus on the Southern Ocean. Surface fields of nutrients, chlorophyll a and net primary production were compared to available data sets with focus on spatial distribution and seasonal cycle. The model produced realistic spatial distributions, especially regarding net primary production and chlorophyll a, whereas the iron concentration became too low in the Pacific Ocean. The modelled net primary production was 32.5 Pg C yr-1 and the export production 6.1 Pg C yr-1. This is lower than satellite-based estimates, mainly due to the excessive iron limitation in the Pacific along with too little coastal production. Overall, the model performed better in the Southern Ocean than on the global scale, though the assessment here is hindered by the lower availability of observations. The modelled net primary production was 3.1 Pg C yr-1 in the Southern Ocean and the export production 1.1 Pg C yr-1. All in all, the combination of a circulation model on an unstructured grid with an ocean biogeochemical model shows similar performance to other models at non-eddy-permitting resolution. It is well suited for studies of the Southern Ocean, but on the global scale deficiencies in the Pacific Ocean would have to be taken into account.

  12. [Microbiological and biogeochemical processes in a pockmark of the Gdansk depression, Baltic Sea].

    PubMed

    Pimenov, N V; Ul'ianova, M O; Kanapatski, T A; Sivkov, V V; Ivanov, M V

    2008-01-01

    Comprehensive microbiological and biogeochemical investigation of a pockmark within one of the sites of gas-saturated sediments in the Gdansk depression, Baltic Sea was carried out during the 87th voyage of the Professor Shtokman research vessel. Methane content in the near-bottom water and in the underlying sediments indicates stable methane flow from the sediment into the water. In the 10-m water layer above the pockmark, apart from methane anomalies, elevated numbers of microorganisms and enhanced rates of dark CO2 fixation (up to 1.15 micromol C/(1 day)) and methane oxidation (up to 2.14 nmol CH4/(1 day)) were revealed. Lightened isotopic composition of suspended organic matter also indicates high activity of the near-bottom microbial community. Compared to the background stations, methane content in pockmark sediments increased sharply from the surface to 40-60 ml/dm3 in the 20-30cm horizon. High rates of bacterial sulfate reduction (SR) were detected throughout the core (0-40 cm); the maximum of 74 micromol/(dm3 day) was located in subsurface horizons (15-20 cm). The highest rates of anaerobic methane oxidation (AMO), up to 80 micromol/(dm3 day), were detected in the same horizon. Good coincidence of the AMO and SR profiles with stoichiometry close to 1:1 is evidence in favor of a close relation between these processes performed by a consortium of methanotrophic archaea and sulfate-reducing bacteria. Methane isotopic composition in subsurface sediments of the pockmark (from -53.0 to -56.5% per hundred) does not rule out the presence of methane other than the biogenic methane from the deep horizons of the sedimentary cover.

  13. Soil property control of biogeochemical processes beneath two subtropical stormwater infiltration basins

    USGS Publications Warehouse

    O'Reilly, Andrew M.; Wanielista, Martin P.; Chang, Ni-Bin; Harris, Willie G.; Xuan, Zhemin

    2012-01-01

    Substantially different biogeochemical processes affecting nitrogen fate and transport were observed beneath two stormwater infiltration basins in north-central Florida. Differences are related to soil textural properties that deeply link hydroclimatic conditions with soil moisture variations in a humid, subtropical climate. During 2008, shallow groundwater beneath the basin with predominantly clayey soils (median, 41% silt+clay) exhibited decreases in dissolved oxygen from 3.8 to 0.1 mg L-1 and decreases in nitrate nitrogen (NO3-–N) from 2.7 mg L-1 to -1, followed by manganese and iron reduction, sulfate reduction, and methanogenesis. In contrast, beneath the basin with predominantly sandy soils (median, 2% silt+clay), aerobic conditions persisted from 2007 through 2009 (dissolved oxygen, 5.0–7.8 mg L-1), resulting in NO3-–N of 1.3 to 3.3 mg L-1 in shallow groundwater. Enrichment of d15N and d18O of NO3- combined with water chemistry data indicates denitrification beneath the clayey basin and relatively conservative NO3- transport beneath the sandy basin. Soil-extractable NO3-–N was significantly lower and the copper-containing nitrite reductase gene density was significantly higher beneath the clayey basin. Differences in moisture retention capacity between fine- and coarse-textured soils resulted in median volumetric gas-phase contents of 0.04 beneath the clayey basin and 0.19 beneath the sandy basin, inhibiting surface/subsurface oxygen exchange beneath the clayey basin. Results can inform development of soil amendments to maintain elevated moisture content in shallow soils of stormwater infiltration basins, which can be incorporated in improved best management practices to mitigate NO3- impacts.

  14. Soil property control of biogeochemical processes beneath two subtropical stormwater infiltration basins.

    PubMed

    O'Reilly, Andrew M; Wanielista, Martin P; Chang, Ni-Bin; Harris, Willie G; Xuan, Zhemin

    2012-01-01

    Substantially different biogeochemical processes affecting nitrogen fate and transport were observed beneath two stormwater infiltration basins in north-central Florida. Differences are related to soil textural properties that deeply link hydroclimatic conditions with soil moisture variations in a humid, subtropical climate. During 2008, shallow groundwater beneath the basin with predominantly clayey soils (median, 41% silt+clay) exhibited decreases in dissolved oxygen from 3.8 to 0.1 mg L and decreases in nitrate nitrogen (NO-N) from 2.7 mg L to <0.016 mg L, followed by manganese and iron reduction, sulfate reduction, and methanogenesis. In contrast, beneath the basin with predominantly sandy soils (median, 2% silt+clay), aerobic conditions persisted from 2007 through 2009 (dissolved oxygen, 5.0-7.8 mg L), resulting in NO-N of 1.3 to 3.3 mg L in shallow groundwater. Enrichment of δN and δO of NO combined with water chemistry data indicates denitrification beneath the clayey basin and relatively conservative NO transport beneath the sandy basin. Soil-extractable NO-N was significantly lower and the copper-containing nitrite reductase gene density was significantly higher beneath the clayey basin. Differences in moisture retention capacity between fine- and coarse-textured soils resulted in median volumetric gas-phase contents of 0.04 beneath the clayey basin and 0.19 beneath the sandy basin, inhibiting surface/subsurface oxygen exchange beneath the clayey basin. Results can inform development of soil amendments to maintain elevated moisture content in shallow soils of stormwater infiltration basins, which can be incorporated in improved best management practices to mitigate NO impacts.

  15. The Role of Biogeochemical Cycling of Atmosphere-surface Exchangeable Pollutants (ASEPs) in the Dynamic Coupled Human-Natural ASEP System

    NASA Astrophysics Data System (ADS)

    Perlinger, J. A.; Urban, N. R.; Obrist, D.; Wu, S.

    2014-12-01

    Thousands of toxic pollutants that we term "atmosphere-surface exchangeable pollutants", or ASEPs, pass readily in both directions between the atmosphere and environmental surfaces and exhibit three characteristic tendencies when emitted to the environment: resistance to rapid degradation, accumulation in organic-rich biotic and abiotic surface reservoirs, and semivolatility causing re-emission to the atmosphere. ASEPs are emitted into the environment in part or in total through human activities, are transported and processed in the environment, and often deposited in locations distant from their original use or release. This characteristic separation of use and harm limits the capacity of communities affected by ASEPs to mitigate them. Incomplete understanding of the dynamic behavior of these pollutants in the environment has resulted in efforts to regulate them that do not fully protect human and ecosystem health from risks. To demonstrate this characteristic separation of use and harm, we compare and contrast the role that biogeochemical cycling plays in the dynamic coupled human-natural ASEP system for polycyclic aromatic hydrocarbons, polychlorinated biphenyl compounds, and mercury. We highlight remobilization effects related to land use and climate change, and demonstrate the ecosystem service provided by natural organic matter through sequestration of ASEPs in terrestrial environments.

  16. A Conceptual model of coupled biogeochemical and hydrogeologicalprocesses affected by in situ Cr(VI) bioreduction in groundwater atHanford 100H Site

    SciTech Connect

    Faybishenko, B.; Long, P.E.; Hazen, T.C.; Hubbard, S.S.; Williams, K.H.; Peterson, J.E.; Chen, J.; Volkova, E.V.; Newcomer, D.R.; Resch, C.T.; Cantrell, K.; Conrad, M.S.; Brodie, E.L.; Joyner, D.C.; Borglin, S.E.; Chakraborty, R.C.

    2006-09-06

    The overall objective of this presentation is to demonstratea conceptual multiscale, multidomain model of coupling of biogeochemicaland hydrogeological processes during bioremediation of Cr(VI)contaminated groundwater at Hanford 100H site. A slow releasepolylactate, Hydrogen Release Compound (HRCTM), was injected in Hanfordsediments to stimulate immobilization of Cr(VI). The HRC injectioninduced a 2-order-of-magnitude increase in biomass and the onset ofreducing biogeochemical conditions [e.g., redox potential decreased from+240 to -130 mV and dissolved oxygen (DO) was completely removed]. Athree-well system, comprised of an injection well and upgradient anddowngradient monitoring wells, was used for conducting the in situbiostimulation, one regional flow (no-pumping) tracer test, and fivepumping tests along with the Br-tracer injection. Field measurements wereconducted using a Br ion-selective electrode and a multiparameter flowcell to collect hourly data on temperature, pH, redox potential,electrical conductivity, and DO. Groundwater sampling was conducted bypumping through specially designed borehole water samplers.Cross-borehole radar tomography and seismic measurements were carried outto assess the site background lithological heterogeneity and themigration pathways of HRC byproducts through groundwater after the HRCinjection.

  17. Assessment of the GHG Reduction Potential from Energy Crops Using a Combined LCA and Biogeochemical Process Models: A Review

    PubMed Central

    Jiang, Dong; Hao, Mengmeng; Wang, Qiao; Huang, Yaohuan; Fu, Xinyu

    2014-01-01

    The main purpose for developing biofuel is to reduce GHG (greenhouse gas) emissions, but the comprehensive environmental impact of such fuels is not clear. Life cycle analysis (LCA), as a complete comprehensive analysis method, has been widely used in bioenergy assessment studies. Great efforts have been directed toward establishing an efficient method for comprehensively estimating the greenhouse gas (GHG) emission reduction potential from the large-scale cultivation of energy plants by combining LCA with ecosystem/biogeochemical process models. LCA presents a general framework for evaluating the energy consumption and GHG emission from energy crop planting, yield acquisition, production, product use, and postprocessing. Meanwhile, ecosystem/biogeochemical process models are adopted to simulate the fluxes and storage of energy, water, carbon, and nitrogen in the soil-plant (energy crops) soil continuum. Although clear progress has been made in recent years, some problems still exist in current studies and should be addressed. This paper reviews the state-of-the-art method for estimating GHG emission reduction through developing energy crops and introduces in detail a new approach for assessing GHG emission reduction by combining LCA with biogeochemical process models. The main achievements of this study along with the problems in current studies are described and discussed. PMID:25045736

  18. Assessment of the GHG reduction potential from energy crops using a combined LCA and biogeochemical process models: a review.

    PubMed

    Jiang, Dong; Hao, Mengmeng; Fu, Jingying; Wang, Qiao; Huang, Yaohuan; Fu, Xinyu

    2014-01-01

    The main purpose for developing biofuel is to reduce GHG (greenhouse gas) emissions, but the comprehensive environmental impact of such fuels is not clear. Life cycle analysis (LCA), as a complete comprehensive analysis method, has been widely used in bioenergy assessment studies. Great efforts have been directed toward establishing an efficient method for comprehensively estimating the greenhouse gas (GHG) emission reduction potential from the large-scale cultivation of energy plants by combining LCA with ecosystem/biogeochemical process models. LCA presents a general framework for evaluating the energy consumption and GHG emission from energy crop planting, yield acquisition, production, product use, and postprocessing. Meanwhile, ecosystem/biogeochemical process models are adopted to simulate the fluxes and storage of energy, water, carbon, and nitrogen in the soil-plant (energy crops) soil continuum. Although clear progress has been made in recent years, some problems still exist in current studies and should be addressed. This paper reviews the state-of-the-art method for estimating GHG emission reduction through developing energy crops and introduces in detail a new approach for assessing GHG emission reduction by combining LCA with biogeochemical process models. The main achievements of this study along with the problems in current studies are described and discussed.

  19. Contributions of physical and biogeochemical processes to phytoplankton biomass enhancement in the surface and subsurface layers during the passage of Typhoon Damrey

    NASA Astrophysics Data System (ADS)

    Pan, Shanshan; Shi, Jie; Gao, Huiwang; Guo, Xinyu; Yao, Xiaohong; Gong, Xiang

    2017-01-01

    In this study, a one-dimensional physical-biogeochemical coupled model was established to investigate the responses of the upper ocean to Typhoon Damrey in the basin area of the South China Sea. The surface chlorophyll a concentration (Chl a) increased rapidly from 0.07 to 0.17 mg m-3 when the typhoon arrived and then gradually reached a peak of 0.61 mg m-3 after the typhoon's passage. The subsurface Chl a decreased from 0.34 to 0.17 mg m-3 as the typhoon arrived and then increased gradually to 0.71 mg m-3. Analyses of model results indicated that the initial rapid increase in the surface Chl a and the decrease in the subsurface Chl a were caused mainly by physical process (vertical mixing), whereas the subsequent gradual increases in the Chl a in both the surface and subsurface layers were due mainly to biogeochemical processes (net growth of phytoplankton). The gradual increase in the Chl a lasted for longer in the subsurface layer than in the surface layer. Typhoon Damrey yielded an integrated primary production (IPP) of 6.5 × 103 mg C m-2 ( 14% of the annual IPP in this region).

  20. Study of the seasonal cycle of the biogeochemical processes in the Ligurian Sea using a 1D interdisciplinary model

    NASA Astrophysics Data System (ADS)

    Raick, C.; Delhez, E. J. M.; Soetaert, K.; Grégoire, M.

    2005-04-01

    A one-dimensional coupled physical-biogeochemical model has been built to study the pelagic food web of the Ligurian Sea (NW Mediterranean Sea). The physical model is the turbulent closure model (version 1D) developed at the GeoHydrodynamics and Environmental Laboratory (GHER) of the University of Liège. The ecosystem model contains 19 state variables describing the carbon and nitrogen cycles of the pelagic food web. Phytoplankton and zooplankton are both divided in three size-based compartments and the model includes an explicit representation of the microbial loop including bacteria, dissolved organic matter, nano-, and microzooplankton. The internal carbon/nitrogen ratio is assumed variable for phytoplankton and detritus, and constant for zooplankton and bacteria. Silicate is considered as a potential limiting nutrient of phytoplankton's growth. The aggregation model described by Kriest and Evans in (Proc. Ind. Acad. Sci., Earth Planet. Sci. 109 (4) (2000) 453) is used to evaluate the sinking rate of particulate detritus. The model is forced at the air-sea interface by meteorological data coming from the "Côte d'Azur" Meteorological Buoy. The dynamics of atmospheric fluxes in the Mediterranean Sea (DYFAMED) time-series data obtained during the year 2000 are used to calibrate and validate the biological model. The comparison of model results within in situ DYFAMED data shows that although some processes are not represented by the model, such as horizontal and vertical advections, model results are overall in agreement with observations and differences observed can be explained with environmental conditions.

  1. Influence of harvesting on biogeochemical exchange in sheetflow and soil processes in a eutrophic floodplain forest

    Treesearch

    B.G. Lockaby; R.G. Clawson; K. Flynn; Robert Rummer; S. Meadows; B Stokes; John A. Stanturf

    1997-01-01

    Floodplain forests contribute to the maintenance of water quality as a result of various biogeochemical transformations which occur within them. In particular, they can serve as sinks for nutrient run-off from adjacent uplands or as nutrient transformers as water moves downstream. However, little is known about the potential that land management activities may have for...

  2. Analyzing the ecosystem carbon and hydrologic characteristics of forested wetland using a biogeochemical process model

    Treesearch

    Jianbo Cui; Changsheng Li; Carl Trettin

    2005-01-01

    A comprehensive biogeochemical model, Wetland-DNDC, was applied to analyze the carbon and hydrologic characteristics of forested wetland ecosystem at Minnesota (MN) and Florida (FL) sites. The model simulates the flows of carbon, energy, and water in forested wetlands. Modeled carbon dynamics depends on physiological plant factors, the size of plant pools,...

  3. Thermodynamics at work - on the limits and potentials of biogeochemical processes

    NASA Astrophysics Data System (ADS)

    Peiffer, Stefan

    2017-04-01

    The preferential use of high potential electron acceptors by microorganisms has lead to the classical concept of a redox sequence with a sequential use of O2 nitrate, Fe(III), sulfate, and finally CO2 as electron acceptors for respiration (Stumm & Morgan, 1996). Christian Blodau has rigourously applied this concept to constrain the thermodynamical limits at which specific aquatic systems operate. In sediments from acidic mining lakes his analysis revealed that sulfate reducers are not competitive as long as low-crystallinity ferric oxides are available for organic matter decomposition (Blodau et al, 1998). This analysis opened up the possibility to generalize the linkage between the iron and sulphur cycle in such systems and to constrain the biogeochemical limits for remediation (e. g. Peine et al, 2000). In a similar approach, Beer & Blodau (2007) were able to demonstrate that constraints on the removal of products from acetoclastic methanogenesis in deeper peat layers are inhibiting organic matter decomposition and provide a thermodynamic argument for peat accumulation. In this contribution I will review such ideas and further refine the limits and potentials of biogeochemical reactions in terms of redox-active metastable phases (RAMPS) that are typically mixed-valent carbon-, iron-, and sulfur-containing compounds and which allow for the occurrence of a number of enigmatic reactions, e. g. limited greenhouse gas emission (CH4) under dynamic redox conditions. It is proposed that redox equivalents are generated, stored and recycled during oxidation and reduction cycles thus suppressing methanogenesis (Blodau, 2002). Such RAMPS will preferentially occur at dynamic interfaces being exposed to frequent redox cycles. The concept of RAMPS will be illustrated along the interaction between ferric (hydr)oxides and dissolved sulphide. Recent studies using modern analytical tools revealed the formation of a number of amorphous products within a short time scale (days) both

  4. The roles of resuspension, diffusion and biogeochemical processes on oxygen dynamics offshore of the Rhône River, France: a numerical modeling study

    NASA Astrophysics Data System (ADS)

    Moriarty, Julia M.; Harris, Courtney K.; Fennel, Katja; Friedrichs, Marjorie A. M.; Xu, Kehui; Rabouille, Christophe

    2017-04-01

    Observations indicate that resuspension and associated fluxes of organic material and porewater between the seabed and overlying water can alter biogeochemical dynamics in some environments, but measuring the role of sediment processes on oxygen and nutrient dynamics is challenging. A modeling approach offers a means of quantifying these fluxes for a range of conditions, but models have typically relied on simplifying assumptions regarding seabed-water-column interactions. Thus, to evaluate the role of resuspension on biogeochemical dynamics, we developed a coupled hydrodynamic, sediment transport, and biogeochemical model (HydroBioSed) within the Regional Ocean Modeling System (ROMS). This coupled model accounts for processes including the storage of particulate organic matter (POM) and dissolved nutrients within the seabed; fluxes of this material between the seabed and the water column via erosion, deposition, and diffusion at the sediment-water interface; and biogeochemical reactions within the seabed. A one-dimensional version of HydroBioSed was then implemented for the Rhône subaqueous delta in France. To isolate the role of resuspension on biogeochemical dynamics, this model implementation was run for a 2-month period that included three resuspension events; also, the supply of organic matter, oxygen, and nutrients to the model was held constant in time. Consistent with time series observations from the Rhône Delta, model results showed that erosion increased the diffusive flux of oxygen into the seabed by increasing the vertical gradient of oxygen at the seabed-water interface. This enhanced supply of oxygen to the seabed, as well as resuspension-induced increases in ammonium availability in surficial sediments, allowed seabed oxygen consumption to increase via nitrification. This increase in nitrification compensated for the decrease in seabed oxygen consumption due to aerobic remineralization that occurred as organic matter was entrained into the water

  5. Experimental study and steady-state simulation of biogeochemical processes in laboratory columns with aquifer material

    NASA Astrophysics Data System (ADS)

    Amirbahman, Aria; Schönenberger, René; Furrer, Gerhard; Zobrist, Jürg

    2003-07-01

    Packed bed laboratory column experiments were performed to simulate the biogeochemical processes resulting from microbially catalyzed oxidation of organic matter. These included aerobic respiration, denitrification, and Mn(IV), Fe(III) and SO 4 reduction processes. The effects of these reactions on the aqueous- and solid-phase geochemistry of the aquifer material were closely examined. The data were used to model the development of alkalinity and pH along the column. To study the independent development of Fe(III)- and SO 4-reducing environments, two columns were used. One of the columns (column 1) contained small enough concentrations of SO 4 in the influent to render the reduction of this species unimportant to the geochemical processes in the column. The rate of microbially catalyzed reduction of Mn(IV) changed with time as evidenced by the variations in the initial rate of Mn(II) production at the head of the column. The concentration of Mn in both columns was controlled by the solubility of rhodochrosite (MnCO 3(S)). In the column where significant SO 4 reduction took place (column 2), the concentration of dissolved Fe(II) was controlled by the solubility of FeS. In column 1, where SO 4 reduction was not important, maximum dissolved Fe(II) concentrations were controlled by the solubility of siderite (FeCO 3(S)). Comparison of solid-phase and aqueous-phase data suggests that nearly 20% of the produced Fe(II) precipitates as siderite in column 1. The solid-phase analysis also indicates that during the course of experiment, approximately 20% of the total Fe(III) hydroxides and more than 70% of the amorphous Fe(III) hydroxides were reduced by dissimilatory iron reduction. The most important sink for dissolved S(-II) produced by the enzymatic reduction of SO 4 was its direct reaction with solid-phase Fe(III) hydroxides leading initially to the formation of FeS. Compared to this pathway, precipitation as FeS did not constitute an important sink for S(-II) in column

  6. Identifying biogeochemical processes beneath stormwater infiltration ponds in support of a new best management practice for groundwater protection

    USGS Publications Warehouse

    O'Reilly, Andrew M.; Chang, Ni-Bin; Wanielista, Martin P.; Xuan, Zhemin; Schirmer, Mario; Hoehn, Eduard; Vogt, Tobias

    2011-01-01

     When applying a stormwater infiltration pond best management practice (BMP) for protecting the quality of underlying groundwater, a common constituent of concern is nitrate. Two stormwater infiltration ponds, the SO and HT ponds, in central Florida, USA, were monitored. A temporal succession of biogeochemical processes was identified beneath the SO pond, including oxygen reduction, denitrification, manganese and iron reduction, and methanogenesis. In contrast, aerobic conditions persisted beneath the HT pond, resulting in nitrate leaching into groundwater. Biogeochemical differences likely are related to soil textural and hydraulic properties that control surface/subsurface oxygen exchange. A new infiltration BMP was developed and a full-scale application was implemented for the HT pond. Preliminary results indicate reductions in nitrate concentration exceeding 50% in soil water and shallow groundwater beneath the HT pond.

  7. The genetic potential for key biogeochemical processes in Arctic frost flowers and young sea ice revealed by metagenomic analysis.

    PubMed

    Bowman, Jeff S; Berthiaume, Chris T; Armbrust, E Virginia; Deming, Jody W

    2014-08-01

    Newly formed sea ice is a vast and biogeochemically active environment. Recently, we reported an unusual microbial community dominated by members of the Rhizobiales in frost flowers at the surface of Arctic young sea ice based on the presence of 16S gene sequences related to these strains. Here, we use metagenomic analysis of two samples, from a field of frost flowers and the underlying young sea ice, to explore the metabolic potential of this surface ice community. The analysis links genes for key biogeochemical processes to the Rhizobiales, including dimethylsulfide uptake, betaine glycine turnover, and halocarbon production. Nodulation and nitrogen fixation genes characteristic of terrestrial root-nodulating Rhizobiales were generally lacking from these metagenomes. Non-Rhizobiales clades at the ice surface had genes that would enable additional biogeochemical processes, including mercury reduction and dimethylsulfoniopropionate catabolism. Although the ultimate source of the observed microbial community is not known, considerations of the possible role of eolian deposition or transport with particles entrained during ice formation favor a suspended particle source for this microbial community. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  8. Introduction: SIPEX-2: A study of sea-ice physical, biogeochemical and ecosystem processes off East Antarctica during spring 2012

    NASA Astrophysics Data System (ADS)

    Meiners, Klaus M.; Golden, Ken M.; Heil, Petra; Lieser, Jan L.; Massom, Rob; Meyer, Bettina; Williams, Guy D.

    2016-09-01

    This editorial introduces a suite of articles resulting from the second Sea Ice Physics and Ecosystems eXperiment (SIPEX-2) voyage by presenting some background information on the study area and Antarctic sea-ice conditions, and summarising the key findings from the project. Using the Australian icebreaker RV Aurora Australis, SIPEX-2 was conducted in the area between 115-125°E and 62-66°S off East Antarctica during September to November 2012. This region had been sampled during two previous experiments, i.e. ARISE in 2003 (Massom et al., 2006a) and SIPEX in 2007 (Worby et al., 2011a). The 2012 voyage combined traditional and newly developed sampling methods with satellite and other data to measure sea-ice physical properties and processes on large scales, which provided context for biogeochemical and ecological case studies. The specific goals of the SIPEX-2 project were to: (i) measure the spatial variability in sea-ice and snow-cover properties over small- to regional-length scales; (ii) improve understanding of sea-ice kinematic processes; and (iii) advance knowledge of the links between sea-ice physical characteristics, sea-ice biogeochemical cycling and ice-associated food-web dynamics. Our field-based activities were designed to inform modelling approaches and to improve our capability to assess impacts of predicted changes in Antarctic sea ice on Southern Ocean biogeochemical cycles and ecosystem function.

  9. Experimental investigation of the link between geophysical signatures and biogeochemical properties and processes: experimental design, data collection and interpretation

    NASA Astrophysics Data System (ADS)

    Versteeg, R. J.; Blackwelder, B.; Radtke, C.; Silverman, H.

    2004-12-01

    Recent research indicates a correlation between geophysical data from a number of electrical methods (resistivity, induced polarization and self potential) and subsurface biogeochemical properties and processes. Thus, the hope is that electrical measurements will provide proxy indicators of the macroscopic changes in hydraulic and biogeochemical subsurface properties resulting from microbial activity at contaminated sites. A significant problem in making the link is the limited availability of well controlled three dimensional datasets: while field data is three dimensional, it provides little control, whereas most laboratory results are obtained from column experiments. We will report on out approach to highly controlled and automated experiments. In these experiments electrical geophysical data (SP and IP data) is being collected simultaneously and automatically with point measurement of aqueous geochemistry for both 2D and 3D environments. Integrated experimental control and data management for such experiment is critical as it allows transparent and reproducible acquisition and analysis, both of which are essential to build up baseline data for quantitative and qualitative correlation of geophysical data to biogeochemical properties and processes.

  10. Carbon Characteristics and Biogeochemical Processes of Uranium Accumulating Organic Matter Rich Sediments in the Upper Colorado River Basin

    NASA Astrophysics Data System (ADS)

    Boye, K.; Noel, V.; Tfaily, M. M.; Dam, W. L.; Bargar, J.; Fendorf, S. E.

    2015-12-01

    Uranium plume persistence in groundwater aquifers is a problem on several former ore processing sites on floodplains in the upper Colorado River Basin. Earlier observations by our group and others at the Old Rifle Site, CO, have noted that U concentrations are highest in organic rich, fine-grained, and, therefore, diffusion limited sediment material. Due to the constantly evolving depositional environments of floodplains, surficial organic matter may become buried at various stages of decomposition, through sudden events such as overbank flooding and through the slower progression of river meandering. This creates a discontinuous subsurface distribution of organic-rich sediments, which are hotspots for microbial activity and thereby central to the subsurface cycling of contaminants (e.g. U) and biologically relevant elements (e.g. C, N, P, Fe). However, the organic matter itself is poorly characterized. Consequently, little is known about its relevance in driving biogeochemical processes that control U fate and transport in the subsurface. In an investigation of soil/sediment cores from five former uranium ore processing sites on floodplains distributed across the Upper Colorado River Basin we confirmed consistent co-enrichment of U with organic-rich layers in all profiles. However, using C K-edge X-ray Absorption Spectroscopy (XAS) coupled with Fourier-Transformed Ion-Cyclotron-Resonance Mass-Spectroscopy (FT-ICR-MS) on bulk sediments and density-separated organic matter fractions, we did not detect any chemical difference in the organic rich sediments compared to the surrounding coarser-grained aquifer material within the same profile, even though there were differences in organic matter composition between the 5 sites. This suggests that U retention and reduction to U(IV) is independent of C chemical composition on the bulk scale. Instead it appears to be the abundance of organic matter in combination with a limited O2 supply in the fine-grained material that

  11. Synchronous DOM and dissolved phosphorus release in riparian soil waters: linking water table fluctuations and biogeochemical processes

    NASA Astrophysics Data System (ADS)

    Gruau, G.; Dupas, R.; Humbert, G.; GU, S.; Jeanneau, L.; Fovet, O.; Denis, M.; Gascuel-Odoux, C.; Jaffrezic, A.; Faucheux, M.; Gilliet, N.; Hamon, Y.; Petitjean, P.

    2015-12-01

    Riparian zones are often viewed as hot spots controlling N, C, P and Fe cycling and export in catchments. Groundwater and surface water flowpaths converge in these zones, and encounter the most reactive, organic-rich, uppermost soil horizons, while being at the same time zones in which soil moisture conditions temporarily fluctuate due to changes in water table depth, which can trigger biogeochemical processes. One well documented example is the process of denitrification which can remove N from riparian groundwater due to the anaerobic reduction of nitrate by soil organic matter. However, the role of riparian zones on the cycling of other nutrients such as dissolved organic matter (DOM) and dissolved P (DP) is much less well documented. In this study, we evaluated this role by using time series of DOM and DP concentrations obtained on the Kervidy-Naizin catchment, a temperate agricultural headwater catchment controlled by shallow groundwater. Over 2 years, groundwater DOM and DP were monitored fortnightly both in the riparian zones and at the bottom of hillslope domains. Two periods of synchronous DOM and DP release were evidenced, the first corresponding to the rise of the water table after the dry summer period, the second being concomitant of the installation of reducing conditions. The reductive dissolution of soil Fe oxyhydroxides initiated by the prolonged soil water saturation caused the second peak, a process which was, however, strongly temporarily and spatially variable at the catchment scale, being dependent on i) the local topographic slope and ii) the annual rainfall amount and frequency. As regard the first peak, it was due either to the flushing by the water table of DOM and DP accumulated during the summer period, or to the release of microbial DOM and DP due to microbial biomass killing by osmotic shock. This study argues for the existence of coupled and complex DOM and DP release processes in the riparian zones of shallow groundwater dominated

  12. Biogeochemical Processes Contributing to Nickel Dynamics Within a Mine Tailings Impacted Lake

    NASA Astrophysics Data System (ADS)

    Bernier, L.; Warren, L. A.

    2001-12-01

    Nickel mining in the Sudbury area in Ontario, Canada has been pursued since the late 1920's by Falconbridge and INCO. Large tailings deposits have therefore been generated and require remediation. At the Onaping mine site, Moose Lake is used as the treatment pond for tailings. The drainage released has had a profound effect on Moose Lake's geochemistry, rendering it highly acidic (pH below 3.5), metal impacted, and chemically stratified. These conditions removed higher trophic levels, thus making microbial processes dominant. Since Moose Lake discharges into the Onaping River system, waters from its upper basin need to be treated. Presently, chemical treatment is performed, however this procedure is not useful for long-term remediation. Rather, an effective remediation strategy for Moose Lake requires an understanding of metal transport through, and cycling within, its water column and particularly of the role that microbial processes play in influencing metal fate. Since the prevailing geochemical conditions and processes occurring within this lake are not well characterized, our aims are to: determine metal concentrations through the water column; identify potential solid phases retaining metals; and to identify biogeochemical processes controlling the dynamics of their partitioning. Initial samples were collected from June - Sept. 2001 for water column metals (particulate (above 0.45 um), colloidal (0.2-0.45 um) and dissolved (lower than 0.2um), iron (Fe3+ and Fe2+) sulfate and sulfide, microbial community structure and physico-chemical parameters (pH, temperature, O2, redox, conductivity). Results indicate that the water column is chemically stratified at a depth of 3.5 m (25 m max. depth). Water column pH is less than 3.5 and shows low to anoxic conditions below the chemocline. Metal analyses indicate high dissolved nickel concentrations (700 uM). A depth related decrease of Ni levels was observed near the sediment-water interface, probably due to solid

  13. Using Bathymodiolus tissue stable isotope signatures to infer biogeochemical process at hydrocarbon seeps

    NASA Astrophysics Data System (ADS)

    Feng, D.; Kiel, S.; Qiu, J.; Yang, Q.; Zhou, H.; Peng, Y.; Chen, D.

    2015-12-01

    Here we use stable isotopes of carbon, nitrogen and sulfur in the tissue of two bathymodiolin mussel species with different chemotrophic symbionts (methanotrophs in B. platifrons and sulfide-oxidizers in B. aduloides) to gain insights into the biogeochemical processes at an active site in 1120 m depth on the Formosa Ridge, called Site F. Because mussels with methanotrophic symbionts acquire the isotope signature of the used methane, the average δ13C values of B. platifrons (-70.3‰; n=36) indicates a biogenic methane source at Site F, consistent with the measured carbon isotope signature of methane (-61.1‰ to -58.7‰) sampled 1.5 m above the mussel beds. The only small offset between the δ13C signatures of the ascending methane and the authigenic carbonate at site F (as low as -55.3‰) suggests only minor mixing of the pore water with marine bicarbonate, which in turn may be used as an indicator for advective rather than diffusive seepage at this site. B. aduloides has much higher average δ13C values of -34.4‰ (n=9), indicating inorganic carbon (DIC) dissolved in epibenthic bottom water as its main carbon source. The DIC was apparently marine bicarbonate with a small contribution of 13C-depleted carbon from locally oxidized methane. The δ34S values of the two mussel species indicate that they used two different sulfur sources. B. platifrons (average δ34S = +6.4±2.6‰; n=36) used seawater sulfate mixed with isotopically light re-oxidized sulfide from the sulfate-dependent anaerobic oxidation of methane (AOM), while the sulfur source of B. aduloides (δ34S = -8.0±3.1‰; n=9) was AOM-derived sulfide used by its symbionts. δ15N values differed between the mussels, with B. platifrons having a wider range of on average slightly lower values (mean = +0.5±0.7‰, n=36) than B. aduloides (mean = +1.1±0.0‰). These values are significantly lower than δ15N values of South China Sea deep-sea sediments (+5‰ to +6‰), indicating that the organic nitrogen

  14. Relaxation Biodynamics: Experimental Studies and Modeling of Biogeochemical Processes in Northern Terrestrial Ecosystems

    NASA Astrophysics Data System (ADS)

    Panikov, N. S.; Pankratov, T.

    2001-12-01

    Relaxation phenomenon in physics and chemistry stands for delay between the application of an external stress to a system and its response. When an equilibrated nuclear, atomic or molecular system is subjected to an abrupt physical change (sudden rise in temperature or pressure), it takes time for the system to re-equilibrate under the new conditions. This period (relaxation time) can provide a powerful insight into mechanisms of chemical reaction. Our intention is to extend such approach to analysis of the complex biological phenomena related mainly to microbial growth and activity in the soil. We will show how this information can be used for better understanding the biogeochemical processes in northern terrestrial ecosystems such as aerobic and anaerobic decomposition of organic matter, gas (CO2 and CH4) emission to atmosphere, migration and transformation of biogenic elements, etc. The major source of experimental data is laboratory soil incubation under controlled environmental conditions with abrupt changes in one of the key parameters: temperature (including the water-to-ice phase transition), soil moisture, light (illumination of planted soil), supply of organic substrate and mineral nutrients. The state of biological component before and after abrupt changes was followed by continuous recording of gas (CO2, CH4) exchange rate and (in some special experiments), chemical analysis of the soil solution, and the characterization of soil community (microbial and plants biomass, species composition, change of life forms, etc.) The obtained dynamic data were fit to simulation models (sets of differential equations) describing the C- and energy flow through the studied microcosm systems. The comparison of predicted and observed relaxation dynamics allowed us to discard wrong assumptions on the nature of regulatory mechanisms involved in the functioning of the soil community. Finally, the conclusions derived from the lab experiments are projected to field

  15. Biogeochemical hotspots within forested landscapes: quantifying the functional role of vernal pools in ecosystem processes

    NASA Astrophysics Data System (ADS)

    Capps, K. A.; Rancatti, R.; Calhoun, A.; Hunter, M.

    2013-12-01

    Biogeochemical hotspots are characterized as small areas within a landscape matrix that show comparably high chemical reaction rates relative to surrounding areas. For small, natural features to generate biogeochemical hotspots within a landscape, their contribution to nutrient dynamics must be significant relative to nutrient demand of the surrounding landscape. In northeastern forests in the US, vernal pools are abundant, small features that typically fill in spring with snow melt and precipitation and dry by the end of the summer. Ephemeral flooding alters soil moisture and the depth of the oxic/anoxic boundary in the soil, which may affect leaf-litter decomposition rates and nutrient dynamics including denitrification. Additionally, pool-breeding organisms may influence nutrient dynamics via consumer-driven nutrient remineralization. We studied the effects of vernal pools on rates of leaf-litter decomposition and denitrification in forested habitats in Maine. Our results indicate leaf-litter decomposition and denitrification rates in submerged habitats of vernal pools were greater than in upland forest habitat. Our data also suggest pool-breeding organisms, such as wood frogs, may play an important role in nutrient dynamics within vernal pools. Together, the results suggest vernal pools may function as biogeochemical hotspots within forested landscapes.

  16. A Spatially Explicit Modeling Approach to Capture the Hydrological Effects on Biogeochemical Processes in a Boreal Watershed

    NASA Astrophysics Data System (ADS)

    Govind, A.; Chen, J.

    2009-05-01

    Current estimates of terrestrial carbon (C) fluxes overlook hydrological controls. A modeling study was conducted to explore the hydrological, ecophysiological and biogeochemical interactions in a humid boreal ecosystem. Several hydro-ecological processes were simulated and validated using field measurements for two years. After gaining confidence in the model's ability and having understood that topographically driven sub-surface baseflow is the main process determining the soil moisture regime in humid boreal ecosystem, its influence on ecophysiological and biogeochemical processes were investigated. Three modeling scenarios were designed that represent strategies that are commonly used in ecological models to represent hydrological controls. These scenarios were: 1) Explicit, where realistic lateral water routing was considered; 2) Implicit, where calculations were based on a bucket-modeling approach; and 3) NoFlow, where the lateral sub-surface flow was turned off in the model. In general, the Implicit scenario overestimated GPP, ET and NEP, as opposed to the Explicit scenario. The NoFlow scenario underestimated GPP and ET but overestimated NEP. The key processes controlling the differences were due to the combined effects of variations in plant physiology, photosynthesis, heterotrophic respiration, autotrophic respiration and nitrogen mineralization; all of which occurred simultaneously in different directions, at different rates, affecting the spatio-temporal distribution of terrestrial C-sources or sinks (NEP). The scientific implication of this work is that regional or global scale terrestrial C estimates could have significant errors if proper hydrological constraints are not considered for modeling ecological and biogeochemical processes due to large topographic variations of the Earth's surface and also because of the non-linear interactions between these processes.

  17. Ocean Circulation and Biogeochemical responses to Typhoons

    NASA Astrophysics Data System (ADS)

    Huang, S. M.; Oey, L. Y.; Lin, P. L.; Liu, K. K.

    2014-12-01

    Typhoons produce vertical and horizontal mixing in the ocean and impact biogeochemical response. The goal of this study is to examine the fundamental processes involved in the physical and biogeochemical changes occurring in an ocean basin traversed by a zonally moving typhoon. The study employs an idealized typhoon wind field with varying intensities and translation speeds over a rectangular ocean basin. The model is based on the mpiPOM which is coupled to an NPZD biogeochemical model. The results show north-south asymmetric responses depending on the translation speeds of the typhoon, due to (1) the different intensities of inertial oscillation, (2) mixing caused by symmetric instability, and (3) re-stratification by mixed-layer baroclinic instability along the typhoon track.

  18. Contribution of peat soil structure to biogeochemical processes: A physical understanding of pore distribution and solute transport characteristics

    NASA Astrophysics Data System (ADS)

    Rezanezhad, Fereidoun; Kleimeier, Christian; Milojevic, Tatjana; Liu, Haojie; Van Cappellen, Philippe; Lennartz, Bernd

    2017-04-01

    Peatlands are a valuable but environmentally vulnerable resource. They represent a globally-significant carbon and energy reservoir and play major roles in water and biogeochemical cycles. Peat soils are highly complex porous media with unique physical and hydraulic properties. In peat soils, the unique complex dual-porosity structure with mobile-immobile pore fractions controls water flow and solute migration, which, in turn, affect reactive transport processes and biogeochemical functions. In this presentation, we start with an introduction of key physical and hydraulic properties related to the structure of peat soils and discuss their implications for water storage, flow and the migration of solutes. Then, we present the results of two experiments to understand the effect of pore fractions on the denitrification process in a peat depth profile, with the main objective to show how this process is controlled by pore-scale mass transfer and exchange of nitrate between mobile and immobile pores. In these experiments, bromide and nitrate breakthrough curves were used to constrain transport parameters and steady-state nitrate reduction rates in the depth profile. The vertical distribution of potential denitrification rates were compared with depth distributions of partitioning mobile-immobile pores and the exchange coefficient between the pores. The results showed that an increase of immobile pore fractions with depth increases the common interface surface area between mobile and immobile pores which leads to a more pronounced exchange between the two transport domains and enhances the denitrification activities. Furthermore, the physical non-equilibrium approaches were linked to reactive geochemical transformation processes by comparing the different transport characteristics using the pore distribution analyses between degraded and un-degraded peats and their effects on denitrification activities. The conclusion was that in addition to a reducing condition

  19. Potential effects of climate change and variability on watershed biogeochemical processes and water quality in Northeast Asia.

