Sample records for coupled biological oscillators

  1. Control of Oscillation Patterns in a Symmetric Coupled Biological Oscillator System

    NASA Astrophysics Data System (ADS)

    Takamatsu, Atsuko; Tanaka, Reiko; Yamamoto, Takatoki; Fujii, Teruo

    2003-08-01

    A chain of three-oscillator system was constructed with living biological oscillators of phasmodial slime mold, Physarum polycehalum and the oscillation patterns were analyzed by the symmetric Hopf bifurcation theory using group theory. Multi-stability of oscillation patterns was observed, even when the coupling strength was fixed. This suggests that the coupling strength is not an effective parameter to obtain a desired oscillation pattern among the multiple patterns. Here we propose a method to control oscillation patterns using resonance to external stimulus and demonstrate pattern switching induced by frequency resonance given to only one of oscillators in the system.

  2. Spatiotemporal Symmetry in Rings of Coupled Biological Oscillators of Physarum Plasmodial Slime Mold

    NASA Astrophysics Data System (ADS)

    Takamatsu, Atsuko; Tanaka, Reiko; Yamada, Hiroyasu; Nakagaki, Toshiyuki; Fujii, Teruo; Endo, Isao

    2001-08-01

    Spatiotemporal patterns in rings of coupled biological oscillators of the plasmodial slime mold, Physarum polycephalum, were investigated by comparing with results analyzed by the symmetric Hopf bifurcation theory based on group theory. In three-, four-, and five-oscillator systems, all types of oscillation modes predicted by the theory were observed including a novel oscillation mode, a half period oscillation, which has not been reported anywhere in practical systems. Our results support the effectiveness of the symmetric Hopf bifurcation theory in practical systems.

  3. Spatiotemporal symmetry in rings of coupled biological oscillators of Physarum plasmodial slime mold.

    PubMed

    Takamatsu, A; Tanaka, R; Yamada, H; Nakagaki, T; Fujii, T; Endo, I

    2001-08-13

    Spatiotemporal patterns in rings of coupled biological oscillators of the plasmodial slime mold, Physarum polycephalum, were investigated by comparing with results analyzed by the symmetric Hopf bifurcation theory based on group theory. In three-, four-, and five-oscillator systems, all types of oscillation modes predicted by the theory were observed including a novel oscillation mode, a half period oscillation, which has not been reported anywhere in practical systems. Our results support the effectiveness of the symmetric Hopf bifurcation theory in practical systems.

  4. Generalizing the transition from amplitude to oscillation death in coupled oscillators.

    PubMed

    Zou, Wei; Senthilkumar, D V; Koseska, Aneta; Kurths, Jürgen

    2013-11-01

    Amplitude death (AD) and oscillation death (OD) are two structurally different oscillation quenching types in coupled nonlinear oscillators. The transition from AD to OD has been recently realized due to the interplay between heterogeneity and coupling strength [A. Koseska et al., Phys. Rev. Lett. 111, 024103 (2013)]. We identify here the transition from AD to OD in nonlinear oscillators with couplings of distinct natures. It is demonstrated that the presence of time delay in the coupling cannot induce such a transition in identical oscillators, but it can indeed facilitate its occurrence with a low degree of heterogeneity. Moreover, it is further shown that the AD to OD transition is reliably observed in identical oscillators with dynamic and conjugate couplings. The coexistence of AD and OD and rich stable OD configurations after the transition are revealed, which are of great significance for potential applications in physics, biology, and control studies.

  5. Collective phase response curves for heterogeneous coupled oscillators

    NASA Astrophysics Data System (ADS)

    Hannay, Kevin M.; Booth, Victoria; Forger, Daniel B.

    2015-08-01

    Phase response curves (PRCs) have become an indispensable tool in understanding the entrainment and synchronization of biological oscillators. However, biological oscillators are often found in large coupled heterogeneous systems and the variable of physiological importance is the collective rhythm resulting from an aggregation of the individual oscillations. To study this phenomena we consider phase resetting of the collective rhythm for large ensembles of globally coupled Sakaguchi-Kuramoto oscillators. Making use of Ott-Antonsen theory we derive an asymptotically valid analytic formula for the collective PRC. A result of this analysis is a characteristic scaling for the change in the amplitude and entrainment points for the collective PRC compared to the individual oscillator PRC. We support the analytical findings with numerical evidence and demonstrate the applicability of the theory to large ensembles of coupled neuronal oscillators.

  6. Chemical event chain model of coupled genetic oscillators.

    PubMed

    Jörg, David J; Morelli, Luis G; Jülicher, Frank

    2018-03-01

    We introduce a stochastic model of coupled genetic oscillators in which chains of chemical events involved in gene regulation and expression are represented as sequences of Poisson processes. We characterize steady states by their frequency, their quality factor, and their synchrony by the oscillator cross correlation. The steady state is determined by coupling and exhibits stochastic transitions between different modes. The interplay of stochasticity and nonlinearity leads to isolated regions in parameter space in which the coupled system works best as a biological pacemaker. Key features of the stochastic oscillations can be captured by an effective model for phase oscillators that are coupled by signals with distributed delays.

  7. Chemical event chain model of coupled genetic oscillators

    NASA Astrophysics Data System (ADS)

    Jörg, David J.; Morelli, Luis G.; Jülicher, Frank

    2018-03-01

    We introduce a stochastic model of coupled genetic oscillators in which chains of chemical events involved in gene regulation and expression are represented as sequences of Poisson processes. We characterize steady states by their frequency, their quality factor, and their synchrony by the oscillator cross correlation. The steady state is determined by coupling and exhibits stochastic transitions between different modes. The interplay of stochasticity and nonlinearity leads to isolated regions in parameter space in which the coupled system works best as a biological pacemaker. Key features of the stochastic oscillations can be captured by an effective model for phase oscillators that are coupled by signals with distributed delays.

  8. Reviving oscillations in coupled nonlinear oscillators.

    PubMed

    Zou, Wei; Senthilkumar, D V; Zhan, Meng; Kurths, Jürgen

    2013-07-05

    By introducing a processing delay in the coupling, we find that it can effectively annihilate the quenching of oscillation, amplitude death (AD), in a network of coupled oscillators by switching the stability of AD. It revives the oscillation in the AD regime to retain sustained rhythmic functioning of the networks, which is in sharp contrast to the propagation delay with the tendency to induce AD. This processing delay-induced phenomenon occurs both with and without the propagation delay. Further this effect is rather general from two coupled to networks of oscillators in all known scenarios that can exhibit AD, and it has a wide range of applications where sustained oscillations should be retained for proper functioning of the systems.

  9. Magnetically coupled magnet-spring oscillators

    NASA Astrophysics Data System (ADS)

    Donoso, G.; Ladera, C. L.; Martín, P.

    2010-05-01

    A system of two magnets hung from two vertical springs and oscillating in the hollows of a pair of coils connected in series is a new, interesting and useful example of coupled oscillators. The electromagnetically coupled oscillations of these oscillators are experimentally and theoretically studied. Its coupling is electromagnetic instead of mechanical, and easily adjustable by the experimenter. The coupling of this new coupled oscillator system is determined by the currents that the magnets induce in two coils connected in series, one to each magnet. It is an interesting case of mechanical oscillators with field-driven coupling, instead of mechanical coupling. Moreover, it is both a coupled and a damped oscillating system that lends itself to a detailed study and presentation of many properties and phenomena of such a system of oscillators. A set of experiments that validates the theoretical model of the oscillators is presented and discussed.

  10. Synchronization of Coupled Mechanical Oscillators

    NASA Astrophysics Data System (ADS)

    Kennedy, Linda; Andereck, Barbara

    2007-10-01

    The Kuramoto model is used to describe synchronization of non-linear oscillators in biological, chemical, and physics systems. Using identical metronomes with similar frequencies on a movable platform, as per J. Pantaleone Am. J. Phys. 70, 992 (2002), we hope to realize a mechanical example of this model. A variety of materials were used for the movable platforms that coupled the metronomes. Platforms were either allowed to roll on cylindrical supports or suspended in pendulum fashion from the ceiling. Metronomes were started out of phase and allowed to synchronize. Measurements by PASCO photogates monitored by a LabView program were used to determine the phase difference between the two metronomes as a function of time. The dynamics of the metronome coupling was described by two second-order differential equations involving four key parameters: platform coupling, oscillation angle, damping/driving strength, and intrinsic frequency difference. Outstanding agreement between theory and experiment was achieved when the vertical motion of the platform and metronomes was included in the governing equations.

  11. Quenching oscillating behaviors in fractional coupled Stuart-Landau oscillators

    NASA Astrophysics Data System (ADS)

    Sun, Zhongkui; Xiao, Rui; Yang, Xiaoli; Xu, Wei

    2018-03-01

    Oscillation quenching has been widely studied during the past several decades in fields ranging from natural sciences to engineering, but investigations have so far been restricted to oscillators with an integer-order derivative. Here, we report the first study of amplitude death (AD) in fractional coupled Stuart-Landau oscillators with partial and/or complete conjugate couplings to explore oscillation quenching patterns and dynamics. It has been found that the fractional-order derivative impacts the AD state crucially. The area of the AD state increases along with the decrease of the fractional-order derivative. Furthermore, by introducing and adjusting a limiting feedback factor in coupling links, the AD state can be well tamed in fractional coupled oscillators. Hence, it provides one an effective approach to analyze and control the oscillating behaviors in fractional coupled oscillators.

  12. Coupled opto-electronic oscillator

    NASA Technical Reports Server (NTRS)

    Yao, X. Steve (Inventor); Maleki, Lute (Inventor)

    1999-01-01

    A coupled opto-electronic oscillator that directly couples a laser oscillation with an electronic oscillation to simultaneously achieve a stable RF oscillation at a high frequency and ultra-short optical pulsation by mode locking with a high repetition rate and stability. Single-mode selection can be achieved even with a very long opto-electronic loop. A multimode laser can be used to pump the electronic oscillation, resulting in a high operation efficiency. The optical and the RF oscillations are correlated to each other.

  13. Magnetically Coupled Magnet-Spring Oscillators

    ERIC Educational Resources Information Center

    Donoso, G.; Ladera, C. L.; Martin, P.

    2010-01-01

    A system of two magnets hung from two vertical springs and oscillating in the hollows of a pair of coils connected in series is a new, interesting and useful example of coupled oscillators. The electromagnetically coupled oscillations of these oscillators are experimentally and theoretically studied. Its coupling is electromagnetic instead of…

  14. Resurgence of oscillation in coupled oscillators under delayed cyclic interaction

    NASA Astrophysics Data System (ADS)

    Bera, Bidesh K.; Majhi, Soumen; Ghosh, Dibakar

    2017-07-01

    This paper investigates the emergence of amplitude death and revival of oscillations from the suppression states in a system of coupled dynamical units interacting through delayed cyclic mode. In order to resurrect the oscillation from amplitude death state, we introduce asymmetry and feedback parameter in the cyclic coupling forms as a result of which the death region shrinks due to higher asymmetry and lower feedback parameter values for coupled oscillatory systems. Some analytical conditions are derived for amplitude death and revival of oscillations in two coupled limit cycle oscillators and corresponding numerical simulations confirm the obtained theoretical results. We also report that the death state and revival of oscillations from quenched state are possible in the network of identical coupled oscillators. The proposed mechanism has also been examined using chaotic Lorenz oscillator.

  15. Interactive coupling of electronic and optical man-made devices to biological systems

    NASA Astrophysics Data System (ADS)

    Ozden, Ilker

    Fireflies blink synchronously, lasers are "mode-locked" for amplification, cardiac pacemaker cells maintain a steady heartbeat, and crickets chirps get in step. These are examples of coupled oscillators. Coupled non-linear limit-cycle oscillator models are used extensively to provide information about the collective behavior of many physical and biological systems. Depending on the system parameters, namely, the coupling coefficient and the time delay in the coupling, these coupled limit-cycle oscillator exhibit several interesting phenomena; they either synchronize to a common frequency, or oscillate completely independent of each other, or drag each other to a standstill i.e., show "amplitude death". Many neuronal systems exhibit synchronized limit-cycle oscillations in network of electrically coupled cells. The inferior olivary (IO) neuron is an example of such a system. The inferior olive has been widely studied by neuroscientists as it exhibits spontaneous oscillations in its membrane potential, typically in the range of 1--10 Hz. Located in the medulla, the inferior olive is believed to form the neural basis for precise timing and learning in motor circuits by making strong synaptic connections onto Purkinjee cells in the cerebellum. In this thesis work, we report on work, which focuses on the implementation and study of coupling of a biological circuit, which is the inferior olivary system, with a man-made electronic oscillator, the so-called Chua's circuit. We were able to study the interaction between the two oscillators over a wide range coupling conditions. With increasing coupling strength, the oscillators become phase-locked, or synchronized, but with a phase relationship which is either in- or out-of-phase depending on the detailed adjustment in the coupling. Finally, the coupled system reaches the conditions for amplitude death, a rather fundamental result given that the interaction has taken place between purely biological and man-made circuit

  16. Interaction function of oscillating coupled neurons

    PubMed Central

    Dodla, Ramana; Wilson, Charles J.

    2013-01-01

    Large scale simulations of electrically coupled neuronal oscillators often employ the phase coupled oscillator paradigm to understand and predict network behavior. We study the nature of the interaction between such coupled oscillators using weakly coupled oscillator theory. By employing piecewise linear approximations for phase response curves and voltage time courses, and parameterizing their shapes, we compute the interaction function for all such possible shapes and express it in terms of discrete Fourier modes. We find that reasonably good approximation is achieved with four Fourier modes that comprise of both sine and cosine terms. PMID:24229210

  17. Chimera states for coupled oscillators.

    PubMed

    Abrams, Daniel M; Strogatz, Steven H

    2004-10-22

    Arrays of identical oscillators can display a remarkable spatiotemporal pattern in which phase-locked oscillators coexist with drifting ones. Discovered two years ago, such "chimera states" are believed to be impossible for locally or globally coupled systems; they are peculiar to the intermediate case of nonlocal coupling. Here we present an exact solution for this state, for a ring of phase oscillators coupled by a cosine kernel. We show that the stable chimera state bifurcates from a spatially modulated drift state, and dies in a saddle-node bifurcation with an unstable chimera state.

  18. Damping of coupled harmonic oscillators

    NASA Astrophysics Data System (ADS)

    Dolfo, Gilles; Vigué, Jacques

    2018-03-01

    When two harmonic oscillators are coupled in the presence of damping, their dynamics exhibit two very different regimes depending on the relative magnitude of the coupling and damping terms At resonance, when the coupling has its largest effect, if the coupling dominates the damping, there is a periodic exchange of energy between the two oscillators while, in the opposite case, the energy transfer from one oscillator to the other one is irreversible. We prove that the border between these two regimes goes through an exceptional point and we briefly explain what is an exceptional point. The present paper is written for undergraduate students, with some knowledge in classical mechanics, but it may also be of interest for graduate students.

  19. Emergence of amplitude and oscillation death in identical coupled oscillators.

    PubMed

    Zou, Wei; Senthilkumar, D V; Duan, Jinqiao; Kurths, Jürgen

    2014-09-01

    We deduce rigorous conditions for the onset of amplitude death (AD) and oscillation death (OD) in a system of identical coupled paradigmatic Stuart-Landau oscillators. A nonscalar coupling and high frequency are beneficial for the onset of AD. In strong contrast, scalar diffusive coupling and low intrinsic frequency are in favor of the emergence of OD. Our finding contributes to clearly distinguish intrinsic geneses for AD and OD, and further substantially corroborates that AD and OD are indeed two dynamically distinct oscillation quenching phenomena due to distinctly different mechanisms.

  20. Recent Developments in the Analysis of Couple Oscillator Arrays

    NASA Technical Reports Server (NTRS)

    Pogorzelski, Ronald J.

    2000-01-01

    This presentation considers linear arrays of coupled oscillators. Our purpose in coupling oscillators together is to achieve high radiated power through the spatial power combining which results when the oscillators are injection locked to each other. York, et. al. have shown that, left to themselves, the ensemble of injection locked oscillators oscillate at the average of the tuning frequencies of all the oscillators. Coupling these arrays achieves high radiated power through coherent spatial power combining. The coupled oscillators are usually designed to produce constant aperture phase. Oscillators are injection locked to each other or to a master oscillator to produce coherent radiation. Oscillators do not necessarily oscillate at their tuning frequency.

  1. Predicting synchrony in heterogeneous pulse coupled oscillators

    NASA Astrophysics Data System (ADS)

    Talathi, Sachin S.; Hwang, Dong-Uk; Miliotis, Abraham; Carney, Paul R.; Ditto, William L.

    2009-08-01

    Pulse coupled oscillators (PCOs) represent an ubiquitous model for a number of physical and biological systems. Phase response curves (PRCs) provide a general mathematical framework to analyze patterns of synchrony generated within these models. A general theoretical approach to account for the nonlinear contributions from higher-order PRCs in the generation of synchronous patterns by the PCOs is still lacking. Here, by considering a prototypical example of a PCO network, i.e., two synaptically coupled neurons, we present a general theory that extends beyond the weak-coupling approximation, to account for higher-order PRC corrections in the derivation of an approximate discrete map, the stable fixed point of which can predict the domain of 1:1 phase locked synchronous states generated by the PCO network.

  2. Synchronization and spatiotemporal patterns in coupled phase oscillators on a weighted planar network

    NASA Astrophysics Data System (ADS)

    Kagawa, Yuki; Takamatsu, Atsuko

    2009-04-01

    To reveal the relation between network structures found in two-dimensional biological systems, such as protoplasmic tube networks in the plasmodium of true slime mold, and spatiotemporal oscillation patterns emerged on the networks, we constructed coupled phase oscillators on weighted planar networks and investigated their dynamics. Results showed that the distribution of edge weights in the networks strongly affects (i) the propensity for global synchronization and (ii) emerging ratios of oscillation patterns, such as traveling and concentric waves, even if the total weight is fixed. In-phase locking, traveling wave, and concentric wave patterns were, respectively, observed most frequently in uniformly weighted, center weighted treelike, and periphery weighted ring-shaped networks. Controlling the global spatiotemporal patterns with the weight distribution given by the local weighting (coupling) rules might be useful in biological network systems including the plasmodial networks and neural networks in the brain.

  3. Coupled Oscillators System in the True Slime Mold

    NASA Astrophysics Data System (ADS)

    Takamatsu, A.; Fujii, T.; Endo, I.

    The Plasmodium of true slime mold, Physarum polycephalum, which shows various oscillatory phenomena, can be regarded as a coupled nonlinear oscillators system. The partial bodies of the Plasmodium are interconnected by microscale tubes, whose dimension can be related to the coupling strength between the plasmodial oscillators. Investigation on the collective behavior of the oscillators under the condition that the configuration of the tube structure can be manipulated gives significant information on the characteristics of the Plasmodium from the viewpoint of nonlinear dynamics. In this study, we propose a living coupled oscillators system. Using a microfabricated structure, we patterned the geometry and the dimensions of the microscale tube structure of the Plasmodium. As the first step, the Plasmodium was grown in the microstructure for coupled two oscillators system that has two wells (oscillator part) and a microchannel (coupling part). We investigated the oscillation bahavior by monitoring the thickness oscillation of Plasmodium in the strucutre with various width (W) and length (L) of microchannel. We found that there are various types of oscillation bahavior, such as anti-phase and in-phase oscillations depending on the channel dimension W and L. The present method is suitable for further studies of the network of the Plasmodium as a collective nonlinear oscillators system.

  4. Coupled oscillators: interesting experiments for high school students

    NASA Astrophysics Data System (ADS)

    Kodejška, Č.; Lepil, O.; Sedláčková, H.

    2018-07-01

    This work deals with the experimental demonstration of coupled oscillators using simple tools in the form of mechanical coupled pendulums, magnetically coupled elastic strings or electromagnetic oscillators. For the evaluation of results the data logger Lab Quest Vernier and video analysis in the Tracker program were used. In the first part of this work, coupled mechanical oscillators of different types are shown and the data analysis by the Tracker or Vernier Logger Pro programs. The second part describes a measurement using two LC circuits with inductively or capacitive coupled electromagnetic oscillators and the obtained experimental results.

  5. Phase diagram for the Winfree model of coupled nonlinear oscillators.

    PubMed

    Ariaratnam, J T; Strogatz, S H

    2001-05-07

    In 1967 Winfree proposed a mean-field model for the spontaneous synchronization of chorusing crickets, flashing fireflies, circadian pacemaker cells, or other large populations of biological oscillators. Here we give the first bifurcation analysis of the model, for a tractable special case. The system displays rich collective dynamics as a function of the coupling strength and the spread of natural frequencies. Besides incoherence, frequency locking, and oscillator death, there exist hybrid solutions that combine two or more of these states. We present the phase diagram and derive several of the stability boundaries analytically.

  6. Phase Diagram for the Winfree Model of Coupled Nonlinear Oscillators

    NASA Astrophysics Data System (ADS)

    Ariaratnam, Joel T.; Strogatz, Steven H.

    2001-05-01

    In 1967 Winfree proposed a mean-field model for the spontaneous synchronization of chorusing crickets, flashing fireflies, circadian pacemaker cells, or other large populations of biological oscillators. Here we give the first bifurcation analysis of the model, for a tractable special case. The system displays rich collective dynamics as a function of the coupling strength and the spread of natural frequencies. Besides incoherence, frequency locking, and oscillator death, there exist hybrid solutions that combine two or more of these states. We present the phase diagram and derive several of the stability boundaries analytically.

  7. Impossibility of asymptotic synchronization for pulse-coupled oscillators with delayed excitatory coupling.

    PubMed

    Wu, Wei; Chen, Tianping

    2009-12-01

    Fireflies, as one of the most spectacular examples of synchronization in nature, have been investigated widely. In 1990, Mirollo and Strogatz proposed a pulse-coupled oscillator model to explain the synchronization of South East Asian fireflies (Pteroptyx malaccae). However, transmission delays were not considered in their model. In fact, when transmission delays are introduced, the dynamic behaviors of pulse-coupled networks change a lot. In this paper, pulse-coupled oscillator networks with delayed excitatory coupling are studied. A concept of synchronization, named weak asymptotic synchronization, which is weaker than asymptotic synchronization, is proposed. We prove that for pulse-coupled oscillator networks with delayed excitatory coupling, weak asymptotic synchronization cannot occur.

  8. Kuramoto model of coupled oscillators with positive and negative coupling parameters: an example of conformist and contrarian oscillators.

    PubMed

    Hong, Hyunsuk; Strogatz, Steven H

    2011-02-04

    We consider a generalization of the Kuramoto model in which the oscillators are coupled to the mean field with random signs. Oscillators with positive coupling are "conformists"; they are attracted to the mean field and tend to synchronize with it. Oscillators with negative coupling are "contrarians"; they are repelled by the mean field and prefer a phase diametrically opposed to it. The model is simple and exactly solvable, yet some of its behavior is surprising. Along with the stationary states one might have expected (a desynchronized state, and a partially-synchronized state, with conformists and contrarians locked in antiphase), it also displays a traveling wave, in which the mean field oscillates at a frequency different from the population's mean natural frequency.

  9. Collective behavior of coupled nonuniform stochastic oscillators

    NASA Astrophysics Data System (ADS)

    Assis, Vladimir R. V.; Copelli, Mauro

    2012-02-01

    Theoretical studies of synchronization are usually based on models of coupled phase oscillators which, when isolated, have constant angular frequency. Stochastic discrete versions of these uniform oscillators have also appeared in the literature, with equal transition rates among the states. Here we start from the model recently introduced by Wood et al. [K. Wood, C. Van den Broeck, R. Kawai, K. Lindenberg, Universality of synchrony: critical behavior in a discrete model of stochastic phase-coupled oscillators, Phys. Rev. Lett. 96 (2006) 145701], which has a collectively synchronized phase, and parametrically modify the phase-coupled oscillators to render them (stochastically) nonuniform. We show that, depending on the nonuniformity parameter 0≤α≤1, a mean field analysis predicts the occurrence of several phase transitions. In particular, the phase with collective oscillations is stable for the complete graph only for α≤α‧<1. At α=1 the oscillators become excitable elements and the system has an absorbing state. In the excitable regime, no collective oscillations were found in the model.

  10. Period variability of coupled noisy oscillators

    NASA Astrophysics Data System (ADS)

    Mori, Fumito; Kori, Hiroshi

    2013-03-01

    Period variability, quantified by the standard deviation (SD) of the cycle-to-cycle period, is investigated for noisy phase oscillators. We define the checkpoint phase as the beginning or end point of one oscillation cycle and derive an expression for the SD as a function of this phase. We find that the SD is dependent on the checkpoint phase only when oscillators are coupled. The applicability of our theory is verified using a realistic model. Our work clarifies the relationship between period variability and synchronization from which valuable information regarding coupling can be inferred.

  11. Deck the Halls. Animated Displays: Coupled Mechanical Oscillators.

    ERIC Educational Resources Information Center

    Pizzo, Joe, Ed.

    1992-01-01

    Describes a set of displays on the theme of coupled mechanical oscillators. Displays encompass three common demonstrations: (1) a coupled pair of identical pendulums; (2) a multiple-pendulum resonance demonstration; and (3) a Wilberforce coupled oscillator. (MDH)

  12. Synchronization of unidirectionally delay-coupled chaotic oscillators with memory

    NASA Astrophysics Data System (ADS)

    Jaimes-Reátegui, Rider; Vera-Ávila, Victor P.; Sevilla-Escoboza, Ricardo; Huerta-Cuéllar, Guillermo; Castañeda-Hernández, Carlos E.; Chiu-Zarate, Roger; Pisarchik, Alexander N.

    2016-11-01

    We study synchronization of two chaotic oscillators coupled with time delay in a master-slave configuration and with delayed positive feedback in the slave oscillator which acts as memory. The dynamics of the slave oscillator is analyzed with bifurcation diagrams of the peak value of the system variable with respect to the coupling and feedback strengths and two delay times. For small coupling, when the oscillators' phases synchronize, memory can induce bistability and stabilize periodic orbits, whereas for stronger coupling it is not possible. The delayed feedback signal impairs synchronization, simultaneously enhancing coherence of the slave oscillator.

  13. Self-Synchronized Phenomena Generated in Rotor-Type Oscillators: On the Influence of Coupling Condition between Oscillators

    NASA Astrophysics Data System (ADS)

    Bonkobara, Yasuhiro; Mori, Hiroki; Kondou, Takahiro; Ayabe, Takashi

    Self-synchronized phenomena generated in rotor-type oscillators mounted on a straight-line spring-mass system are investigated experimentally and analytically. In the present study, we examine the occurrence region and pattern of self-synchronization in two types of coupled oscillators: rigidly coupled oscillators and elastically coupled oscillators. It is clarified that the existence regions of stable solutions are governed mainly by the linear natural frequency of each spring-mass system. The results of numerical analysis confirm that the self-synchronized solutions of the elastically coupled oscillators correspond to those of the rigidly coupled oscillators. In addition, the results obtained in the present study are compared with the previously reported results for a metronome system and a moving apparatus and the different properties of the phenomena generated in the rotor-type oscillators and the pendulum-type oscillators are shown in terms of the construction of branches of self-synchronized solution and the stability.

  14. Seizure Dynamics of Coupled Oscillators with Epileptor Field Model

    NASA Astrophysics Data System (ADS)

    Zhang, Honghui; Xiao, Pengcheng

    The focus of this paper is to investigate the dynamics of seizure activities by using the Epileptor coupled model. Based on the coexistence of seizure-like event (SLE), refractory status epilepticus (RSE), depolarization block (DB), and normal state, we first study the dynamical behaviors of two coupled oscillators in different activity states with Epileptor model by linking them with slow permittivity coupling. Our research has found that when one oscillator in normal states is coupled with any oscillator in SLE, RSE or DB states, these two oscillators can both evolve into SLE states under appropriate coupling strength. And then these two SLE oscillators can perform epileptiform synchronization or epileptiform anti-synchronization. Meanwhile, SLE can be depressed when considering the fast electrical or chemical coupling in Epileptor model. Additionally, a two-dimensional reduced model is also given to show the effect of coupling number on seizures. Those results can help to understand the dynamical mechanism of the initiation, maintenance, propagation and termination of seizures in focal epilepsy.

  15. A coupled-oscillator model of olfactory bulb gamma oscillations

    PubMed Central

    2017-01-01

    The olfactory bulb transforms not only the information content of the primary sensory representation, but also its underlying coding metric. High-variance, slow-timescale primary odor representations are transformed by bulbar circuitry into secondary representations based on principal neuron spike patterns that are tightly regulated in time. This emergent fast timescale for signaling is reflected in gamma-band local field potentials, presumably serving to efficiently integrate olfactory sensory information into the temporally regulated information networks of the central nervous system. To understand this transformation and its integration with interareal coordination mechanisms requires that we understand its fundamental dynamical principles. Using a biophysically explicit, multiscale model of olfactory bulb circuitry, we here demonstrate that an inhibition-coupled intrinsic oscillator framework, pyramidal resonance interneuron network gamma (PRING), best captures the diversity of physiological properties exhibited by the olfactory bulb. Most importantly, these properties include global zero-phase synchronization in the gamma band, the phase-restriction of informative spikes in principal neurons with respect to this common clock, and the robustness of this synchronous oscillatory regime to multiple challenging conditions observed in the biological system. These conditions include substantial heterogeneities in afferent activation levels and excitatory synaptic weights, high levels of uncorrelated background activity among principal neurons, and spike frequencies in both principal neurons and interneurons that are irregular in time and much lower than the gamma frequency. This coupled cellular oscillator architecture permits stable and replicable ensemble responses to diverse sensory stimuli under various external conditions as well as to changes in network parameters arising from learning-dependent synaptic plasticity. PMID:29140973

  16. Intensity noise coupling in soliton fiber oscillators.

    PubMed

    Wan, Chenchen; Schibli, Thomas R; Li, Peng; Bevilacqua, Carlo; Ruehl, Axel; Hartl, Ingmar

    2017-12-15

    We present an experimental and numerical study on the spectrally resolved pump-to-output intensity noise coupling in soliton fiber oscillators. In our study, we observe a strong pump noise coupling to the Kelly sidebands, while the coupling to the soliton pulse is damped. This behavior is observed in erbium-doped as well as holmium-doped fiber oscillators and confirmed by numerical modeling. It can be seen as a general feature of laser oscillators in which soliton pulse formation is dominant. We show that spectral blocking of the Kelly sidebands outside the laser cavity can improve the intensity noise performance of the laser dramatically.

  17. Coupled Oscillators: Interesting Experiments for High School Students

    ERIC Educational Resources Information Center

    Kodejška, C.; Lepil, O.; Sedlácková, H.

    2018-01-01

    This work deals with the experimental demonstration of coupled oscillators using simple tools in the form of mechanical coupled pendulums, magnetically coupled elastic strings or electromagnetic oscillators. For the evaluation of results the data logger Lab Quest Vernier and video analysis in the Tracker program were used. In the first part of…

  18. Experimental demonstration of revival of oscillations from death in coupled nonlinear oscillators.

    PubMed

    Senthilkumar, D V; Suresh, K; Chandrasekar, V K; Zou, Wei; Dana, Syamal K; Kathamuthu, Thamilmaran; Kurths, Jürgen

    2016-04-01

    We experimentally demonstrate that a processing delay, a finite response time, in the coupling can revoke the stability of the stable steady states, thereby facilitating the revival of oscillations in the same parameter space where the coupled oscillators suffered the quenching of oscillation. This phenomenon of reviving of oscillations is demonstrated using two different prototype electronic circuits. Further, the analytical critical curves corroborate that the spread of the parameter space with stable steady state is diminished continuously by increasing the processing delay. Finally, the death state is completely wiped off above a threshold value by switching the stability of the stable steady state to retrieve sustained oscillations in the same parameter space. The underlying dynamical mechanism responsible for the decrease in the spread of the stable steady states and the eventual reviving of oscillation as a function of the processing delay is explained using analytical results.

  19. Experimental demonstration of revival of oscillations from death in coupled nonlinear oscillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Senthilkumar, D. V., E-mail: skumarusnld@gmail.com; Centre for Nonlinear Science and Engineering, School of Electrical and Electronics Engineering, SASTRA University, Thanjavur 613 401; Suresh, K.

    We experimentally demonstrate that a processing delay, a finite response time, in the coupling can revoke the stability of the stable steady states, thereby facilitating the revival of oscillations in the same parameter space where the coupled oscillators suffered the quenching of oscillation. This phenomenon of reviving of oscillations is demonstrated using two different prototype electronic circuits. Further, the analytical critical curves corroborate that the spread of the parameter space with stable steady state is diminished continuously by increasing the processing delay. Finally, the death state is completely wiped off above a threshold value by switching the stability of themore » stable steady state to retrieve sustained oscillations in the same parameter space. The underlying dynamical mechanism responsible for the decrease in the spread of the stable steady states and the eventual reviving of oscillation as a function of the processing delay is explained using analytical results.« less

  20. Study of geometric phase using classical coupled oscillators

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Sharba; Dey, Biprateep; Mohapatra, Ashok K.

    2018-05-01

    We illustrate the geometric phase associated with the cyclic dynamics of a classical system of coupled oscillators. We use an analogy between a classical coupled oscillator and a two-state quantum mechanical system to represent the evolution of the oscillator on an equivalent Hilbert space, which may be represented as a trajectory on the surface of a sphere. The cyclic evolution of the system leads to a change in phase, which consists of a dynamic phase along with an additional phase shift dependent on the geometry of the evolution. A simple experiment suitable for advanced undergraduate students is designed to study the geometric phase incurred during cyclic evolution of a coupled oscillator.

  1. Chaos in generically coupled phase oscillator networks with nonpairwise interactions.

    PubMed

    Bick, Christian; Ashwin, Peter; Rodrigues, Ana

    2016-09-01

    The Kuramoto-Sakaguchi system of coupled phase oscillators, where interaction between oscillators is determined by a single harmonic of phase differences of pairs of oscillators, has very simple emergent dynamics in the case of identical oscillators that are globally coupled: there is a variational structure that means the only attractors are full synchrony (in-phase) or splay phase (rotating wave/full asynchrony) oscillations and the bifurcation between these states is highly degenerate. Here we show that nonpairwise coupling-including three and four-way interactions of the oscillator phases-that appears generically at the next order in normal-form based calculations can give rise to complex emergent dynamics in symmetric phase oscillator networks. In particular, we show that chaos can appear in the smallest possible dimension of four coupled phase oscillators for a range of parameter values.

  2. Chimera and phase-cluster states in populations of coupled chemical oscillators

    NASA Astrophysics Data System (ADS)

    Tinsley, Mark R.; Nkomo, Simbarashe; Showalter, Kenneth

    2012-09-01

    Populations of coupled oscillators may exhibit two coexisting subpopulations, one with synchronized oscillations and the other with unsynchronized oscillations, even though all of the oscillators are coupled to each other in an equivalent manner. This phenomenon, discovered about ten years ago in theoretical studies, was then further characterized and named the chimera state after the Greek mythological creature made up of different animals. The highly counterintuitive coexistence of coherent and incoherent oscillations in populations of identical oscillators, each with an equivalent coupling structure, inspired great interest and a flurry of theoretical activity. Here we report on experimental studies of chimera states and their relation to other synchronization states in populations of coupled chemical oscillators. Our experiments with coupled Belousov-Zhabotinsky oscillators and corresponding simulations reveal chimera behaviour that differs significantly from the behaviour found in theoretical studies of phase-oscillator models.

  3. Chimera states in two-dimensional networks of locally coupled oscillators

    NASA Astrophysics Data System (ADS)

    Kundu, Srilena; Majhi, Soumen; Bera, Bidesh K.; Ghosh, Dibakar; Lakshmanan, M.

    2018-02-01

    Chimera state is defined as a mixed type of collective state in which synchronized and desynchronized subpopulations of a network of coupled oscillators coexist and the appearance of such anomalous behavior has strong connection to diverse neuronal developments. Most of the previous studies on chimera states are not extensively done in two-dimensional ensembles of coupled oscillators by taking neuronal systems with nonlinear coupling function into account while such ensembles of oscillators are more realistic from a neurobiological point of view. In this paper, we report the emergence and existence of chimera states by considering locally coupled two-dimensional networks of identical oscillators where each node is interacting through nonlinear coupling function. This is in contrast with the existence of chimera states in two-dimensional nonlocally coupled oscillators with rectangular kernel in the coupling function. We find that the presence of nonlinearity in the coupling function plays a key role to produce chimera states in two-dimensional locally coupled oscillators. We analytically verify explicitly in the case of a network of coupled Stuart-Landau oscillators in two dimensions that the obtained results using Ott-Antonsen approach and our analytical finding very well matches with the numerical results. Next, we consider another type of important nonlinear coupling function which exists in neuronal systems, namely chemical synaptic function, through which the nearest-neighbor (locally coupled) neurons interact with each other. It is shown that such synaptic interacting function promotes the emergence of chimera states in two-dimensional lattices of locally coupled neuronal oscillators. In numerical simulations, we consider two paradigmatic neuronal oscillators, namely Hindmarsh-Rose neuron model and Rulkov map for each node which exhibit bursting dynamics. By associating various spatiotemporal behaviors and snapshots at particular times, we study the chimera

  4. Chimera states in two-dimensional networks of locally coupled oscillators.

    PubMed

    Kundu, Srilena; Majhi, Soumen; Bera, Bidesh K; Ghosh, Dibakar; Lakshmanan, M

    2018-02-01

    Chimera state is defined as a mixed type of collective state in which synchronized and desynchronized subpopulations of a network of coupled oscillators coexist and the appearance of such anomalous behavior has strong connection to diverse neuronal developments. Most of the previous studies on chimera states are not extensively done in two-dimensional ensembles of coupled oscillators by taking neuronal systems with nonlinear coupling function into account while such ensembles of oscillators are more realistic from a neurobiological point of view. In this paper, we report the emergence and existence of chimera states by considering locally coupled two-dimensional networks of identical oscillators where each node is interacting through nonlinear coupling function. This is in contrast with the existence of chimera states in two-dimensional nonlocally coupled oscillators with rectangular kernel in the coupling function. We find that the presence of nonlinearity in the coupling function plays a key role to produce chimera states in two-dimensional locally coupled oscillators. We analytically verify explicitly in the case of a network of coupled Stuart-Landau oscillators in two dimensions that the obtained results using Ott-Antonsen approach and our analytical finding very well matches with the numerical results. Next, we consider another type of important nonlinear coupling function which exists in neuronal systems, namely chemical synaptic function, through which the nearest-neighbor (locally coupled) neurons interact with each other. It is shown that such synaptic interacting function promotes the emergence of chimera states in two-dimensional lattices of locally coupled neuronal oscillators. In numerical simulations, we consider two paradigmatic neuronal oscillators, namely Hindmarsh-Rose neuron model and Rulkov map for each node which exhibit bursting dynamics. By associating various spatiotemporal behaviors and snapshots at particular times, we study the chimera

  5. The Slinky Wilberforce pendulum: A simple coupled oscillator

    NASA Astrophysics Data System (ADS)

    Mewes, Matthew

    2014-03-01

    The Wilberforce pendulum is an effective classroom demonstration of coupled oscillations and the beat-like behavior that arises in weakly coupled tuned oscillators. We describe a simple and inexpensive version constructed from a Slinky spring toy and a soup can.

  6. Phase dynamics of coupled oscillators reconstructed from data

    NASA Astrophysics Data System (ADS)

    Rosenblum, Michael; Kralemann, Bjoern; Pikovsky, Arkady

    2013-03-01

    We present a technique for invariant reconstruction of the phase dynamics equations for coupled oscillators from data. The invariant description is achieved by means of a transformation of phase estimates (protophases) obtained from general scalar observables to genuine phases. Staring from the bivariate data, we obtain the coupling functions in terms of these phases. We discuss the importance of the protophase-to-phase transformation for characterization of strength and directionality of interaction. To illustrate the technique we analyse the cardio-respiratory interaction on healthy humans. Our invariant approach is confirmed by high similarity of the coupling functions obtained from different observables of the cardiac system. Next, we generalize the technique to cover the case of small networks of coupled periodic units. We use the partial norms of the reconstructed coupling functions to quantify directed coupling between the oscillators. We illustrate the method by different network motifs for three coupled oscillators. We also discuss nonlinear effects in coupling.

  7. Basin stability measure of different steady states in coupled oscillators

    NASA Astrophysics Data System (ADS)

    Rakshit, Sarbendu; Bera, Bidesh K.; Majhi, Soumen; Hens, Chittaranjan; Ghosh, Dibakar

    2017-04-01

    In this report, we investigate the stabilization of saddle fixed points in coupled oscillators where individual oscillators exhibit the saddle fixed points. The coupled oscillators may have two structurally different types of suppressed states, namely amplitude death and oscillation death. The stabilization of saddle equilibrium point refers to the amplitude death state where oscillations are ceased and all the oscillators converge to the single stable steady state via inverse pitchfork bifurcation. Due to multistability features of oscillation death states, linear stability theory fails to analyze the stability of such states analytically, so we quantify all the states by basin stability measurement which is an universal nonlocal nonlinear concept and it interplays with the volume of basins of attractions. We also observe multi-clustered oscillation death states in a random network and measure them using basin stability framework. To explore such phenomena we choose a network of coupled Duffing-Holmes and Lorenz oscillators which are interacting through mean-field coupling. We investigate how basin stability for different steady states depends on mean-field density and coupling strength. We also analytically derive stability conditions for different steady states and confirm by rigorous bifurcation analysis.

  8. Analysis of high-frequency oscillations in mutually-coupled nano-lasers.

    PubMed

    Han, Hong; Shore, K Alan

    2018-04-16

    The dynamics of mutually coupled nano-lasers has been analyzed using rate equations which include the Purcell cavity-enhanced spontaneous emission factor F and the spontaneous emission coupling factor β. It is shown that in the mutually-coupled system, small-amplitude oscillations with frequencies of order 100 GHz are generated and are maintained with remarkable stability. The appearance of such high-frequency oscillations is associated with the effective reduction of the carrier lifetime for larger values of the Purcell factor, F, and spontaneous coupling factor, β. In mutually-coupled nano-lasers the oscillation frequency changes linearly with the frequency detuning between the lasers. For non-identical bias currents, the oscillation frequency of mutually-coupled nano-lasers also increases with bias current. The stability of the oscillations which appear in mutually coupled nano-lasers offers opportunities for their practical applications and notably in photonic integrated circuits.

  9. Cluster dynamics of pulse coupled oscillators

    NASA Astrophysics Data System (ADS)

    O'Keeffe, Kevin; Strogatz, Steven; Krapivsky, Paul

    2015-03-01

    We study the dynamics of networks of pulse coupled oscillators. Much attention has been devoted to the ultimate fate of the system: which conditions lead to a steady state in which all the oscillators are firing synchronously. But little is known about how synchrony builds up from an initially incoherent state. The current work addresses this question. Oscillators start to synchronize by forming clusters of different sizes that fire in unison. First pairs of oscillators, then triplets and so on. These clusters progressively grow by coalescing with others, eventually resulting in the fully synchronized state. We study the mean field model in which the coupling between oscillators is all to all. We use probabilistic arguments to derive a recursive set of evolution equations for these clusters. Using a generating function formalism, we derive simple equations for the moments of these clusters. Our results are in good agreement simulation. We then numerically explore the effects of non-trivial connectivity. Our results have potential application to ultra-low power ``impulse radio'' & sensor networks.