    PubMed

    Park, Ji-Hyung; Duan, Lei; Kim, Bomchul; Mitchell, Myron J; Shibata, Hideaki

    2010-02-01

    An overview is provided of the potential effects of climate change on the watershed biogeochemical processes and surface water quality in mountainous watersheds of Northeast (NE) Asia that provide drinking water supplies for large populations. We address major 'local' issues with the case studies conducted at three watersheds along a latitudinal gradient going from northern Japan through the central Korean Peninsula and ending in southern China. Winter snow regimes and ground snowpack dynamics play a crucial role in many ecological and biogeochemical processes in the mountainous watersheds across northern Japan. A warmer winter with less snowfall, as has been projected for northern Japan, will alter the accumulation and melting of snowpacks and affect hydro-biogeochemical processes linking soil processes to surface water quality. Soils on steep hillslopes and rich in base cations have been shown to have distinct patterns in buffering acidic inputs during snowmelt. Alteration of soil microbial processes in response to more frequent freeze-thaw cycles under thinner snowpacks may increase nutrient leaching to stream waters. The amount and intensity of summer monsoon rainfalls have been increasing in Korea over recent decades. More frequent extreme rainfall events have resulted in large watershed export of sediments and nutrients from agricultural lands on steep hillslopes converted from forests. Surface water siltation caused by terrestrial export of sediments from these steep hillslopes is emerging as a new challenge for water quality management due to detrimental effects on water quality. Climatic predictions in upcoming decades for southern China include lower precipitation with large year-to-year variations. The results from a four-year intensive study at a forested watershed in Chongquing province showed that acidity and the concentrations of sulfate and nitrate in soil and surface waters were generally lower in the years with lower precipitation, suggesting year

  20. A skill assessment of the biogeochemical model REcoM2 coupled to the Finite Element Sea Ice-Ocean Model (FESOM 1.3)

    NASA Astrophysics Data System (ADS)

    Schourup-Kristensen, V.; Sidorenko, D.; Wolf-Gladrow, D. A.; Völker, C.

    2014-11-01

    In coupled biogeochmical-ocean models, the choice of numerical schemes in the ocean circulation component can have a large influence on the distribution of the biological tracers. Biogeochemical models are traditionally coupled to ocean general circulation models (OGCMs), which are based on dynamical cores employing quasi-regular meshes, and therefore utilize limited spatial resolution in a global setting. An alternative approach is to use an unstructured-mesh ocean model, which allows variable mesh resolution. Here, we present initial results of a coupling between the Finite Element Sea Ice-Ocean Model (FESOM) and the biogeochemical model REcoM2 (Regulated Ecosystem Model 2), with special focus on the Southern Ocean. Surface fields of nutrients, chlorophyll a and net primary production (NPP) were compared to available data sets with a focus on spatial distribution and seasonal cycle. The model produces realistic spatial distributions, especially regarding NPP and chlorophyll a, whereas the iron concentration becomes too low in the Pacific Ocean. The modelled NPP is 32.5 Pg C yr-1 and the export production 6.1 Pg C yr-1, which is lower than satellite-based estimates, mainly due to excessive iron limitation in the Pacific along with too little coastal production. The model performs well in the Southern Ocean, though the assessment here is hindered by the lower availability of observations. The modelled NPP is 3.1 Pg C yr-1 in the Southern Ocean and the export production 1.1 Pg C yr-1. All in all, the combination of a circulation model on an unstructured grid with a biogeochemical-ocean model shows similar performance to other models at non-eddy-permitting resolution. It is well suited for studies of the Southern Ocean, but on the global scale deficiencies in the Pacific Ocean would have to be taken into account.

  1. Coping Processes of Couples Experiencing Infertility

    ERIC Educational Resources Information Center

    Peterson, Brennan D.; Newton, Christopher R.; Rosen, Karen H.; Schulman, Robert S.

    2006-01-01

    This study explored the coping processes of couples experiencing infertility. Participants included 420 couples referred for advanced reproductive treatments. Couples were divided into groups based on the frequency of their use of eight coping strategies. Findings suggest that coping processes, which are beneficial to individuals, may be…

  2. Coping Processes of Couples Experiencing Infertility

    ERIC Educational Resources Information Center

    Peterson, Brennan D.; Newton, Christopher R.; Rosen, Karen H.; Schulman, Robert S.

    2006-01-01

    This study explored the coping processes of couples experiencing infertility. Participants included 420 couples referred for advanced reproductive treatments. Couples were divided into groups based on the frequency of their use of eight coping strategies. Findings suggest that coping processes, which are beneficial to individuals, may be…

  3. Afforestation alters the composition of functional genes in soil and biogeochemical processes in South American grasslands

    SciTech Connect

    Berthrong, Sean T; Schadt, Christopher Warren; Pineiro, Gervasio; Jackson, Robert B

    2009-01-01

    Soil microbes are highly diverse and control most soil biogeochemical reactions. We examined how microbial functional genes and biogeochemical pools responded to the altered chemical inputs accompanying land use change. We examined paired native grasslands and adjacent Eucalyptus plantations (previously grassland) in Uruguay, a region that lacked forests before European settlement. Along with measurements of soil carbon, nitrogen, and bacterial diversity, we analyzed functional genes using the GeoChip 2.0 microarray, which simultaneously quantified several thousand genes involved in soil carbon and nitrogen cycling. Plantations and grassland differed significantly in functional gene profiles, bacterial diversity, and biogeochemical pool sizes. Most grassland profiles were similar, but plantation profiles generally differed from those of grasslands due to differences in functional gene abundance across diverse taxa. Eucalypts decreased ammonification and N fixation functional genes by 11% and 7.9% (P < 0.01), which correlated with decreased microbial biomass N and more NH{sub 4}{sup +} in plantation soils. Chitinase abundance decreased 7.8% in plantations compared to levels in grassland (P = 0.017), and C polymer-degrading genes decreased by 1.5% overall (P < 0.05), which likely contributed to 54% (P < 0.05) more C in undecomposed extractable soil pools and 27% less microbial C (P < 0.01) in plantation soils. In general, afforestation altered the abundance of many microbial functional genes, corresponding with changes in soil biogeochemistry, in part through altered abundance of overall functional gene types rather than simply through changes in specific taxa. Such changes in microbial functional genes correspond with altered C and N storage and have implications for long-term productivity in these soils.

  4. Afforestation alters the composition of functional genes in soil and biogeochemical processes in South American grasslands.

    PubMed

    Berthrong, Sean T; Schadt, Christopher W; Piñeiro, Gervasio; Jackson, Robert B

    2009-10-01

    Soil microbes are highly diverse and control most soil biogeochemical reactions. We examined how microbial functional genes and biogeochemical pools responded to the altered chemical inputs accompanying land use change. We examined paired native grasslands and adjacent Eucalyptus plantations (previously grassland) in Uruguay, a region that lacked forests before European settlement. Along with measurements of soil carbon, nitrogen, and bacterial diversity, we analyzed functional genes using the GeoChip 2.0 microarray, which simultaneously quantified several thousand genes involved in soil carbon and nitrogen cycling. Plantations and grassland differed significantly in functional gene profiles, bacterial diversity, and biogeochemical pool sizes. Most grassland profiles were similar, but plantation profiles generally differed from those of grasslands due to differences in functional gene abundance across diverse taxa. Eucalypts decreased ammonification and N fixation functional genes by 11% and 7.9% (P < 0.01), which correlated with decreased microbial biomass N and more NH(4)(+) in plantation soils. Chitinase abundance decreased 7.8% in plantations compared to levels in grassland (P = 0.017), and C polymer-degrading genes decreased by 1.5% overall (P < 0.05), which likely contributed to 54% (P < 0.05) more C in undecomposed extractable soil pools and 27% less microbial C (P < 0.01) in plantation soils. In general, afforestation altered the abundance of many microbial functional genes, corresponding with changes in soil biogeochemistry, in part through altered abundance of overall functional gene types rather than simply through changes in specific taxa. Such changes in microbial functional genes correspond with altered C and N storage and have implications for long-term productivity in these soils.

  5. Spatial patterns in soil biogeochemical process rates along a Louisiana wetland salinity gradient in the Barataria Bay estuarine system

    NASA Astrophysics Data System (ADS)

    Roberts, B. J.; Rich, M. W.; Sullivan, H. L.; Bledsoe, R.; Dawson, M.; Donnelly, B.; Marton, J. M.

    2014-12-01

    Louisiana has the highest rates of coastal wetland loss in the United States. In addition to being lost, Louisiana wetlands experience numerous other environmental stressors including changes in salinity regime (both increases from salt water intrusion and decreases from the creation of river diversions) and climate change induced changes in vegetation (e.g. the northward expansion of Avicennia germinans (black mangrove) into salt marshes). In this study, we examined how these changes might influence biogeochemical process rates important in regulating carbon balance and the cycling, retention, and removal of nutrients in Louisiana wetlands. Specifically, we measured net soil greenhouse gas fluxes and collected cores for the determination of rates of greenhouse gas production, denitrification potential, nitrification potential, iron reduction, and phosphorus sorption from surface (0-5cm) and subsurface (10-15cm) depths for three plots in each of 4 sites along the salinity gradient: a freshwater marsh site, a brackish (7 ppt) marsh site, a salt marsh (17 ppt), and a Avicennia germinans stand (17 ppt; adjacent to salt marsh site) in the Barataria Bay estuarine system. Most biogeochemical processes displayed similar spatial patterns with salt marsh rates being lower than rates in freshwater and/or brackish marsh sites and not having significantly different rates than in Avicennia germinans stands. Rates in surface soils were generally higher than in subsurface soils. These patterns were generally consistent with spatial patterns in soil properties with soil water content, organic matter quantity and quality, and extractable nutrients generally being higher in freshwater and brackish marsh sites than salt marsh and Avicennia germinans sites, especially in surface soils. These spatial patterns suggest that the ability of coastal wetlands to retain and remove nutrients might change significantly in response to future climate changes in the region and that these

  6. Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system

    PubMed Central

    Anantharaman, Karthik; Brown, Christopher T.; Hug, Laura A.; Sharon, Itai; Castelle, Cindy J.; Probst, Alexander J.; Thomas, Brian C.; Singh, Andrea; Wilkins, Michael J.; Karaoz, Ulas; Brodie, Eoin L.; Williams, Kenneth H.; Hubbard, Susan S.; Banfield, Jillian F.

    2016-01-01

    The subterranean world hosts up to one-fifth of all biomass, including microbial communities that drive transformations central to Earth's biogeochemical cycles. However, little is known about how complex microbial communities in such environments are structured, and how inter-organism interactions shape ecosystem function. Here we apply terabase-scale cultivation-independent metagenomics to aquifer sediments and groundwater, and reconstruct 2,540 draft-quality, near-complete and complete strain-resolved genomes that represent the majority of known bacterial phyla as well as 47 newly discovered phylum-level lineages. Metabolic analyses spanning this vast phylogenetic diversity and representing up to 36% of organisms detected in the system are used to document the distribution of pathways in coexisting organisms. Consistent with prior findings indicating metabolic handoffs in simple consortia, we find that few organisms within the community can conduct multiple sequential redox transformations. As environmental conditions change, different assemblages of organisms are selected for, altering linkages among the major biogeochemical cycles. PMID:27774985

  7. Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system

    NASA Astrophysics Data System (ADS)

    Anantharaman, Karthik; Brown, Christopher T.; Hug, Laura A.; Sharon, Itai; Castelle, Cindy J.; Probst, Alexander J.; Thomas, Brian C.; Singh, Andrea; Wilkins, Michael J.; Karaoz, Ulas; Brodie, Eoin L.; Williams, Kenneth H.; Hubbard, Susan S.; Banfield, Jillian F.

    2016-10-01

    The subterranean world hosts up to one-fifth of all biomass, including microbial communities that drive transformations central to Earth's biogeochemical cycles. However, little is known about how complex microbial communities in such environments are structured, and how inter-organism interactions shape ecosystem function. Here we apply terabase-scale cultivation-independent metagenomics to aquifer sediments and groundwater, and reconstruct 2,540 draft-quality, near-complete and complete strain-resolved genomes that represent the majority of known bacterial phyla as well as 47 newly discovered phylum-level lineages. Metabolic analyses spanning this vast phylogenetic diversity and representing up to 36% of organisms detected in the system are used to document the distribution of pathways in coexisting organisms. Consistent with prior findings indicating metabolic handoffs in simple consortia, we find that few organisms within the community can conduct multiple sequential redox transformations. As environmental conditions change, different assemblages of organisms are selected for, altering linkages among the major biogeochemical cycles.

  8. Biogeochemical processes governing exposure and uptake of organic pollutant compounds in aquatic organisms

    SciTech Connect

    Farrington, J.W. )

    1991-01-01

    This paper reviews current knowledge of biogeochemical cycles of pollutant organic chemicals in aquatic ecosystems with a focus on coastal ecosystems. There is a bias toward discussing chemical and geochemical aspects of biogeochemical cycles and an emphasis on hydrophobic organic compounds such as polynuclear aromatic hydrocarbons, polychlorinated biphenyls, and chlorinated organic compounds used as pesticides. The complexity of mixtures of pollutant organic compounds, their various modes of entering ecosystems, and their physical chemical forms are discussed. Important factors that influence bioavailability and disposition (e.g., organism-water partitioning, uptake via food, food web transfer) are reviewed. These factors included solubilities of chemicals; partitioning of chemicals between solid surfaces, colloids, and soluble phases; variables rates of sorption, desorption; and physiological status of organism. It appears that more emphasis on considering food as a source of uptake and bioaccumulation is important in benthic and epibenthic ecosystems when sediment-associated pollutants are a significant source of input to an aquatic ecosystem. Progress with mathematical models for exposure and uptake of contaminant chemicals is discussed briefly.

  9. Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system

    SciTech Connect

    Anantharaman, Karthik; Brown, Christopher T.; Hug, Laura A.; Sharon, Itai; Castelle, Cindy J.; Probst, Alexander J.; Thomas, Brian C.; Singh, Andrea; Wilkins, Michael J.; Karaoz, Ulas; Brodie, Eoin L.; Williams, Kenneth H.; Hubbard, Susan S.; Banfield, Jillian F.

    2016-10-24

    The subterranean world hosts up to one-fifth of all biomass, including microbial communities that drive transformations central to Earth's biogeochemical cycles. However, little is known about how complex microbial communities in such environments are structured, and how inter-organism interactions shape ecosystem function. Here we apply terabase-scale cultivation-independent metagenomics to aquifer sediments and groundwater, and reconstruct 2,540 draft-quality, near-complete and complete strain-resolved genomes that represent the majority of known bacterial phyla as well as 47 newly discovered phylum-level lineages. Metabolic analyses spanning this vast phylogenetic diversity and representing up to 36% of organisms detected in the system are used to document the distribution of pathways in coexisting organisms. Consistent with prior findings indicating metabolic handoffs in simple consortia, we find that few organisms within the community can conduct multiple sequential redox transformations. As environmental conditions change, different assemblages of organisms are selected for, altering linkages among the major biogeochemical cycles.

  10. Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system

    DOE PAGES

    Anantharaman, Karthik; Brown, Christopher T.; Hug, Laura A.; ...

    2016-10-24

    The subterranean world hosts up to one-fifth of all biomass, including microbial communities that drive transformations central to Earth's biogeochemical cycles. However, little is known about how complex microbial communities in such environments are structured, and how inter-organism interactions shape ecosystem function. Here we apply terabase-scale cultivation-independent metagenomics to aquifer sediments and groundwater, and reconstruct 2,540 draft-quality, near-complete and complete strain-resolved genomes that represent the majority of known bacterial phyla as well as 47 newly discovered phylum-level lineages. Metabolic analyses spanning this vast phylogenetic diversity and representing up to 36% of organisms detected in the system are used to documentmore » the distribution of pathways in coexisting organisms. Consistent with prior findings indicating metabolic handoffs in simple consortia, we find that few organisms within the community can conduct multiple sequential redox transformations. As environmental conditions change, different assemblages of organisms are selected for, altering linkages among the major biogeochemical cycles.« less

  11. Biogeochemical processes governing exposure and uptake of organic pollutant compounds in aquatic organisms.

    PubMed Central

    Farrington, J W

    1991-01-01

    This paper reviews current knowledge of biogeochemical cycles of pollutant organic chemicals in aquatic ecosystems with a focus on coastal ecosystems. There is a bias toward discussing chemical and geochemical aspects of biogeochemical cycles and an emphasis on hydrophobic organic compounds such as polynuclear aromatic hydrocarbons, polychlorinated biphenyls, and chlorinated organic compounds used as pesticides. The complexity of mixtures of pollutant organic compounds, their various modes of entering ecosystems, and their physical chemical forms are discussed. Important factors that influence bioavailability and disposition (e.g., organism-water partitioning, uptake via food, food web transfer) are reviewed. These factors include solubilities of chemicals; partitioning of chemicals between solid surfaces, colloids, and soluble phases; variables rates of sorption, desorption; and physiological status of organism. It appears that more emphasis on considering food as a source of uptake and bioaccumulation is important in benthic and epibenthic ecosystems when sediment-associated pollutants are a significant source of input to an aquatic ecosystem. Progress with mathematical models for exposure and uptake of contaminant chemicals is discussed briefly. PMID:1904812

  12. Biogeochemical control of the coupled CO2-O 2 system of the Baltic Sea: a review of the results of Baltic-C.

    PubMed

    Omstedt, Anders; Humborg, Christoph; Pempkowiak, Janusz; Perttilä, Matti; Rutgersson, Anna; Schneider, Bernd; Smith, Benjamin

    2014-02-01

    Past, present, and possible future changes in the Baltic Sea acid-base and oxygen balances were studied using different numerical experiments and a catchment-sea model system in several scenarios including business as usual, medium scenario, and the Baltic Sea Action Plan. New CO2 partial pressure data provided guidance for improving the marine biogeochemical model. Continuous CO2 and nutrient measurements with high temporal resolution helped disentangle the biogeochemical processes. These data and modeling indicate that traditional understandings of the nutrient availability-organic matter production relationship do not necessarily apply to the Baltic Sea. Modeling indicates that increased nutrient loads will not inhibit future Baltic Sea acidification; instead, increased mineralization and biological production will amplify the seasonal surface pH cycle. The direction and magnitude of future pH changes are mainly controlled by atmospheric CO2 concentration. Apart from decreasing pH, we project a decreasing calcium carbonate saturation state and increasing hypoxic area.

  13. Clinical processes in behavioral couples therapy.

    PubMed

    Fischer, Daniel J; Fink, Brandi C

    2014-03-01

    Behavioral couples therapy is a broad term for couples therapies that use behavioral techniques based on principles of operant conditioning, such as reinforcement. Behavioral shaping and rehearsal and acceptance are clinical processes found across contemporary behavioral couples therapies. These clinical processes are useful for assessment and case formulation, as well as teaching couples new methods of conflict resolution. Although these clinical processes assist therapists in achieving efficient and effective therapeutic change with distressed couples by rapidly stemming couples' corrosive affective exchanges, they also address the thoughts, emotions, and issues of trust and intimacy that are important aspects of the human experience in the context of a couple. Vignettes are provided to illustrate the clinical processes described. (PsycINFO Database Record (c) 2014 APA, all rights reserved).

  14. Sulfur Cycling-Related Biogeochemical Processes of Arsenic Mobilization in the Western Hetao Basin, China: Evidence from Multiple Isotope Approaches.

    PubMed

    Guo, Huaming; Zhou, Yinzhu; Jia, Yongfeng; Tang, Xiaohui; Li, Xiaofeng; Shen, Mengmeng; Lu, Hai; Han, Shuangbao; Wei, Chao; Norra, Stefan; Zhang, Fucun

    2016-12-06

    The role of sulfur cycling in arsenic behavior under reducing conditions is not well-understood in previous investigations. This study provides observations of sulfur and oxygen isotope fractionation in sulfate and evaluation of sulfur cycling-related biogeochemical processes controlling dissolved arsenic groundwater concentrations using multiple isotope approaches. As a typical basin hosting high arsenic groundwater, the western Hetao basin was selected as the study area. Results showed that, along the groundwater flow paths, groundwater δ(34)SSO4, δ(18)OSO4, and δ(13)CDOC increased with increases in arsenic, dissolved iron, hydrogen sulfide and ammonium concentrations, while δ(13)CDIC decreased with decreasing Eh and sulfate/chloride. Bacterial sulfate reduction (BSR) was responsible for many of these observed changes. The δ(34)SSO4 indicated that dissolved sulfate was mainly sourced from oxidative weathering of sulfides in upgradient alluvial fans. The high oxygen-sulfur isotope fractionation ratio (0.60) may result from both slow sulfate reduction rates and bacterial disproportionation of sulfur intermediates (BDSI). Data indicate that both the sulfide produced by BSR and the overall BDSI reduce arsenic-bearing iron(III) oxyhydroxides, leading to the release of arsenic into groundwater. These results suggest that sulfur-related biogeochemical processes are important in mobilizing arsenic in aquifer systems.

  15. Introduction to Indian Ocean biogeochemical processes and ecological variability: Current understanding and emerging perspectives

    NASA Astrophysics Data System (ADS)

    Wiggert, Jerry D.; Hood, Raleigh R.; Naqvi, S. Wajih A.; Brink, Kenneth H.; Smith, Sharon L.

    Despite a history of exploration dating back to the classical era and its leading role as a pathway for trade and cultural exchange for the great civilizations of those times, the Indian Ocean has consistently been subject to less attention in the modern era in terms of oceanographic enquiry. The cornerstone of the Sustained Indian Ocean Biogeochemical and Ecosystem Research (SIBER) initiative has been to promote more frequent and persistent research activities that encompass the entire Indian Ocean basin and to facilitate international cooperation to realize these objectives. This volume's chapters are derived from the plenary talks given by the attendees of the first SIBER conference and are a blend of current knowledge reviews and new results. Thus this collection of papers represents an interdisciplinary contribution to the Indian Ocean literature by the leading members of the Indian Ocean research community.

  16. Coupled transport, mixing and biogeochemical reactions in fractured media: experimental observations and modelling at the Ploemeur fractured rock observatory

    NASA Astrophysics Data System (ADS)

    Le Borgne, T.; Bochet, O.; Klepikova, M.; Kang, P. K.; Shakas, A.; Aquilina, L.; Dufresne, A.; Linde, N.; Dentz, M.; Bour, O.

    2016-12-01

    Transport processes in fractured media and associated reactions are governed by multiscale heterogeneity ranging from fracture wall roughness at small scale to broadly distributed fracture lengths at network scale. This strong disorder induces a variety of emerging phenomena, including flow channeling, anomalous transport and heat transfer, enhanced mixing and reactive hotspot development. These processes are generally difficult to isolate and monitor in the field because of the high degree of complexity and coupling between them. We report in situ experimental observations from the Ploemeur fractured rock observatory (http://hplus.ore.fr/en/ploemeur) that provide new insights on the dynamics of transport and reaction processes in fractured media. These include dipole and push pull tracer tests that allow understanding and modelling anomalous transport processes characterized by heavy-tailed residence time distributions (Kang et al. 2015), thermal push pull tests that show the existence of highly channeled flow with a strong control on fracture matrix exchanges (Klepikova et al. 2016) and time lapse hydrogeophysical monitoring of saline tracer tests that allow quantifying the distribution of transport length scales governing dispersion processes (Shakas et al. 2016). These transport processes are then shown to induce rapid oxygen delivery and mixing at depth leading to massive biofilm development (Bochet et al., in prep.). Hence, this presentation will attempt to link these observations made at different scales to quantify and model the coupling between flow channeling, non-Fickian transport, mixing and chemical reactions in fractured media. References: Bochet et al. Biofilm blooms driven by enhanced mixing in fractured rock, in prep. Klepikova et al. 2016, Heat as a tracer for understanding transport processes in fractured media: theory and field assessment from multi-scale thermal push-pull tracer tests, Water Resour. Res. 52Shakas et al. 2016, Hydrogeophysical

  17. Biogeochemical processes controlling aquatic quality during drying and rewetting events in a Mediterranean non-perennial river reach.

    PubMed

    Skoulikidis, Nikolaos Th; Vardakas, Leonidas; Amaxidis, Yorgos; Michalopoulos, Panagiotis

    2017-01-01

    Desiccation and re-flooding processes play a key role on hydrological features of non-perennial rivers. This study addresses the effects of these processes on the aquatic quality and unravels underlying biogeochemical processes of an intermittent river reach in southern Greece containing a spring-fed pool. Combined spatio-temporal sampling for physicochemical parameters, major ions and nutrients and high frequency automatic monitoring during a hydrological year (2010-2011) indicate that during the dry period, solute variation was controlled by "concentration" processes (i.e. evaporative concentration and high dissolved ion input from base flow sources). Metabolic and "concentration" processes appear intensified during desiccation and water temperature rise. Photosynthesis induced carbonate precipitation, while respiration increased with gradual desiccation, but did not cause carbonate dissolution. In certain cases, photosynthesis and respiration may have occurred simultaneously as a result of differing microhabitat metabolism within the same water body. However, during the entire desiccation cycle, autotrophic production exceeded respiration resulting in relatively high oxygen concentrations, even during the night. With increasing desiccation, a rise in nutrient assimilation occurred as well as ammonification and/or desorption of ammonium from sediments, with simultaneous loss of nitrate. During initial floods, flushing of carbonate phases was not significant. In contrast, initial flood events were characterized by the dissolution of very soluble salts, i.e. epsomite-type (MgSO4∗7H2O) and gypsum (CaSO4∗2H2O). Regarding sediment transport and nutrients, a 1000-times increase of suspended sediments was observed during re-flooding, while the nutrient quality degraded, particularly for N-species. Results of the current research may serve to better understand the links of hydrological and biogeochemical processes in non-perennial rivers and streams towards their

  18. Net primary productivity estimates and environmental variables in the Arctic Ocean: An assessment of coupled physical-biogeochemical models

    NASA Astrophysics Data System (ADS)

    Lee, Younjoo J.; Matrai, Patricia A.; Friedrichs, Marjorie A. M.; Saba, Vincent S.; Aumont, Olivier; Babin, Marcel; Buitenhuis, Erik T.; Chevallier, Matthieu; de Mora, Lee; Dessert, Morgane; Dunne, John P.; Ellingsen, Ingrid H.; Feldman, Doron; Frouin, Robert; Gehlen, Marion; Gorgues, Thomas; Ilyina, Tatiana; Jin, Meibing; John, Jasmin G.; Lawrence, Jon; Manizza, Manfredi; Menkes, Christophe E.; Perruche, Coralie; Le Fouest, Vincent; Popova, Ekaterina E.; Romanou, Anastasia; Samuelsen, Annette; Schwinger, Jörg; Séférian, Roland; Stock, Charles A.; Tjiputra, Jerry; Tremblay, L. Bruno; Ueyoshi, Kyozo; Vichi, Marcello; Yool, Andrew; Zhang, Jinlun

    2016-12-01

    The relative skill of 21 regional and global biogeochemical models was assessed in terms of how well the models reproduced observed net primary productivity (NPP) and environmental variables such as nitrate concentration (NO3), mixed layer depth (MLD), euphotic layer depth (Zeu), and sea ice concentration, by comparing results against a newly updated, quality-controlled in situ NPP database for the Arctic Ocean (1959-2011). The models broadly captured the spatial features of integrated NPP (iNPP) on a pan-Arctic scale. Most models underestimated iNPP by varying degrees in spite of overestimating surface NO3, MLD, and Zeu throughout the regions. Among the models, iNPP exhibited little difference over sea ice condition (ice-free versus ice-influenced) and bottom depth (shelf versus deep ocean). The models performed relatively well for the most recent decade and toward the end of Arctic summer. In the Barents and Greenland Seas, regional model skill of surface NO3 was best associated with how well MLD was reproduced. Regionally, iNPP was relatively well simulated in the Beaufort Sea and the central Arctic Basin, where in situ NPP is low and nutrients are mostly depleted. Models performed less well at simulating iNPP in the Greenland and Chukchi Seas, despite the higher model skill in MLD and sea ice concentration, respectively. iNPP model skill was constrained by different factors in different Arctic Ocean regions. Our study suggests that better parameterization of biological and ecological microbial rates (phytoplankton growth and zooplankton grazing) are needed for improved Arctic Ocean biogeochemical modeling.

  19. Regional scale hydrological and biogeochemical processes controlling high biodiversity of a groundwater fed alkaline fen

    NASA Astrophysics Data System (ADS)

    van der Zee, Sjoerd E. A. T. M.; (D. G.) Cirkel, Gijsbert; (J. P. M) witte, Flip

    2014-05-01

    The high floral biodiversity of groundwater fed fens and mesotrophic grasslands depends on the different chemical signatures of the shallow rainwater fed topsoil water and the slightly deeper geochemically affected groundwater. The relatively abrupt gradients between these two layers of groundwater enable the close proximity of plants that require quite different site factors and have different rooting depths. However, sulphur inflow into such botanically interesting areas is generally perceived as a major threat to biodiversity. Although in Europe atmospheric deposition of sulphur has decreased considerably over the last decades, groundwater pollution by sulphate may still continue due to pyrite oxidation in soil as a result of excessive fertilisation. Inflowing groundwater rich in sulphate can change biogeochemical cycling in nutrient-poor wetland ecosystems because of 'so called' internal eutrophication as well as the accumulation of dissolved sulphide, which is phytotoxic. Complementary to conventions, we propose that upwelling sulphate rich groundwater may, in fact, promote the conservation of rare and threatened alkaline fens: excessive fertilisation and pyrite oxidation also produces acidity, which invokes calcite dissolution, and increased alkalinity and hardness of the inflowing groundwater. For a very species-rich wetland nature reserve, we show that sulphate is reduced and effectively precipitated as iron sulphides, when this calcareous and sulphate rich groundwater flows upward through the organic soil of the investigated nature reserve. Also, we show that sulphate reduction occurs simultaneously with an increase in alkalinity production, which in our case results in active calcite precipitation in the soil. In spite of the occurring sulphate reduction, we found no evidence for internal eutrophication. Extremely low phosphorous concentration in the pore water could be attributed to a high C:P ratio of soil organic matter and co-precipitation with

  20. Ozone and Nitrogen Deposition as Modifiers of Biogeochemical Fluxes and Processes in California Forests

    NASA Astrophysics Data System (ADS)

    Fenn, M. E.

    2011-12-01

    The combined effects of ozone and N deposition results in major perturbations of C and N cycling in forests of southern and central California. Increased shoot:root ratios of the major trees species, N-stimulation of aboveground growth, and premature foliar abscission result in greater aboveground C and N pools. Fire suppression exacerbates these perturbations and provides the opportunity for chronic N deposition to further increase the stand densification problem. Long-term litter decomposition rates are retarded by N enrichment which contributes further to litter accumulation in the forest floor. Stage 3 of N saturation in California mixed conifer forests occurs as chronic N deposition, in conjunction with co-occurring ozone effects, decreases fine root biomass, interferes with stomatal control, and increases the susceptibility of ponderosa pine trees to drought stress and bark beetle attack, leading to increased stand mortality. Hot moments of N transfers from canopy to the forest floor occur during precipitation events that follow long dry periods, but particularly during fog events. During initial soil wet up, pulses of NO and N2O emissions from the forest floor occur. Streamwater losses of nitrate are highest following storms preceded by dry periods, but also during peak runoff, typically in February and March. However, major losses of accumulated N occur during and after fire events. However, ecosystem N budgets, biogeochemical modeling studies and experimental burns in N-saturated chaparral catchments in southern California demonstrate that symptoms of N excess are not easily reversed by N release in and following fire. Even with decreased N deposition, momentum for elevated N losses from California forests would likely continue, driven by actively nitrifying soils and increased N content of litter and soil organic matter. Initial studies show that during peak runoff, as much as 20-40% of runoff nitrate in some catchments is throughput of unassimilated

  1. The role of perched aquifers in hydrological connectivity and biogeochemical processes in vernal pool landscapes, Central Valley, California

    NASA Astrophysics Data System (ADS)

    Cable Rains, Mark; Fogg, Graham E.; Harter, Thomas; Dahlgren, Randy A.; Williamson, Robert J.

    2006-03-01

    Relatively little is known about the role of perched aquifers in hydrological, biogeochemical, and biological processes of vernal pool landscapes. The objectives of this study are to introduce a perched aquifer concept for vernal pool formation and maintenance and to examine the resulting hydrological and biogeochemical phenomena in a representative catchment with three vernal pools connected to one another and to a seasonal stream by swales. A combined hydrometric and geochemical approach was used. Annual rainfall infiltrated but perched on a claypan/duripan, and this perched groundwater flowed downgradient toward the seasonal stream. The upper layer of soil above the claypan/duripan is 0.6 m in thickness in the uplands and 0.1 m in thickness in the vernal pools. Some groundwater flowed through the vernal pools when heads in the perched aquifer exceeded 0.1 m above the claypan/duripan. Perched groundwater discharge accounted for 30-60% of the inflow to the vernal pools during and immediately following storm events. However, most perched groundwater flowed under or around the vernal pools or was recharged by annual rainfall downgradient of the vernal pools. Most of the perched groundwater was discharged to the outlet swale immediately upgradient of the seasonal stream, and most water discharging from the outlet swale to the seasonal stream was perched groundwater that had not flowed through the vernal pools. Therefore, nitrate-nitrogen concentrations were lower (e.g. 0.17 to 0.39 mg l-1) and dissolved organic carbon concentrations were higher (e.g. 5.97 to 3.24 mg l-1) in vernal pool water than in outlet swale water discharging to the seasonal stream. Though the uplands, vernal pools, and seasonal stream are part of a single surface-water and perched groundwater system, the vernal pools apparently play a limited role in controlling landscape-scale water quality.

  2. Modeling biogeochemical processes in subterranean estuaries: Effect of flow dynamics and redox conditions on submarine groundwater discharge of nutrients

    NASA Astrophysics Data System (ADS)

    Spiteri, Claudette; Slomp, Caroline P.; Tuncay, Kagan; Meile, Christof

    2008-02-01

    A two-dimensional density-dependent reactive transport model, which couples groundwater flow and biogeochemical reactions, is used to investigate the fate of nutrients (NO3-, NH4+, and PO4) in idealized subterranean estuaries representing four end-members of oxic/anoxic aquifer and seawater redox conditions. Results from the simplified model representations show that the prevalent flow characteristics and redox conditions in the freshwater-seawater mixing zone determine the extent of nutrient removal and the input of nitrogen and phosphorus to coastal waters. At low to moderate groundwater velocities, simultaneous nitrification and denitrification can lead to a reversal in the depth of freshwater NO3- and NH4+-PO4 plumes, compared to their original positions at the landward source. Model results suggest that autotrophic denitrification pathways with Fe2+ or FeS2 may provide an important, often overlooked link between nitrogen and phosphorus biogeochemistry through the precipitation of iron oxides and subsequent binding of phosphorus. Simulations also highlight that deviations of nutrient data from conservative mixing curves do not necessarily indicate nutrient removal.

  3. Carbon, oxygen and strontium isotopic constraints on fluid sources, temperatures and biogeochemical processes during the formation of seep carbonates - Secchia River site, Northern Apennines

    NASA Astrophysics Data System (ADS)

    Viola, Irene; Capozzi, Rossella; Bernasconi, Stefano M.; Rickli, Jörg

    2017-07-01

    Understanding authigenic seep carbonate formation provides clues for hydrocarbon exploration and insights into contributions to gas budgets of marine environments and the atmosphere. Seep carbonates discovered in the outcropping succession along the Secchia riverbanks (near Modena, Italy) belong to the Argille Azzurre Formation of Early Pleistocene age deposited in an upper shelf environment overlying the Miocene foredeep successions, which include hydrocarbon fields. The fluid migration from the hydrocarbon fields, up to the surface, is presently active on land and started in the marine succession during the Late Miocene. Authigenic globular carbonate concretions and carbonate chimneys are interspersed along the strata throughout the section. A comprehensive geochemical characterisation of the carbonates has been carried out to understand the processes leading to their formation. The carbonate concretions are the record of past hydrocarbon vents linked to the Miocene petroleum system of the Northern Apennines. The samples are composed of > 50% microcrystalline dolomite. The δ13C signatures identify two groups in the samples according to different type of formation processes. Globular concretions have positive values that suggest an influence of CO2 associated to secondary methanogenesis due to microbial degradation of higher hydrocarbons. The analysed chimney, with negative δ13C values, is interpreted as former conduit where carbonate precipitation is promoted by Anaerobic Oxidation of Methane coupled with Sulfate Reduction. The δ18O range, coupled with 87/86Sr signatures, indicate that the contribution of deep connate water from the Miocene reservoirs is up to 23% during the formation of the globular concretions. The connate water occurrence is also documented by higher ambient temperatures. The different isotope signatures in seep carbonates result from the relative contribution of the recognised gas and water components, linked to different plumbing systems

  4. Stormwater sediment and bioturbation influences on hydraulic functioning, biogeochemical processes, and pollutant dynamics in laboratory infiltration systems.

    PubMed

    Nogaro, Geraldine; Mermillod-Blondin, Florian

    2009-05-15

    Stormwater sediments that accumulate at the surface of infiltration basins reduce infiltration efficiencies by physical clogging and produce anoxification in the subsurface. The present study aimed to quantify the influence of stormwater sediment origin (urban vs industrial catchments) and the occurrence of bioturbators (tubificid worms) on the hydraulic functioning, aerobic/anaerobic processes, and pollutant dynamics in stormwater infiltration systems. In laboratory sediment columns, effects of stormwater sediments and tubificids were examined on hydraulic conductivity, microbial processes, and pollutant releases. Significant differences in physical (particle size distribution) and chemical characteristics betoveen the two stormwater sediments led to distinct effects of these sediments on hydraulic and biogeochemical processes. Bioturbation by tubificid worms could increase the hydraulic conductivity in stormwater infiltration columns, but this effect depended on the characteristics of the stormwater sediments. Bioturbation-driven increases in hydraulic conductivity stimulated aerobic microbial processes and enhanced vertical fluxes of pollutants in the sediment layer. Our results showed that control of hydraulic functioning by stormwater sediment characteristics and/ or biological activities (such as bioturbation) determined the dynamics of organic matter and pollutants in stormwater infiltration devices.

  5. Biogeochemical and hydrologic processes controlling mercury cycling in Great Salt Lake, Utah

    NASA Astrophysics Data System (ADS)

    Naftz, D.; Kenney, T.; Angeroth, C.; Waddell, B.; Darnall, N.; Perschon, C.; Johnson, W. P.

    2006-12-01

    Great Salt Lake (GSL), in the Western United States, is a terminal lake with a highly variable surface area that can exceed 5,100 km2. The open water and adjacent wetlands of the GSL ecosystem support millions of migratory waterfowl and shorebirds from throughout the Western Hemisphere, as well as a brine shrimp industry with annual revenues exceeding 70 million dollars. Despite the ecologic and economic significance of GSL, little is known about the biogeochemical cycling of mercury (Hg) and no water-quality standards currently exist for this system. Whole water samples collected since 2000 were determined to contain elevated concentrations of total Hg (100 ng/L) and methyl Hg (33 ng/L). The elevated levels of methyl Hg are likely the result of high rates of SO4 reduction and associated Hg methylation in persistently anoxic areas of the lake at depths greater than 6.5 m below the water surface. Hydroacoustic equipment deployed in this anoxic layer indicates a "conveyor belt" flow system that can distribute methyl Hg in a predominantly southerly direction throughout the southern half of GSL (fig. 1, URL: http://users.o2wire.com/dnaftz/Dave/AGU-abs-figs- AUG06.pdf). Periodic and sustained wind events on GSL may result in transport of the methyl Hg-rich anoxic water and bottom sediments into the oxic and biologically active regions. Sediment traps positioned above the anoxic brine interface have captured up to 6 mm of bottom sediment during cumulative wind-driven resuspension events (fig. 2, URL:http://users.o2wire.com/dnaftz/Dave/AGU-abs-figs-AUG06.pdf). Vertical velocity data collected with hydroacoustic equipment indicates upward flow > 1.5 cm/sec during transient wind events (fig. 3, URL:http://users.o2wire.com/dnaftz/Dave/AGU-abs-figs-AUG06.pdf). Transport of methyl Hg into the oxic regions of GSL is supported by biota samples. The median Hg concentration (wet weight) in brine shrimp increased seasonally from the spring to fall time period and is likely a

  6. Effect of sulfidogenesis cycling on the biogeochemical process in arsenic-enriched aquifers in the Lanyang Plain of Taiwan: Evidence from a sulfur isotope study

    NASA Astrophysics Data System (ADS)

    Kao, Yu-Hsuan; Liu, Chen-Wuing; Wang, Pei-Ling; Liao, Chung-Min

    2015-09-01

    This study evaluated the biogeochemical interactions between arsenic (As) and sulfur (S) in groundwater to understand the natural and anthropogenic influences of S redox processes on As mobilization in the Lanyang Plain, Taiwan. Cl- and the sulfate isotopic composition (δ34S[SO4]) were selected as conservative tracers. River water and saline seawater were considered as end members in the binary mixing model. Thirty-two groundwater samples were divided into four types of groundwater (I, pyrite-oxidation; II, iron- and sulfate-reducing; III, sulfate-reducing; and IV, anthropogenic and others). The binary mixing model coupled with discriminant analysis was applied to yield a classification with 97% correctness, indicating that the DO/ORP values and δ34S[SO4] and Fe2+ concentrations are effective redox-sensitive indicators. Type I groundwater is mostly located in a mountainous recharge area where pyrite oxidation is the major geochemical process. A high 18O enrichment factor (ε[SO4-H2O]) and high 34S enrichment factor (ε34S[FeS2-SO4]) indicate that disproportionation and dissimilatory sulfate reduction are both involved in Type II and Type III groundwater. The process of bacterial sulfate reduction may coprecipitate and sequester As, a mechanism that is unlikely to occur in Type II groundwater. The presence of high As and Fe2+ concentrations and enriched δ34S[SO4] in Type II groundwater suggest that biogeochemical reactions occurred under anaerobic conditions. The reductive dissolution of As-bearing Fe oxyhydroxides together with microbial disproportionation of sulfur explains the substantial correlations among the high As concentration and enriched δ34S[SO4] and Fe2+ concentrations in the iron- and sulfate-reducing zone (Type II). The As concentration in Type III groundwater (sulfate-reducing) is lower than that in Type II groundwater because of bacterial sulfate reduction and coprecipitation with As. Furthermore, the dissolution of sulfate minerals is not the

  7. Variability of atmospheric greenhouse gases as a biogeochemical processing signal at regional scale in a karstic ecosystem

    NASA Astrophysics Data System (ADS)

    Borràs, Sílvia; Vazquez, Eusebi; Morguí, Josep-Anton; Àgueda, Alba; Batet, Oscar; Cañas, Lídia; Curcoll, Roger; Grossi, Claudia; Nofuentes, Manel; Occhipinti, Paola; Rodó, Xavier

    2015-04-01

    The South-eastern area of the Iberian Peninsula is an area where climatic conditions reach extreme climatic conditions during the year, and is also heavily affected by the ENSO and NAO. The Natural Park of Cazorla, Segura de la Sierra and Las Villas is located in this region, and it is the largest protected natural area in Spain (209920 Ha). This area is characterized by important climatic and hydrologic contrasts: although the mean annual precipitation is 770 nm, the karstic soils are the main cause for water scarcity during the summer months, while on the other hand it is in this area where the two main rivers of Southern Spain, the Segura and the Guadalquivir, are born. The protected area comprises many forested landscapes, karstic areas and reservoirs like Tranco de Beas. The temperatures during summer are high, with over 40°C heatwaves occurring each year. But during the winter months, the land surface can be covered by snow for periods of time up until 30 days. The ENSO and NAO influences cause also an important inter annual climatic variability in this area. Under the ENSO, autumnal periods are more humid while the following spring is drier. In this area vegetal Mediterranean communities are dominant. But there are also a high number of endemic species and derelict species typical of temperate climate. Therefore it is a protected area with high specific diversity. Additionally, there is an important agricultural activity in the fringe areas of the Natural Park, mainly for olive production, while inside the Park this activity is focused on mountain wheat production. Therefore the diverse vegetal communities and landscapes can easily be under extreme climatic pressures, affecting in turn the biogeochemical processes at the regional scale. The constant, high-frequency monitoring of greenhouse gases (GHG) (CO2 and CH4) integrates the biogeochemical signal of changes in this area related to the carbon cycle at the regional scale, capturing the high diversity of

  8. Are Changes in Biogeochemical or Hydrologic Processes Responsible for Increasing DOC Concentrations in Headwater Streams of Northeastern North America?

    NASA Astrophysics Data System (ADS)

    Burns, D. A.; Murdoch, P. S.

    2005-12-01

    The recent recognition of widespread and significant upward trends in dissolved organic carbon (DOC) concentrations in surface waters of northeastern North America and Europe has stimulated research to understand the cause of these trends. Several factors have been offered to explain these DOC trends including climate warming, chronic atmospheric nitrogen deposition, decreasing atmospheric sulfur deposition, and increasing surface water pH. Changes in these factors have acted to either increase the solubility of DOC or increase the rates of biogeochemical processes that generate labile carbon in the soil. Additionally, it is well known that rain events and snowmelt increase DOC concentrations in many surface waters through flushing along shallow flow paths where most labile carbon is stored. Changes in hydrologic flushing rates have generally not been explored as a possible explanation of these widely reported upward trends in DOC concentrations. Biscuit Brook, a 9.9 km2 catchment in the Catskill Mountains of New York has shown a significant increasing trend in DOC concentrations since 1992, consistent with other streams in this region. Stream chemistry has been monitored at Biscuit Brook on a weekly basis supplemented with event samples since 1983, providing a detailed data set with which to examine the causes of changes in DOC concentrations. Here, we examine the relative roles of climate warming, decreasing sulfate (SO42-) and nitrate (NO3-) concentrations, and changes in the frequency and size of hydrologic events on the long-term temporal pattern (1992 to 2004) of DOC concentrations in Biscuit Brook. DOC concentrations increased significantly in weekly samples collected primarily during low flow conditions. No similar trend was apparent in the high flow samples. Mean annual SO42- plus NO3- concentrations showed a strong inverse relation (r2 = 0.91, p < 0.01) to DOC concentrations, but these concentrations were not related to stream pH nor to air temperature

  9. Impact of long-term drainage on hydrogeological and biogeochemical processes near a drainage ditch in a Canadian peatland

    NASA Astrophysics Data System (ADS)

    Kopp, B.; Fleckenstein, J.; Blodau, C.

    2009-04-01

    Little is known about long-term effects of climate change on hydrogeological and biogeochemical processes in northern peatlands. A drainage ditch in the Mer Bleue Bog, Canada which has been established around 100 years ago, was investigated as natural analogue for long-term drying due to climate change. To examine the effects of the hydrological manipulation, several piezometer nests were installed across a transect from an open bog, across the drainage ditch into a now forested bog. Forest growth likely started after lowering of the groundwater table. Piezometer nests were installed in 200, 60, 30, 15 m distance from the drainage ditch on each side; three nests were installed across the drainage ditch. Piezometers were inserted into 0.25, 0.75, 1.0, 2.0 and 3.0 m depth. Pore water samples were taken on three occasions during the study period in summer 2008 and contents of carbondioxide (CO2), methane (CH4), dissolved organic carbon (DOC), main anions and DOC quality were analysed. Water levels in each piezometer were measured every two to nine days and logger were inserted in two piezometer (depth 0.75m and 2.0m) at the 200 m sites which allowed continuous monitoring of hydraulic potentials. By ground water modelling (using the MODFLOW pre- and post-processor Groundwater Vistas) differences in ground water patterns will be elucidated. First results show higher concentrations of CO2, alongside with high concentrations of DOC and low concentrations of CH4 in the forested area, especially in the upper most 0.75 m, compared to the open bog. Together with low hydraulic conductivities (Kf) and a lower water table in the forested area, this indicates higher mineralization rates and higher decomposed peat. High chloride (Cl-) concentrations, stemming from under-lying marine clay, in the forested area suggest that lower water tables together with greater evapotranspiration (ET) result in an increased upwelling of ground water. Highest concentrations of CO2 and CH4 were

  10. Coupled transport processes in semipermeable media

    SciTech Connect

    Jacobsen, J.S.; Carnahan, C.L.

    1990-03-01

    The thermodynamics of irreversible processes leads to nonlinear governing equations for direct and coupled mass transport processes. Analytical solutions of linearized versions of these equations can be used to verify numerical solutions of the nonlinear equations under conditions such that nonlinear terms are relatively small. This report presents derivations of the analytical solutions for one-dimensional and axisymmetric geometries. 7 refs.

  11. Benthic biological and biogeochemical patterns and processes across an oxygen minimum zone (Pakistan margin, NE Arabian Sea)

    NASA Astrophysics Data System (ADS)

    Cowie, Gregory L.; Levin, Lisa A.

    2009-03-01

    Oxygen minimum zones (OMZs) impinging on continental margins present sharp gradients ideal for testing environmental factors thought to influence C cycling and other benthic processes, and for identifying the roles that biota play in these processes. Here we introduce the objectives and initial results of a multinational research program designed to address the influences of water depth, the OMZ (˜150-1300 m), and organic matter (OM) availability on benthic communities and processes across the Pakistan Margin of the Arabian Sea. Hydrologic, sediment, and faunal characterizations were combined with in-situ and shipboard experiments to quantify and compare biogeochemical processes and fluxes, OM burial efficiency, and the contributions of benthic communities, across the OMZ. In this introductory paper, we briefly review previous related work in the Arabian Sea, building the rationale for integrative biogeochemical and ecological process studies. This is followed by a summary of individual volume contributions and a brief synthesis of results. Five primary stations were studied, at 140, 300, 940, 1200 and 1850 m water depth, with sampling in March-May (intermonsoon) and August-October (late-to-postmonsoon) 2003. Taken together, the contributed papers demonstrate distinct cross-margin gradients, not only in oxygenation and sediment OM content, but in benthic community structure and function, including microbial processes, the extent of bioturbation, and faunal roles in C cycling. Hydrographic studies demonstrated changes in the intensity and extent of the OMZ during the SW monsoon, with a shoaling of the upper OMZ boundary that engulfed the previously oxygenated 140-m site. Oxygen profiling and microbial process rate determinations demonstrated dramatic differences in oxygen penetration and consumption across the margin, and in the relative importance of anaerobic processes, but surprisingly little seasonal change. A broad maximum in sediment OM content occurred on

  12. Biogeochemical processes in the saline meromictic Lake Kaiike, Japan: implications from molecular isotopic evidences of photosynthetic pigments.

    PubMed

    Ohkouchi, Naohiko; Nakajima, Yoji; Okada, Hisatake; Ogawa, Nanako O; Suga, Hisami; Oguri, Kazumasa; Kitazato, Hiroshi

    2005-07-01

    Stable carbon and nitrogen isotopic compositions were determined for individual photosynthetic pigments isolated and purified from the saline meromictic Lake Kaiike, Japan, to investigate species-independent biogeochemical processes of photoautotrophs in the natural environment. In the anoxic monimolimnion and benthic microbial mats, the carbon isotopic compositions of BChls e and isorenieratene related to brown-coloured strains of green sulfur bacteria are substantially ( approximately 10 per thousand) depleted in (13)C relative to those found in the chemocline. In conjunction with 16S rDNA evidence reported previously, it strongly suggests that Pelodyctyon luteolum inhabited and photosynthesized in the anoxic monimolimnion and benthic microbial mats by using (13)C-depleted regenerated CO(2). By contrast, both Chl a and BChl a in the monimolimnion and microbial mats have similar isotopic compositions as they do in the chemocline, implying that the source organisms live only in the chemocline. In the chemocline, the nitrogen isotopic compositions of BChl e homologues ranges from -7.7 to-6.5 per thousand, whereas that of BChl a is -2.1 per thousand. These isotopic compositions suggest that green sulfur bacteria Chlorobium phaeovibrioides would conduct nitrogen fixation in the chemocline, whereas purple sulfur bacteria Halochromatium sp. and cyanobacteria Synechococcus sp. may assimilate nitrite.

  13. Generalized total least squares to characterize biogeochemical processes of the ocean

    NASA Astrophysics Data System (ADS)

    Guglielmi, Véronique; Goyet, Catherine; Touratier, Franck; El Jai, Marie

    2017-01-01

    The chemical composition of the global ocean is governed by biological, chemical, and physical processes. These processes interact with each other so that the concentrations of carbon, oxygen, nitrogen (mainly from nitrate, nitrite, ammonium), and phosphorous (mainly from phosphate), vary in constant proportions, referred to as the Redfield ratios. We construct here the generalized total least squares estimator of these ratios. The significance of our approach is twofold; it respects the hydrological characteristics of the studied areas, and it can be applied identically in any area where enough data are available. The tests applied to Atlantic Ocean data highlight a variability of the Redfield ratios, both with geographical location and with depth. This variability emphasizes the importance of local and accurate estimates of Redfield ratios.

  14. Coupling Between Overlying Hydrodynamics, Bioturbation, and Biogeochemical Processes Controls Metal Mobility, Bioavailability, and Toxicity in Sediments

    DTIC Science & Technology

    2016-05-01

    examine ecologically relevant endpoints, including community- level responses, predator-prey interactions, recruitment and reproduction under sediment...Sudbury, Ontario, and upon the surrounding vegetation . Canadian Journal of Botany 1960, 38, (4), 477-487. 87. Lindsay, M. B.; Moncur, M. C.; Bain, J. G

  15. Development of advanced process-based model towards evaluation of boundless biogeochemical cycles in terrestrial-aquatic continuum

    NASA Astrophysics Data System (ADS)

    Nakayama, Tadanobu; Maksyutov, Shamil

    2014-05-01

    Recent research shows inland water may play some role in continental biogeochemical cycling though its contribution has remained uncertain due to a paucity of data (Battin et al. 2009). The author has developed process-based National Integrated Catchment-based Eco-hydrology (NICE) model (Nakayama, 2008a-b, 2010, 2011a-b, 2012a-c, 2013; Nakayama and Fujita, 2010; Nakayama and Hashimoto, 2011; Nakayama and Shankman, 2013a-b; Nakayama and Watanabe, 2004, 2006, 2008a-b; Nakayama et al., 2006, 2007, 2010, 2012), which incorporates surface-groundwater interactions, includes up- and down-scaling processes between local, regional and global scales, and can simulate iteratively nonlinear feedback between hydrologic, geomorphic, and ecological processes. In this study, NICE was extended to evaluate global hydrologic cycle by using various global datasets. The simulated result agreed reasonably with that in the previous research (Fan et al., 2013) and extended to clarify further eco-hydrological process in global scale. Then, NICE was further developed to incorporate the biogeochemical cycle including the reaction between inorganic and organic carbons (DOC, POC, DIC, pCO2, etc.) in the biosphere (terrestrial and aquatic ecosystems including surface water and groundwater). The model simulated the carbon cycle, for example, CO2 evasion from inland water in global scale, which is relatively in good agreement in that estimated by empirical relation using the previous pCO2 data (Aufdenkampe et al., 2011; Global River Chemistry Database, 2013). This simulation system would play important role in identification of full greenhouse gas balance of the biosphere and spatio-temporal hot spots in boundless biogeochemical cycle (Cole et al. 2007; Frei et al. 2012). References; Aufdenkampe, A.K., et al., Front. Ecol. Environ., doi:10.1890/100014, 2011. Battin, T.J., et al., Nat. Geosci., 2, 598-600, 2009. Cole, J.J. et al., Ecosystems, doi:10.1007/s10021-006-9013-8, 2007. Fan, Y. et al

  16. One-Dimensional Coupled Ecosystem-Carbon Flux Model for the Simulation of Biogeochemical Parameters at Ocean Weather Station P

    NASA Technical Reports Server (NTRS)

    Signorini, S.; McClain, C.; Christian, J.; Wong, C. S.

    2000-01-01

    In this Technical Publication, we describe the model functionality and analyze its application to the seasonal and interannual variations of phytoplankton, nutrients, pCO2 and CO2 concentrations in the eastern subarctic Pacific at Ocean Weather Station P (OWSP, 50 deg. N 145 deg. W). We use a verified one-dimensional ecosystem model, coupled with newly incorporated carbon flux and carbon chemistry components, to simulate 22 years (1958-1980) of pCO2 and CO2 variability at Ocean Weather Station P (OWS P). This relatively long period of simulation verifies and extends the findings of previous studies using an explicit approach for the biological component and realistic coupling with the carbon flux dynamics. The slow currents and the horizontally homogeneous ocean in the subarctic Pacific make OWS P one of the best available candidates for modeling the chemistry of the upper ocean in one dimension. The chlorophyll and ocean currents composite for 1998 illustrates this premise. The chlorophyll concentration map was derived from SeaWiFS data and the currents are from an OGCM simulation (from R. Murtugudde).

  17. Distinguishing biogeochemical processes influencing phosphorus dynamics in oxidizing and desiccating mud deposits from a freshwater wetland system

    NASA Astrophysics Data System (ADS)

    Saaltink, Rémon; Dekker, Stefan C.; Wassen, Martin J.; Griffioen, Jasper

    2015-04-01

    Focus and aim: Currently, lake Markermeer (680 km2) provides poor environmental conditions for the development of flora and fauna due to a thick fluffy layer that prevails at the lake's bed. To improve the conditions in the lake, large wetlands will be built from this fluffy layer, possibly mixed with sand or with the underlying Southern Sea deposit. The aim of this study is to distinguish biogeochemical processes influencing phosphorus dynamics in porewater during oxidation and desiccation of mud deposits from this lake. We focus on three important aspects that potentially influence these processes: granulometry, sediment type and modification by plants. Material and methods: A greenhouse experiment was conducted with three types of sediment that potentially will function as building material for the islands: fluffy mud (FM), sandy mud (SM) and Southern Sea deposit (SSD). Reed (Phragmites australis) was planted in half of the pots to distinguish influence by plants. For six months, the porewater-, soil- and plant quality was monitored to determine important biogeochemical processes. Variables measured from the porewater include: Cl-, NO2-, NO3-, PO43- and SO42- (IC); Ca, Fe, K, Mn, Na, P, Si, Sr (ICP-OES); as well as Fe2+, pH, alkalinity and EC. A phosphorus fractionation was carried out on the sediment to determine the phosphorus pools and the major elements of the sediments were determined following an aqua regia destruction using ICP-OES. Plant tissue was analysed for N, P, K and C content as well as the above- and belowground biomass. Results and discussion: It was found that sulfate production was the most important process influencing phosphorus availability in these soils. Due to oxidation processes in the mud, sulfate (SO42-) concentrations rose drastically in porewater from 100 ppm at the beginning of the experiment to well over 2000 ppm at the end of the experiment. This effect was strongest in SSD soils, likely due to higher presence of pyrite that gets

  18. Data assimilation in a coupled physical-biogeochemical model of the California current system using an incremental lognormal 4-dimensional variational approach: Part 3-Assimilation in a realistic context using satellite and in situ observations

    NASA Astrophysics Data System (ADS)

    Song, Hajoon; Edwards, Christopher A.; Moore, Andrew M.; Fiechter, Jerome

    2016-10-01

    A fully coupled physical and biogeochemical ocean data assimilation system is tested in a realistic configuration of the California Current System using the Regional Ocean Modeling System. In situ measurements for sea surface temperature and salinity as well as satellite observations for temperature, sea level and chlorophyll are used for the year 2000. Initial conditions of the combined physical and biogeochemical state are adjusted at the start of each 3-day assimilation cycle. Data assimilation results in substantial reduction of root-mean-square error (RMSE) over unconstrained model output. RMSE for physical variables is slightly lower when assimilating only physical variables than when assimilating both physical variables and surface chlorophyll. Surface chlorophyll RMSE is lowest when assimilating both physical variables and surface chlorophyll. Estimates of subsurface, nitrate and chlorophyll show modest improvements over the unconstrained model run relative to independent, unassimilated in situ data. Assimilation adjustments to the biogeochemical initial conditions are investigated within different regions of the California Current System. The incremental, lognormal 4-dimensional data assimilation method tested here represents a viable approach to coupled physical biogeochemical state estimation at practical computational cost.

  19. Biogeochemical Processes Responsible for the Enhanced Transport of Plutonium Under transient Unsaturated Ground Water Conditions

    SciTech Connect

    Fred J. Molz, III

    2010-05-28

    To better understand longer-term vadose zone transport in southeastern soils, field lysimeter experiments were conducted at the Savannah River Site (SRS) near Aiken, SC, in the 1980s. Each of the three lysimeters analyzed herein contained a filter paper spiked with different Pu solutions, and they were left exposed to natural environmental conditions (including the growth of annual weed grasses) for 11 years. The resulting Pu activity measurements from each lysimeter core showed anomalous activity distributions below the source, with significant migration of Pu above the source. Such results are not explainable by adsorption phenomena alone. A transient variably saturated flow model with root water uptake was developed and coupled to a soil reactive transport model. Somewhat surprisingly, the fully transient analysis showed results nearly identical to those of a much simpler steady flow analysis performed previously. However, all phenomena studied were unable to produce the upward Pu transport observed in the data. This result suggests another transport mechanism such as Pu uptake by roots and upward transport due to transpiration. Thus, the variably saturated flow and reactive transport model was extended to include uptake and transport of Pu within the root xylem, along with computational methodology and results. In the extended model, flow velocity in the soil was driven by precipitation input along with transpiration and drainage. Water uptake by the roots determined the flow velocity in the root xylem, and this along with uptake of Pu in the transpiration stream drove advection and dispersion of the two Pu species in the xylem. During wet periods with high potential evapotranspiration, maximum flow velocities through the xylem would approached 600 cm/hr, orders of magnitude larger that flow velocities in the soil. Values for parameters and the correct conceptual viewpoint for Pu transport in plant xylem was uncertain. This motivated further experiments devoted

  20. The Precambrian Biogeochemical Carbon Isotopic Record: Contributions of Thermal Versus Biological Processes

    NASA Technical Reports Server (NTRS)

    DesMarais, David J.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Superplumes offer a new approach for understanding global C cycles. Isotopes help to discern the impacts of geological, environmental and biological processes ujpun the evolution of these cycles. For example, C-13/C-12 values of coeval sedimentary organics and carbonates give global estimates of the fraction of C buried as organics (Forg), which today lies near 0.2. Before Oxygenic photosynthesis arose, our biosphere obtained reducing power for biosynthesis solely from thermal volatiles and rock alteration. Thus Forg was dominated by the mantle redox state, which has remained remarkably constant for greater than Gy. Recent data confirm that the long-term change in Forg had been small, indicating that the mantle redox buffer remains important even today. Oxygenic photosynthesis enabled life to obtain additional reducing power by splitting the water molecule. Accordingly, biological organic production rose above the level constrained by the mantle-derived flux of reduced species. For example, today, chemoautotrophs harvesting energy from hydrothermal emanations can synthesize at most between 0.2 x 10(exp 12) and 2x 10(exp 12) mol C yr-1 of organic C globally. In contrast, global photosynthetic productivity is estimated at 9000 x 10(exp 12) mol C yr-1. Occasionally photosynthetic productivity did contribute to dramatically -elevated Forg values (to 0.4 or more) as evidenced by very high carbonate C-13/C-12. The interplay between biological, tectonic and other environmental factors is illustrated by the mid-Archean to mid-Proterozoic isotopic record. The relatively constant C-13/C-12 values of Archean carbonates support the view that photosynthetically-driven Forg increases were not yet possible. In contrast, major excursions in C-13/C-12, and thus also in Forg, during the early Proterozoic confirmed the global importance of oxygenic photosynthesis by that time. Remarkably, the superplume event at 1.9 Ga did not trigger another major Forg increase, despite the

  1. The Precambrian Biogeochemical Carbon Isotopic Record: Contributions of Thermal Versus Biological Processes

    NASA Technical Reports Server (NTRS)

    DesMarais, David J.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Superplumes offer a new approach for understanding global C cycles. Isotopes help to discern the impacts of geological, environmental and biological processes ujpun the evolution of these cycles. For example, C-13/C-12 values of coeval sedimentary organics and carbonates give global estimates of the fraction of C buried as organics (Forg), which today lies near 0.2. Before Oxygenic photosynthesis arose, our biosphere obtained reducing power for biosynthesis solely from thermal volatiles and rock alteration. Thus Forg was dominated by the mantle redox state, which has remained remarkably constant for greater than Gy. Recent data confirm that the long-term change in Forg had been small, indicating that the mantle redox buffer remains important even today. Oxygenic photosynthesis enabled life to obtain additional reducing power by splitting the water molecule. Accordingly, biological organic production rose above the level constrained by the mantle-derived flux of reduced species. For example, today, chemoautotrophs harvesting energy from hydrothermal emanations can synthesize at most between 0.2 x 10(exp 12) and 2x 10(exp 12) mol C yr-1 of organic C globally. In contrast, global photosynthetic productivity is estimated at 9000 x 10(exp 12) mol C yr-1. Occasionally photosynthetic productivity did contribute to dramatically -elevated Forg values (to 0.4 or more) as evidenced by very high carbonate C-13/C-12. The interplay between biological, tectonic and other environmental factors is illustrated by the mid-Archean to mid-Proterozoic isotopic record. The relatively constant C-13/C-12 values of Archean carbonates support the view that photosynthetically-driven Forg increases were not yet possible. In contrast, major excursions in C-13/C-12, and thus also in Forg, during the early Proterozoic confirmed the global importance of oxygenic photosynthesis by that time. Remarkably, the superplume event at 1.9 Ga did not trigger another major Forg increase, despite the

  2. Microbial Analysis of Australian Dry Lake Cores; Analogs For Biogeochemical Processes

    NASA Astrophysics Data System (ADS)

    Nguyen, A. V.; Baldridge, A. M.; Thomson, B. J.

    2014-12-01

    Lake Gilmore in Western Australia is an acidic ephemeral lake that is analogous to Martian geochemical processes represented by interbedded phyllosilicates and sulfates. These areas demonstrate remnants of a global-scale change on Mars during the late Noachian era from a neutral to alkaline pH to relatively lower pH in the Hesperian era that continues to persist today. The geochemistry of these areas could possibly be caused by small-scale changes such as microbial metabolism. Two approaches were used to determine the presence of microbes in the Australian dry lake cores: DNA analysis and lipid analysis. Detecting DNA or lipids in the cores will provide evidence of living or deceased organisms since they provide distinct markers for life. Basic DNA analysis consists of extraction, amplification through PCR, plasmid cloning, and DNA sequencing. Once the sequence of unknown DNA is known, an online program, BLAST, will be used to identify the microbes for further analysis. The lipid analysis approach consists of phospholipid fatty acid analysis that is done by Microbial ID, which will provide direct identification any microbes from the presence of lipids. Identified microbes are then compared to mineralogy results from the x-ray diffraction of the core samples to determine if the types of metabolic reactions are consistent with the variation in composition in these analog deposits. If so, it provides intriguing implications for the presence of life in similar Martian deposits.

  3. Inorganic carbon cycling and biogeochemical processes in an Arctic inland sea (Hudson Bay)

    NASA Astrophysics Data System (ADS)

    Burt, William J.; Thomas, Helmuth; Miller, Lisa A.; Granskog, Mats A.; Papakyriakou, Tim N.; Pengelly, Leah

    2016-08-01

    The distributions of carbonate system parameters in Hudson Bay, which not only receives nearly one-third of Canada's river discharge but is also subject to annual cycles of sea-ice formation and melt, indicate that the timing and magnitude of freshwater inputs play an important role in carbon biogeochemistry and acidification in this unique Arctic ecosystem. This study uses basin-wide measurements of dissolved inorganic carbon (DIC) and total alkalinity (TA), as well as stable isotope tracers (δ18O and δ13CDIC), to provide a detailed assessment of carbon cycling processes within the bay. Surface distributions of carbonate parameters reveal the particular importance of freshwater inputs in the southern portion of the bay. Based on TA, we surmise that the deep waters in the Hudson Bay are largely of Pacific origin. Riverine TA end-members vary significantly both regionally and with small changes in near-surface depths, highlighting the importance of careful surface water sampling in highly stratified waters. In an along-shore transect, large increases in subsurface DIC are accompanied by equivalent decreases in δ13CDIC with no discernable change in TA, indicating a respiratory DIC production on the order of 100 µmol kg-1 DIC during deep water circulation around the bay.

  4. [Biogeochemical processes of the major ions and dissolved inorganic carbon in the Guijiang River].

    PubMed

    Tang, Wen-Kui; Tao, Zhen; Gao, Quan-Zhou; Mao, Hai-Ruo; Jiang, Guang-Hui; Jiao, Shu-Lin; Zheng, Xiong-Bo; Zhang, Qian-Zhu; Ma, Zan-Wen

    2014-06-01

    Within the drainage basin, information about natural processes and human activities can be recorded in the chemical composition of riverine water. The analysis of the Guijiang River, the first level tributary of the Xijiang River, demonstrated that the chemical composition of water in the Guijiang River was mainly influenced by the chemical weathering of carbonate rocks within the drainage basin, in which CO2 was the main erosion medium, and that the weathering of carbonate rock by H2SO4 had a remarkable impact on the water chemical composition in the Guijiang River. Precipitation, human activities, the weathering of carbonate rocks and silicate rocks accounted for 2.7%, 6.3%, 72.8% and 18.2% of the total dissolved load, respectively. The stable isotopic compositions of dissolved inorganic carbon (delta13C(DIC)) indicated that DIC in the Guijiang River had been assimilated by the phytoplankton in photosynthesis. The primary production of phytoplankton contributed to 22.3%-30.9% of particulate organic carbon (POC) in the Guijiang River, which implies that phytoplankton can transform DIC into POC by photosynthesis, and parts of POC will sink into the bottom of the river in transit, which leads into the formation of burial organic carbon.

  5. A comparison of coupled biogeophysical and biogeochemical dynamics across a precipitation gradient in Oregon using data assimilation

    NASA Astrophysics Data System (ADS)

    Pettijohn, J. C.; Law, B. E.; Williams, M. D.; Stoekli, R.; Thornton, P. E.; Thomas, C. K.; Hudiburg, T. W.; Martin, J.

    2010-12-01

    We present results from our coupled biophysical - biochemical model data fusion (MDF) analysis across a climatic gradient in Oregon, USA, using data from a coast-range Douglas-fir (US-Fir; 2006-2008) and a semi-arid ponderosa pine (US-Me2; 2002-2008) AmeriFlux site. Our MDF scheme couples the Ensemble Kalman Filter (EnKF) with the National Center for Atmospheric Research (NCAR) Community Land Model with Carbon-Nitrogen coupling (CLM-CN, version 3.5). Assimilated data includes continuous eddy covariance measurements of forest-atmosphere CO2 (NEE, net ecosystem exchange) and water vapor fluxes (λE, latent heat flux), chamber-based soil respiratory flux, soil moisture and temperature, snow depth (US-Me2), MODIS-derived 8 day LAI, and carbon and nitrogen pools. We quantify the ecosystem carbon and nitrogen budgets, partition NEE and λE fluxes, and thus increase confidence in multi-scale controls on CO2 and water vapor exchange. The MDF did a better job predicting NEE than λE at both sites (r2 = 0.86 for NEE at both sites; λE r2 = 0.65 and 0.63 at the US-ME2 and US-Fir sites, respectively) partly due to a weighting scheme we prescribed for NEE. The distribution of carbon and nitrogen differed significantly between sites, with total ecosystem carbon (vegetation, detritus, soil) of the US-Fir site being about 1.4 times higher than the US-Me2 site (35 kg C m-2 vs. 25 kg C m-2). Mean NEE over overlapping water years ‘07-‘08 was -495 gC m-2 at the US-Me2 site as opposed to -809 gC m-2 at the US-Fir site, nearly a two-fold difference in C uptake across this precipitation gradient. Average GPP and ecosystem respiration (Re) over these two water years were both ~1.7x greater at the US-Fir site, with 1712 gC m^-2 and 1217 gC m-2, respectively, at the US-Me2 site vs. 2841 gC m-2 and 2032 gC m-2 at the US-Fir. Autotrophic respiration contributed 79% and 72% to the Re flux at the US-Me2 and US-Fir sites, respectively, with total soil respiration contributing 53% and 58% to

  6. Impact of hydrotalcite deposition on biogeochemical processes in a shallow tropical bay.

    PubMed

    Alongi, Daniel M; McKinnon, A David

    2011-03-01

    The biogeochemistry of a tropical shoal bay (Melville Bay, Australia) impacted by the effluent release, precipitation, and deposition of hydrotalcite from an alumina refinery was studied in both wet and dry seasons. Within the deposition zone, sulfate reduction dominated benthic carbon cycling accounting for ≈100% of total microbial activity, with rates greater than those measured in most other marine sediments. These rapid rates of anoxic metabolism resulted in high rates of sulfide and ammonium production and low C:S ratios, implying significant preservation of S in stable sulfide minerals. Rates of total microbial activity were significantly less in control sediments of equivalent grain size, where sulfate reduction accounted for ≈50% of total benthic metabolism. Rates of planktonic carbon cycling overlying the deposition zone were also greater than those measured in the control areas of southern Melville Bay. At the sediment surface, productive algal and cyanobacterial mats helped stabilize the sediment surface and oxidize sulfide to sulfate to maintain a fully oxygenated water-column overlying the impacted zone. The mats utilized a significant fraction of dissolved inorganic N and P released from the sea bed; some nutrients escaped to the water-column such that benthic regeneration of NH₄+ and PO₄³⁻ accounted for 100% and 42% of phytoplankton requirements for N and P, respectively. These percentages are high compared to other tropical coastal environments and indicate that benthic nutrient recycling may be a significant factor driving water-column production overlying the deposition zone. With regard to remediation, it is recommended that the sea bed not be disturbed as attempts at removal may result in further environmental problems and would require specific assessment of the proposed removal process. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Towards the understanding of biogeochemical processes involved in the release of carbonyl sulfide (COS) from soil

    NASA Astrophysics Data System (ADS)

    Behrendt, Thomas; Catao, Elisa; Bunk, Rüdiger; Yi, Zhigang; Greule, Markus; Keppler, Frank; Kesselmeier, Jürgen; Trumbore, Susan

    2017-04-01

    Carbonyl sulfide (COS) is present in the atmosphere in low mixing ratio ( 500ppt). It is relevant in climate change through the effect in aerosol formation. Soils can act as source of COS, e.g. by microbial degradation of thiocyanate from plant material. On the other side it is known that COS can be consumed via various enzymatic pathways. Assuming that biogenic processes dominate over chemical reactions we extracted nucleic acids and performed amplicon sequencing for bacteria (16S rRNA) and fungi (ITS region) from a mid-latitude agricultural maize soil which was previously incubated under ambient COS and COS fumigation ( 1000ppt). The mixing ratios of COS have been measured online from soil samples in a dynamic chamber system under laboratory conditions by an integrated cavity output spectroscopy (IOCS) analyzer (Los Gatos Research Inc., USA). Additionally stable carbon isotope values (δ13C values) of COS were measured using a pre-concentration method and stable isotope ratio mass spectrometry (IRMS). Under low COS mixing ratio ( 50ppt) δ13C +4.7 ‰ for spruce forest ( 23°C), and -24.4‰ for mid-latitude cornfield ( 22°C), respectively. Linking gas release rates of (COS, CO2, CO, NO) to isotopic signatures of COS and molecular results might allow us to indicate bacterial s-compound degradation related to the higher activity of β-Proteobacteria and of the family Acetobacteraceae from the α-Proteobacteria phylum, potentially involved with the hydrolysis of thiocyanate in the soil releasing COS. Furthermore, our study reports the first COS data for rainforest and desert soils which are in the order of 0.5 pmol gdw-1 h-1 and 2 pmol gdw-1 h-1, respectively.

  8. Induction coupled thermomagnetic processing: A disruptive technology

    DOE PAGES

    Ahmad, Aquil; Mackiewicz-Ludtka, Gail; Pfaffmann, George; ...

    2016-06-01

    Here, one of the major goals of the U.S. Department of Energy (DoE) is to achieve energy savings with a corresponding reduction in the carbon footprint. With this in mind, the DoE sponsored the Induction Coupled Thermomagnetic Processing (ITMP) project with major partners Eaton Corp., Ajax Tocco Magnethermic, and Oak Ridge National Laboratory (ORNL) to evaluate the viability of processing metals in a strong magnetic field.

  9. Impact of depositional and biogeochemical processes on small scale variations in nodule abundance in the Clarion-Clipperton Fracture Zone

    NASA Astrophysics Data System (ADS)

    Mewes, K.; Mogollón, J. M.; Picard, A.; Rühlemann, C.; Kuhn, T.; Nöthen, K.; Kasten, S.

    2014-09-01

    Manganese nodules of the Clarion-Clipperton Fracture Zone (CCFZ) in the NE Pacific Ocean are highly enriched in Ni, Cu, Co, Mo and rare-earth elements, and thus may be the subject of future mining operations. Elucidating the depositional and biogeochemical processes that contribute to nodule formation, as well as the respective redox environment, in both water column and sediment, supports our ability to locate future nodule deposits and to evaluate the potential ecological and environmental effects of future deep-sea mining. For these purposes we studied the local hydrodynamics and pore-water geochemistry with respect to the nodule coverage at four sites in the eastern CCFZ. Furthermore, we carried out selective leaching experiments at these sites in order to assess the potential mobility of Mn in the solid phase, and compared them with the spatial variations in sedimentation rates. We found that the oxygen penetration depth is 180-300 cm at all four sites, while reduction of Mn and NO3- is only significant below the oxygen penetration depth at sites with small or no nodules on the sediment surface. At the site without nodules, potential microbial respiration rates, determined by incubation experiments using 14C-labeled acetate, are slightly higher than at sites with nodules. Leaching experiments showed that surface sediments covered with big or medium-sized nodules are enriched in mobilizable Mn. Our deep oxygen measurements and pore-water data suggest that hydrogenetic and oxic-diagenetic processes control the present-day nodule growth at these sites, since free manganese from deeper sediments is unable to reach the sediment surface. We propose that the observed strong lateral contrasts in nodule size and abundance are sensitive to sedimentation rates, which in turn, are controlled by small-scale variations in seafloor topography and bottom-water current intensity.

  10. New insights into biogeochemical processing gained from sub-daily river monitoring

    NASA Astrophysics Data System (ADS)

    Halliday, S. J.; Wade, A. J.; Skeffington, R. A.; Bowes, M.; Palmer-Felgate, E.; Loewenthal, M.; Jarvie, H.; Neal, C.; Reynolds, B.; Gozzard, E.; Newman, J.

    2012-12-01

    This talk will focus on the insights obtained from sub-daily hydrochemical monitoring for a sustained time periods (> 1 year), at multiple sites within a catchment and across different catchment types. Sub-daily instream hydrochemical dynamics were investigated, using non-stationary time-series analysis techniques, for two catchments representative of upland and lowland UK. The River Hafren at Plynlimon, mid-Wales drains an upland catchment where half the land cover is unmanaged moorland and the other half is first generation plantation forestry. The Hafren was monitored at two sites on a 7-hourly basis, between March 2007 and January 2009, using a Xian automatic sampler. The River Enborne, Berkshire, southeast England, is a rural lowland catchment, impacted by agricultural runoff, and septic tank and sewage treatment works discharges. The Enborne was monitored on an hourly basis between November 2009 and February 2012, using in situ field deployable analytical equipment to measure: Total Reactive Phosphorus (TRP: Systea Micromac C), Nitrate (Hach-Lange Nitratax), pH, dissolved oxygen, conductivity and water temperature (YSI 6600 Multi-parameter sonde). The results reveal complex diurnal patterns which exhibit seasonal changes in phase and amplitude, and are influenced by both flow conditions and nutrient sources. The comparison of the upland and lowland nitrate time series highlights how the different nitrogen sources within each system results in marked differences in the seasonal and diurnal dynamics, with a seasonal maximum in winter and a single peak diurnal cycle in the upland system, compared to a summer maximum and a two peak diurnal cycle in the lowland system. The analysis of TRP and nitrate concentrations in the Enborne catchment, in combination with flow, pH, dissolved oxygen, conductivity and water temperature, allowed the main processes controlling the observed sub-daily nutrient dynamics to be investigated. The different monitoring approaches adopted

  11. Effect of bottom water oxygenation on oxygen consumption and benthic biogeochemical processes at the Crimean Shelf (Black Sea)

    NASA Astrophysics Data System (ADS)

    Lichtschlag, A.; Janssen, F.; Wenzhöfer, F.; Holtappels, M.; Struck, U.; Jessen, G.; Boetius, A.

    2012-04-01

    Hypoxia occurs where oxygen concentrations fall below a physiological threshold of many animals, usually defined as <63 µmol L-1. Oxygen depletion can be caused by anthropogenic influences, such as global warming and eutrophication, but as well occurs naturally due to restricted water exchange in combination with high nutrient loads (e.g. upwelling). Bottom-water oxygen availability not only influences the composition of faunal communities, but is also one of the main factors controlling sediment-water exchange fluxes and organic carbon degradation in the sediment, usually shifting processes towards anaerobic mineralization pathways mediated by microorganisms. The Black Sea is one of the world's largest meromictic marine basins with an anoxic water column below 180m. The outer shelf edge, where anoxic waters meet the seafloor, is an ideal natural laboratory to study the response of benthic ecosystems to hypoxia, including benthic biogeochemical processes. During the MSM 15/1 expedition with the German research vessel MARIA S. MERIAN, the NW area of the Black Sea (Crimean Shelf) was studied. The study was set up to investigate the influence of bottom water oxygenation on, (1) the respective share of fauna-mediated oxygen uptake, microbial respiration, or re-oxidation of reduced compounds formed in the deeper sediments for the total oxygen flux and (2) on the efficiency of benthic biogeochemical cycles. During our study, oxygen consumption and pathways of organic carbon degradation were estimated from benthic chamber incubations, oxygen microprofiles measured in situ, and pore water and solid phase profiles measured on retrieved cores under oxic, hypoxic, and anoxic water column conditions. Benthic oxygen fluxes measured in Crimean Shelf sediments in this study were comparable to fluxes from previous in situ and laboratory measurements at similar oxygen concentrations (total fluxes -8 to -12 mmol m-2 d-1; diffusive fluxes: -2 to -5 mmol m-2 d-1) with oxygen

  12. Biogeochemical Processes Related to Metal Removal and Toxicity Reduction in the H-02 Constructed Wetland, Savannah River Site

    NASA Astrophysics Data System (ADS)

    Burgess, E. A.; Mills, G. L.; Harmon, M.; Samarkin, V.

    2011-12-01

    The H-02 wetland system was designed to treat building process water and storm water runoff from multiple sources associated with the Tritium Facility at the DOE-Savannah River Site, Aiken, SC. The wetland construction included the addition of gypsum (calcium sulfate) to foster a sulfate-reducing bacterial population. Conceptually, the wetland functions as follows: ? Cu and Zn initially bind to both dissolved and particulate organic detritus within the wetland. ? A portion of this organic matter is subsequently deposited into the surface sediments within the wetland. ? The fraction of Cu and Zn that is discharged in the wetland effluent is organically complexed, less bioavailable, and consequently, less toxic. ? The Cu and Zn deposited in the surface sediments are eventually sequestered into insoluble sulfide minerals in the wetland. Development of the H-02 system has been closely monitored; sampling began in August 2007, shortly after its construction. This monitoring has included the measurement of water quality parameters, Cu and Zn concentrations in surface water and sediments, as well as, characterization of the prokaryotic (e.g., bacterial) component of wetland biogeochemical processes. Since the beginning of the study, the mean influent Cu concentration was 31.5±12.1 ppb and the mean effluent concentration was 11.9±7.3 ppb, corresponding to an average Cu removal of 64%. Zn concentrations were more variable, averaging 39.2±13.8 ppb in the influent and 25.7±21.3 ppb in the effluent. Average Zn removal was 52%. The wetland also ameliorated high pH values associated with influent water to values similar to those measured at reference sites. Seasonal variations in DOC concentration corresponded to seasonal variations in Cu and Zn removal efficiency. The concentration of Cu and Zn in the surface layer of the sediments has increased over the lifetime of the wetland and, like removal efficiency, demonstrated seasonal variation. Within its first year, the H-02

  13. Investigating the Role of Biogeochemical Processes in the Northern High Latitudes on Global Climate Feedbacks Using an Efficient Scalable Earth System Model

    SciTech Connect

    Jain, Atul K.