  10. Mode coupling in spin torque oscillators

    DOE PAGES

    Zhang, Steven S. -L.; Zhou, Yan; Li, Dong; ...

    2016-09-15

    A number of recent experimental works have shown that the dynamics of a single spin torque oscillator can exhibit complex behavior that stems from interactions between two or more modes of the oscillator, such as observed mode-hopping or mode coexistence. There has been some initial work indicating how the theory for a single-mode (macro-spin) spin torque oscillator should be generalized to include several modes and the interactions between them. In the present work, we rigorously derive such a theory starting with the Landau–Lifshitz–Gilbert equation for magnetization dynamics by expanding up to third-order terms in deviation from equilibrium. Here, our resultsmore » show how a linear mode coupling, which is necessary for observed mode-hopping to occur, arises through coupling to a magnon bath. In conclusion, the acquired temperature dependence of this coupling implies that the manifold of orbits and fixed points may shift with temperature.« less

  11. Stability of entrainment of a continuum of coupled oscillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snyder, Jordan; Zlotnik, Anatoly; Hagberg, Aric

    Complex natural and engineered systems are ubiquitous, and their behavior is challenging to characterize and control. Here, we examine the design of the entrainment process for an uncountably infinite collection of coupled phase oscillators that are all subject to the same periodic driving signal. In the absence of coupling, an appropriately designed input can result in each oscillator attaining the frequency of the driving signal, with a phase offset determined by its natural frequency. We also consider a special case of interacting oscillators in which the coupling tends to destabilize the phase configuration to which the driving signal would sendmore » the collection in the absence of coupling. In this setting, we derive stability results that characterize the trade-off between the effects of driving and coupling, and compare these results to the well-known Kuramoto model of a collection of free-running coupled oscillators.« less

  12. Stability of entrainment of a continuum of coupled oscillators

    DOE PAGES

    Snyder, Jordan; Zlotnik, Anatoly; Hagberg, Aric

    2017-10-05

    Complex natural and engineered systems are ubiquitous, and their behavior is challenging to characterize and control. Here, we examine the design of the entrainment process for an uncountably infinite collection of coupled phase oscillators that are all subject to the same periodic driving signal. In the absence of coupling, an appropriately designed input can result in each oscillator attaining the frequency of the driving signal, with a phase offset determined by its natural frequency. We also consider a special case of interacting oscillators in which the coupling tends to destabilize the phase configuration to which the driving signal would sendmore » the collection in the absence of coupling. In this setting, we derive stability results that characterize the trade-off between the effects of driving and coupling, and compare these results to the well-known Kuramoto model of a collection of free-running coupled oscillators.« less

  13. Emergence of localized patterns in globally coupled networks of relaxation oscillators with heterogeneous connectivity

    NASA Astrophysics Data System (ADS)

    Leiser, Randolph J.; Rotstein, Horacio G.

    2017-08-01

    Oscillations in far-from-equilibrium systems (e.g., chemical, biochemical, biological) are generated by the nonlinear interplay of positive and negative feedback effects operating at different time scales. Relaxation oscillations emerge when the time scales between the activators and the inhibitors are well separated. In addition to the large-amplitude oscillations (LAOs) or relaxation type, these systems exhibit small-amplitude oscillations (SAOs) as well as abrupt transitions between them (canard phenomenon). Localized cluster patterns in networks of relaxation oscillators consist of one cluster oscillating in the LAO regime or exhibiting mixed-mode oscillations (LAOs interspersed with SAOs), while the other oscillates in the SAO regime. Because the individual oscillators are monostable, localized patterns are a network phenomenon that involves the interplay of the connectivity and the intrinsic dynamic properties of the individual nodes. Motivated by experimental and theoretical results on the Belousov-Zhabotinsky reaction, we investigate the mechanisms underlying the generation of localized patterns in globally coupled networks of piecewise-linear relaxation oscillators where the global feedback term affects the rate of change of the activator (fast variable) and depends on the weighted sum of the inhibitor (slow variable) at any given time. We also investigate whether these patterns are affected by the presence of a diffusive type of coupling whose synchronizing effects compete with the symmetry-breaking global feedback effects.

  14. Chimera states in nonlocally coupled phase oscillators with biharmonic interaction

    NASA Astrophysics Data System (ADS)

    Cheng, Hongyan; Dai, Qionglin; Wu, Nianping; Feng, Yuee; Li, Haihong; Yang, Junzhong

    2018-03-01

    Chimera states, which consist of coexisting domains of coherent and incoherent parts, have been observed in a variety of systems. Most of previous works on chimera states have taken into account specific form of interaction between oscillators, for example, sinusoidal coupling or diffusive coupling. Here, we investigate chimera dynamics in nonlocally coupled phase oscillators with biharmonic interaction. We find novel chimera states with features such as that oscillators in the same coherent cluster may split into two groups with a phase difference around π/2 and that oscillators in adjacent coherent clusters may have a phase difference close to π/2. The different impacts of the coupling ranges in the first and the second harmonic interactions on chimera dynamics are investigated based on the synchronous dynamics in globally coupled phase oscillators. Our study suggests a new direction in the field of chimera dynamics.

  15. Chaos in generically coupled phase oscillator networks with nonpairwise interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bick, Christian; Ashwin, Peter; Rodrigues, Ana

    The Kuramoto–Sakaguchi system of coupled phase oscillators, where interaction between oscillators is determined by a single harmonic of phase differences of pairs of oscillators, has very simple emergent dynamics in the case of identical oscillators that are globally coupled: there is a variational structure that means the only attractors are full synchrony (in-phase) or splay phase (rotating wave/full asynchrony) oscillations and the bifurcation between these states is highly degenerate. Here we show that nonpairwise coupling—including three and four-way interactions of the oscillator phases—that appears generically at the next order in normal-form based calculations can give rise to complex emergent dynamicsmore » in symmetric phase oscillator networks. In particular, we show that chaos can appear in the smallest possible dimension of four coupled phase oscillators for a range of parameter values.« less

  16. Raman-Suppressing Coupling for Optical Parametric Oscillator

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy; Maleki, Lute; Matsko, Andrey; Rubiola, Enrico

    2007-01-01

    A Raman-scattering-suppressing input/ output coupling scheme has been devised for a whispering-gallery-mode optical resonator that is used as a four-wave-mixing device to effect an all-optical parametric oscillator. Raman scattering is undesired in such a device because (1) it is a nonlinear process that competes with the desired nonlinear four-wave conversion process involved in optical parametric oscillation and (2) as such, it reduces the power of the desired oscillation and contributes to output noise. The essence of the present input/output coupling scheme is to reduce output loading of the desired resonator modes while increasing output loading of the undesired ones.

  17. Synchronization Dynamics of Coupled Chemical Oscillators

    NASA Astrophysics Data System (ADS)

    Tompkins, Nathan

    The synchronization dynamics of complex networks have been extensively studied over the past few decades due to their ubiquity in the natural world. Prominent examples include cardiac rhythms, circadian rhythms, the flashing of fireflies, predator/prey population dynamics, mammalian gait, human applause, pendulum clocks, the electrical grid, and of the course the brain. Detailed experiments have been done to map the topology of many of these systems and significant advances have been made to describe the mathematics of these networks. Compared to these bodies of work relatively little has been done to directly test the role of topology in the synchronization dynamics of coupled oscillators. This Dissertation develops technology to examine the dynamics due to topology within networks of discrete oscillatory components. The oscillatory system used here consists of the photo-inhibitable Belousov-Zhabotinsky (BZ) reaction water-in-oil emulsion where the oscillatory drops are diffusively coupled to one another and the topology is defined by the geometry of the diffusive connections. Ring networks are created from a close-packed 2D array of drops using the Programmable Illumination Microscope (PIM) in order to test Turing's theory of morphogenesis directly. Further technology is developed to create custom planar networks of BZ drops in more complicated topologies which can be individually perturbed using illumination from the PIM. The work presented here establishes the validity of using the BZ emulsion system with a PIM to study the topology induced effects on the synchronization dynamics of coupled chemical oscillators, tests the successes and limitations of Turing's theory of morphogenesis, and develops new technology to further probe the effects of network topology on a system of coupled oscillators. Finally, this Dissertation concludes by describing ongoing experiments which utilize this new technology to examine topology induced transitions of synchronization

  18. Solitary states for coupled oscillators with inertia.

    PubMed

    Jaros, Patrycja; Brezetsky, Serhiy; Levchenko, Roman; Dudkowski, Dawid; Kapitaniak, Tomasz; Maistrenko, Yuri

    2018-01-01

    Networks of identical oscillators with inertia can display remarkable spatiotemporal patterns in which one or a few oscillators split off from the main synchronized cluster and oscillate with different averaged frequency. Such "solitary states" are impossible for the classical Kuramoto model with sinusoidal coupling. However, if inertia is introduced, these states represent a solid part of the system dynamics, where each solitary state is characterized by the number of isolated oscillators and their disposition in space. We present system parameter regions for the existence of solitary states in the case of local, non-local, and global network couplings and show that they preserve in both thermodynamic and conservative limits. We give evidence that solitary states arise in a homoclinic bifurcation of a saddle-type synchronized state and die eventually in a crisis bifurcation after essential variation of the parameters.

  19. Adaptive elimination of synchronization in coupled oscillator

    NASA Astrophysics Data System (ADS)

    Zhou, Shijie; Ji, Peng; Zhou, Qing; Feng, Jianfeng; Kurths, Jürgen; Lin, Wei

    2017-08-01

    We present here an adaptive control scheme with a feedback delay to achieve elimination of synchronization in a large population of coupled and synchronized oscillators. We validate the feasibility of this scheme not only in the coupled Kuramoto’s oscillators with a unimodal or bimodal distribution of natural frequency, but also in two representative models of neuronal networks, namely, the FitzHugh-Nagumo spiking oscillators and the Hindmarsh-Rose bursting oscillators. More significantly, we analytically illustrate the feasibility of the proposed scheme with a feedback delay and reveal how the exact topological form of the bimodal natural frequency distribution influences the scheme performance. We anticipate that our developed scheme will deepen the understanding and refinement of those controllers, e.g. techniques of deep brain stimulation, which have been implemented in remedying some synchronization-induced mental disorders including Parkinson disease and epilepsy.

  20. Solitary states for coupled oscillators with inertia

    NASA Astrophysics Data System (ADS)

    Jaros, Patrycja; Brezetsky, Serhiy; Levchenko, Roman; Dudkowski, Dawid; Kapitaniak, Tomasz; Maistrenko, Yuri

    2018-01-01

    Networks of identical oscillators with inertia can display remarkable spatiotemporal patterns in which one or a few oscillators split off from the main synchronized cluster and oscillate with different averaged frequency. Such "solitary states" are impossible for the classical Kuramoto model with sinusoidal coupling. However, if inertia is introduced, these states represent a solid part of the system dynamics, where each solitary state is characterized by the number of isolated oscillators and their disposition in space. We present system parameter regions for the existence of solitary states in the case of local, non-local, and global network couplings and show that they preserve in both thermodynamic and conservative limits. We give evidence that solitary states arise in a homoclinic bifurcation of a saddle-type synchronized state and die eventually in a crisis bifurcation after essential variation of the parameters.

  1. Coupling mechanism in the gate and oscillator model of the SCN

    NASA Astrophysics Data System (ADS)

    Li, Ying; Liu, Zengrong

    2016-09-01

    In mammals, the suprachiasmatic nucleus (SCN) of the hypothalamus is considered as the master circadian pacemaker. The SCN is divided into two subgroups of gate and oscillator cells: the ventrolateral (VL) neurons, which receive the periodic light-dark (LD) signal, and the dorsomedial (DM) neurons, which are coupled to the VL cells. The fundamental question is how the individual cellular oscillators, expressing a wide range of periods, interact and assemble to create an integrated pacemaker that can govern behavioral and physiological rhythmicity and be reset by environmental light. The key is that the heterogeneous network formed by the cellular clocks within the SCN must synchronize to maintain timekeeping activity. Based on the structural and functional heterogeneity of the SCN, the authors bring forward a mathematical model including gate cells and oscillator cells with a wide range of periods. The gate neurons offer daily injection to oscillator neurons and the activation of gate is determined by the output of the oscillator neurons. In this model, the authors consider two kinds of coupling: interior coupling among the oscillator cells and exterior coupling from the gate cells to the oscillator cells. The authors mainly analyze the combined effects of these two kinds of coupling on the entrainment of the oscillator cells in the DM part. It is found that the interior coupling is conducive to entrainment, but a stronger coupling is not beneficial to entrainment. The gate mechanism in exterior coupling is more propitious to entrainment than continuous coupling. This study helps to understand collective circadian rhythm in the mammals.

  2. Quorum Sensing in Populations of Spatially Extended Chaotic Oscillators Coupled Indirectly via a Heterogeneous Environment

    NASA Astrophysics Data System (ADS)

    Li, Bing-Wei; Cao, Xiao-Zhi; Fu, Chenbo

    2017-12-01

    Many biological and chemical systems could be modeled by a population of oscillators coupled indirectly via a dynamical environment. Essentially, the environment by which the individual element communicates with each other is heterogeneous. Nevertheless, most of previous works considered the homogeneous case only. Here we investigated the dynamical behaviors in a population of spatially distributed chaotic oscillators immersed in a heterogeneous environment. Various dynamical synchronization states (such as oscillation death, phase synchronization, and complete synchronized oscillation) as well as their transitions were explored. In particular, we uncovered a non-traditional quorum sensing transition: increasing the population density leaded to a transition from oscillation death to synchronized oscillation at first, but further increasing the density resulted in degeneration from complete synchronization to phase synchronization or even from phase synchronization to desynchronization. The underlying mechanism of this finding was attributed to the dual roles played by the population density. What's more, by treating the environment as another component of the oscillator, the full system was then effectively equivalent to a locally coupled system. This fact allowed us to utilize the master stability functions approach to predict the occurrence of complete synchronization oscillation, which agreed with that from the direct numerical integration of the system. The potential candidates for the experimental realization of our model were also discussed.

  3. Synchronization of oscillations in coupled multimode optoelectronic oscillators: bifurcation analysis

    NASA Astrophysics Data System (ADS)

    Balakin, M.; Gulyaev, A.; Kazaryan, A.; Yarovoy, O.

    2018-04-01

    We study influence of time delay in coupling on the dynamics of two coupled multimode optoelectronic oscillators. We reveal the structure of main synchronization region on the parameter plane and main bifurcations leading to synchronization and multistability formation. The dynamics of the system is studied in a wide range of values of control parameters.

  4. Clausius inequality beyond the weak-coupling limit: the quantum Brownian oscillator.

    PubMed

    Kim, Ilki; Mahler, Günter

    2010-01-01

    We consider a quantum linear oscillator coupled at an arbitrary strength to a bath at an arbitrary temperature. We find an exact closed expression for the oscillator density operator. This state is noncanonical but can be shown to be equivalent to that of an uncoupled linear oscillator at an effective temperature T*(eff) with an effective mass and an effective spring constant. We derive an effective Clausius inequality deltaQ*(eff)< or =T*(eff)dS , where deltaQ*(eff) is the heat exchanged between the effective (weakly coupled) oscillator and the bath, and S represents a thermal entropy of the effective oscillator, being identical to the von-Neumann entropy of the coupled oscillator. Using this inequality (for a cyclic process in terms of a variation of the coupling strength) we confirm the validity of the second law. For a fixed coupling strength this inequality can also be tested for a process in terms of a variation of either the oscillator mass or its spring constant. Then it is never violated. The properly defined Clausius inequality is thus more robust than assumed previously.

  5. Kinetic theory of coupled oscillators.

    PubMed

    Hildebrand, Eric J; Buice, Michael A; Chow, Carson C

    2007-02-02

    We present an approach for the description of fluctuations that are due to finite system size induced correlations in the Kuramoto model of coupled oscillators. We construct a hierarchy for the moments of the density of oscillators that is analogous to the Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy in the kinetic theory of plasmas and gases. To calculate the lowest order system size effect, we truncate this hierarchy at second order and solve the resulting closed equations for the two-oscillator correlation function around the incoherent state. We use this correlation function to compute the fluctuations of the order parameter, including the effect of transients, and compare this computation with numerical simulations.

  6. Aging transition in systems of oscillators with global distributed-delay coupling.

    PubMed

    Rahman, B; Blyuss, K B; Kyrychko, Y N

    2017-09-01

    We consider a globally coupled network of active (oscillatory) and inactive (nonoscillatory) oscillators with distributed-delay coupling. Conditions for aging transition, associated with suppression of oscillations, are derived for uniform and gamma delay distributions in terms of coupling parameters and the proportion of inactive oscillators. The results suggest that for the uniform distribution increasing the width of distribution for the same mean delay allows aging transition to happen for a smaller coupling strength and a smaller proportion of inactive elements. For gamma distribution with sufficiently large mean time delay, it may be possible to achieve aging transition for an arbitrary proportion of inactive oscillators, as long as the coupling strength lies in a certain range.

  7. Surprises of the Transformer as a Coupled Oscillator System

    ERIC Educational Resources Information Center

    Silva, J. P.; Silvestre, A. J.

    2008-01-01

    We study a system of two RLC oscillators coupled through a variable mutual inductance. The system is interesting because it exhibits some peculiar features of coupled oscillators: (i) there are two natural frequencies; (ii) in general, the resonant frequencies do not coincide with the natural frequencies; (iii) the resonant frequencies of both…

  8. Emergence of a super-synchronized mobbing state in a large population of coupled chemical oscillators.

    PubMed

    Ghoshal, Gourab; Muñuzuri, Alberto P; Pérez-Mercader, Juan

    2016-01-12

    Oscillatory phenomena are ubiquitous in Nature. The ability of a large population of coupled oscillators to synchronize constitutes an important mechanism to express information and establish communication among members. To understand such phenomena, models and experimental realizations of globally coupled oscillators have proven to be invaluable in settings as varied as chemical, biological and physical systems. A variety of rich dynamical behavior has been uncovered, although usually in the context of a single state of synchronization or lack thereof. Through the experimental and numerical study of a large population of discrete chemical oscillators, here we report on the unexpected discovery of a new phenomenon revealing the existence of dynamically distinct synchronized states reflecting different degrees of communication. Specifically, we discover a novel large-amplitude super-synchronized state separated from the conventionally reported synchronized and quiescent states through an unusual sharp jump transition when sampling the strong coupling limit. Our results assume significance for further elucidating globally coherent phenomena, such as in neuropathologies, bacterial cell colonies, social systems and semiconductor lasers.

  9. Emergence of a super-synchronized mobbing state in a large population of coupled chemical oscillators

    NASA Astrophysics Data System (ADS)

    Ghoshal, Gourab; Muñuzuri, Alberto P.; Pérez-Mercader, Juan

    2016-01-01

    Oscillatory phenomena are ubiquitous in Nature. The ability of a large population of coupled oscillators to synchronize constitutes an important mechanism to express information and establish communication among members. To understand such phenomena, models and experimental realizations of globally coupled oscillators have proven to be invaluable in settings as varied as chemical, biological and physical systems. A variety of rich dynamical behavior has been uncovered, although usually in the context of a single state of synchronization or lack thereof. Through the experimental and numerical study of a large population of discrete chemical oscillators, here we report on the unexpected discovery of a new phenomenon revealing the existence of dynamically distinct synchronized states reflecting different degrees of communication. Specifically, we discover a novel large-amplitude super-synchronized state separated from the conventionally reported synchronized and quiescent states through an unusual sharp jump transition when sampling the strong coupling limit. Our results assume significance for further elucidating globally coherent phenomena, such as in neuropathologies, bacterial cell colonies, social systems and semiconductor lasers.

  10. Dynamics of a network of phase oscillators with plastic couplings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nekorkin, V. I.; Kasatkin, D. V.; Moscow Institute of Physics and Technology

    The processes of synchronization and phase cluster formation are investigated in a complex network of dynamically coupled phase oscillators. Coupling weights evolve dynamically depending on the phase relations between the oscillators. It is shown that the network exhibits several types of behavior: the globally synchronized state, two-cluster and multi-cluster states, different synchronous states with a fixed phase relationship between the oscillators and chaotic desynchronized state.

  11. Nonlinear transient waves in coupled phase oscillators with inertia.

    PubMed

    Jörg, David J

    2015-05-01

    Like the inertia of a physical body describes its tendency to resist changes of its state of motion, inertia of an oscillator describes its tendency to resist changes of its frequency. Here, we show that finite inertia of individual oscillators enables nonlinear phase waves in spatially extended coupled systems. Using a discrete model of coupled phase oscillators with inertia, we investigate these wave phenomena numerically, complemented by a continuum approximation that permits the analytical description of the key features of wave propagation in the long-wavelength limit. The ability to exhibit traveling waves is a generic feature of systems with finite inertia and is independent of the details of the coupling function.

  12. Time-shifted synchronization of chaotic oscillator chains without explicit coupling delays.

    PubMed

    Blakely, Jonathan N; Stahl, Mark T; Corron, Ned J

    2009-12-01

    We examine chains of unidirectionally coupled oscillators in which time-shifted synchronization occurs without explicit delays in the coupling. In numerical simulations and in an experimental system of electronic oscillators, we examine the time shift and the degree of distortion (primarily in the form of attenuation) of the waveforms of the oscillators located far from the drive oscillator. Surprisingly, under weak coupling we observe minimal attenuation in spite of a significant total time shift. In contrast, at higher coupling strengths the observed attenuation increases dramatically and approaches the value predicted by an analytically derived estimate. In this regime, we verify directly that generalized synchronization is maintained over the entire chain length despite severe attenuation. These results suggest that weak coupling generally may produce higher quality synchronization in systems for which truly identical synchronization is not possible.

  13. A Simplified Theory of Coupled Oscillator Array Phase Control

    NASA Technical Reports Server (NTRS)

    Pogorzelski, R. J.; York, R. A.

    1997-01-01

    Linear and planar arrays of coupled oscillators have been proposed as means of achieving high power rf sources through coherent spatial power combining. In such - applications, a uniform phase distribution over the aperture is desired. However, it has been shown that by detuning some of the oscillators away from the oscillation frequency of the ensemble of oscillators, one may achieve other useful aperture phase distributions. Notable among these are linear phase distributions resulting in steering of the output rf beam away from the broadside direction. The theory describing the operation of such arrays of coupled oscillators is quite complicated since the phenomena involved are inherently nonlinear. This has made it difficult to develop an intuitive understanding of the impact of oscillator tuning on phase control and has thus impeded practical application. In this work a simpl!fied theory is developed which facilitates intuitive understanding by establishing an analog of the phase control problem in terms of electrostatics.

  14. Antiphase synchronization in coupled chaotic oscillators.

    PubMed

    Liu, Weiqing; Xiao, Jinghua; Qian, Xiaolan; Yang, Junzhong

    2006-05-01

    Anti-phase synchronization (AS) in coupled chaotic oscillators is investigated. The necessary condition for AS is given and the stability of AS is studied. Results are demonstrated with numerical simulations and electronic circuits.

  15. Synchronization of Heterogeneous Oscillators by Noninvasive Time-Delayed Cross Coupling.

    PubMed

    Jüngling, Thomas; Fischer, Ingo; Schöll, Eckehard; Just, Wolfram

    2015-11-06

    We demonstrate that nonidentical systems, in particular, nonlinear oscillators with different time scales, can be synchronized if a mutual coupling via time-delayed control signals is implemented. Each oscillator settles on an unstable state, say a fixed point or an unstable periodic orbit, with a coupling force which vanishes in the long time limit. We present the underlying theoretical considerations and numerical simulations, and, moreover, demonstrate the concept experimentally in nonlinear electronic oscillators.

  16. Revival of oscillations from deaths in diffusively coupled nonlinear systems: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Zou, Wei; Sebek, Michael; Kiss, István Z.; Kurths, Jürgen

    2017-06-01

    Amplitude death (AD) and oscillation death (OD) are two structurally different oscillation quenching phenomena in coupled nonlinear systems. As a reverse issue of AD and OD, revival of oscillations from deaths attracts an increasing attention recently. In this paper, we clearly disclose that a time delay in the self-feedback component of the coupling destabilizes not only AD but also OD, and even the AD to OD transition in paradigmatic models of coupled Stuart-Landau oscillators under diverse death configurations. Using a rigorous analysis, the effectiveness of this self-feedback delay in revoking AD is theoretically proved to be valid in an arbitrary network of coupled Stuart-Landau oscillators with generally distributed propagation delays. Moreover, the role of self-feedback delay in reviving oscillations from AD is experimentally verified in two delay-coupled electrochemical reactions.

  17. Revival of oscillations from deaths in diffusively coupled nonlinear systems: Theory and experiment.

    PubMed

    Zou, Wei; Sebek, Michael; Kiss, István Z; Kurths, Jürgen

    2017-06-01

    Amplitude death (AD) and oscillation death (OD) are two structurally different oscillation quenching phenomena in coupled nonlinear systems. As a reverse issue of AD and OD, revival of oscillations from deaths attracts an increasing attention recently. In this paper, we clearly disclose that a time delay in the self-feedback component of the coupling destabilizes not only AD but also OD, and even the AD to OD transition in paradigmatic models of coupled Stuart-Landau oscillators under diverse death configurations. Using a rigorous analysis, the effectiveness of this self-feedback delay in revoking AD is theoretically proved to be valid in an arbitrary network of coupled Stuart-Landau oscillators with generally distributed propagation delays. Moreover, the role of self-feedback delay in reviving oscillations from AD is experimentally verified in two delay-coupled electrochemical reactions.

  18. Spontaneous mode switching in coupled oscillators competing for constant amounts of resources

    NASA Astrophysics Data System (ADS)

    Hirata, Yoshito; Aono, Masashi; Hara, Masahiko; Aihara, Kazuyuki

    2010-03-01

    We propose a widely applicable scheme of coupling that models competitions among dynamical systems for fixed amounts of resources. Two oscillators coupled in this way synchronize in antiphase. Three oscillators coupled circularly show a number of oscillation modes such as rotation and partially in-phase synchronization. Intriguingly, simple oscillators in the model also produce complex behavior such as spontaneous switching among different modes. The dynamics reproduces well the spatiotemporal oscillatory behavior of a true slime mold Physarum, which is capable of computational optimization.

  19. Controllability in tunable chains of coupled harmonic oscillators

    NASA Astrophysics Data System (ADS)

    Buchmann, L. F.; Mølmer, K.; Petrosyan, D.

    2018-04-01

    We prove that temporal control of the strengths of springs connecting N harmonic oscillators in a chain provides complete access to all Gaussian states of N -1 collective modes. The proof relies on the construction of a suitable basis of cradle modes for the system. An iterative algorithm to reach any desired Gaussian state requires at most 3 N (N -1 )/2 operations. We illustrate this capability by engineering squeezed pseudo-phonon states—highly nonlocal, strongly correlated states that may result from various nonlinear processes. Tunable chains of coupled harmonic oscillators can be implemented by a number of current state-of-the-art experimental platforms, including cold atoms in lattice potentials, arrays of mechanical micro-oscillators, and coupled optical waveguides.

  20. Robustness and fragility in coupled oscillator networks under targeted attacks.

    PubMed

    Yuan, Tianyu; Aihara, Kazuyuki; Tanaka, Gouhei

    2017-01-01

    The dynamical tolerance of coupled oscillator networks against local failures is studied. As the fraction of failed oscillator nodes gradually increases, the mean oscillation amplitude in the entire network decreases and then suddenly vanishes at a critical fraction as a phase transition. This critical fraction, widely used as a measure of the network robustness, was analytically derived for random failures but not for targeted attacks so far. Here we derive the general formula for the critical fraction, which can be applied to both random failures and targeted attacks. We consider the effects of targeting oscillator nodes based on their degrees. First we deal with coupled identical oscillators with homogeneous edge weights. Then our theory is applied to networks with heterogeneous edge weights and to those with nonidentical oscillators. The analytical results are validated by numerical experiments. Our results reveal the key factors governing the robustness and fragility of oscillator networks.

  1. Synchronization of three electrochemical oscillators: From local to global coupling

    NASA Astrophysics Data System (ADS)

    Liu, Yifan; Sebek, Michael; Mori, Fumito; Kiss, István Z.

    2018-04-01

    We investigate the formation of synchronization patterns in an oscillatory nickel electrodissolution system in a network obtained by superimposing local and global coupling with three electrodes. We explored the behavior through numerical simulations using kinetic ordinary differential equations, Kuramoto type phase models, and experiments, in which the local to global coupling could be tuned by cross resistances between the three nickel wires. At intermediate coupling strength with predominant global coupling, two of the three oscillators, whose natural frequencies are closer, can synchronize. By adding even a relatively small amount of local coupling (about 9%-25%), a spatially organized partially synchronized state can occur where one of the two synchronized elements is in the center. A formula was derived for predicting the critical coupling strength at which full synchronization will occur independent of the permutation of the natural frequencies of the oscillators over the network. The formula correctly predicts the variation of the critical coupling strength as a function of the global coupling fraction, e.g., with local coupling the critical coupling strength is about twice than that required with global coupling. The results show the importance of the topology of the network on the synchronization properties in a simple three-oscillator setup and could provide guidelines for decrypting coupling topology from identification of synchronization patterns.

  2. Precise measurement of coupling strength and high temperature quantum effect in a nonlinearly coupled qubit-oscillator system

    NASA Astrophysics Data System (ADS)

    Ge, Li; Zhao, Nan

    2018-04-01

    We study the coherence dynamics of a qubit coupled to a harmonic oscillator with both linear and quadratic interactions. As long as the linear coupling strength is much smaller than the oscillator frequency, the long time behavior of the coherence is dominated by the quadratic coupling strength g 2. The coherence decays and revives at a period , with the width of coherence peak decreasing as the temperature increases, hence providing a way to measure g 2 precisely without cooling. Unlike the case of linear coupling, here the coherence dynamics never reduces to the classical limit in which the oscillator is classical. Finally, the validity of linear coupling approximation is discussed and the coherence under Hahn-echo is evaluated.

  3. Numerical bifurcation analysis of two coupled FitzHugh-Nagumo oscillators

    NASA Astrophysics Data System (ADS)

    Hoff, Anderson; dos Santos, Juliana V.; Manchein, Cesar; Albuquerque, Holokx A.

    2014-07-01

    The behavior of neurons can be modeled by the FitzHugh-Nagumo oscillator model, consisting of two nonlinear differential equations, which simulates the behavior of nerve impulse conduction through the neuronal membrane. In this work, we numerically study the dynamical behavior of two coupled FitzHugh-Nagumo oscillators. We consider unidirectional and bidirectional couplings, for which Lyapunov and isoperiodic diagrams were constructed calculating the Lyapunov exponents and the number of the local maxima of a variable in one period interval of the time-series, respectively. By numerical continuation method the bifurcation curves are also obtained for both couplings. The dynamics of the networks here investigated are presented in terms of the variation between the coupling strength of the oscillators and other parameters of the system. For the network of two oscillators unidirectionally coupled, the results show the existence of Arnold tongues, self-organized sequentially in a branch of a Stern-Brocot tree and by the bifurcation curves it became evident the connection between these Arnold tongues with other periodic structures in Lyapunov diagrams. That system also presents multistability shown in the planes of the basin of attractions.

  4. Delay-induced patterns in a two-dimensional lattice of coupled oscillators

    PubMed Central

    Kantner, Markus; Schöll, Eckehard; Yanchuk, Serhiy

    2015-01-01

    We show how a variety of stable spatio-temporal periodic patterns can be created in 2D-lattices of coupled oscillators with non-homogeneous coupling delays. The results are illustrated using the FitzHugh-Nagumo coupled neurons as well as coupled limit cycle (Stuart-Landau) oscillators. A “hybrid dispersion relation” is introduced, which describes the stability of the patterns in spatially extended systems with large time-delay. PMID:25687789

  5. The Coupled Harmonic Oscillator: Not Just for Seniors Anymore.

    ERIC Educational Resources Information Center

    Preyer, Norris W.

    1996-01-01

    Presents experiments that use Microcomputer Based Laboratory (MBL) techniques to enable freshmen physics students to investigate complex systems, such as nonlinear oscillators or coupled harmonic oscillators, at a level appropriate for an independent project. (JRH)

  6. Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode.

    PubMed

    Verhagen, E; Deléglise, S; Weis, S; Schliesser, A; Kippenberg, T J

    2012-02-01

    Optical laser fields have been widely used to achieve quantum control over the motional and internal degrees of freedom of atoms and ions, molecules and atomic gases. A route to controlling the quantum states of macroscopic mechanical oscillators in a similar fashion is to exploit the parametric coupling between optical and mechanical degrees of freedom through radiation pressure in suitably engineered optical cavities. If the optomechanical coupling is 'quantum coherent'--that is, if the coherent coupling rate exceeds both the optical and the mechanical decoherence rate--quantum states are transferred from the optical field to the mechanical oscillator and vice versa. This transfer allows control of the mechanical oscillator state using the wide range of available quantum optical techniques. So far, however, quantum-coherent coupling of micromechanical oscillators has only been achieved using microwave fields at millikelvin temperatures. Optical experiments have not attained this regime owing to the large mechanical decoherence rates and the difficulty of overcoming optical dissipation. Here we achieve quantum-coherent coupling between optical photons and a micromechanical oscillator. Simultaneously, coupling to the cold photon bath cools the mechanical oscillator to an average occupancy of 1.7 ± 0.1 motional quanta. Excitation with weak classical light pulses reveals the exchange of energy between the optical light field and the micromechanical oscillator in the time domain at the level of less than one quantum on average. This optomechanical system establishes an efficient quantum interface between mechanical oscillators and optical photons, which can provide decoherence-free transport of quantum states through optical fibres. Our results offer a route towards the use of mechanical oscillators as quantum transducers or in microwave-to-optical quantum links.

  7. Oscillations in exchange coupling across a nonmagnetic metallic layer

    NASA Astrophysics Data System (ADS)

    Edwards, D. M.; Mathon, J.

    1991-02-01

    The exchange coupling between two strong itinerant ferromagnets separated by N atomic planes of a nonmagnetic metal is calculated using a Hubbard-type model. It is shown that for certain positions of the Fermi level the variation of the exchange coupling with N exhibits oscillations of long period. The amplitude of the oscillations falls of as 1/ N2 and agrees in order of magnitude with the exchange coupling observed by Parkin et al. in Co/Ru and Fe/Cr multilayers. Further agreement is the finding that antiparallel alignment of the ferromagnetic layers is favoured for small N. The relationship between the coupling found here and one of RKKY type is discussed.

  8. The dynamics of two linearly coupled Goodwin oscillators

    NASA Astrophysics Data System (ADS)

    Antonova, A. O.; Reznik, S. N.; Todorov, M. D.

    2017-10-01

    In this paper the Puu model of the interaction of Goodwin's business cycles for two regions is reconsidered. We investigated the effect of the accelerator coefficients and the Hicksian 'ceiling' and 'floor' parameters on the time dynamics of incomes for different values of marginal propensity to import. The cases when the periods of isolated Goodwin's cycles are close, and when they differ approximately twice are considered. By perturbation theory we obtained the formulas for slowly varying amplitudes and phase difference of weakly nonlinear coupled Goodwin oscillations. The coupled oscillations of two Goodwin's cycles with piecewise linear accelerators with only 'floor' are considered.

  9. Synchronization and desynchronization in a network of locally coupled Wilson-Cowan oscillators.

    PubMed

    Campbell, S; Wang, D

    1996-01-01

    A network of Wilson-Cowan (WC) oscillators is constructed, and its emergent properties of synchronization and desynchronization are investigated by both computer simulation and formal analysis. The network is a 2D matrix, where each oscillator is coupled only to its neighbors. We show analytically that a chain of locally coupled oscillators (the piecewise linear approximation to the WC oscillator) synchronizes, and we present a technique to rapidly entrain finite numbers of oscillators. The coupling strengths change on a fast time scale based on a Hebbian rule. A global separator is introduced which receives input from and sends feedback to each oscillator in the matrix. The global separator is used to desynchronize different oscillator groups. Unlike many other models, the properties of this network emerge from local connections that preserve spatial relationships among components and are critical for encoding Gestalt principles of feature grouping. The ability to synchronize and desynchronize oscillator groups within this network offers a promising approach for pattern segmentation and figure/ground segregation based on oscillatory correlation.

  10. Note on the coupled oscillator model solutions in crystalline optical activity

    NASA Astrophysics Data System (ADS)

    Vyšín, I.; Ríha, J.; Svácková, K.

    2006-06-01

    Many methods have been used in the crystalline optical activity solution, among them the traditional method of coupled oscillators. The two coupled oscillator model was first solved by Chandrasekhar, and the most general dispersion relations for the crystalline optical activity can be obtained from its next extensions. However, the Chandrasekhar solution method seems to be based on a mistake in the computations. For this reason, the solution of a more complicated model of coupled oscillators which better corresponds to the structure of real crystals using the Condon relations is presented. This solution leads to the conclusion that, although it is possible to object to the Chandrasekhar solution method, the form of his final dispersion relations is correct. On the other hand, the dispersion relations following from the solution of more complicated coupled oscillator models are more convenient for the interpretation of the crystalline optical activity experimental data, which is demonstrated in examples of crystals of tellurium and benzil.

  11. Coupled oscillators and Feynman's three papers

    NASA Astrophysics Data System (ADS)

    Kim, Y. S.

    2007-05-01

    According to Richard Feynman, the adventure of our science of physics is a perpetual attempt to recognize that the different aspects of nature are really different aspects of the same thing. It is therefore interesting to combine some, if not all, of Feynman's papers into one. The first of his three papers is on the "rest of the universe" contained in his 1972 book on statistical mechanics. The second idea is Feynman's parton picture which he presented in 1969 at the Stony Brook conference on high-energy physics. The third idea is contained in the 1971 paper he published with his students, where they show that the hadronic spectra on Regge trajectories are manifestations of harmonic-oscillator degeneracies. In this report, we formulate these three ideas using the mathematics of two coupled oscillators. It is shown that the idea of entanglement is contained in his rest of the universe, and can be extended to a space-time entanglement. It is shown also that his parton model and the static quark model can be combined into one Lorentz-covariant entity. Furthermore, Einstein's special relativity, based on the Lorentz group, can also be formulated within the mathematical framework of two coupled oscillators.

  12. Resonant-tunnelling diode oscillator using a slot-coupled quasioptical open resonator

    NASA Technical Reports Server (NTRS)

    Stephan, K. D.; Brown, E. R.; Parker, C. D.; Goodhue, W. D.; Chen, C. L.

    1991-01-01

    A resonant-tunneling diode has oscillated at X-band frequencies in a microwave circuit consisting of a slot antenna coupled to a semiconfocal open resonator. Coupling between the open resonator and the slot oscillator improves the noise-to-carrier ratio by about 36 dB relative to that of the slot oscillator alone in the 100-200 kHz range. A circuit operating near 10 GHz has been designed as a scale model for millimeter- and submillimeter-wave applications.

  13. GENERAL: Bursting Ca2+ Oscillations and Synchronization in Coupled Cells

    NASA Astrophysics Data System (ADS)

    Ji, Quan-Bao; Lu, Qi-Shao; Yang, Zhuo-Qin; Duan, Li-Xia

    2008-11-01

    A mathematical model proposed by Grubelnk et al. [Biophys. Chew,. 94 (2001) 59] is employed to study the physiological role of mitochondria and the cytosolic proteins in generating complex Ca2+ oscillations. Intracel-lular bursting calcium oscillations of point-point, point-cycle and two-folded limit cycle types are observed and explanations are given based on the fast/slow dynamical analysis, especially for point-cycle and two-folded limit cycle types, which have not been reported before. Furthermore, synchronization of coupled bursters of Ca2+ oscillations via gap junctions and the effect of bursting types on synchronization of coupled cells are studied. It is argued that bursting oscillations of point-point type may be superior to achieve synchronization than that of point-cycle type.

  14. From globally coupled maps to complex-systems biology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaneko, Kunihiko, E-mail: kaneko@complex.c.u-tokyo.ac.jp

    Studies of globally coupled maps, introduced as a network of chaotic dynamics, are briefly reviewed with an emphasis on novel concepts therein, which are universal in high-dimensional dynamical systems. They include clustering of synchronized oscillations, hierarchical clustering, chimera of synchronization and desynchronization, partition complexity, prevalence of Milnor attractors, chaotic itinerancy, and collective chaos. The degrees of freedom necessary for high dimensionality are proposed to equal the number in which the combinatorial exceeds the exponential. Future analysis of high-dimensional dynamical systems with regard to complex-systems biology is briefly discussed.

  15. Gβ Regulates Coupling between Actin Oscillators for Cell Polarity and Directional Migration

    PubMed Central

    Cai, Huaqing; Sun, Yaohui; Huang, Chuan-Hsiang; Freyre, Mariel; Zhao, Min; Devreotes, Peter N.; Weiner, Orion D.

    2016-01-01

    For directional movement, eukaryotic cells depend on the proper organization of their actin cytoskeleton. This engine of motility is made up of highly dynamic nonequilibrium actin structures such as flashes, oscillations, and traveling waves. In Dictyostelium, oscillatory actin foci interact with signals such as Ras and phosphatidylinositol 3,4,5-trisphosphate (PIP3) to form protrusions. However, how signaling cues tame actin dynamics to produce a pseudopod and guide cellular motility is a critical open question in eukaryotic chemotaxis. Here, we demonstrate that the strength of coupling between individual actin oscillators controls cell polarization and directional movement. We implement an inducible sequestration system to inactivate the heterotrimeric G protein subunit Gβ and find that this acute perturbation triggers persistent, high-amplitude cortical oscillations of F-actin. Actin oscillators that are normally weakly coupled to one another in wild-type cells become strongly synchronized following acute inactivation of Gβ. This global coupling impairs sensing of internal cues during spontaneous polarization and sensing of external cues during directional motility. A simple mathematical model of coupled actin oscillators reveals the importance of appropriate coupling strength for chemotaxis: moderate coupling can increase sensitivity to noisy inputs. Taken together, our data suggest that Gβ regulates the strength of coupling between actin oscillators for efficient polarity and directional migration. As these observations are only possible following acute inhibition of Gβ and are masked by slow compensation in genetic knockouts, our work also shows that acute loss-of-function approaches can complement and extend the reach of classical genetics in Dictyostelium and likely other systems as well. PMID:26890004

  16. Autonomous cycling between excitatory and inhibitory coupling in photosensitive chemical oscillators

    NASA Astrophysics Data System (ADS)

    Yengi, Desmond; Tinsley, Mark R.; Showalter, Kenneth

    2018-04-01

    Photochemically coupled Belousov-Zhabotinsky micro-oscillators are studied in experiments and simulations. The photosensitive oscillators exhibit excitatory or inhibitory coupling depending on the surrounding reaction mixture composition, which can be systematically varied. In-phase or out-of-phase synchronization is observed with predominantly excitatory or inhibitory coupling, respectively, and complex frequency cycling between excitatory and inhibitory coupling is found between these extremes. The dynamical behavior is characterized in terms of the corresponding phase response curves, and a map representation of the dynamics is presented.