    2016-09-14

    The overall objectives of this DOE funded project is to combine scientific and computational challenges in climate modeling by expanding our understanding of the biogeophysical-biogeochemical processes and their interactions in the northern high latitudes (NHLs) using an earth system modeling (ESM) approach, and by adopting an adaptive parallel runtime system in an ESM to achieve efficient and scalable climate simulations through improved load balancing algorithms.

  14. Understanding the Relative Influence of Anthropogenic Versus Natural Nitrogen on Biogeochemical Processes in the Southern California Bight

    NASA Astrophysics Data System (ADS)

    McLaughlin, K.; Howard, M. D.; Beck, C. D. A.; Emler, L.; Nezlin, N. P.; Sutula, M.

    2016-02-01

    Nitrogen (N) pollution is considered to be one of the most significant consequences of human-accelerated global change on coastal oceans (Howarth and Marino 2006). In the southern California Bight, wastewater effluent represents 92% of total terrestrial N loading and these loads are equivalent to the "background" N flux from upwelling (Howard et al. 2014). In this study, we attempt to quantify the relative influence of the two dominant nitrogen sources to the Bight (wastewater effluent and upwelled nitrogen) on biogeochemical processes linked to dissolved oxygen, pH and algal blooms. We will compare the sources and fate of nitrogen in an effluent impacted region (offshore of Los Angeles and Orange Counties) to minimally-impacted regions both along the coastline (offshore of Northern San Diego County) and two offshore stations. Key rates of nitrogen and carbon cycling are measured, including primary production and respiration, nitrogen uptake by primary producers, and nitrification. Stable isotope tracer techniques have also been applied to determine the relative influence of effluent versus upwelled nitrogen on biological communities and concentrations. Data generated from this study will be used to validate calculated rate constants used in oceanographic models of ecological response from natural and anthropogenic nutrient inputs in the Bight. These models will be used to estimate the extent to which anthropogenic nutrients are affecting primary production, acidification and hypoxia, as well as which regions are most at risk. They will also be used to analyze management scenarios to understand the effects of anthropogenic nutrient load reductions relative to climate change scenarios.

  15. Coupled transport processes in semipermeable media

    SciTech Connect

    Jacobsen, J.S.; Carnahan, C.L.

    1990-04-01

    A numerical simulator has been developed to investigate the effects of coupled processes on heat and mass transport in semipermeable media. The governing equations on which the simulator is based were derived using the thermodynamics of irreversible processes. The equations are nonlinear and have been solved numerically using the n-dimensional Newton's method. As an example of an application, the numerical simulator has been used to investigate heat and solute transport in the vicinity of a heat source buried in a saturated clay-like medium, in part to study solute transport in bentonite packing material surrounding a nuclear waste canister. The coupled processes considered were thermal filtration, thermal osmosis, chemical osmosis and ultrafiltration. In the simulations, heat transport by coupled processes was negligible compared to heat conduction, but pressure and solute migration were affected. Solute migration was retarded relative to the uncoupled case when only chemical osmosis was considered. When both chemical osmosis and thermal osmosis were included, solute migration was enhanced. 18 refs., 20 figs.

  16. Processivity and Coupling in Messenger RNA Transcription

    PubMed Central

    Aitken, Stuart; Robert, Marie-Cécile; Alexander, Ross D.; Goryanin, Igor; Bertrand, Edouard; Beggs, Jean D.

    2010-01-01

    Background The complexity of messenger RNA processing is now being uncovered by experimental techniques that are capable of detecting individual copies of mRNA in cells, and by quantitative real-time observations that reveal the kinetics. This processing is commonly modelled by permitting mRNA to be transcribed only when the promoter is in the on state. In this simple on/off model, the many processes involved in active transcription are represented by a single reaction. These processes include elongation, which has a minimum time for completion and processing that is not captured in the model. Methodology In this paper, we explore the impact on the mRNA distribution of representing the elongation process in more detail. Consideration of the mechanisms of elongation leads to two alternative models of the coupling between the elongating polymerase and the state of the promoter: Processivity allows polymerases to complete elongation irrespective of the promoter state, whereas coupling requires the promoter to be active to produce a full-length transcript. We demonstrate that these alternatives have a significant impact on the predicted distributions. Models are simulated by the Gillespie algorithm, and the third and fourth moments of the resulting distribution are computed in order to characterise the length of the tail, and sharpness of the peak. By this methodology, we show that the moments provide a concise summary of the distribution, showing statistically-significant differences across much of the feasible parameter range. Conclusions We conclude that processivity is not fully consistent with the on/off model unless the probability of successfully completing elongation is low—as has been observed. The results also suggest that some form of coupling between the promoter and a rate-limiting step in transcription may explain the cell's inability to maintain high mRNA levels at low noise—a prediction of the on/off model that has no supporting evidence. PMID

  17. Process-independent strong running coupling

    NASA Astrophysics Data System (ADS)

    Binosi, Daniele; Mezrag, Cédric; Papavassiliou, Joannis; Roberts, Craig D.; Rodríguez-Quintero, Jose

    2017-09-01

    We unify two widely different approaches to understanding the infrared behavior of quantum chromodynamics (QCD), one essentially phenomenological, based on data, and the other computational, realized via quantum field equations in the continuum theory. Using the latter, we explain and calculate a process-independent running coupling for QCD, a new type of effective charge that is an analogue of the Gell-Mann-Low effective coupling in quantum electrodynamics. The result is almost identical to the process-dependent effective charge defined via the Bjorken sum rule, which provides one of the most basic constraints on our knowledge of nucleon spin structure. This reveals the Bjorken sum to be a near direct means by which to gain empirical insight into QCD's Gell-Mann-Low effective charge.

  18. A coupled geochemical and biogeochemical approach to characterize the bioreactivity of dissolved organic matter from a headwater stream

    NASA Astrophysics Data System (ADS)

    Sleighter, Rachel L.; Cory, Rose M.; Kaplan, Louis A.; Abdulla, Hussain A. N.; Hatcher, Patrick G.

    2014-08-01

    The bioreactivity or susceptibility of dissolved organic matter (DOM) to microbial degradation in streams and rivers is of critical importance to global change studies, but a comprehensive understanding of DOM bioreactivity has been elusive due, in part, to the stunningly diverse assemblages of organic molecules within DOM. We approach this problem by employing a range of techniques to characterize DOM as it flows through biofilm reactors: dissolved organic carbon (DOC) concentrations, excitation emission matrix spectroscopy (EEMs), and ultrahigh resolution mass spectrometry. The EEMs and mass spectral data were analyzed using a combination of multivariate statistical approaches. We found that 45% of stream water DOC was biodegraded by microorganisms, including 31-45% of the humic DOC. This bioreactive DOM separated into two different groups: (1) H/C centered at 1.5 with O/C 0.1-0.5 or (2) low H/C of 0.5-1.0 spanning O/C 0.2-0.7 that were positively correlated (Spearman ranking) with chromophoric and fluorescent DOM (CDOM and FDOM, respectively). DOM that was more recalcitrant and resistant to microbial degradation aligned tightly in the center of the van Krevelen space (H/C 1.0-1.5, O/C 0.25-0.6) and negatively correlated (Spearman ranking) with CDOM and FDOM. These findings were supported further by principal component analysis and 2-D correlation analysis of the relative magnitudes of the mass spectral peaks assigned to molecular formulas. This study demonstrates that our approach of processing stream water through bioreactors followed by EEMs and FTICR-MS analyses, in combination with multivariate statistical analysis, allows for precise, robust characterization of compound bioreactivity and associated molecular level composition.

  19. Modeling of Inner Magnetosphere Coupling Processes

    NASA Technical Reports Server (NTRS)

    Khazanov, George V.

    2011-01-01

    The Ring Current (RC) is the biggest energy player in the inner magnetosphere. It is the source of free energy for Electromagnetic Ion Cyclotron (EMIC) wave excitation provided by a temperature anisotropy of RC ions, which develops naturally during inward E B convection from the plasmasheet. The cold plasmasphere, which is under the strong influence of the magnetospheric electric field, strongly mediates the RC-EMIC wave-particle-coupling process and ultimately becomes part of the particle and energy interplay. On the other hand, there is a strong influence of the RC on the inner magnetospheric electric and magnetic field configurations and these configurations, in turn, are important to RC dynamics. Therefore, one of the biggest needs for inner magnetospheric research is the continued progression toward a coupled, interconnected system with the inclusion of nonlinear feedback mechanisms between the plasma populations, the electric and magnetic fields, and plasma waves. As we clearly demonstrated in our studies, EMIC waves strongly interact with electrons and ions of energies ranging from approx.1 eV to approx.10 MeV, and that these waves strongly affect the dynamics of resonant RC ions, thermal electrons and ions, and the outer RB relativistic electrons. As we found, the rate of ion and electron scattering/heating in the Earth's magnetosphere is not only controlled by the wave intensity-spatial-temporal distribution but also strongly depends on the spectral distribution of the wave power. The latter is also a function of the plasmaspheric heavy ion content, and the plasma density and temperature distributions along the magnetic field lines. The above discussion places RC-EMIC wave coupling dynamics in context with inner magnetospheric coupling processes and, ultimately, relates RC studies with plasmaspheric and Superthermal Electrons formation processes as well as with outer RB physics.

  20. Coupled transport processes in semipermeable media

    SciTech Connect

    Carnahan, C.L.; Jacobsen, J.S.

    1990-04-01

    The thermodynamics of irreversible processes (TTIP) is used to derive governing equations and phenomenological equations for transport processes and chemical reactions in water-saturated semipermeable media. TTIP is based on three fundamental postulates. The first postulate, the assumption of local equilibrium, allows the formulation of balance equations for entropy. These equations are the bases for the derivation of governing equations for the thermodynamic variables, temperature, pressure, and composition. The governing equations involve vector fluxes of heat and mass and scalar rates of chemical reactions; in accordance with the second postulate of TTIP, these fluxes and rates are related, respectively, to all scalar driving forces (gradients of thermodynamic variables) acting within the system. The third postulate of TTIP states equality (the Onsager reciprocal relations) between certain of the phenomenological coefficients relating forces and fluxes. The description by TTIP of a system undergoing irreversible processes allows consideration of coupled transport processes such as thermal osmosis, chemical osmosis, and ultrafiltration. The coupled processes can make significant contributions to flows of mass and energy in slightly permeable, permselective geological materials such as clays and shales.

  1. Emergent Archetype Hydrological-Biogeochemical Response Patterns in Heterogeneous Catchments

    NASA Astrophysics Data System (ADS)

    Jawitz, J. W.; Gall, H. E.; Rao, P.

    2013-12-01

    What can spatiotemporally integrated patterns observed in stream hydrologic and biogeochemical signals generated in response to transient hydro-climatic and anthropogenic forcing tell us about the interactions between spatially heterogeneous soil-mediated hydrological and biogeochemical processes? We seek to understand how the spatial structure of solute sources coupled with hydrologic responses affect observed concentration-discharge (C-Q) patterns. These patterns are expressions of the spatiotemporal structure of solute loads exported from managed catchments, and their likely ecological consequences manifested in receiving water bodies (e.g., wetlands, rivers, lakes, and coastal waters). We investigated the following broad questions: (1) How does the correlation between flow-generating areas and biogeochemical source areas across a catchment evolve under stochastic hydro-climatic forcing? (2) What are the feasible hydrologic and biogeochemical responses that lead to the emergence of the observed archetype C-Q patterns? and; (3) What implications do these coupled dynamics have for catchment monitoring and implementation of management practices? We categorize the observed temporal signals into three archetypical C-Q patterns: dilution; accretion, and constant concentration. We introduce a parsimonious stochastic model of heterogeneous catchments, which act as hydrologic and biogeochemical filters, to examine the relationship between spatial heterogeneity and temporal history of solute export signals. The core concept of the modeling framework is considering the types and degree of spatial correlation between solute source zones and flow generating zones, and activation of different portions of the catchments during rainfall events. Our overarching hypothesis is that each of the archetype C-Q patterns can be generated by explicitly linking landscape-scale hydrologic responses and spatial distributions of solute source properties within a catchment. The model

  2. Biogeochemical and Hydrological Heterogeneity and Emergent Archetypical Catchment Response Patterns

    NASA Astrophysics Data System (ADS)

    Jawitz, J. W.; Gall, H. E.; Rao, P. S.

    2014-12-01

    What can stream hydrologic and biogeochemical signals tell us about interactions among spatially heterogeneous hydrological and biogeochemical processes at the catchment-scale? We seek to understand how the spatial structure of solute sources coupled with both stationary and nonstationary hydroclimatic drivers affect observed archetypes of concentration-discharge (C-Q) patterns. These response patterns are the spatially integrated expressions of the spatiotemporal structure of solutes exported from managed catchments, and can provide insight into likely ecological consequences of receiving water bodies (e.g., wetlands, rivers, lakes, and coastal waters). We investigated the following broad questions: (1) How does the spatial correlation between the structure of flow-generating areas and biogeochemical source areas across a catchment evolve under stochastic hydro-climatic forcing? (2) What are the feasible hydrologic and biogeochemical responses that lead to the emergence of archetypical C-Q patterns? and; (3) What implications do these coupled dynamics have for catchment monitoring and implementation of management practices? We categorize the observed temporal signals into three archetypical C-Q patterns: dilution; accretion, and constant concentration. We applied a parsimonious stochastic model of heterogeneous catchments, which act as hydrologic and biogeochemical filters, to examine the relationship between spatial heterogeneity and temporal history of solute export signals. The core concept of the modeling framework is considering the type and degree of spatial correlation between solute source zones and flow generating zones, and activation of different portions of the catchments during rainfall events. Our overarching hypothesis is that each archetype C-Q pattern can be generated by explicitly linking landscape-scale hydrologic responses and spatial distributions of solute source properties within a catchment. We compared observed multidecadal data to

  3. A global neural network-based parameterization of biogeochemical water mass properties and processes based on GLODAP data

    NASA Astrophysics Data System (ADS)

    Bittig, Henry C.; Sauzède, Raphaëlle; Claustre, Hervé; Pasqueron de Fommervault, Orens; Gattuso, Jean-Pierre; Legendre, Louis; Johnson, Ken

    2017-04-01

    Global data collections like GLODAP are an extensive source of biogeochemical and hydrological data. However, data are irregularly distributed in space and time with varying parameter-coverage. This poses a challenge to data analysis of, e.g., the global distribution of stoichiometric ratios or temporal trends. Here we utilize a neural network-based approach called CANYON to estimate carbonate system parameters (CT, AT, pH, and pCO2) and nitrate, phosphate, and silicate concentrations from commonly measured quantities (P, T, S, O2, location, and date). CANYON was derived using GLODAPv2 data but can be applied to any set of input quantities (e.g., observations from autonomous platforms like Biogeochemical-Argo floats with accurate O2 measurements). In essence, CANYON provides a mapping of water mass properties and biogeochemical relations for those parameters based on the multidecadal, global observations collected in GLODAPv2. It can thus provide biogeochemical context and fill observational gaps, e.g., where nutrient or carbonate system measurements are unavailable. As an example, float-based surface CTD-O2 observations together with the CANYON parameterization are used to obtain surface pCO2 estimates in the Southern Ocean, complementing sparse surface underway pCO2 data collected in SOCAT. Moreover, it can shed light on global variations of, e.g., Redfield ratios of nitrate, phosphate, oxygen, and carbon. We believe that this parametrization provides a useful alternative to scattered data points or a mapped climatology to facilitate utilization and exploitation of the unique GLODAP data collection.

  4. Benthic exchange and biogeochemical cycling in permeable sediments.

    PubMed

    Huettel, Markus; Berg, Peter; Kostka, Joel E

    2014-01-01

    The sandy sediments that blanket the inner shelf are situated in a zone where nutrient input from land and strong mixing produce maximum primary production and tight coupling between water column and sedimentary processes. The high permeability of the shelf sands renders them susceptible to pressure gradients generated by hydrodynamic and biological forces that modulate spatial and temporal patterns of water circulation through these sediments. The resulting dynamic three-dimensional patterns of particle and solute distribution generate a broad spectrum of biogeochemical reaction zones that facilitate effective decomposition of the pelagic and benthic primary production products. The intricate coupling between the water column and sediment makes it challenging to quantify the production and decomposition processes and the resultant fluxes in permeable shelf sands. Recent technical developments have led to insights into the high biogeochemical and biological activity of these permeable sediments and their role in the global cycles of matter.

  5. Synthesis report on thermally driven coupled processes

    SciTech Connect

    Hardin, E.L.

    1997-10-15

    The main purpose of this report is to document observations and data on thermally coupled processes for conditions that are expected to occur within and around a repository at Yucca Mountain. Some attempt is made to summarize values of properties (e.g., thermal properties, hydrologic properties) that can be measured in the laboratory on intact samples of the rock matrix. Variation of these properties with temperature, or with conditions likely to be encountered at elevated temperature in the host rock, is of particular interest. However, the main emphasis of this report is on direct observation of thermally coupled processes at various scales. Direct phenomenological observations are vitally important in developing and testing conceptual models. If the mathematical implementation of a conceptual model predicts a consequence that is not observed, either (1) the parameters or the boundary conditions used in the calculation are incorrect or (2) the conceptual basis of the model does not fit the experiment; in either case, the model must be revised. For example, the effective continuum model that has been used in thermohydrology studies combines matrix and fracture flow in a way that is equivalent to an assumption that water is imbibed instantaneously from fractures into adjacent, partially saturated matrix. Based on this approximation, the continuum-flow response that is analogous to fracture flow will not occur until the effective continuum is almost completely saturated. This approximation is not entirely consistent with some of the experimental data presented in this report. This report documents laboratory work and field studies undertaken in FY96 and FY97 to investigate thermally coupled processes such as heat pipes and fracture-matrix coupling. In addition, relevant activities from past years, and work undertaken outside the Yucca Mountain project are summarized and discussed. Natural and artificial analogs are also discussed to provide a convenient source of

  6. Abstraction of Drift-Scale Coupled Processes

    SciTech Connect

    N.D. Francis; D. Sassani

    2000-03-31

    This Analysis/Model Report (AMR) describes an abstraction, for the performance assessment total system model, of the near-field host rock water chemistry and gas-phase composition. It also provides an abstracted process model analysis of potentially important differences in the thermal hydrologic (TH) variables used to describe the performance of a geologic repository obtained from models that include fully coupled reactive transport with thermal hydrology and those that include thermal hydrology alone. Specifically, the motivation of the process-level model comparison between fully coupled thermal-hydrologic-chemical (THC) and thermal-hydrologic-only (TH-only) is to provide the necessary justification as to why the in-drift thermodynamic environment and the near-field host rock percolation flux, the essential TH variables used to describe the performance of a geologic repository, can be obtained using a TH-only model and applied directly into a TSPA abstraction without recourse to a fully coupled reactive transport model. Abstraction as used in the context of this AMR refers to an extraction of essential data or information from the process-level model. The abstraction analysis reproduces and bounds the results of the underlying detailed process-level model. The primary purpose of this AMR is to abstract the results of the fully-coupled, THC model (CRWMS M&O 2000a) for effects on water and gas-phase composition adjacent to the drift wall (in the near-field host rock). It is assumed that drift wall fracture water and gas compositions may enter the emplacement drift before, during, and after the heating period. The heating period includes both the preclosure, in which the repository drifts are ventilated, and the postclosure periods, with backfill and drip shield emplacement at the time of repository closure. Although the preclosure period (50 years) is included in the process models, the postclosure performance assessment starts at the end of this initial period

  7. Effects of Privately Owned Land Management Practices on Biogeochemical Cycling

    NASA Astrophysics Data System (ADS)

    Getson, J. M.; Hutyra, L.; Short, A. G.; Templer, P. H.; Kittredge, D.

    2014-12-01

    An increasing fraction of the global population lives in urban settings. Understanding how the human-natural system couple and decouple biogeochemical cycles across urbanization gradients is crucial for human health and environmental sustainability. Natural processes of nutrient deposition, export, uptake, and internal cycling can be disrupted by human activities. Residential landscape management (e.g. composting, leaf litter collection, fertilizer application) interrupts these natural biogeochemical cycles; therefore, it is key to characterize these practices and their impacts. This study looks at private land management practices along a rural to urban gradient in Boston, Massachusetts. We used a mail survey instrument coupled with biogeochemical measurements and remote sensing derived estimates of aboveground biomass to estimate biogeochemical modifications associated with residential landscape management practices. We find parcel size influences management behavior, management practices differ for leaf litter and lawn clippings, and fertilizer application is unrelated to parcel size or degree of urban-ness. These management practices result in nutrient redistribution that differs with residential characteristics.

  8. Biogeochemical processes at the fringe of a landfill leachate pollution plume: potential for dissolved organic carbon, Fe(II), Mn(II), NH4, and CH4 oxidation.

    PubMed

    van Breukelen, Boris M; Griffioen, Jasper

    2004-09-01

    Various redox reactions may occur at the fringe of a landfill leachate plume, involving oxidation of dissolved organic carbon (DOC), CH4, Fe(II), Mn(II), and NH4 from leachate and reduction of O2, NO3 and SO4 from pristine groundwater. Knowledge on the relevance of these processes is essential for the simulation and evaluation of natural attenuation (NA) of pollution plumes. The occurrence of such biogeochemical processes was investigated at the top fringe of a landfill leachate plume (Banisveld, the Netherlands). Hydrochemical depth profiles of the top fringe were captured via installation of a series of multi-level samplers at 18, 39 and 58 m downstream from the landfill. Ten-centimeter vertical resolution was necessary to study NA within a fringe as thin as 0.5 m. Bromide appeared an equally well-conservative tracer as chloride to calculate dilution of landfill leachate, and its ratio to chloride was high compared to other possible sources of salt in groundwater. The plume fringe rose steadily from a depth of around 5 m towards the surface with a few meters in the period 1998-2003. The plume uplift may be caused by enhanced exfiltration to a brook downstream from the landfill, due to increased precipitation over this period and an artificial lowering of the water level of the brook. This rise invoked cation exchange including proton buffering, and triggered degassing of methane. The hydrochemical depth profile was simulated in a 1D vertical reactive transport model using PHREEQC-2. Optimization using the nonlinear optimization program PEST brought forward that solid organic carbon and not clay minerals controlled retardation of cations. Cation exchange resulted in spatial separation of Fe(II), Mn(II) and NH4 fronts from the fringe, and thereby prevented possible oxidation of these secondary redox species. Degradation of DOC may happen in the fringe zone. Re-dissolution of methane escaped from the plume and subsequent oxidation is an explanation for absence of

  9. Biogeochemical processes at the fringe of a landfill leachate pollution plume: potential for dissolved organic carbon, Fe(II), Mn(II), NH 4, and CH 4 oxidation

    NASA Astrophysics Data System (ADS)

    van Breukelen, Boris M.; Griffioen, Jasper

    2004-09-01

    Various redox reactions may occur at the fringe of a landfill leachate plume, involving oxidation of dissolved organic carbon (DOC), CH 4, Fe(II), Mn(II), and NH 4 from leachate and reduction of O 2, NO 3 and SO 4 from pristine groundwater. Knowledge on the relevance of these processes is essential for the simulation and evaluation of natural attenuation (NA) of pollution plumes. The occurrence of such biogeochemical processes was investigated at the top fringe of a landfill leachate plume (Banisveld, the Netherlands). Hydrochemical depth profiles of the top fringe were captured via installation of a series of multi-level samplers at 18, 39 and 58 m downstream from the landfill. Ten-centimeter vertical resolution was necessary to study NA within a fringe as thin as 0.5 m. Bromide appeared an equally well-conservative tracer as chloride to calculate dilution of landfill leachate, and its ratio to chloride was high compared to other possible sources of salt in groundwater. The plume fringe rose steadily from a depth of around 5 m towards the surface with a few meters in the period 1998-2003. The plume uplift may be caused by enhanced exfiltration to a brook downstream from the landfill, due to increased precipitation over this period and an artificial lowering of the water level of the brook. This rise invoked cation exchange including proton buffering, and triggered degassing of methane. The hydrochemical depth profile was simulated in a 1D vertical reactive transport model using PHREEQC-2. Optimization using the nonlinear optimization program PEST brought forward that solid organic carbon and not clay minerals controlled retardation of cations. Cation exchange resulted in spatial separation of Fe(II), Mn(II) and NH 4 fronts from the fringe, and thereby prevented possible oxidation of these secondary redox species. Degradation of DOC may happen in the fringe zone. Re-dissolution of methane escaped from the plume and subsequent oxidation is an explanation for absence

  10. Afforestation Alters the Composition of Functional Genes in Soil and Biogeochemical Processes in South American Grasslands▿ †

    PubMed Central

    Berthrong, Sean T.; Schadt, Christopher W.; Piñeiro, Gervasio; Jackson, Robert B.

    2009-01-01

    Soil microbes are highly diverse and control most soil biogeochemical reactions. We examined how microbial functional genes and biogeochemical pools responded to the altered chemical inputs accompanying land use change. We examined paired native grasslands and adjacent Eucalyptus plantations (previously grassland) in Uruguay, a region that lacked forests before European settlement. Along with measurements of soil carbon, nitrogen, and bacterial diversity, we analyzed functional genes using the GeoChip 2.0 microarray, which simultaneously quantified several thousand genes involved in soil carbon and nitrogen cycling. Plantations and grassland differed significantly in functional gene profiles, bacterial diversity, and biogeochemical pool sizes. Most grassland profiles were similar, but plantation profiles generally differed from those of grasslands due to differences in functional gene abundance across diverse taxa. Eucalypts decreased ammonification and N fixation functional genes by 11% and 7.9% (P < 0.01), which correlated with decreased microbial biomass N and more NH4+ in plantation soils. Chitinase abundance decreased 7.8% in plantations compared to levels in grassland (P = 0.017), and C polymer-degrading genes decreased by 1.5% overall (P < 0.05), which likely contributed to 54% (P < 0.05) more C in undecomposed extractable soil pools and 27% less microbial C (P < 0.01) in plantation soils. In general, afforestation altered the abundance of many microbial functional genes, corresponding with changes in soil biogeochemistry, in part through altered abundance of overall functional gene types rather than simply through changes in specific taxa. Such changes in microbial functional genes correspond with altered C and N storage and have implications for long-term productivity in these soils. PMID:19700539

  11. Biogeochemical processing of nutrients in groundwater-fed stream during baseflow conditions - the value of fluorescence spectroscopy and automated high-frequency nutrient monitoring

    NASA Astrophysics Data System (ADS)

    Bieroza, Magdalena; Heathwaite, Louise

    2014-05-01

    Recent research in groundwater-dominated streams indicates that organic matter plays an important role in nutrient transformations at the surface-groundwater interface known as the hyporheic zone. Mixing of water and nutrient fluxes in the hyporheic zone controls in-stream nutrients availability, dynamics and export to downstream reaches. In particular, benthic sediments can form adsorptive sinks for organic matter and reactive nutrients (nitrogen and phosphorus) that sustain a variety of hyporheic processes e.g. denitrification, microbial uptake. Thus, hyporheic metabolism can have an important effect on both quantity (concentration) and quality (labile vs. refractory character) of organic matter. Here high-frequency nutrient monitoring combined with spectroscopic analysis was used to provide insights into biogeochemical processing of a small, agricultural stream in the NE England subject to diffuse nutrient pollution. Biogeochemical data were collected hourly for a week at baseflow conditions when in-stream-hyporheic nutrient dynamics have the greatest impact on stream health. In-stream nutrients (total phosphorus, reactive phosphorus, nitrate nitrogen) and water quality parameters (turbidity, specific conductivity, pH, temperature, dissolved oxygen, redox potential) were measured in situ hourly by an automated bank-side laboratory. Concurrent hourly autosamples were retrieved daily and analysed for nutrients and fine sediments including spectroscopic analyses of dissolved organic matter - excitation-emission matrix (EEM) fluorescence spectroscopy and ultraviolet-visible (UV-Vis) absorbance spectroscopy. Our results show that organic matter can potentially be utilised as a natural, environmental tracer of the biogeochemical processes occurring at the surface-groundwater interface in streams. High-frequency spectroscopic characterisation of in-stream organic matter can provide useful quantitative and qualitative information on fluxes of reactive nutrients in

  12. 129I/(127)I as a new environmental tracer or geochronometer for biogeochemical or hydrodynamic processes in the hydrosphere and geosphere: the central role of organo-iodine.

    PubMed

    Santschi, Peter H; Schwehr, Kathleen A

    2004-04-05

    Iodine is a biophilic element, with several short-lived isotopes (e.g. (131)I, t(1/2)=8 days), one long-lived isotope, (129)I (t(1/2)=15.6 million years) and one stable isotope, (127)I. The inventory of (129)I in surface environments has been overwhelmed by anthropogenic releases over the past 50 years. Iodine and its isotopes are important for a number of reasons: (1) The largest fraction of the short-term and long-term dose from accidental releases and fallout from atomic bomb tests was from iodine isotopes. (2) (129)I is one of the two long-lived nuclides with highest mobility in stored radioactive waste. (3) (129)I could provide the scientific community with a new geochemical tracer and new geochronological applications in environmental science. (4) A better assessment of iodine deficiency disorders, mineralization in exploration geochemistry, and the transfer of volatile organic greenhouse-active and ozone-destroying iodine species from the oceans to the atmosphere is needed. One of the most promising future applications for the (129)I/(127)I ratio is not only as a new geochronometer, but also as a new source tracer for terrestrial organic matter with ages of 50 years or less. This is especially attractive, since radiocarbon can be, at times, an ambiguous chronometer for the 50-year time-scale, whereas (129)I concentrations during this time are overwhelming previous levels by orders of magnitude. Iodine is to a significant extent involved in the cycle of organic matter in all surface environments. Its biophilic nature is demonstrated by a relative enrichment of iodine in seaweed and dissolved macromolecular organic matter. Because of the close coupling of iodine and organic carbon cycles, our understanding of the underlying molecular mechanisms of the processes regulating iodination reactions in aquatic systems is still limited. The binding of iodine by organic matter has the potential to modify the transport, bioavailability and transfer of iodine isotopes to

  13. Coupling Processes Between Atmospheric Chemistry and Climate

    NASA Technical Reports Server (NTRS)

    Ko, Malcolm K. W.; Weisenstein, Debra; Shia, Run-Lie; Sze, N. D.

    1998-01-01

    The overall objective of this project is to improve the understanding of coupling processes between atmospheric chemistry and climate. Model predictions of the future distributions of trace gases in the atmosphere constitute an important component of the input necessary for quantitative assessments of global change. We will concentrate on the changes in ozone and stratospheric sulfate aerosol, with emphasis on how ozone in the lower stratosphere would respond to natural or anthropogenic changes. The key modeling tools for this work are the AER 2-dimensional chemistry-transport model, the AER 2-dimensional stratospheric sulfate model, and the AER three-wave interactive model with full chemistry. We will continue developing our three-wave model so that we can help NASA determine the strength and weakness of the next generation assessment models.

  14. Coupling Processes Between Atmospheric Chemistry and Climate

    NASA Technical Reports Server (NTRS)

    Ko, M. K. W.; Weisenstein, Debra; Shia, Run-Lie; Sze, N. D.

    1998-01-01

    The overall objective of this project is to improve the understanding of coupling processes between atmospheric chemistry and climate. Model predictions of the future distributions of trace gases in the atmosphere constitute an important component of the input necessary for quantitative assessments of global change. We will concentrate on the changes in ozone and stratospheric sulfate aerosol, with emphasis on how ozone in the lower stratosphere would respond to natural or anthropogenic changes. The key modeling tools for this work are the AER two-dimensional chemistry-transport model, the AER two-dimensional stratospheric sulfate model, and the AER three-wave interactive model with full chemistry. We will continue developing our three-wave model so that we can help NASA determine the strength and weakness of the next generation assessment models.

  15. Coupling Processes Between Atmospheric Chemistry and Climate

    NASA Technical Reports Server (NTRS)

    Ko, Malcolm K. W.; Weisenstein, Debra; Rodriguez, Jose; Danilin, Michael; Scott, Courtney; Shia, Run-Lie; Eluszkiewicz, Junusz; Sze, Nien-Dak

    1999-01-01

    This is the final report. The overall objective of this project is to improve the understanding of coupling processes among atmospheric chemistry, aerosol and climate, all important for quantitative assessments of global change. Among our priority are changes in ozone and stratospheric sulfate aerosol, with emphasis on how ozone in the lower stratosphere would respond to natural or anthropogenic changes. The work emphasizes two important aspects: (1) AER's continued participation in preparation of, and providing scientific input for, various scientific reports connected with assessment of stratospheric ozone and climate. These include participation in various model intercomparison exercises as well as preparation of national and international reports. and (2) Continued development of the AER three-wave interactive model to address how the transport circulation will change as ozone and the thermal properties of the atmosphere change, and assess how these new findings will affect our confidence in the ozone assessment results.

  16. Coupling Processes between Atmospheric Chemistry and Climate

    NASA Technical Reports Server (NTRS)

    Ko, M. K. W.; Weisenstein, Debra; Shia, Run-Lie; Sze, N. D.

    1998-01-01

    This is the third semi-annual report for NAS5-97039, covering January through June 1998. The overall objective of this project is to improve the understanding of coupling processes between atmospheric chemistry and climate. Model predictions of the future distributions of trace gases in the atmosphere constitute an important component of the input necessary for quantitative assessments of global change. We will concentrate on the changes in ozone and stratospheric sulfate aerosol, with emphasis on how ozone in the lower stratosphere would respond to natural or anthropogenic changes. The key modeling for this work are the AER 2-dimensional chemistry-transport model, the AER 2-dimensional stratospheric sulfate model, and the AER three-wave interactive model with full chemistry. We will continue developing our three-wave model so that we can help NASA determine the strengths and weaknesses of the next generation assessment models.

  17. Coupled process modeling and waste package performance

    SciTech Connect

    McGrail, B.P.; Engel, D.W.

    1992-11-01

    The interaction of borosilicate waste glasses with water has been studied extensively and reasonably good models are available that describe the reaction kinetics and solution chemical effects. Unfortunately, these models have not been utilized in performance assessment analyses, except in estimating radionuclide solubilities at the waste form surface. A geochemical model has been incorporated in the AREST code to examine the coupled processes of glass dissolution and transport within the engineering barrier system. Our calculations show that the typical assumptions used in performance assessment analyses, such as fixed solubilities or constant reaction rate at the waste form surface, do not always give conservative or realistic predictions of radionuclide release. Varying the transport properties of the waste package materials is shown to give counterintuitive effects on the release rates of some radionuclides. The use of noncoupled performance assessment models could lead a repository designer to an erroneous conclusion regarding the relative benefit of one waste package design or host rock setting over another.

  18. Data assimilation in a coupled physical-biogeochemical model of the California Current System using an incremental lognormal 4-dimensional variational approach: Part 1-Model formulation and biological data assimilation twin experiments

    NASA Astrophysics Data System (ADS)

    Song, Hajoon; Edwards, Christopher A.; Moore, Andrew M.; Fiechter, Jerome

    2016-10-01

    A quadratic formulation for an incremental lognormal 4-dimensional variational assimilation method (incremental L4DVar) is introduced for assimilation of biogeochemical observations into a 3-dimensional ocean circulation model. L4DVar assumes that errors in the model state are lognormally rather than Gaussian distributed, and implicitly ensures that state estimates are positive definite, making this approach attractive for biogeochemical variables. The method is made practical for a realistic implementation having a large state vector through linear assumptions that render the cost function quadratic and allow application of existing minimization techniques. A simple nutrient-phytoplankton-zooplankton-detritus (NPZD) model is coupled to the Regional Ocean Modeling System (ROMS) and configured for the California Current System. Quadratic incremental L4DVar is evaluated in a twin model framework in which biological fields only are in error and compared to G4DVar which assumes Gaussian distributed errors. Five-day assimilation cycles are used and statistics from four years of model integration analyzed. The quadratic incremental L4DVar results in smaller root-mean-squared errors and better statistical agreement with reference states than G4DVar while maintaining a positive state vector. The additional computational cost and implementation effort are trivial compared to the G4DVar system, making quadratic incremental L4DVar a practical and beneficial option for realistic biogeochemical state estimation in the ocean.

  19. Coupled time integration of multiphase processes

    NASA Astrophysics Data System (ADS)

    Sehili, A. M.; Wolke, R.; Knoth, O.

    2003-04-01

    The objective of this subproject is the development of a cloud module which combines a complex multiphase chemistry with detailed microphysics. We investigate several numerical approaches for treating such multiphase processes in a parcel model. The chemical conversions within cloud droplets are essentially determined by the mass transfer between gaseous and aqueous phase. The gas uptake depends strongly on resolution of the droplet spectrum. Therefore the droplets are subdivided into several classes. The decomposition of the droplet spectrum into classes is based on the droplets size and, if required, on the amount of scavenged material inside the droplets. This multi-fractional distribution, all microphysical parameters and the transfer rates of liquid water between the different droplet classes are simultaneously generated by a microphysical cloud model. The phase transfer between the gaseous phase and the aqueous phase species in each class is described by the Schwartz approach. The fast dissociation s in the aqueous phase chemistry are treated as forward and backward reactions. As a first step, the usual "operator splitting" approach is used for coupling multiphase chemistry and microphysics . For the multiphase chemistry, we propose implicit schemes for the time integration of the resulting extremely stiff systems of ordinary differential equations. The aqueous phase and gaseous phase chemistry, the mass transfer between the different droplet classes among themselves and with the gaseous phase are integrated in an implicit and coupled manner by higher order BDF methods. For this part we apply a modification of the code LSODE (Hindmarsh, 1983) with an adapted step size control and special linear system solver. These direct sparse techniques exploit the special block structure of the corresponding Jacobian. Furthermore, we utilise an approximate matrix factorisation which decouples multiphase chemistry and microphysical exchange processes of liquid water (e

  20. Modeling greenhouse gas emissions (CO2, N2O, CH4) from managed arable soils with a fully coupled hydrology-biogeochemical modeling system simulating water and nutrient transport and associated carbon and nitrogen cycling at catchment scale

    NASA Astrophysics Data System (ADS)

    Klatt, Steffen; Haas, Edwin; Kraus, David; Kiese, Ralf; Butterbach-Bahl, Klaus; Kraft, Philipp; Plesca, Ina; Breuer, Lutz; Zhu, Bo; Zhou, Minghua; Zhang, Wei; Zheng, Xunhua; Wlotzka, Martin; Heuveline, Vincent

    2014-05-01

    The use of mineral nitrogen fertilizer sustains the global food production and therefore the livelihood of human kind. The rise in world population will put pressure on the global agricultural system to increase its productivity leading most likely to an intensification of mineral nitrogen fertilizer use. The fate of excess nitrogen and its distribution within landscapes is manifold. Process knowledge on the site scale has rapidly grown in recent years and models have been developed to simulate carbon and nitrogen cycling in managed ecosystems on the site scale. Despite first regional studies, the carbon and nitrogen cycling on the landscape or catchment scale is not fully understood. In this study we present a newly developed modelling approach by coupling the fully distributed hydrology model CMF (catchment modelling framework) to the process based regional ecosystem model LandscapeDNDC for the investigation of hydrological processes and carbon and nitrogen transport and cycling, with a focus on nutrient displacement and resulting greenhouse gas emissions in a small catchment at the Yanting Agro-ecological Experimental Station of Purple Soil, Sichuan province, China. The catchment hosts cypress forests on the outer regions, arable fields on the sloping croplands cultivated with wheat-maize rotations and paddy rice fields in the lowland. The catchment consists of 300 polygons vertically stratified into 10 soil layers. Ecosystem states (soil water content and nutrients) and fluxes (evapotranspiration) are exchanged between the models at high temporal scales (hourly to daily) forming a 3-dimensional model application. The water flux and nutrients transport in the soil is modelled using a 3D Richards/Darcy approach for subsurface fluxes with a kinematic wave approach for surface water runoff and the evapotranspiration is based on Penman-Monteith. Biogeochemical processes are modelled by LandscapeDNDC, including soil microclimate, plant growth and biomass allocation

  1. Processes of Change in Self-Directed Couple Relationship Education

    ERIC Educational Resources Information Center

    Wilson, Keithia L.; Halford, W. Kim

    2008-01-01

    The current study examined the learning processes involved in professionally supported self-directed couple relationship education (CRE). Fifty-nine couples completed Couple CARE, a systematic, self-directed CRE program designed in flexible delivery mode to be completed at home. Couples watched a DVD introducing key relationship ideas and skills…

  2. Couple-responsible therapy process: positive proximal outcomes.

    PubMed

    Butler, M H; Wampler, K S

    1999-01-01

    Therapist-couple struggle vs. cooperation is linked to clinical outcome. This research conceptualizes and investigates treatment process as it relates to the occurrence of struggle versus cooperation. Models of couple-responsible and therapist-responsible process in couple therapy were developed. Couple-responsible process consists of enactments, accommodation, and inductive process. Therapist-responsible process consists of primary therapist-couple interaction, therapist interpretation, and direct instruction. In counterbalanced order, 25 couples were exposed to couple-responsible and therapist-responsible episodes during one therapy session. Couples reviewed videotapes of the episodes and completed measures of responsibility, struggle, and cooperation. Perceived responsibility was higher and struggle was lower during couple-responsible episodes. No difference in cooperation was found. Presence or absence of a contrast condition, where couples reported on one therapist process after already experiencing its opposite, led to main effects for responsibility and struggle, and mediated effects of struggle and cooperation. Generally speaking, responsibility was even higher during couple-responsible episodes and even lower during therapist-responsible episodes when contrast was present. Similarly, struggle was even lower during couple-responsible episodes and even higher during therapist-responsible episodes when contrast was present. For both couple-responsible and therapist-responsible episodes, cooperation was negatively affected by a shift from the prior, opposite therapist process. Significant proportions of the variance in responsibility, struggle, and cooperation, however, were not accounted for by therapist process alone.

  3. Biogeochemical processing of nitrogen transformation including nitrogen fixation and nitrification in the western part of the South China Sea

    NASA Astrophysics Data System (ADS)

    Wu, M., Sr.

    2016-02-01

    Based on in situ observations made in summer, 2009 along one transect near Xisha Islands, South China Sea (SCS), this study aims at understanding factors controlling nutrient biogeochemical cycling, especially on nitrogen cycling. The weak cold eddy may have important influence on supplies of nutrients in water column in Xisha islands. Nitrite reaches 0.49 μmol L-1 at the depth of 50m. It is significant relationship between NO2- and Chl a (R2=0.58, p=0.00). Phytoplankton excretion had an important influence on primary nitrite maximum formation and maintenance in euphotic layer. In addition, the positive values of N* indicate that nitrogen fixation may occur in the surface water in the studying area. Our results indicate that cold eddy near Xisha Islands play a significant role in regulating biogeochemistry.

  4. Genome-Enabled Modeling of Biogeochemical Processes Predicts Metabolic Dependencies that Connect the Relative Fitness of Microbial Functional Guilds

    NASA Astrophysics Data System (ADS)

    Brodie, E.; King, E.; Molins, S.; Karaoz, U.; Steefel, C. I.; Banfield, J. F.; Beller, H. R.; Anantharaman, K.; Ligocki, T. J.; Trebotich, D.

    2015-12-01

    Pore-scale processes mediated by microorganisms underlie a range of critical ecosystem services, regulating carbon stability, nutrient flux, and the purification of water. Advances in cultivation-independent approaches now provide us with the ability to reconstruct thousands of genomes from microbial populations from which functional roles may be assigned. With this capability to reveal microbial metabolic potential, the next step is to put these microbes back where they belong to interact with their natural environment, i.e. the pore scale. At this scale, microorganisms communicate, cooperate and compete across their fitness landscapes with communities emerging that feedback on the physical and chemical properties of their environment, ultimately altering the fitness landscape and selecting for new microbial communities with new properties and so on. We have developed a trait-based model of microbial activity that simulates coupled functional guilds that are parameterized with unique combinations of traits that govern fitness under dynamic conditions. Using a reactive transport framework, we simulate the thermodynamics of coupled electron donor-acceptor reactions to predict energy available for cellular maintenance, respiration, biomass development, and enzyme production. From metagenomics, we directly estimate some trait values related to growth and identify the linkage of key traits associated with respiration and fermentation, macromolecule depolymerizing enzymes, and other key functions such as nitrogen fixation. Our simulations were carried out to explore abiotic controls on community emergence such as seasonally fluctuating water table regimes across floodplain organic matter hotspots. Simulations and metagenomic/metatranscriptomic observations highlighted the many dependencies connecting the relative fitness of functional guilds and the importance of chemolithoautotrophic lifestyles. Using an X-Ray microCT-derived soil microaggregate physical model combined

  5. French Guiana Fluidized Muds: Predominant Sulfur Transformation Pathways and Prokaryotic Players in a Coupled System of Carbon-Sulfur-Metal Biogeochemical Cycling.

    NASA Astrophysics Data System (ADS)

    Luzan, T.; Chistoserdov, A. Y.; Aller, J. Y.; Aller, R. C.

    2008-12-01

    The fluidized mud ecosystem off French Guiana coast is a unique and globally important sedimentary environment characterized by intense physical reworking and rapid turnover of major biogeochemical elements. Here we assess the major pathways of carbon cycling focusing on the transformation of sulfur species and major prokaryotic participants. The depth distribution of organic carbon oxidation rates was determined for ~100 cm long cores collected off the French Guiana coast. Total organic carbon oxidation rates inferred from accumulation of inorganic carbon during a 3-6 month incubation series were elevated at the surface and decreased with depth. A similar incubation approach was applied for estimation of ferric reduction|oxidation rates. Short- chain fatty acid degradation rates and dark carbon dioxide rates were determined with 14C radiolabeled acetate and carbon dioxide, respectively, which both decreased with depth. The rates for sulfate and elemental sulfur transformation pathways were determined using 35S radiolabeled sulfur species with and without the presence of molybdate. Proposed microbially-mediated biogeochemical pathways were confirmed by MPN measurements of sulfate-, sulfur- and iron-reducing heterotrophic bacteria. Autotrophic bacteria were less numerous and their numbers did not directly correlate with rates of specific biogeochemical pathways. With most carbon oxidation accounted for by sulfur species - and ferric iron respiration, corresponding microbial groups may play a significant role in regulation of the net balance of organic carbon mineralization. Experimental results imply that auto- and heterotrophy likely coexist simultaneously and, thus participate in the internal carbon cycling in this environment.

  6. Up-scaling of process-based eco-hydrology model to global scale for identification of hot spots in boundless biogeochemical cycles

    NASA Astrophysics Data System (ADS)

    Nakayama, T.; Maksyutov, S. S.

    2013-12-01

    Recent research shows inland water may play some role in continental biogeochemical cycling though its contribution has remained uncertain due to a paucity of data (Battin et al. 2009). The author has developed process-based National Integrated Catchment-based Eco-hydrology (NICE) model (Nakayama, 2008a-b, 2010, 2011a-b, 2012a-c, 2013; Nakayama and Fujita, 2010; Nakayama and Hashimoto, 2011; Nakayama and Shankman, 2013a-b; Nakayama and Watanabe, 2004, 2006, 2008a-b; Nakayama et al., 2006, 2007, 2010, 2012), which includes surface-groundwater interactions and down-scaling process from regional to local simulation with finer resolution, and can simulate iteratively nonlinear feedback between hydrologic, geomorphic, and ecological processes in east Asia. In this study, NICE was further extended to implement map factor and non-uniform grid through up-scaling process of coordinate transformation from rectangular to longitude-latitude system applicable to global scale. This improved model was applied to several basins in Eurasia to evaluate the impact of coordinate transformation on eco-hydrological changes. Simulated eco-hydrological process after up-scaling corresponded reasonably to that in the original there after evaluating the effect of different latitude. Then, the model was expanded to evaluate global hydrologic cycle by using various global datasets. The simulated result agreed reasonably with that in the previous research (Fan et al., 2013) and extended to clarify further eco-hydrological process in global scale. This simulation system would play important role in identification of spatio-temporal hot spots in boundless biogeochemical cycle along terrestrial-aquatic continuum for global environmental change (Cole et al. 2007; Battin et al. 2009; Frei et al. 2012).

  7. Integrating functional diversity, food web processes, and biogeochemical carbon fluxes into a conceptual approach for modeling the upper ocean in a high-CO2 world

    NASA Astrophysics Data System (ADS)

    Legendre, Louis; Rivkin, Richard B.

    2005-09-01

    Marine food webs influence climate by channeling carbon below the permanent pycnocline, where it can be sequestered. Because most of the organic matter exported from the euphotic zone is remineralized within the "upper ocean" (i.e., the water column above the depth of sequestration), the resulting CO2 would potentially return to the atmosphere on decadal timescales. Thus ocean-climate models must consider the cycling of carbon within and from the upper ocean down to the depth of sequestration, instead of only to the base of the euphotic zone. Climate-related changes in the upper ocean will influence the diversity and functioning of plankton functional types. In order to predict the interactions between the changing climate and the ocean's biology, relevant models must take into account the roles of functional biodiversity and pelagic ecosystem functioning in determining the biogeochemical fluxes of carbon. We propose the development of a class of models that consider the interactions, in the upper ocean, of functional types of plankton organisms (e.g., phytoplankton, heterotrophic bacteria, microzooplankton, large zooplankton, and microphagous macrozooplankton), food web processes that affect organic matter (e.g., synthesis, transformation, and remineralization), and biogeochemical carbon fluxes (e.g., photosynthesis, calcification, respiration, and deep transfer). Herein we develop a framework for this class of models, and we use it to make preliminary predictions for the upper ocean in a high-CO2 world, without and with iron fertilization. Finally, we suggest a general approach for implementing our proposed class of models.

  8. Coupling Processes between Atmospheric Chemistry and Climate

    NASA Technical Reports Server (NTRS)

    Ko, Malcolm K. W.; Weisenstein, Debra K.; Shia, Run-Lie; Scott, Courtney J.; Sze, Nien Dak

    1998-01-01

    This is the fourth semi-annual report for NAS5-97039, covering the time period July through December 1998. The overall objective of this project is to improve the understanding of coupling processes between atmospheric chemistry and climate. Model predictions of the future distributions of trace gases in the atmosphere constitute an important component of the input necessary for quantitative assessments of global change. We will concentrate on the changes in ozone and stratospheric sulfate aerosol, with emphasis on how ozone in the lower stratosphere would respond to natural or anthropogenic changes. The key modeling tools for this work are the Atmospheric and Environmental Research (AER) two-dimensional chemistry-transport model, the AER two-dimensional stratospheric sulfate model, and the AER three-wave interactive model with full chemistry. For this six month period, we report on a modeling study of new rate constant which modify the NOx/NOy ratio in the lower stratosphere; sensitivity to changes in stratospheric water vapor in the future atmosphere; a study of N2O and CH4 observations which has allowed us to adjust diffusion in the 2-D CTM in order to obtain appropriate polar vortex isolation; a study of SF6 and age of air with comparisons of models and measurements; and a report on the Models and Measurements II effort.

  9. Coupling Processes Between Atmospheric Chemistry and Climate

    NASA Technical Reports Server (NTRS)

    Ko, Malcolm; Weisenstein, Debra; Rodriquez, Jose; Danilin, Michael; Scott, Courtney; Shia, Run-Lie; Eluszkiewicz, Janusz; Sze, Nien-Dak; Stewart, Richard W. (Technical Monitor)

    1999-01-01

    This is the final report for NAS5-97039 for work performed between December 1996 and November 1999. The overall objective of this project is to improve the understanding of coupling processes among atmospheric chemistry, aerosol and climate, all important for quantitative assessments of global change. Among our priority are changes in ozone and stratospheric sulfate aerosol, with emphasis on how ozone in the lower stratosphere would respond to natural or anthropogenic changes. The work emphasizes two important aspects: (1) AER's continued participation in preparation of, and providing scientific input for, various scientific reports connected with assessment of stratospheric ozone and climate. These include participation in various model intercomparison exercises as well as preparation of national and international reports. (2) Continued development of the AER three-wave interactive model to address how the transport circulation will change as ozone and the thermal properties of the atmosphere change, and assess how these new findings will affect our confidence in the ozone assessment results.

  10. Coupling Processes Between Atmospheric Chemistry and Climate

    NASA Technical Reports Server (NTRS)

    Ko, M. K. W.; Weisenstein, Debra; Shia, Run-Li; Sze, N. D.

    1997-01-01

    This is the first semi-annual report for NAS5-97039 summarizing work performed for January 1997 through June 1997. Work in this project is related to NAS1-20666, also funded by NASA ACMAP. The work funded in this project also benefits from work at AER associated with the AER three-dimensional isentropic transport model funded by NASA AEAP and the AER two-dimensional climate-chemistry model (co-funded by Department of Energy). The overall objective of this project is to improve the understanding of coupling processes between atmospheric chemistry and climate. Model predictions of the future distributions of trace gases in the atmosphere constitute an important component of the input necessary for quantitative assessments of global change. We will concentrate on the changes in ozone and stratospheric sulfate aerosol, with emphasis on how ozone in the lower stratosphere would respond to natural or anthropogenic changes. The key modeling tools for this work are the AER two-dimensional chemistry-transport model, the AER two-dimensional stratospheric sulfate model, and the AER three-wave interactive model with full chemistry.

  11. Biogeochemical modeling at mass extinction boundaries

    NASA Technical Reports Server (NTRS)

    Rampino, M. R.; Caldeira, K. G.

    1991-01-01

    The causes of major mass extinctions is a subject of considerable interest to those concerned with the history and evolution of life on earth. The primary objectives of the proposed plan of research are: (1) to develop quantitative time-dependent biogeochemical cycle models, coupled with an ocean atmosphere in order to improve the understanding of global scale physical, chemical, and biological processes that control the distribution of elements important for life at times of mass extinctions; and (2) to develop a comprehensive data base of the best available geochemical, isotopic, and other relevant geologic data from sections across mass extinction boundaries. These data will be used to constrain and test the biogeochemical model. These modeling experiments should prove useful in: (1) determining the possible cause(s) of the environmental changes seen at bio-event boundaries; (2) identifying and quantifying little-known feedbacks among the oceans, atmosphere, and biosphere; and (3) providing additional insights into the possible responses of the earth system to perturbations of various timescales. One of the best known mass extinction events marks the Cretaceous/Tertiary (K/T) boundary (66 Myr ago). Data from the K/T boundary are used here to constrain a newly developed time-dependent biogeochemical cycle model that is designed to study transient behavior of the earth system. Model results predict significant fluctuations in ocean alkalinity, atmospheric CO2, and global temperatures caused by extinction of calcareous plankton and reduction in the sedimentation rates of pelagic carbonates and organic carbon. Oxygen-isotome and other paleoclimatic data from K/T time provide some evidence that such climatic fluctuations may have occurred, but stabilizing feedbacks may have acted to reduce the ocean alkalinity and carbon dioxide fluctuations.

  12. Reappraisal of soil C storage processes. The controversy on structural diversity of humic substances as biogeochemical driver for soil C fluxes

    NASA Astrophysics Data System (ADS)

    Almendros, Gonzalo; Gonzalez-Vila, Francisco J.; Gonzalez-Perez, Jose Antonio; Knicker, Heike

    2016-04-01

    The functional relationships between the macromolecular structure of the humic substances (HS) and a series of biogeochemical processes related with the C sequestration performance in soils have been recently questioned. In this communication we collect recent data from a wide array of different ecosystems where the C storage in soils has been studied and explained as a possible cause-to-effect relationship or has been found significantly correlated (multivariate statistical models) with a series of structural characteristics of humic materials. The study of humic materials has methodological analytical limitations that are derived from its complex, chaotic and not completely understood structure, that reflects its manifold precursors as well as the local impact of environmental/depositional factors. In this work we attempt to design an exploratory, multiomic approach based on the information provided by the molecular characterization of the soil organic matter (SOM). Massive data harvesting was carried out of statistical variables, to infer biogeochemical proxies (spectroscopic, chromatographic, mass spectrometric quantitative descriptors). The experimental data were acquired from advanced instrumental methodologies, viz, analytical pyrolysis, compound-specific stable isotope analysis (CSIA), derivative infrared (FTIR) spectroscopy, solid-state C-13 and N-15 nuclear magnetic resonance (NMR) and mass spectrometry (MS) data after direct injection (thermoevaporation), previous pyrolysis, or ion averaging of specific m/z ranges from classical GC/MS chromatograms. In the transversal exploratory analysis of the multianalytical information, the data were coded for on-line processing in a stage in which there is no need for interpretation, in molecular or structural terms, of the quantitative data consisting of e.g., peak intensities, signal areas, chromatographic (GC) total abundances, etc. A series of forecasting chemometric approaches (aiming to express SOM

  13. Modeling the biogeochemical seasonal cycle in the Strait of Gibraltar

    NASA Astrophysics Data System (ADS)

    Ramírez-Romero, E.; Vichi, M.; Castro, M.; Macías, J.; Macías, D.; García, C. M.; Bruno, M.

    2014-11-01

    A physical-biological coupled model was used to estimate the effect of the physical processes at the Strait of Gibraltar over the biogeochemical features of the Atlantic Inflow (AI) towards the Mediterranean Sea. This work was focused on the seasonal variation of the biogeochemical patterns in the AI and the role of the Strait; including primary production and phytoplankton features. As the physical model is 1D (horizontal) and two-layer, different integration methods for the primary production in the Biogeochemical Fluxes Model (BFM) have been evaluated. An approach based on the integration of a production-irradiance function was the chosen method. Using this Plankton Functional Type model (BFM), a simplified phytoplankton seasonal cycle in the AI was simulated. Main results included a principal bloom in spring dominated by nanoflagellates, whereas minimum biomass (mostly picophytoplankton) was simulated during summer. Physical processes occurring in the Strait could trigger primary production and raise phytoplankton biomass (during spring and autumn), mainly due to two combined effects. First, in the Strait a strong interfacial mixing (causing nutrient supply to the upper layer) is produced, and, second, a shoaling of the surface Atlantic layer occurs eastward. Our results show that these phenomena caused an integrated production of 105 g C m- 2 year- 1 in the eastern side of the Strait, and would also modify the proportion of the different phytoplankton groups. Nanoflagellates were favored during spring/autumn while picophytoplankton is more abundant in summer. Finally, AI could represent a relevant source of nutrients and biomass to Alboran Sea, fertilizing the upper layer of this area with 4.95 megatons nitrate year- 1 (79.83 gigamol year- 1) and 0.44 megatons C year- 1. A main advantage of this coupled model is the capability of solving relevant high-resolution processes as the tidal forcing without expensive computing requirements, allowing to assess the

  14. Nitrogen and phosphorus seasonal dynamics and annual budget in the Northwestern Mediterranean deep convection region inferred from a 3D physical/biogeochemical coupled model

    NASA Astrophysics Data System (ADS)

    Kessouri, Fayçal; Ulses, Caroline; Estournel, Claude; Marsaleix, Patrick; Pujo-Pay, Mireille; Severin, Tatiana; Caparros, Jocelyne; Raimbault, Patrick; Pasqueron de Fommervault, Orens; D'Ortenzio, Fabrizio; Taillandier, Vincent; Testor, Pierre; Conan, Pascal

    2017-04-01

    A multi-element biogeochemical model forced by a 1 km resolution hydrodynamical model was used to gain in understanding of the biogeochemical functioning of the North-Western Mediterranean (NW Med), the only region in the whole Mediterranean Sea with a marked and recurrent spring bloom behavior related to the winter dense water formation characterizing this area. After an assessment of the simulation using satellite derived chlorophyll and Dewex project in situ nutrients observations, the nitrogen and phosphorus seasonal cycles were analyzed using model outputs on the period 2012-2013. Injections of nutrients during the wind intensification period allow the triggering of the autumn bloom. Then, convection in winter upwells large amounts of nutrients in the euphotic layer. When the conditions for phytoplankton development are gathered (reduction of vertical mixing, low grazing pressure), a bloom is triggered with a massive consumption of nutrients during more than one month resulting at the end of April in a depletion of nutrients at the surface. Nutrients consumption continues to deplete nutrients at increasing depth, increasing the nutriclines and deep chlorophyll maximum depths. That finally leads to the summer oligotrophy of the water column. Then a quantification of nitrogen and phosphorus budgets of the open-sea convection area was performed on an annual basis. The deep convection area represents a sink of nitrate and phosphate, and a source of organic nitrogen and phosphorus for the peripheric regions. Regarding the biogeochemical nitrogen cycle, the deep-nitrate based new production is responsible for 19% of the total nitrogen uptake. This new production dominates during the winter deep convection and spring bloom periods. Finally, our results suggest that the NW Med open sea convection represents a major source of nutrients for the Mediterranean surface sea.

  15. Numerical simulation of in-situ chemical oxidation (ISCO) and biodegradation of petroleum hydrocarbons using a coupled model for bio-geochemical reactive transport

    NASA Astrophysics Data System (ADS)

    Marin, I. S.; Molson, J. W.

    2013-05-01

    Petroleum hydrocarbons (PHCs) are a major source of groundwater contamination, being a worldwide and well-known problem. Formed by a complex mixture of hundreds of organic compounds (including BTEX - benzene, toluene, ethylbenzene and xylenes), many of which are toxic and persistent in the subsurface and are capable of creating a serious risk to human health. Several remediation technologies can be used to clean-up PHC contamination. In-situ chemical oxidation (ISCO) and intrinsic bioremediation (IBR) are two promising techniques that can be applied in this case. However, the interaction of these processes with the background aquifer geochemistry and the design of an efficient treatment presents a challenge. Here we show the development and application of BIONAPL/Phreeqc, a modeling tool capable of simulating groundwater flow, contaminant transport with coupled biological and geochemical processes in porous or fractured porous media. BIONAPL/Phreeqc is based on the well-tested BIONAPL/3D model, using a powerful finite element simulation engine, capable of simulating non-aqueous phase liquid (NAPL) dissolution, density-dependent advective-dispersive transport, and solving the geochemical and kinetic processes with the library Phreeqc. To validate the model, we compared BIONAPL/Phreeqc with results from the literature for different biodegradation processes and different geometries, with good agreement. We then used the model to simulate the behavior of sodium persulfate (NaS2O8) as an oxidant for BTEX degradation, coupled with sequential biodegradation in a 2D case and to evaluate the effect of inorganic geochemistry reactions. The results show the advantages of a treatment train remediation scheme based on ISCO and IBR. The numerical performance and stability of the integrated BIONAPL/Phreeqc model was also verified.

  16. Integrated water system simulation by considering hydrological and biogeochemical processes: model development, with parameter sensitivity and autocalibration

    NASA Astrophysics Data System (ADS)

    Zhang, Y. Y.; Shao, Q. X.; Ye, A. Z.; Xing, H. T.; Xia, J.

    2016-02-01

    Integrated water system modeling is a feasible approach to understanding severe water crises in the world and promoting the implementation of integrated river basin management. In this study, a classic hydrological model (the time variant gain model: TVGM) was extended to an integrated water system model by coupling multiple water-related processes in hydrology, biogeochemistry, water quality, and ecology, and considering the interference of human activities. A parameter analysis tool, which included sensitivity analysis, autocalibration and model performance evaluation, was developed to improve modeling efficiency. To demonstrate the model performances, the Shaying River catchment, which is the largest highly regulated and heavily polluted tributary of the Huai River basin in China, was selected as the case study area. The model performances were evaluated on the key water-related components including runoff, water quality, diffuse pollution load (or nonpoint sources) and crop yield. Results showed that our proposed model simulated most components reasonably well. The simulated daily runoff at most regulated and less-regulated stations matched well with the observations. The average correlation coefficient and Nash-Sutcliffe efficiency were 0.85 and 0.70, respectively. Both the simulated low and high flows at most stations were improved when the dam regulation was considered. The daily ammonium-nitrogen (NH4-N) concentration was also well captured with the average correlation coefficient of 0.67. Furthermore, the diffuse source load of NH4-N and the corn yield were reasonably simulated at the administrative region scale. This integrated water system model is expected to improve the simulation performances with extension to more model functionalities, and to provide a scientific basis for the implementation in integrated river basin managements.

  17. Subsurface Uranium Fate and Transport: Integrated Experiments and Modeling of Coupled Biogeochemical Mechanisms of Nanocrystalline Uraninite Oxidation by Fe(III)-(hydr)oxides - Project Final Report

    SciTech Connect

    Peyton, Brent M.; Timothy, Ginn R.; Sani, Rajesh K.

    2013-08-14

    Subsurface bacteria including sulfate reducing bacteria (SRB) reduce soluble U(VI) to insoluble U(IV) with subsequent precipitation of UO2. We have shown that SRB reduce U(VI) to nanometer-sized UO2 particles (1-5 nm) which are both intra- and extracellular, with UO2 inside the cell likely physically shielded from subsequent oxidation processes. We evaluated the UO2 nanoparticles produced by Desulfovibrio desulfuricans G20 under growth and non-growth conditions in the presence of lactate or pyruvate and sulfate, thiosulfate, or fumarate, using ultrafiltration and HR-TEM. Results showed that a significant mass fraction of bioreduced U (35-60%) existed as a mobile phase when the initial concentration of U(VI) was 160 µM. Further experiments with different initial U(VI) concentrations (25 - 900 M) in MTM with PIPES or bicarbonate buffers indicated that aggregation of uraninite depended on the initial concentrations of U(VI) and type of buffer. It is known that under some conditions SRB-mediated UO2 nanocrystals can be reoxidized (and thus remobilized) by Fe(III)-(hydr)oxides, common constituents of soils and sediments. To elucidate the mechanism of UO2 reoxidation by Fe(III) (hydr)oxides, we studied the impact of Fe and U chelating compounds (citrate, NTA, and EDTA) on reoxidation rates. Experiments were conducted in anaerobic batch systems in PIPES buffer. Results showed EDTA significantly accelerated UO2 reoxidation with an initial rate of 9.5 M day-1 for ferrihydrite. In all cases, bicarbonate increased the rate and extent of UO2 reoxidation with ferrihydrite. The highest rate of UO2 reoxidation occurred when the chelator promoted UO2 and Fe(III) (hydr)oxide dissolution as demonstrated with EDTA. When UO2 dissolution did not occur, UO2 reoxidation likely proceeded through an aqueous Fe(III) intermediate as observed for both NTA and

  18. Impact of dust on biogeochemical processes in the East Mediterranean Sea, lessons from on-board microcosm and land-based mesocosm experiments

    NASA Astrophysics Data System (ADS)

    Herut, Barak; Pitta, Paraskevi; Mihalopoulos, Nikos; Tsagaraki, Tatiana; Rahav, Eyal; Berman-Frank, Ilana; Psarra, Stella; Giannakourou, Antonia; Tsiola, Anastasia; Shi, Zongbo; Tanaka, Tsuneo; Kocak, Mustafa; Yucel, Nebil; Liu, Hongbin; Louiza Pedrotti, Maria; Tsapakis, Manolis; Violaki, Kalliopi; Fernandez, MariLuz; Meador, Travis; Panagiotopoulos, Christos

    2014-05-01

    Recent on-board microcosm and land-based mesocosm experiments in the oligotrophic Eastern Mediterranean Sea (EMS) indicates a significant role of Mediterranean aerosols as a net supplier of macro and micro nutrients (N, P, Fe and other trace metals) to the Low Nutrient Low Chlorophyll EMS. In such ultra-oligotrophic environment the leachable nutrients from dry atmospheric inputs add significant quantities of nutrients and become rapidly (<2hrs) bioavailable influencing substantially biogeochemical processes. Experimental additions triggered an increase in several of the performed rate and state variables as bacterial production and abundance, primary production rates and chlorophyll a (or other phytopigments), abundance of certain pico and nanophytoplankton groups and nitrogen fixation rates. Understanding these relationships is important to follow the pathways of N, P (and C) into the EMS food web and the future climate- and human-induced changes in the EMS.

  19. Biogeochemical Processes leading to release of As and Mn in the groundwaters of Murshidabad District of West Bengal, India

    NASA Astrophysics Data System (ADS)

    Johannesson, K. H.; Datta, S.; Vega, M.; Berube, M.

    2015-12-01

    Elevated concentrations of both manganese (Mn) and arsenic (As) have been observed in the groundwaters of Murshidabad, in eastern India. Mn, a postulated neurotoxin is known to cause neuromuscular problems, inhibition of neurological development particularly in children. The health impacts from higher bioavailable proportions of As is well known in being a Class I carcinogen. The discovery of this additional contaminant in the already As afflicted regions of SE Asia poses serious implications for millions of inhabitants. The current study aims to address three objectives in understanding biogeochemical cycling of Mn and As in groundwaters: i) the occurrence and overall distribution (lateral and temporal) of groundwater Mn and As; ii) characterization of the dissolved organic matter and microbial content and the resultant effects that are imposed on dissolved As and Mn; and iii) the relationship between Mn, As, and various other inorganic constituents and their impact on the subsequent release of Mn, on top of As. A three year time series of chemical data for the dissolved constituents from six villages in Murshidabad will be presented. Hariharpara, Beldanga, Naoda villages contain reducing groundwaters (mean Mn: 0.93mg/L); Nabagram, Kandi, Khidirpore demonstrate oxidizing aquifers (Mn: 0.74mg/L). Eighty-three percent of the wells surveyed contain Mn levels that exceed the recommended WHO limit of 0.4 mg/L. Dissolved As within the same locations show a range from <10μg/L to ~4000 μg/L. DOC values demonstrate a positive correlation with Mn in reducing and a negative correlation in oxidizing environments. The reducing aquifers are also high in As and DOC, indicating that the microbially mediated reductive dissolution of As-sorbed onto Fe-Mn mineral phases is probable. Fluorescence analyses of dissolved OM, solidphase modeling of Mn speciation are being combined in this study for more insight into the mechanisms of Mn release and its relation if any to As release.

  20. Using complex resistivity imaging to infer biogeochemical processes associated with bioremediation of a uranium-contaminated aquifer

    SciTech Connect

    Orozco, A. Flores; Williams, K.H.; Long, P.E.; Hubbard, S.S.; Kemna, A.

    2011-04-01

    Experiments at the Department of Energy's Rifle Integrated Field Research Challenge (IFRC) site near Rifle, Colorado (USA) have demonstrated the ability to remove uranium from groundwater by stimulating the growth and activity of Geobacter species through acetate amendment. Prolonging the activity of these strains in order to optimize uranium bioremediation has prompted the development of minimally-invasive and spatially-extensive monitoring methods diagnostic of their in situ activity and the end products of their metabolism. Here we demonstrate the use of complex resistivity imaging for monitoring biogeochemical changes accompanying stimulation of indigenous aquifer microorganisms during and after a prolonged period (100+ days) of acetate injection. A thorough raw-data statistical analysis of discrepancies between normal and reciprocal measurements and incorporation of a new power-law phase-error model in the inversion were used to significantly improve the quality of the resistivity phase images over those obtained during previous monitoring experiments at the Rifle IRFC site. The imaging results reveal spatiotemporal changes in the phase response of aquifer sediments, which correlate with increases in Fe(II) and precipitation of metal sulfides (e.g., FeS) following the iterative stimulation of iron and sulfate reducing microorganism. Only modest changes in resistivity magnitude were observed over the monitoring period. The largest phase anomalies (>40 mrad) were observed hundreds of days after halting acetate injection, in conjunction with accumulation of Fe(II) in the presence of residual FeS minerals, reflecting preservation of geochemically reduced conditions in the aquifer - a prerequisite for ensuring the long-term stability of immobilized, redox-sensitive contaminants, such as uranium.

  1. Using complex resistivity imaging to infer biogeochemical processes associated with bioremediation of a uranium-contaminated aquifer

    SciTech Connect

    Flores-Orozco, Adrian; Williams, Kenneth H.; Long, Philip E.; Hubbard, Susan S.; Kemna, Andreas

    2011-07-07

    Experiments at the Department of Energy’s Rifle Integrated Field Research Challenge (IFRC) site near Rifle, Colorado (USA) have demonstrated the ability to remove uranium from groundwater by stimulating the growth and activity of Geobacter species through acetate amendment. Prolonging the activity of these strains in order to optimize uranium bioremediation has prompted the development of minimally-invasive and spatially-extensive monitoring methods diagnostic of their in situ activity and the end products of their metabolism. Here we demonstrate the use of complex resistivity imaging for monitoring biogeochemical changes accompanying stimulation of indigenous aquifer microorganisms during and after a prolonged period (100+ days) of acetate injection. A thorough raw-data statistical analysis of discrepancies between normal and reciprocal measurements and incorporation of a new power-law phase-error model in the inversion were used to significantly improve the quality of the resistivity phase images over those obtained during previous monitoring experiments at the Rifle IRFC site. The imaging results reveal spatiotemporal changes in the phase response of aquifer sediments, which correlate with increases in Fe(II) and precipitation of metal sulfides (e.g., FeS) following the iterative stimulation of iron and sulfate reducing microorganism. Only modest changes in resistivity magnitude were observed over the monitoring period. The largest phase anomalies (>40 mrad) were observed hundreds of days after halting acetate injection, in conjunction with accumulation of Fe(II) in the presence of residual FeS minerals, reflecting preservation of geochemically reduced conditions in the aquifer – a prerequisite for ensuring the long-term stability of immobilized, redox-sensitive contaminants, such as uranium.

  2. Using complex resistivity imaging to infer biogeochemical processes associated with bioremediation of an uranium-contaminated aquifer

    NASA Astrophysics Data System (ADS)

    Flores Orozco, AdriáN.; Williams, Kenneth H.; Long, Philip E.; Hubbard, Susan S.; Kemna, Andreas

    2011-09-01

    Experiments at the Department of Energy's Integrated Field Research Challenge (IFRC) site near Rifle, Colorado, have demonstrated the ability to remove uranium from groundwater by stimulating the growth and activity of Geobacter species through acetate amendment. Prolonging the activity of these strains in order to optimize uranium bioremediation has prompted the development of minimally invasive and spatially extensive monitoring methods diagnostic of their in situ activity and the end products of their metabolism. Here we demonstrate the use of complex resistivity imaging for monitoring biogeochemical changes accompanying stimulation of indigenous aquifer microorganisms during and after a prolonged period (100+ days) of acetate injection. A thorough raw data statistical analysis of discrepancies between normal and reciprocal measurements and incorporation of a new power law phase-error model in the inversion were used to significantly improve the quality of the resistivity phase images over those obtained during previous monitoring experiments at the Rifle IFRC site. The imaging results reveal spatiotemporal changes in the phase response of aquifer sediments, which correlate with increases in Fe(II) and precipitation of metal sulfides (e.g., FeS) following the iterative stimulation of iron and sulfate-reducing microorganisms. Only modest changes in resistivity magnitude were observed over the monitoring period. The largest phase anomalies (>40 mrad) were observed hundreds of days after halting acetate injection, in conjunction with accumulation of Fe(II) in the presence of residual FeS minerals, reflecting preservation of geochemically reduced conditions in the aquifer, a prerequisite for ensuring the long-term stability of immobilized, redox-sensitive contaminants such as uranium.

  3. A dynamic marine iron cycle module coupled to the University of Victoria Earth System Model: the Kiel Marine Biogeochemical Model 2 (KMBM2) for UVic 2.9

    NASA Astrophysics Data System (ADS)

    Nickelsen, L.; Keller, D. P.; Oschlies, A.

    2014-12-01

    Marine biological production and the associated biotic uptake of carbon in many ocean regions depend on the availability of nutrients in the euphotic zone. While large areas are limited by nitrogen and/or phosphorus, the micronutrient iron is considered the main limiting nutrient in the North Pacific, equatorial Pacific and Southern Ocean. Changes in iron availability via changes in atmospheric dust input are discussed to play an important role in glacial/interglacial cycles via climate feedbacks caused by changes in biological ocean carbon sequestration. Although many aspects of the iron cycle remain unknown, its incorporation into marine biogeochemical models is needed to test our current understanding and better constrain its role in the Earth system. In the University of Victoria Earth System Climate Model (UVic) iron limitation in the ocean was, until now, simulated pragmatically with an iron concentration masking scheme that did not allow a consistent interactive response to perturbations of ocean biogeochemistry or iron cycling sensitivity studies. Here, we replace the iron masking scheme with a dynamic iron cycle and compare the results to available observations and the previous marine biogeochemical model. Sensitivity studies are also conducted with the new model to test the importance of considering the variable solubility of iron in dust deposition, the importance of considering high resolution bathymetry for the sediment release of iron, the effect of scaling the sedimentary iron release with temperature and the sensitivity of the iron cycle to a climate change scenario.

  4. What are the greenhouse gas observing system requirements for reducing fundamental biogeochemical process uncertainty? Amazon wetland CH4 emissions as a case study

    NASA Astrophysics Data System (ADS)

    Bloom, A. Anthony; Lauvaux, Thomas; Worden, John; Yadav, Vineet; Duren, Riley; Sander, Stanley P.; Schimel, David S.

    2016-12-01

    Understanding the processes controlling terrestrial carbon fluxes is one of the grand challenges of climate science. Carbon cycle process controls are readily studied at local scales, but integrating local knowledge across extremely heterogeneous biota, landforms and climate space has proven to be extraordinarily challenging. Consequently, top-down or integral flux constraints at process-relevant scales are essential to reducing process uncertainty. Future satellite-based estimates of greenhouse gas fluxes - such as CO2 and CH4 - could potentially provide the constraints needed to resolve biogeochemical process controls at the required scales. Our analysis is focused on Amazon wetland CH4 emissions, which amount to a scientifically crucial and methodologically challenging case study. We quantitatively derive the observing system (OS) requirements for testing wetland CH4 emission hypotheses at a process-relevant scale. To distinguish between hypothesized hydrological and carbon controls on Amazon wetland CH4 production, a satellite mission will need to resolve monthly CH4 fluxes at a ˜ 333 km resolution and with a ≤ 10 mg CH4 m-2 day-1 flux precision. We simulate a range of low-earth orbit (LEO) and geostationary orbit (GEO) CH4 OS configurations to evaluate the ability of these approaches to meet the CH4 flux requirements. Conventional LEO and GEO missions resolve monthly ˜ 333 km Amazon wetland fluxes at a 17.0 and 2.7 mg CH4 m-2 day-1 median uncertainty level. Improving LEO CH4 measurement precision by 2 would only reduce the median CH4 flux uncertainty to 11.9 mg CH4 m-2 day-1. A GEO mission with targeted observing capability could resolve fluxes at a 2.0-2.4 mg CH4 m-2 day-1 median precision by increasing the observation density in high cloud-cover regions at the expense of other parts of the domain. We find that residual CH4 concentration biases can potentially reduce the ˜ 5-fold flux CH4 precision advantage of a GEO mission to a ˜ 2-fold

  5. Coupling entropy of co-processing model on social networks

    NASA Astrophysics Data System (ADS)

    Zhang, Zhanli

    2015-08-01

    Coupling entropy of co-processing model on social networks is investigated in this paper. As one crucial factor to determine the processing ability of nodes, the information flow with potential time lag is modeled by co-processing diffusion which couples the continuous time processing and the discrete diffusing dynamics. Exact results on master equation and stationary state are achieved to disclose the formation. In order to understand the evolution of the co-processing and design the optimal routing strategy according to the maximal entropic diffusion on networks, we propose the coupling entropy comprehending the structural characteristics and information propagation on social network. Based on the analysis of the co-processing model, we analyze the coupling impact of the structural factor and information propagating factor on the coupling entropy, where the analytical results fit well with the numerical ones on scale-free social networks.

  6. A dynamic marine iron cycle module coupled to the University of Victoria Earth System Model: the Kiel Marine Biogeochemical Model 2 for UVic 2.9

    NASA Astrophysics Data System (ADS)

    Nickelsen, L.; Keller, D. P.; Oschlies, A.

    2015-05-01

    Marine biological production as well as the associated biotic uptake of carbon in many ocean regions depends on the availability of nutrients in the euphotic zone. While large areas are limited by nitrogen and/or phosphorus, the micronutrient iron is considered the main limiting nutrient in the North Pacific, equatorial Pacific and Southern Ocean. Changes in iron availability via changes in atmospheric dust input are discussed to play an important role in glacial-interglacial cycles via climate feedbacks caused by changes in biological ocean carbon sequestration. Although many aspects of the iron cycle remain unknown, its incorporation into marine biogeochemical models is needed to test our current understanding and better constrain its role in the Earth system. In the University of Victoria Earth System Climate Model (UVic) iron limitation in the ocean was, until now, simulated pragmatically with an iron concentration masking scheme that did not allow a consistent interactive response to perturbations of ocean biogeochemistry or iron cycling sensitivity studies. Here, we replace the iron masking scheme with a dynamic iron cycle and compare the results to available observations and the previous marine biogeochemical model. Sensitivity studies are also conducted with the new model to test the sensitivity of the model to parameterized iron ligand concentrations, the importance of considering the variable solubility of iron in dust deposition, the importance of considering high-resolution bathymetry for the sediment release of iron, the effect of scaling the sedimentary iron release with temperature and the sensitivity of the iron cycle to a climate change scenario.

  7. Terrestrial Particulate Organic Matter Degradation in Estuarine and Coastal Areas: Coupling Lipid Tracers and Molecular Tools to Better Understand Deltaic Biogeochemical Cycles

    NASA Astrophysics Data System (ADS)

    Galeron, M. A.; Volkman, J. K.; Rontani, J. F.; Radakovitch, O.; Charriere, B.; Amiraux, R.

    2016-02-01

    Deltaic and coastal areas have been studied extensively worldwide, due to their high economic and ecosystemic value. It was long thought that terrestrial particulate organic matter (TPOM) degraded during river transport was refractory to further degradation upon its arrival at sea. But studies on coastal sediments and in the Mackenzie delta (Canada) showed that, on the contrary, TPOM was undergoing intense degradation upon reaching seawater. In order to generalize these results to worldwide river basins, we propose to trace degradation processes impacting TPOM during in-stream transport as well as coastal distribution. We selected the Rhône River (France) for its differences with the Mackenzie River (latitude, temperature, coastal salinity) and carefully researched lipid tracers to help us pinpoint both the origin of the POM and the degradative processes undergone. Betulin, α-/β-amyrins, dehydroabietic acid, sitosterol and their specific degradation products were selected. While the Rhône delta has been studied for decades, there is very little research on its in-stream processes, and how they can be linked with coastal cycles and fluxes. Coupling new specific lipid tracers especially selected for the monitoring of higher plant degradation and molecular biology tools, we were able to better trace the origin of TPOM transported along the Rhône River, as well as better understand its degradation state in the river, the delta, and upon its arrival at sea. We show here that autoxidation (free radical induced oxidation), long overlooked, is a major degradation process impacting TPOM transported along the Rhone River, and is even more intense upon the arrival of TPOM at sea. Salinity, metal ion desorption, bacterial and biochemical activity are amongst the factors studied as inducers of such an intense degradation. This understanding is crucial if we want a truly extensive knowledge of terrestrial particulate organic matter transport and deposition, as well as

  8. Evolution of Earth-like Extrasolar Planetary Atmospheres: Assessing the Atmospheres and Biospheres of Early Earth Analog Planets with a Coupled Atmosphere Biogeochemical Model

    NASA Astrophysics Data System (ADS)

    Gebauer, S.; Grenfell, J. L.; Stock, J. W.; Lehmann, R.; Godolt, M.; von Paris, P.; Rauer, H.