  17. Synchronization in oscillator networks with delayed coupling: a stability criterion.

    PubMed

    Earl, Matthew G; Strogatz, Steven H

    2003-03-01

    We derive a stability criterion for the synchronous state in networks of identical phase oscillators with delayed coupling. The criterion applies to any network (whether regular or random, low dimensional or high dimensional, directed or undirected) in which each oscillator receives delayed signals from k others, where k is uniform for all oscillators.

  18. A quantitative analysis of coupled oscillations using mobile accelerometer sensors

    NASA Astrophysics Data System (ADS)

    Castro-Palacio, Juan Carlos; Velázquez-Abad, Luisberis; Giménez, Fernando; Monsoriu, Juan A.

    2013-05-01

    In this paper, smartphone acceleration sensors were used to perform a quantitative analysis of mechanical coupled oscillations. Symmetric and asymmetric normal modes were studied separately in the first two experiments. In the third, a coupled oscillation was studied as a combination of the normal modes. Results indicate that acceleration sensors of smartphones, which are very familiar to students, represent valuable measurement instruments for introductory and first-year physics courses.

  19. Direction of coupling from phases of interacting oscillators: An information-theoretic approach

    NASA Astrophysics Data System (ADS)

    Paluš, Milan; Stefanovska, Aneta

    2003-05-01

    A directionality index based on conditional mutual information is proposed for application to the instantaneous phases of weakly coupled oscillators. Its abilities to distinguish unidirectional from bidirectional coupling, as well as to reveal and quantify asymmetry in bidirectional coupling, are demonstrated using numerical examples of quasiperiodic, chaotic, and noisy oscillators, as well as real human cardiorespiratory data.

  20. Time Delay in the Kuramoto Model of Coupled Oscillators

    NASA Astrophysics Data System (ADS)

    Yeung, M. K. Stephen; Strogatz, Steven H.

    1999-01-01

    We generalize the Kuramoto model of coupled oscillators to allow time-delayed interactions. New phenomena include bistability between synchronized and incoherent states, and unsteady solutions with time-dependent order parameters. We derive exact formulas for the stability boundaries of the incoherent and synchronized states, as a function of the delay, in the special case where the oscillators are identical. The experimental implications of the model are discussed for populations of chirping crickets, where the finite speed of sound causes communication delays, and for physical systems such as coupled phase-locked loops or lasers.

  1. Control of coupled oscillator networks with application to microgrid technologies.

    PubMed

    Skardal, Per Sebastian; Arenas, Alex

    2015-08-01

    The control of complex systems and network-coupled dynamical systems is a topic of vital theoretical importance in mathematics and physics with a wide range of applications in engineering and various other sciences. Motivated by recent research into smart grid technologies, we study the control of synchronization and consider the important case of networks of coupled phase oscillators with nonlinear interactions-a paradigmatic example that has guided our understanding of self-organization for decades. We develop a method for control based on identifying and stabilizing problematic oscillators, resulting in a stable spectrum of eigenvalues, and in turn a linearly stable synchronized state. The amount of control, that is, number of oscillators, required to stabilize the network is primarily dictated by the coupling strength, dynamical heterogeneity, and mean degree of the network, and depends little on the structural heterogeneity of the network itself.

  2. Control of coupled oscillator networks with application to microgrid technologies

    NASA Astrophysics Data System (ADS)

    Arenas, Alex

    The control of complex systems and network-coupled dynamical systems is a topic of vital theoretical importance in mathematics and physics with a wide range of applications in engineering and various other sciences. Motivated by recent research into smart grid technologies, we study the control of synchronization and consider the important case of networks of coupled phase oscillators with nonlinear interactions-a paradigmatic example that has guided our understanding of self-organization for decades. We develop a method for control based on identifying and stabilizing problematic oscillators, resulting in a stable spectrum of eigenvalues, and in turn a linearly stable syn- chronized state. The amount of control, that is, number of oscillators, required to stabilize the network is primarily dictated by the coupling strength, dynamical heterogeneity, and mean degree of the network, and depends little on the structural heterogeneity of the network itself.

  3. EDFA-based coupled opto-electronic oscillator and its phase noise

    NASA Technical Reports Server (NTRS)

    Salik, Ertan; Yu, Nan; Tu, Meirong; Maleki, Lute

    2004-01-01

    EDFA-based coupled opto-electronic oscillator (COEO), an integrated optical and microwave oscillator that can generate picosecond optical pulses, is presented. the phase noise measurements of COEO show better performance than synthesizer-driven mode-locked laser.

  4. Time Delay Effect in a Living Coupled Oscillator System with the Plasmodium of Physarum polycephalum

    NASA Astrophysics Data System (ADS)

    Takamatsu, Atsuko; Fujii, Teruo; Endo, Isao

    2000-08-01

    A living coupled oscillator system was constructed by a cell patterning method with a plasmodial slime mold, in which parameters such as coupling strength and distance between the oscillators can be systematically controlled. Rich oscillation phenomena between the two-coupled oscillators, namely, desynchronizing and antiphase/in-phase synchronization were observed according to these parameters. Both experimental and theoretical approaches showed that these phenomena are closely related to the time delay effect in interactions between the oscillators.

  5. Cross-frequency coupling of brain oscillations in studying motivation and emotion.

    PubMed

    Schutter, Dennis J L G; Knyazev, Gennady G

    2012-03-01

    Research has shown that brain functions are realized by simultaneous oscillations in various frequency bands. In addition to examining oscillations in pre-specified bands, interactions and relations between the different frequency bandwidths is another important aspect that needs to be considered in unraveling the workings of the human brain and its functions. In this review we provide evidence that studying interdependencies between brain oscillations may be a valuable approach to study the electrophysiological processes associated with motivation and emotional states. Studies will be presented showing that amplitude-amplitude coupling between delta-alpha and delta-beta oscillations varies as a function of state anxiety and approach-avoidance-related motivation, and that changes in the association between delta-beta oscillations can be observed following successful psychotherapy. Together these studies suggest that cross-frequency coupling of brain oscillations may contribute to expanding our understanding of the neural processes underlying motivation and emotion.

  6. Synchronization ability of coupled cell-cycle oscillators in changing environments

    PubMed Central

    2012-01-01

    Background The biochemical oscillator that controls periodic events during the Xenopus embryonic cell cycle is centered on the activity of CDKs, and the cell cycle is driven by a protein circuit that is centered on the cyclin-dependent protein kinase CDK1 and the anaphase-promoting complex (APC). Many studies have been conducted to confirm that the interactions in the cell cycle can produce oscillations and predict behaviors such as synchronization, but much less is known about how the various elaborations and collective behavior of the basic oscillators can affect the robustness of the system. Therefore, in this study, we investigate and model a multi-cell system of the Xenopus embryonic cell cycle oscillators that are coupled through a common complex protein, and then analyze their synchronization ability under four different external stimuli, including a constant input signal, a square-wave periodic signal, a sinusoidal signal and a noise signal. Results Through bifurcation analysis and numerical simulations, we obtain synchronization intervals of the sensitive parameters in the individual oscillator and the coupling parameters in the coupled oscillators. Then, we analyze the effects of these parameters on the synchronization period and amplitude, and find interesting phenomena, e.g., there are two synchronization intervals with activation coefficient in the Hill function of the activated CDK1 that activates the Plk1, and different synchronization intervals have distinct influences on the synchronization period and amplitude. To quantify the speediness and robustness of the synchronization, we use two quantities, the synchronization time and the robustness index, to evaluate the synchronization ability. More interestingly, we find that the coupled system has an optimal signal strength that maximizes the synchronization index under different external stimuli. Simulation results also show that the ability and robustness of the synchronization for the square

  7. Quantum synchronization of chaotic oscillator behaviors among coupled BEC-optomechanical systems

    NASA Astrophysics Data System (ADS)

    Li, Wenlin; Li, Chong; Song, Heshan

    2017-03-01

    We consider and theoretically analyze a Bose-Einstein condensate (BEC) trapped inside an optomechanical system consisting of single-mode optical cavity with a moving end mirror. The BEC is formally analogous to a mirror driven by radiation pressure with strong nonlinear coupling. Such a nonlinear enhancement can make the oscillator display chaotic behavior. By establishing proper oscillator couplings, we find that this chaotic motion can be synchronized with other oscillators, even an oscillator network. We also discuss the scheme feasibility by analyzing recent experiment parameters. Our results provide a promising platform for the quantum signal transmission and quantum logic control, and they are of potential applications in quantum information processing and quantum networks.

  8. Clustering and phase synchronization in populations of coupled phase oscillators

    NASA Astrophysics Data System (ADS)

    Cascallares, Guadalupe; Gleiser, Pablo M.

    2015-10-01

    In many species daily rhythms are endogenously generated by groups of coupled neurons that play the role of a circadian pacemaker. The adaptation of the circadian clock to environmental and seasonal changes has been proposed to be regulated by a dual oscillator system. In order to gain insight into this model, we analyzed the synchronization properties of two fully coupled groups of Kuramoto oscillators. Each group has an internal coupling parameter and the interaction between the two groups can be controlled by two parameters allowing for symmetric or non-symmetric coupling. We show that even for such a simple model counterintuitive behaviours take place, such as a global decrease in synchrony when the coupling between the groups is increased. Through a detailed analysis of the local synchronization processes we explain this behaviour.

  9. Approximate analytical solutions of a pair of coupled anharmonic oscillators

    NASA Astrophysics Data System (ADS)

    Alam, Nasir; Mandal, Swapan; Öhberg, Patrik

    2015-02-01

    The Hamiltonian and the corresponding equations of motion involving the field operators of two quartic anharmonic oscillators indirectly coupled via a linear oscillator are constructed. The approximate analytical solutions of the coupled differential equations involving the non-commuting field operators are solved up to the second order in the anharmonic coupling. In the absence of nonlinearity these solutions are used to calculate the second order variances and hence the squeezing in pure and in mixed modes. The higher order quadrature squeezing and the amplitude squared squeezing of various field modes are also investigated where the squeezing in pure and in mixed modes are found to be suppressed. Moreover, the absence of a nonlinearity prohibits the higher order quadrature and higher ordered amplitude squeezing of the input coherent states. It is established that the mere coupling of two oscillators through a third one is unable to produce any squeezing effects of input coherent light, but the presence of a nonlinear interaction may provide squeezed states and other nonclassical phenomena.

  10. Stable integrated hyper-parametric oscillator based on coupled optical microcavities.

    PubMed

    Armaroli, Andrea; Feron, Patrice; Dumeige, Yannick

    2015-12-01

    We propose a flexible scheme based on three coupled optical microcavities that permits us to achieve stable oscillations in the microwave range, the frequency of which depends only on the cavity coupling rates. We find that the different dynamical regimes (soft and hard excitation) affect the oscillation intensity, but not their periods. This configuration may permit us to implement compact hyper-parametric sources on an integrated optical circuit with interesting applications in communications, sensing, and metrology.

  11. Control of coupled oscillator networks with application to microgrid technologies

    PubMed Central

    Skardal, Per Sebastian; Arenas, Alex

    2015-01-01

    The control of complex systems and network-coupled dynamical systems is a topic of vital theoretical importance in mathematics and physics with a wide range of applications in engineering and various other sciences. Motivated by recent research into smart grid technologies, we study the control of synchronization and consider the important case of networks of coupled phase oscillators with nonlinear interactions—a paradigmatic example that has guided our understanding of self-organization for decades. We develop a method for control based on identifying and stabilizing problematic oscillators, resulting in a stable spectrum of eigenvalues, and in turn a linearly stable synchronized state. The amount of control, that is, number of oscillators, required to stabilize the network is primarily dictated by the coupling strength, dynamical heterogeneity, and mean degree of the network, and depends little on the structural heterogeneity of the network itself. PMID:26601231

  12. Hopf bifurcation with dihedral group symmetry - Coupled nonlinear oscillators

    NASA Technical Reports Server (NTRS)

    Golubitsky, Martin; Stewart, Ian

    1986-01-01

    The theory of Hopf bifurcation with symmetry developed by Golubitsky and Stewart (1985) is applied to systems of ODEs having the symmetries of a regular polygon, that is, whose symmetry group is dihedral. The existence and stability of symmetry-breaking branches of periodic solutions are considered. In particular, these results are applied to a general system of n nonlinear oscillators coupled symmetrically in a ring, and the generic oscillation patterns are described. It is found that the symmetry can force some oscillators to have twice the frequency of others. The case of four oscillators has exceptional features.

  13. Phase locking and multiple oscillating attractors for the coupled mammalian clock and cell cycle.

    PubMed

    Feillet, Céline; Krusche, Peter; Tamanini, Filippo; Janssens, Roel C; Downey, Mike J; Martin, Patrick; Teboul, Michèle; Saito, Shoko; Lévi, Francis A; Bretschneider, Till; van der Horst, Gijsbertus T J; Delaunay, Franck; Rand, David A

    2014-07-08

    Daily synchronous rhythms of cell division at the tissue or organism level are observed in many species and suggest that the circadian clock and cell cycle oscillators are coupled. For mammals, despite known mechanistic interactions, the effect of such coupling on clock and cell cycle progression, and hence its biological relevance, is not understood. In particular, we do not know how the temporal organization of cell division at the single-cell level produces this daily rhythm at the tissue level. Here we use multispectral imaging of single live cells, computational methods, and mathematical modeling to address this question in proliferating mouse fibroblasts. We show that in unsynchronized cells the cell cycle and circadian clock robustly phase lock each other in a 1:1 fashion so that in an expanding cell population the two oscillators oscillate in a synchronized way with a common frequency. Dexamethasone-induced synchronization reveals additional clock states. As well as the low-period phase-locked state there are distinct coexisting states with a significantly higher period clock. Cells transition to these states after dexamethasone synchronization. The temporal coordination of cell division by phase locking to the clock at a single-cell level has significant implications because disordered circadian function is increasingly being linked to the pathogenesis of many diseases, including cancer.

  14. An Agile Beam Transmit Array Using Coupled Oscillator Phase Control

    NASA Technical Reports Server (NTRS)

    Pogorzelski, Ronald S.; Scaramastra, Rocco P.; Huang, John; Beckon, Robert J.; Petree, Steve M.; Chavez, Cosme

    1993-01-01

    A few years ago York and colleagues suggested that injection locking of voltage controlled oscillators could be used to implement beam steering in a phased array [I]. The scheme makes use of the fact that when an oscillator is injection locked to an external signal, the phase difference between the output of the oscillator and the injection signal is governed by the difference between the injection frequency and the free running frequency of the oscillator (the frequency to which the oscillator is tuned). Thus, if voltage controlled oscillators (VCOs) are used, this phase difference is controlled by an applied voltage. Now, if a set of such oscillators are coupled to nearest neighbors, they can be made to mutually injection lock and oscillate as an ensemble. If they are all tuned to the same frequency, they will all oscillate in phase. Thus, if the outputs are connected to radiating elements forming a linear array, the antenna will radiate normal to the line of elements. Scanning is accomplished by antisymmetrically detuning the end oscillators in the array by application of a pair of appropriate voltages to their tuning ports. This results in a linear phase progression across the array which is just the phasing required to scan the beam. The scan angle is determined by the degree of detuning. We have constructed a seven element one dimensional agile beam array at S-band based on the above principle. Although, a few such arrays have been built in the past, this array possesses two unique features. First, the VCO MMICs have buffer amplifiers which isolate the output from the tuning circuit, and second, the oscillators are weakly coupled to each other at their resonant circuits rather than their outputs. This results in a convenient isolation between the oscillator array design and the radiating aperture design. An important parameter in the design is the so called coupling phase which determines the phase shift of the signals passing from one oscillator to its

  15. Revisiting an old concept: the coupled oscillator model for VCD. Part 1: the generalised coupled oscillator mechanism and its intrinsic connection to the strength of VCD signals.

    PubMed

    Nicu, Valentin Paul

    2016-08-03

    Motivated by the renewed interest in the coupled oscillator (CO) model for VCD, in this work a generalised coupled oscillator (GCO) expression is derived by introducing the concept of a coupled oscillator origin. Unlike the standard CO expression, the GCO expression is exact within the harmonic approximation. Using two illustrative example molecules, the theoretical concepts introduced here are demonstrated by performing a GCO decomposition of the rotational strengths computed using DFT. This analysis shows that: (1) the contributions to the rotational strengths that are normally neglected in the standard CO model can be comparable to or larger than the CO contribution, and (2) the GCO mechanism introduced here can affect the VCD intensities of all types of modes in symmetric and asymmetric molecules.

  16. Stable amplitude chimera states in a network of locally coupled Stuart-Landau oscillators.

    PubMed

    Premalatha, K; Chandrasekar, V K; Senthilvelan, M; Lakshmanan, M

    2018-03-01

    We investigate the occurrence of collective dynamical states such as transient amplitude chimera, stable amplitude chimera, and imperfect breathing chimera states in a locally coupled network of Stuart-Landau oscillators. In an imperfect breathing chimera state, the synchronized group of oscillators exhibits oscillations with large amplitudes, while the desynchronized group of oscillators oscillates with small amplitudes, and this behavior of coexistence of synchronized and desynchronized oscillations fluctuates with time. Then, we analyze the stability of the amplitude chimera states under various circumstances, including variations in system parameters and coupling strength, and perturbations in the initial states of the oscillators. For an increase in the value of the system parameter, namely, the nonisochronicity parameter, the transient chimera state becomes a stable chimera state for a sufficiently large value of coupling strength. In addition, we also analyze the stability of these states by perturbing the initial states of the oscillators. We find that while a small perturbation allows one to perturb a large number of oscillators resulting in a stable amplitude chimera state, a large perturbation allows one to perturb a small number of oscillators to get a stable amplitude chimera state. We also find the stability of the transient and stable amplitude chimera states and traveling wave states for an appropriate number of oscillators using Floquet theory. In addition, we also find the stability of the incoherent oscillation death states.

  17. Stable amplitude chimera states in a network of locally coupled Stuart-Landau oscillators

    NASA Astrophysics Data System (ADS)

    Premalatha, K.; Chandrasekar, V. K.; Senthilvelan, M.; Lakshmanan, M.

    2018-03-01

    We investigate the occurrence of collective dynamical states such as transient amplitude chimera, stable amplitude chimera, and imperfect breathing chimera states in a locally coupled network of Stuart-Landau oscillators. In an imperfect breathing chimera state, the synchronized group of oscillators exhibits oscillations with large amplitudes, while the desynchronized group of oscillators oscillates with small amplitudes, and this behavior of coexistence of synchronized and desynchronized oscillations fluctuates with time. Then, we analyze the stability of the amplitude chimera states under various circumstances, including variations in system parameters and coupling strength, and perturbations in the initial states of the oscillators. For an increase in the value of the system parameter, namely, the nonisochronicity parameter, the transient chimera state becomes a stable chimera state for a sufficiently large value of coupling strength. In addition, we also analyze the stability of these states by perturbing the initial states of the oscillators. We find that while a small perturbation allows one to perturb a large number of oscillators resulting in a stable amplitude chimera state, a large perturbation allows one to perturb a small number of oscillators to get a stable amplitude chimera state. We also find the stability of the transient and stable amplitude chimera states and traveling wave states for an appropriate number of oscillators using Floquet theory. In addition, we also find the stability of the incoherent oscillation death states.

  18. Checkpoints couple transcription network oscillator dynamics to cell-cycle progression.

    PubMed

    Bristow, Sara L; Leman, Adam R; Simmons Kovacs, Laura A; Deckard, Anastasia; Harer, John; Haase, Steven B

    2014-09-05

    The coupling of cyclin dependent kinases (CDKs) to an intrinsically oscillating network of transcription factors has been proposed to control progression through the cell cycle in budding yeast, Saccharomyces cerevisiae. The transcription network regulates the temporal expression of many genes, including cyclins, and drives cell-cycle progression, in part, by generating successive waves of distinct CDK activities that trigger the ordered program of cell-cycle events. Network oscillations continue autonomously in mutant cells arrested by depletion of CDK activities, suggesting the oscillator can be uncoupled from cell-cycle progression. It is not clear what mechanisms, if any, ensure that the network oscillator is restrained when progression in normal cells is delayed or arrested. A recent proposal suggests CDK acts as a master regulator of cell-cycle processes that have the potential for autonomous oscillatory behavior. Here we find that mitotic CDK is not sufficient for fully inhibiting transcript oscillations in arrested cells. We do find that activation of the DNA replication and spindle assembly checkpoints can fully arrest the network oscillator via overlapping but distinct mechanisms. Further, we demonstrate that the DNA replication checkpoint effector protein, Rad53, acts to arrest a portion of transcript oscillations in addition to its role in halting cell-cycle progression. Our findings indicate that checkpoint mechanisms, likely via phosphorylation of network transcription factors, maintain coupling of the network oscillator to progression during cell-cycle arrest.

  19. Golden Ratio in a Coupled-Oscillator Problem

    ERIC Educational Resources Information Center

    Moorman, Crystal M.; Goff, John Eric

    2007-01-01

    The golden ratio appears in a classical mechanics coupled-oscillator problem that many undergraduates may not solve. Once the symmetry is broken in a more standard problem, the golden ratio appears. Several student exercises arise from the problem considered in this paper.

  20. Pulse-coupled mixed-mode oscillators: Cluster states and extreme noise sensitivity

    NASA Astrophysics Data System (ADS)

    Karamchandani, Avinash J.; Graham, James N.; Riecke, Hermann

    2018-04-01

    Motivated by rhythms in the olfactory system of the brain, we investigate the synchronization of all-to-all pulse-coupled neuronal oscillators exhibiting various types of mixed-mode oscillations (MMOs) composed of sub-threshold oscillations (STOs) and action potentials ("spikes"). We focus particularly on the impact of the delay in the interaction. In the weak-coupling regime, we reduce the system to a Kuramoto-type equation with non-sinusoidal phase coupling and the associated Fokker-Planck equation. Its linear stability analysis identifies the appearance of various cluster states. Their type depends sensitively on the delay and the width of the pulses. Interestingly, long delays do not imply slow population rhythms, and the number of emerging clusters only loosely depends on the number of STOs. Direct simulations of the oscillator equations reveal that for quantitative agreement of the weak-coupling theory the coupling strength and the noise have to be extremely small. Even moderate noise leads to significant skipping of STO cycles, which can enhance the diffusion coefficient in the Fokker-Planck equation by two orders of magnitude. Introducing an effective diffusion coefficient extends the range of agreement significantly. Numerical simulations of the Fokker-Planck equation reveal bistability and solutions with oscillatory order parameters that result from nonlinear mode interactions. These are confirmed in simulations of the full spiking model.

  1. Energy transfer and motion synchronization between mechanical oscillators through microhydrodynamic coupling

    NASA Astrophysics Data System (ADS)

    Wan, Yu; Jin, Kai; Ahmad, Talha J.; Black, Michael J.; Xu, Zhiping

    2017-03-01

    Fluidic environment is encountered for mechanical components in many circumstances, which not only damps the oscillation but also modulates their dynamical behaviors through hydrodynamic interactions. In this study, we examine energy transfer and motion synchronization between two mechanical micro-oscillators by performing thermal lattice-Boltzmann simulations. The coefficient of inter-oscillator energy transfer is measured to quantify the strength of microhydrodynamic coupling, which depends on their distance and fluid properties such as density and viscosity. Synchronized motion of the oscillators is observed in the simulations for typical parameter sets in relevant applications, with the formation and loss of stable anti-phase synchronization controlled by the oscillating frequency, amplitude, and hydrodynamic coupling strength. The critical ranges of key parameters to assure efficient energy transfer or highly synchronized motion are predicted. These findings could be used to advise mechanical design of passive and active devices that operate in fluid.

  2. Adaptive oscillator networks with conserved overall coupling: Sequential firing and near-synchronized states

    NASA Astrophysics Data System (ADS)

    Picallo, Clara B.; Riecke, Hermann

    2011-03-01

    Motivated by recent observations in neuronal systems we investigate all-to-all networks of nonidentical oscillators with adaptive coupling. The adaptation models spike-timing-dependent plasticity in which the sum of the weights of all incoming links is conserved. We find multiple phase-locked states that fall into two classes: near-synchronized states and splay states. Among the near-synchronized states are states that oscillate with a frequency that depends only very weakly on the coupling strength and is essentially given by the frequency of one of the oscillators, which is, however, neither the fastest nor the slowest oscillator. In sufficiently large networks the adaptive coupling is found to develop effective network topologies dominated by one or two loops. This results in a multitude of stable splay states, which differ in their firing sequences. With increasing coupling strength their frequency increases linearly and the oscillators become less synchronized. The essential features of the two classes of states are captured analytically in perturbation analyses of the extended Kuramoto model used in the simulations.

  3. Synchrony and entrainment properties of robust circadian oscillators

    PubMed Central

    Bagheri, Neda; Taylor, Stephanie R.; Meeker, Kirsten; Petzold, Linda R.; Doyle, Francis J.

    2008-01-01

    Systems theoretic tools (i.e. mathematical modelling, control, and feedback design) advance the understanding of robust performance in complex biological networks. We highlight phase entrainment as a key performance measure used to investigate dynamics of a single deterministic circadian oscillator for the purpose of generating insight into the behaviour of a population of (synchronized) oscillators. More specifically, the analysis of phase characteristics may facilitate the identification of appropriate coupling mechanisms for the ensemble of noisy (stochastic) circadian clocks. Phase also serves as a critical control objective to correct mismatch between the biological clock and its environment. Thus, we introduce methods of investigating synchrony and entrainment in both stochastic and deterministic frameworks, and as a property of a single oscillator or population of coupled oscillators. PMID:18426774

  4. Solvable model for chimera states of coupled oscillators.

    PubMed

    Abrams, Daniel M; Mirollo, Rennie; Strogatz, Steven H; Wiley, Daniel A

    2008-08-22

    Networks of identical, symmetrically coupled oscillators can spontaneously split into synchronized and desynchronized subpopulations. Such chimera states were discovered in 2002, but are not well understood theoretically. Here we obtain the first exact results about the stability, dynamics, and bifurcations of chimera states by analyzing a minimal model consisting of two interacting populations of oscillators. Along with a completely synchronous state, the system displays stable chimeras, breathing chimeras, and saddle-node, Hopf, and homoclinic bifurcations of chimeras.

  5. Time delay in the Kuramoto model of coupled-phase oscillators

    NASA Astrophysics Data System (ADS)

    Yeung, Man Kit Stephen

    1999-10-01

    The Kuramoto model is a mean-field model of coupled phase oscillators with distributed natural frequencies. It was proposed to study collective synchronization in large systems of nonlinear oscillators. Here we generalize this model to allow time-delayed interactions. Despite the delay, synchronization is still possible. We derive exact stability conditions for the incoherent state, and for synchronized states and clustering states in the special case of noiseless identical oscillators. We also study the bifurcations of these states. We find that the incoherent state loses stability in a Hopf bifurcation. In the absence of noise, this leads to partial synchrony, where some oscillators are entrained to a common frequency. New phenomena caused by the delay include multistability among synchronization, incoherence, and clustering; and unsteady solutions with time-dependent order parameters. The experimental implications of the model are discussed for populations of chirping crickets, where the finite speed of sound causes communication delays, and for physical systems such as coupled phase- locked loops, lasers, and communication satellites.

  6. Pulse-coupled Belousov-Zhabotinsky oscillators with frequency modulation

    NASA Astrophysics Data System (ADS)

    Horvath, Viktor; Epstein, Irving R.

    2018-04-01

    Inhibitory perturbations to the ferroin-catalyzed Belousov-Zhabotinsky (BZ) chemical oscillator operated in a continuously fed stirred tank reactor cause long term changes to the limit cycle: the lengths of the cycles subsequent to the perturbation are longer than that of the unperturbed cycle, and the unperturbed limit cycle is recovered only after several cycles. The frequency of the BZ reaction strongly depends on the acid concentration of the medium. By adding strong acid or base to the perturbing solutions, the magnitude and the direction of the frequency changes concomitant to excitatory or inhibitory perturbations can be controlled independently of the coupling strength. The dynamics of two BZ oscillators coupled through perturbations carrying a coupling agent (activator or inhibitor) and a frequency modulator (strong acid or base) was explored using a numerical model of the system. Here, we report new complex temporal patterns: higher order, partially synchronized modes that develop when inhibitory coupling is combined with positive frequency modulation (FM), and complex bursting patterns when excitatory coupling is combined with negative FM. The role of time delay between the peak and perturbation (the analog of synaptic delays in networks of neurons) has also been studied. The complex patterns found under inhibitory coupling and positive FM vanish when the delay is significant, whereas a sufficiently long time delay is required for the complex temporal dynamics to occur when coupling is excitatory and FM is negative.

  7. String-Coupled Pendulum Oscillators: Theory and Experiment.

    ERIC Educational Resources Information Center

    Moloney, Michael J.

    1978-01-01

    A coupled-oscillator system is given which is readily set up, using only household materials. The normal-mode analysis of this system is worked out, and an experiment or demonstration is recommended in which one verifies the theory by measuring two times and four lengths. (Author/GA)

  8. D3-Equivariant coupled advertising oscillators model

    NASA Astrophysics Data System (ADS)

    Zhang, Chunrui; Zheng, Huifeng

    2011-04-01

    A ring of three coupled advertising oscillators with delay is considered. Using the symmetric functional differential equation theories, the multiple Hopf bifurcations of the equilibrium at the origin are demonstrated. The existence of multiple branches of bifurcating periodic solution is obtained. Numerical simulation supports our analysis results.

  9. A Nanotechnology-Ready Computing Scheme based on a Weakly Coupled Oscillator Network

    NASA Astrophysics Data System (ADS)

    Vodenicarevic, Damir; Locatelli, Nicolas; Abreu Araujo, Flavio; Grollier, Julie; Querlioz, Damien

    2017-03-01

    With conventional transistor technologies reaching their limits, alternative computing schemes based on novel technologies are currently gaining considerable interest. Notably, promising computing approaches have proposed to leverage the complex dynamics emerging in networks of coupled oscillators based on nanotechnologies. The physical implementation of such architectures remains a true challenge, however, as most proposed ideas are not robust to nanotechnology devices’ non-idealities. In this work, we propose and investigate the implementation of an oscillator-based architecture, which can be used to carry out pattern recognition tasks, and which is tailored to the specificities of nanotechnologies. This scheme relies on a weak coupling between oscillators, and does not require a fine tuning of the coupling values. After evaluating its reliability under the severe constraints associated to nanotechnologies, we explore the scalability of such an architecture, suggesting its potential to realize pattern recognition tasks using limited resources. We show that it is robust to issues like noise, variability and oscillator non-linearity. Defining network optimization design rules, we show that nano-oscillator networks could be used for efficient cognitive processing.

  10. A Nanotechnology-Ready Computing Scheme based on a Weakly Coupled Oscillator Network

    PubMed Central

    Vodenicarevic, Damir; Locatelli, Nicolas; Abreu Araujo, Flavio; Grollier, Julie; Querlioz, Damien

    2017-01-01

    With conventional transistor technologies reaching their limits, alternative computing schemes based on novel technologies are currently gaining considerable interest. Notably, promising computing approaches have proposed to leverage the complex dynamics emerging in networks of coupled oscillators based on nanotechnologies. The physical implementation of such architectures remains a true challenge, however, as most proposed ideas are not robust to nanotechnology devices’ non-idealities. In this work, we propose and investigate the implementation of an oscillator-based architecture, which can be used to carry out pattern recognition tasks, and which is tailored to the specificities of nanotechnologies. This scheme relies on a weak coupling between oscillators, and does not require a fine tuning of the coupling values. After evaluating its reliability under the severe constraints associated to nanotechnologies, we explore the scalability of such an architecture, suggesting its potential to realize pattern recognition tasks using limited resources. We show that it is robust to issues like noise, variability and oscillator non-linearity. Defining network optimization design rules, we show that nano-oscillator networks could be used for efficient cognitive processing. PMID:28322262

  11. A Nanotechnology-Ready Computing Scheme based on a Weakly Coupled Oscillator Network.

    PubMed

    Vodenicarevic, Damir; Locatelli, Nicolas; Abreu Araujo, Flavio; Grollier, Julie; Querlioz, Damien

    2017-03-21

    With conventional transistor technologies reaching their limits, alternative computing schemes based on novel technologies are currently gaining considerable interest. Notably, promising computing approaches have proposed to leverage the complex dynamics emerging in networks of coupled oscillators based on nanotechnologies. The physical implementation of such architectures remains a true challenge, however, as most proposed ideas are not robust to nanotechnology devices' non-idealities. In this work, we propose and investigate the implementation of an oscillator-based architecture, which can be used to carry out pattern recognition tasks, and which is tailored to the specificities of nanotechnologies. This scheme relies on a weak coupling between oscillators, and does not require a fine tuning of the coupling values. After evaluating its reliability under the severe constraints associated to nanotechnologies, we explore the scalability of such an architecture, suggesting its potential to realize pattern recognition tasks using limited resources. We show that it is robust to issues like noise, variability and oscillator non-linearity. Defining network optimization design rules, we show that nano-oscillator networks could be used for efficient cognitive processing.

  12. Tunable Mode Coupling in Nanocontact Spin-Torque Oscillators

    DOE PAGES

    Zhang, Steven S. -L.; Iacocca, Ezio; Heinonen, Olle

    2017-07-27

    Recent experiments on spin-torque oscillators have revealed interactions between multiple magneto-dynamic modes, including mode coexistence, mode hopping, and temperature-driven crossover between modes. The initial multimode theory indicates that a linear coupling between several dominant modes, arising from the interaction of the subdynamic system with a magnon bath, plays an essential role in the generation of various multimode behaviors, such as mode hopping and mode coexistence. In this work, we derive a set of rate equations to describe the dynamics of coupled magneto-dynamic modes in a nanocontact spin-torque oscillator. Here, expressions for both linear and nonlinear coupling terms are obtained, whichmore » allow us to analyze the dependence of the coupled dynamic behaviors of modes on external experimental conditions as well as intrinsic magnetic properties. For a minimal two-mode system, we further map the energy and phase difference of the two modes onto a two-dimensional phase space and demonstrate in the phase portraits how the manifolds of periodic orbits and fixed points vary with an external magnetic field as well as with the temperature.« less

  13. Tunable Mode Coupling in Nanocontact Spin-Torque Oscillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Steven S. -L.; Iacocca, Ezio; Heinonen, Olle

    Recent experiments on spin-torque oscillators have revealed interactions between multiple magneto-dynamic modes, including mode coexistence, mode hopping, and temperature-driven crossover between modes. The initial multimode theory indicates that a linear coupling between several dominant modes, arising from the interaction of the subdynamic system with a magnon bath, plays an essential role in the generation of various multimode behaviors, such as mode hopping and mode coexistence. In this work, we derive a set of rate equations to describe the dynamics of coupled magneto-dynamic modes in a nanocontact spin-torque oscillator. Here, expressions for both linear and nonlinear coupling terms are obtained, whichmore » allow us to analyze the dependence of the coupled dynamic behaviors of modes on external experimental conditions as well as intrinsic magnetic properties. For a minimal two-mode system, we further map the energy and phase difference of the two modes onto a two-dimensional phase space and demonstrate in the phase portraits how the manifolds of periodic orbits and fixed points vary with an external magnetic field as well as with the temperature.« less

  14. Transition from homogeneous to inhomogeneous limit cycles: Effect of local filtering in coupled oscillators

    NASA Astrophysics Data System (ADS)

    Banerjee, Tanmoy; Biswas, Debabrata; Ghosh, Debarati; Bandyopadhyay, Biswabibek; Kurths, Jürgen

    2018-04-01

    We report an interesting symmetry-breaking transition in coupled identical oscillators, namely, the continuous transition from homogeneous to inhomogeneous limit cycle oscillations. The observed transition is the oscillatory analog of the Turing-type symmetry-breaking transition from amplitude death (i.e., stable homogeneous steady state) to oscillation death (i.e., stable inhomogeneous steady state). This novel transition occurs in the parametric zone of occurrence of rhythmogenesis and oscillation death as a consequence of the presence of local filtering in the coupling path. We consider paradigmatic oscillators, such as Stuart-Landau and van der Pol oscillators, under mean-field coupling with low-pass or all-pass filtered self-feedback and through a rigorous bifurcation analysis we explore the genesis of this transition. Further, we experimentally demonstrate the observed transition, which establishes its robustness in the presence of parameter fluctuations and noise.

  15. Limits to detection of generalized synchronization in delay-coupled chaotic oscillators.

    PubMed

    Kato, Hideyuki; Soriano, Miguel C; Pereda, Ernesto; Fischer, Ingo; Mirasso, Claudio R

    2013-12-01

    We study how reliably generalized synchronization can be detected and characterized from time-series analysis. To that end, we analyze synchronization in a generalized sense of delay-coupled chaotic oscillators in unidirectional ring configurations. The generalized synchronization condition can be verified via the auxiliary system approach; however, in practice, this might not always be possible. Therefore, in this study, widely used indicators to directly quantify generalized and phase synchronization from noise-free time series of two oscillators are employed complementarily to the auxiliary system approach. In our analysis, none of the indices provide the consistent results of the auxiliary system approach. Our findings indicate that it is a major challenge to directly detect synchronization in a generalized sense between two oscillators that are connected via a chain of other oscillators, even if the oscillators are identical. This has major consequences for the interpretation of the dynamics of coupled systems and applications thereof.

  16. Selective Coupling between Theta Phase and Neocortical Fast Gamma Oscillations during REM-Sleep in Mice

    PubMed Central

    Scheffzük, Claudia; Kukushka, Valeriy I.; Vyssotski, Alexei L.; Draguhn, Andreas

    2011-01-01

    Background The mammalian brain expresses a wide range of state-dependent network oscillations which vary in frequency and spatial extension. Such rhythms can entrain multiple neurons into coherent patterns of activity, consistent with a role in behaviour, cognition and memory formation. Recent evidence suggests that locally generated fast network oscillations can be systematically aligned to long-range slow oscillations. It is likely that such cross-frequency coupling supports specific tasks including behavioural choice and working memory. Principal Findings We analyzed temporal coupling between high-frequency oscillations and EEG theta activity (4–12 Hz) in recordings from mouse parietal neocortex. Theta was exclusively present during active wakefulness and REM-sleep. Fast oscillations occurred in two separate frequency bands: gamma (40–100 Hz) and fast gamma (120–160 Hz). Theta, gamma and fast gamma were more prominent during active wakefulness as compared to REM-sleep. Coupling between theta and the two types of fast oscillations, however, was more pronounced during REM-sleep. This state-dependent cross-frequency coupling was particularly strong for theta-fast gamma interaction which increased 9-fold during REM as compared to active wakefulness. Theta-gamma coupling increased only by 1.5-fold. Significance State-dependent cross-frequency-coupling provides a new functional characteristic of REM-sleep and establishes a unique property of neocortical fast gamma oscillations. Interactions between defined patterns of slow and fast network oscillations may serve selective functions in sleep-dependent information processing. PMID:22163023

  17. Phase locking and multiple oscillating attractors for the coupled mammalian clock and cell cycle

    PubMed Central

    Feillet, Céline; Krusche, Peter; Tamanini, Filippo; Janssens, Roel C.; Downey, Mike J.; Martin, Patrick; Teboul, Michèle; Saito, Shoko; Lévi, Francis A.; Bretschneider, Till; van der Horst, Gijsbertus T. J.; Delaunay, Franck; Rand, David A.

    2014-01-01

    Daily synchronous rhythms of cell division at the tissue or organism level are observed in many species and suggest that the circadian clock and cell cycle oscillators are coupled. For mammals, despite known mechanistic interactions, the effect of such coupling on clock and cell cycle progression, and hence its biological relevance, is not understood. In particular, we do not know how the temporal organization of cell division at the single-cell level produces this daily rhythm at the tissue level. Here we use multispectral imaging of single live cells, computational methods, and mathematical modeling to address this question in proliferating mouse fibroblasts. We show that in unsynchronized cells the cell cycle and circadian clock robustly phase lock each other in a 1:1 fashion so that in an expanding cell population the two oscillators oscillate in a synchronized way with a common frequency. Dexamethasone-induced synchronization reveals additional clock states. As well as the low-period phase-locked state there are distinct coexisting states with a significantly higher period clock. Cells transition to these states after dexamethasone synchronization. The temporal coordination of cell division by phase locking to the clock at a single-cell level has significant implications because disordered circadian function is increasingly being linked to the pathogenesis of many diseases, including cancer. PMID:24958884

  18. Spatiotemporal coding of inputs for a system of globally coupled phase oscillators

    NASA Astrophysics Data System (ADS)

    Wordsworth, John; Ashwin, Peter

    2008-12-01

    We investigate the spatiotemporal coding of low amplitude inputs to a simple system of globally coupled phase oscillators with coupling function g(ϕ)=-sin(ϕ+α)+rsin(2ϕ+β) that has robust heteroclinic cycles (slow switching between cluster states). The inputs correspond to detuning of the oscillators. It was recently noted that globally coupled phase oscillators can encode their frequencies in the form of spatiotemporal codes of a sequence of cluster states [P. Ashwin, G. Orosz, J. Wordsworth, and S. Townley, SIAM J. Appl. Dyn. Syst. 6, 728 (2007)]. Concentrating on the case of N=5 oscillators we show in detail how the spatiotemporal coding can be used to resolve all of the information that relates the individual inputs to each other, providing that a long enough time series is considered. We investigate robustness to the addition of noise and find a remarkable stability, especially of the temporal coding, to the addition of noise even for noise of a comparable magnitude to the inputs.

  19. Chimeralike states in two distinct groups of identical populations of coupled Stuart-Landau oscillators

    NASA Astrophysics Data System (ADS)

    Premalatha, K.; Chandrasekar, V. K.; Senthilvelan, M.; Lakshmanan, M.

    2017-02-01

    We show the existence of chimeralike states in two distinct groups of identical populations of globally coupled Stuart-Landau oscillators. The existence of chimeralike states occurs only for a small range of frequency difference between the two populations, and these states disappear for an increase of mismatch between the frequencies. Here the chimeralike states are characterized by the synchronized oscillations in one population and desynchronized oscillations in another population. We also find that such states observed in two distinct groups of identical populations of nonlocally coupled oscillators are different from the above case in which coexisting domains of synchronized and desynchronized oscillations are observed in one population and the second population exhibits synchronized oscillations for spatially prepared initial conditions. Perturbation from such spatially prepared initial condition leads to the existence of imperfectly synchronized states. An imperfectly synchronized state represents the existence of solitary oscillators which escape from the synchronized group in population I and synchronized oscillations in population II. Also the existence of chimera state is independent of the increase of frequency mismatch between the populations. We also find the coexistence of different dynamical states with respect to different initial conditions, which causes multistability in the globally coupled system. In the case of nonlocal coupling, the system does not show multistability except in the cluster state region.

  20. Synchronization as Aggregation: Cluster Kinetics of Pulse-Coupled Oscillators.

    PubMed

    O'Keeffe, Kevin P; Krapivsky, P L; Strogatz, Steven H

    2015-08-07

    We consider models of identical pulse-coupled oscillators with global interactions. Previous work showed that under certain conditions such systems always end up in sync, but did not quantify how small clusters of synchronized oscillators progressively coalesce into larger ones. Using tools from the study of aggregation phenomena, we obtain exact results for the time-dependent distribution of cluster sizes as the system evolves from disorder to synchrony.