    2017-01-01

    Understanding the evolution of Earth and potentially habitable Earth-like worlds is essential to fathom our origin in the Universe. The search for Earth-like planets in the habitable zone and investigation of their atmospheres with climate and photochemical models is a central focus in exoplanetary science. Taking the evolution of Earth as a reference for Earth-like planets, a central scientific goal is to understand what the interactions were between atmosphere, geology, and biology on early Earth. The Great Oxidation Event in Earth's history was certainly caused by their interplay, but the origin and controlling processes of this occurrence are not well understood, the study of which will require interdisciplinary, coupled models. In this work, we present results from our newly developed Coupled Atmosphere Biogeochemistry model in which atmospheric O2 concentrations are fixed to values inferred by geological evidence. Applying a unique tool (Pathway Analysis Program), ours is the first quantitative analysis of catalytic cycles that governed O2 in early Earth's atmosphere near the Great Oxidation Event. Complicated oxidation pathways play a key role in destroying O2, whereas in the upper atmosphere, most O2 is formed abiotically via CO2 photolysis. The O2 bistability found by Goldblatt et al. (2006) is not observed in our calculations likely due to our detailed CH4 oxidation scheme. We calculate increased CH4 with increasing O2 during the Great Oxidation Event. For a given atmospheric surface flux, different atmospheric states are possible; however, the net primary productivity of the biosphere that produces O2 is unique. Mixing, CH4 fluxes, ocean solubility, and mantle/crust properties strongly affect net primary productivity and surface O2 fluxes. Regarding exoplanets, different "states" of O2 could exist for similar biomass output. Strong geological activity could lead to false negatives for life (since our analysis suggests that reducing gases remove O2 that

  9. Terrestrial biogeochemical cycles: global interactions with the atmosphere and hydrology

    NASA Astrophysics Data System (ADS)

    Schimel, David S.; Kittel, Timothy G. F.; Parton, William J.

    1991-08-01

    Ecosystem scientists have developed a body of theory to predict the behaviour of biogeochemical cycles when exchanges with other ecosystems are small or prescribed. Recent environmental changes make it clear that linkages between ecosystems via atmospheric and hydrological transport have large effects on ecosystem dynamics when considered over time periods of a decade to a century, time scales relevant to contemporary humankind. Our ability to predict behaviour of ecosystems coupled by transport is limited by our ability (1) to extrapolate biotic function to large spatial scales and (2) to measure and model transport. We review developments in ecosystem theory, remote sensing, and geographical information systems (GIS) that support new efforts in spatial modeling. A paradigm has emerged to predict behaviour of ecosystems based on understanding responses to multiple resources (e.g., water, nutrients, light). Several ecosystem models couple primary production to decomposition and nutrient availability using the above paradigm. These models require a fairly small set of environmental variables to simulate spatial and temporal variation in rates of biogeochemical cycling. Simultaneously, techniques for inferring ecosystem behaviour from remotely measured canopy light interception are improving our ability to infer plant activity from satellite observations. Efforts have begun to couple models of transport in air and water to models of ecosystem function. Preliminary work indicates that coupling of transport and ecosystem processes alters the behaviour of earth system components (hydrology, terrestrial ecosystems, and the atmosphere) from that of an uncoupled mode.

  10. Coupling Computer-Aided Process Simulation and ...

    EPA Pesticide Factsheets

    A methodology is described for developing a gate-to-gate life cycle inventory (LCI) of a chemical manufacturing process to support the application of life cycle assessment in the design and regulation of sustainable chemicals. The inventories were derived by first applying process design and simulation of develop a process flow diagram describing the energy and basic material flows of the system. Additional techniques developed by the U.S. Environmental Protection Agency for estimating uncontrolled emissions from chemical processing equipment were then applied to obtain a detailed emission profile for the process. Finally, land use for the process was estimated using a simple sizing model. The methodology was applied to a case study of acetic acid production based on the Cativa tm process. The results reveal improvements in the qualitative LCI for acetic acid production compared to commonly used databases and top-down methodologies. The modeling techniques improve the quantitative LCI results for inputs and uncontrolled emissions. With provisions for applying appropriate emission controls, the proposed method can provide an estimate of the LCI that can be used for subsequent life cycle assessments. As part of its mission, the Agency is tasked with overseeing the use of chemicals in commerce. This can include consideration of a chemical's potential impact on health and safety, resource conservation, clean air and climate change, clean water, and sustainable

  11. Quantification of terrestrial ecosystem carbon dynamics in the conterminous United States combining a process-based biogeochemical model and MODIS and AmeriFlux data

    USDA-ARS?s Scientific Manuscript database

    Satellite remote sensing provides continuous temporal and spatial information of terrestrial ecosystems. Using these remote sensing data and eddy flux measurements and biogeochemical models, such as the Terrestrial Ecosystem Model (TEM), should provide a more adequate quantification of carbon dynami...

  12. Evolution of Earth-like Extrasolar Planetary Atmospheres: Assessing the Atmospheres and Biospheres of Early Earth Analog Planets with a Coupled Atmosphere Biogeochemical Model.

    PubMed

    Gebauer, S; Grenfell, J L; Stock, J W; Lehmann, R; Godolt, M; von Paris, P; Rauer, H

    2017-01-01

    Understanding the evolution of Earth and potentially habitable Earth-like worlds is essential to fathom our origin in the Universe. The search for Earth-like planets in the habitable zone and investigation of their atmospheres with climate and photochemical models is a central focus in exoplanetary science. Taking the evolution of Earth as a reference for Earth-like planets, a central scientific goal is to understand what the interactions were between atmosphere, geology, and biology on early Earth. The Great Oxidation Event in Earth's history was certainly caused by their interplay, but the origin and controlling processes of this occurrence are not well understood, the study of which will require interdisciplinary, coupled models. In this work, we present results from our newly developed Coupled Atmosphere Biogeochemistry model in which atmospheric O2 concentrations are fixed to values inferred by geological evidence. Applying a unique tool (Pathway Analysis Program), ours is the first quantitative analysis of catalytic cycles that governed O2 in early Earth's atmosphere near the Great Oxidation Event. Complicated oxidation pathways play a key role in destroying O2, whereas in the upper atmosphere, most O2 is formed abiotically via CO2 photolysis. The O2 bistability found by Goldblatt et al. ( 2006 ) is not observed in our calculations likely due to our detailed CH4 oxidation scheme. We calculate increased CH4 with increasing O2 during the Great Oxidation Event. For a given atmospheric surface flux, different atmospheric states are possible; however, the net primary productivity of the biosphere that produces O2 is unique. Mixing, CH4 fluxes, ocean solubility, and mantle/crust properties strongly affect net primary productivity and surface O2 fluxes. Regarding exoplanets, different "states" of O2 could exist for similar biomass output. Strong geological activity could lead to false negatives for life (since our analysis suggests that reducing gases remove O2 that

  13. Thermodynamically coupled mass transport processes in a saturated clay

    SciTech Connect

    Carnahan, C.L.

    1984-11-01

    Gradients of temperature, pressure, and fluid composition in saturated clays give rise to coupled transport processes (thermal and chemical osmosis, thermal diffusion, ultrafiltration) in addition to the direct processes (advection and diffusion). One-dimensional transport of water and a solute in a saturated clay subjected to mild gradients of temperature and pressure was simulated numerically. When full coupling was accounted for, volume flux (specific discharge) was controlled by thermal osmosis and chemical osmosis. The two coupled fluxes were oppositely directed, producing a point of stagnation within the clay column. Solute flows were dominated by diffusion, chemical osmosis, and thermal osmosis. Chemical osmosis produced a significant flux of solute directed against the gradient of solute concentration; this effect reduced solute concentrations relative to the case without coupling. Predictions of mass transport in clays at nuclear waste repositories could be significantly in error if coupled transport processes are not accounted for. 14 references, 8 figures, 1 table.

  14. Synchronization and information processing by an on-off coupling.

    PubMed

    Wei, G W; Zhao, Shan

    2002-05-01

    This paper proposes an on-off coupling process for chaos synchronization and information processing. An in depth analysis for the net effect of a conventional coupling is performed. The stability of the process is studied. We show that the proposed controlled coupling process can locally minimize the smoothness and the fidelity of dynamical data. A digital filter expression for the on-off coupling process is derived and a connection is made to the Hanning filter. The utility and robustness of the proposed approach is demonstrated by chaos synchronization in Duffing oscillators, the spatiotemporal synchronization of noisy nonlinear oscillators, the estimation of the trend of a time series, and restoration of the contaminated solution of the nonlinear Schrödinger equation.

  15. New Insights into Fluvial Carbon Responses to Future Forest Management and Climate Change Obtained from Multi-Scale Modelling of Biogeochemical Processes

    NASA Astrophysics Data System (ADS)

    Oni, S. K.; Tiwari, T.; Futter, M. N.; Agren, A.; Teutschbein, C.; Ledesma, J.; Schelker, J.; Laudon, H.

    2014-12-01

    The boreal ecozone covers 2x107 km2 of the northern circumpolar region and includes 29% of the world's forests. The boreal consists of mosaic of forest/wetland landscape elements and stores about 500 Gt3 carbon (C) with a delicate sink-source C balance. Dissolved organic carbon (DOC) is the main form of C exported from boreal landscapes and is fundamental to global C cycling. This northern ecosystem is vulnerable to global climate change, and increasing demands for forest products threaten its surface water resources. So far, there have been no attempts to assess the combined impacts of climate change and forest management on the future DOC fluxes from boreal surface waters. While differences in model assumptions may have negligible effects on present day simulations, these differences could be amplified when projecting the future climate and land use change conditions. Here we use an ensemble of regional climate models and multi-scale models of biogeochemical processes to gain insights into uncertainties associated with climate change and forest management on C and runoff dynamics in boreal landscape. While there are significant uncertainties associated with model projections, our results show that climate change will be the main driver of long term DOC dynamics in meso- to large boreal catchments in the future. However, forestry intensifies hydrological processes and can lead to large DOC fluxes at the headwater scales.

  16. Spatial Patterns in Biogeochemical Processes During Peak Growing Season in Oiled and Unoiled Louisiana Salt Marshes: A Multi-Year Analysis

    NASA Astrophysics Data System (ADS)

    Chelsky, A.; Marton, J. M.; Bernhard, A. E.; Giblin, A. E.; Setta, S. P.; Hill, T. D.; Roberts, B. J.

    2016-02-01

    Louisiana salt marshes are important sites for carbon and nitrogen cycling because they can mitigate fluxes of nutrients and carbon to the Gulf of Mexico where a large hypoxic zone develops annually. The aim of this study was to investigate spatial and temporal patterns of biogeochemical processes in Louisiana coastal wetlands during peak growing season, and to investigate whether the Deepwater Horizon oil spill resulted in persistent changes to these rates. We measured nitrification potential and sediment characteristics at two pairs of oiled/unoiled marshes in three regions across the Louisiana coast (Terrebonne and east and west Barataria Bay) in July from 2012 to 2015, with plots along a gradient from the salt marsh edge to the interior. Rates of nitrification potential across the coast (overall mean of 901 ± 115 nmol gdw-1 d-1 from 2012-2014) were high compared to other published rates for salt marshes but displayed high variability at the plot level (4 orders of magnitude). Within each region interannual means varied by factors of 2-5. Nitrification potential did not differ with oiling history, but did display consistent spatial patterns within each region that corresponded to changes in relative elevation and inundation, which influence patterns of soil properties and microbial communities. In 2015, we also measured greenhouse gas (CO2, N2O and CH4) production and denitrification enzyme activity rates in addition to nitrification potential across the region to investigate spatial relationships between these processes.

  17. Process for fabricating a charge coupled device

    DOEpatents

    Conder, Alan D.; Young, Bruce K. F.

    2002-01-01

    A monolithic three dimensional charged coupled device (3D-CCD) which utilizes the entire bulk of the semiconductor for charge generation, storage, and transfer. The 3D-CCD provides a vast improvement of current CCD architectures that use only the surface of the semiconductor substrate. The 3D-CCD is capable of developing a strong E-field throughout the depth of the semiconductor by using deep (buried) parallel (bulk) electrodes in the substrate material. Using backside illumination, the 3D-CCD architecture enables a single device to image photon energies from the visible, to the ultra-violet and soft x-ray, and out to higher energy x-rays of 30 keV and beyond. The buried or bulk electrodes are electrically connected to the surface electrodes, and an E-field parallel to the surface is established with the pixel in which the bulk electrodes are located. This E-field attracts charge to the bulk electrodes independent of depth and confines it within the pixel in which it is generated. Charge diffusion is greatly reduced because the E-field is strong due to the proximity of the bulk electrodes.

  18. Phase transformations coupled to deformation processes

    NASA Astrophysics Data System (ADS)

    Lookman, Turab

    2013-06-01

    Phase transformation processes have a substantial impact on the inelastic and damage response of materials. Yet, our understanding of how different loading conditions affect volume fractions of transformed phases, microstructure and transformation pathways is very much in its infancy. With an emphasis on distilling single crystal physics that can, in principle, be incorporated into higher length scale models, I will discuss how recent atomistic simulations on Ti are beginning to provide insights into transformation pathways and the interplay of phase transformations and deformation processes. These simulations are complemented by shock experiments on Zr, Ti together with characterization studies at the Advanced Photon Source.

  19. Low-frequency variability in North Sea and Baltic Sea identified through simulations with the 3-D coupled physical-biogeochemical model ECOSMO

    NASA Astrophysics Data System (ADS)

    Daewel, Ute; Schrum, Corinna

    2017-09-01

    Here we present results from a long-term model simulation of the 3-D coupled ecosystem model ECOSMO II for a North Sea and Baltic Sea set-up. The model allows both multi-decadal hindcast simulation of the marine system and specific process studies under controlled environmental conditions. Model results have been analysed with respect to long-term multi-decadal variability in both physical and biological parameters with the help of empirical orthogonal function (EOF) analysis. The analysis of a 61-year (1948-2008) hindcast reveals a quasi-decadal variation in salinity, temperature and current fields in the North Sea in addition to singular events of major changes during restricted time frames. These changes in hydrodynamic variables were found to be associated with changes in ecosystem productivity that are temporally aligned with the timing of reported regime shifts in the areas. Our results clearly indicate that for analysing ecosystem productivity, spatially explicit methods are indispensable. Especially in the North Sea, a correlation analysis between atmospheric forcing and primary production (PP) reveals significant correlations between PP and the North Atlantic Oscillation (NAO) and wind forcing for the central part of the region, while the Atlantic Multi-decadal Oscillation (AMO) and air temperature are correlated to long-term changes in PP in the southern North Sea frontal areas. Since correlations cannot serve to identify causal relationship, we performed scenario model runs perturbing the temporal variability in forcing condition to emphasize specifically the role of solar radiation, wind and eutrophication. The results revealed that, although all parameters are relevant for the magnitude of PP in the North Sea and Baltic Sea, the dominant impact on long-term variability and major shifts in ecosystem productivity was introduced by modulations of the wind fields.

  20. Carbon sequestration by patch fertilization: A comprehensive assessment using coupled physical-ecological-biogeochemical models: FINAL REPORT of grant Grant No. DE-FG02-04ER63726

    SciTech Connect

    Sarmiento, Jorge L; Gnanadesikan, Anand; Gruber, Nicolas

    2007-06-21

    This final report summarizes research undertaken collaboratively between Princeton University, the NOAA Geophysical Fluid Dynamics Laboratory on the Princeton University campus, the State University of New York at Stony Brook, and the University of California, Los Angeles between September 1, 2000, and November 30, 2006, to do fundamental research on ocean iron fertilization as a means to enhance the net oceanic uptake of CO2 from the atmosphere. The approach we proposed was to develop and apply a suite of coupled physical-ecologicalbiogeochemical models in order to (i) determine to what extent enhanced carbon fixation from iron fertilization will lead to an increase in the oceanic uptake of atmospheric CO2 and how long this carbon will remain sequestered (efficiency), and (ii) examine the changes in ocean ecology and natural biogeochemical cycles resulting from iron fertilization (consequences). The award was funded in two separate three-year installments: • September 1, 2000 to November 30, 2003, for a project entitled “Ocean carbon sequestration by fertilization: An integrated biogeochemical assessment.” A final report was submitted for this at the end of 2003 and is included here as Appendix 1. • December 1, 2003 to November 30, 2006, for a follow-on project under the same grant number entitled “Carbon sequestration by patch fertilization: A comprehensive assessment using coupled physical-ecological-biogeochemical models.” This report focuses primarily on the progress we made during the second period of funding subsequent to the work reported on in Appendix 1. When we began this project, we were thinking almost exclusively in terms of long-term fertilization over large regions of the ocean such as the Southern Ocean, with much of our focus being on how ocean circulation and biogeochemical cycling would interact to control the response to a given fertilization scenario. Our research on these types of scenarios, which was carried out largely during

  1. Evaluation of Biogeochemical Processes and Rock-Water Interactions in the Black Warrior Basin Coalbed Methane Reservoir (Alabama, USA) Via Isotopic Characterization of Formation Water Samples

    NASA Astrophysics Data System (ADS)

    Quan, T. M.; Vinson, D. S.; Prock, A.; Darrah, T.; McIntyre-Redden, M. R.; Pashin, J. C.

    2016-12-01

    Isotopic analysis of formation waters from coalbed methane reservoirs can provide critical information regarding carbon cycling, methanogenesis, generation and biodegradation of organic compounds, and rock-water interactions. As part of a larger study characterizing the biogeochemical processes within the Black Warrior Basin coalbed methane reservoir (Alabama, USA), a series of isotopic analyses were performed on formation water samples collected in the summer of 2015, including δ13CDIC, δDH2O, δ18OH2O, and δ13CDOC. High measured δ13CDIC values indicate predominant microbial methane generation, which is supported by δ13CCH4 values. Preliminary sample values for δ18OH2O and δDH2O do not correlate with salinity or dissolved inorganic carbon concentrations, which suggests interesting implications for recharge patterns and potential rock-water interactions. Preliminary δ13CDOC data suggests that dissolved organic carbon in these samples has a biogenic, not a thermogenic source. Accordingly, our data indicates that methanogenic microbes appear to have utilized more labile biogenic organic compounds in formation water rather than the highly polymerized vitreous carbon from host coal seams.

  2. Mapping pan-Arctic CH4 emissions using an adjoint method by integrating process-based wetland and lake biogeochemical models and atmospheric CH4 concentrations

    NASA Astrophysics Data System (ADS)

    Tan, Z.; Zhuang, Q.; Henze, D. K.; Frankenberg, C.; Dlugokencky, E. J.; Sweeney, C.; Turner, A. J.

    2015-12-01

    Understanding CH4 emissions from wetlands and lakes are critical for the estimation of Arctic carbon balance under fast warming climatic conditions. To date, our knowledge about these two CH4 sources is almost solely built on the upscaling of discontinuous measurements in limited areas to the whole region. Many studies indicated that, the controls of CH4 emissions from wetlands and lakes including soil moisture, lake morphology and substrate content and quality are notoriously heterogeneous, thus the accuracy of those simple estimates could be questionable. Here we apply a high spatial resolution atmospheric inverse model (nested-grid GEOS-Chem Adjoint) over the Arctic by integrating SCIAMACHY and NOAA/ESRL CH4 measurements to constrain the CH4 emissions estimated with process-based wetland and lake biogeochemical models. Our modeling experiments using different wetland CH4 emission schemes and satellite and surface measurements show that the total amount of CH4 emitted from the Arctic wetlands is well constrained, but the spatial distribution of CH4 emissions is sensitive to priors. For CH4 emissions from lakes, our high-resolution inversion shows that the models overestimate CH4 emissions in Alaskan costal lowlands and East Siberian lowlands. Our study also indicates that the precision and coverage of measurements need to be improved to achieve more accurate high-resolution estimates.

  3. An approach to quantify sources, seasonal change, and biogeochemical processes affecting metal loading in streams: Facilitating decisions for remediation of mine drainage

    USGS Publications Warehouse

    Kimball, B.A.; Runkel, R.L.; Walton-Day, K.

    2010-01-01

    Historical mining has left complex problems in catchments throughout the world. Land managers are faced with making cost-effective plans to remediate mine influences. Remediation plans are facilitated by spatial mass-loading profiles that indicate the locations of metal mass-loading, seasonal changes, and the extent of biogeochemical processes. Field-scale experiments during both low- and high-flow conditions and time-series data over diel cycles illustrate how this can be accomplished. A low-flow experiment provided spatially detailed loading profiles to indicate where loading occurred. For example, SO42 - was principally derived from sources upstream from the study reach, but three principal locations also were important for SO42 - loading within the reach. During high-flow conditions, Lagrangian sampling provided data to interpret seasonal changes and indicated locations where snowmelt runoff flushed metals to the stream. Comparison of metal concentrations between the low- and high-flow experiments indicated substantial increases in metal loading at high flow, but little change in metal concentrations, showing that toxicity at the most downstream sampling site was not substantially greater during snowmelt runoff. During high-flow conditions, a detailed temporal sampling at fixed sites indicated that Zn concentration more than doubled during the diel cycle. Monitoring programs must account for diel variation to provide meaningful results. Mass-loading studies during different flow conditions and detailed time-series over diel cycles provide useful scientific support for stream management decisions.

  4. Measurements of spectral optical properties and their relation to biogeochemical variables and processes in Crater Lake, Crater Lake National Park, OR

    USGS Publications Warehouse

    Boss, E.S.; Collier, R.; Larson, G.; Fennel, K.; Pegau, W.S.

    2007-01-01

    Spectral inherent optical properties (IOPs) have been measured at Crater Lake, OR, an extremely clear sub-alpine lake. Indeed Pure water IOPs are major contributors to the total IOPs, and thus to the color of the lake. Variations in the spatial distribution of IOPs were observed in June and September 2001, and reflect biogeochemical processes in the lake. Absorption by colored dissolved organic material increases with depth and between June and September in the upper 300 m. This pattern is consistent with a net release of dissolved organic materials from primary and secondary production through the summer and its photo-oxidation near the surface. Waters fed by a tributary near the lake's rim exhibited low levels of absorption by dissolved organic materials. Scattering is mostly dominated by organic particulate material, though inorganic material is found to enter the lake from the rim following a rain storm. Several similarities to oceanic oligotrophic regions are observed: (a) The Beam attenuation correlates well with particulate organic material (POM) and the relationship is similar to that observed in the open ocean. (b) The specific absorption of colored dissolved organic material has a value similar to that of open ocean humic material. (c) The distribution of chlorophyll with depth does not follow the distribution of particulate organic material due to photo-acclimation resulting in a subsurface pigment maximum located about 50 m below the POM maximum. ?? 2007 Springer Science+Business Media B.V.

  5. Improving predictions of large scale soil carbon dynamics: Integration of fine-scale hydrological and biogeochemical processes, scaling, and benchmarking

    NASA Astrophysics Data System (ADS)

    Riley, W. J.; Dwivedi, D.; Ghimire, B.; Hoffman, F. M.; Pau, G. S. H.; Randerson, J. T.; Shen, C.; Tang, J.; Zhu, Q.

    2015-12-01

    Numerical model representations of decadal- to centennial-scale soil-carbon dynamics are a dominant cause of uncertainty in climate change predictions. Recent attempts by some Earth System Model (ESM) teams to integrate previously unrepresented soil processes (e.g., explicit microbial processes, abiotic interactions with mineral surfaces, vertical transport), poor performance of many ESM land models against large-scale and experimental manipulation observations, and complexities associated with spatial heterogeneity highlight the nascent nature of our community's ability to accurately predict future soil carbon dynamics. I will present recent work from our group to develop a modeling framework to integrate pore-, column-, watershed-, and global-scale soil process representations into an ESM (ACME), and apply the International Land Model Benchmarking (ILAMB) package for evaluation. At the column scale and across a wide range of sites, observed depth-resolved carbon stocks and their 14C derived turnover times can be explained by a model with explicit representation of two microbial populations, a simple representation of mineralogy, and vertical transport. Integrating soil and plant dynamics requires a 'process-scaling' approach, since all aspects of the multi-nutrient system cannot be explicitly resolved at ESM scales. I will show that one approach, the Equilibrium Chemistry Approximation, improves predictions of forest nitrogen and phosphorus experimental manipulations and leads to very different global soil carbon predictions. Translating model representations from the site- to ESM-scale requires a spatial scaling approach that either explicitly resolves the relevant processes, or more practically, accounts for fine-resolution dynamics at coarser scales. To that end, I will present recent watershed-scale modeling work that applies reduced order model methods to accurately scale fine-resolution soil carbon dynamics to coarse-resolution simulations. Finally, we

  6. Solar terrestrial coupling through space plasma processes

    SciTech Connect

    Birn, J.

    2000-12-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project investigates plasma processes that govern the interaction between the solar wind, charged particles ejected from the sun, and the earth's magnetosphere, the region above the ionosphere governed by the terrestrial magnetic field. Primary regions of interest are the regions where different plasma populations interact with each other. These are regions of particularly dynamic plasma behavior, associated with magnetic flux and energy transfer and dynamic energy release. The investigations concerned charged particle transport and energization, and microscopic and macroscopic instabilities in the magnetosphere and adjacent regions. The approaches combined space data analysis with theory and computer simulations.

  7. Disturbance decouples biogeochemical cycles across forests of the southeastern US

    Treesearch

    Ashley D. Keiser; Jennifer D. Knoepp; Mark A. Bradford

    2016-01-01

    Biogeochemical cycles are inherently linked through the stoichiometric demands of the organisms that cycle the elements. Landscape disturbance can alter element availability and thus the rates of biogeochemical cycling. Nitrification is a fundamental biogeochemical process positively related to plant productivity and nitrogen loss from soils to aquatic systems, and the...

  8. Biogeochemical processes controlling the mobility of major ions and trace metals in aquitard sediments beneath an oil sand tailing pond: Laboratory studies and reactive transport modeling

    NASA Astrophysics Data System (ADS)

    Holden, A. A.; Haque, S. E.; Mayer, K. U.; Ulrich, A. C.

    2013-08-01

    Increased production and expansion of the oil sand industry in Alberta are of great benefit to the economy, but they carry major environmental challenges. The volume of fluid fine tailings requiring storage is 840 × 106 m3 and growing, making it imperative that we better understand the fate and transport of oil sand process-affected water (OSPW) seepage from these facilities. Accordingly, the current study seeks to characterize both a) the potential for major ion and trace element release, and b) the principal biogeochemical processes involved, as tailing pond OSPW infiltrates into, and interacts with, underlying glacial till sediments prior to reaching down gradient aquifers or surface waters. Objectives were addressed through a series of aqueous and solid phase experiments, including radial diffusion cells, an isotope analysis, X-ray diffraction, and sequential extractions. The diffusion cells were also simulated in a reactive transport framework to elucidate key reaction processes. The experiments indicate that the ingress and interaction of OSPW with the glacial till sediment-pore water system will result in: a mitigation of ingressing Na (retardation), displacement and then limited precipitation of exchangeable Ca and Mg (as carbonates), sulfate reduction and subsequent precipitation of the produced sulfides, as well as biodegradation of organic carbon. High concentrations of ingressing Cl (~ 375 mg L- 1) and Na (~ 575 mg L- 1) (even though the latter is delayed, or retarded) are expected to migrate through the till and into the underlying sand channel. Trace element mobility was influenced by ion exchange, oxidation-reduction, and mineral phase reactions including reductive dissolution of metal oxyhydroxides — in accordance with previous observations within sandy aquifer settings. Furthermore, although several trace elements showed the potential for release (Al, B, Ba, Cd, Mn, Pb, Si, Sr), large-scale mobilization is not supported. Thus, the present

  9. Biogeochemical processes controlling the mobility of major ions and trace metals in aquitard sediments beneath an oil sand tailing pond: laboratory studies and reactive transport modeling.

    PubMed

    Holden, A A; Haque, S E; Mayer, K U; Ulrich, A C

    2013-08-01

    Increased production and expansion of the oil sand industry in Alberta are of great benefit to the economy, but they carry major environmental challenges. The volume of fluid fine tailings requiring storage is 840×10(6) m(3) and growing, making it imperative that we better understand the fate and transport of oil sand process-affected water (OSPW) seepage from these facilities. Accordingly, the current study seeks to characterize both a) the potential for major ion and trace element release, and b) the principal biogeochemical processes involved, as tailing pond OSPW infiltrates into, and interacts with, underlying glacial till sediments prior to reaching down gradient aquifers or surface waters. Objectives were addressed through a series of aqueous and solid phase experiments, including radial diffusion cells, an isotope analysis, X-ray diffraction, and sequential extractions. The diffusion cells were also simulated in a reactive transport framework to elucidate key reaction processes. The experiments indicate that the ingress and interaction of OSPW with the glacial till sediment-pore water system will result in: a mitigation of ingressing Na (retardation), displacement and then limited precipitation of exchangeable Ca and Mg (as carbonates), sulfate reduction and subsequent precipitation of the produced sulfides, as well as biodegradation of organic carbon. High concentrations of ingressing Cl (~375 mg L(-1)) and Na (~575 mg L(-1)) (even though the latter is delayed, or retarded) are expected to migrate through the till and into the underlying sand channel. Trace element mobility was influenced by ion exchange, oxidation-reduction, and mineral phase reactions including reductive dissolution of metal oxyhydroxides - in accordance with previous observations within sandy aquifer settings. Furthermore, although several trace elements showed the potential for release (Al, B, Ba, Cd, Mn, Pb, Si, Sr), large-scale mobilization is not supported. Thus, the present

  10. Dissociative identity disorder and the process of couple therapy.

    PubMed

    Macintosh, Heather B

    2013-01-01

    Couple therapy in the context of dissociative identity disorder (DID) has been neglected as an area of exploration and development in the couple therapy and trauma literature. What little discussion exists focuses primarily on couple therapy as an adjunct to individual therapy rather than as a primary treatment for couple distress and trauma. Couple therapy researchers have begun to develop adaptations to provide effective support to couples dealing with the impact of childhood trauma in their relationships, but little attention has been paid to the specific and complex needs of DID patients in couple therapy (H. B. MacIntosh & S. Johnson, 2008 ). This review and case presentation explores the case of "Lisa," a woman diagnosed with DID, and "Don," her partner, and illustrates the themes of learning to communicate, handling conflicting needs, responding to child alters, and addressing sexuality and education through their therapy process. It is the hope of the author that this discussion will renew interest in the field of couple therapy in the context of DID, with the eventual goal of developing an empirically testable model of treatment for couples.

  11. Coupling Backbarrier Shorelines to Geomorphologic Processes

    NASA Astrophysics Data System (ADS)

    Trimble, S. M.

    2013-12-01

    Recent evidence suggests that back-barrier structure may act as an historical record of island development, and that back-barrier shorelines can be used as a proxy of an island's past and future transgressive response to sea-level rise. The structure and stability of back-barrier shorelines are dependent on the geologic framework, defined here as the combination of nearshore topography, underlying geology, and modern geomorphologic forces. This antecedent framework controls and influences the present morphology, nearshore dynamics, and rates of transgression in response to sea-level rise while also acting as a feedback to the estuary ecology on the bayside. This project establishes a link between process regimes and an island's geomorphological history. Results show that shorelines and bathymetric isolines share quantitative shape signatures indicative of their shared morphological past. Four United States National Seashores are examined: Fire Island, NY; Assateague Island, MD; Santa Rosa Island, FL; and North Padre Island, TX. The alongshore variation of the back-barrier shoreline, mainland shoreline, lagoon bathymetry, and nearshore bathymetry are digitized from aerial imagery. They are quantified through wavelet analysis and their shape signatures are examined for spatial correspondence. Large and small scale variations are identified and attributed to the geomorphologic controls operating on the same scale and alongshore variation. The result is an improved understanding of how the geologic framework controls back-barrier shoreline shape, which is essentially an expression of the underlying geology.

  12. Biogeochemical cycling and remote sensing

    NASA Technical Reports Server (NTRS)

    Peterson, D. L.

    1985-01-01

    Research is underway at the NASA Ames Research Center that is concerned with aspects of the nitrogen cycle in terrestrial ecosystems. An interdisciplinary research group is attempting to correlate nitrogen transformations, processes, and productivity with variables that can be remotely sensed. Recent NASA and other publications concerning biogeochemical cycling at global scales identify attributes of vegetation that could be related or explain the spatial variation in biologically functional variables. These functional variables include net primary productivity, annual nitrogen mineralization, and possibly the emission rate of nitrous oxide from soils.

  13. GC×GC-TOF-MS of Metabolites of Lake Vida Brine (Antarctica): Evidence for Past and Current Biogeochemical Processes

    NASA Astrophysics Data System (ADS)

    Chou, L.; Kenig, F. P. H.; Murray, A. E.; Fritsen, C. H.; Doran, P. T.

    2016-12-01

    Lake Vida, located in the McMurdo Dry Valleys, Antarctica, permanently encapsulates an interstitial anoxic, aphotic, cold (-13°C), brine ecosystem within 27 m of ice, and has been isolated from the environment for millennia (Murray et al. 2012; PNAS). Active, but slow-growing bacteria ( 120 yr generation time) were observed in this brine. The processes involved in the survivability of these microbes remain unclear. Thus, we attempt to elucidate the biogeochemistry of Lake Vida brine (LVBr) using metabolomics. LVBr contains high abundance of DOC (48.2±9.7 mmol•L-1). The slow metabolism of LVBr microbes allows for the accumulation of organic carbon that is inherited from a previous ecosystem, a glacial lake that occupied Lake Vida basin prior to LVBr isolation. Consequently, the presence of this legacy carbon, including dissolved metabolites, convolutes the interpretation of metabolic signals deriving from the current ecosystem. The aim of this study is to designate metabolites of LVBr as legacy, modern metabolic products, or both. A total lipid extract of LVBr was analyzed using a multi-dimensional comprehensive gas chromatography-time of flight-mass spectrometry (GC×GC-TOF-MS). Metabolites in LVBr are dominated by an altered legacy component: compounds synthesized in a previous ecosystem that was exposed to sunlight and the atmosphere. C8-C14 norisoprenoids observed in LVBr are derived from the oxidation of C40 and diatom pigments, whereas maleimides are degradation products of chlorophylls and bacteriochlorophylls. Additionally, we observe a diversity of sulfones and sulfoxides that may have resulted from microbial oxidation or abiotic oxidation of sulfur-bearing organic compounds. It is unclear if the alteration of legacy components in LVBr is enzymatically driven or is a pure abiotic diagenetic process. The production of some of the observed legacy compounds require molecular oxygen, which suggests that they were produced in an oxic environment, not within

  14. Modeling intrinsic bioremediation for interpret observable biogeochemical footprints of BTEX biodegradation: the need for fermentation and abiotic chemical processes.

    PubMed

    Maurer, Max; Rittmann, Bruce E

    2004-12-01

    The intrinsic bioremediation of BTEX must be documented by the stoichiometric consumption and production of several other compounds, called 'footprints' of the biodegradation reaction. Although footprints of BTEX biodegradation are easy to identify from reaction stoichiometry, they can be confounded by the stepwise nature of the biodegradation reactions and by several abiotic chemical reactions that also produce or consume the footprints. In order to track the footprints for BTEX biodegradation, the following reactions need to be considered explicitly: (1) fermentation and methanogenesis as separate processes, (2) precipitation and dissolution of calcite, (3) precipitation and dissolution of amorphous iron monosulfide (FeS), (4) conversion of FeS into the thermodynamically stable pyrite (FeS2) with loss of sulfide and abiotic formation of H2, and (5) reductive dissolution of solid iron(III) by oxidation of sulfide. We critically review the research that underlies why these mechanisms must be included and how to describe them quantitatively. A companion manuscript develops and applies a mathematical model that includes these reactions.

  15. Effects of physical and biogeochemical processes on aquatic ecosystems at the groundwater-surface water interface: An evaluation of a sulfate-impacted wild rice stream in Minnesota (USA)

    NASA Astrophysics Data System (ADS)

    Ng, G. H. C.; Yourd, A. R.; Myrbo, A.; Johnson, N.

    2015-12-01

    Significant uncertainty and variability in physical and biogeochemical processes at the groundwater-surface water interface complicate how surface water chemistry affects aquatic ecosystems. Questions surrounding a unique 10 mg/L sulfate standard for wild rice (Zizania sp.) waters in Minnesota are driving research to clarify conditions controlling the geochemistry of shallow sediment porewater in stream- and lake-beds. This issue raises the need and opportunity to carry out in-depth, process-based analysis into how water fluxes and coupled C, S, and Fe redox cycles interact to impact aquatic plants. Our study builds on a recent state-wide field campaign that showed that accumulation of porewater sulfide from sulfate reduction impairs wild rice, an annual grass that grows in shallow lakes and streams in the Great Lakes region of North America. Negative porewater sulfide correlations with organic C and Fe quantities also indicated that lower redox rates and greater mineral precipitation attenuate sulfide. Here, we focus on a stream in northern Minnesota that receives high sulfate loading from iron mining activity yet maintains wild rice stands. In addition to organic C and Fe effects, we evaluate the degree to which streambed hydrology, and in particular groundwater contributions, accounts for the active biogeochemistry. We collect field measurements, spanning the surrounding groundwater system to the stream, to constrain a reactive-transport model. Observations from seepage meters, temperature probes, and monitoring wells delineate upward flow that may lessen surface water impacts below the stream. Geochemical analyses of groundwater, porewater, and surface water samples and of sediment extractions reveal distinctions among the different domains and stream banks, which appear to jointly control conditions in the streambed. A model based on field conditions can be used to evaluate the relative the importance and the spatiotemporal scales of diverse flux and

  16. Biogeochemical and microbial seasonal dynamics between water column and sediment processes in a productive mountain lake: Georgetown Lake, MT, USA

    NASA Astrophysics Data System (ADS)

    Parker, Stephen R.; West, Robert F.; Boyd, Eric S.; Feyhl-Buska, Jayme; Gammons, Christopher H.; Johnston, Tyler B.; Williams, George P.; Poulson, Simon R.

    2016-08-01

    This manuscript details investigations of a productive, mountain freshwater lake and examines the dynamic relationship between the chemical and stable isotopes and microbial composition of lake bed sediments with the geochemistry of the lake water column. A multidisciplinary approach was used in order to better understand the lake water-sediment interactions including quantification and sequencing of microbial 16S rRNA genes in a sediment core as well as stable isotope analysis of C, S, and N. One visit included the use of a pore water sampler to gain insight into the composition of dissolved solutes within the sediment matrix. Sediment cores showed a general decrease in total C with depth which included a decrease in the fraction of organic C combined with an increase in the fraction of inorganic C. One sediment core showed a maximum concentration of dissolved organic C, dissolved inorganic C, and dissolved methane in pore water at 4 cm depth which corresponded with a sharp increase in the abundance of 16S rRNA templates as a proxy for the microbial population size as well as the peak abundance of a sequence affiliated with a putative methanotroph. The isotopic separation between dissolved inorganic and dissolved organic carbon is consistent with largely aerobic microbial processes dominating the upper water column, while anaerobic microbial activity dominates the sediment bed. Using sediment core carbon concentrations, predictions were made regarding the breakdown and return of stored carbon per year from this temperate climate lake with as much as 1.3 Gg C yr-1 being released in the form of CO2 and CH4.

  17. Hydrologic and Biogeochemical Processes as Controls on the Quantity and Chemical Quality of Dissolved Organic Carbon Across Multiple Spatial Scales in the Colorado River

    NASA Astrophysics Data System (ADS)

    Miller, M.

    2012-12-01

    Longitudinal patterns in dissolved organic carbon (DOC) loads and chemical quality were described in the Colorado River from the headwaters in the Rocky Mountains to the United States-Mexico border from 1994-2011. Watershed- and reach-scale climate, land use, river discharge and hydrologic modification conditions that contribute to patterns in DOC were also identified. Principal components analysis (PCA) identified site-specific precipitation and reach-scale discharge as being correlated with sites in the upper basin, where there were increases in DOC load from the upstream to downstream direction. In the lower basin, where DOC load decreased from upstream to downstream, sites were correlated with site-specific temperature and reach-scale population, urban land use, and hydrologic modification. In the reaches containing Lakes Powell and Mead, the two largest reservoirs in the United States, DOC quantity decreased, terrestrially-derived aromatic DOC was degraded and/or autochthonous less aromatic DOC was produced. Taken together these results suggest that longitudinal patterns in the relatively unregulated upper basin are influenced by watershed inputs of water and DOC; whereas DOC patterns in the lower basin are reflective of a balance between watershed contribution of water and DOC to the river, and loss of water and DOC due to hydrologic modification and/or biogeochemical processes. These findings suggest that alteration of constituent fluxes in rivers that are highly regulated may overshadow watershed processes that would control fluxes in comparable unregulated rivers. Further, these results provide a foundation for detailed assessments of factors controlling the transport and chemical quality of DOC in the Colorado River.

  18. Biogeochemical and hydrological processes controlling the transport and fate of 1,2-dibromoethane (EDB) in soil and ground water, central Florida

    USGS Publications Warehouse

    Katz, Brian G.