  1. Mean-field behavior in coupled oscillators with attractive and repulsive interactions.

    PubMed

    Hong, Hyunsuk; Strogatz, Steven H

    2012-05-01

    We consider a variant of the Kuramoto model of coupled oscillators in which both attractive and repulsive pairwise interactions are allowed. The sign of the coupling is assumed to be a characteristic of a given oscillator. Specifically, some oscillators repel all the others, thus favoring an antiphase relationship with them. Other oscillators attract all the others, thus favoring an in-phase relationship. The Ott-Antonsen ansatz is used to derive the exact low-dimensional dynamics governing the system's long-term macroscopic behavior. The resulting analytical predictions agree with simulations of the full system. We explore the effects of changing various parameters, such as the width of the distribution of natural frequencies and the relative strengths and proportions of the positive and negative interactions. For the particular model studied here we find, unexpectedly, that the mixed interactions produce no new effects. The system exhibits conventional mean-field behavior and displays a second-order phase transition like that found in the original Kuramoto model. In contrast to our recent study of a different model with mixed interactions [Phys. Rev. Lett. 106, 054102 (2011)], the π state and traveling-wave state do not appear for the coupling type considered here.

  2. Quantum effects in amplitude death of coupled anharmonic self-oscillators

    NASA Astrophysics Data System (ADS)

    Amitai, Ehud; Koppenhöfer, Martin; Lörch, Niels; Bruder, Christoph

    2018-05-01

    Coupling two or more self-oscillating systems may stabilize their zero-amplitude rest state, therefore quenching their oscillation. This phenomenon is termed "amplitude death." Well known and studied in classical self-oscillators, amplitude death was only recently investigated in quantum self-oscillators [Ishibashi and Kanamoto, Phys. Rev. E 96, 052210 (2017), 10.1103/PhysRevE.96.052210]. Quantitative differences between the classical and quantum descriptions were found. Here, we demonstrate that for quantum self-oscillators with anharmonicity in their energy spectrum, multiple resonances in the mean phonon number can be observed. This is a result of the discrete energy spectrum of these oscillators, and is not present in the corresponding classical model. Experiments can be realized with current technology and would demonstrate these genuine quantum effects in the amplitude death phenomenon.

  3. Synchronization of electrically coupled micromechanical oscillators with a frequency ratio of 3:1

    NASA Astrophysics Data System (ADS)

    Pu, Dong; Wei, Xueyong; Xu, Liu; Jiang, Zhuangde; Huan, Ronghua

    2018-01-01

    In this Letter, synchronization of micromechanical oscillators with a frequency ratio of 3:1 is reported. Two electrically coupled piezoresistive micromechanical oscillators are built for the study, and their oscillation frequencies are tuned via the Joule heating effect to find out the synchronization region. Experimental results show that the larger coupling strength or bias driving voltage is applied and a wider synchronization region is obtained. Interestingly, however, the oscillator's frequency tunability is dramatically reduced from -809.1 Hz/V to -23.1 Hz/V when synchronization is reached. A nearly 10-fold improvement of frequency stability at 1 s is observed from one of the synchronized oscillators, showing a comparable performance of the other. The stable high order synchronization of micromechanical oscillators is helpful to design high performance resonant sensors with a better frequency resolution and a larger scale factor.

  4. Breathing multichimera states in nonlocally coupled phase oscillators

    NASA Astrophysics Data System (ADS)

    Suda, Yusuke; Okuda, Koji

    2018-04-01

    Chimera states for the one-dimensional array of nonlocally coupled phase oscillators in the continuum limit are assumed to be stationary states in most studies, but a few studies report the existence of breathing chimera states. We focus on multichimera states with two coherent and incoherent regions and numerically demonstrate that breathing multichimera states, whose global order parameter oscillates temporally, can appear. Moreover, we show that the system exhibits a Hopf bifurcation from a stationary multichimera to a breathing one by the linear stability analysis for the stationary multichimera.

  5. Dynamics of three coupled van der Pol oscillators with application to circadian rhythms

    NASA Astrophysics Data System (ADS)

    Rompala, Kevin; Rand, Richard; Howland, Howard

    2007-08-01

    In this work we study a system of three van der Pol oscillators. Two of the oscillators are identical, and are not directly coupled to each other, but rather are coupled via the third oscillator. We investigate the existence of the in-phase mode in which the two identical oscillators have the same behavior. To this end we use the two variable expansion perturbation method (also known as multiple scales) to obtain a slow flow, which we then analyze using the computer algebra system MACSYMA and the numerical bifurcation software AUTO. Our motivation for studying this system comes from the presence of circadian rhythms in the chemistry of the eyes. We model the circadian oscillator in each eye as a van der Pol oscillator. Although there is no direct connection between the two eyes, they are both connected to the brain, especially to the pineal gland, which is here represented by a third van der Pol oscillator.

  6. Frequency adjustment and synchrony in networks of delayed pulse-coupled oscillators

    NASA Astrophysics Data System (ADS)

    Nishimura, Joel

    2015-01-01

    We introduce a system of pulse-coupled oscillators that can change both their phases and frequencies and prove that when there is a separation of time scales between phase and frequency adjustment the system converges to exact synchrony on strongly connected graphs with time delays. The analysis involves decomposing the network into a forest of tree-like structures that capture causality. These results provide a robust method of sensor net synchronization as well as demonstrate a new avenue of possible pulse-coupled oscillator research.

  7. Dynamics of multi-frequency oscillator ensembles with resonant coupling

    NASA Astrophysics Data System (ADS)

    Lück, S.; Pikovsky, A.

    2011-07-01

    We study dynamics of populations of resonantly coupled oscillators having different frequencies. Starting from the coupled van der Pol equations we derive the Kuramoto-type phase model for the situation, where the natural frequencies of two interacting subpopulations are in relation 2:1. Depending on the parameter of coupling, ensembles can demonstrate fully synchronous clusters, partial synchrony (only one subpopulation synchronizes), or asynchrony in both subpopulations. Theoretical description of the dynamics based on the Watanabe-Strogatz approach is developed.

  8. Power-rate synchronization of coupled genetic oscillators with unbounded time-varying delay.

    PubMed

    Alofi, Abdulaziz; Ren, Fengli; Al-Mazrooei, Abdullah; Elaiw, Ahmed; Cao, Jinde

    2015-10-01

    In this paper, a new synchronization problem for the collective dynamics among genetic oscillators with unbounded time-varying delay is investigated. The dynamical system under consideration consists of an array of linearly coupled identical genetic oscillators with each oscillators having unbounded time-delays. A new concept called power-rate synchronization, which is different from both the asymptotical synchronization and the exponential synchronization, is put forward to facilitate handling the unbounded time-varying delays. By using a combination of the Lyapunov functional method, matrix inequality techniques and properties of Kronecker product, we derive several sufficient conditions that ensure the coupled genetic oscillators to be power-rate synchronized. The criteria obtained in this paper are in the form of matrix inequalities. Illustrative example is presented to show the effectiveness of the obtained results.

  9. Tight coupling of metabolic oscillations and intracellular water dynamics in Saccharomyces cerevisiae.

    PubMed

    Thoke, Henrik Seir; Tobiesen, Asger; Brewer, Jonathan; Hansen, Per Lyngs; Stock, Roberto P; Olsen, Lars F; Bagatolli, Luis A

    2015-01-01

    We detected very strong coupling between the oscillating concentration of ATP and the dynamics of intracellular water during glycolysis in Saccharomyces cerevisiae. Our results indicate that: i) dipolar relaxation of intracellular water is heterogeneous within the cell and different from dilute conditions, ii) water dipolar relaxation oscillates with glycolysis and in phase with ATP concentration, iii) this phenomenon is scale-invariant from the subcellular to the ensemble of synchronized cells and, iv) the periodicity of both glycolytic oscillations and dipolar relaxation are equally affected by D2O in a dose-dependent manner. These results offer a new insight into the coupling of an emergent intensive physicochemical property of the cell, i.e. cell-wide water dipolar relaxation, and a central metabolite (ATP) produced by a robustly oscillating metabolic process.

  10. Tight Coupling of Metabolic Oscillations and Intracellular Water Dynamics in Saccharomyces cerevisiae

    PubMed Central

    Thoke, Henrik Seir; Tobiesen, Asger; Brewer, Jonathan; Hansen, Per Lyngs; Stock, Roberto P.; Olsen, Lars F.; Bagatolli, Luis A.

    2015-01-01

    We detected very strong coupling between the oscillating concentration of ATP and the dynamics of intracellular water during glycolysis in Saccharomyces cerevisiae. Our results indicate that: i) dipolar relaxation of intracellular water is heterogeneous within the cell and different from dilute conditions, ii) water dipolar relaxation oscillates with glycolysis and in phase with ATP concentration, iii) this phenomenon is scale-invariant from the subcellular to the ensemble of synchronized cells and, iv) the periodicity of both glycolytic oscillations and dipolar relaxation are equally affected by D2O in a dose-dependent manner. These results offer a new insight into the coupling of an emergent intensive physicochemical property of the cell, i.e. cell-wide water dipolar relaxation, and a central metabolite (ATP) produced by a robustly oscillating metabolic process. PMID:25705902

  11. Various oscillation patterns in phase models with locally attractive and globally repulsive couplings.

    PubMed

    Sato, Katsuhiko; Shima, Shin-ichiro

    2015-10-01

    We investigate a phase model that includes both locally attractive and globally repulsive coupling in one dimension. This model exhibits nontrivial spatiotemporal patterns that have not been observed in systems that contain only local or global coupling. Depending on the relative strengths of the local and global coupling and on the form of global coupling, the system can show a spatially uniform state (in-phase synchronization), a monotonically increasing state (traveling wave), and three types of oscillations of relative phase difference. One of the oscillations of relative phase difference has the characteristic of being locally unstable but globally attractive. That is, any small perturbation to the periodic orbit in phase space destroys its periodic motion, but after a long time the system returns to the original periodic orbit. This behavior is closely related to the emergence of saddle two-cluster states for global coupling only, which are connected to each other by attractive heteroclinic orbits. The mechanism of occurrence of this type of oscillation is discussed.

  12. Phase dynamics of oscillating magnetizations coupled via spin pumping

    NASA Astrophysics Data System (ADS)

    Taniguchi, Tomohiro

    2018-05-01

    A theoretical formalism is developed to simultaneously solve equation of motion of the magnetizations in two ferromagnets and the spin-pumping induced spin transport equation. Based on the formalism, a coupled motion of the magnetizations in a self-oscillation state is studied. The spin pumping is found to induce an in-phase synchronization of the magnetizations for the oscillation around the easy axis. For an out-of-plane self-oscillation around the hard axis, on the other hand, the spin pumping leads to an in-phase synchronization in a small current region, whereas an antiphase synchronization is excited in a large current region. An analytical theory based on the phase equation reveals that the phase difference between the magnetizations in a steady state depends on the oscillation direction, clockwise or counterclockwise, of the magnetizations.

  13. Spiral wave chimera states in large populations of coupled chemical oscillators

    NASA Astrophysics Data System (ADS)

    Totz, Jan Frederik; Rode, Julian; Tinsley, Mark R.; Showalter, Kenneth; Engel, Harald

    2018-03-01

    The coexistence of coherent and incoherent dynamics in a population of identically coupled oscillators is known as a chimera state1,2. Discovered in 20023, this counterintuitive dynamical behaviour has inspired extensive theoretical and experimental activity4-15. The spiral wave chimera is a particularly remarkable chimera state, in which an ordered spiral wave rotates around a core consisting of asynchronous oscillators. Spiral wave chimeras were theoretically predicted in 200416 and numerically studied in a variety of systems17-23. Here, we report their experimental verification using large populations of nonlocally coupled Belousov-Zhabotinsky chemical oscillators10,18 in a two-dimensional array. We characterize previously unreported spatiotemporal dynamics, including erratic motion of the asynchronous spiral core, growth and splitting of the cores, as well as the transition from the chimera state to disordered behaviour. Spiral wave chimeras are likely to occur in other systems with long-range interactions, such as cortical tissues24, cilia carpets25, SQUID metamaterials26 and arrays of optomechanical oscillators9.

  14. Time delay induced different synchronization patterns in repulsively coupled chaotic oscillators

    NASA Astrophysics Data System (ADS)

    Yao, Chenggui; Yi, Ming; Shuai, Jianwei

    2013-09-01

    Time delayed coupling plays a crucial role in determining the system's dynamics. We here report that the time delay induces transition from the asynchronous state to the complete synchronization (CS) state in the repulsively coupled chaotic oscillators. In particular, by changing the coupling strength or time delay, various types of synchronous patterns, including CS, antiphase CS, antiphase synchronization (ANS), and phase synchronization, can be generated. In the transition regions between different synchronous patterns, bistable synchronous oscillators can be observed. Furthermore, we show that the time-delay-induced phase flip bifurcation is of key importance for the emergence of CS. All these findings may light on our understanding of neuronal synchronization and information processing in the brain.

  15. Classification of attractors for systems of identical coupled Kuramoto oscillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engelbrecht, Jan R.; Mirollo, Renato

    2014-03-15

    We present a complete classification of attractors for networks of coupled identical Kuramoto oscillators. In such networks, each oscillator is driven by the same first-order trigonometric function, with coefficients given by symmetric functions of the entire oscillator ensemble. For N≠3 oscillators, there are four possible types of attractors: completely synchronized fixed points or limit cycles, and fixed points or limit cycles where all but one of the oscillators are synchronized. The case N = 3 is exceptional; systems of three identical Kuramoto oscillators can also posses attracting fixed points or limit cycles with all three oscillators out of sync, as well asmore » chaotic attractors. Our results rely heavily on the invariance of the flow for such systems under the action of the three-dimensional group of Möbius transformations, which preserve the unit disc, and the analysis of the possible limiting configurations for this group action.« less

  16. Generating macroscopic chaos in a network of globally coupled phase oscillators

    PubMed Central

    So, Paul; Barreto, Ernest

    2011-01-01

    We consider an infinite network of globally coupled phase oscillators in which the natural frequencies of the oscillators are drawn from a symmetric bimodal distribution. We demonstrate that macroscopic chaos can occur in this system when the coupling strength varies periodically in time. We identify period-doubling cascades to chaos, attractor crises, and horseshoe dynamics for the macroscopic mean field. Based on recent work that clarified the bifurcation structure of the static bimodal Kuramoto system, we qualitatively describe the mechanism for the generation of such complicated behavior in the time varying case. PMID:21974662

  17. Spin Number Coherent States and the Problem of Two Coupled Oscillators

    NASA Astrophysics Data System (ADS)

    Ojeda-Guillén, D.; Mota, R. D.; Granados, V. D.

    2015-07-01

    From the definition of the standard Perelomov coherent states we introduce the Perelomov number coherent states for any su(2) Lie algebra. With the displacement operator we apply a similarity transformation to the su(2) generators and construct a new set of operators which also close the su(2) Lie algebra, being the Perelomov number coherent states the new basis for its unitary irreducible representation. We apply our results to obtain the energy spectrum, the eigenstates and the partition function of two coupled oscillators. We show that the eigenstates of two coupled oscillators are the SU(2) Perelomov number coherent states of the two-dimensional harmonic oscillator with an appropriate choice of the coherent state parameters. Supported by SNI-México, COFAA-IPN, EDD-IPN, EDI-IPN, SIP-IPN Project No. 20150935

  18. Theory of mode coupling in spin torque oscillators coupled to a thermal bath of magnons

    NASA Astrophysics Data System (ADS)

    Zhou, Yan; Zhang, Shulei; Li, Dong; Heinonen, Olle

    Recently, numerous experimental investigations have shown that the dynamics of a single spin torque oscillator (STO) exhibits complex behavior stemming from interactions between two or more modes of the oscillator. Examples are the observed mode-hopping and mode coexistence. There has been some initial work indicating how the theory for a single-mode (macro-spin) spin torque oscillator should be generalized to include several modes and the interactions between them. In this work, we rigorously derive such a theory starting with the generalized Landau-Lifshitz-Gilbert equation in the presence of the current-driven spin transfer torques. We will first show, in general, that how a linear mode coupling would arise through the coupling of the system to a thermal bath of magnons, which implies that the manifold of orbits and fixed points may shift with temperature. We then apply our theory to two experimentally interesting systems: 1) a STO patterned into nano-pillar with circular or elliptical cross-sections and 2) a nano-contact STO. For both cases, we found that in order to get mode coupling, it would be necessary to have either a finite in-plane component of the external field or an Oersted field. We will also discuss the temperature dependence of the linear mode coupling. Y. Zhou acknowledges the support by the Seed Funding Program for Basic Research from the University of Hong Kong, and University Grants Committee of Hong Kong (Contract No. AoE/P-04/08).

  19. Coupled Optoelectronic Oscillators:. Application to Low-Jitter Pulse Generation

    NASA Astrophysics Data System (ADS)

    Yu, N.; Tu, M.; Maleki, L.

    2002-04-01

    Actively mode-locked Erbium-doped fiber lasers (EDFL) have been studied for generating stable ultra-fast pulses (< 2 ps) at high repetition rates (> 5 GHz) [1,2]. These devices can be compact and environmentally stable, quite suitable for fiber-based high-data-rate communications and optical ultra-fast analog-to-digital conversions (ADC) [3]. The pulse-to-pulse jitter of an EDFL-based pulse generator will be ultimately limited by the phase noise of the mode-locking microwave source (typically electronic frequency synthesizers). On the other hand, opto-electronic oscillators (OEO) using fibers have been demonstrated to generate ultra-low phase noise microwaves at 10 GHz and higher [4]. The overall phase noise of an OEO can be much lower than commercially available synthesizers at the offset-frequency range above 100 Hz. Clearly, ultra-low jitter pulses can be generated by taking advantage of the low phase noise of OEOs. In this paper, we report the progress in developing a new low-jitter pulse generator by combing the two technologies. In our approach, the optical oscillator (mode-locked EDFL) and the microwave oscillator (OEO) are coupled through a common Mach-Zehnder (MZ) modulator, thus named coupled opto-electronic oscillator (COEO) [5]. Based on the results of previous OEO study, we can expect a 10 GHz pulse train with jitters less than 10 fs.

  20. Influences of adding negative couplings between cliques of Kuramoto-like oscillators

    NASA Astrophysics Data System (ADS)

    Yang, Li-xin; Lin, Xiao-lin; Jiang, Jun

    2018-06-01

    We study the dynamics in a clustered network of coupled oscillators by considering positive and negative coupling schemes. Second order oscillators can be interpreted as a model of consumers and generators working in a power network. Numerical results indicate that coupling strategies play an important role in the synchronizability of the clustered power network. It is found that the synchronizability can be enhanced as the positive intragroup connections increase. Meanwhile, when the intragroup interactions are positive and the probability p that two nodes belonging to different clusters are connected is increased, the synchronization has better performance. Besides, when the intragroup connections are negative, it is observed that the power network has poor synchronizability as the probability p increases. Our simulation results can help us understand the collective behavior of the power network with positive and negative couplings.

  1. Robustness of synthetic oscillators in growing and dividing cells

    NASA Astrophysics Data System (ADS)

    Paijmans, Joris; Lubensky, David K.; Rein ten Wolde, Pieter

    2017-05-01

    Synthetic biology sets out to implement new functions in cells, and to develop a deeper understanding of biological design principles. Elowitz and Leibler [Nature (London) 403, 335 (2000), 10.1038/35002125] showed that by rational design of the reaction network, and using existing biological components, they could create a network that exhibits periodic gene expression, dubbed the repressilator. More recently, Stricker et al. [Nature (London) 456, 516 (2008), 10.1038/nature07389] presented another synthetic oscillator, called the dual-feedback oscillator, which is more stable. Detailed studies have been carried out to determine how the stability of these oscillators is affected by the intrinsic noise of the interactions between the components and the stochastic expression of their genes. However, as all biological oscillators reside in growing and dividing cells, an important question is how these oscillators are perturbed by the cell cycle. In previous work we showed that the periodic doubling of the gene copy numbers due to DNA replication can couple not only natural, circadian oscillators to the cell cycle [Paijmans et al., Proc. Natl. Acad. Sci. (USA) 113, 4063 (2016), 10.1073/pnas.1507291113], but also these synthetic oscillators. Here we expand this study. We find that the strength of the locking between oscillators depends not only on the positions of the genes on the chromosome, but also on the noise in the timing of gene replication: noise tends to weaken the coupling. Yet, even in the limit of high levels of noise in the replication times of the genes, both synthetic oscillators show clear signatures of locking to the cell cycle. This work enhances our understanding of the design of robust biological oscillators inside growing and diving cells.

  2. Coupled Oscillator Model of the Business Cycle withFluctuating Goods Markets

    NASA Astrophysics Data System (ADS)

    Ikeda, Y.; Aoyama, H.; Fujiwara, Y.; Iyetomi, H.; Ogimoto, K.; Souma, W.; Yoshikawa, H.

    The sectoral synchronization observed for the Japanese business cycle in the Indices of Industrial Production data is an example of synchronization. The stability of this synchronization under a shock, e.g., fluctuation of supply or demand, is a matter of interest in physics and economics. We consider an economic system made up of industry sectors and goods markets in order to analyze the sectoral synchronization observed for the Japanese business cycle. A coupled oscillator model that exhibits synchronization is developed based on the Kuramoto model with inertia by adding goods markets, and analytic solutions of the stationary state and the coupling strength are obtained. We simulate the effects on synchronization of a sectoral shock for systems with different price elasticities and the coupling strengths. Synchronization is reproduced as an equilibrium solution in a nearest neighbor graph. Analysis of the order parameters shows that the synchronization is stable for a finite elasticity, whereas the synchronization is broken and the oscillators behave like a giant oscillator with a certain frequency additional to the common frequency for zero elasticity.

  3. Quantifying interactions between real oscillators with information theory and phase models: application to cardiorespiratory coupling.

    PubMed

    Zhu, Yenan; Hsieh, Yee-Hsee; Dhingra, Rishi R; Dick, Thomas E; Jacono, Frank J; Galán, Roberto F

    2013-02-01

    Interactions between oscillators can be investigated with standard tools of time series analysis. However, these methods are insensitive to the directionality of the coupling, i.e., the asymmetry of the interactions. An elegant alternative was proposed by Rosenblum and collaborators [M. G. Rosenblum, L. Cimponeriu, A. Bezerianos, A. Patzak, and R. Mrowka, Phys. Rev. E 65, 041909 (2002); M. G. Rosenblum and A. S. Pikovsky, Phys. Rev. E 64, 045202 (2001)] which consists in fitting the empirical phases to a generic model of two weakly coupled phase oscillators. This allows one to obtain the interaction functions defining the coupling and its directionality. A limitation of this approach is that a solution always exists in the least-squares sense, even in the absence of coupling. To preclude spurious results, we propose a three-step protocol: (1) Determine if a statistical dependency exists in the data by evaluating the mutual information of the phases; (2) if so, compute the interaction functions of the oscillators; and (3) validate the empirical oscillator model by comparing the joint probability of the phases obtained from simulating the model with that of the empirical phases. We apply this protocol to a model of two coupled Stuart-Landau oscillators and show that it reliably detects genuine coupling. We also apply this protocol to investigate cardiorespiratory coupling in anesthetized rats. We observe reciprocal coupling between respiration and heartbeat and that the influence of respiration on the heartbeat is generally much stronger than vice versa. In addition, we find that the vagus nerve mediates coupling in both directions.

  4. The relationship between node degree and dissipation rate in networks of diffusively coupled oscillators and its significance for pancreatic beta cells.

    PubMed

    Gosak, Marko; Stožer, Andraž; Markovič, Rene; Dolenšek, Jurij; Marhl, Marko; Rupnik, Marjan Slak; Perc, Matjaž

    2015-07-01

    Self-sustained oscillatory dynamics is a motion along a stable limit cycle in the phase space, and it arises in a wide variety of mechanical, electrical, and biological systems. Typically, oscillations are due to a balance between energy dissipation and generation. Their stability depends on the properties of the attractor, in particular, its dissipative characteristics, which in turn determine the flexibility of a given dynamical system. In a network of oscillators, the coupling additionally contributes to the dissipation, and hence affects the robustness of the oscillatory solution. Here, we therefore investigate how a heterogeneous network structure affects the dissipation rate of individual oscillators. First, we show that in a network of diffusively coupled oscillators, the dissipation is a linearly decreasing function of the node degree, and we demonstrate this numerically by calculating the average divergence of coupled Hopf oscillators. Subsequently, we use recordings of intracellular calcium dynamics in pancreatic beta cells in mouse acute tissue slices and the corresponding functional connectivity networks for an experimental verification of the presented theory. We use methods of nonlinear time series analysis to reconstruct the phase space and calculate the sum of Lyapunov exponents. Our analysis reveals a clear tendency of cells with a higher degree, that is, more interconnected cells, having more negative values of divergence, thus confirming our theoretical predictions. We discuss these findings in the context of energetic aspects of signaling in beta cells and potential risks for pathological changes in the tissue.

  5. Cavity Optomechanics: Coherent Coupling of Light and Mechanical Oscillators

    NASA Astrophysics Data System (ADS)

    Kippenberg, Tobias J.

    2012-06-01

    The mutual coupling of optical and mechanical degrees of freedom via radiation pressure has been a subject of interest in the context of quantum limited displacements measurements for Gravity Wave Detection for many decades, however light forces have remained experimentally unexplored in such systems. Recent advances in nano- and micro-mechanical oscillators have for the first time allowed the observation of radiation pressure phenomena in an experimental setting and constitute the expanding research field of cavity optomechanics [1]. These advances have allowed achieving to enter the quantum regime of mechanical systems, which are now becoming a third quantum technology after atoms, ions and molecules in a first and electronic circuits in a second wave. In this talk I will review these advances. Using on-chip micro-cavities that combine both optical and mechanical degrees of freedom in one and the same device [2], radiation pressure back-action of photons is shown to lead to effective cooling [3-6]) of the mechanical oscillator mode using dynamical backaction, which has been predicted by Braginsky as early as 1969 [4]. This back-action cooling exhibits many close analogies to atomic laser cooling. With this novel technique the quantum mechanical ground state of a micromechanical oscillator has been prepared with high probability using both microwave and optical fields. In our research this is reached using cryogenic precooling to ca. 800 mK in conjunction with laser cooling, allowing cooling of micromechanical oscillator to only motional 1.7 quanta, implying that the mechanical oscillator spends about 40% of its time in the quantum ground state. Moreover it is possible in this regime to observe quantum coherent coupling in which the mechanical and optical mode hybridize and the coupling rate exceeds the mechanical and optical decoherence rate [7]. This accomplishment enables a range of quantum optical experiments, including state transfer from light to mechanics

  6. Supermode noise suppression with mutual injection locking for coupled optoelectronic oscillator.

    PubMed

    Dai, Jian; Liu, Anni; Liu, Jingliang; Zhang, Tian; Zhou, Yue; Yin, Feifei; Dai, Yitang; Liu, Yuanan; Xu, Kun

    2017-10-30

    The coupled optoelectronic oscillator (COEO) is typically used to generate high frequency spectrally pure microwave signal with serious sidemodes noise. We propose and experimentally demonstrate a simple scheme for supermode suppression with mutual injection locking between the COEO (master oscillator with multi-modes oscillation) and the embedded free-running oscillator (slave oscillator with single-mode oscillation). The master and slave oscillators share the same electrical feedback path, which means that the mutually injection-locked COEO brings no additional hardware complexity. Owing to the mode matching and mutually injection locking effect, 9.999 GHz signal has been successfully obtained by the mutually injection-locked COEO with the phase noise about -117 dBc/Hz at 10 kHz offset frequency. Besides, the supermode noise can be significantly suppressed more than 50 dB to below -120 dBc.

  7. Recent aspects of self-oscillating polymeric materials: designing self-oscillating polymers coupled with supramolecular chemistry and ionic liquid science.

    PubMed

    Ueki, Takeshi; Yoshida, Ryo

    2014-06-14

    Herein, we summarise the recent developments in self-oscillating polymeric materials based on the concepts of supramolecular chemistry, where aggregates of molecular building blocks with non-covalent bonds evolve the temporal or spatiotemporal structure. By utilising the rhythmic oscillation of the association/dissociation of molecular aggregates coupled with the redox oscillation by the BZ reaction, novel soft materials that express similar functions as those of living matter will be achieved. Further, from the viewpoint of materials science, our recent approach to prepare self-oscillating materials that operate long-term under mild conditions will be introduced.

  8. Cessation of oscillations in a chemo-mechanical oscillator

    NASA Astrophysics Data System (ADS)

    Phogat, Richa; Tiwari, Ishant; Kumar, Pawan; Rivera, Marco; Parmananda, Punit

    2018-06-01

    In this paper, different methods for cessation of oscillations in a chemo-mechanical oscillator [mercury beating heart (MBH)] are presented. The first set of experiments were carried out on a single MBH oscillator. To achieve cessation of oscillations, two protocols, namely, inverted feedback and delayed feedback were employed. In the second set of experiments, two quasi-identical MBH oscillators are considered. They are first synchronized via a bidirectional attractive coupling. These two synchronized oscillators are thereafter coupled with a unidirectional repulsive coupling and the system dynamics were observed. Subsequently, in the next protocol, the effect of a unidirectional delay coupling on the two synchronized oscillators was explored. The cessation of oscillations in all the above experimental setups was observed as the feedback/coupling was switched on at a suitable strength. Oscillatory dynamics of the system were restored when the feedback/coupling was switched off.

  9. Time Correlations in Mode Hopping of Coupled Oscillators

    NASA Astrophysics Data System (ADS)

    Heltberg, Mathias L.; Krishna, Sandeep; Jensen, Mogens H.

    2017-05-01

    We study the dynamics in a system of coupled oscillators when Arnold Tongues overlap. By varying the initial conditions, the deterministic system can be attracted to different limit cycles. Adding noise, the mode hopping between different states become a dominating part of the dynamics. We simplify the system through a Poincare section, and derive a 1D model to describe the dynamics. We explain that for some parameter values of the external oscillator, the time distribution of occupancy in a state is exponential and thus memoryless. In the general case, on the other hand, it is a sum of exponential distributions characteristic of a system with time correlations.

  10. Quantifying interactions between real oscillators with information theory and phase models: Application to cardiorespiratory coupling

    NASA Astrophysics Data System (ADS)

    Zhu, Yenan; Hsieh, Yee-Hsee; Dhingra, Rishi R.; Dick, Thomas E.; Jacono, Frank J.; Galán, Roberto F.

    2013-02-01

    Interactions between oscillators can be investigated with standard tools of time series analysis. However, these methods are insensitive to the directionality of the coupling, i.e., the asymmetry of the interactions. An elegant alternative was proposed by Rosenblum and collaborators [M. G. Rosenblum, L. Cimponeriu, A. Bezerianos, A. Patzak, and R. Mrowka, Phys. Rev. EPLEEE81063-651X10.1103/PhysRevE.65.041909 65, 041909 (2002); M. G. Rosenblum and A. S. Pikovsky, Phys. Rev. EPLEEE81063-651X10.1103/PhysRevE.64.045202 64, 045202 (2001)] which consists in fitting the empirical phases to a generic model of two weakly coupled phase oscillators. This allows one to obtain the interaction functions defining the coupling and its directionality. A limitation of this approach is that a solution always exists in the least-squares sense, even in the absence of coupling. To preclude spurious results, we propose a three-step protocol: (1) Determine if a statistical dependency exists in the data by evaluating the mutual information of the phases; (2) if so, compute the interaction functions of the oscillators; and (3) validate the empirical oscillator model by comparing the joint probability of the phases obtained from simulating the model with that of the empirical phases. We apply this protocol to a model of two coupled Stuart-Landau oscillators and show that it reliably detects genuine coupling. We also apply this protocol to investigate cardiorespiratory coupling in anesthetized rats. We observe reciprocal coupling between respiration and heartbeat and that the influence of respiration on the heartbeat is generally much stronger than vice versa. In addition, we find that the vagus nerve mediates coupling in both directions.

  11. Effect of parameter mismatch on the dynamics of strongly coupled self sustained oscillators.

    PubMed

    Chakrabarty, Nilaj; Jain, Aditya; Lal, Nijil; Das Gupta, Kantimay; Parmananda, Punit

    2017-01-01

    In this paper, we present an experimental setup and an associated mathematical model to study the synchronization of two self-sustained, strongly coupled, mechanical oscillators (metronomes). The effects of a small detuning in the internal parameters, namely, damping and frequency, have been studied. Our experimental system is a pair of spring wound mechanical metronomes; coupled by placing them on a common base, free to move along a horizontal direction. We designed a photodiode array based non-contact, non-magnetic position detection system driven by a microcontroller to record the instantaneous angular displacement of each oscillator and the small linear displacement of the base, coupling the two. In our system, the mass of the oscillating pendula forms a significant fraction of the total mass of the system, leading to strong coupling of the oscillators. We modified the internal mechanism of the spring-wound "clockwork" slightly, such that the natural frequency and the internal damping could be independently tuned. Stable synchronized and anti-synchronized states were observed as the difference in the parameters was varied in the experiments. The simulation results showed a rapid increase in the phase difference between the two oscillators beyond a certain threshold of parameter mismatch. Our simple model of the escapement mechanism did not reproduce a complete 180° out of phase state. However, the numerical simulations show that increased mismatch in parameters leads to a synchronized state with a large phase difference.

  12. Falling coupled oscillators and trigonometric sums

    NASA Astrophysics Data System (ADS)

    Holcombe, S. R.

    2018-02-01

    A method for evaluating finite trigonometric summations is applied to a system of N coupled oscillators under acceleration. Initial motion of the nth particle is shown to be of the order T^{2{n}+2} for small time T, and the end particle in the continuum limit is shown to initially remain stationary for the time it takes a wavefront to reach it. The average velocities of particles at the ends of the system are shown to take discrete values in a step-like manner.

  13. Dynamic Transition and Resonance in Coupled Oscillators Under Symmetry-Breaking Fields

    NASA Astrophysics Data System (ADS)

    Choi, J.; Choi, M. Y.; Chung, M. S.; Yoon, B.-G.

    2013-06-01

    We investigate numerically the dynamic properties of a system of globally coupled oscillators driven by periodic symmetry-breaking fields in the presence of noise. The phase distribution of the oscillators is computed and a dynamic transition is disclosed. It is further found that the stochastic resonance is closely related to the behavior of the dynamic order parameter, which is in turn explained by the formation of a bi-cluster in the system. Here noise tends to symmetrize the motion of the oscillators, facilitating the bi-cluster formation. The observed resonance appears to be of the same class as the resonance present in the two-dimensional Ising model under oscillating fields.

  14. Permanent Rabi oscillations in coupled exciton-photon systems with PT -symmetry

    PubMed Central

    Chestnov, Igor Yu.; Demirchyan, Sevak S.; Alodjants, Alexander P.; Rubo, Yuri G.; Kavokin, Alexey V.

    2016-01-01

    We propose a physical mechanism which enables permanent Rabi oscillations in driven-dissipative condensates of exciton-polaritons in semiconductor microcavities subjected to external magnetic fields. The method is based on stimulated scattering of excitons from the incoherent reservoir. We demonstrate that permanent non-decaying oscillations may appear due to the parity-time symmetry of the coupled exciton-photon system realized in a specific regime of pumping to the exciton state and depletion of the reservoir. At non-zero exciton-photon detuning, robust permanent Rabi oscillations occur with unequal amplitudes of exciton and photon components. Our predictions pave way to realization of integrated circuits based on exciton-polariton Rabi oscillators. PMID:26790534

  15. Permanent Rabi oscillations in coupled exciton-photon systems with PT-symmetry.

    PubMed

    Chestnov, Igor Yu; Demirchyan, Sevak S; Alodjants, Alexander P; Rubo, Yuri G; Kavokin, Alexey V

    2016-01-21

    We propose a physical mechanism which enables permanent Rabi oscillations in driven-dissipative condensates of exciton-polaritons in semiconductor microcavities subjected to external magnetic fields. The method is based on stimulated scattering of excitons from the incoherent reservoir. We demonstrate that permanent non-decaying oscillations may appear due to the parity-time symmetry of the coupled exciton-photon system realized in a specific regime of pumping to the exciton state and depletion of the reservoir. At non-zero exciton-photon detuning, robust permanent Rabi oscillations occur with unequal amplitudes of exciton and photon components. Our predictions pave way to realization of integrated circuits based on exciton-polariton Rabi oscillators.

  16. Partial synchronization of relaxation oscillators with repulsive coupling in autocatalytic integrate-and-fire model and electrochemical experiments

    NASA Astrophysics Data System (ADS)

    Kori, Hiroshi; Kiss, István Z.; Jain, Swati; Hudson, John L.

    2018-04-01

    Experiments and supporting theoretical analysis are presented to describe the synchronization patterns that can be observed with a population of globally coupled electrochemical oscillators close to a homoclinic, saddle-loop bifurcation, where the coupling is repulsive in the electrode potential. While attractive coupling generates phase clusters and desynchronized states, repulsive coupling results in synchronized oscillations. The experiments are interpreted with a phenomenological model that captures the waveform of the oscillations (exponential increase) followed by a refractory period. The globally coupled autocatalytic integrate-and-fire model predicts the development of partially synchronized states that occur through attracting heteroclinic cycles between out-of-phase two-cluster states. Similar behavior can be expected in many other systems where the oscillations occur close to a saddle-loop bifurcation, e.g., with Morris-Lecar neurons.

  17. Biological oscillations: Fluorescence monitoring by confocal microscopy

    NASA Astrophysics Data System (ADS)

    Chattoraj, Shyamtanu; Bhattacharyya, Kankan

    2016-09-01

    Fluctuations play a vital role in biological systems. Single molecule spectroscopy has recently revealed many new kinds of fluctuations in biological molecules. In this account, we focus on structural fluctuations of an antigen-antibody complex, conformational dynamics of a DNA quadruplex, effects of taxol on dynamics of microtubules, intermittent red-ox oscillations at different organelles in a live cell (mitochondria, lipid droplets, endoplasmic reticulum and cell membrane) and stochastic resonance in gene silencing. We show that there are major differences in these dynamics between a cancer cell and the corresponding non-cancer cell.

  18. Sampled-data synchronisation of coupled harmonic oscillators with communication and input delays subject to controller failure

    NASA Astrophysics Data System (ADS)

    Zhao, Liyun; Zhou, Jin; Wu, Quanjun

    2016-01-01

    This paper considers the sampled-data synchronisation problems of coupled harmonic oscillators with communication and input delays subject to controller failure. A synchronisation protocol is proposed for such oscillator systems over directed network topology, and then some general algebraic criteria on exponential convergence for the proposed protocol are established. The main features of the present investigation include: (1) both the communication and input delays are simultaneously addressed, and the directed network topology is firstly considered and (2) the effects of time delays on synchronisation performance are theoretically and numerically investigated. It is shown that in the absence of communication delays, coupled harmonic oscillators can achieve synchronisation oscillatory motion. Whereas if communication delays are nonzero at infinite multiple sampled-data instants, its synchronisation (or consensus) state is zero. This conclusion can be used as an effective control strategy to stabilise coupled harmonic oscillators in practical applications. Furthermore, it is interesting to find that increasing either communication or input delays will enhance the synchronisation performance of coupled harmonic oscillators. Subsequently, numerical examples illustrate and visualise theoretical results.

  19. Are human spontaneous otoacoustic emissions generated by a chain of coupled nonlinear oscillators?

    PubMed

    Wit, Hero P; van Dijk, Pim

    2012-08-01

    Spontaneous otoacoustic emissions (SOAEs) are generated by self-sustained cochlear oscillators. Properties of a computational model for a linear array of active oscillators with nearest neighbor coupling are investigated. The model can produce many experimentally well-established properties of SOAEs.

  20. On the (Frequency) Modulation of Coupled Oscillator Arrays in Phased Array Beam Control

    NASA Technical Reports Server (NTRS)

    Pogorzelski, R.; Acorn, J.; Zawadzki, M.

    2000-01-01

    It has been shown that arrays of voltage controlled oscillators coupled to nearest neighbors can be used to produce useful aperture phase distributions for phased array antennas. However, placing information of the transmitted signal requires that the oscillations be modulated.

  1. Spatial Noise in Coupling Strength and Natural Frequency within a Pacemaker Network; Consequences for Development of Intestinal Motor Patterns According to a Weakly Coupled Phase Oscillator Model

    PubMed Central

    Parsons, Sean P.; Huizinga, Jan D.

    2016-01-01

    Pacemaker activities generated by networks of interstitial cells of Cajal (ICC), in conjunction with the enteric nervous system, orchestrate most motor patterns in the gastrointestinal tract. It was our objective to understand the role of network features of ICC associated with the myenteric plexus (ICC-MP) in the shaping of motor patterns of the small intestine. To that end, a model of weakly coupled oscillators (oscillators influence each other's phase but not amplitude) was created with most parameters derived from experimental data. The ICC network is a uniform two dimensional network coupled by gap junctions. All ICC generate pacemaker (slow wave) activity with a frequency gradient in mice from 50/min at the proximal end of the intestine to 40/min at the distal end. Key features of motor patterns, directly related to the underlying pacemaker activity, are frequency steps and dislocations. These were accurately mimicked by reduction of coupling strength at a point in the chain of oscillators. When coupling strength was expressed as a product of gap junction density and conductance, and gap junction density was varied randomly along the chain (i.e., spatial noise) with a long-tailed distribution, plateau steps occurred at pointsof low density. As gap junction conductance was decreased, the number of plateaus increased, mimicking the effect of the gap junction inhibitor carbenoxolone. When spatial noise was added to the natural interval gradient, as gap junction conductance decreased, the number of plateaus increased as before but in addition the phase waves frequently changed direction of apparent propagation, again mimicking the effect of carbenoxolone. In summary, key features of the motor patterns that are governed by pacemaker activity may be a direct consequence of biological noise, specifically spatial noise in gap junction coupling and pacemaker frequency. PMID:26869875

  2. Two-Dimensional Array Beam Scanning Via Externally and Mutually Injection Locked Coupled Oscillators

    NASA Technical Reports Server (NTRS)

    Pogorzelski, Ronald J.

    2000-01-01

    Some years ago, Stephan proposed an approach to one dimensional (linear) phased array beam steering which requires only a single phase shifter. This involves the use of a linear array of voltage-controlled electronic oscillators coupled to nearest neighbors. The oscillators are mutually injection locked by controlling their coupling and tuning appropriately. Stephan's approach consists of deriving two signals from a master oscillator, one signal phase shifted with respect to the other by means of a single phase shifter. These two signals are injected into the end oscillators of the array. The result is a linear phase progression across the oscillator array. Thus, if radiating elements are connected to each oscillator and spaced uniformly along a line, they will radiate a beam at an angle to that line determined by the phase gradient which is, in turn, determined by the phase difference between the injection signals.The beam direction is therefore controlled by adjusting this phase difference. Recently, Pogorzelski and York presented a formulation which facilitates theoretical analysis of the above beam steering technique. This was subsequently applied by Pogorzelski in analysis of two dimensional beam steering using perimeter detuning of a coupled oscillator array. The formulation is based on a continuum model in which the oscillator phases are represented by a continuous function satisfying a partial differential equation of diffusion type. This equation can be solved via the Laplace transform and the resulting solution exhibits the dynamic behavior of the array as the beam is steered. Stephan's beam steering technique can be similarly generalized to two-dimensional arrays in which the beam control signals are applied to the oscillators on the perimeter of the array. In this paper the continuum model for this two-dimensional case is developed and the dynamic solution for the corresponding aperture phase function is obtained. The corresponding behavior of the

  3. Coupled-oscillator theory of dispersion and Casimir-Polder interactions.

    PubMed

    Berman, P R; Ford, G W; Milonni, P W

    2014-10-28

    We address the question of the applicability of the argument theorem (of complex variable theory) to the calculation of two distinct energies: (i) the first-order dispersion interaction energy of two separated oscillators, when one of the oscillators is excited initially and (ii) the Casimir-Polder interaction of a ground-state quantum oscillator near a perfectly conducting plane. We show that the argument theorem can be used to obtain the generally accepted equation for the first-order dispersion interaction energy, which is oscillatory and varies as the inverse power of the separation r of the oscillators for separations much greater than an optical wavelength. However, for such separations, the interaction energy cannot be transformed into an integral over the positive imaginary axis. If the argument theorem is used incorrectly to relate the interaction energy to an integral over the positive imaginary axis, the interaction energy is non-oscillatory and varies as r(-4), a result found by several authors. Rather remarkably, this incorrect expression for the dispersion energy actually corresponds to the nonperturbative Casimir-Polder energy for a ground-state quantum oscillator near a perfectly conducting wall, as we show using the so-called "remarkable formula" for the free energy of an oscillator coupled to a heat bath [G. W. Ford, J. T. Lewis, and R. F. O'Connell, Phys. Rev. Lett. 55, 2273 (1985)]. A derivation of that formula from basic results of statistical mechanics and the independent oscillator model of a heat bath is presented.

  4. A hybrid system of a membrane oscillator coupled to ultracold atoms

    NASA Astrophysics Data System (ADS)

    Kampschulte, Tobias

    2015-05-01

    The control over micro- and nanomechanical oscillators has recently made impressive progress. First experiments demonstrated ground-state cooling and single-phonon control of high-frequency oscillators using cryogenic cooling and techniques of cavity optomechanics. Coupling engineered mechanical structures to microscopic quantum system with good coherence properties offers new possibilities for quantum control of mechanical vibrations, precision sensing and quantum-level signal transduction. Ultracold atoms are an attractive choice for such hybrid systems: Mechanical can either be coupled to the motional state of trapped atoms, which can routinely be ground-state cooled, or to the internal states, for which a toolbox of coherent manipulation and detection exists. Furthermore, atomic collective states with non-classical properties can be exploited to infer the mechanical motion with reduced quantum noise. Here we use trapped ultracold atoms to sympathetically cool the fundamental vibrational mode of a Si3N4 membrane. The coupling of membrane and atomic motion is mediated by laser light over a macroscopic distance and enhanced by an optical cavity around the membrane. The observed cooling of the membrane from room temperature to 650 +/- 230 mK shows that our hybrid mechanical-atomic system operates at a large cooperativity. Our scheme could provide ground-state cooling and quantum control of low-frequency oscillators such as levitated nanoparticles, in a regime where purely optomechanical techniques cannot reach the ground state. Furthermore, we will present a scheme where an optomechanical system is coupled to internal states of ultracold atoms. The mechanical motion is translated into a polarization rotation which drives Raman transitions between atomic ground states. Compared to the motional-state coupling, the new scheme enables to couple atoms to high-frequency structures such as optomechanical crystals.

  5. Chimera states in an ensemble of linearly locally coupled bistable oscillators

    NASA Astrophysics Data System (ADS)

    Shchapin, D. S.; Dmitrichev, A. S.; Nekorkin, V. I.

    2017-11-01

    Chimera states in a system with linear local connections have been studied. The system is a ring ensemble of analog bistable self-excited oscillators with a resistive coupling. It has been shown that the existence of chimera states is not due to the nonidentity of oscillators and noise, which is always present in real experiments, but is due to the nonlinear dynamics of the system on invariant tori with various dimensions.

  6. Stochastic process of pragmatic information for 2D spiral wave turbulence in globally and locally coupled Alief-Panfilov oscillators

    NASA Astrophysics Data System (ADS)

    Kuwahara, Jun; Miyata, Hajime; Konno, Hidetoshi

    2017-09-01

    Recently, complex dynamics of globally coupled oscillators have been attracting many researcher's attentions. In spite of their numerous studies, their features of nonlinear oscillator systems with global and local couplings in two-dimension (2D) are not understood fully. The paper focuses on 2D states of coherent, clustered and chaotic oscillation especially under the effect of negative global coupling (NGC) in 2D Alief-Panfilov model. It is found that the tuning NGC can cause various new coupling-parameter dependency on the features of oscillations. Then quantitative characterization of various states of oscillations (so called spiral wave turbulence) is examined by using the pragmatic information (PI) which have been utilized in analyzing multimode laser, solar activity and neuronal systems. It is demonstrated that the dynamics of the PI for various oscillations can be characterized successfully by the Hyper-Gamma stochastic process.

  7. Active Coupled Oscillators in the Inner Ear

    NASA Astrophysics Data System (ADS)

    Strimbu, Clark Elliott

    Auditory and vestibular systems are endowed with an active process that enables them to detect signals as small as a few Angstroms; they also exhibit frequency selectivity; show strong nonlinearities; and can exhibit as spontaneous activity. Much of this active process comes from the sensory hair cells at the periphery of the auditory and vestibular systems. Each hair cell is capped by an eponymous hair bundle, a specialized structure that transduces mechanical forces into electrical signals. Experiments on mechanically decoupled cells from the frog sacculus have shown that individual hair bundles behave in an active manner analogous to an intact organ suggesting a common cellular basis for the active processes seen in many species. In particular, mechanically decoupled hair bundles show rapid active movements in response to transient stimuli and exhibit spontaneous oscillations. However, a single mechanosensitive hair cell is unable to match the performance of an entire organ. In vivo, hair bundles are often coupled to overlying membranes, gelatinous extracellular matrices. We used an in vitro preparation of the frog sacculus in which the otolithic membrane has been left intact. Under natural coupling conditions, there is a strong degree of correlation across the saccular epithelium, suggesting that the collective response of many cells contributes to the extreme sensitivity of this organ. When the membrane is left intact, the hair bundles do not oscillate spontaneously, showing that the natural coupling and loading tunes them into a quiescent regime. However, when stimulated by a pulse, the bundles show a rapid biphasic response that is abolished when the transduction channels are blocked. The active forces generated by the bundles are sufficient to move the overlying membrane.

  8. Inversion of Qubit Energy Levels in Qubit-Oscillator Circuits in the Deep-Strong-Coupling Regime.

    PubMed

    Yoshihara, F; Fuse, T; Ao, Z; Ashhab, S; Kakuyanagi, K; Saito, S; Aoki, T; Koshino, K; Semba, K

    2018-05-04

    We report on experimentally measured light shifts of superconducting flux qubits deep-strongly coupled to LC oscillators, where the coupling constants are comparable to the qubit and oscillator resonance frequencies. By using two-tone spectroscopy, the energies of the six lowest levels of each circuit are determined. We find huge Lamb shifts that exceed 90% of the bare qubit frequencies and inversions of the qubits' ground and excited states when there are a finite number of photons in the oscillator. Our experimental results agree with theoretical predictions based on the quantum Rabi model.

  9. Inversion of Qubit Energy Levels in Qubit-Oscillator Circuits in the Deep-Strong-Coupling Regime

    NASA Astrophysics Data System (ADS)

    Yoshihara, F.; Fuse, T.; Ao, Z.; Ashhab, S.; Kakuyanagi, K.; Saito, S.; Aoki, T.; Koshino, K.; Semba, K.

    2018-05-01

    We report on experimentally measured light shifts of superconducting flux qubits deep-strongly coupled to L C oscillators, where the coupling constants are comparable to the qubit and oscillator resonance frequencies. By using two-tone spectroscopy, the energies of the six lowest levels of each circuit are determined. We find huge Lamb shifts that exceed 90% of the bare qubit frequencies and inversions of the qubits' ground and excited states when there are a finite number of photons in the oscillator. Our experimental results agree with theoretical predictions based on the quantum Rabi model.

  10. Plexcitons: The Role of Oscillator Strengths and Spectral Widths in Determining Strong Coupling.

    PubMed

    Thomas, Reshmi; Thomas, Anoop; Pullanchery, Saranya; Joseph, Linta; Somasundaran, Sanoop Mambully; Swathi, Rotti Srinivasamurthy; Gray, Stephen K; Thomas, K George

    2018-01-23

    Strong coupling interactions between plasmon and exciton-based excitations have been proposed to be useful in the design of optoelectronic systems. However, the role of various optical parameters dictating the plasmon-exciton (plexciton) interactions is less understood. Herein, we propose an inequality for achieving strong coupling between plasmons and excitons through appropriate variation of their oscillator strengths and spectral widths. These aspects are found to be consistent with experiments on two sets of free-standing plexcitonic systems obtained by (i) linking fluorescein isothiocyanate on Ag nanoparticles of varying sizes through silane coupling and (ii) electrostatic binding of cyanine dyes on polystyrenesulfonate-coated Au nanorods of varying aspect ratios. Being covalently linked on Ag nanoparticles, fluorescein isothiocyanate remains in monomeric state, and its high oscillator strength and narrow spectral width enable us to approach the strong coupling limit. In contrast, in the presence of polystyrenesulfonate, monomeric forms of cyanine dyes exist in equilibrium with their aggregates: Coupling is not observed for monomers and H-aggregates whose optical parameters are unfavorable. The large aggregation number, narrow spectral width, and extremely high oscillator strength of J-aggregates of cyanines permit effective delocalization of excitons along the linear assembly of chromophores, which in turn leads to efficient coupling with the plasmons. Further, the results obtained from experiments and theoretical models are jointly employed to describe the plexcitonic states, estimate the coupling strengths, and rationalize the dispersion curves. The experimental results and the theoretical analysis presented here portray a way forward to the rational design of plexcitonic systems attaining the strong coupling limits.

  11. Fluid-structure coupling for an oscillating hydrofoil

    NASA Astrophysics Data System (ADS)

    Münch, C.; Ausoni, P.; Braun, O.; Farhat, M.; Avellan, F.

    2010-08-01

    Fluid-structure investigations in hydraulic machines using coupled simulations are particularly time-consuming. In this study, an alternative method is presented that linearizes the hydrodynamic load of a rigid, oscillating hydrofoil. The hydrofoil, which is surrounded by incompressible, turbulent flow, is modeled with forced and free pitching motions, where the mean incidence angle is 0° with a maximum angle amplitude of 2°. Unsteady simulations of the flow, performed with ANSYS CFX, are presented and validated with experiments which were carried out in the EPFL High-Speed Cavitation Tunnel. First, forced motion is investigated for reduced frequencies ranging from 0.02 to 100. The hydrodynamic load is modeled as a simple combination of inertia, damping and stiffness effects. As expected, the potential flow analysis showed the added moment of inertia is constant, while the fluid damping and the fluid stiffness coefficients depend on the reduced frequency of the oscillation motion. Behavioral patterns were observed and two cases were identified depending on if vortices did or did not develop in the hydrofoil wake. Using the coefficients identified in the forced motion case, the time history of the profile incidence is then predicted analytically for the free motion case and excellent agreement is found for the results from coupled fluid-structure simulations. The model is validated and may be extended to more complex cases, such as blade grids in hydraulic machinery.

  12. Coupled-oscillator theory of dispersion and Casimir-Polder interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berman, P. R.; Ford, G. W.; Milonni, P. W.

    2014-10-28

    We address the question of the applicability of the argument theorem (of complex variable theory) to the calculation of two distinct energies: (i) the first-order dispersion interaction energy of two separated oscillators, when one of the oscillators is excited initially and (ii) the Casimir-Polder interaction of a ground-state quantum oscillator near a perfectly conducting plane. We show that the argument theorem can be used to obtain the generally accepted equation for the first-order dispersion interaction energy, which is oscillatory and varies as the inverse power of the separation r of the oscillators for separations much greater than an optical wavelength.more » However, for such separations, the interaction energy cannot be transformed into an integral over the positive imaginary axis. If the argument theorem is used incorrectly to relate the interaction energy to an integral over the positive imaginary axis, the interaction energy is non-oscillatory and varies as r{sup −4}, a result found by several authors. Rather remarkably, this incorrect expression for the dispersion energy actually corresponds to the nonperturbative Casimir-Polder energy for a ground-state quantum oscillator near a perfectly conducting wall, as we show using the so-called “remarkable formula” for the free energy of an oscillator coupled to a heat bath [G. W. Ford, J. T. Lewis, and R. F. O’Connell, Phys. Rev. Lett. 55, 2273 (1985)]. A derivation of that formula from basic results of statistical mechanics and the independent oscillator model of a heat bath is presented.« less

  13. Transients in the synchronization of asymmetrically coupled oscillator arrays

    NASA Astrophysics Data System (ADS)

    Cantos, C. E.; Hammond, D. K.; Veerman, J. J. P.

    2016-09-01

    We consider the transient behavior of a large linear array of coupled linear damped harmonic oscillators following perturbation of a single element. Our work is motivated by modeling the behavior of flocks of autonomous vehicles. We first state a number of conjectures that allow us to derive an explicit characterization of the transients, within a certain parameter regime Ω. As corollaries we show that minimizing the transients requires considering non-symmetric coupling, and that within Ω the computed linear growth in N of the transients is independent of (reasonable) boundary conditions.

  14. Multisynchronization of Coupled Heterogeneous Genetic Oscillator Networks via Partial Impulsive Control.

    PubMed

    He, Ding-Xin; Ling, Guang; Guan, Zhi-Hong; Hu, Bin; Liao, Rui-Quan

    2018-02-01

    This paper focuses on the collective dynamics of multisynchronization among heterogeneous genetic oscillators under a partial impulsive control strategy. The coupled nonidentical genetic oscillators are modeled by differential equations with uncertainties. The definition of multisynchronization is proposed to describe some more general synchronization behaviors in the real. Considering that each genetic oscillator consists of a large number of biochemical molecules, we design a more manageable impulsive strategy for dynamic networks to achieve multisynchronization. Not all the molecules but only a small fraction of them in each genetic oscillator are controlled at each impulsive instant. Theoretical analysis of multisynchronization is carried out by the control theory approach, and a sufficient condition of partial impulsive controller for multisynchronization with given error bounds is established. At last, numerical simulations are exploited to demonstrate the effectiveness of our results.

  15. Synchronization enhancement of indirectly coupled oscillators via periodic modulation in an optomechanical system.

    PubMed

    Du, Lei; Fan, Chu-Hui; Zhang, Han-Xiao; Wu, Jin-Hui

    2017-11-20

    We study the synchronization behaviors of two indirectly coupled mechanical oscillators of different frequencies in a doublecavity optomechanical system. It is found that quantum synchronization is roughly vanishing though classical synchronization seems rather good when each cavity mode is driven by an external field in the absence of temporal modulations. By periodically modulating cavity detunings or driving amplitudes, however, it is possible to observe greatly enhanced quantum synchronization accompanied with nearly perfect classical synchronization. The level of quantum synchronization observed here is, in particular, much higher than that for two directly coupled mechanical oscillators. Note also that the modulation on cavity detunings is more appealing than that on driving amplitudes when the robustness of quantum synchronization is examined against the bath's mean temperature or the oscillators' frequency difference.

  16. Traveling wave in a three-dimensional array of conformist and contrarian oscillators

    NASA Astrophysics Data System (ADS)

    Hoang, Danh-Tai; Jo, Junghyo; Hong, Hyunsuk

    2015-03-01

    We consider a system of conformist and contrarian oscillators coupled locally in a three-dimensional cubic lattice and explore collective behavior of the system. The conformist oscillators attractively interact with the neighbor oscillators and therefore tend to be aligned with the neighbors' phase. The contrarian oscillators interact repulsively with the neighbors and therefore tend to be out of phase with them. In this paper, we investigate whether many peculiar dynamics that have been observed in the mean-field system with global coupling can emerge even with local coupling. In particular, we pay attention to the possibility that a traveling wave may arise. We find that the traveling wave occurs due to coupling asymmetry and not by global coupling; this observation confirms that the global coupling is not essential to the occurrence of a traveling wave in the system. The traveling wave can be a mechanism for the coherent rhythm generation of the circadian clock or of hormone secretion in biological systems under local coupling.

  17. Modeling a synthetic multicellular clock: Repressilators coupled by quorum sensing

    PubMed Central

    Garcia-Ojalvo, Jordi; Elowitz, Michael B.; Strogatz, Steven H.

    2004-01-01

    Diverse biochemical rhythms are generated by thousands of cellular oscillators that somehow manage to operate synchronously. In fields ranging from circadian biology to endocrinology, it remains an exciting challenge to understand how collective rhythms emerge in multicellular structures. Using mathematical and computational modeling, we study the effect of coupling through intercell signaling in a population of Escherichia coli cells expressing a synthetic biological clock. Our results predict that a diverse and noisy community of such genetic oscillators interacting through a quorum-sensing mechanism should self-synchronize in a robust way, leading to a substantially improved global rhythmicity in the system. As such, the particular system of coupled genetic oscillators considered here might be a good candidate to provide the first quantitative example of a synchronization transition in a population of biological oscillators. PMID:15256602

  18. Modeling a synthetic multicellular clock: repressilators coupled by quorum sensing.

    PubMed

    Garcia-Ojalvo, Jordi; Elowitz, Michael B; Strogatz, Steven H

    2004-07-27

    Diverse biochemical rhythms are generated by thousands of cellular oscillators that somehow manage to operate synchronously. In fields ranging from circadian biology to endocrinology, it remains an exciting challenge to understand how collective rhythms emerge in multicellular structures. Using mathematical and computational modeling, we study the effect of coupling through intercell signaling in a population of Escherichia coli cells expressing a synthetic biological clock. Our results predict that a diverse and noisy community of such genetic oscillators interacting through a quorum-sensing mechanism should self-synchronize in a robust way, leading to a substantially improved global rhythmicity in the system. As such, the particular system of coupled genetic oscillators considered here might be a good candidate to provide the first quantitative example of a synchronization transition in a population of biological oscillators.

  19. Modeling a synthetic multicellular clock: Repressilators coupled by quorum sensing

    NASA Astrophysics Data System (ADS)

    Garcia-Ojalvo, Jordi; Elowitz, Michael B.; Strogatz, Steven H.

    2004-07-01

    Diverse biochemical rhythms are generated by thousands of cellular oscillators that somehow manage to operate synchronously. In fields ranging from circadian biology to endocrinology, it remains an exciting challenge to understand how collective rhythms emerge in multicellular structures. Using mathematical and computational modeling, we study the effect of coupling through intercell signaling in a population of Escherichia coli cells expressing a synthetic biological clock. Our results predict that a diverse and noisy community of such genetic oscillators interacting through a quorum-sensing mechanism should self-synchronize in a robust way, leading to a substantially improved global rhythmicity in the system. As such, the particular system of coupled genetic oscillators considered here might be a good candidate to provide the first quantitative example of a synchronization transition in a population of biological oscillators.

  20. El Nino-southern oscillation: A coupled response to the greenhouse effect?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, De-Zheng

    The purpose of this article to elucidate the link between the El Nino-Southern Oscillation (ENSO) and radiative forcing (of which the greenhouse effect is a major part). A unified theory for the tropical Pacific climate is developed by considering the response of the coupled ocean-atmosphere to a changing radiative forcing. The hypothesis is that both the zonal surface sea temperature (SST) gradients and ENSO are a coupled response to the strong radiative heating or the tropical warmth. Owing to ocean-atmosphere interaction, the stronger the radiative heating, the larger the zonal SST gradients. When the SST gradients exceed a critical value,more » however, the ocean-atmosphere interaction in the cold-tongue region is too strong for the coupled system to hold steady. Consequently, the coupled system enters an oscillatory state. These coupled dynamics are examined in a simple mathematical model whose behavior is consistent with the hypothesis. With a linear temperature profile throughout the depth of subsurface ocean, the model predicts that both the magnitude and period of the oscillation increase with increases in radiative forcing or the greenhouse effect. The increase in the magnitude of the oscillation largely comes from an enhancement of the magnitude of the cold anomalies, while the increase in the period mostly comes from a prolonged duration of the warm events. With a profile in which the lapse rate decreases with depth, the sensitivity is more moderate. The simplicity of the model prevents a quantitative simulation of the sensitivity of ENSO to increases in the greenhouse effect, but qualitatively the model results support the empirical interpretation of the prolonged duration of the 1990-1995 ENSO event. 5 refs., 7 figs.« less

  1. Growth-rate-dependent dynamics of a bacterial genetic oscillator

    NASA Astrophysics Data System (ADS)

    Osella, Matteo; Lagomarsino, Marco Cosentino

    2013-01-01

    Gene networks exhibiting oscillatory dynamics are widespread in biology. The minimal regulatory designs giving rise to oscillations have been implemented synthetically and studied by mathematical modeling. However, most of the available analyses generally neglect the coupling of regulatory circuits with the cellular “chassis” in which the circuits are embedded. For example, the intracellular macromolecular composition of fast-growing bacteria changes with growth rate. As a consequence, important parameters of gene expression, such as ribosome concentration or cell volume, are growth-rate dependent, ultimately coupling the dynamics of genetic circuits with cell physiology. This work addresses the effects of growth rate on the dynamics of a paradigmatic example of genetic oscillator, the repressilator. Making use of empirical growth-rate dependencies of parameters in bacteria, we show that the repressilator dynamics can switch between oscillations and convergence to a fixed point depending on the cellular state of growth, and thus on the nutrients it is fed. The physical support of the circuit (type of plasmid or gene positions on the chromosome) also plays an important role in determining the oscillation stability and the growth-rate dependence of period and amplitude. This analysis has potential application in the field of synthetic biology, and suggests that the coupling between endogenous genetic oscillators and cell physiology can have substantial consequences for their functionality.

  2. Tuning the synchronization of a network of weakly coupled self-oscillating gels via capacitors.

    PubMed

    Fang, Yan; Yashin, Victor V; Dickerson, Samuel J; Balazs, Anna C

    2018-05-01

    We consider a network of coupled oscillating units, where each unit comprises a self-oscillating polymer gel undergoing the Belousov-Zhabotinsky (BZ) reaction and an overlaying piezoelectric (PZ) cantilever. Through chemo-mechano-electrical coupling, the oscillations of the networked BZ-PZ units achieve in-phase or anti-phase synchronization, enabling, for example, the storage of information within the system. Herein, we develop numerical and computational models to show that the introduction of capacitors into the BZ-PZ system enhances the dynamical behavior of the oscillating network by yielding additional stable synchronization modes. We specifically show that the capacitors lead to a redistribution of charge in the system and alteration of the force that the PZ cantilevers apply to the underlying gel. Hence, the capacitors modify the strength of the coupling between the oscillators in the network. We utilize a linear stability analysis to determine the phase behavior of BZ-PZ networks encompassing different capacitances, force polarities, and number of units and then verify our findings with numerical simulations. Thus, through analytical calculations and numerical simulations, we determine the impact of the capacitors on the existence of the synchronization modes, their stability, and the rate of synchronization within these complex dynamical systems. The findings from our study can be used to design robotic materials that harness the materials' intrinsic, responsive properties to perform such functions as sensing, actuation, and information storage.

  3. Tuning the synchronization of a network of weakly coupled self-oscillating gels via capacitors

    NASA Astrophysics Data System (ADS)

    Fang, Yan; Yashin, Victor V.; Dickerson, Samuel J.; Balazs, Anna C.

    2018-05-01

    We consider a network of coupled oscillating units, where each unit comprises a self-oscillating polymer gel undergoing the Belousov-Zhabotinsky (BZ) reaction and an overlaying piezoelectric (PZ) cantilever. Through chemo-mechano-electrical coupling, the oscillations of the networked BZ-PZ units achieve in-phase or anti-phase synchronization, enabling, for example, the storage of information within the system. Herein, we develop numerical and computational models to show that the introduction of capacitors into the BZ-PZ system enhances the dynamical behavior of the oscillating network by yielding additional stable synchronization modes. We specifically show that the capacitors lead to a redistribution of charge in the system and alteration of the force that the PZ cantilevers apply to the underlying gel. Hence, the capacitors modify the strength of the coupling between the oscillators in the network. We utilize a linear stability analysis to determine the phase behavior of BZ-PZ networks encompassing different capacitances, force polarities, and number of units and then verify our findings with numerical simulations. Thus, through analytical calculations and numerical simulations, we determine the impact of the capacitors on the existence of the synchronization modes, their stability, and the rate of synchronization within these complex dynamical systems. The findings from our study can be used to design robotic materials that harness the materials' intrinsic, responsive properties to perform such functions as sensing, actuation, and information storage.

  4. Singular unlocking transition in the Winfree model of coupled oscillators.

    PubMed

    Quinn, D Dane; Rand, Richard H; Strogatz, Steven H

    2007-03-01

    The Winfree model consists of a population of globally coupled phase oscillators with randomly distributed natural frequencies. As the coupling strength and the spread of natural frequencies are varied, the various stable states of the model can undergo bifurcations, nearly all of which have been characterized previously. The one exception is the unlocking transition, in which the frequency-locked state disappears abruptly as the spread of natural frequencies exceeds a critical width. Viewed as a function of the coupling strength, this critical width defines a bifurcation curve in parameter space. For the special case where the frequency distribution is uniform, earlier work had uncovered a puzzling singularity in this bifurcation curve. Here we seek to understand what causes the singularity. Using the Poincaré-Lindstedt method of perturbation theory, we analyze the locked state and its associated unlocking transition, first for an arbitrary distribution of natural frequencies, and then for discrete systems of N oscillators. We confirm that the bifurcation curve becomes singular for a continuum uniform distribution, yet find that it remains well behaved for any finite N , suggesting that the continuum limit is responsible for the singularity.

  5. Ising universality describes emergent long-range synchronization of coupled ecological oscillators

    NASA Astrophysics Data System (ADS)

    Noble, Andrew

    Understanding the synchronization of oscillations across space is fundamentally important to many scientific disciplines. In ecology, long-range synchronization of oscillations in spatial populations may elevate extinction risk and signal an impending catastrophe. The prevailing assumption is that synchronization on distances longer than the dispersal scale can only be due to environmental correlation. By contrast, recent work shows how scale-invariant synchronization can emerge from locally coupled population dynamics. In particular, we have found that the transition from incoherence to long-range synchronization of coupled ecological two-cycles is described by the Ising universality class. I will discuss evidence that an Ising critical point describes long-range correlations found in data on the individual yields of female pistachio trees in a large orchard. NSF INSPIRE Grant No. 1344187.

  6. Importance-sampling computation of statistical properties of coupled oscillators

    NASA Astrophysics Data System (ADS)

    Gupta, Shamik; Leitão, Jorge C.; Altmann, Eduardo G.

    2017-07-01

    We introduce and implement an importance-sampling Monte Carlo algorithm to study systems of globally coupled oscillators. Our computational method efficiently obtains estimates of the tails of the distribution of various measures of dynamical trajectories corresponding to states occurring with (exponentially) small probabilities. We demonstrate the general validity of our results by applying the method to two contrasting cases: the driven-dissipative Kuramoto model, a paradigm in the study of spontaneous synchronization; and the conservative Hamiltonian mean-field model, a prototypical system of long-range interactions. We present results for the distribution of the finite-time Lyapunov exponent and a time-averaged order parameter. Among other features, our results show most notably that the distributions exhibit a vanishing standard deviation but a skewness that is increasing in magnitude with the number of oscillators, implying that nontrivial asymmetries and states yielding rare or atypical values of the observables persist even for a large number of oscillators.

  7. Direction of Coupling from Phases of Interacting Oscillators: A Permutation Information Approach

    NASA Astrophysics Data System (ADS)

    Bahraminasab, A.; Ghasemi, F.; Stefanovska, A.; McClintock, P. V. E.; Kantz, H.

    2008-02-01

    We introduce a directionality index for a time series based on a comparison of neighboring values. It can distinguish unidirectional from bidirectional coupling, as well as reveal and quantify asymmetry in bidirectional coupling. It is tested on a numerical model of coupled van der Pol oscillators, and applied to cardiorespiratory data from healthy subjects. There is no need for preprocessing and fine-tuning the parameters, which makes the method very simple, computationally fast and robust.

  8. Universal lineshapes at the crossover between weak and strong critical coupling in Fano-resonant coupled oscillators

    NASA Astrophysics Data System (ADS)

    Zanotto, Simone; Tredicucci, Alessandro

    2016-04-01

    In this article we discuss a model describing key features concerning the lineshapes and the coherent absorption conditions in Fano-resonant dissipative coupled oscillators. The model treats on the same footing the weak and strong coupling regimes, and includes the critical coupling concept, which is of great relevance in numerous applications; in addition, the role of asymmetry is thoroughly analyzed. Due to the wide generality of the model, which can be adapted to various frameworks like nanophotonics, plasmonics, and optomechanics, we envisage that the analytical formulas presented here will be crucial to effectively design devices and to interpret experimental results.

  9. Parametric control in coupled fermionic oscillators

    NASA Astrophysics Data System (ADS)

    Ghosh, Arnab

    2014-10-01

    A simple model of parametric coupling between two fermionic oscillators is considered. Statistical properties, in particular the mean and variance of quanta for a single mode, are described by means of a time-dependent reduced density operator for the system and the associated P function. The density operator for fermionic fields as introduced by Cahill and Glauber [K. E. Cahill and R. J. Glauber, Phys. Rev. A 59, 1538 (1999), 10.1103/PhysRevA.59.1538] thus can be shown to provide a quantum mechanical description of the fields closely resembling their bosonic counterpart. In doing so, special emphasis is given to population trapping, and quantum control over the states of the system.

  10. Implication of Two-Coupled Differential Van der Pol Duffing Oscillator in Weak Signal Detection

    NASA Astrophysics Data System (ADS)

    Peng, Hang-hang; Xu, Xue-mei; Yang, Bing-chu; Yin, Lin-zi

    2016-04-01

    The principle of the Van der Pol Duffing oscillator for state transition and for determining critical value is described, which has been studied to indicate that the application of the Van der Pol Duffing oscillator in weak signal detection is feasible. On the basis of this principle, an improved two-coupled differential Van der Pol Duffing oscillator is proposed which can identify signals under any frequency and ameliorate signal-to-noise ratio (SNR). The analytical methods of the proposed model and the construction of the proposed oscillator are introduced in detail. Numerical experiments on the properties of the proposed oscillator compared with those of the Van der Pol Duffing oscillator are carried out. Our numerical simulations have confirmed the analytical treatment. The results demonstrate that this novel oscillator has better detection performance than the Van der Pol Duffing oscillator.

  11. Mode detuning in systems of weakly coupled oscillators

    NASA Astrophysics Data System (ADS)

    Spencer, Ross L.; Robertson, Richard D.

    2001-11-01

    A system of weakly magnetically coupled oscillating blades is studied experimentally, computationally, and theoretically. It is found that when the uncoupled natural frequencies of the blades are nearly equal, the normal modes produced by the coupling are almost impossible to find experimentally if the random variation level in the system parameters is on the order of (or larger than) the relative differences between mode frequencies. But if the uncoupled natural frequencies are made to vary (detuned) in a smooth way such that the total relative spread in natural frequency exceeds the random variations, normal modes are rather easy to find. And if the detuned uncoupled frequencies of the system are parabolically distributed, the modes are found to be shaped like Hermite functions.

  12. Periodic synchronization in a system of coupled phase oscillators with attractive and repulsive interactions

    NASA Astrophysics Data System (ADS)

    Yuan, Di; Tian, Jun-Long; Lin, Fang; Ma, Dong-Wei; Zhang, Jing; Cui, Hai-Tao; Xiao, Yi

    2018-06-01

    In this study we investigate the collective behavior of the generalized Kuramoto model with an external pinning force in which oscillators with positive and negative coupling strengths are conformists and contrarians, respectively. We focus on a situation in which the natural frequencies of the oscillators follow a uniform probability density. By numerically simulating the model, it is shown that the model supports multistable synchronized states such as a traveling wave state, π state and periodic synchronous state: an oscillating π state. The oscillating π state may be characterized by the phase distribution oscillating in a confined region and the phase difference between conformists and contrarians oscillating around π periodically. In addition, we present the parameter space of the oscillating π state and traveling wave state of the model.

  13. Assessing Aircraft Susceptibility to Nonlinear Aircraft-Pilot Coupling/Pilot-Induced Oscillations

    NASA Technical Reports Server (NTRS)

    Hess, R.A.; Stout, P. W.

    1997-01-01

    A unified approach for assessing aircraft susceptibility to aircraft-pilot coupling (or pilot-induced oscillations) which was previously reported in the literature and applied to linear systems is extended to nonlinear systems, with emphasis upon vehicles with actuator rate saturation. The linear methodology provided a tool for predicting: (1) handling qualities levels, (2) pilot-induced oscillation rating levels and (3) a frequency range in which pilot-induced oscillations are likely to occur. The extension to nonlinear systems provides a methodology for predicting the latter two quantities. Eight examples are presented to illustrate the use of the technique. The dearth of experimental flight-test data involving systematic variation and assessment of the effects of actuator rate limits presently prevents a more thorough evaluation of the methodology.

  14. Synchronization in complex oscillator networks and smart grids.

    PubMed

    Dörfler, Florian; Chertkov, Michael; Bullo, Francesco

    2013-02-05

    The emergence of synchronization in a network of coupled oscillators is a fascinating topic in various scientific disciplines. A widely adopted model of a coupled oscillator network is characterized by a population of heterogeneous phase oscillators, a graph describing the interaction among them, and diffusive and sinusoidal coupling. It is known that a strongly coupled and sufficiently homogeneous network synchronizes, but the exact threshold from incoherence to synchrony is unknown. Here, we present a unique, concise, and closed-form condition for synchronization of the fully nonlinear, nonequilibrium, and dynamic network. Our synchronization condition can be stated elegantly in terms of the network topology and parameters or equivalently in terms of an intuitive, linear, and static auxiliary system. Our results significantly improve upon the existing conditions advocated thus far, they are provably exact for various interesting network topologies and parameters; they are statistically correct for almost all networks; and they can be applied equally to synchronization phenomena arising in physics and biology as well as in engineered oscillator networks, such as electrical power networks. We illustrate the validity, the accuracy, and the practical applicability of our results in complex network scenarios and in smart grid applications.

  15. Queueing-Based Synchronization and Entrainment for Synthetic Gene Oscillators

    NASA Astrophysics Data System (ADS)

    Mather, William; Butzin, Nicholas; Hochendoner, Philip; Ogle, Curtis

    Synthetic gene oscillators have been a major focus of synthetic biology research since the beginning of the field 15 years ago. They have proven to be useful both for biotechnological applications as well as a testing ground to significantly develop our understanding of the design principles behind synthetic and native gene oscillators. In particular, the principles governing synchronization and entrainment of biological oscillators have been explored using a synthetic biology approach. Our work combines experimental and theoretical approaches to specifically investigate how a bottleneck for protein degradation, which is present in most if not all existing synthetic oscillators, can be leveraged to robustly synchronize and entrain biological oscillators. We use both the terminology and mathematical tools of queueing theory to intuitively explain the role of this bottleneck in both synchronization and entrainment, which extends prior work demonstrating the usefulness of queueing theory in synthetic and native gene circuits. We conclude with an investigation of how synchronization and entrainment may be sensitive to the presence of multiple proteolytic pathways in a cell that couple weakly through crosstalk. This work was supported by NSF Grant #1330180.

  16. Interaction of chimera states in a multilayered network of nonlocally coupled oscillators

    NASA Astrophysics Data System (ADS)

    Goremyko, M. V.; Maksimenko, V. A.; Makarov, V. V.; Ghosh, D.; Bera, B.; Dana, S. K.; Hramov, A. E.

    2017-08-01

    The processes of formation and evolution of chimera states in the model of a multilayered network of nonlinear elements with complex coupling topology are studied. A two-layered network of nonlocally intralayer-coupled Kuramoto-Sakaguchi phase oscillators is taken as the object of investigation. Different modes implemented in this system upon variation of the degree of interlayer interaction are demonstrated.

  17. Travelling Wave Pulse Coupled Oscillator (TWPCO) Using a Self-Organizing Scheme for Energy-Efficient Wireless Sensor Networks.

    PubMed

    Al-Mekhlafi, Zeyad Ghaleb; Hanapi, Zurina Mohd; Othman, Mohamed; Zukarnain, Zuriati Ahmad

    2017-01-01

    Recently, Pulse Coupled Oscillator (PCO)-based travelling waves have attracted substantial attention by researchers in wireless sensor network (WSN) synchronization. Because WSNs are generally artificial occurrences that mimic natural phenomena, the PCO utilizes firefly synchronization of attracting mating partners for modelling the WSN. However, given that sensor nodes are unable to receive messages while transmitting data packets (due to deafness), the PCO model may not be efficient for sensor network modelling. To overcome this limitation, this paper proposed a new scheme called the Travelling Wave Pulse Coupled Oscillator (TWPCO). For this, the study used a self-organizing scheme for energy-efficient WSNs that adopted travelling wave biologically inspired network systems based on phase locking of the PCO model to counteract deafness. From the simulation, it was found that the proposed TWPCO scheme attained a steady state after a number of cycles. It also showed superior performance compared to other mechanisms, with a reduction in the total energy consumption of 25%. The results showed that the performance improved by 13% in terms of data gathering. Based on the results, the proposed scheme avoids the deafness that occurs in the transmit state in WSNs and increases the data collection throughout the transmission states in WSNs.

  18. Travelling Wave Pulse Coupled Oscillator (TWPCO) Using a Self-Organizing Scheme for Energy-Efficient Wireless Sensor Networks

    PubMed Central

    Hanapi, Zurina Mohd; Othman, Mohamed; Zukarnain, Zuriati Ahmad

    2017-01-01

    Recently, Pulse Coupled Oscillator (PCO)-based travelling waves have attracted substantial attention by researchers in wireless sensor network (WSN) synchronization. Because WSNs are generally artificial occurrences that mimic natural phenomena, the PCO utilizes firefly synchronization of attracting mating partners for modelling the WSN. However, given that sensor nodes are unable to receive messages while transmitting data packets (due to deafness), the PCO model may not be efficient for sensor network modelling. To overcome this limitation, this paper proposed a new scheme called the Travelling Wave Pulse Coupled Oscillator (TWPCO). For this, the study used a self-organizing scheme for energy-efficient WSNs that adopted travelling wave biologically inspired network systems based on phase locking of the PCO model to counteract deafness. From the simulation, it was found that the proposed TWPCO scheme attained a steady state after a number of cycles. It also showed superior performance compared to other mechanisms, with a reduction in the total energy consumption of 25%. The results showed that the performance improved by 13% in terms of data gathering. Based on the results, the proposed scheme avoids the deafness that occurs in the transmit state in WSNs and increases the data collection throughout the transmission states in WSNs. PMID:28056020

  19. Using a digital video camera to examine coupled oscillations

    NASA Astrophysics Data System (ADS)

    Greczylo, T.; Debowska, E.

    2002-07-01

    In our previous paper (Debowska E, Jakubowicz S and Mazur Z 1999 Eur. J. Phys. 20 89-95), thanks to the use of an ultrasound distance sensor, experimental verification of the solution of Lagrange equations for longitudinal oscillations of the Wilberforce pendulum was shown. In this paper the sensor and a digital video camera were used to monitor and measure the changes of both the pendulum's coordinates (vertical displacement and angle of rotation) simultaneously. The experiments were performed with the aid of the integrated software package COACH 5. Fourier analysis in Microsoft^{\\circledR} Excel 97 was used to find normal modes in each case of the measured oscillations. Comparison of the results with those presented in our previous paper (as given above) leads to the conclusion that a digital video camera is a powerful tool for measuring coupled oscillations of a Wilberforce pendulum. The most important conclusion is that a video camera is able to do something more than merely register interesting physical phenomena - it can be used to perform measurements of physical quantities at an advanced level.

  20. Recent Results With Coupled Opto-Electronic Oscillators

    NASA Astrophysics Data System (ADS)

    Yao, X. S.; Maleki, L.; Wu, C.; Davis, L.; Forouhar, S.

    1998-07-01

    We present experimental results of coupled opto-electronic oscillators (COEOs) constructed with a semiconductor optical-amplifier-based ring laser, a semiconductor Fabry-Perot laser, and a semiconductor colliding-pulse mode-locked laser. Each COEO can simultaneously generate short optical pulses and spectrally pure RF signals. With these devices, we obtained optical pulses as short as 6 ps and RF signals as high in frequency as 18 GHz with a spectral purity comparable to an HP 8561B synthesizer. These experiments demonstrate that COEOs are promising compact sources for generating low jitter optical pulses and low phase noise RF/millimeter wave signals.

  1. Conditions and Linear Stability Analysis at the Transition to Synchronization of Three Coupled Phase Oscillators in a Ring

    NASA Astrophysics Data System (ADS)

    El-Nashar, Hassan F.

    2017-06-01

    We consider a system of three nonidentical coupled phase oscillators in a ring topology. We explore the conditions that must be satisfied in order to obtain the phases at the transition to a synchrony state. These conditions lead to the correct mathematical expressions of phases that aid to find a simple analytic formula for critical coupling when the oscillators transit to a synchronization state having a common frequency value. The finding of a simple expression for the critical coupling allows us to perform a linear stability analysis at the transition to the synchronization stage. The obtained analytic forms of the eigenvalues show that the three coupled phase oscillators with periodic boundary conditions transit to a synchrony state when a saddle-node bifurcation occurs.

  2. Emergence and analysis of Kuramoto-Sakaguchi-like models as an effective description for the dynamics of coupled Wien-bridge oscillators.

    PubMed

    English, L Q; Mertens, David; Abdoulkary, Saidou; Fritz, C B; Skowronski, K; Kevrekidis, P G

    2016-12-01

    We derive the Kuramoto-Sakaguchi model from the basic circuit equations governing two coupled Wien-bridge oscillators. A Wien-bridge oscillator is a particular realization of a tunable autonomous oscillator that makes use of frequency filtering (via an RC bandpass filter) and positive feedback (via an operational amplifier). In the past few years, such oscillators have started to be utilized in synchronization studies. We first show that the Wien-bridge circuit equations can be cast in the form of a coupled pair of van der Pol equations. Subsequently, by applying the method of multiple time scales, we derive the differential equations that govern the slow evolution of the oscillator phases and amplitudes. These equations are directly reminiscent of the Kuramoto-Sakaguchi-type models for the study of synchronization. We analyze the resulting system in terms of the existence and stability of various coupled oscillator solutions and explain on that basis how their synchronization emerges. The phase-amplitude equations are also compared numerically to the original circuit equations and good agreement is found. Finally, we report on experimental measurements of two coupled Wien-bridge oscillators and relate the results to the theoretical predictions.