    1993-01-01

    Widespread contamination of ground water in central Florida by 1,2-dibromoethane (EDB) has resulted because of its heavy usage as a soil fumigant during a 20-year period, its relatively high aqueous solubility, and the low sorption capacity of the highly permeable sandy soils lacking organic matter. Two models were used to improve understanding of biogeochemical and hydrological processes that control the transport and fate of EDB in soil and ground water. First, a mass-balance model was developed to estimate the max-imum concentration of EDB in ground water resulting from known application rates of EDB. Key processes that were quantified in the model included volatilization, diffusion of EDB vapor in soils, partitioning between aqueous and gaseous phases, sorption of EDB vapor on organic carbon and soil particles, chemical and biological degradation reactions, and nonreversible binding of EDB to soils. Model calculations using an EDB half-life of 0.65 year closely reproduced the maximum observed concentrations in ground water, 37 and 0.22 micrograms per liter, at downgradient sites in two study areas in central Florida. Maximum concentrations of EDB in ground water also were estimated in a second model that incorporated an analytical solution to the three-dimensional advection-dispersion equation for instantaneous point sources of EDB entering the flow systems in the two study areas. The model used an EDB half-life of 0.65 year (obtained from the mass-balance calculations), mean ground-water flow velocities of 0.6 to 1 meter per day, coefficients of longitudinal hydro-dynamic dispersion of 0.6 to 1.0 square meter per day, and coefficients of transverse hydrodynamic dispersion of 0.1 square meter per day. Peak concentrations of EDB in ground water calculated from the analytical model agreed closely with observed peak concentrations measured from 1983 through 1987.

  19. Isotopic composition of nitrate and particulate organic matter in a pristine dam reservoir of western India: implications for biogeochemical processes

    NASA Astrophysics Data System (ADS)

    Bardhan, Pratirupa; Naqvi, Syed Wajih Ahmad; Karapurkar, Supriya G.; Shenoy, Damodar M.; Kurian, Siby; Naik, Hema

    2017-02-01

    Isotopic composition of nitrate (δ15N and δ18O) and particulate organic matter (POM; δ15N and δ13C) were measured in the Tillari Reservoir, located at the foothills of the Western Ghats, Maharashtra, western India. The reservoir, which is stratified during spring-summer and autumn seasons but gets vertically mixed during the southwest monsoon (SWM) and winter, is characterized by diverse redox nitrogen transformations in space and time. The δ15N and δ18O values of nitrate were low (δ15N = 2-10 ‰, δ18O = 5-8 ‰) during normoxic conditions but increased gradually (the highest at δ15N = 27 ‰, δ18O = 29 ‰) when anoxic conditions facilitated denitrification in the hypolimnion during spring-early summer. Once nitrate was fully utilized and sulfidic conditions set in, NH4+ became the dominant inorganic N species, with δ15N ranging from 1.3 to 2.6 ‰. Low δ15N (˜ -5 ‰) and δ13C (-37 to -32 ‰) of POM co-occurring with high NH4+ and CH4 in sulfidic bottom waters were probably the consequence of microbial chemosynthesis. Assimilation of nitrate in the epilimnion was the major controlling process on the N isotopic composition of POM (δ15N = 2-6 ‰). Episodic low δ15N values of POM (-2 to 0 ‰) during early summer, coinciding with the absence of nitrate, might arise from N fixation, although further work is required to confirm the hypothesis. δ13C POM in the photic zone ranged between -29 and -27 ‰ for most parts of the year. The periods of mixing were characterized by uniform δ15N-NO3- and δ18O-NO3- at all depths. Higher POM (particulate organic carbon, POC, as well as particulate organic nitrogen, PON) contents and C / N values with lower δ13C POM during the SWM point to allochthonous inputs. Overall, this study, the first of its kind in the Indian subcontinent, provides an insight into biogeochemistry of Indian reservoirs, using stable carbon and nitrogen isotopes as a tool, where the monsoons play an important role in controlling vertical

  20. DayCent-Chem Simulations of Ecological and Biogeochemical Processes of Eight Mountain Ecosystems in the United States

    USGS Publications Warehouse

    Hartman, Melannie D.; Baron, Jill S.; Clow, David W.; Creed, Irena F.; Driscoll, Charles T.; Ewing, Holly A.; Haines, Bruce D.; Knoepp, Jennifer; Lajtha, Kate; Ojima, Dennis S.; Parton, William J.; Renfro, Jim; Robinson, R. Bruce; Van Miegroet, Helga; Weathers, Kathleen C.; Williams, Mark W.

    2009-01-01

    deposition as a result of dry and fog inputs. The uncertainties related to weathering reactions, deposition, soil cation exchange capacity, and groundwater contributions influenced how well the simulated acid neutralizing capacity (ANC) and pH estimates compared to observed values. Daily discharge was well represented by the model for most sites. The chapters of this report describe the parameterization for each site and summarize model results for ecosystem variables, stream discharge, and stream chemistry. This intersite comparison exercise provided insight about important and possibly not well understood processes.

  1. Dyadic Coping in Couple Therapy Process: An Exploratory Study.

    PubMed

    Margola, Davide; Donato, Silvia; Accordini, Monica; Emery, Robert E; Snyder, Douglas K

    2017-07-10

    This study aimed at moving beyond previous research on couple therapy efficacy by examining moment-by-moment proximal couple and therapist interactions as well as final treatment outcomes and their reciprocal association. Seven hundred four episodes of dyadic coping within 56 early therapy sessions, taken from 28 married couples in treatment, were intensively analyzed and processed using a mixed-methods software (T-LAB). Results showed that negative dyadic coping was self-perpetuating, and therapists tended to passively observe the negative couple interaction; on the contrary, positive dyadic coping appeared to require a therapist's intervention to be maintained, and successful interventions mainly included information gathering as well as interpreting. Couples who dropped out of treatment were not actively engaged from the outset of therapy, and they used more negative dyadic coping, whereas couples who successfully completed treatment showed more positive dyadic coping very early in therapy. Results highlight the role of therapist action and control as critical to establishing rapport and credibility in couple therapy and suggest that dyadic coping patterns early in therapy may contribute to variable treatment response. © 2017 Family Process Institute.

  2. Impact of biogeochemical processes on small scale variations in manganese nodule abundance in the Clarion-Clipperton Fracture Zone

    NASA Astrophysics Data System (ADS)

    Mewes, K. J.; Picard, A.; Mogollón, J. M.; Nöthen, K.; Rühlemann, C.; Kuhn, T.; Eisenhauer, A.; Kasten, S.

    2012-12-01

    Manganese nodules of the Clarion Clipperton Fracture Zone (CCFZ) in the equatorial east Pacific Ocean have been the subject of extensive studies in the past (i.e. Halbach et al., 1988). They are considered as a potential source for nonferrous metals. During RV Sonne cruise SO-205 in spring 2010 to the eastern part of the German manganese nodule license area, located in the east of the CCFZ, we recovered sediments with a box corer, multiple corer and piston corer at three sites with nodules on top of the sediment and one site without nodules. These samples were geochemically analyzed to elucidate whether diagenetic processes contribute to manganese nodule growth. High-resolution oxygen measurements at all sites revealed an average oxygen penetration depth of 2-3 m. This finding is in contrast to previous studies, which suggested oxic sediments over several tens of meters (Müller et al., 1988). Microbial activity rates were investigated in the oxic sediments. Highest activity was determined at the site without nodule coverage. Pore water analyses show that sites with large to medium-sized nodules on the sediment surface do not contain free manganese and exhibit no nitrate reduction. In contrast, sediments from nearby locations without nodules or medium to small-sized nodules on the sediment surface show an increase in Mn2+ and a decrease in NO3- pore-water concentrations with depth. This result suggests that at present suboxic diagenesis does not contribute to manganese nodule growth. Sedimentation rates are low at stations with larger nodules (0.35 cm kyr-1) and almost twice as high (~ 0.6cm kyr-1) at stations without or with smaller nodules. The organic carbon (OC) contents in the surface sediments at all stations are about 0.5 weight %. A reaction transport model was used to derive parameters, such as the depositional flux of organic matter, that control the geochemical conditions at the investigated sites. We propose that these small-scale regional differences

  3. Using Coupled Models to Study the Effects of River Discharge on Biogeochemical Cycling and Hypoxia in the Northern Gulf of Mexico

    DTIC Science & Technology

    2009-01-01

    high performance liquid chromatography ( HPLC ) pigment analysis; paniculate organic carbon and nitrogen (POC and PON); dissolved oxygen; dissolved...Ternary plots [4] of the components of total absorption are used to ’ fingerprint ’ water masses using surface ocean color imagery. These techniques... analyze the results from our first coupled model run. In addition to the modifications mentioned above, we arc currently implementing the sediment

  4. Direct coupled microwave thermal processing for photovoltaic device fabrication

    NASA Astrophysics Data System (ADS)

    Guidici, D. C.

    A microwave thermal processing technology has been developed which reduces cycle time and energy requirements for solar cell manufacture through the direct coupling of a tuned microwave field to the material processed. The microwave processing is shown to be feasible for both junction formation and metallization sintering; cells produced have an efficiency of 8%. Diffusion throughput is satisfactory if multiple wafer processing (coin stacks) is used. Metallization sintering throughput is, however, limited by the single wafer process capability, and another form of applicator would be necessary to make microwave heating economically attractive for this process.

  5. Biogeochemical processes underpin ecosystem services

    USDA-ARS?s Scientific Manuscript database

    Elemental cycling is critical to the function of ecosystems and delivery of key ecosystem services because many of these elements are essential nutrients or detrimental toxicants that directly affect the health of organisms and ecosystems. A team of authors from North Carolina State University and ...

  6. The coupling of pathways and processes through shared components

    PubMed Central

    2011-01-01

    Background The coupling of pathways and processes through shared components is being increasingly recognised as a common theme which occurs in many cell signalling contexts, in which it plays highly non-trivial roles. Results In this paper we develop a basic modelling and systems framework in a general setting for understanding the coupling of processes and pathways through shared components. Our modelling framework starts with the interaction of two components with a common third component and includes production and degradation of all these components. We analyze the signal processing in our model to elucidate different aspects of the coupling. We show how different kinds of responses, including "ultrasensitive" and adaptive responses, may occur in this setting. We then build on the basic model structure and examine the effects of additional control regulation, switch-like signal processing, and spatial signalling. In the process, we identify a way in which allosteric regulation may contribute to signalling specificity, and how competitive effects may allow an enzyme to robustly coordinate and time the activation of parallel pathways. Conclusions We have developed and analyzed a common systems platform for examining the effects of coupling of processes through shared components. This can be the basis for subsequent expansion and understanding the many biologically observed variations on this common theme. PMID:21714894

  7. Cretaceous-Palaeogene experiments in Biogeochemical Resilience

    NASA Astrophysics Data System (ADS)

    Penman, D. E.; Henehan, M. J.; Hull, P. M.; Planavsky, N.; Schmidt, D. N.; Rae, J. W. B.; Thomas, E.; Huber, B. T.

    2015-12-01

    Human activity is altering biogeochemical cycles in the ocean. While ultimately anthropogenic forcings may be brought under control, it is still unclear whether tipping points may exist beyond which human-induced changes to biogeochemical cycles become irreversible. We use the Late Cretaceous and the Cretaceous-Palaeogene (K-Pg) boundary interval as an informative case study. Over this interval, two carbon cycle perturbations (gradual flood basalt volcanism and abrupt bolide impact) occurred within a short time window, allowing us to investigate the resilience of biogeochemical cycles to different pressures applied to the same initial boundary conditions on very different time scales. We demonstrate that relatively gradual emission of CO2 from the Deccan large igneous province was efficiently mitigated within the limits of existing biogeochemical processes. However, the rapid extinction of pelagic calcifying organisms at the K-Pg boundary due to the Chicxulub bolide impact had more profound effects, and caused lasting (> 1 million years) changes to biogeochemical cycles. By combining sedimentological observations with boron isotope-based pH reconstructions over these events, we document two potentially useful partial analogues for best and worst case scenarios for anthropogenic global change. We suggest that if current ocean acidification results in the mass extinction of marine pelagic calcifiers, we may cause profound changes to the Earth system that will persist for 100,000s to millions of years.

  8. Spatio-temporal dynamics of biogeochemical processes and air-sea CO2 fluxes in the Western English Channel based on two years of FerryBox deployment

    NASA Astrophysics Data System (ADS)

    Marrec, P.; Cariou, T.; Latimier, M.; Macé, E.; Morin, P.; Vernet, M.; Bozec, Y.

    2014-12-01

    From January 2011 to January 2013, a FerryBox system was installed on a Voluntary Observing Ship (VOS), which crossed the Western English Channel (WEC) between Roscoff (France) and Plymouth (UK) up to 3 times a day. The FerryBox continuously measured sea surface temperature (SST), sea surface salinity (SSS), dissolved oxygen (DO), fluorescence and partial pressure of CO2 (from April 2012) along the ferry track. Sensors were calibrated based on 714 bimonthly surface samplings with precisions of 0.016 for SSS, 3.3 μM for DO, 0.40 μg L- 1 for Chlorophyll-a (Chl-a) (based on fluorescence measurements) and 5.2 μatm for pCO2. Over the 2 years of deployment (900 crossings), we reported 9% of data lost due to technical issues and quality checked data was obtained to allow investigation of the dynamics of biogeochemical processes related to air-sea CO2 fluxes in the WEC. Based on this unprecedented high-frequency dataset, the physical structure of the WEC was assessed using SST anomalies and the presence of a thermal front was observed around the latitude 49.5°N, which divided the WEC in two main provinces: the seasonally stratified northern WEC (nWEC) and the all-year well-mixed southern WEC (sWEC). These hydrographical properties strongly influenced the spatial and inter-annual distributions of phytoplankton blooms, which were mainly limited by nutrients and light availability in the nWEC and the sWEC, respectively. Air-sea CO2 fluxes were also highly related to hydrographical properties of the WEC between late April and early September 2012, with the sWEC a weak source of CO2 to the atmosphere of 0.9 mmol m- 2 d- 1, whereas the nWEC acted as a sink for atmospheric CO2 of 6.9 mmol m- 2 d- 1. The study of short time-scale dynamics of air-sea CO2 fluxes revealed that an intense and short (less than 10 days) summer bloom in the nWEC contributed to 29% of the CO2 sink during the productive period, highlighting the necessity for high frequency observations in coastal

  9. Vibronic coupling simulations for linear and nonlinear optical processes: Theory

    NASA Astrophysics Data System (ADS)

    Silverstein, Daniel W.; Jensen, Lasse

    2012-02-01

    A comprehensive vibronic coupling model based on the time-dependent wavepacket approach is derived to simulate linear optical processes, such as one-photon absorbance and resonance Raman scattering, and nonlinear optical processes, such as two-photon absorbance and resonance hyper-Raman scattering. This approach is particularly well suited for combination with first-principles calculations. Expressions for the Franck-Condon terms, and non-Condon effects via the Herzberg-Teller coupling approach in the independent-mode displaced harmonic oscillator model are presented. The significance of each contribution to the different spectral types is discussed briefly.

  10. Improving Intercomparability of Marine Biogeochemical Time Series

    NASA Astrophysics Data System (ADS)

    Benway, Heather M.; Telszewski, Maciej; Lorenzoni, Laura

    2013-04-01

    Shipboard biogeochemical time series represent one of the most valuable tools scientists have to quantify marine elemental fluxes and associated biogeochemical processes and to understand their links to changing climate. They provide the long, temporally resolved data sets needed to characterize ocean climate, biogeochemistry, and ecosystem variability and change. However, to monitor and differentiate natural cycles and human-driven changes in the global oceans, time series methodologies must be transparent and intercomparable when possible. To review current shipboard biogeochemical time series sampling and analytical methods, the International Ocean Carbon Coordination Project (IOCCP; http://www.ioccp.org/) and the Ocean Carbon and Biogeochemistry Program (http://www.us-ocb.org/) convened an international ocean time series workshop at the Bermuda Institute for Ocean Sciences.

  11. Coping with early breast cancer: couple adjustment processes and couple-based intervention.

    PubMed

    Naaman, Sandra; Radwan, Karam; Johnson, Susan

    2009-01-01

    Early breast cancer affects one in every nine women along with their families. Advances in screening and biomedical interventions have changed the face of breast cancer from a terminal condition to a chronic disease with biopsychosocial features. The present review surveyed the nature and extent of psychological morbidity experienced by the breast cancer survivor and her spouse during the post-treatment phase, with particular focus on the impact of disease on the marital relationship. Interpersonal processes shown to unfold in couples facing breast cancer, as well as risk factors associated with greater psychological morbidity, were reviewed. Moreover, interpersonal processes central to coping with chronic illness and adjustment were reconceptualized from the point of view of attachment theory. Attachment theory was also used as the grounding framework for an empirically supported couples-based intervention, Emotionally Focused Therapy, which is advanced as a potentially useful treatment option for couples experiencing unremitting psychological and relational distress following diagnosis and treatment for breast cancer.

  12. PFLOTRAN: Recent Developments Facilitating Massively-Parallel Reactive Biogeochemical Transport

    NASA Astrophysics Data System (ADS)

    Hammond, G. E.

    2015-12-01

    With the recent shift towards modeling carbon and nitrogen cycling in support of climate-related initiatives, emphasis has been placed on incorporating increasingly mechanistic biogeochemistry within Earth system models to more accurately predict the response of terrestrial processes to natural and anthropogenic climate cycles. PFLOTRAN is an open-source subsurface code that is specialized for simulating multiphase flow and multicomponent biogeochemical transport on supercomputers. The object-oriented code was designed with modularity in mind and has been coupled with several third-party simulators (e.g. CLM to simulate land surface processes and E4D for coupled hydrogeophysical inversion). Central to PFLOTRAN's capabilities is its ability to simulate tightly-coupled reactive transport processes. This presentation focuses on recent enhancements to the code that enable the solution of large parameterized biogeochemical reaction networks with numerous chemical species. PFLOTRAN's "reaction sandbox" is described, which facilitates the implementation of user-defined reaction networks without the need for a comprehensive understanding of PFLOTRAN software infrastructure. The reaction sandbox is written in modern Fortran (2003-2008) and leverages encapsulation, inheritance, and polymorphism to provide the researcher with a flexible workspace for prototyping reactions within a massively parallel flow and transport simulation framework. As these prototypical reactions mature into well-accepted implementations, they can be incorporated into PFLOTRAN as native biogeochemistry capability. Users of the reaction sandbox are encouraged to upload their source code to PFLOTRAN's main source code repository, including the addition of simple regression tests to better ensure the long-term code compatibility and validity of simulation results.

  13. Simulation of Stochastic Processes by Coupled ODE-PDE

    NASA Technical Reports Server (NTRS)

    Zak, Michail

    2008-01-01

    A document discusses the emergence of randomness in solutions of coupled, fully deterministic ODE-PDE (ordinary differential equations-partial differential equations) due to failure of the Lipschitz condition as a new phenomenon. It is possible to exploit the special properties of ordinary differential equations (represented by an arbitrarily chosen, dynamical system) coupled with the corresponding Liouville equations (used to describe the evolution of initial uncertainties in terms of joint probability distribution) in order to simulate stochastic processes with the proscribed probability distributions. The important advantage of the proposed approach is that the simulation does not require a random-number generator.

  14. Using Coupled Models to Study the Effects of River Discharge on Biogeochemical Cycling and Hypoxia in the Northern Gulf of Mexico

    NASA Technical Reports Server (NTRS)

    Penta, Bradley; Ko, D.; Gould, Richard W.; Arnone, Robert A.; Greene, R.; Lehrter, J.; Hagy, James; Schaeffer, B.; Murrell, M.; Kurtz, J.; Herchenroder, B.; Green, R.; Eldridge, P.

    2009-01-01

    We describe emerging capabilities to understand physical processes and biogeoehemical cycles in coastal waters through the use of satellites, numerical models, and ship observations. Emerging capabilities provide significantly improved ability to model ecological systems and the impact of environmental management actions on them. The complex interaction of physical and biogeoehemical processes responsible for hypoxic events requires an integrated approach to research, monitoring, and modeling in order to fully define the processes leading to hypoxia. Our efforts characterizes the carbon cycle associated with river plumes and the export of organic matter and nutrients form coastal Louisiana wetlands and embayments in a spatially and temporally intensive manner previously not possible. Riverine nutrients clearly affect ecosystems in the northern Gulf of Mexico as evidenced in the occurrence of regional hypoxia events. Less known and largely unqualified is the export of organic matter and nutrients from the large areas of disappearing coastal wetlands and large embayments adjacent to the Louisiana Continental Shelf. This project provides new methods to track the river plume along the shelf and to estimate the rate of export of suspended inorganic and organic paniculate matter and dissolved organic matter form coastal habitats of south Louisiana.

  15. Using Coupled Models to Study the Effects of River Discharge on Biogeochemical Cycling and Hypoxia in the Northern Gulf of Mexico

    NASA Technical Reports Server (NTRS)

    Penta, Bradley; Ko, D.; Gould, Richard W.; Arnone, Robert A.; Greene, R.; Lehrter, J.; Hagy, James; Schaeffer, B.; Murrell, M.; Kurtz, J.; hide

    2009-01-01

    We describe emerging capabilities to understand physical processes and biogeoehemical cycles in coastal waters through the use of satellites, numerical models, and ship observations. Emerging capabilities provide significantly improved ability to model ecological systems and the impact of environmental management actions on them. The complex interaction of physical and biogeoehemical processes responsible for hypoxic events requires an integrated approach to research, monitoring, and modeling in order to fully define the processes leading to hypoxia. Our efforts characterizes the carbon cycle associated with river plumes and the export of organic matter and nutrients form coastal Louisiana wetlands and embayments in a spatially and temporally intensive manner previously not possible. Riverine nutrients clearly affect ecosystems in the northern Gulf of Mexico as evidenced in the occurrence of regional hypoxia events. Less known and largely unqualified is the export of organic matter and nutrients from the large areas of disappearing coastal wetlands and large embayments adjacent to the Louisiana Continental Shelf. This project provides new methods to track the river plume along the shelf and to estimate the rate of export of suspended inorganic and organic paniculate matter and dissolved organic matter form coastal habitats of south Louisiana.

  16. Surface time-lapse electrical resistivity tomography (TLERT) monitoring of an SRS injection and associated biogeochemical processes, Oak Ridge National Laboratory, Tennessee USA

    NASA Astrophysics Data System (ADS)

    Baker, G. S.; Wu, Y.; Hubbard, S. S.; Wu, W.; Gaines, D. P.; Pratt, J. C.; Modi, A. L.; Watson, D.; Jardine, P.

    2009-05-01

    We present results from surface time-lapse electrical resistivity tomography (TLERT) data collected within a uranium-contaminated unconfined aquifer underlying the Oak Ridge Field Research Center (ORFRC) located at the Oak Ridge National Laboratory (ORNL) in Tennessee. As part of an Integrated Field Research Challenge (IFRC) project supported by the DOE Environmental Remediation Sciences Program (ERSP), bioreduction of U(VI) to U(IV) with ethanol as an electron donor has been tested during the last four years. Low U concentration (below US EPA MCL of 0.03 mg/L) can be achieved by frequent injection of electron donor. To reduce the costs and improve the sustainability for remediation and site maintenance, our IFRC team is exploring the effectiveness of a slowly degrading substrate such as commercial emulsified vegetable oil substrate (EVO) as alternative electron donor sources. Laboratory batch and flow-through column experiments were carried out to investigate the sensitivity of various physical properties (e.g., electrical conductivity) to EVO injection to test the applicability of geophysics as a monitoring tool at the field scale. Results revealed increased electrical conductivity during both EVO injection and subsequent degradation of surfactant with an overall increase in conductivity of ˜35%; thus, surface TLERT was selected as a monitoring tool to supplement well fluid samples. The field stimulation test began at Area 2 during early February 2009. Prior to the injection of the EVO, preliminary characterization completed, including a geochemical survey of the ground water from ˜50 wells, microbial samples of groundwater and sediment collected from selected wells, and site hydrology characterized by bromide tracer test and surface ERT methods. On February 9, 2009, diluted EVO solution (20% concentration, 900 gal vol) was injected into three injection wells within 1.5 hours. Distribution of the injected EVO and accompanying biogeochemical processes has been

  17. Fiber-coupled THz spectroscopy for monitoring polymeric compounding processes

    NASA Astrophysics Data System (ADS)

    Vieweg, N.; Krumbholz, N.; Hasek, T.; Wilk, R.; Bartels, V.; Keseberg, C.; Pethukhov, V.; Mikulics, M.; Wetenkamp, L.; Koch, M.

    2007-06-01

    We present a compact, robust, and transportable fiber-coupled THz system for inline monitoring of polymeric compounding processes in an industrial environment. The system is built on a 90cm x 90cm large shock absorbing optical bench. A sealed metal box protects the system against dust and mechanical disturbances. A closed loop controller unit is used to ensure optimum coupling of the laser beam into the fiber. In order to build efficient and stable fiber-coupled antennas we glue the fibers directly onto photoconductive switches. Thus, the antenna performance is very stable and it is secured from dust or misalignment by vibrations. We discuss fabrication details and antenna performance. First spectroscopic data obtained with this system is presented.

  18. Investigating redox processes under diffusive and advective flow conditions using a coupled omics and synchrotron approach

    NASA Astrophysics Data System (ADS)

    Kemner, K. M.; Boyanov, M.; Flynn, T. M.; O'Loughlin, E. J.; Antonopoulos, D. A.; Kelly, S.; Skinner, K.; Mishra, B.; Brooks, S. C.; Watson, D. B.; Wu, W. M.

    2015-12-01

    FeIII- and SO42--reducing microorganisms and the mineral phases they produce have profound implications for many processes in aquatic and terrestrial systems. In addition, many of these microbially-catalysed geochemical transformations are highly dependent upon introduction of reactants via advective and diffusive hydrological transport. We have characterized microbial communities from a set of static microcosms to test the effect of ethanol diffusion and sulfate concentration on UVI-contaminated sediment. The spatial distribution, valence states, and speciation of both U and Fe were monitored in situ throughout the experiment by synchrotron x-ray absorption spectroscopy, in parallel with solution measurements of pH and the concentrations of sulfate, ethanol, and organic acids. After reaction initiation, a ~1-cm thick layer of sediment near the sediment-water (S-W) interface became visibly dark. Fe XANES spectra of the layer were consistent with the formation of FeS. Over the 4 year duration of the experiment, U LIII-edge XANES indicated reduction of U, first in the dark layer and then throughout the sediment. Next, the microcosms were disassembled and samples were taken from the overlying water and different sediment regions. We extracted DNA and characterized the microbial community by sequencing 16S rRNA gene amplicons with the Illumina MiSeq platform and found that the community evolved from its originally homogeneous composition, becoming significantly spatially heterogeneous. We have also developed an x-ray accessible column to probe elemental transformations as they occur along the flow path in a porous medium with the purpose of refining reactive transport models (RTMs) that describe coupled physical and biogeochemical processes in environmental systems. The elemental distribution dynamics and the RTMs of the redox driven processes within them will be presented.

  19. Gene regulation and noise reduction by coupling of stochastic processes

    NASA Astrophysics Data System (ADS)

    Ramos, Alexandre F.; Hornos, José Eduardo M.; Reinitz, John

    2015-02-01

    Here we characterize the low-noise regime of a stochastic model for a negative self-regulating binary gene. The model has two stochastic variables, the protein number and the state of the gene. Each state of the gene behaves as a protein source governed by a Poisson process. The coupling between the two gene states depends on protein number. This fact has a very important implication: There exist protein production regimes characterized by sub-Poissonian noise because of negative covariance between the two stochastic variables of the model. Hence the protein numbers obey a probability distribution that has a peak that is sharper than those of the two coupled Poisson processes that are combined to produce it. Biochemically, the noise reduction in protein number occurs when the switching of the genetic state is more rapid than protein synthesis or degradation. We consider the chemical reaction rates necessary for Poisson and sub-Poisson processes in prokaryotes and eucaryotes. Our results suggest that the coupling of multiple stochastic processes in a negative covariance regime might be a widespread mechanism for noise reduction.

  20. Gene regulation and noise reduction by coupling of stochastic processes

    PubMed Central

    Hornos, José Eduardo M.; Reinitz, John

    2015-01-01

    Here we characterize the low noise regime of a stochastic model for a negative self-regulating binary gene. The model has two stochastic variables, the protein number and the state of the gene. Each state of the gene behaves as a protein source governed by a Poisson process. The coupling between the the two gene states depends on protein number. This fact has a very important implication: there exist protein production regimes characterized by sub-Poissonian noise because of negative covariance between the two stochastic variables of the model. Hence the protein numbers obey a probability distribution that has a peak that is sharper than those of the two coupled Poisson processes that are combined to produce it. Biochemically, the noise reduction in protein number occurs when the switching of genetic state is more rapid than protein synthesis or degradation. We consider the chemical reaction rates necessary for Poisson and sub-Poisson processes in prokaryotes and eucaryotes. Our results suggest that the coupling of multiple stochastic processes in a negative covariance regime might be a widespread mechanism for noise reduction. PMID:25768447

  1. Gene regulation and noise reduction by coupling of stochastic processes.

    PubMed

    Ramos, Alexandre F; Hornos, José Eduardo M; Reinitz, John

    2015-02-01

    Here we characterize the low-noise regime of a stochastic model for a negative self-regulating binary gene. The model has two stochastic variables, the protein number and the state of the gene. Each state of the gene behaves as a protein source governed by a Poisson process. The coupling between the two gene states depends on protein number. This fact has a very important implication: There exist protein production regimes characterized by sub-Poissonian noise because of negative covariance between the two stochastic variables of the model. Hence the protein numbers obey a probability distribution that has a peak that is sharper than those of the two coupled Poisson processes that are combined to produce it. Biochemically, the noise reduction in protein number occurs when the switching of the genetic state is more rapid than protein synthesis or degradation. We consider the chemical reaction rates necessary for Poisson and sub-Poisson processes in prokaryotes and eucaryotes. Our results suggest that the coupling of multiple stochastic processes in a negative covariance regime might be a widespread mechanism for noise reduction.

  2. Coupled isotopic and process-based modeling of gaseous nitrogen losses from tropical rain forests

    NASA Astrophysics Data System (ADS)

    Bai, Edith; Houlton, Benjamin Z.

    2009-06-01

    Gaseous nitrogen (N) losses remove fixed N from the biosphere and play an important role in regulating Earth's climate system. Current techniques for measuring gaseous N fluxes are still limited, however, and many uncertainties remain. We used the natural isotopes of N, 15N/14N, to constrain process-based model (DAYCENT, the daily version of CENTURY) estimates of gaseous N emissions from terrestrial ecosystems. The isotope model considers two scenarios. In the first, soil 15N/14N is a linear function of a fraction of gaseous N losses. In the second, underexpression of denitrification's isotope effect is considered, and soil 15N/14N is determined by both the fraction of gaseous losses and the proportion of NO3- consumed locally by denitrification. We examined the coupled process- and isotope-based model along two Hawaiian rain forest gradients which span a range of tropical climates, soil biogeochemical ages, and ecosystem 15N/14N. Under most conditions (mean annual precipitation (MAP) <4050 mm), modeled soil 15N/14N ratios agreed well with measurements (r2 = 0.89), consistent with full expression of denitrification's isotope effect (scenario 1). In very wet sites (MAP ≥ 4050 mm), locally complete NO3- consumption appears to lower the isotopic expression of denitrification at ecosystem levels, resulting in soil 15N/14N ratios that approach those of the N inputs (i.e., scenario 2). Replacing modeled gaseous N emissions with field-based measures of oxidized N, gas fluxes (NOx + N2O) resulted in consistently lower estimates of soil 15N/14N ratios across the forests. This points to a missing gas N loss term (i.e., N2), inadequate coverage of spatial and temporal heterogeneity by empirical measures, or both. These results demonstrate the potential for soil N isotopes to constrain N gas fluxes at large geographic scales, providing a quantitative tracer of gaseous N emissions from land.

  3. Biogeochemical Modeling of Ureolytically-Driven Calcium Carbonate Precipitation for Contaminant Immobilization

    NASA Astrophysics Data System (ADS)

    Smith, R. W.; Fujita, Y.; Taylor, J. L.

    2008-12-01

    Radionuclide and metal contaminants such as strontium-90 are present beneath U.S. Department of Energy (DOE) lands in both the groundwater (e.g., 100-N area at Hanford, WA) and vadose zone (e.g., Idaho Nuclear Technology and Engineering Center at the Idaho National Laboratory [INL]). Manipulation of in situ biogeochemical conditions to induce immobilization of these contaminants is a promising remediation approach that could yield significant risk and cost benefits to DOE. However, the effective design and interpretation of such field remediation activities requires the availability of numerical tools to model the biogeochemical processes underlying the remediation strategy. We are evaluating the use of microbial urea hydrolysis coupled to calcite precipitation as a means for the cost effective in situ stabilization of trace inorganic contaminants in groundwater and vadose zone systems. The approach relies upon the activity of indigenous ureolytic bacteria to hydrolyze introduced urea and causing an increase in pH and alkalinity, thereby accelerating calcium carbonate precipitation. The precipitation reaction results in the co- precipitation of trace metals and is sustained by the release of cations (both calcium and trace metals) from the aquifer matrix via exchange reactions involving the ammonium ions produced by urea hydrolysis. We have developed and parameterized a mixed kinetic-equilibrium reaction model using the Geochemist's Workbench computer code. Simulation results based on laboratory- and field-scale studies demonstrate the importance of transient events in systems with geochemical fluxes as well as of the coupling of biogeochemical processes.

  4. Method of processing materials using an inductively coupled plasma

    DOEpatents

    Hull, D.E.; Bieniewski, T.M.

    1987-04-13

    A method of processing materials. The invention enables ultrafine, ultrapure powders to be formed from solid ingots in a gas free environment. A plasma is formed directly from an ingot which insures purity. The vaporized material is expanded through a nozzle and the resultant powder settles on a cold surface. An inductively coupled plasma may also be used to process waste chemicals. Noxious chemicals are directed through a series of plasma tubes, breaking molecular bonds and resulting in relatively harmless atomic constituents. 3 figs.

  5. Isotopic, petrologic and biogeochemical investigations of banded iron-formations

    NASA Technical Reports Server (NTRS)

    Hayes, J. M.; Kaufman, A. J.; Klein, C.; Studley, S. A.; Baur, M. E.; Walter, M. R.

    1986-01-01

    It is recognized that the first occurrence of banded iron-formations (BIFs) clearly predates biological oxygenation of the atmosphere-hydrosphere system and that their last occurrences extend beyond plausible dates of pervasive biological oxygenation. For this reason, and because enormous quantities of oxidizing power have been sequestered in them, it is widely thought that these massive, but enigmatic, sediments must encode information about the mechanism and timing of the rise of atmospheric O2. By coupling isotopic analyses of iron-formation carbonates with biogeochemical and petrologic investigations, we are studying (1) the mechanism of initial sedimentation of iron; (2) the role of iron in microbially mediated diagenetic processes in fresh iron-formation sediments; and (3) the logical integration of mechanisms of deposition with observed levels of banding. Thus far, it has been shown that (1) carbonates in BIFs of the Hamersley Group of Western Australia are isotopically inhomogenous; (2) the nature and pattern of isotopic ordering is not consistent with a metamorphic origin for the overall depletion of C-13 observed in the carbonates; (3) if biological, the origin of the C-13 depleted carbonate could be either respiratory or fermentative; (4) iron may have been precipitate d as Fe(3+), then reduced to Fe(2+) within the sediment; and (5) sedimentary biogeochemical systems may have been at least partially closed to mass transport of carbonate species.

  6. Isotopic, petrologic and biogeochemical investigations of banded iron-formations

    NASA Technical Reports Server (NTRS)

    Hayes, J. M.; Kaufman, A. J.; Klein, C.; Studley, S. A.; Baur, M. E.; Walter, M. R.

    1986-01-01

    It is recognized that the first occurrence of banded iron-formations (BIFs) clearly predates biological oxygenation of the atmosphere-hydrosphere system and that their last occurrences extend beyond plausible dates of pervasive biological oxygenation. For this reason, and because enormous quantities of oxidizing power have been sequestered in them, it is widely thought that these massive, but enigmatic, sediments must encode information about the mechanism and timing of the rise of atmospheric O2. By coupling isotopic analyses of iron-formation carbonates with biogeochemical and petrologic investigations, we are studying (1) the mechanism of initial sedimentation of iron; (2) the role of iron in microbially mediated diagenetic processes in fresh iron-formation sediments; and (3) the logical integration of mechanisms of deposition with observed levels of banding. Thus far, it has been shown that (1) carbonates in BIFs of the Hamersley Group of Western Australia are isotopically inhomogenous; (2) the nature and pattern of isotopic ordering is not consistent with a metamorphic origin for the overall depletion of C-13 observed in the carbonates; (3) if biological, the origin of the C-13 depleted carbonate could be either respiratory or fermentative; (4) iron may have been precipitate d as Fe(3+), then reduced to Fe(2+) within the sediment; and (5) sedimentary biogeochemical systems may have been at least partially closed to mass transport of carbonate species.

  7. Drift-Scale Coupled Processes (DST and THC Seepage) Models

    SciTech Connect

    E. Gonnenthal; N. Spyoher

    2001-02-05

    The purpose of this Analysis/Model Report (AMR) is to document the Near-Field Environment (NFE) and Unsaturated Zone (UZ) models used to evaluate the potential effects of coupled thermal-hydrologic-chemical (THC) processes on unsaturated zone flow and transport. This is in accordance with the ''Technical Work Plan (TWP) for Unsaturated Zone Flow and Transport Process Model Report'', Addendum D, Attachment D-4 (Civilian Radioactive Waste Management System (CRWMS) Management and Operating Contractor (M and O) 2000 [153447]) and ''Technical Work Plan for Nearfield Environment Thermal Analyses and Testing'' (CRWMS M and O 2000 [153309]). These models include the Drift Scale Test (DST) THC Model and several THC seepage models. These models provide the framework to evaluate THC coupled processes at the drift scale, predict flow and transport behavior for specified thermal loading conditions, and predict the chemistry of waters and gases entering potential waste-emplacement drifts. The intended use of this AMR is to provide input for the following: (1) Performance Assessment (PA); (2) Abstraction of Drift-Scale Coupled Processes AMR (ANL-NBS-HS-000029); (3) UZ Flow and Transport Process Model Report (PMR); and (4) Near-Field Environment (NFE) PMR. The work scope for this activity is presented in the TWPs cited above, and summarized as follows: continue development of the repository drift-scale THC seepage model used in support of the TSPA in-drift geochemical model; incorporate heterogeneous fracture property realizations; study sensitivity of results to changes in input data and mineral assemblage; validate the DST model by comparison with field data; perform simulations to predict mineral dissolution and precipitation and their effects on fracture properties and chemistry of water (but not flow rates) that may seep into drifts; submit modeling results to the TDMS and document the models. The model development, input data, sensitivity and validation studies described in

  8. Drift-Scale Coupled Processes (DST and THC Seepage) Models

    SciTech Connect

    E. Sonnenthale

    2001-04-16

    The purpose of this Analysis/Model Report (AMR) is to document the Near-Field Environment (NFE) and Unsaturated Zone (UZ) models used to evaluate the potential effects of coupled thermal-hydrologic-chemical (THC) processes on unsaturated zone flow and transport. This is in accordance with the ''Technical Work Plan (TWP) for Unsaturated Zone Flow and Transport Process Model Report'', Addendum D, Attachment D-4 (Civilian Radioactive Waste Management System (CRWMS) Management and Operating Contractor (M&O) 2000 [1534471]) and ''Technical Work Plan for Nearfield Environment Thermal Analyses and Testing'' (CRWMS M&O 2000 [153309]). These models include the Drift Scale Test (DST) THC Model and several THC seepage models. These models provide the framework to evaluate THC coupled processes at the drift scale, predict flow and transport behavior for specified thermal loading conditions, and predict the chemistry of waters and gases entering potential waste-emplacement drifts. The intended use of this AMR is to provide input for the following: Performance Assessment (PA); Near-Field Environment (NFE) PMR; Abstraction of Drift-Scale Coupled Processes AMR (ANL-NBS-HS-000029); and UZ Flow and Transport Process Model Report (PMR). The work scope for this activity is presented in the TWPs cited above, and summarized as follows: Continue development of the repository drift-scale THC seepage model used in support of the TSPA in-drift geochemical model; incorporate heterogeneous fracture property realizations; study sensitivity of results to changes in input data and mineral assemblage; validate the DST model by comparison with field data; perform simulations to predict mineral dissolution and precipitation and their effects on fracture properties and chemistry of water (but not flow rates) that may seep into drifts; submit modeling results to the TDMS and document the models. The model development, input data, sensitivity and validation studies described in this AMR are required

  9. MOUNTAIN-SCALE COUPLED PROCESSES (TH/THC/THM)MODELS

    SciTech Connect

    Y.S. Wu

    2005-08-24

    This report documents the development and validation of the mountain-scale thermal-hydrologic (TH), thermal-hydrologic-chemical (THC), and thermal-hydrologic-mechanical (THM) models. These models provide technical support for screening of features, events, and processes (FEPs) related to the effects of coupled TH/THC/THM processes on mountain-scale unsaturated zone (UZ) and saturated zone (SZ) flow at Yucca Mountain, Nevada (BSC 2005 [DIRS 174842], Section 2.1.1.1). The purpose and validation criteria for these models are specified in ''Technical Work Plan for: Near-Field Environment and Transport: Coupled Processes (Mountain-Scale TH/THC/THM, Drift-Scale THC Seepage, and Drift-Scale Abstraction) Model Report Integration'' (BSC 2005 [DIRS 174842]). Model results are used to support exclusion of certain FEPs from the total system performance assessment for the license application (TSPA-LA) model on the basis of low consequence, consistent with the requirements of 10 CFR 63.342 [DIRS 173273]. Outputs from this report are not direct feeds to the TSPA-LA. All the FEPs related to the effects of coupled TH/THC/THM processes on mountain-scale UZ and SZ flow are discussed in Sections 6 and 7 of this report. The mountain-scale coupled TH/THC/THM processes models numerically simulate the impact of nuclear waste heat release on the natural hydrogeological system, including a representation of heat-driven processes occurring in the far field. The mountain-scale TH simulations provide predictions for thermally affected liquid saturation, gas- and liquid-phase fluxes, and water and rock temperature (together called the flow fields). The main focus of the TH model is to predict the changes in water flux driven by evaporation/condensation processes, and drainage between drifts. The TH model captures mountain-scale three-dimensional flow effects, including lateral diversion and mountain-scale flow patterns. The mountain-scale THC model evaluates TH effects on water and gas

  10. Unraveling signatures of biogeochemical processes and the depositional setting in the molecular composition of pore water DOM across different marine environments

    NASA Astrophysics Data System (ADS)

    Schmidt, Frauke; Koch, Boris P.; Goldhammer, Tobias; Elvert, Marcus; Witt, Matthias; Lin, Yu-Shih; Wendt, Jenny; Zabel, Matthias; Heuer, Verena B.; Hinrichs, Kai-Uwe

    2017-06-01

    Dissolved organic matter (DOM) in marine sediment pore waters derives largely from decomposition of particulate organic matter and its composition is influenced by various biogeochemical and oceanographic processes in yet undetermined ways. Here, we determine the molecular inventory of pore water DOM in marine sediments of contrasting depositional regimes with ultrahigh-resolution mass spectrometry and complementary bulk chemical analyses in order to elucidate the factors that shape DOM composition. Our sample sets from the Mediterranean, Marmara and Black Seas covered different sediment depths, ages and a range of marine environments with different (i) organic matter sources, (ii) balances of organic matter production and preservation, and (iii) geochemical conditions in sediment and water column including anoxic, sulfidic and hypersaline conditions. Pore water DOM had a higher molecular formula richness than overlying water with up to 11,295 vs. 2114 different molecular formulas in the mass range of 299-600 Da and covered a broader range of element ratios (H/C = 0.35-2.19, O/C = 0.03-1.19 vs. H/C = 0.56-2.13, O/C = 0.15-1.14). Formula richness was independent of concentrations of DOC and TOC. Near-surface pore water DOM was more similar to water column DOM than to deep pore water DOM from the same core with respect to formula richness and the molecular composition, suggesting exchange at the sediment-water interface. The DOM composition in the deeper sediments was controlled by organic matter source, selective decomposition of specific DOM fractions and early diagenetic molecule transformations. Compounds in pelagic sediment pore waters were predominantly highly unsaturated and N-bearing formulas, whereas oxygen-rich CHO-formulas and aromatic compounds were more abundant in pore water DOM from terrigenous sediments. The increase of S-bearing molecular formulas in the water column and pore waters of the Black Sea and the Mediterranean Discovery Basin was

  11. Calcium dynamics in astrocyte processes during neurovascular coupling

    PubMed Central

    Otsu, Yo; Couchman, Kiri; Lyons, Declan G; Collot, Mayeul; Agarwal, Amit; Mallet, Jean-Maurice; Pfrieger, Frank W; Bergles, Dwight E; Charpak, Serge

    2015-01-01

    Enhanced neuronal activity in the brain triggers a local increase in blood flow, termed functional hyperemia, via several mechanisms, including calcium (Ca2+) signaling in astrocytes. However, recent in vivo studies have questioned the role of astrocytes in functional hyperemia because of the slow and sparse dynamics of their somatic Ca2+ signals and the absence of glutamate metabotropic receptor 5 in adults. Here, we reexamined their role in neurovascular coupling by selectively expressing a genetically encoded Ca2+ sensor in astrocytes of the olfactory bulb. We show that in anesthetized mice, the physiological activation of olfactory sensory neuron (OSN) terminals reliably triggers Ca2+ increases in astrocyte processes but not in somata. These Ca2+ increases systematically precede the onset of functional hyperemia by 1–2 s, reestablishing astrocytes as potential regulators of neurovascular coupling. PMID:25531572

  12. BIOGEOCHEMICAL STUDIES OF PHOTOSYNTHETIC MICROBIAL MATS AND THEIR BIOTA

    NASA Technical Reports Server (NTRS)

    DesMarais, David; Discipulo, M.; Turk, K.; Londry, K. L.