  3. The Effect of Inhibitory Neuron on the Evolution Model of Higher-Order Coupling Neural Oscillator Population

    PubMed Central

    Qi, Yi; Wang, Rubin; Jiao, Xianfa; Du, Ying

    2014-01-01

    We proposed a higher-order coupling neural network model including the inhibitory neurons and examined the dynamical evolution of average number density and phase-neural coding under the spontaneous activity and external stimulating condition. The results indicated that increase of inhibitory coupling strength will cause decrease of average number density, whereas increase of excitatory coupling strength will cause increase of stable amplitude of average number density. Whether the neural oscillator population is able to enter the new synchronous oscillation or not is determined by excitatory and inhibitory coupling strength. In the presence of external stimulation, the evolution of the average number density is dependent upon the external stimulation and the coupling term in which the dominator will determine the final evolution. PMID:24516505

  4. Hippocampal gamma-slow oscillation coupling in macaques during sedation and sleep.

    PubMed

    Richardson, Andrew G; Liu, Xilin; Weigand, Pauline K; Hudgins, Eric D; Stein, Joel M; Das, Sandhitsu R; Proekt, Alexander; Kelz, Max B; Zhang, Milin; Van der Spiegel, Jan; Lucas, Timothy H

    2017-11-01

    Behavioral and neurophysiological evidence suggests that the slow (≤1 Hz) oscillation (SO) during sleep plays a role in consolidating hippocampal (HIPP)-dependent memories. The effects of the SO on HIPP activity have been studied in rodents and cats both during natural sleep and during anesthetic administration titrated to mimic sleep-like slow rhythms. In this study, we sought to document these effects in primates. First, HIPP field potentials were recorded during ketamine-dexmedetomidine sedation and during natural sleep in three rhesus macaques. Sedation produced regionally-specific slow and gamma (∼40 Hz) oscillations with strong coupling between the SO phase and gamma amplitude. These same features were seen in slow-wave sleep (SWS), but the coupling was weaker and the coupled gamma oscillation had a higher frequency (∼70 Hz) during SWS. Second, electrical stimuli were delivered to HIPP afferents in the parahippocampal gyrus (PHG) during sedation to assess the effects of sleep-like SO on excitability. Gamma bursts after the peak of SO cycles corresponded to periods of increased gain of monosynaptic connections between the PHG and HIPP. However, the two PHG-HIPP connectivity gains during sedation were both substantially lower than when the animal was awake. We conclude that the SO is correlated with rhythmic excitation and inhibition of the PHG-HIPP network, modulating connectivity and gamma generators intrinsic to this network. Ketamine-dexmedetomidine sedation produces a similar effect, but with a decreased contribution of the PHG to HIPP activity and gamma generation. © 2017 Wiley Periodicals, Inc.

  5. A cloudy planetary boundary layer oscillation arising from the coupling of turbulence with precipitation in climate simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, X.; Klein, S. A.; Ma, H. -Y.

    The Community Atmosphere Model (CAM) adopts Cloud Layers Unified By Binormals (CLUBB) scheme and an updated microphysics (MG2) scheme for a more unified treatment of cloud processes. This makes interactions between parameterizations tighter and more explicit. In this study, a cloudy planetary boundary layer (PBL) oscillation related to interaction between CLUBB and MG2 is identified in CAM. This highlights the need for consistency between the coupled subgrid processes in climate model development. This oscillation occurs most often in the marine cumulus cloud regime. The oscillation occurs only if the modeled PBL is strongly decoupled and precipitation evaporates below the cloud.more » Two aspects of the parameterized coupling assumptions between CLUBB and MG2 schemes cause the oscillation: (1) a parameterized relationship between rain evaporation and CLUBB's subgrid spatial variance of moisture and heat that induces an extra cooling in the lower PBL and (2) rain evaporation which happens at a too low an altitude because of the precipitation fraction parameterization in MG2. Either one of these two conditions can overly stabilize the PBL and reduce the upward moisture transport to the cloud layer so that the PBL collapses. Global simulations prove that turning off the evaporation-variance coupling and improving the precipitation fraction parameterization effectively reduces the cloudy PBL oscillation in marine cumulus clouds. By evaluating the causes of the oscillation in CAM, we have identified the PBL processes that should be examined in models having similar oscillations. This study may draw the attention of the modeling and observational communities to the issue of coupling between parameterized physical processes.« less

  6. A cloudy planetary boundary layer oscillation arising from the coupling of turbulence with precipitation in climate simulations

    DOE PAGES

    Zheng, X.; Klein, S. A.; Ma, H. -Y.; ...

    2017-08-24

    The Community Atmosphere Model (CAM) adopts Cloud Layers Unified By Binormals (CLUBB) scheme and an updated microphysics (MG2) scheme for a more unified treatment of cloud processes. This makes interactions between parameterizations tighter and more explicit. In this study, a cloudy planetary boundary layer (PBL) oscillation related to interaction between CLUBB and MG2 is identified in CAM. This highlights the need for consistency between the coupled subgrid processes in climate model development. This oscillation occurs most often in the marine cumulus cloud regime. The oscillation occurs only if the modeled PBL is strongly decoupled and precipitation evaporates below the cloud.more » Two aspects of the parameterized coupling assumptions between CLUBB and MG2 schemes cause the oscillation: (1) a parameterized relationship between rain evaporation and CLUBB's subgrid spatial variance of moisture and heat that induces an extra cooling in the lower PBL and (2) rain evaporation which happens at a too low an altitude because of the precipitation fraction parameterization in MG2. Either one of these two conditions can overly stabilize the PBL and reduce the upward moisture transport to the cloud layer so that the PBL collapses. Global simulations prove that turning off the evaporation-variance coupling and improving the precipitation fraction parameterization effectively reduces the cloudy PBL oscillation in marine cumulus clouds. By evaluating the causes of the oscillation in CAM, we have identified the PBL processes that should be examined in models having similar oscillations. This study may draw the attention of the modeling and observational communities to the issue of coupling between parameterized physical processes.« less

  7. Thermal coupling and effect of subharmonic synchronization in a system of two VO2 based oscillators

    NASA Astrophysics Data System (ADS)

    Velichko, Andrey; Belyaev, Maksim; Putrolaynen, Vadim; Perminov, Valentin; Pergament, Alexander

    2018-03-01

    We explore a prototype of an oscillatory neural network (ONN) based on vanadium dioxide switching devices. The model system under study represents two oscillators based on thermally coupled VO2 switches. Numerical simulation shows that the effective action radius RTC of coupling depends both on the total energy released during switching and on the average power. It is experimentally and numerically proved that the temperature change ΔT commences almost synchronously with the released power peak and T-coupling reveals itself up to a frequency of about 10 kHz. For the studied switching structure configuration, the RTC value varies over a wide range from 4 to 45 μm, depending on the external circuit capacitance C and resistance Ri, but the variation of Ri is more promising from the practical viewpoint. In the case of a "weak" coupling, synchronization is accompanied by attraction effect and decrease of the main spectra harmonics width. In the case of a "strong" coupling, the number of effects increases, synchronization can occur on subharmonics resulting in multilevel stable synchronization of two oscillators. An advanced algorithm for synchronization efficiency and subharmonic ratio calculation is proposed. It is shown that of the two oscillators the leading one is that with a higher main frequency, and, in addition, the frequency stabilization effect is observed. Also, in the case of a strong thermal coupling, the limit of the supply current parameters, for which the oscillations exist, expands by ∼10%. The obtained results have a universal character and open up a new kind of coupling in ONNs, namely, T-coupling, which allows for easy transition from 2D to 3D integration. The effect of subharmonic synchronization hold promise for application in classification and pattern recognition.

  8. Enhanced entrainability of genetic oscillators by period mismatch

    PubMed Central

    Hasegawa, Yoshihiko; Arita, Masanori

    2013-01-01

    Biological oscillators coordinate individual cellular components so that they function coherently and collectively. They are typically composed of multiple feedback loops, and period mismatch is unavoidable in biological implementations. We investigated the advantageous effect of this period mismatch in terms of a synchronization response to external stimuli. Specifically, we considered two fundamental models of genetic circuits: smooth and relaxation oscillators. Using phase reduction and Floquet multipliers, we numerically analysed their entrainability under different coupling strengths and period ratios. We found that a period mismatch induces better entrainment in both types of oscillator; the enhancement occurs in the vicinity of the bifurcation on their limit cycles. In the smooth oscillator, the optimal period ratio for the enhancement coincides with the experimentally observed ratio, which suggests biological exploitation of the period mismatch. Although the origin of multiple feedback loops is often explained as a passive mechanism to ensure robustness against perturbation, we study the active benefits of the period mismatch, which include increasing the efficiency of the genetic oscillators. Our findings show a qualitatively different perspective for both the inherent advantages of multiple loops and their essentiality. PMID:23389900

  9. Chaos and Hyperchaos in Coupled Antiphase Driven Toda Oscillators

    NASA Astrophysics Data System (ADS)

    Stankevich, Nataliya V.; Dvorak, Anton; Astakhov, Vladimir; Jaros, Patrycja; Kapitaniak, Marcin; Perlikowski, Przemysław; Kapitaniak, Tomasz

    2018-01-01

    The dynamics of two coupled antiphase driven Toda oscillators is studied. We demonstrate three different routes of transition to chaotic dynamics associated with different bifurcations of periodic and quasi-periodic regimes. As a result of these, two types of chaotic dynamics with one and two positive Lyapunov exponents are observed. We argue that the results obtained are robust as they can exist in a wide range of the system parameters.

  10. Non-conventional synchronization of weakly coupled active oscillators

    NASA Astrophysics Data System (ADS)

    Manevitch, L. I.; Kovaleva, M. A.; Pilipchuk, V. N.

    2013-03-01

    We present a new type of self-sustained vibrations in the fundamental physical model covering a broad area of applications from wave generation in radiophysics and nonlinear optics to the heart muscle contraction and eyesight disorder in biophysics. Such a diversity of applications is due to the universal physical phenomenon of synchronization. Previous studies of this phenomenon, originating from Huygens famous observation, are based mainly on the model of two weakly coupled Van der Pol oscillators and usually deal with their synchronization in the regimes close to nonlinear normal modes (NNMs). In this work, we show for the first time that, in the important case of threshold excitation, an alternative synchronization mechanism can develop when the conventional synchronization becomes impossible. We identify this mechanism as an appearance of dynamic attractor with the complete periodic energy exchange between the oscillators, which is the dissipative analogue of highly intensive beats in a conservative system. This type of motion is therefore opposite to the NNM-type synchronization with no energy exchange by definition. The analytical description of these vibrations employs the concept of Limiting Phase Trajectories (LPTs) introduced by one of the authors earlier for conservative systems. Finally, within the LPT approach, we describe the transition from the complete energy exchange between the oscillators to the energy localization mostly on one of the two oscillators. The localized mode is an attractor in the range of model parameters wherein the LPT as well as the in-phase and out-of-phase NNMs become unstable.

  11. Collective dynamics of identical bistable self-sustained oscillators with delayed feedback coupled via a mean field

    NASA Astrophysics Data System (ADS)

    Ponomarenko, V. I.; Kul'minskii, D. D.; Karavaev, A. S.; Prokhorov, M. D.

    2017-03-01

    Peculiarities of the collective dynamics of self-sustained oscillators in an ensemble of identical bistable systems with delayed feedback coupled via a mean field have been experimentally studied and numerically simulated. It is established that the ensemble can occur in so-called "chimera" states, whereby some elements exhibit synchronous oscillations, while other oscillators exhibit asynchronous behavior.

  12. Chimeralike states in a network of oscillators under attractive and repulsive global coupling.

    PubMed

    Mishra, Arindam; Hens, Chittaranjan; Bose, Mridul; Roy, Prodyot K; Dana, Syamal K

    2015-12-01

    We report chimeralike states in an ensemble of oscillators using a type of global coupling consisting of two components: attractive and repulsive mean-field feedback. We identify the existence of two types of chimeralike states in a bistable Liénard system; in one type, both the coherent and the incoherent populations are in chaotic states (which we refer to as chaos-chaos chimeralike states) and, in another type, the incoherent population is in periodic state while the coherent population has irregular small oscillation. We find a metastable state in a parameter regime of the Liénard system where the coherent and noncoherent states migrate in time from one to another subpopulation. The relative size of the incoherent subpopulation, in the chimeralike states, remains almost stable with increasing size of the network. The generality of the coupling configuration in the origin of the chimeralike states is tested, using a second example of bistable system, the van der Pol-Duffing oscillator where the chimeralike states emerge as weakly chaotic in the coherent subpopulation and chaotic in the incoherent subpopulation. Furthermore, we apply the coupling, in a simplified form, to form a network of the chaotic Rössler system where both the noncoherent and the coherent subpopulations show chaotic dynamics.

  13. Robust synchronization of coupled circadian and cell cycle oscillators in single mammalian cells.

    PubMed

    Bieler, Jonathan; Cannavo, Rosamaria; Gustafson, Kyle; Gobet, Cedric; Gatfield, David; Naef, Felix

    2014-07-15

    Circadian cycles and cell cycles are two fundamental periodic processes with a period in the range of 1 day. Consequently, coupling between such cycles can lead to synchronization. Here, we estimated the mutual interactions between the two oscillators by time-lapse imaging of single mammalian NIH3T3 fibroblasts during several days. The analysis of thousands of circadian cycles in dividing cells clearly indicated that both oscillators tick in a 1:1 mode-locked state, with cell divisions occurring tightly 5 h before the peak in circadian Rev-Erbα-YFP reporter expression. In principle, such synchrony may be caused by either unidirectional or bidirectional coupling. While gating of cell division by the circadian cycle has been most studied, our data combined with stochastic modeling unambiguously show that the reverse coupling is predominant in NIH3T3 cells. Moreover, temperature, genetic, and pharmacological perturbations showed that the two interacting cellular oscillators adopt a synchronized state that is highly robust over a wide range of parameters. These findings have implications for circadian function in proliferative tissues, including epidermis, immune cells, and cancer. © 2014 The Authors. Published under the terms of the CC BY 4.0 license.

  14. Effects of a neutrino-dark energy coupling on oscillations of high-energy neutrinos

    NASA Astrophysics Data System (ADS)

    Klop, Niki; Ando, Shin'ichiro

    2018-03-01

    If dark energy (DE) is a dynamical field rather than a cosmological constant, an interaction between DE and the neutrino sector could exist, modifying the neutrino oscillation phenomenology and causing C P and apparent Lorentz violating effects. The terms in the Hamiltonian for flavor propagation induced by the DE-neutrino coupling do not depend on the neutrino energy, while the ordinary components decrease as Δ m2/Eν. Therefore, the DE-induced effects are absent at lower neutrino energies, but become significant at higher energies, allowing to be searched for by neutrino observatories. We explore the impact of the DE-neutrino coupling on the oscillation probability and the flavor transition in the three-flavor framework, and investigate the C P -violating and apparent Lorentz violating effects. We find that DE-induced effects become observable for Eνmeff˜10-20 GeV2, where meff is the effective mass parameter in the DE-induced oscillation probability, and C P is violated over a wide energy range. We also show that current and future experiments have the sensitivity to detect anomalous effects induced by a DE-neutrino coupling and probe the new mixing parameters. The DE-induced effects on neutrino oscillation can be distinguished from other new physics possibilities with similar effects, through the detection of the directional dependence of the interaction, which is specific to this interaction with DE. However, current experiments will not yet be able to measure the small changes of ˜0.03 % in the flavor composition due to this directional effect.

  15. Explosive death of conjugate coupled Van der Pol oscillators on networks

    NASA Astrophysics Data System (ADS)

    Zhao, Nannan; Sun, Zhongkui; Yang, Xiaoli; Xu, Wei

    2018-06-01

    Explosive death phenomenon has been gradually gaining attention of researchers due to the research boom of explosive synchronization, and it has been observed recently for the identical or nonidentical coupled systems in all-to-all network. In this work, we investigate the emergence of explosive death in networked Van der Pol (VdP) oscillators with conjugate variables coupling. It is demonstrated that the network structures play a crucial role in identifying the types of explosive death behaviors. We also observe that the damping coefficient of the VdP system not only can determine whether the explosive death state is generated but also can adjust the forward transition point. We further show that the backward transition point is independent of the network topologies and the damping coefficient, which is well confirmed by theoretical analysis. Our results reveal the generality of explosive death phenomenon in different network topologies and are propitious to promote a better comprehension for the oscillation quenching behaviors.

  16. Finite-size scaling in the system of coupled oscillators with heterogeneity in coupling strength

    NASA Astrophysics Data System (ADS)

    Hong, Hyunsuk

    2017-07-01

    We consider a mean-field model of coupled phase oscillators with random heterogeneity in the coupling strength. The system that we investigate here is a minimal model that contains randomness in diverse values of the coupling strength, and it is found to return to the original Kuramoto model [Y. Kuramoto, Prog. Theor. Phys. Suppl. 79, 223 (1984), 10.1143/PTPS.79.223] when the coupling heterogeneity disappears. According to one recent paper [H. Hong, H. Chaté, L.-H. Tang, and H. Park, Phys. Rev. E 92, 022122 (2015), 10.1103/PhysRevE.92.022122], when the natural frequency of the oscillator in the system is "deterministically" chosen, with no randomness in it, the system is found to exhibit the finite-size scaling exponent ν ¯=5 /4 . Also, the critical exponent for the dynamic fluctuation of the order parameter is found to be given by γ =1 /4 , which is different from the critical exponents for the Kuramoto model with the natural frequencies randomly chosen. Originally, the unusual finite-size scaling behavior of the Kuramoto model was reported by Hong et al. [H. Hong, H. Chaté, H. Park, and L.-H. Tang, Phys. Rev. Lett. 99, 184101 (2007), 10.1103/PhysRevLett.99.184101], where the scaling behavior is found to be characterized by the unusual exponent ν ¯=5 /2 . On the other hand, if the randomness in the natural frequency is removed, it is found that the finite-size scaling behavior is characterized by a different exponent, ν ¯=5 /4 [H. Hong, H. Chaté, L.-H. Tang, and H. Park, Phys. Rev. E 92, 022122 (2015), 10.1103/PhysRevE.92.022122]. Those findings brought about our curiosity and led us to explore the effects of the randomness on the finite-size scaling behavior. In this paper, we pay particular attention to investigating the finite-size scaling and dynamic fluctuation when the randomness in the coupling strength is considered.

  17. Revisiting an old concept: the coupled oscillator model for VCD. Part 2: implications of the generalised coupled oscillator mechanism for the VCD robustness concept.

    PubMed

    Nicu, Valentin Paul

    2016-08-03

    Using two illustrative examples it is shown that the generalised coupled oscillator (GCO) mechanism implies that the stability of the VCD sign computed for a given normal mode is not reflected by the magnitude of the ratio ζ between the rotational strength and dipole strength of the respective mode, i.e., the VCD robustness criterium proposed by Góbi and Magyarfalvi. The performed VCD GCO analysis brings further insight into the GCO mechanism and also into the VCD robustness concept. First, it shows that the GCO mechanism can be interpreted as a VCD resonance enhancement mechanism, i.e. very large VCD signals can be observed when the interacting molecular fragments are in favourable orientation. Second, it shows that the uncertainties observed in the computed VCD signs are associated to uncertainties in the relative orientation of the coupled oscillator fragments and/or to uncertainties in the predicted nuclear displacement vectors, i.e. not uncertainties in the computed magnetic dipole transition moments as was originally assumed. Since it is able to identify such situations easily, the VCD GCO analysis can be used as a VCD robustness analysis.

  18. Impact of symmetry breaking in networks of globally coupled oscillators

    NASA Astrophysics Data System (ADS)

    Premalatha, K.; Chandrasekar, V. K.; Senthilvelan, M.; Lakshmanan, M.

    2015-05-01

    We analyze the consequences of symmetry breaking in the coupling in a network of globally coupled identical Stuart-Landau oscillators. We observe that symmetry breaking leads to increased disorderliness in the dynamical behavior of oscillatory states and consequently results in a rich variety of dynamical states. Depending on the strength of the nonisochronicity parameter, we find various dynamical states such as amplitude chimera, amplitude cluster, frequency chimera, and frequency cluster states. In addition we also find disparate transition routes to recently observed chimera death states in the presence of symmetry breaking even with global coupling. We also analytically verify the chimera death region, which corroborates the numerical results. These results are compared with that of the symmetry-preserving case as well.

  19. Collective oscillations and coupled modes in confined microfluidic droplet arrays

    NASA Astrophysics Data System (ADS)

    Schiller, Ulf D.; Fleury, Jean-Baptiste; Seemann, Ralf; Gompper, Gerhard

    Microfluidic droplets have a wide range of applications ranging from analytic assays in cellular biology to controlled mixing in chemical engineering. Ensembles of microfluidic droplets are interesting model systems for non-equilibrium many-body phenomena. When flowing in a microchannel, trains of droplets can form microfluidic crystals whose dynamics are governed by long-range hydrodynamic interactions and boundary effects. In this contribution, excitation mechanisms for collective waves in dense and confined microfluidic droplet arrays are investigated by experiments and computer simulations. We demonstrate that distinct modes can be excited by creating specific `defect' patterns in flowing droplet trains. While longitudinal modes exhibit a short-lived cascade of pairs of laterally displacing droplets, transversely excited modes form propagating waves that behave like microfluidic phonons. We show that the confinement induces a coupling between longitudinal and transverse modes. We also investigate the life time of the collective oscillations and discuss possible mechanisms for the onset of instabilities. Our results demonstrate that microfluidic phonons can exhibit effects beyond the linear theory, which can be studied particularly well in dense and confined systems. This work was supported by Deutsche Forschungsgemeinschaft under Grant No. SE 1118/4.

  20. Out-of-unison resonance in weakly nonlinear coupled oscillators

    PubMed Central

    Hill, T. L.; Cammarano, A.; Neild, S. A.; Wagg, D. J.

    2015-01-01

    Resonance is an important phenomenon in vibrating systems and, in systems of nonlinear coupled oscillators, resonant interactions can occur between constituent parts of the system. In this paper, out-of-unison resonance is defined as a solution in which components of the response are 90° out-of-phase, in contrast to the in-unison responses that are normally considered. A well-known physical example of this is whirling, which can occur in a taut cable. Here, we use a normal form technique to obtain time-independent functions known as backbone curves. Considering a model of a cable, this approach is used to identify out-of-unison resonance and it is demonstrated that this corresponds to whirling. We then show how out-of-unison resonance can occur in other two degree-of-freedom nonlinear oscillators. Specifically, an in-line oscillator consisting of two masses connected by nonlinear springs—a type of system where out-of-unison resonance has not previously been identified—is shown to have specific parameter regions where out-of-unison resonance can occur. Finally, we demonstrate how the backbone curve analysis can be used to predict the responses of forced systems. PMID:25568619

  1. Mode-coupling mechanisms in nanocontact spin-torque oscillators

    DOE PAGES

    Iacocca, Ezio; Dürrenfeld, Philipp; Heinonen, Olle; ...

    2015-03-11

    Spin torque oscillators (STOs) are devices that allow for the excitation of a variety of magneto-dynamical modes at the nanoscale. Depending on both external conditions and intrinsic magnetic properties, STOs can exhibit regimes of mode-hopping and even mode coexistence. Whereas mode hopping has been extensively studied in STOs patterned as nanopillars, coexistence has been only recently observed for localized modes in nanocontact STOs (NC-STOs) where the current is confined to flow through a NC fabricated on an extended pseudo spin valve. We investigate the physical origin of the mode coupling mechanisms favoring coexistence, by means of electrical characterization and amore » multi-mode STO theory. Two coupling mechanisms are identified: (i) magnon mediated scattering and (ii) inter-mode interactions. These mechanisms can be physically disentangled by fabricating devices where the NCs have an elliptical cross-section. Furthermore, the generation power and linewidth from such devices are found to be in good qualitative agreement with the theoretical predictions, as well as provide evidence of the dominant mode coupling mechanisms.« less

  2. Strain Coupling of a Nitrogen-Vacancy Center Spin to a Diamond Mechanical Oscillator

    NASA Astrophysics Data System (ADS)

    Teissier, J.; Barfuss, A.; Appel, P.; Neu, E.; Maletinsky, P.

    2014-07-01

    We report on single electronic spins coupled to the motion of mechanical resonators by a novel mechanism based on crystal strain. Our device consists of single-crystal diamond cantilevers with embedded nitrogen-vacancy center spins. Using optically detected electron spin resonance, we determine the unknown spin-strain coupling constants and demonstrate that our system resides well within the resolved sideband regime. We realize coupling strengths exceeding 10 MHz under mechanical driving and show that our system has the potential to reach strong coupling. Our novel hybrid system forms a resource for future experiments on spin-based cantilever cooling and coherent spin-oscillator coupling.

  3. Energy harvesting from coupled bending-twisting oscillations in carbon-fibre reinforced polymer laminates

    NASA Astrophysics Data System (ADS)

    Xie, Mengying; Zhang, Yan; Kraśny, Marcin J.; Rhead, Andrew; Bowen, Chris; Arafa, Mustafa

    2018-07-01

    The energy harvesting capability of resonant harvesting structures, such as piezoelectric cantilever beams, can be improved by utilizing coupled oscillations that generate favourable strain mode distributions. In this work, we present the first demonstration of the use of a laminated carbon fibre reinforced polymer to create cantilever beams that undergo coupled bending-twisting oscillations for energy harvesting applications. Piezoelectric layers that operate in bending and shear mode are attached to the bend-twist coupled beam surface at locations of maximum bending and torsional strains in the first mode of vibration to fully exploit the strain distribution along the beam. Modelling of this new bend-twist harvesting system is presented, which compares favourably with experimental results. It is demonstrated that the variety of bend and torsional modes of the harvesters can be utilized to create a harvester that operates over a wider range of frequencies and such multi-modal device architectures provides a unique approach to tune the frequency response of resonant harvesting systems.

  4. Phonon-coupled ultrafast interlayer charge oscillation at van der Waals heterostructure interfaces

    NASA Astrophysics Data System (ADS)

    Zheng, Qijing; Xie, Yu; Lan, Zhenggang; Prezhdo, Oleg V.; Saidi, Wissam A.; Zhao, Jin

    2018-05-01

    Van der Waals (vdW) heterostructures of transition-metal dichalcogenide (TMD) semiconductors are central not only for fundamental science, but also for electro- and optical-device technologies where the interfacial charge transfer is a key factor. Ultrafast interfacial charge dynamics has been intensively studied, however, the atomic scale insights into the effects of the electron-phonon (e-p) coupling are still lacking. In this paper, using time dependent ab initio nonadiabatic molecular dynamics, we study the ultrafast interfacial charge transfer dynamics of two different TMD heterostructures MoS2/WS2 and MoSe2/WSe2 , which have similar band structures but different phonon frequencies. We found that MoSe2/WSe2 has softer phonon modes compared to MoS2/WS2 , and thus phonon-coupled charge oscillation can be excited with sufficient phonon excitations at room temperature. In contrast, for MoS2/WS2 , phonon-coupled interlayer charge oscillations are not easily excitable. Our study provides an atomic level understanding on how the phonon excitation and e-p coupling affect the interlayer charge transfer dynamics, which is valuable for both the fundamental understanding of ultrafast dynamics at vdW hetero-interfaces and the design of novel quasi-two-dimensional devices for optoelectronic and photovoltaic applications.

  5. Travelling waves in somitogenesis: Collective cellular properties emerge from time-delayed juxtacrine oscillation coupling.

    PubMed

    Tomka, Tomas; Iber, Dagmar; Boareto, Marcelo

    2018-04-24

    The sculpturing of the vertebrate body plan into segments begins with the sequential formation of somites in the presomitic mesoderm (PSM). The rhythmicity of this process is controlled by travelling waves of gene expression. These kinetic waves emerge from coupled cellular oscillators and sweep across the PSM. In zebrafish, the oscillations are driven by autorepression of her genes and are synchronized via Notch signalling. Mathematical modelling has played an important role in explaining how collective properties emerge from the molecular interactions. Increasingly more quantitative experimental data permits the validation of those mathematical models, yet leads to increasingly more complex model formulations that hamper an intuitive understanding of the underlying mechanisms. Here, we review previous efforts, and design a mechanistic model of the her1 oscillator, which represents the experimentally viable her7;hes6 double mutant. This genetically simplified system is ideally suited to conceptually recapitulate oscillatory entrainment and travelling wave formation, and to highlight open questions. It shows that three key parameters, the autorepression delay, the juxtacrine coupling delay, and the coupling strength, are sufficient to understand the emergence of the collective period, the collective amplitude, and the synchronization of neighbouring Her1 oscillators. Moreover, two spatiotemporal time delay gradients, in the autorepression and in the juxtacrine signalling, are required to explain the collective oscillatory dynamics and synchrony of PSM cells. The highlighted developmental principles likely apply more generally to other developmental processes, including neurogenesis and angiogenesis. Copyright © 2018. Published by Elsevier Ltd.

  6. Partial synchronization in networks of non-linearly coupled oscillators: The Deserter Hubs Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freitas, Celso, E-mail: cbnfreitas@gmail.com; Macau, Elbert, E-mail: elbert.macau@inpe.br; Pikovsky, Arkady, E-mail: pikovsky@uni-potsdam.de

    2015-04-15

    We study the Deserter Hubs Model: a Kuramoto-like model of coupled identical phase oscillators on a network, where attractive and repulsive couplings are balanced dynamically due to nonlinearity of interactions. Under weak force, an oscillator tends to follow the phase of its neighbors, but if an oscillator is compelled to follow its peers by a sufficient large number of cohesive neighbors, then it actually starts to act in the opposite manner, i.e., in anti-phase with the majority. Analytic results yield that if the repulsion parameter is small enough in comparison with the degree of the maximum hub, then the fullmore » synchronization state is locally stable. Numerical experiments are performed to explore the model beyond this threshold, where the overall cohesion is lost. We report in detail partially synchronous dynamical regimes, like stationary phase-locking, multistability, periodic and chaotic states. Via statistical analysis of different network organizations like tree, scale-free, and random ones, we found a measure allowing one to predict relative abundance of partially synchronous stationary states in comparison to time-dependent ones.« less

  7. Boltzmann sampling from the Ising model using quantum heating of coupled nonlinear oscillators.

    PubMed

    Goto, Hayato; Lin, Zhirong; Nakamura, Yasunobu

    2018-05-08

    A network of Kerr-nonlinear parametric oscillators without dissipation has recently been proposed for solving combinatorial optimization problems via quantum adiabatic evolution through its bifurcation point. Here we investigate the behavior of the quantum bifurcation machine (QbM) in the presence of dissipation. Our numerical study suggests that the output probability distribution of the dissipative QbM is Boltzmann-like, where the energy in the Boltzmann distribution corresponds to the cost function of the optimization problem. We explain the Boltzmann distribution by generalizing the concept of quantum heating in a single nonlinear oscillator to the case of multiple coupled nonlinear oscillators. The present result also suggests that such driven dissipative nonlinear oscillator networks can be applied to Boltzmann sampling, which is used, e.g., for Boltzmann machine learning in the field of artificial intelligence.

  8. Frontal top-down signals increase coupling of auditory low-frequency oscillations to continuous speech in human listeners.

    PubMed

    Park, Hyojin; Ince, Robin A A; Schyns, Philippe G; Thut, Gregor; Gross, Joachim

    2015-06-15

    Humans show a remarkable ability to understand continuous speech even under adverse listening conditions. This ability critically relies on dynamically updated predictions of incoming sensory information, but exactly how top-down predictions improve speech processing is still unclear. Brain oscillations are a likely mechanism for these top-down predictions [1, 2]. Quasi-rhythmic components in speech are known to entrain low-frequency oscillations in auditory areas [3, 4], and this entrainment increases with intelligibility [5]. We hypothesize that top-down signals from frontal brain areas causally modulate the phase of brain oscillations in auditory cortex. We use magnetoencephalography (MEG) to monitor brain oscillations in 22 participants during continuous speech perception. We characterize prominent spectral components of speech-brain coupling in auditory cortex and use causal connectivity analysis (transfer entropy) to identify the top-down signals driving this coupling more strongly during intelligible speech than during unintelligible speech. We report three main findings. First, frontal and motor cortices significantly modulate the phase of speech-coupled low-frequency oscillations in auditory cortex, and this effect depends on intelligibility of speech. Second, top-down signals are significantly stronger for left auditory cortex than for right auditory cortex. Third, speech-auditory cortex coupling is enhanced as a function of stronger top-down signals. Together, our results suggest that low-frequency brain oscillations play a role in implementing predictive top-down control during continuous speech perception and that top-down control is largely directed at left auditory cortex. This suggests a close relationship between (left-lateralized) speech production areas and the implementation of top-down control in continuous speech perception. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Frontal Top-Down Signals Increase Coupling of Auditory Low-Frequency Oscillations to Continuous Speech in Human Listeners

    PubMed Central

    Park, Hyojin; Ince, Robin A.A.; Schyns, Philippe G.; Thut, Gregor; Gross, Joachim

    2015-01-01

    Summary Humans show a remarkable ability to understand continuous speech even under adverse listening conditions. This ability critically relies on dynamically updated predictions of incoming sensory information, but exactly how top-down predictions improve speech processing is still unclear. Brain oscillations are a likely mechanism for these top-down predictions [1, 2]. Quasi-rhythmic components in speech are known to entrain low-frequency oscillations in auditory areas [3, 4], and this entrainment increases with intelligibility [5]. We hypothesize that top-down signals from frontal brain areas causally modulate the phase of brain oscillations in auditory cortex. We use magnetoencephalography (MEG) to monitor brain oscillations in 22 participants during continuous speech perception. We characterize prominent spectral components of speech-brain coupling in auditory cortex and use causal connectivity analysis (transfer entropy) to identify the top-down signals driving this coupling more strongly during intelligible speech than during unintelligible speech. We report three main findings. First, frontal and motor cortices significantly modulate the phase of speech-coupled low-frequency oscillations in auditory cortex, and this effect depends on intelligibility of speech. Second, top-down signals are significantly stronger for left auditory cortex than for right auditory cortex. Third, speech-auditory cortex coupling is enhanced as a function of stronger top-down signals. Together, our results suggest that low-frequency brain oscillations play a role in implementing predictive top-down control during continuous speech perception and that top-down control is largely directed at left auditory cortex. This suggests a close relationship between (left-lateralized) speech production areas and the implementation of top-down control in continuous speech perception. PMID:26028433

  10. Patterns of patterns of synchronization: Noise induced attractor switching in rings of coupled nonlinear oscillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emenheiser, Jeffrey; Department of Physics, University of California, Davis, California 95616; Chapman, Airlie

    Following the long-lived qualitative-dynamics tradition of explaining behavior in complex systems via the architecture of their attractors and basins, we investigate the patterns of switching between distinct trajectories in a network of synchronized oscillators. Our system, consisting of nonlinear amplitude-phase oscillators arranged in a ring topology with reactive nearest-neighbor coupling, is simple and connects directly to experimental realizations. We seek to understand how the multiple stable synchronized states connect to each other in state space by applying Gaussian white noise to each of the oscillators' phases. To do this, we first analytically identify a set of locally stable limit cyclesmore » at any given coupling strength. For each of these attracting states, we analyze the effect of weak noise via the covariance matrix of deviations around those attractors. We then explore the noise-induced attractor switching behavior via numerical investigations. For a ring of three oscillators, we find that an attractor-switching event is always accompanied by the crossing of two adjacent oscillators' phases. For larger numbers of oscillators, we find that the distribution of times required to stochastically leave a given state falls off exponentially, and we build an attractor switching network out of the destination states as a coarse-grained description of the high-dimensional attractor-basin architecture.« less

  11. An alternating voltage battery with two salt-water oscillators

    NASA Astrophysics Data System (ADS)

    Cervellati, Rinaldo; Soldà, Roberto

    2001-05-01

    We built a simple alternating voltage battery that periodically reverses value and sign of its electromotive force (emf). This battery consists of two coupled concentration salt-water oscillators that are phase shifted by initially extracting some drops of salt solution from one of the two oscillators. Although the actual frequency (period: ˜30 s) and emf (˜±55 mV) is low, our battery is suitable to demonstrate a practical application of oscillating systems in the physical, chemical, or biological laboratory for undergraduates. Interpretation of the phenomenon is given.

  12. Coupled oscillators in identification of nonlinear damping of a real parametric pendulum

    NASA Astrophysics Data System (ADS)

    Olejnik, Paweł; Awrejcewicz, Jan

    2018-01-01

    A damped parametric pendulum with friction is identified twice by means of its precise and imprecise mathematical model. A laboratory test stand designed for experimental investigations of nonlinear effects determined by a viscous resistance and the stick-slip phenomenon serves as the model mechanical system. An influence of accurateness of mathematical modeling on the time variability of the nonlinear damping coefficient of the oscillator is proved. A free decay response of a precisely and imprecisely modeled physical pendulum is dependent on two different time-varying coefficients of damping. The coefficients of the analyzed parametric oscillator are identified with the use of a new semi-empirical method based on a coupled oscillators approach, utilizing the fractional order derivative of the discrete measurement series treated as an input to the numerical model. Results of application of the proposed method of identification of the nonlinear coefficients of the damped parametric oscillator have been illustrated and extensively discussed.

  13. Pacemakers in large arrays of oscillators with nonlocal coupling

    NASA Astrophysics Data System (ADS)

    Jaramillo, Gabriela; Scheel, Arnd

    2016-02-01

    We model pacemaker effects of an algebraically localized heterogeneity in a 1 dimensional array of oscillators with nonlocal coupling. We assume the oscillators obey simple phase dynamics and that the array is large enough so that it can be approximated by a continuous nonlocal evolution equation. We concentrate on the case of heterogeneities with positive average and show that steady solutions to the nonlocal problem exist. In particular, we show that these heterogeneities act as a wave source. This effect is not possible in 3 dimensional systems, such as the complex Ginzburg-Landau equation, where the wavenumber of weak sources decays at infinity. To obtain our results we use a series of isomorphisms to relate the nonlocal problem to the viscous eikonal equation. We then use Fredholm properties of the Laplace operator in Kondratiev spaces to obtain solutions to the eikonal equation, and by extension to the nonlocal problem.

  14. Dynamics of a Dirac oscillator coupled to an external field: a new class of solvable problems

    NASA Astrophysics Data System (ADS)

    Sadurní, E.; Torres, J. M.; Seligman, T. H.

    2010-07-01

    The Dirac oscillator coupled to an external two-component field can retain its solvability, if couplings are appropriately chosen. This provides a new class of integrable systems. A simplified way of a solution is given by recasting the known solution of the Dirac oscillator into matrix form; there one notes that a block-diagonal form arises in a Hamiltonian formulation. The blocks are two dimensional. Choosing couplings that do not affect the block structure, these blow up the 2 × 2 matrices to 4 × 4 matrices, thus conserving solvability. The result can be cast again in covariant form. By way of an example we apply this exact solution to calculate the evolution of entanglement.

  15. Multiple mechanisms switch an electrically coupled, synaptically inhibited neuron between competing rhythmic oscillators.

    PubMed

    Gutierrez, Gabrielle J; O'Leary, Timothy; Marder, Eve

    2013-03-06

    Rhythmic oscillations are common features of nervous systems. One of the fundamental questions posed by these rhythms is how individual neurons or groups of neurons are recruited into different network oscillations. We modeled competing fast and slow oscillators connected to a hub neuron with electrical and inhibitory synapses. We explore the patterns of coordination shown in the network as a function of the electrical coupling and inhibitory synapse strengths with the help of a novel visualization method that we call the "parameterscape." The hub neuron can be switched between the fast and slow oscillators by multiple network mechanisms, indicating that a given change in network state can be achieved by degenerate cellular mechanisms. These results have importance for interpreting experiments employing optogenetic, genetic, and pharmacological manipulations to understand circuit dynamics. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. The implications of non-linear biological oscillations on human electrophysiology for electrohypersensitivity (EHS) and multiple chemical sensitivity (MCS).

    PubMed

    Sage, Cindy

    2015-01-01

    The 'informational content' of Earth's electromagnetic signaling is like a set of operating instructions for human life. These environmental cues are dynamic and involve exquisitely low inputs (intensities) of critical frequencies with which all life on Earth evolved. Circadian and other temporal biological rhythms depend on these fluctuating electromagnetic inputs to direct gene expression, cell communication and metabolism, neural development, brainwave activity, neural synchrony, a diversity of immune functions, sleep and wake cycles, behavior and cognition. Oscillation is also a universal phenomenon, and biological systems of the heart, brain and gut are dependent on the cooperative actions of cells that function according to principles of non-linear, coupled biological oscillations for their synchrony. They are dependent on exquisitely timed cues from the environment at vanishingly small levels. Altered 'informational content' of environmental cues can swamp natural electromagnetic cues and result in dysregulation of normal biological rhythms that direct growth, development, metabolism and repair mechanisms. Pulsed electromagnetic fields (PEMF) and radiofrequency radiation (RFR) can have the devastating biological effects of disrupting homeostasis and desynchronizing normal biological rhythms that maintain health. Non-linear, weak field biological oscillations govern body electrophysiology, organize cell and tissue functions and maintain organ systems. Artificial bioelectrical interference can give false information (disruptive signaling) sufficient to affect critical pacemaker cells (of the heart, gut and brain) and desynchronize functions of these important cells that orchestrate function and maintain health. Chronic physiological stress undermines homeostasis whether it is chemically induced or electromagnetically induced (or both exposures are simultaneous contributors). This can eventually break down adaptive biological responses critical to health

  17. Recent results with the coupled opto-electronic oscillator

    NASA Astrophysics Data System (ADS)

    Yao, X. S.; Maleki, Lute; Wu, Chi; Davis, Lawrence J.; Forouhar, Siamak

    1998-11-01

    We present experimental results of coupled opto-electronic oscillators (COEO) constructed with a semiconductor optical amplifier based ring laser, a semiconductor Fabry-Perot laser, and a semiconductor colliding pulse mode-locked laser. Each COEO can simultaneously generate short optical pulses and spectrally pure RF signals. With these devices, we obtained optical pulses as short as 6 picoseconds and RF signals as high in frequency as 18 GHz with a spectral purity comparable with a HP8561B synthesizer. These experiments demonstrate that COEOs are promising compact sources for generating low jitter optical pulses and low phase noise RF/millimeter wave signals.

  18. The Lyapunov-Krasovskii theorem and a sufficient criterion for local stability of isochronal synchronization in networks of delay-coupled oscillators

    NASA Astrophysics Data System (ADS)

    Grzybowski, J. M. V.; Macau, E. E. N.; Yoneyama, T.

    2017-05-01

    This paper presents a self-contained framework for the stability assessment of isochronal synchronization in networks of chaotic and limit-cycle oscillators. The results were based on the Lyapunov-Krasovskii theorem and they establish a sufficient condition for local synchronization stability of as a function of the system and network parameters. With this in mind, a network of mutually delay-coupled oscillators subject to direct self-coupling is considered and then the resulting error equations are block-diagonalized for the purpose of studying their stability. These error equations are evaluated by means of analytical stability results derived from the Lyapunov-Krasovskii theorem. The proposed approach is shown to be a feasible option for the investigation of local stability of isochronal synchronization for a variety of oscillators coupled through linear functions of the state variables under a given undirected graph structure. This ultimately permits the systematic identification of stability regions within the high-dimensionality of the network parameter space. Examples of applications of the results to a number of networks of delay-coupled chaotic and limit-cycle oscillators are provided, such as Lorenz, Rössler, Cubic Chua's circuit, Van der Pol oscillator and the Hindmarsh-Rose neuron.