    2005-01-01

    Photosynthetic microbial mats offer an opportunity to define holistic functionality at the millimeter scale. At the same time. their biogeochemistry contributes to environmental processes on a planetary scale. These mats are possibly direct descendents of the most ancient biological communities; communities in which oxygenic photosynthesis might have been invented. Mats provide one of the best natural systems to study how microbial populations associate to control dynamic biogeochemical gradients. These are self- sustaining, complete ecosystems in which light energy absorbed over a dial (24 hour) cycle drives the synthesis of spatially-organized, diverse biomass. Tightly-coupled microorganisms in the mat have specialized metabolisms that catalyze transformations of carbon, nitrogen, sulfur, and a host of other elements.

  13. Model coupling for predicting a developmental patterning process

    NASA Astrophysics Data System (ADS)

    Dhulekar, Nimit; Oztan, Basak; Yener, Bülent

    2016-03-01

    Physics-based-theoretical models have been used to predict developmental patterning processes such as branching morphogenesis for over half a century. While such techniques are quite successful in understanding the patterning processes in organs such as the lung and the kidney, they are unable to accurately model the processes in other organs such as the submandibular salivary gland. One possible reason is the detachment of these models from data that describe the underlying biological process. This hypothesis coupled with the increasing availability of high quality data has made discrete, data-driven models attractive alternatives. These models are based on extracting features from data to describe the patterns and their time evolving multivariate statistics. These discrete models have low computational complexity and comparable or better accuracy than the continuous models. This paper presents a case study for coupling continuous-physics-based and discrete-empirical-models to address the prediction of cleft formation during the early stages of branching morphogenesis in mouse submandibular salivary glands (SMG). Given a time-lapse movie of a growing SMG, first we build a descriptive model that captures the underlying biological process and quantifies this ground truth. Tissue-scale (global) morphological features are used to characterize the biological ground truth. Second, we formulate a predictive model using the level-set method that simulates branching morphogenesis. This model successfully predicts the topological evolution, however, it is blind to the cellular organization, and cell-to-cell interactions occurring inside a gland; information that is available in the image data. Our primary objective via this study is to couple the continuous level set model with a discrete graph theory model that captures the cellular organization but ignores the forces that determine the evolution of the gland surface, i.e. formation of clefts and buds. We compared the

  14. Impacts of mesoscale eddies in the South China Sea on biogeochemical cycles

    NASA Astrophysics Data System (ADS)

    Guo, Mingxian; Chai, Fei; Xiu, Peng; Li, Shiyu; Rao, Shivanesh

    2015-09-01

    Biogeochemical cycles associated with mesoscale eddies in the South China Sea (SCS) were investigated. The study was based on a coupled physical-biogeochemical Pacific Ocean model (Regional Ocean Model System-Carbon, Silicate, and Nitrogen Ecosystem, ROMS-CoSiNE) simulation for the period from 1991 to 2008. A total of 568 mesoscale eddies with lifetime longer than 30 days were used in the analysis. Composite analysis revealed that the cyclonic eddies were associated with abundance of nutrients, phytoplankton, and zooplankton while the anticyclonic eddies depressed biogeochemical cycles, which are generally controlled by the eddy pumping mechanism. In addition, diatoms were dominant in phytoplankton species due to the abundance of silicate. Dipole structures of vertical fluxes with net upward motion in cyclonic eddies and net downward motion in anticyclonic eddies were revealed. During the lifetime of an eddy, the evolutions of physical, biological, and chemical structures were not linearly coupled at the eddy core where plankton grew, and composition of the community depended not only on the physical and chemical processes but also on the adjustments by the predator-prey relationship.

  15. Molecular biogeochemical provinces in the Atlantic Surface Ocean

    NASA Astrophysics Data System (ADS)

    Koch, B. P.; Flerus, R.; Schmitt-Kopplin, P.; Lechtenfeld, O. J.; Bracher, A.; Cooper, W.; Frka, S.; Gašparović, B.; Gonsior, M.; Hertkorn, N.; Jaffe, R.; Jenkins, A.; Kuss, J.; Lara, R. J.; Lucio, M.; McCallister, S. L.; Neogi, S. B.; Pohl, C.; Roettgers, R.; Rohardt, G.; Schmitt, B. B.; Stuart, A.; Theis, A.; Ying, W.; Witt, M.; Xie, Z.; Yamashita, Y.; Zhang, L.; Zhu, Z. Y.; Kattner, G.

    2010-12-01

    One of the most important aspects to understand marine organic carbon fluxes is to resolve the molecular mechanisms which convert fresh, labile biomolecules into semi-labile and refractory dissolved and particulate organic compounds in the ocean. In this interdisciplinary project, which was performed on a cruise with RV Polarstern, we carried out a detailed molecular characterisation of dissolved organic matter (DOM) on a North-South transect in the Atlantic surface ocean in order to relate the data to different biological, climatic, oceanographic, and meteorological regimes as well as to terrestrial input from riverine and atmospheric sources. Our goal was to achieve a high resolution data set for the biogeochemical characterisation of the sources and reactivity of DOM. We applied ultrahigh resolution Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS), nutrient, trace element, amino acid, and lipid analyses and other biogeochemical measurements for 220 samples from the upper water column (0-200m) and eight deep profiles. Various spectroscopic techniques were applied continuously in a constant sample water flow supplied by a fish system and the moon pool. Radiocarbon dating enabled assessing DOC residence time. Bacterial abundance and production provided a metabolic context for the DOM characterization work and pCO2 concentrations. Combining molecular organic techniques and inductively coupled plasma mass spectrometry (ICP-MS) established an important link between organic and inorganic biogeochemical studies. Multivariate statistics, primarily based on FT-ICR-MS data for 220 samples, allowed identifying geographical clusters which matched ecological provinces proposed previously by Longhurst (2007). Our study demonstrated that marine DOM carries molecular information reflecting the “history” of ocean water masses. This information can be used to define molecular biogeochemical provinces and to improve our understanding of element fluxes in

  16. Modeling Coupled Processes in Clay Formations for Radioactive Waste Disposal

    SciTech Connect

    Liu, Hui-Hai; Rutqvist, Jonny; Zheng, Liange; Sonnenthal, Eric; Houseworth, Jim; Birkholzer, Jens

    2010-08-31

    As a result of the termination of the Yucca Mountain Project, the United States Department of Energy (DOE) has started to explore various alternative avenues for the disposition of used nuclear fuel and nuclear waste. The overall scope of the investigation includes temporary storage, transportation issues, permanent disposal, various nuclear fuel types, processing alternatives, and resulting waste streams. Although geologic disposal is not the only alternative, it is still the leading candidate for permanent disposal. The realm of geologic disposal also offers a range of geologic environments that may be considered, among those clay shale formations. Figure 1-1 presents the distribution of clay/shale formations within the USA. Clay rock/shale has been considered as potential host rock for geological disposal of high-level nuclear waste throughout the world, because of its low permeability, low diffusion coefficient, high retention capacity for radionuclides, and capability to self-seal fractures induced by tunnel excavation. For example, Callovo-Oxfordian argillites at the Bure site, France (Fouche et al., 2004), Toarcian argillites at the Tournemire site, France (Patriarche et al., 2004), Opalinus clay at the Mont Terri site, Switzerland (Meier et al., 2000), and Boom clay at Mol site, Belgium (Barnichon et al., 2005) have all been under intensive scientific investigations (at both field and laboratory scales) for understanding a variety of rock properties and their relations with flow and transport processes associated with geological disposal of nuclear waste. Clay/shale formations may be generally classified as indurated and plastic clays (Tsang et al., 2005). The latter (including Boom clay) is a softer material without high cohesion; its deformation is dominantly plastic. For both clay rocks, coupled thermal, hydrological, mechanical and chemical (THMC) processes are expected to have a significant impact on the long-term safety of a clay repository. For

  17. Model-based risk analysis of coupled process steps.

    PubMed

    Westerberg, Karin; Broberg-Hansen, Ernst; Sejergaard, Lars; Nilsson, Bernt

    2013-09-01

    A section of a biopharmaceutical manufacturing process involving the enzymatic coupling of a polymer to a therapeutic protein was characterized with regards to the process parameter sensitivity and design space. To minimize the formation of unwanted by-products in the enzymatic reaction, the substrate was added in small amounts and unreacted protein was separated using size-exclusion chromatography (SEC) and recycled to the reactor. The quality of the final recovered product was thus a result of the conditions in both the reactor and the SEC, and a design space had to be established for both processes together. This was achieved by developing mechanistic models of the reaction and SEC steps, establishing the causal links between process conditions and product quality. Model analysis was used to complement the qualitative risk assessment, and design space and critical process parameters were identified. The simulation results gave an experimental plan focusing on the "worst-case regions" in terms of product quality and yield. In this way, the experiments could be used to verify both the suggested process and the model results. This work demonstrates the necessary steps of model-assisted process analysis, from model development through experimental verification. Copyright © 2013 Wiley Periodicals, Inc.

  18. Upscalling processes in an ocean-atmosphere multiscale coupled model

    NASA Astrophysics Data System (ADS)

    Masson, S. G.; Berthet, S.; Samson, G.; Crétat, J.; Colas, F.; Echevin, V.; Jullien, S.; Hourdin, C.

    2015-12-01

    This work explores new pathways toward a better representation of the multi-scale physics that drive climate variability. We are analysing the key upscaling processes by which small-scale localized errors have a knock-on effect onto global climate. We focus on the Peru-Chilli coastal upwelling, an area known to hold among the strongest models biases in the Tropics. Our approach is based on the development of a multiscale coupling interface allowing us to couple WRF with the NEMO oceanic model in a configuration including 2-way nested zooms in the oceanic and/or the atmospheric component of the coupled model. Upscalling processes are evidenced and quantified by comparing three 20-year long simulations of a tropical channel (45°S-45°N), which differ by their horizontal resolution: 0.75° everywhere, 0.75°+0.25° zoom in the southeastern Pacific or 0.25° everywhere. This set of three 20-year long simulations was repeated with 3 different sets of parameterizations to assess the robustness of our results. Our results show that adding an embedded zoom over the southeastern Pacific only in the atmosphere cools down the SST along the Peru-Chili coast, which is a clear improvement. This change is associated with a displacement of the low-level cloud cover, which moves closer to the coast cooling further the coastal area SST. Offshore, we observe the opposite effect with a reduction of the cloud cover with higher resolution, which increases solar radiation and warms the SST. Increasing the resolution in the oceanic component show contrasting results according to the different set parameterization used in the experiments. Some experiment shows a coastal cooling as expected, whereas, in other cases, we observe a counterintuitive response with a warming of the coastal SST. Using at the same time an oceanic and an atmospheric zoom mostly combines the results obtained when using the 2-way nesting in only one component of the coupled model. In the best case, we archive by this

  19. Biogeochemical processes in an urban, restored wetland of San Francisco Bay, California, 2007-2009; methods and data for plant, sediment and water parameters

    USGS Publications Warehouse

    Windham-Myers, Lisamarie; Marvin-DiPasquale, Mark C.; Agee, Jennifer L.; Kieu, Le H.; Kakouros, Evangelos; Erikson, Li H.; Ward, Kristen

    2010-01-01

    The restoration of 18 acres of historic tidal marsh at Crissy Field has had great success in terms of public outreach and visibility, but less success in terms of revegetated marsh sustainability. Native cordgrass (Spartina foliosa) has experienced dieback and has failed to recolonize following extended flooding events during unintended periodic closures of its inlet channel, which inhibits daily tidal flushing. We examined the biogeochemical impacts of these impoundment events on plant physiology and on sulfur and mercury chemistry to help the National Park Service land managers determine the relative influence of these inlet closures on marsh function. In this comparative study, we examined key pools of sulfur, mercury, and carbon compounds both during and between closure events. Further, we estimated the net hydrodynamic flux of methylmercury and total mercury to and from the marsh during a 24-hour diurnal cycle. This report documents the methods used and the data generated during the study.

  20. Vegetation, Hydrology and Biogeochemical Cycling: An Integrated View of Controls, Linkages and Feedbacks

    NASA Astrophysics Data System (ADS)

    Reynolds, J. F.

    2003-12-01

    Many current environmental challenges (e.g., diminished water quality and supply, desertified ecosystems, climate change impacts) require an interdisciplinary understanding of the coupled behavior of vegetation, hydrology, and biogeochemical cycling. Perhaps nowhere is such interdisciplinary insight more important than in the water-limited arid and semi-arid regions of the Earth. Vegetation plays a key role in hydrological processes in these systems, affecting the evaporation, transpiration, runoff, and recharge components of the water balance. Similarly, hydrological processes are a major determinant of many ecosystem processes, including seed germination, primary productivity, the distribution of vegetation, and biogeochemical cycling of carbon, nitrogen, and other nutrients. Using examples from the Mojave, Sonoran and Chihuahuan deserts of North America, this lecture will examine the interrelated roles of vegetation, hydrological cycles and biogeochemical cycles, ranging from patch to watershed scales. Key components, nonlinearities and linkages will be identified, including critical gaps in our understanding and new approaches and methods needed to advance our current ability to characterize and model complex environmental systems. These issues will be addressed in the context of both theoretical and field-based research.

  1. Basin-wide modification of dynamical and biogeochemical processes by the positive phase of the Indian Ocean dipole during the SeaWiFS era

    NASA Astrophysics Data System (ADS)

    Wiggert, Jerry D.; Vialard, Jérôme; Behrenfeld, Michael J.

    Characterizing how the Indian Ocean dipole (IOD) modifies typical basin-wide dynamical variability has been vigorously pursued over the past decade. Along with this dynamic response, a clear biological impact has been revealed in the ocean color data acquired by remote sensing platforms such as Sea-viewing Wide Field-of-View Sensor (SeaWiFS). The signature feature illustrating IOD alteration of typical spatiotemporal chlorophyll variability is the phytoplankton bloom that first appears in September along the eastern boundary of the IO in tropical waters that are normally highly oligotrophic. Positive chlorophyll anomalies (CLa) are also apparent in the southeastern Bay of Bengal, while negative anomalies are observed over much of the Arabian Sea. Moreover, in situ measurements obtained by the R/V Suroit as part of the Cirene cruise during the 2006/2007 IOD reveal anomalous subsurface biochemical distributions in the southern tropical IO that are not reflected in SeaWiFS data. Despite the clear basin-wide influence of IOD events on biological variability, the accompanying influence on biogeochemical cycling that must occur has received little attention. Here, the dynamical signatures apparent in remote sensing fields for the two positive-phase IODs of the SeaWiFS era are used to illuminate how these events are similar or distinct. A corresponding comparison of IOD-engendered surface CLa is performed, with the dynamical fields providing the framework for interpreting the mechanisms underlying the biological response. Then, results from a newly developed net primary production algorithm are presented that provide the first characterization of how biogeochemical fluxes throughout the IO are altered by IOD occurrence

  2. A Fully Coupled Computational Model of the Silylation Process

    SciTech Connect

    G. H. Evans; R. S. Larson; V. C. Prantil; W. S. Winters

    1999-02-01

    This report documents the development of a new finite element model of the positive tone silylation process. Model development makes use of pre-existing Sandia technology used to describe coupled thermal-mechanical behavior in deforming metals. Material properties and constitutive models were obtained from the literature. The model is two-dimensional and transient and focuses on the part of the lithography process in which crosslinked and uncrosslinked resist is exposed to a gaseous silylation agent. The model accounts for the combined effects of mass transport (diffusion of silylation agent and reaction product), chemical reaction resulting in the uptake of silicon and material swelling, the generation of stresses, and the resulting material motion. The influence of stress on diffusion and reaction rates is also included.

  3. Biogeochemical Cycles in Degraded Lands

    NASA Technical Reports Server (NTRS)

    Davidson, Eric A.; Vieira, Ima Celia G.; ReisdeCarvalho, Claudio Jose; DeanedeAbreuSa, Tatiana; deSouzaMoutinho, Paulo R.; Figueiredo, Ricardo O.; Stone, Thomas A.

    2004-01-01

    The objectives of this project were to define and describe the types of landscapes that fall under the broad category of "degraded lands" and to study biogeochemical cycles across this range of degradation found in secondary forests. We define degraded land as that which has lost part of its capacity of renovation of a productive ecosystem, either in the context of agroecosystems or as native communities of vegetation. This definition of degradation permits evaluation of biogeochemical constraints to future land uses.

  4. Biogeochemical Cycles in Degraded Lands

    NASA Technical Reports Server (NTRS)

    Davidson, Eric A.; Vieira, Ima Celia G.; ReisdeCarvalho, Claudio Jose; DeaneDeAbreuSa, Tatiana; deSpozaMoutinho, Paulo R.; Figueiredo, Ricardo O.; Stone, Thomas A.

    2003-01-01

    The objectives of this project were to define and describe the types of landscapes that fall under the broad category of "degraded lands" and to study biogeochemical cycles across this range of degradation found in secondary forests. We define degraded land as that which has lost part of its capacity of renovation of a productive ecosystem, either in the context of agroecosystems or as native communities of vegetation. This definition of degradation permits evaluation of biogeochemical constraints to future land uses.

  5. Biogeochemical Cycles in Degraded Lands

    NASA Technical Reports Server (NTRS)

    Davidson, Eric A.; Vieira, Ima Celia G.; ReisdeCarvalho, Claudio Jose; DeaneDeAbreuSa, Tatiana; deSpozaMoutinho, Paulo R.; Figueiredo, Ricardo O.; Stone, Thomas A.

    2003-01-01

    The objectives of this project were to define and describe the types of landscapes that fall under the broad category of "degraded lands" and to study biogeochemical cycles across this range of degradation found in secondary forests. We define degraded land as that which has lost part of its capacity of renovation of a productive ecosystem, either in the context of agroecosystems or as native communities of vegetation. This definition of degradation permits evaluation of biogeochemical constraints to future land uses.

  6. Drift-Scale Coupled Processes (DST and THC Seepage) Models

    SciTech Connect

    P. Dixon

    2004-04-05

    The purpose of this Model Report (REV02) is to document the unsaturated zone (UZ) models used to evaluate the potential effects of coupled thermal-hydrological-chemical (THC) processes on UZ flow and transport. This Model Report has been developed in accordance with the ''Technical Work Plan for: Performance Assessment Unsaturated Zone'' (Bechtel SAIC Company, LLC (BSC) 2002 [160819]). The technical work plan (TWP) describes planning information pertaining to the technical scope, content, and management of this Model Report in Section 1.12, Work Package AUZM08, ''Coupled Effects on Flow and Seepage''. The plan for validation of the models documented in this Model Report is given in Attachment I, Model Validation Plans, Section I-3-4, of the TWP. Except for variations in acceptance criteria (Section 4.2), there were no deviations from this TWP. This report was developed in accordance with AP-SIII.10Q, ''Models''. This Model Report documents the THC Seepage Model and the Drift Scale Test (DST) THC Model. The THC Seepage Model is a drift-scale process model for predicting the composition of gas and water that could enter waste emplacement drifts and the effects of mineral alteration on flow in rocks surrounding drifts. The DST THC model is a drift-scale process model relying on the same conceptual model and much of the same input data (i.e., physical, hydrological, thermodynamic, and kinetic) as the THC Seepage Model. The DST THC Model is the primary method for validating the THC Seepage Model. The DST THC Model compares predicted water and gas compositions, as well as mineral alteration patterns, with observed data from the DST. These models provide the framework to evaluate THC coupled processes at the drift scale, predict flow and transport behavior for specified thermal-loading conditions, and predict the evolution of mineral alteration and fluid chemistry around potential waste emplacement drifts. The DST THC Model is used solely for the validation of the THC

  7. The Detection of Phase Amplitude Coupling during Sensory Processing.

    PubMed

    Seymour, Robert A; Rippon, Gina; Kessler, Klaus

    2017-01-01

    There is increasing interest in understanding how the phase and amplitude of distinct neural oscillations might interact to support dynamic communication within the brain. In particular, previous work has demonstrated a coupling between the phase of low frequency oscillations and the amplitude (or power) of high frequency oscillations during certain tasks, termed phase amplitude coupling (PAC). For instance, during visual processing in humans, PAC has been reliably observed between ongoing alpha (8-13 Hz) and gamma-band (>40 Hz) activity. However, the application of PAC metrics to electrophysiological data can be challenging due to numerous methodological issues and lack of coherent approaches within the field. Therefore, in this article we outline the various analysis steps involved in detecting PAC, using an openly available MEG dataset from 16 participants performing an interactive visual task. Firstly, we localized gamma and alpha-band power using the Fieldtrip toolbox, and extracted time courses from area V1, defined using a multimodal parcelation scheme. These V1 responses were analyzed for changes in alpha-gamma PAC, using four common algorithms. Results showed an increase in alpha (7-13 Hz)-gamma (40-100 Hz) PAC in response to the visual grating stimulus, though specific patterns of coupling were somewhat dependent upon the algorithm employed. Additionally, post-hoc analyses showed that these results were not driven by the presence of non-sinusoidal oscillations, and that trial length was sufficient to obtain reliable PAC estimates. Finally, throughout the article, methodological issues and practical guidelines for ongoing PAC research will be discussed.

  8. Anomalous diffusion and scaling in coupled stochastic processes

    SciTech Connect

    Bel, Golan; Nemenman, Ilya

    2009-01-01

    Inspired by problems in biochemical kinetics, we study statistical properties of an overdamped Langevin processes with the friction coefficient depending on the state of a similar, unobserved, process. Integrating out the latter, we derive the Pocker-Planck the friction coefficient of the first depends on the state of the second. Integrating out the latter, we derive the Focker-Planck equation for the probability distribution of the former. This has the fonn of diffusion equation with time-dependent diffusion coefficient, resulting in an anomalous diffusion. The diffusion exponent can not be predicted using a simple scaling argument, and anomalous scaling appears as well. The diffusion exponent of the Weiss-Havlin comb model is derived as a special case, and the same exponent holds even for weakly coupled processes. We compare our theoretical predictions with numerical simulations and find an excellent agreement. The findings caution against treating biochemical systems with unobserved dynamical degrees of freedom by means of standandard, diffusive Langevin descritpion.

  9. [A new strategy for Chinese medicine processing technologies: coupled with individuation processed and cybernetics].

    PubMed

    Zhang, Ding-kun; Yang, Ming; Han, Xue; Lin, Jun-zhi; Wang, Jia-bo; Xiao, Xiao-he

    2015-08-01

    The stable and controllable quality of decoction pieces is an important factor to ensure the efficacy of clinical medicine. Considering the dilemma that the existing standardization of processing mode cannot effectively eliminate the variability of quality raw ingredients, and ensure the stability between different batches, we first propose a new strategy for Chinese medicine processing technologies that coupled with individuation processed and cybernetics. In order to explain this thinking, an individual study case about different grades aconite is provided. We hope this strategy could better serve for clinical medicine, and promote the inheritance and innovation of Chinese medicine processing skills and theories.

  10. Mountain-Scale Coupled Processes (TH/THC/THM)

    SciTech Connect

    P. Dixon

    2004-02-09

    The purpose of this Model Report is to document the development of the Mountain-Scale Thermal-Hydrological (TH), Thermal-Hydrological-Chemical (THC), and Thermal-Hydrological-Mechanical (THM) Models and evaluate the effects of coupled TH/THC/THM processes on mountain-scale UZ flow at Yucca Mountain, Nevada. This Model Report was planned in ''Technical Work Plan (TWP) for: Performance Assessment Unsaturated Zone'' (BSC 2002 [160819], Section 1.12.7), and was developed in accordance with AP-SIII.10Q, Models. In this Model Report, any reference to ''repository'' means the nuclear waste repository at Yucca Mountain, and any reference to ''drifts'' means the emplacement drifts at the repository horizon. This Model Report provides the necessary framework to test conceptual hypotheses for analyzing mountain-scale hydrological/chemical/mechanical changes and predict flow behavior in response to heat release by radioactive decay from the nuclear waste repository at the Yucca Mountain site. The mountain-scale coupled TH/THC/THM processes models numerically simulate the impact of nuclear waste heat release on the natural hydrogeological system, including a representation of heat-driven processes occurring in the far field. The TH simulations provide predictions for thermally affected liquid saturation, gas- and liquid-phase fluxes, and water and rock temperature (together called the flow fields). The main focus of the TH Model is to predict the changes in water flux driven by evaporation/condensation processes, and drainage between drifts. The TH Model captures mountain-scale three dimensional (3-D) flow effects, including lateral diversion at the PTn/TSw interface and mountain-scale flow patterns. The Mountain-Scale THC Model evaluates TH effects on water and gas chemistry, mineral dissolution/precipitation, and the resulting impact to UZ hydrological properties, flow and transport. The THM Model addresses changes in permeability due to mechanical and thermal disturbances in

  11. Interactions of Biogeochemical Cycles in Oncoid Microbialites from Cuatro Ciénegas, Mexico

    NASA Astrophysics Data System (ADS)

    Corman, J. R.; Souza, V.; Elser, J. J.

    2010-04-01

    Modern microbialite systems may provide unique opportunities to study the feedbacks that couple or uncouple multiple biogeochemical cycles. Here we present results from a two-week manipulative ecosystem experiment using oncoid microbialites from Cuatro Ciénegas, Mexico.

  12. Quantification of terrestrial ecosystem carbon dynamics in the conterminous United States combining a process-based biogeochemical model and MODIS and AmeriFlux data

    NASA Astrophysics Data System (ADS)

    Chen, M.; Zhuang, Q.; Cook, D. R.; Coulter, R.; Pekour, M.; Scott, R. L.; Munger, J. W.; Bible, K.

    2011-03-01

    Satellite remote sensing provides continuous temporal and spatial information of terrestrial ecosystems. Using these remote sensing data and eddy flux measurements and biogeochemical models, such as the Terrestrial Ecosystem Model (TEM), should provide a more adequate quantification of carbon dynamics of terrestrial ecosystems. Here we use Moderate Resolution Imaging Spectroradiometer (MODIS) Enhanced Vegetation Index (EVI), Land Surface Water Index (LSWI) and carbon flux data of AmeriFlux to conduct such a study. We first modify the Gross Primary Production (GPP) modeling in TEM by incorporating EVI and LSWI to account for the effects of the changes of canopy photosynthetic capacity, phenology and water stress. Second, we parameterize and verify the new version of TEM with eddy flux data. We then apply the model to the conterminous United States over the period 2000-2005 at a 0.05°×0.05° spatial resolution. We find that the new version of TEM generally captured the expected temporal and spatial patterns of regional carbon dynamics. We estimate that regional GPP is between 7.02 and 7.78 Pg C yr-1 and Net Primary Production (NPP) ranges from 3.81 to 4.38 Pg C yr-1 and Net Ecosystem Production (NEP) varies within 0.08-0.73 Pg C yr-1 over the period 2000-2005 for the conterminous United States. The uncertainty due to parameterization is 0.34, 0.65 and 0.18 Pg C yr-1 for the regional estimates of GPP, NPP and NEP, respectively. The effects of extreme climate and disturbances such as severe drought in 2002 and destructive Hurricane Katrina in 2005 were captured by the model. Our study provides a new independent and more adequate measure of carbon fluxes for the conterminous United States, which will benefit studies of carbon-climate feedback and facilitate policy-making of carbon management and climate.

  13. Quantification of terrestrial ecosystem carbon dynamics in the conterminous United States combining a process-based biogeochemical model and MODIS and AmeriFlux data

    NASA Astrophysics Data System (ADS)

    Chen, M.; Zhuang, Q.; Cook, D. R.; Coulter, R.; Pekour, M.; Scott, R. L.; Munger, J. W.; Bible, K.

    2011-09-01

    Satellite remote sensing provides continuous temporal and spatial information of terrestrial ecosystems. Using these remote sensing data and eddy flux measurements and biogeochemical models, such as the Terrestrial Ecosystem Model (TEM), should provide a more adequate quantification of carbon dynamics of terrestrial ecosystems. Here we use Moderate Resolution Imaging Spectroradiometer (MODIS) Enhanced Vegetation Index (EVI), Land Surface Water Index (LSWI) and carbon flux data of AmeriFlux to conduct such a study. We first modify the gross primary production (GPP) modeling in TEM by incorporating EVI and LSWI to account for the effects of the changes of canopy photosynthetic capacity, phenology and water stress. Second, we parameterize and verify the new version of TEM with eddy flux data. We then apply the model to the conterminous United States over the period 2000-2005 at a 0.05° × 0.05° spatial resolution. We find that the new version of TEM made improvement over the previous version and generally captured the expected temporal and spatial patterns of regional carbon dynamics. We estimate that regional GPP is between 7.02 and 7.78 Pg C yr-1 and net primary production (NPP) ranges from 3.81 to 4.38 Pg C yr-1 and net ecosystem production (NEP) varies within 0.08-0.73 Pg C yr-1 over the period 2000-2005 for the conterminous United States. The uncertainty due to parameterization is 0.34, 0.65 and 0.18 Pg C yr-1 for the regional estimates of GPP, NPP and NEP, respectively. The effects of extreme climate and disturbances such as severe drought in 2002 and destructive Hurricane Katrina in 2005 were captured by the model. Our study provides a new independent and more adequate measure of carbon fluxes for the conterminous United States, which will benefit studies of carbon-climate feedback and facilitate policy-making of carbon management and climate.

  14. Drift-Scale Coupled Processes (DST and TH Seepage) Models

    SciTech Connect

    J. Birkholzer; S. Mukhopadhyay

    2004-09-29

    The purpose of this report is to document drift-scale modeling work performed to evaluate the thermal-hydrological (TH) behavior in Yucca Mountain fractured rock close to waste emplacement drifts. The heat generated by the decay of radioactive waste results in rock temperatures elevated from ambient for thousands of years after emplacement. Depending on the thermal load, these temperatures are high enough to cause boiling conditions in the rock, giving rise to water redistribution and altered flow paths. The predictive simulations described in this report are intended to investigate fluid flow in the vicinity of an emplacement drift for a range of thermal loads. Understanding the TH coupled processes is important for the performance of the repository because the thermally driven water saturation changes affect the potential seepage of water into waste emplacement drifts. Seepage of water is important because if enough water gets into the emplacement drifts and comes into contact with any exposed radionuclides, it may then be possible for the radionuclides to be transported out of the drifts and to the groundwater below the drifts. For above-boiling rock temperatures, vaporization of percolating water in the fractured rock overlying the repository can provide an important barrier capability that greatly reduces (and possibly eliminates) the potential of water seeping into the emplacement drifts. In addition to this thermal process, water is inhibited from entering the drift opening by capillary forces, which occur under both ambient and thermal conditions (capillary barrier). The combined barrier capability of vaporization processes and capillary forces in the near-field rock during the thermal period of the repository is analyzed and discussed in this report.

  15. DRIFT-SCALE COUPLED PROCESSES (DST AND TH SEEPAGE) MODELS

    SciTech Connect

    J.T. Birkholzer; S. Mukhopadhyay

    2005-01-13

    The purpose of this report is to document drift-scale modeling work performed to evaluate the thermal-hydrological (TH) behavior in Yucca Mountain fractured rock close to waste emplacement drifts. The heat generated by the decay of radioactive waste results in rock temperatures elevated from ambient for thousands of years after emplacement. Depending on the thermal load, these temperatures are high enough to cause boiling conditions in the rock, giving rise to water redistribution and altered flow paths. The predictive simulations described in this report are intended to investigate fluid flow in the vicinity of an emplacement drift for a range of thermal loads. Understanding the TH coupled processes is important for the performance of the repository because the thermally driven water saturation changes affect the potential seepage of water into waste emplacement drifts. Seepage of water is important because if enough water gets into the emplacement drifts and comes into contact with any exposed radionuclides, it may then be possible for the radionuclides to be transported out of the drifts and to the groundwater below the drifts. For above-boiling rock temperatures, vaporization of percolating water in the fractured rock overlying the repository can provide an important barrier capability that greatly reduces (and possibly eliminates) the potential of water seeping into the emplacement drifts. In addition to this thermal process, water is inhibited from entering the drift opening by capillary forces, which occur under both ambient and thermal conditions (capillary barrier). The combined barrier capability of vaporization processes and capillary forces in the near-field rock during the thermal period of the repository is analyzed and discussed in this report.

  16. Carbon sources and biogeochemical processes in Monticchio maar lakes, Mt Vulture volcano (southern Italy): New geochemical constrains of active degassing of mantle derived fluids

    NASA Astrophysics Data System (ADS)

    Caracausi, A.; Nuccio, P. M.; Favara, R.; Grassa, F.

    2012-04-01

    difference in methane contents between shallower (< 14m) and deep water, being CH4 concentrations higher in the stagnant volume of waters. Nonetheless the large gradient in methane contents (CH4 increases with depth) observed in the deep waters both C and H isotopes of methane remain constant with depth. In contrast, in the shallow waters the changes in dissolved CH4 contents are accompanied with modifications in the isotope signature of methane thus indicating that oxidation processes seem to be relevant only at a depth lower than 14 m. It is striking that in this lake, CO2-reduction is thought to be the main methanogenesis pathway for methane dissolved in the waters, while in the sediments methane is mainly produced by acetate fermentation. As methanogenesis processes leads to both bacterial consumption and production of CO2, the quantification of these becomes fundamental in inferring the nature and the quantitative releasing of carbon dioxide of magmatic origin and estimation of its isotopic signature. The re-calculated isotopic compositions (-7 ‰< ^13C<-1 ‰) fall within typically magmatic values, furthermore they fall also in the range of Mt. Vulture carbonatites. The computed values of C/3He (2-8 x 109) are in the range of sub-continental mantle. As the Monticchio lakes can be view as natural geological reservoirs subjected to injection of bio and a-biogenic gases, this study shows that amounts and isotopic signature of methane coupled to total dissolved inorganic carbon is a sensitive tool to evaluate the amount of mantle-derived fluids carried into groundwater feeding the lakes.

  17. Altered neurovascular coupling during information-processing states.

    PubMed

    Jones, Myles; Devonshire, Ian M; Berwick, Jason; Martin, Chris; Redgrave, Peter; Mayhew, John

    2008-05-01

    Brain imaging techniques rely on changes in blood flow, volume and oxygenation to infer the loci and magnitude of changes in activity. Although progress has been made in understanding the link between stimulus-evoked neural activity and haemodynamics, the extent to which neurovascular-coupling relationships remain constant during different states of baseline cortical activity is poorly understood. Optical imaging spectroscopy, laser Doppler flowmetry and electrophysiology were used to measure haemodynamics and neural activity in the barrel cortex of anaesthetized rats. The responses to stimulation of the whisker pad were recorded during quiescence and cortical desynchronization produced by stimulation of the brainstem. Cortical desynchronization was accompanied by increases in baseline blood flow, volume and oxygenation. Haemodynamic responses to low-frequency whisker stimuli (1 Hz) were attenuated during arousal compared with that observed during quiescence. During arousal it was possible to increase stimulus-evoked haemodynamics by increasing the frequency of the stimulus. Neural responses to low-frequency stimuli were also attenuated but to a far lesser extent than the reduction in the accompanying haemodynamics. In contrast, neuronal activity evoked by high-frequency stimuli (40 Hz) was enhanced during arousal, but induced haemodynamic responses of a similar magnitude compared with that observed for the same high-frequency stimulus presented during quiescence. These data suggest that there may be differences in stimulus-evoked neural activity and accompanying haemodynamics during different information-processing states.

  18. Evolutionary games of condensates in coupled birth–death processes

    PubMed Central

    Knebel, Johannes; Weber, Markus F.; Krüger, Torben; Frey, Erwin

    2015-01-01

    Condensation phenomena arise through a collective behaviour of particles. They are observed in both classical and quantum systems, ranging from the formation of traffic jams in mass transport models to the macroscopic occupation of the energetic ground state in ultra-cold bosonic gases (Bose–Einstein condensation). Recently, it has been shown that a driven and dissipative system of bosons may form multiple condensates. Which states become the condensates has, however, remained elusive thus far. The dynamics of this condensation are described by coupled birth–death processes, which also occur in evolutionary game theory. Here we apply concepts from evolutionary game theory to explain the formation of multiple condensates in such driven-dissipative bosonic systems. We show that the vanishing of relative entropy production determines their selection. The condensation proceeds exponentially fast, but the system never comes to rest. Instead, the occupation numbers of condensates may oscillate, as we demonstrate for a rock–paper–scissors game of condensates. PMID:25908384

  19. Biogeochemical drivers of phosphatase activity in salt marsh sediments

    NASA Astrophysics Data System (ADS)

    Freitas, Joana; Duarte, Bernardo; Caçador, Isabel

    2014-10-01

    Although nitrogen has become a major concern for wetlands scientists dealing with eutrophication problems, phosphorous represents another key element, and consequently its biogeochemical cycling has a crucial role in eutrophication processes. Microbial communities are a central component in trophic dynamics and biogeochemical processes on coastal systems, since most of the processes in sediments are microbial-mediated due to enzymatic action, including the mineralization of organic phosphorus carried out by acid phosphatase activity. In the present work, the authors investigate the biogeochemical sediment drivers that control phosphatase activities. Authors also aim to assess biogeochemical factors' influence on the enzyme-mediated phosphorous cycling processes in salt marshes. Plant rhizosediments and bare sediments were collected and biogeochemical features, including phosphatase activities, inorganic and organic phosphorus contents, humic acids content and pH, were assessed. Acid phosphatase was found to give the highest contribution for total phosphatase activity among the three pH-isoforms present in salt marsh sediments, favored by acid pH in colonized sediments. Humic acids also appear to have an important role inhibiting phosphatase activity. A clear relation of phosphatase activity and inorganic phosphorous was also found. The data presented reinforces the role of phosphatase in phosphorous cycling.

  20. A cost-efficient biogeochemical model for estuaries: a case-study of a funnel-shaped system

    NASA Astrophysics Data System (ADS)

    Volta, Chiara; Arndt, Sandra; Regnier, Pierre

    2013-04-01

    The hydrodynamics exerts an important influence on the biogeochemical functioning of estuarine systems. Comparative studies have long recognized this tight coupling and, for instance, have attempted to correlate key estuarine biogeochemical processes to simple hydrodynamic properties, such as the residence time or the tidal forcing. Yet, these correlations fail to resolve the estuarine spatio-temporal variability and do not provide powerful means to disentangle the complex interplay of multiple reaction and transport processes. In this context, reaction-transport models (RTMs) are useful tools to resolve the variability in