  19. Biological proton pumping in an oscillating electric field.

    PubMed

    Kim, Young C; Furchtgott, Leon A; Hummer, Gerhard

    2009-12-31

    Time-dependent external perturbations provide powerful probes of the function of molecular machines. Here we study biological proton pumping in an oscillating electric field. The protein cytochrome c oxidase is the main energy transducer in aerobic life, converting chemical energy into an electric potential by pumping protons across a membrane. With the help of master-equation descriptions that recover the key thermodynamic and kinetic properties of this biological "fuel cell," we show that the proton pumping efficiency and the electronic currents in steady state depend significantly on the frequency and amplitude of the applied field, allowing us to distinguish between different microscopic mechanisms of the machine. A spectral analysis reveals dominant reaction steps consistent with an electron-gated pumping mechanism.

  20. Mouse Hair Cycle Expression Dynamics Modeled as Coupled Mesenchymal and Epithelial Oscillators

    PubMed Central

    Tasseff, Ryan; Bheda-Malge, Anjali; DiColandrea, Teresa; Bascom, Charles C.; Isfort, Robert J.; Gelinas, Richard

    2014-01-01

    The hair cycle is a dynamic process where follicles repeatedly move through phases of growth, retraction, and relative quiescence. This process is an example of temporal and spatial biological complexity. Understanding of the hair cycle and its regulation would shed light on many other complex systems relevant to biological and medical research. Currently, a systematic characterization of gene expression and summarization within the context of a mathematical model is not yet available. Given the cyclic nature of the hair cycle, we felt it was important to consider a subset of genes with periodic expression. To this end, we combined several mathematical approaches with high-throughput, whole mouse skin, mRNA expression data to characterize aspects of the dynamics and the possible cell populations corresponding to potentially periodic patterns. In particular two gene clusters, demonstrating properties of out-of-phase synchronized expression, were identified. A mean field, phase coupled oscillator model was shown to quantitatively recapitulate the synchronization observed in the data. Furthermore, we found only one configuration of positive-negative coupling to be dynamically stable, which provided insight on general features of the regulation. Subsequent bifurcation analysis was able to identify and describe alternate states based on perturbation of system parameters. A 2-population mixture model and cell type enrichment was used to associate the two gene clusters to features of background mesenchymal populations and rapidly expanding follicular epithelial cells. Distinct timing and localization of expression was also shown by RNA and protein imaging for representative genes. Taken together, the evidence suggests that synchronization between expanding epithelial and background mesenchymal cells may be maintained, in part, by inhibitory regulation, and potential mediators of this regulation were identified. Furthermore, the model suggests that impairing this negative

  1. Weak synchronization and large-scale collective oscillation in dense bacterial suspensions

    NASA Astrophysics Data System (ADS)

    Wu, Yilin

    Collective oscillatory behavior is ubiquitous in nature and it plays a vital role in many biological processes. Collective oscillations in biological multicellular systems often arise from coupling mediated by diffusive chemicals, by electrochemical mechanisms, or by biomechanical interaction between cells and their physical environment. In these examples, the phase of some oscillatory intracellular degree of freedom is synchronized. Here, in contrast, we discovered a unique 'weak synchronization' mechanism that does not require long-range coupling, nor even inherent oscillation of individual cells: We found that millions of motile cells in dense bacterial suspensions can self-organize into highly robust collective oscillatory motion, while individuals move in an erratic manner. Over large spatial scales we found that the phase of the oscillations is in fact organized into a centimeter scale traveling wave. We present a model of noisy self-propelled particles with strictly local interactions that accounts faithfully for our observations. These findings expand our knowledge of biological self-organization and reveal a new type of long-range order in active matter systems. The mechanism of collective oscillation uncovered here may inspire new strategies to control the self-organization of active matter and swarming robots. This work is supported by funding from CUHK Direct research Grants (4053019, 4053079, 4053130), the Research Grants Council of HKSAR (RGC Ref. No. CUHK 409713), and from the National Natural Science Foundation of China (NSFC 21473152).

  2. Neuronal Oscillations with Non-sinusoidal Morphology Produce Spurious Phase-to-Amplitude Coupling and Directionality

    PubMed Central

    Lozano-Soldevilla, Diego; ter Huurne, Niels; Oostenveld, Robert

    2016-01-01

    Neuronal oscillations support cognitive processing. Modern views suggest that neuronal oscillations do not only reflect coordinated activity in spatially distributed networks, but also that there is interaction between the oscillations at different frequencies. For example, invasive recordings in animals and humans have found that the amplitude of fast oscillations (>40 Hz) occur non-uniformly within the phase of slower oscillations, forming the so-called cross-frequency coupling (CFC). However, the CFC patterns might be influenced by features in the signal that do not relate to underlying physiological interactions. For example, CFC estimates may be sensitive to spectral correlations due to non-sinusoidal properties of the alpha band wave morphology. To investigate this issue, we performed CFC analysis using experimental and synthetic data. The former consisted in a double-blind magnetoencephalography pharmacological study in which participants received either placebo, 0.5 or 1.5 mg of lorazepam (LZP; GABAergic enhancer) in different experimental sessions. By recording oscillatory brain activity with during rest and working memory (WM), we were able to demonstrate that posterior alpha (8–12 Hz) phase was coupled to beta-low gamma band (20–45 Hz) amplitude envelope during all sessions. Importantly, bicoherence values around the harmonics of the alpha frequency were similar both in magnitude and topographic distribution to the cross-frequency coherence (CFCoh) values observed in the alpha-phase to beta-low gamma coupling. In addition, despite the large CFCoh we found no significant cross-frequency directionality (CFD). Critically, simulations demonstrated that a sizable part of our empirical CFCoh between alpha and beta-low gamma coupling and the lack of CFD could be explained by two-three harmonics aligned in zero phase-lag produced by the physiologically characteristic alpha asymmetry in the amplitude of the peaks relative to the troughs. Furthermore, we

  3. Collective signaling behavior in a networked-oscillator model

    NASA Astrophysics Data System (ADS)

    Liu, Z.-H.; Hui, P. M.

    2007-09-01

    We propose and study the collective behavior of a model of networked signaling objects that incorporates several ingredients of real-life systems. These ingredients include spatial inhomogeneity with grouping of signaling objects, signal attenuation with distance, and delayed and impulsive coupling between non-identical signaling objects. Depending on the coupling strength and/or time-delay effect, the model exhibits completely, partially, and locally collective signaling behavior. In particular, a correlated signaling (CS) behavior is observed in which there exist time durations when nearly a constant fraction of oscillators in the system are in the signaling state. These time durations are much longer than the duration of a spike when a single oscillator signals, and they are separated by regular intervals in which nearly all oscillators are silent. Such CS behavior is similar to that observed in biological systems such as fireflies, cicadas, crickets, and frogs. The robustness of the CS behavior against noise is also studied. It is found that properly adjusting the coupling strength and noise level could enhance the correlated behavior.

  4. Network properties of interstitial cells of Cajal affect intestinal pacemaker activity and motor patterns, according to a mathematical model of weakly coupled oscillators.

    PubMed

    Wei, Ruihan; Parsons, Sean P; Huizinga, Jan D

    2017-03-01

    What is the central question of this study? What are the effects of interstitial cells of Cajal (ICC) network perturbations on intestinal pacemaker activity and motor patterns? What is the main finding and its importance? Two-dimensional modelling of the ICC pacemaker activity according to a phase model of weakly coupled oscillators showed that network properties (coupling strength between oscillators, frequency gradient and frequency noise) strongly influence pacemaker network activity and subsequent motor patterns. The model explains motor patterns observed in physiological conditions and provides predictions and testable hypotheses for effects of ICC loss and frequency modulation on the motor patterns. Interstitial cells of Cajal (ICC) are the pacemaker cells of gut motility and are associated with motility disorders. Interstitial cells of Cajal form a network, but the contributions of its network properties to gut physiology and dysfunction are poorly understood. We modelled an ICC network as a two-dimensional network of weakly coupled oscillators with a frequency gradient and showed changes over time in video and graphical formats. Model parameters were obtained from slow-wave-driven contraction patterns in the mouse intestine and pacemaker slow-wave activities from the cat intestine. Marked changes in propagating oscillation patterns (including changes from propagation to non-propagating) were observed by changing network parameters (coupling strength between oscillators, the frequency gradient and frequency noise), which affected synchronization, propagation velocity and occurrence of dislocations (termination of an oscillation). Complete uncoupling of a circumferential ring of oscillators caused the proximal and distal section to desynchronize, but complete synchronization was maintained with only a single oscillator connecting the sections with high enough coupling. The network of oscillators could withstand loss; even with 40% of oscillators lost randomly

  5. Oscillators that sync and swarm.

    PubMed

    O'Keeffe, Kevin P; Hong, Hyunsuk; Strogatz, Steven H

    2017-11-15

    Synchronization occurs in many natural and technological systems, from cardiac pacemaker cells to coupled lasers. In the synchronized state, the individual cells or lasers coordinate the timing of their oscillations, but they do not move through space. A complementary form of self-organization occurs among swarming insects, flocking birds, or schooling fish; now the individuals move through space, but without conspicuously altering their internal states. Here we explore systems in which both synchronization and swarming occur together. Specifically, we consider oscillators whose phase dynamics and spatial dynamics are coupled. We call them swarmalators, to highlight their dual character. A case study of a generalized Kuramoto model predicts five collective states as possible long-term modes of organization. These states may be observable in groups of sperm, Japanese tree frogs, colloidal suspensions of magnetic particles, and other biological and physical systems in which self-assembly and synchronization interact.

  6. Resumption of dynamism in damaged networks of coupled oscillators

    NASA Astrophysics Data System (ADS)

    Kundu, Srilena; Majhi, Soumen; Ghosh, Dibakar

    2018-05-01

    Deterioration in dynamical activities may come up naturally or due to environmental influences in a massive portion of biological and physical systems. Such dynamical degradation may have outright effect on the substantive network performance. This requires us to provide some proper prescriptions to overcome undesired circumstances. In this paper, we present a scheme based on external feedback that can efficiently revive dynamism in damaged networks of active and inactive oscillators and thus enhance the network survivability. Both numerical and analytical investigations are performed in order to verify our claim. We also provide a comparative study on the effectiveness of this mechanism for feedbacks to the inactive group or to the active group only. Most importantly, resurrection of dynamical activity is realized even in time-delayed damaged networks, which are considered to be less persistent against deterioration in the form of inactivity in the oscillators. Furthermore, prominence in our approach is substantiated by providing evidence of enhanced network persistence in complex network topologies taking small-world and scale-free architectures, which makes the proposed remedy quite general. Besides the study in the network of Stuart-Landau oscillators, affirmative influence of external feedback has been justified in the network of chaotic Rössler systems as well.

  7. Biological proton pumping in an oscillating electric field

    PubMed Central

    Kim, Young C.; Furchtgott, Leon A.; Hummer, Gerhard

    2010-01-01

    Time-dependent external perturbations provide powerful probes of the function of molecular machines. Here we study biological proton pumping in an oscillating electric field. The protein cytochrome c oxidase is the main energy transducer in aerobic life, converting chemical energy into an electric potential by pumping protons across a membrane. With the help of master-equation descriptions that recover the key thermodynamic and kinetic properties of this biological “fuel cell,” we show that the proton pumping efficiency and the electronic currents in steady state both depend significantly and distinctly on the frequency and amplitude of the applied field, allowing us to distinguish between different microscopic mechanisms of the machine. A spectral analysis reveals dominant kinetic modes that show reaction steps consistent with an electron-gated pumping mechanism. PMID:20366348

  8. Analysis on Patterns of Globally Coupled Phase Oscillators with Attractive and Repulsive Interactions

    NASA Astrophysics Data System (ADS)

    Wang, Peng-Fei; Ruan, Xiao-Dong; Xu, Zhong-Bin; Fu, Xin

    2015-11-01

    The Hong-Strogatz (HS) model of globally coupled phase oscillators with attractive and repulsive interactions reflects the fact that each individual (oscillator) has its own attitude (attractive or repulsive) to the same environment (mean field). Previous studies on HS model focused mainly on the stable states on Ott-Antonsen (OA) manifold. In this paper, the eigenvalues of the Jacobi matrix of each fixed point in HS model are explicitly derived, with the aim to understand the local dynamics around each fixed point. Phase transitions are described according to relative population and coupling strength. Besides, the dynamics off OA manifold is studied. Supported by the National Basic Research Program of China under Grant No. 2015CB057301, the Applied Research Project of Public Welfare Technology of Zhejiang Province under Grant No. 201SC31109 and China Postdoctoral Science Foundation under Grant No. 2014M560483

  9. Clusters in nonsmooth oscillator networks

    NASA Astrophysics Data System (ADS)

    Nicks, Rachel; Chambon, Lucie; Coombes, Stephen

    2018-03-01

    For coupled oscillator networks with Laplacian coupling, the master stability function (MSF) has proven a particularly powerful tool for assessing the stability of the synchronous state. Using tools from group theory, this approach has recently been extended to treat more general cluster states. However, the MSF and its generalizations require the determination of a set of Floquet multipliers from variational equations obtained by linearization around a periodic orbit. Since closed form solutions for periodic orbits are invariably hard to come by, the framework is often explored using numerical techniques. Here, we show that further insight into network dynamics can be obtained by focusing on piecewise linear (PWL) oscillator models. Not only do these allow for the explicit construction of periodic orbits, their variational analysis can also be explicitly performed. The price for adopting such nonsmooth systems is that many of the notions from smooth dynamical systems, and in particular linear stability, need to be modified to take into account possible jumps in the components of Jacobians. This is naturally accommodated with the use of saltation matrices. By augmenting the variational approach for studying smooth dynamical systems with such matrices we show that, for a wide variety of networks that have been used as models of biological systems, cluster states can be explicitly investigated. By way of illustration, we analyze an integrate-and-fire network model with event-driven synaptic coupling as well as a diffusively coupled network built from planar PWL nodes, including a reduction of the popular Morris-Lecar neuron model. We use these examples to emphasize that the stability of network cluster states can depend as much on the choice of single node dynamics as it does on the form of network structural connectivity. Importantly, the procedure that we present here, for understanding cluster synchronization in networks, is valid for a wide variety of systems in

  10. Nonclassical properties of coherent light in a pair of coupled anharmonic oscillators

    NASA Astrophysics Data System (ADS)

    Alam, Nasir; Mandal, Swapan

    2016-01-01

    The Hamiltonian and hence the equations of motion involving the field operators of two anharmonic oscillators coupled through a linear one is framed. It is found that these equations of motion involving the non-commuting field operators are nonlinear and are coupled to each other and hence pose a great problem for getting the solutions. In order to investigate the dynamics and hence the nonclassical properties of the radiation fields, we obtain approximate analytical solutions of these coupled nonlinear differential equations involving the non-commuting field operators up to the second orders in anharmonic and coupling constants. These solutions are found useful for investigating the squeezing of pure and mixed modes, amplitude squared squeezing, principal squeezing, and the photon antibunching of the input coherent radiation field. With the suitable choice of the parameters (photon number in various field modes, anharmonic, and coupling constants, etc.), we calculate the second order variances of field quadratures of various modes and hence the squeezing, amplitude squared, and mixed mode squeezing of the input coherent light. In the absence of anharmonicities, it is found that these nonlinear nonclassical phenomena (squeezing of pure and mixed modes, amplitude squared squeezing and photon antibunching) are completely absent. The percentage of squeezing, mixed mode squeezing, amplitude squared squeezing increase with the increase of photon number and the dimensionless interaction time. The collapse and revival phenomena in squeezing, mixed mode squeezing and amplitude squared squeezing are exhibited. With the increase of the interaction time, the monotonic increasing nature of the squeezing effects reveal the presence of unwanted secular terms. It is established that the mere coupling of two oscillators through a third one does not produces the squeezing effects of input coherent light. However, the pure nonclassical phenomena of antibunching of photons in vacuum

  11. State diagram of magnetostatic coupling phase-locked spin-torque oscillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Mengwei; Wang, Longze; Wei, Dan, E-mail: weidan@mail.tsinghua.edu.cn

    2015-05-07

    The state diagram of magnetostatic coupling phase-locked spin torque oscillator (STO) with perpendicular reference layer and planar field generation layer (FGL) is studied by the macrospin model and the micromagnetic model. The state diagrams of current densities are calculated under various external fields. The simulation shows that there are two phase-lock current density regions. In the phase-locked STOs in low current region I, the spin configuration of FGL is uniform; in high current region II, the spin configuration of FGL is highly nonuniform. In addition, the results with different STOs separation L{sub s} are compared, and the coupling between twomore » STOs is largely decreased when L{sub s} is increased from 40 nm to 60 nm.« less

  12. Enhancing synchrony in chaotic oscillators by dynamic relaying

    NASA Astrophysics Data System (ADS)

    Banerjee, Ranjib; Ghosh, Dibakar; Padmanaban, E.; Ramaswamy, R.; Pecora, L. M.; Dana, Syamal K.

    2012-02-01

    In a chain of mutually coupled oscillators, the coupling threshold for synchronization between the outermost identical oscillators decreases when a type of impurity (in terms of parameter mismatch) is introduced in the inner oscillator(s). The outer oscillators interact indirectly via dynamic relaying, mediated by the inner oscillator(s). We confirm this enhancing of critical coupling in the chaotic regimes of the Lorenz system, in the Rössler system in the absence of coupling delay, and in the Mackey-Glass system with delay coupling. The enhancing effect is experimentally verified in the electronic circuit of Rössler oscillators.

  13. Automated analysis of biological oscillator models using mode decomposition.

    PubMed

    Konopka, Tomasz

    2011-04-01

    Oscillating signals produced by biological systems have shapes, described by their Fourier spectra, that can potentially reveal the mechanisms that generate them. Extracting this information from measured signals is interesting for the validation of theoretical models, discovery and classification of interaction types, and for optimal experiment design. An automated workflow is described for the analysis of oscillating signals. A software package is developed to match signal shapes to hundreds of a priori viable model structures defined by a class of first-order differential equations. The package computes parameter values for each model by exploiting the mode decomposition of oscillating signals and formulating the matching problem in terms of systems of simultaneous polynomial equations. On the basis of the computed parameter values, the software returns a list of models consistent with the data. In validation tests with synthetic datasets, it not only shortlists those model structures used to generate the data but also shows that excellent fits can sometimes be achieved with alternative equations. The listing of all consistent equations is indicative of how further invalidation might be achieved with additional information. When applied to data from a microarray experiment on mice, the procedure finds several candidate model structures to describe interactions related to the circadian rhythm. This shows that experimental data on oscillators is indeed rich in information about gene regulation mechanisms. The software package is available at http://babylone.ulb.ac.be/autoosc/.

  14. Dynamical modes of two almost identical chemical oscillators connected via both pulsatile and diffusive coupling.

    PubMed

    Safonov, Dmitry A; Vanag, Vladimir K

    2018-05-03

    The dynamical regimes of two almost identical Belousov-Zhabotinsky oscillators with both pulsatile (with time delay) and diffusive coupling have been studied theoretically with the aid of ordinary differential equations for four combinations of these types of coupling: inhibitory diffusive and inhibitory pulsatile (IDIP); excitatory diffusive and inhibitory pulsatile; inhibitory diffusive and excitatory pulsatile; and finally, excitatory diffusive and excitatory pulsatile (EDEP). The combination of two types of coupling creates a condition for new feedback, which promotes new dynamical modes for the IDIP and EDEP coupling.

  15. Weak synchronization and large-scale collective oscillation in dense bacterial suspensions

    NASA Astrophysics Data System (ADS)

    Chen, Chong; Liu, Song; Shi, Xia-Qing; Chaté, Hugues; Wu, Yilin

    2017-01-01

    Collective oscillatory behaviour is ubiquitous in nature, having a vital role in many biological processes from embryogenesis and organ development to pace-making in neuron networks. Elucidating the mechanisms that give rise to synchronization is essential to the understanding of biological self-organization. Collective oscillations in biological multicellular systems often arise from long-range coupling mediated by diffusive chemicals, by electrochemical mechanisms, or by biomechanical interaction between cells and their physical environment. In these examples, the phase of some oscillatory intracellular degree of freedom is synchronized. Here, in contrast, we report the discovery of a weak synchronization mechanism that does not require long-range coupling or inherent oscillation of individual cells. We find that millions of motile cells in dense bacterial suspensions can self-organize into highly robust collective oscillatory motion, while individual cells move in an erratic manner, without obvious periodic motion but with frequent, abrupt and random directional changes. So erratic are individual trajectories that uncovering the collective oscillations of our micrometre-sized cells requires individual velocities to be averaged over tens or hundreds of micrometres. On such large scales, the oscillations appear to be in phase and the mean position of cells typically describes a regular elliptic trajectory. We found that the phase of the oscillations is organized into a centimetre-scale travelling wave. We present a model of noisy self-propelled particles with strictly local interactions that accounts faithfully for our observations, suggesting that self-organized collective oscillatory motion results from spontaneous chiral and rotational symmetry breaking. These findings reveal a previously unseen type of long-range order in active matter systems (those in which energy is spent locally to produce non-random motion). This mechanism of collective oscillation may

  16. Weak synchronization and large-scale collective oscillation in dense bacterial suspensions.

    PubMed

    Chen, Chong; Liu, Song; Shi, Xia-Qing; Chaté, Hugues; Wu, Yilin

    2017-02-09

    Collective oscillatory behaviour is ubiquitous in nature, having a vital role in many biological processes from embryogenesis and organ development to pace-making in neuron networks. Elucidating the mechanisms that give rise to synchronization is essential to the understanding of biological self-organization. Collective oscillations in biological multicellular systems often arise from long-range coupling mediated by diffusive chemicals, by electrochemical mechanisms, or by biomechanical interaction between cells and their physical environment. In these examples, the phase of some oscillatory intracellular degree of freedom is synchronized. Here, in contrast, we report the discovery of a weak synchronization mechanism that does not require long-range coupling or inherent oscillation of individual cells. We find that millions of motile cells in dense bacterial suspensions can self-organize into highly robust collective oscillatory motion, while individual cells move in an erratic manner, without obvious periodic motion but with frequent, abrupt and random directional changes. So erratic are individual trajectories that uncovering the collective oscillations of our micrometre-sized cells requires individual velocities to be averaged over tens or hundreds of micrometres. On such large scales, the oscillations appear to be in phase and the mean position of cells typically describes a regular elliptic trajectory. We found that the phase of the oscillations is organized into a centimetre-scale travelling wave. We present a model of noisy self-propelled particles with strictly local interactions that accounts faithfully for our observations, suggesting that self-organized collective oscillatory motion results from spontaneous chiral and rotational symmetry breaking. These findings reveal a previously unseen type of long-range order in active matter systems (those in which energy is spent locally to produce non-random motion). This mechanism of collective oscillation may

  17. Hybrid Systems: Cold Atoms Coupled to Micro Mechanical Oscillators =

    NASA Astrophysics Data System (ADS)

    Montoya Monge, Cris A.

    Micro mechanical oscillators can serve as probes in precision measurements, as transducers to mediate photon-phonon interactions, and when functionalized with magnetic material, as tools to manipulate spins in quantum systems. This dissertation includes two projects where the interactions between cold atoms and mechanical oscillators are studied. In one of the experiments, we have manipulated the Zeeman state of magnetically trapped Rubidium atoms with a magnetic micro cantilever. The results show a spatially localized effect produced by the cantilever that agrees with Landau-Zener theory. In the future, such a scalable system with highly localized interactions and the potential for single-spin sensitivity could be useful for applications in quantum information science or quantum simulation. In a second experiment, work is in progress to couple a sample of optically trapped Rubidium atoms to a levitated nanosphere via an optical lattice. This coupling enables the cooling of the center-of-mass motion of the nanosphere by laser cooling the atoms. In this system, the atoms are trapped in the optical lattice while the sphere is levitated in a separate vacuum chamber by a single-beam optical tweezer. Theoretical analysis of such a system has determined that cooling the center-of-mass motion of the sphere to its quantum ground state is possible, even when starting at room temperature, due to the excellent environmental decoupling achievable in this setup. Nanospheres cooled to the quantum regime can provide new tests of quantum behavior at mesoscopic scales and have novel applications in precision sensing.

  18. Oscillator networks with tissue-specific circadian clocks in plants.

    PubMed

    Inoue, Keisuke; Araki, Takashi; Endo, Motomu

    2017-09-08

    Many organisms rely on circadian clocks to synchronize their biological processes with the 24-h rotation of the earth. In mammals, the circadian clock consists of a central clock in the suprachiasmatic nucleus and peripheral clocks in other tissues. The central clock is tightly coupled to synchronize rhythmicity and can organize peripheral clocks through neural and hormonal signals. In contrast to mammals, it has long been assumed that the circadian clocks in each plant cell is able to be entrained by external light, and they are only weakly coupled to each other. Recently, however, several reports have demonstrated that plants have unique oscillator networks with tissue-specific circadian clocks. Here, we introduce our current view regarding tissue-specific properties and oscillator networks of plant circadian clocks. Accumulating evidence suggests that plants have multiple oscillators, which show distinct properties and reside in different tissues. A direct tissue-isolation technique and micrografting have clearly demonstrated that plants have hierarchical oscillator networks consisting of multiple tissue-specific clocks. Copyright © 2017. Published by Elsevier Ltd.

  19. Phase reduction approach to synchronisation of nonlinear oscillators

    NASA Astrophysics Data System (ADS)

    Nakao, Hiroya

    2016-04-01

    Systems of dynamical elements exhibiting spontaneous rhythms are found in various fields of science and engineering, including physics, chemistry, biology, physiology, and mechanical and electrical engineering. Such dynamical elements are often modelled as nonlinear limit-cycle oscillators. In this article, we briefly review phase reduction theory, which is a simple and powerful method for analysing the synchronisation properties of limit-cycle oscillators exhibiting rhythmic dynamics. Through phase reduction theory, we can systematically simplify the nonlinear multi-dimensional differential equations describing a limit-cycle oscillator to a one-dimensional phase equation, which is much easier to analyse. Classical applications of this theory, i.e. the phase locking of an oscillator to a periodic external forcing and the mutual synchronisation of interacting oscillators, are explained. Further, more recent applications of this theory to the synchronisation of non-interacting oscillators induced by common noise and the dynamics of coupled oscillators on complex networks are discussed. We also comment on some recent advances in phase reduction theory for noise-driven oscillators and rhythmic spatiotemporal patterns.

  20. Single molecules can operate as primitive biological sensors, switches and oscillators.

    PubMed

    Hernansaiz-Ballesteros, Rosa D; Cardelli, Luca; Csikász-Nagy, Attila

    2018-06-18

    Switch-like and oscillatory dynamical systems are widely observed in biology. We investigate the simplest biological switch that is composed of a single molecule that can be autocatalytically converted between two opposing activity forms. We test how this simple network can keep its switching behaviour under perturbations in the system. We show that this molecule can work as a robust bistable system, even for alterations in the reactions that drive the switching between various conformations. We propose that this single molecule system could work as a primitive biological sensor and show by steady state analysis of a mathematical model of the system that it could switch between possible states for changes in environmental signals. Particularly, we show that a single molecule phosphorylation-dephosphorylation switch could work as a nucleotide or energy sensor. We also notice that a given set of reductions in the reaction network can lead to the emergence of oscillatory behaviour. We propose that evolution could have converted this switch into a single molecule oscillator, which could have been used as a primitive timekeeper. We discuss how the structure of the simplest known circadian clock regulatory system, found in cyanobacteria, resembles the proposed single molecule oscillator. Besides, we speculate if such minimal systems could have existed in an RNA world.

  1. Spontaneous symmetry breaking due to the trade-off between attractive and repulsive couplings.

    PubMed

    Sathiyadevi, K; Karthiga, S; Chandrasekar, V K; Senthilkumar, D V; Lakshmanan, M

    2017-04-01

    Spontaneous symmetry breaking is an important phenomenon observed in various fields including physics and biology. In this connection, we here show that the trade-off between attractive and repulsive couplings can induce spontaneous symmetry breaking in a homogeneous system of coupled oscillators. With a simple model of a system of two coupled Stuart-Landau oscillators, we demonstrate how the tendency of attractive coupling in inducing in-phase synchronized (IPS) oscillations and the tendency of repulsive coupling in inducing out-of-phase synchronized oscillations compete with each other and give rise to symmetry breaking oscillatory states and interesting multistabilities. Further, we provide explicit expressions for synchronized and antisynchronized oscillatory states as well as the so called oscillation death (OD) state and study their stability. If the Hopf bifurcation parameter (λ) is greater than the natural frequency (ω) of the system, the attractive coupling favors the emergence of an antisymmetric OD state via a Hopf bifurcation whereas the repulsive coupling favors the emergence of a similar state through a saddle-node bifurcation. We show that an increase in the repulsive coupling not only destabilizes the IPS state but also facilitates the reentrance of the IPS state.

  2. A Realtime Active Feedback Control System For Coupled Nonlinear Chemical Oscillators

    NASA Astrophysics Data System (ADS)

    Tompkins, Nathan; Fraden, Seth

    2012-02-01

    We study the manipulation and control of oscillatory networks. As a model system we use an emulsion of Belousov-Zhabotinsky (BZ) oscillators packed on a hexagonal lattice. Each drop is observed and perturbed by a Programmable Illumination Microscope (PIM). The PIM allows us to track individual BZ oscillators, calculate the phase and order parameters of every drop, and selectively perturb specific drops with photo illumination, all in realtime. To date we have determined the native attractor patterns for drops in 1D arrays and 2D hexagonal packing as a function of coupling strength as well as determined methods to move the system from one attractor basin to another. Current work involves implementing these attractor control methods with our experimental system and future work will likely include implementing a model neural network for use with photo controllable BZ emulsions.

  3. Analysis and observation of moving domain fronts in a ring of coupled electronic self-oscillators

    NASA Astrophysics Data System (ADS)

    English, L. Q.; Zampetaki, A.; Kevrekidis, P. G.; Skowronski, K.; Fritz, C. B.; Abdoulkary, Saidou

    2017-10-01

    In this work, we consider a ring of coupled electronic (Wien-bridge) oscillators from a perspective combining modeling, simulation, and experimental observation. Following up on earlier work characterizing the pairwise interaction of Wien-bridge oscillators by Kuramoto-Sakaguchi phase dynamics, we develop a lattice model for a chain thereof, featuring an exponentially decaying spatial kernel. We find that for certain values of the Sakaguchi parameter α, states of traveling phase-domain fronts involving the coexistence of two clearly separated regions of distinct dynamical behavior, can establish themselves in the ring lattice. Experiments and simulations show that stationary coexistence domains of synchronization only manifest themselves with the introduction of a local impurity; here an incoherent cluster of oscillators can arise reminiscent of the chimera states in a range of systems with homogeneous oscillators and suitable nonlocal interactions between them.

  4. Coupled Oscillator Based Agile Beam Transmitters and Receivers: A Review of Work at JPL

    NASA Technical Reports Server (NTRS)

    Pogorzelski, Ronald J.

    2006-01-01

    This is a review of the work done at Caltech's Jet Propulsion Laboratory during the past decade on development of the coupled oscillator technology in phased array applications to spacecraft telecommunications. First, some historical background is provided to set the work in context. However, this is by no means intended to be a comprehensive review of all work in this area. Rather, the focus is on the JPL contribution with some mention of other work which provided either insight or motivation. In the mid 1990's, R. A. York, and collaborators proposed that an array of mutually injection locked electronic oscillators could provide appropriately phased signals to the radiating elements of an array antenna such that the radiated beam could be steered merely by tuning the end or perimeter oscillators of the array. York, et al. also proposed a receiving system based on such oscillator arrays in which the oscillators provide properly phased local oscillator signals to be mixed with the signals received by the array elements to remove the phase due to angle of arrival of the incident wave. These concepts were viewed as a promising simplification of the beam steering control system that could result in significant cost, mass, and prime power reduction and were therefore attractive for possible space application.

  5. Synchronization states and multistability in a ring of periodic oscillators: Experimentally variable coupling delays

    NASA Astrophysics Data System (ADS)

    Williams, Caitlin R. S.; Sorrentino, Francesco; Murphy, Thomas E.; Roy, Rajarshi

    2013-12-01

    We experimentally study the complex dynamics of a unidirectionally coupled ring of four identical optoelectronic oscillators. The coupling between these systems is time-delayed in the experiment and can be varied over a wide range of delays. We observe that as the coupling delay is varied, the system may show different synchronization states, including complete isochronal synchrony, cluster synchrony, and two splay-phase states. We analyze the stability of these solutions through a master stability function approach, which we show can be effectively applied to all the different states observed in the experiment. Our analysis supports the experimentally observed multistability in the system.

  6. Coupling biology and oceanography in models.

    PubMed

    Fennel, W; Neumann, T

    2001-08-01

    The dynamics of marine ecosystems, i.e. the changes of observable chemical-biological quantities in space and time, are driven by biological and physical processes. Predictions of future developments of marine systems need a theoretical framework, i.e. models, solidly based on research and understanding of the different processes involved. The natural way to describe marine systems theoretically seems to be the embedding of chemical-biological models into circulation models. However, while circulation models are relatively advanced the quantitative theoretical description of chemical-biological processes lags behind. This paper discusses some of the approaches and problems in the development of consistent theories and indicates the beneficial potential of the coupling of marine biology and oceanography in models.

  7. Regular and irregular patterns of self-localized excitation in arrays of coupled phase oscillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolfrum, Matthias; Omel'chenko, Oleh E.; Sieber, Jan

    We study a system of phase oscillators with nonlocal coupling in a ring that supports self-organized patterns of coherence and incoherence, called chimera states. Introducing a global feedback loop, connecting the phase lag to the order parameter, we can observe chimera states also for systems with a small number of oscillators. Numerical simulations show a huge variety of regular and irregular patterns composed of localized phase slipping events of single oscillators. Using methods of classical finite dimensional chaos and bifurcation theory, we can identify the emergence of chaotic chimera states as a result of transitions to chaos via period doublingmore » cascades, torus breakup, and intermittency. We can explain the observed phenomena by a mechanism of self-modulated excitability in a discrete excitable medium.« less

  8. Robust autoassociative memory with coupled networks of Kuramoto-type oscillators

    NASA Astrophysics Data System (ADS)

    Heger, Daniel; Krischer, Katharina

    2016-08-01

    Uncertain recognition success, unfavorable scaling of connection complexity, or dependence on complex external input impair the usefulness of current oscillatory neural networks for pattern recognition or restrict technical realizations to small networks. We propose a network architecture of coupled oscillators for pattern recognition which shows none of the mentioned flaws. Furthermore we illustrate the recognition process with simulation results and analyze the dynamics analytically: Possible output patterns are isolated attractors of the system. Additionally, simple criteria for recognition success are derived from a lower bound on the basins of attraction.

  9. Restoration of rhythmicity in diffusively coupled dynamical networks.

    PubMed

    Zou, Wei; Senthilkumar, D V; Nagao, Raphael; Kiss, István Z; Tang, Yang; Koseska, Aneta; Duan, Jinqiao; Kurths, Jürgen

    2015-07-15

    Oscillatory behaviour is essential for proper functioning of various physical and biological processes. However, diffusive coupling is capable of suppressing intrinsic oscillations due to the manifestation of the phenomena of amplitude and oscillation deaths. Here we present a scheme to revoke these quenching states in diffusively coupled dynamical networks, and demonstrate the approach in experiments with an oscillatory chemical reaction. By introducing a simple feedback factor in the diffusive coupling, we show that the stable (in)homogeneous steady states can be effectively destabilized to restore dynamic behaviours of coupled systems. Even a feeble deviation from the normal diffusive coupling drastically shrinks the death regions in the parameter space. The generality of our method is corroborated in diverse non-linear systems of diffusively coupled paradigmatic models with various death scenarios. Our study provides a general framework to strengthen the robustness of dynamic activity in diffusively coupled dynamical networks.

  10. Nonlinear resonance and synchronization in the ring of unidirectionally coupled Toda oscillators

    NASA Astrophysics Data System (ADS)

    Dvorak, Anton; Astakhov, Vladimir; Perlikowski, Przemyslaw; Kapitaniak, Tomasz

    2016-11-01

    In the ring of unidirectionally coupled Toda oscillators the nonlinear resonance and the synchronization are investigated. It is shown how the nonlinear resonance affects the structure of the main synchronization region. As a result of nonlinear resonance we observe the coexistence of two stable limit cycles near the resonant frequency, which leads to coexistence of periodic and quasi-periodic regimes within the synchronization region.

  11. Generation of a tunable environment for electrical oscillator systems.

    PubMed

    León-Montiel, R de J; Svozilík, J; Torres, Juan P

    2014-07-01

    Many physical, chemical, and biological systems can be modeled by means of random-frequency harmonic oscillator systems. Even though the noise-free evolution of harmonic oscillator systems can be easily implemented, the way to experimentally introduce, and control, noise effects due to a surrounding environment remains a subject of lively interest. Here, we experimentally demonstrate a setup that provides a unique tool to generate a fully tunable environment for classical electrical oscillator systems. We illustrate the operation of the setup by implementing the case of a damped random-frequency harmonic oscillator. The high degree of tunability and control of our scheme is demonstrated by gradually modifying the statistics of the oscillator's frequency fluctuations. This tunable system can readily be used to experimentally study interesting noise effects, such as noise-induced transitions in systems driven by multiplicative noise, and noise-induced transport, a phenomenon that takes place in quantum and classical coupled oscillator networks.

  12. Flipping-shuttle oscillations of bright one- and two-dimensional solitons in spin-orbit-coupled Bose-Einstein condensates with Rabi mixing

    NASA Astrophysics Data System (ADS)

    Sakaguchi, Hidetsugu; Malomed, Boris A.

    2017-10-01

    We analyze the possibility of macroscopic quantum effects in the form of coupled structural oscillations and shuttle motion of bright two-component spin-orbit-coupled striped (one-dimensional, 1D) and semivortex (two-dimensional, 2D) matter-wave solitons, under the action of linear mixing (Rabi coupling) between the components. In 1D, the intrinsic oscillations manifest themselves as flippings between spatially even and odd components of striped solitons, while in 2D the system features periodic transitions between zero-vorticity and vortical components of semivortex solitons. The consideration is performed by means of a combination of analytical and numerical methods.

  13. Synchronization of tunable asymmetric square-wave pulses in delay-coupled optoelectronic oscillators.

    PubMed

    Martínez-Llinàs, Jade; Colet, Pere; Erneux, Thomas

    2015-03-01

    We consider a model for two delay-coupled optoelectronic oscillators under positive delayed feedback as prototypical to study the conditions for synchronization of asymmetric square-wave oscillations, for which the duty cycle is not half of the period. We show that the scenario arising for positive feedback is much richer than with negative feedback. First, it allows for the coexistence of multiple in- and out-of-phase asymmetric periodic square waves for the same parameter values. Second, it is tunable: The period of all the square-wave periodic pulses can be tuned with the ratio of the delays, and the duty cycle of the asymmetric square waves can be changed with the offset phase while the total period remains constant. Finally, in addition to the multiple in- and out-of-phase periodic square waves, low-frequency periodic asymmetric solutions oscillating in phase may coexist for the same values of the parameters. Our analytical results are in agreement with numerical simulations and bifurcation diagrams obtained by using continuation techniques.

  14. Transonic Shock Oscillations and Wing Flutter Calculated with an Interactive Boundary Layer Coupling Method

    NASA Technical Reports Server (NTRS)

    Edwards, John W.

    1996-01-01

    A viscous-inviscid interactive coupling method is used for the computation of unsteady transonic flows involving separation and reattachment. A lag-entrainment integral boundary layer method is used with the transonic small disturbance potential equation in the CAP-TSDV (Computational Aeroelasticity Program - Transonic Small Disturbance) code. Efficient and robust computations of steady and unsteady separated flows, including steady separation bubbles and self-excited shock-induced oscillations are presented. The buffet onset boundary for the NACA 0012 airfoil is accurately predicted and shown computationally to be a Hopf bifurcation. Shock-induced oscillations are also presented for the 18 percent circular arc airfoil. The oscillation onset boundaries and frequencies are accurately predicted, as is the experimentally observed hysteresis of the oscillations with Mach number. This latter stability boundary is identified as a jump phenomenon. Transonic wing flutter boundaries are also shown for a thin swept wing and for a typical business jet wing, illustrating viscous effects on flutter and the effect of separation onset on the wing response at flutter. Calculations for both wings show limit cycle oscillations at transonic speeds in the vicinity of minimum flutter speed indices.

  15. SYNTHETIC BIOLOGY. Emergent genetic oscillations in a synthetic microbial consortium.

    PubMed

    Chen, Ye; Kim, Jae Kyoung; Hirning, Andrew J; Josić, Krešimir; Bennett, Matthew R

    2015-08-28

    A challenge of synthetic biology is the creation of cooperative microbial systems that exhibit population-level behaviors. Such systems use cellular signaling mechanisms to regulate gene expression across multiple cell types. We describe the construction of a synthetic microbial consortium consisting of two distinct cell types—an "activator" strain and a "repressor" strain. These strains produced two orthogonal cell-signaling molecules that regulate gene expression within a synthetic circuit spanning both strains. The two strains generated emergent, population-level oscillations only when cultured together. Certain network topologies of the two-strain circuit were better at maintaining robust oscillations than others. The ability to program population-level dynamics through the genetic engineering of multiple cooperative strains points the way toward engineering complex synthetic tissues and organs with multiple cell types. Copyright © 2015, American Association for the Advancement of Science.

  16. Spontaneous switching of frequency-locking by periodic stimulus in oscillators of plasmodium of the true slime mold.

    PubMed

    Takamatsu, A; Yamamoto, T; Fujii, T

    2004-01-01

    Microfabrication technique was used to construct a model system with a living cell of plasmodium of the true slime mold, Physarum polycephalum, a living coupled oscillator system. Its parameters can be systematically controlled as in computer simulations, so that results are directly comparable to those of general mathematical models. As the first step, we investigated responses in oscillatory cells, the oscillators of the plasmodium, to periodic stimuli by temperature changes to elucidate characteristics of the cells as nonlinear systems whose internal dynamics are unknown because of their complexity. We observed that the forced oscillator of the plasmodium show 1:1, 2:1, 3:1 frequency locking inside so-called Arnold tongues regions as well as in other nonlinear systems such as chemical systems and other biological systems. In addition, we found spontaneous switching behavior from certain frequency locking states to other states, even under certain fixed parameters. This technique can be applied to more complex systems with multiple elements, such as coupled oscillator systems, and would be useful to investigate complicated phenomena in biological systems such as information processing.

  17. Parametric Oscillation, Frequency Mixing, and Injection Locking of Strongly Coupled Nanomechanical Resonator Modes.

    PubMed

    Seitner, Maximilian J; Abdi, Mehdi; Ridolfo, Alessandro; Hartmann, Michael J; Weig, Eva M

    2017-06-23

    We study locking phenomena of two strongly coupled, high quality factor nanomechanical resonator modes to a common parametric drive at a single drive frequency in different parametric driving regimes. By controlled dielectric gradient forces we tune the resonance frequencies of the flexural in-plane and out-of-plane oscillation of the high stress silicon nitride string through their mutual avoided crossing. For the case of the strong common parametric drive signal-idler generation via nondegenerate parametric two-mode oscillation is observed. Broadband frequency tuning of the very narrow linewidth signal and idler resonances is demonstrated. When the resonance frequencies of the signal and idler get closer to each other, partial injection locking, injection pulling, and complete injection locking to half of the drive frequency occurs depending on the pump strength. Furthermore, satellite resonances, symmetrically offset from the signal and idler by their beat note, are observed, which can be attributed to degenerate four-wave mixing in the highly nonlinear mechanical oscillations.

  18. Computational model of electrically coupled, intrinsically distinct pacemaker neurons.

    PubMed

    Soto-Treviño, Cristina; Rabbah, Pascale; Marder, Eve; Nadim, Farzan

    2005-07-01

    Electrical coupling between neurons with similar properties is often studied. Nonetheless, the role of electrical coupling between neurons with widely different intrinsic properties also occurs, but is less well understood. Inspired by the pacemaker group of the crustacean pyloric network, we developed a multicompartment, conductance-based model of a small network of intrinsically distinct, electrically coupled neurons. In the pyloric network, a small intrinsically bursting neuron, through gap junctions, drives 2 larger, tonically spiking neurons to reliably burst in-phase with it. Each model neuron has 2 compartments, one responsible for spike generation and the other for producing a slow, large-amplitude oscillation. We illustrate how these compartments interact and determine the dynamics of the model neurons. Our model captures the dynamic oscillation range measured from the isolated and coupled biological neurons. At the network level, we explore the range of coupling strengths for which synchronous bursting oscillations are possible. The spatial segregation of ionic currents significantly enhances the ability of the 2 neurons to burst synchronously, and the oscillation range of the model pacemaker network depends not only on the strength of the electrical synapse but also on the identity of the neuron receiving inputs. We also compare the activity of the electrically coupled, distinct neurons with that of a network of coupled identical bursting neurons. For small to moderate coupling strengths, the network of identical elements, when receiving asymmetrical inputs, can have a smaller dynamic range of oscillation than that of its constituent neurons in isolation.

  19. Control of entanglement dynamics in a system of three coupled quantum oscillators.

    PubMed

    Gonzalez-Henao, J C; Pugliese, E; Euzzor, S; Meucci, R; Roversi, J A; Arecchi, F T

    2017-08-30

    Dynamical control of entanglement and its connection with the classical concept of instability is an intriguing matter which deserves accurate investigation for its important role in information processing, cryptography and quantum computing. Here we consider a tripartite quantum system made of three coupled quantum parametric oscillators in equilibrium with a common heat bath. The introduced parametrization consists of a pulse train with adjustable amplitude and duty cycle representing a more general case for the perturbation. From the experimental observation of the instability in the classical system we are able to predict the parameter values for which the entangled states exist. A different amount of entanglement and different onset times emerge when comparing two and three quantum oscillators. The system and the parametrization considered here open new perspectives for manipulating quantum features at high temperatures.

  20. A 10 GHz Y-Ba-Cu-O/GaAs hybrid oscillator proximity coupled to a circular microstrip patch antenna

    NASA Technical Reports Server (NTRS)

    Rohrer, Norman J.; Richard, M. A.; Valco, George J.; Bhasin, Kul B.

    1993-01-01

    A 10 GHz hybrid YBCO/GaAs microwave oscillator proximity coupled to a circular microstrip antenna has been designed, fabricated, and characterized. The oscillator was a reflection mode type using a GaAs MESFET as the active element. The feedline, transmission lines, RF chokes, and bias lines were all fabricated from YBCO superconducting thin films on a 1 cm x 1 cm lanthanum aluminate substrate. The output feedline of the oscillator was wire bonded to a superconducting feedline on a second 1 cm x 1 cm lanthanum aluminate substrate, which was in turn proximity coupled to a circular microstrip patch antenna. Antenna patterns from this active patch antenna and the performance of the oscillator measured at 77 K are reported. The oscillator had a maximum output power of 11.5 dBm at 77 K, which corresponded to an efficiency of 10 percent. In addition, the efficiency of the microstrip patch antenna together with its high temperature superconducting feedline was measured from 85 K to 30 K and was found to be 71 percent at 77 K, increasing to a maximum of 87.4 percent at 30 K.

  1. A 10 GHz Y-Ba-Cu-O/GaAs hybrid oscillator proximity coupled to a circular microstrip patch antenna

    NASA Technical Reports Server (NTRS)

    Rohrer, Norman J.; Richard, M. A.; Valco, George J.; Bhasin, Kul B.

    1993-01-01

    A 10 GHz hybrid Y-Ba-Cu-O / GaAs microwave oscillator proximity coupled to a circular microstrip antenna was designed, fabricated and characterized. The oscillator was a reflection mode type using a GaAs MESFET as the active element. The feedline, transmission lines, RF chokes, and bias lines were all fabricated from YBa2Cu3O(7-x) superconducting thin films on a 1 cm x 1 cm lanthanum aluminate substrate. The output feedline of the oscillator was wire bonded to a superconducting feedline on a second 1 cm x 1 cm lanthanum aluminate substrate, which was in turn proximity coupled to a circular microstrip patch antenna. Antenna patterns from this active patch antenna and the performance of the oscillator measured at 77 K are reported. The oscillator had a maximum output power of 11.5 dBm at 77 K, which corresponded to an efficiency of 10 percent. In addition, the efficiency of the microstrip patch antenna together with its high temperature superconducting feedline was measured from 85 K to 30 K and was found to be 71 percent at 77 4 increasing to a maximum of 87.4 percent at 30 K.

  2. Chimera States in Neural Oscillators

    NASA Astrophysics Data System (ADS)

    Bahar, Sonya; Glaze, Tera

    2014-03-01

    Chimera states have recently been explored both theoretically and experimentally, in various coupled nonlinear oscillators, ranging from phase-oscillator models to coupled chemical reactions. In a chimera state, both coherent and incoherent (or synchronized and desynchronized) states occur simultaneously in populations of identical oscillators. We investigate chimera behavior in a population of neural oscillators using the Huber-Braun model, a Hodgkin-Huxley-like model originally developed to characterize the temperature-dependent bursting behavior of mammalian cold receptors. One population of neurons is allowed to synchronize, with each neuron receiving input from all the others in its group (global within-group coupling). Subsequently, a second population of identical neurons is placed under an identical global within-group coupling, and the two populations are also coupled to each other (between-group coupling). For certain values of the coupling constants, the neurons in the two populations exhibit radically different synchronization behavior. We will discuss the range of chimera activity in the model, and discuss its implications for actual neural activity, such as unihemispheric sleep.

  3. Teaching the Physics of a String-Coupled Pendulum Oscillator: Not Just for Seniors Anymore

    ERIC Educational Resources Information Center

    Cho, Young-Ki

    2012-01-01

    Coupled oscillators are an example of resonant energy exchange that is an interesting topic for many students in various majors, such as physics, chemistry, and electrical and mechanical engineering. However, this subject matter is considered too advanced for freshmen and sophomores, usually because of the level of mathematics involved.…

  4. Opto-electronic oscillator and its applications

    NASA Astrophysics Data System (ADS)

    Yao, X. S.; Maleki, Lute

    1997-04-01

    We review the properties of a new class of microwave oscillators called opto-electronic oscillators (OEO). We present theoretical and experimental results of a multi-loop technique for single mode selection. We then describe a new development called coupled OEO (COEO) in which the electrical oscillation is directly coupled with the optical oscillation, producing an OEO that generates stable optical pulses and single mode microwave oscillation simultaneously. Finally we discuss various applications of OEO.

  5. "Coherence-incoherence" transition in ensembles of nonlocally coupled chaotic oscillators with nonhyperbolic and hyperbolic attractors

    NASA Astrophysics Data System (ADS)

    Semenova, Nadezhda I.; Rybalova, Elena V.; Strelkova, Galina I.; Anishchenko, Vadim S.

    2017-03-01

    We consider in detail similarities and differences of the "coherence-incoherence" transition in ensembles of nonlocally coupled chaotic discrete-time systems with nonhyperbolic and hyperbolic attractors. As basic models we employ the Hénon map and the Lozi map. We show that phase and amplitude chimera states appear in a ring of coupled Hénon maps, while no chimeras are observed in an ensemble of coupled Lozi maps. In the latter, the transition to spatio-temporal chaos occurs via solitary states. We present numerical results for the coupling function which describes the impact of neighboring oscillators on each partial element of an ensemble with nonlocal coupling. Varying the coupling strength we analyze the evolution of the coupling function and discuss in detail its role in the "coherence-incoherence" transition in the ensembles of Hénon and Lozi maps.

  6. Synchrony suppression in ensembles of coupled oscillators via adaptive vanishing feedback.

    PubMed

    Montaseri, Ghazal; Yazdanpanah, Mohammad Javad; Pikovsky, Arkady; Rosenblum, Michael

    2013-09-01

    Synchronization and emergence of a collective mode is a general phenomenon, frequently observed in ensembles of coupled self-sustained oscillators of various natures. In several circumstances, in particular in cases of neurological pathologies, this state of the active medium is undesirable. Destruction of this state by a specially designed stimulation is a challenge of high clinical relevance. Typically, the precise effect of an external action on the ensemble is unknown, since the microscopic description of the oscillators and their interactions are not available. We show that, desynchronization in case of a large degree of uncertainty about important features of the system is nevertheless possible; it can be achieved by virtue of a feedback loop with an additional adaptation of parameters. The adaptation also ensures desynchronization of ensembles with non-stationary, time-varying parameters. We perform the stability analysis of the feedback-controlled system and demonstrate efficient destruction of synchrony for several models, including those of spiking and bursting neurons.

  7. Synchrony suppression in ensembles of coupled oscillators via adaptive vanishing feedback

    NASA Astrophysics Data System (ADS)

    Montaseri, Ghazal; Javad Yazdanpanah, Mohammad; Pikovsky, Arkady; Rosenblum, Michael

    2013-09-01

    Synchronization and emergence of a collective mode is a general phenomenon, frequently observed in ensembles of coupled self-sustained oscillators of various natures. In several circumstances, in particular in cases of neurological pathologies, this state of the active medium is undesirable. Destruction of this state by a specially designed stimulation is a challenge of high clinical relevance. Typically, the precise effect of an external action on the ensemble is unknown, since the microscopic description of the oscillators and their interactions are not available. We show that, desynchronization in case of a large degree of uncertainty about important features of the system is nevertheless possible; it can be achieved by virtue of a feedback loop with an additional adaptation of parameters. The adaptation also ensures desynchronization of ensembles with non-stationary, time-varying parameters. We perform the stability analysis of the feedback-controlled system and demonstrate efficient destruction of synchrony for several models, including those of spiking and bursting neurons.

  8. Delay decomposition approach to [Formula: see text] filtering analysis of genetic oscillator networks with time-varying delays.

    PubMed

    Revathi, V M; Balasubramaniam, P

    2016-04-01

    In this paper, the [Formula: see text] filtering problem is treated for N coupled genetic oscillator networks with time-varying delays and extrinsic molecular noises. Each individual genetic oscillator is a complex dynamical network that represents the genetic oscillations in terms of complicated biological functions with inner or outer couplings denote the biochemical interactions of mRNAs, proteins and other small molecules. Throughout the paper, first, by constructing appropriate delay decomposition dependent Lyapunov-Krasovskii functional combined with reciprocal convex approach, improved delay-dependent sufficient conditions are obtained to ensure the asymptotic stability of the filtering error system with a prescribed [Formula: see text] performance. Second, based on the above analysis, the existence of the designed [Formula: see text] filters are established in terms of linear matrix inequalities with Kronecker product. Finally, numerical examples including a coupled Goodwin oscillator model are inferred to illustrate the effectiveness and less conservatism of the proposed techniques.

  9. Globally coupled stochastic two-state oscillators: fluctuations due to finite numbers.

    PubMed

    Pinto, Italo'Ivo Lima Dias; Escaff, Daniel; Harbola, Upendra; Rosas, Alexandre; Lindenberg, Katja

    2014-05-01

    Infinite arrays of coupled two-state stochastic oscillators exhibit well-defined steady states. We study the fluctuations that occur when the number N of oscillators in the array is finite. We choose a particular form of global coupling that in the infinite array leads to a pitchfork bifurcation from a monostable to a bistable steady state, the latter with two equally probable stationary states. The control parameter for this bifurcation is the coupling strength. In finite arrays these states become metastable: The fluctuations lead to distributions around the most probable states, with one maximum in the monostable regime and two maxima in the bistable regime. In the latter regime, the fluctuations lead to transitions between the two peak regions of the distribution. Also, we find that the fluctuations break the symmetry in the bimodal regime, that is, one metastable state becomes more probable than the other, increasingly so with increasing array size. To arrive at these results, we start from microscopic dynamical evolution equations from which we derive a Langevin equation that exhibits an interesting multiplicative noise structure. We also present a master equation description of the dynamics. Both of these equations lead to the same Fokker-Planck equation, the master equation via a 1/N expansion and the Langevin equation via standard methods of Itô calculus for multiplicative noise. From the Fokker-Planck equation we obtain an effective potential that reflects the transition from the monomodal to the bimodal distribution as a function of a control parameter. We present a variety of numerical and analytic results that illustrate the strong effects of the fluctuations. We also show that the limits N → ∞ and t → ∞ (t is the time) do not commute. In fact, the two orders of implementation lead to drastically different results.

  10. Globally coupled stochastic two-state oscillators: Fluctuations due to finite numbers

    NASA Astrophysics Data System (ADS)

    Pinto, Italo'Ivo Lima Dias; Escaff, Daniel; Harbola, Upendra; Rosas, Alexandre; Lindenberg, Katja

    2014-05-01

    Infinite arrays of coupled two-state stochastic oscillators exhibit well-defined steady states. We study the fluctuations that occur when the number N of oscillators in the array is finite. We choose a particular form of global coupling that in the infinite array leads to a pitchfork bifurcation from a monostable to a bistable steady state, the latter with two equally probable stationary states. The control parameter for this bifurcation is the coupling strength. In finite arrays these states become metastable: The fluctuations lead to distributions around the most probable states, with one maximum in the monostable regime and two maxima in the bistable regime. In the latter regime, the fluctuations lead to transitions between the two peak regions of the distribution. Also, we find that the fluctuations break the symmetry in the bimodal regime, that is, one metastable state becomes more probable than the other, increasingly so with increasing array size. To arrive at these results, we start from microscopic dynamical evolution equations from which we derive a Langevin equation that exhibits an interesting multiplicative noise structure. We also present a master equation description of the dynamics. Both of these equations lead to the same Fokker-Planck equation, the master equation via a 1/N expansion and the Langevin equation via standard methods of Itô calculus for multiplicative noise. From the Fokker-Planck equation we obtain an effective potential that reflects the transition from the monomodal to the bimodal distribution as a function of a control parameter. We present a variety of numerical and analytic results that illustrate the strong effects of the fluctuations. We also show that the limits N →∞ and t →∞ (t is the time) do not commute. In fact, the two orders of implementation lead to drastically different results.

  11. Turbulence in the Ott-Antonsen equation for arrays of coupled phase oscillators

    NASA Astrophysics Data System (ADS)

    Wolfrum, M.; Gurevich, S. V.; Omel'chenko, O. E.

    2016-02-01

    In this paper we study the transition to synchrony in an one-dimensional array of oscillators with non-local coupling. For its description in the continuum limit of a large number of phase oscillators, we use a corresponding Ott-Antonsen equation, which is an integro-differential equation for the evolution of the macroscopic profiles of the local mean field. Recently, it was reported that in the spatially extended case at the synchronisation threshold there appear partially coherent plane waves with different wave numbers, which are organised in the well-known Eckhaus scenario. In this paper, we show that for Kuramoto-Sakaguchi phase oscillators the phase lag parameter in the interaction function can induce a Benjamin-Feir-type instability of the partially coherent plane waves. The emerging collective macroscopic chaos appears as an intermediate stage between complete incoherence and stable partially coherent plane waves. We give an analytic treatment of the Benjamin-Feir instability and its onset in a codimension-two bifurcation in the Ott-Antonsen equation as well as a numerical study of the transition from phase turbulence to amplitude turbulence inside the Benjamin-Feir unstable region.

  12. Spontaneous decoherence of coupled harmonic oscillators confined in a ring

    NASA Astrophysics Data System (ADS)

    Gong, ZhiRui; Zhang, ZhenWei; Xu, DaZhi; Zhao, Nan; Sun, ChangPu

    2018-04-01

    We study the spontaneous decoherence of coupled harmonic oscillators confined in a ring container, where the nearest-neighbor harmonic potentials are taken into consideration. Without any external symmetry-breaking field or surrounding environment, the quantum superposition state prepared in the relative degrees of freedom gradually loses its quantum coherence spontaneously. This spontaneous decoherence is interpreted by the gauge couplings between the center-of-mass and the relative degrees of freedoms, which actually originate from the symmetries of the ring geometry and the corresponding nontrivial boundary conditions. In particular, such spontaneous decoherence does not occur at all at the thermodynamic limit because the nontrivial boundary conditions become the trivial Born-von Karman boundary conditions when the perimeter of the ring container tends to infinity. Our investigation shows that a thermal macroscopic object with certain symmetries has a chance for its quantum properties to degrade even without applying an external symmetry-breaking field or surrounding environment.

  13. Localization and oscillations of Majorana fermions in a two-dimensional electron gas coupled with d -wave superconductors

    NASA Astrophysics Data System (ADS)

    Ortiz, L.; Varona, S.; Viyuela, O.; Martin-Delgado, M. A.

    2018-02-01

    We study the localization and oscillation properties of the Majorana fermions that arise in a two-dimensional electron gas (2DEG) with spin-orbit coupling (SOC) and a Zeeman field coupled with a d -wave superconductor. Despite the angular dependence of the d -wave pairing, localization and oscillation properties are found to be similar to the ones seen in conventional s -wave superconductors. In addition, we study a microscopic lattice version of the previous system that can be characterized by a topological invariant. We derive its real space representation that involves nearest and next-to-nearest-neighbors pairing. Finally, we show that the emerging chiral Majorana fermions are indeed robust against static disorder. This analysis has potential applications to quantum simulations and experiments in high-Tc superconductors.

  14. Chaotic itinerancy within the coupled dynamics between a physical body and neural oscillator networks

    PubMed Central

    Mori, Hiroki; Okuyama, Yuji; Asada, Minoru

    2017-01-01

    Chaotic itinerancy is a phenomenon in which the state of a nonlinear dynamical system spontaneously explores and attracts certain states in a state space. From this perspective, the diverse behavior of animals and its spontaneous transitions lead to a complex coupled dynamical system, including a physical body and a brain. Herein, a series of simulations using different types of non-linear oscillator networks (i.e., regular, small-world, scale-free, random) with a musculoskeletal model (i.e., a snake-like robot) as a physical body are conducted to understand how the chaotic itinerancy of bodily behavior emerges from the coupled dynamics between the body and the brain. A behavior analysis (behavior clustering) and network analysis for the classified behavior are then applied. The former consists of feature vector extraction from the motions and classification of the movement patterns that emerged from the coupled dynamics. The network structures behind the classified movement patterns are revealed by estimating the “information networks” different from the given non-linear oscillator networks based on the transfer entropy which finds the information flow among neurons. The experimental results show that: (1) the number of movement patterns and their duration depend on the sensor ratio to control the balance of strength between the body and the brain dynamics and on the type of the given non-linear oscillator networks; and (2) two kinds of information networks are found behind two kinds movement patterns with different durations by utilizing the complex network measures, clustering coefficient and the shortest path length with a negative and a positive relationship with the duration periods of movement patterns. The current results seem promising for a future extension of the method to a more complicated body and environment. Several requirements are also discussed. PMID:28796797

  15. Chaotic itinerancy within the coupled dynamics between a physical body and neural oscillator networks.

    PubMed

    Park, Jihoon; Mori, Hiroki; Okuyama, Yuji; Asada, Minoru

    2017-01-01

    Chaotic itinerancy is a phenomenon in which the state of a nonlinear dynamical system spontaneously explores and attracts certain states in a state space. From this perspective, the diverse behavior of animals and its spontaneous transitions lead to a complex coupled dynamical system, including a physical body and a brain. Herein, a series of simulations using different types of non-linear oscillator networks (i.e., regular, small-world, scale-free, random) with a musculoskeletal model (i.e., a snake-like robot) as a physical body are conducted to understand how the chaotic itinerancy of bodily behavior emerges from the coupled dynamics between the body and the brain. A behavior analysis (behavior clustering) and network analysis for the classified behavior are then applied. The former consists of feature vector extraction from the motions and classification of the movement patterns that emerged from the coupled dynamics. The network structures behind the classified movement patterns are revealed by estimating the "information networks" different from the given non-linear oscillator networks based on the transfer entropy which finds the information flow among neurons. The experimental results show that: (1) the number of movement patterns and their duration depend on the sensor ratio to control the balance of strength between the body and the brain dynamics and on the type of the given non-linear oscillator networks; and (2) two kinds of information networks are found behind two kinds movement patterns with different durations by utilizing the complex network measures, clustering coefficient and the shortest path length with a negative and a positive relationship with the duration periods of movement patterns. The current results seem promising for a future extension of the method to a more complicated body and environment. Several requirements are also discussed.

  16. Chemical sensor with oscillating cantilevered probe

    DOEpatents

    Adams, Jesse D

    2013-02-05

    The invention provides a method of detecting a chemical species with an oscillating cantilevered probe. A cantilevered beam is driven into oscillation with a drive mechanism coupled to the cantilevered beam. A free end of the oscillating cantilevered beam is tapped against a mechanical stop coupled to a base end of the cantilevered beam. An amplitude of the oscillating cantilevered beam is measured with a sense mechanism coupled to the cantilevered beam. A treated portion of the cantilevered beam is exposed to the chemical species, wherein the cantilevered beam bends when exposed to the chemical species. A second amplitude of the oscillating cantilevered beam is measured, and the chemical species is determined based on the measured amplitudes.

  17. Macroscopic self-oscillations and aging transition in a network of synaptically coupled quadratic integrate-and-fire neurons.

    PubMed

    Ratas, Irmantas; Pyragas, Kestutis

    2016-09-01

    We analyze the dynamics of a large network of coupled quadratic integrate-and-fire neurons, which represent the canonical model for class I neurons near the spiking threshold. The network is heterogeneous in that it includes both inherently spiking and excitable neurons. The coupling is global via synapses that take into account the finite width of synaptic pulses. Using a recently developed reduction method based on the Lorentzian ansatz, we derive a closed system of equations for the neuron's firing rate and the mean membrane potential, which are exact in the infinite-size limit. The bifurcation analysis of the reduced equations reveals a rich scenario of asymptotic behavior, the most interesting of which is the macroscopic limit-cycle oscillations. It is shown that the finite width of synaptic pulses is a necessary condition for the existence of such oscillations. The robustness of the oscillations against aging damage, which transforms spiking neurons into nonspiking neurons, is analyzed. The validity of the reduced equations is confirmed by comparing their solutions with the solutions of microscopic equations for the finite-size networks.

  18. Observation of beat oscillation generation by coupled waves associated with parametric decay during radio frequency wave heating of a spherical tokamak plasma.

    PubMed

    Nagashima, Yoshihiko; Oosako, Takuya; Takase, Yuichi; Ejiri, Akira; Watanabe, Osamu; Kobayashi, Hiroaki; Adachi, Yuuki; Tojo, Hiroshi; Yamaguchi, Takashi; Kurashina, Hiroki; Yamada, Kotaro; An, Byung Il; Kasahara, Hiroshi; Shimpo, Fujio; Kumazawa, Ryuhei; Hayashi, Hiroyuki; Matsuzawa, Haduki; Hiratsuka, Junichi; Hanashima, Kentaro; Kakuda, Hidetoshi; Sakamoto, Takuya; Wakatsuki, Takuma

    2010-06-18

    We present an observation of beat oscillation generation by coupled modes associated with parametric decay instability (PDI) during radio frequency (rf) wave heating experiments on the Tokyo Spherical Tokamak-2. Nearly identical PDI spectra, which are characterized by the coexistence of the rf pump wave, the lower-sideband wave, and the low-frequency oscillation in the ion-cyclotron range of frequency, are observed at various locations in the edge plasma. A bispectral power analysis was used to experimentally discriminate beat oscillation from the resonant mode for the first time. The pump and lower-sideband waves have resonant mode components, while the low-frequency oscillation is exclusively excited by nonlinear coupling of the pump and lower-sideband waves. Newly discovered nonlocal transport channels in spectral space and in real space via PDI are described.

  19. Amplitude mediated chimera states with active and inactive oscillators

    NASA Astrophysics Data System (ADS)

    Mukherjee, Rupak; Sen, Abhijit

    2018-05-01

    The emergence and nature of amplitude mediated chimera states, spatio-temporal patterns of co-existing coherent and incoherent regions, are investigated for a globally coupled system of active and inactive Ginzburg-Landau oscillators. The existence domain of such states is found to shrink and shift in parametric space with the increase in the fraction of inactive oscillators. The role of inactive oscillators is found to be twofold—they get activated to form a separate region of coherent oscillations and, in addition, decrease the common collective frequency of the coherent regions by their presence. The dynamical origin of these effects is delineated through a bifurcation analysis of a reduced model system that is based on a mean field approximation. Our results may have practical implications for the robustness of such states in biological or physical systems where age related deterioration in the functionality of components can occur.

  20. Demonstrating Energy Migration in Coupled Oscillators: A Central Concept in the Theory of Unimolecular Reactions

    ERIC Educational Resources Information Center

    Marcotte, Ronald E.

    2005-01-01

    This physical chemistry lecture demonstration is designed to aid the understanding of intramolecular energy transfer processes as part of the presentation of the theory of unimolecular reaction rates. Coupled pendulums are used to show the rate of migration of energy between oscillators under resonant and nonresonant conditions with varying…

  1. Identical phase oscillators with global sinusoidal coupling evolve by Mobius group action.

    PubMed

    Marvel, Seth A; Mirollo, Renato E; Strogatz, Steven H

    2009-12-01

    Systems of N identical phase oscillators with global sinusoidal coupling are known to display low-dimensional dynamics. Although this phenomenon was first observed about 20 years ago, its underlying cause has remained a puzzle. Here we expose the structure working behind the scenes of these systems by proving that the governing equations are generated by the action of the Mobius group, a three-parameter subgroup of fractional linear transformations that map the unit disk to itself. When there are no auxiliary state variables, the group action partitions the N-dimensional state space into three-dimensional invariant manifolds (the group orbits). The N-3 constants of motion associated with this foliation are the N-3 functionally independent cross ratios of the oscillator phases. No further reduction is possible, in general; numerical experiments on models of Josephson junction arrays suggest that the invariant manifolds often contain three-dimensional regions of neutrally stable chaos.

  2. On influences of global and local cues on the rate of synchronization of oscillator networks

    PubMed Central

    Wang, Yongqiang; Doyle, Francis J.

    2011-01-01

    Synchronization of connected oscillator networks under global and local cues is ubiquitous in both science and engineering. Over the last few decades, enormous attention has been paid to study synchronization conditions of connected oscillators in chemistry, physics, mechanics, and particularly in biology. However, the influences of global and local cues on the rate of synchronization have not been fully studied. It is widespread that synchronization is achieved in the simultaneous presence of both global and local cues, such as intercellular coupling signals and external entrainment signals in terms of biological oscillators, and inter-neighbor coupling signals between follower nodes and central guiding signals in terms of groups of mobile autonomous agents. We prove in this paper that strength of the global cue is the only determinant of the rate of synchronization. More specifically, we prove that a stronger global cue means a faster rate of synchronization whereas a stronger local cue does not necessarily make the synchronization rate faster. Our results not only apply to the noise free case, but also apply to the case that the oscillator natural frequencies are subject to white noise. The analysis does not require the interplay to be symmetric or balanced. Simulation results are given to illustrate the proposed results. PMID:21607201

  3. Spectral modification of seismic waves propagating through solids exhibiting a resonance frequency: a 1-D coupled wave propagation-oscillation model

    NASA Astrophysics Data System (ADS)

    Frehner, Marcel; Schmalholz, Stefan M.; Podladchikov, Yuri

    2009-02-01

    A 1-D model is presented that couples the microscale oscillations of non-wetting fluid blobs in a partially saturated poroelastic medium with the macroscale wave propagation through the elastic skeleton. The fluid oscillations are caused by surface tension forces that act as the restoring forces driving the oscillations. The oscillations are described mathematically with the equation for a linear oscillator and the wave propagation is described with the 1-D elastic wave equation. Coupling is done using Hamilton's variational principle for continuous systems. The resulting linear system of two partial differential equations is solved numerically with explicit finite differences. Numerical simulations are used to analyse the effect of solids exhibiting internal oscillations, and consequently a resonance frequency, on seismic waves propagating through such media. The phase velocity dispersion relation shows a higher phase velocity in the high-frequency limit and a lower phase velocity in the low-frequency limit. At the resonance frequency a singularity in the dispersion relation occurs. Seismic waves can initiate oscillations of the fluid by transferring energy from solid to fluid at the resonance frequency. Due to this transfer, the spectral amplitude of the solid particle velocity decreases at the resonance frequency. After initiation, the oscillatory movement of the fluid continuously transfers energy at the resonance frequency back to the solid. Therefore, the spectral amplitude of the solid particle velocity is increased at the resonance frequency. Once initiated, fluid oscillations decrease in amplitude with increasing time. Consequently, the spectral peak of the solid particle velocity at the resonance frequency decreases with time.

  4. Coupled harmonic oscillators and their quantum entanglement.

    PubMed

    Makarov, Dmitry N

    2018-04-01

    A system of two coupled quantum harmonic oscillators with the Hamiltonian H[over ̂]=1/2(1/m_{1}p[over ̂]_{1}^{2}+1/m_{2}p[over ̂]_{2}^{2}+Ax_{1}^{2}+Bx_{2}^{2}+Cx_{1}x_{2}) can be found in many applications of quantum and nonlinear physics, molecular chemistry, and biophysics. The stationary wave function of such a system is known, but its use for the analysis of quantum entanglement is complicated because of the complexity of computing the Schmidt modes. Moreover, there is no exact analytical solution to the nonstationary Schrodinger equation H[over ̂]Ψ=iℏ∂Ψ/∂t and Schmidt modes for such a dynamic system. In this paper we find a solution to the nonstationary Schrodinger equation; we also find in an analytical form a solution to the Schmidt mode for both stationary and dynamic problems. On the basis of the Schmidt modes, the quantum entanglement of the system under consideration is analyzed. It is shown that for certain parameters of the system, quantum entanglement can be very large.

  5. Coupled harmonic oscillators and their quantum entanglement

    NASA Astrophysics Data System (ADS)

    Makarov, Dmitry N.

    2018-04-01

    A system of two coupled quantum harmonic oscillators with the Hamiltonian H ̂=1/2 (1/m1p̂1 2+1/m2p̂2 2+A x12+B x22+C x1x2) can be found in many applications of quantum and nonlinear physics, molecular chemistry, and biophysics. The stationary wave function of such a system is known, but its use for the analysis of quantum entanglement is complicated because of the complexity of computing the Schmidt modes. Moreover, there is no exact analytical solution to the nonstationary Schrodinger equation H ̂Ψ =i ℏ ∂/Ψ ∂ t and Schmidt modes for such a dynamic system. In this paper we find a solution to the nonstationary Schrodinger equation; we also find in an analytical form a solution to the Schmidt mode for both stationary and dynamic problems. On the basis of the Schmidt modes, the quantum entanglement of the system under consideration is analyzed. It is shown that for certain parameters of the system, quantum entanglement can be very large.

  6. Differential Resonant Ring YIG Tuned Oscillator

    NASA Technical Reports Server (NTRS)

    Parrott, Ronald A.

    2010-01-01

    A differential SiGe oscillator circuit uses a resonant ring-oscillator topology in order to electronically tune the oscillator over multi-octave bandwidths. The oscillator s tuning is extremely linear, because the oscillator s frequency depends on the magnetic tuning of a YIG sphere, whose resonant frequency is equal to a fundamental constant times the DC magnetic field. This extremely simple circuit topology uses two coupling loops connecting a differential pair of SiGe bipolar transistors into a feedback configuration using a YIG tuned filter creating a closed-loop ring oscillator. SiGe device technology is used for this oscillator in order to keep the transistor s 1/f noise to an absolute minimum in order to achieve minimum RF phase noise. The single-end resonant ring oscillator currently has an advantage in fewer parts, but when the oscillation frequency is greater than 16 GHz, the package s parasitic behavior couples energy to the sphere and causes holes and poor phase noise performance. This is because the coupling to the YIG is extremely low, so that the oscillator operates at near the unloaded Q. With the differential resonant ring oscillator, the oscillation currents are just in the YIG coupling mechanisms. The phase noise is even better, and the physical size can be reduced to permit monolithic microwave integrated circuit oscillators. This invention is a YIG tuned oscillator circuit making use of a differential topology to simultaneously achieve an extremely broadband electronic tuning range and ultra-low phase noise. As a natural result of its differential circuit topology, all reactive elements, such as tuning stubs, which limit tuning bandwidth by contributing excessive open loop phase shift, have been eliminated. The differential oscillator s open-loop phase shift is associated with completely non-dispersive circuit elements such as the physical angle of the coupling loops, a differential loop crossover, and the high-frequency phase shift of the n

  7. Nonreciprocity in the dynamics of coupled oscillators with nonlinearity, asymmetry, and scale hierarchy

    NASA Astrophysics Data System (ADS)

    Moore, Keegan J.; Bunyan, Jonathan; Tawfick, Sameh; Gendelman, Oleg V.; Li, Shuangbao; Leamy, Michael; Vakakis, Alexander F.

    2018-01-01

    In linear time-invariant dynamical and acoustical systems, reciprocity holds by the Onsager-Casimir principle of microscopic reversibility, and this can be broken only by odd external biases, nonlinearities, or time-dependent properties. A concept is proposed in this work for breaking dynamic reciprocity based on irreversible nonlinear energy transfers from large to small scales in a system with nonlinear hierarchical internal structure, asymmetry, and intentional strong stiffness nonlinearity. The resulting nonreciprocal large-to-small scale energy transfers mimic analogous nonlinear energy transfer cascades that occur in nature (e.g., in turbulent flows), and are caused by the strong frequency-energy dependence of the essentially nonlinear small-scale components of the system considered. The theoretical part of this work is mainly based on action-angle transformations, followed by direct numerical simulations of the resulting system of nonlinear coupled oscillators. The experimental part considers a system with two scales—a linear large-scale oscillator coupled to a small scale by a nonlinear spring—and validates the theoretical findings demonstrating nonreciprocal large-to-small scale energy transfer. The proposed study promotes a paradigm for designing nonreciprocal acoustic materials harnessing strong nonlinearity, which in a future application will be implemented in designing lattices incorporating nonlinear hierarchical internal structures, asymmetry, and scale mixing.

  8. How to couple identical ring oscillators to get quasiperiodicity, extended chaos, multistability, and the loss of symmetry

    NASA Astrophysics Data System (ADS)

    Hellen, Edward H.; Volkov, Evgeny

    2018-09-01

    We study the dynamical regimes demonstrated by a pair of identical 3-element ring oscillators (reduced version of synthetic 3-gene genetic Repressilator) coupled using the design of the 'quorum sensing (QS)' process natural for interbacterial communications. In this work QS is implemented as an additional network incorporating elements of the ring as both the source and the activation target of the fast diffusion QS signal. This version of indirect nonlinear coupling, in cooperation with the reasonable extension of the parameters which control properties of the isolated oscillators, exhibits the formation of a very rich array of attractors. Using a parameter-space defined by the individual oscillator amplitude and the coupling strength, we found the extended area of parameter-space where the identical oscillators demonstrate quasiperiodicity, which evolves to chaos via the period doubling of either resonant limit cycles or complex antiphase symmetric limit cycles with five winding numbers. The symmetric chaos extends over large parameter areas up to its loss of stability, followed by a system transition to an unexpected mode: an asymmetric limit cycle with a winding number of 1:2. In turn, after long evolution across the parameter-space, this cycle demonstrates a period doubling cascade which restores the symmetry of dynamics by formation of symmetric chaos, which nevertheless preserves the memory of the asymmetric limit cycles in the form of stochastic alternating "polarization" of the time series. All stable attractors coexist with some others, forming remarkable and complex multistability including the coexistence of torus and limit cycles, chaos and regular attractors, symmetric and asymmetric regimes. We traced the paths and bifurcations leading to all areas of chaos, and presented a detailed map of all transformations of the dynamics.

  9. Responses to applied forces and the Jarzynski equality in classical oscillator systems coupled to finite baths: an exactly solvable nondissipative nonergodic model.

    PubMed

    Hasegawa, Hideo

    2011-07-01

    Responses of small open oscillator systems to applied external forces have been studied with the use of an exactly solvable classical Caldeira-Leggett model in which a harmonic oscillator (system) is coupled to finite N-body oscillators (bath) with an identical frequency (ω(n) = ω(o) for n = 1 to N). We have derived exact expressions for positions, momenta, and energy of the system in nonequilibrium states and for work performed by applied forces. A detailed study has been made on an analytical method for canonical averages of physical quantities over the initial equilibrium state, which is much superior to numerical averages commonly adopted in simulations of small systems. The calculated energy of the system which is strongly coupled to a finite bath is fluctuating but nondissipative. It has been shown that the Jarzynski equality is valid in nondissipative nonergodic open oscillator systems regardless of the rate of applied ramp force.

  10. Cluster synchronization in networks of identical oscillators with α-function pulse coupling.

    PubMed

    Chen, Bolun; Engelbrecht, Jan R; Mirollo, Renato

    2017-02-01

    We study a network of N identical leaky integrate-and-fire model neurons coupled by α-function pulses, weighted by a coupling parameter K. Studies of the dynamics of this system have mostly focused on the stability of the fully synchronized and the fully asynchronous splay states, which naturally depends on the sign of K, i.e., excitation vs inhibition. We find that there is also a rich set of attractors consisting of clusters of fully synchronized oscillators, such as fixed (N-1,1) states, which have synchronized clusters of sizes N-1 and 1, as well as splay states of clusters with equal sizes greater than 1. Additionally, we find limit cycles that clarify the stability of previously observed quasiperiodic behavior. Our framework exploits the neutrality of the dynamics for K=0 which allows us to implement a dimensional reduction strategy that simplifies the dynamics to a continuous flow on a codimension 3 subspace with the sign of K determining the flow direction. This reduction framework naturally incorporates a hierarchy of partially synchronized subspaces in which the new attracting states lie. Using high-precision numerical simulations, we describe completely the sequence of bifurcations and the stability of all fixed points and limit cycles for N=2-4. The set of possible attracting states can be used to distinguish different classes of neuron models. For instance from our previous work [Chaos 24, 013114 (2014)CHAOEH1054-150010.1063/1.4858458] we know that of the types of partially synchronized states discussed here, only the (N-1,1) states can be stable in systems of identical coupled sinusoidal (i.e., Kuramoto type) oscillators, such as θ-neuron models. Upon introducing a small variation in individual neuron parameters, the attracting fixed points we discuss here generalize to equivalent fixed points in which neurons need not fire coincidently.

  11. Cluster synchronization in networks of identical oscillators with α -function pulse coupling

    NASA Astrophysics Data System (ADS)

    Chen, Bolun; Engelbrecht, Jan R.; Mirollo, Renato

    2017-02-01

    We study a network of N identical leaky integrate-and-fire model neurons coupled by α -function pulses, weighted by a coupling parameter K . Studies of the dynamics of this system have mostly focused on the stability of the fully synchronized and the fully asynchronous splay states, which naturally depends on the sign of K , i.e., excitation vs inhibition. We find that there is also a rich set of attractors consisting of clusters of fully synchronized oscillators, such as fixed (N -1 ,1 ) states, which have synchronized clusters of sizes N -1 and 1, as well as splay states of clusters with equal sizes greater than 1. Additionally, we find limit cycles that clarify the stability of previously observed quasiperiodic behavior. Our framework exploits the neutrality of the dynamics for K =0 which allows us to implement a dimensional reduction strategy that simplifies the dynamics to a continuous flow on a codimension 3 subspace with the sign of K determining the flow direction. This reduction framework naturally incorporates a hierarchy of partially synchronized subspaces in which the new attracting states lie. Using high-precision numerical simulations, we describe completely the sequence of bifurcations and the stability of all fixed points and limit cycles for N =2 -4 . The set of possible attracting states can be used to distinguish different classes of neuron models. For instance from our previous work [Chaos 24, 013114 (2014), 10.1063/1.4858458] we know that of the types of partially synchronized states discussed here, only the (N -1 ,1 ) states can be stable in systems of identical coupled sinusoidal (i.e., Kuramoto type) oscillators, such as θ -neuron models. Upon introducing a small variation in individual neuron parameters, the attracting fixed points we discuss here generalize to equivalent fixed points in which neurons need not fire coincidently.

  12. Stochastic Kuramoto oscillators with discrete phase states.

    PubMed

    Jörg, David J

    2017-09-01

    We present a generalization of the Kuramoto phase oscillator model in which phases advance in discrete phase increments through Poisson processes, rendering both intrinsic oscillations and coupling inherently stochastic. We study the effects of phase discretization on the synchronization and precision properties of the coupled system both analytically and numerically. Remarkably, many key observables such as the steady-state synchrony and the quality of oscillations show distinct extrema while converging to the classical Kuramoto model in the limit of a continuous phase. The phase-discretized model provides a general framework for coupled oscillations in a Markov chain setting.

  13. Stochastic Kuramoto oscillators with discrete phase states

    NASA Astrophysics Data System (ADS)

    Jörg, David J.

    2017-09-01

    We present a generalization of the Kuramoto phase oscillator model in which phases advance in discrete phase increments through Poisson processes, rendering both intrinsic oscillations and coupling inherently stochastic. We study the effects of phase discretization on the synchronization and precision properties of the coupled system both analytically and numerically. Remarkably, many key observables such as the steady-state synchrony and the quality of oscillations show distinct extrema while converging to the classical Kuramoto model in the limit of a continuous phase. The phase-discretized model provides a general framework for coupled oscillations in a Markov chain setting.

  14. Learning-enhanced coupling between ripple oscillations in association cortices and hippocampus.

    PubMed

    Khodagholy, Dion; Gelinas, Jennifer N; Buzsáki, György

    2017-10-20

    Consolidation of declarative memories requires hippocampal-neocortical communication. Although experimental evidence supports the role of sharp-wave ripples in transferring hippocampal information to the neocortex, the exact cortical destinations and the physiological mechanisms of such transfer are not known. We used a conducting polymer-based conformable microelectrode array (NeuroGrid) to record local field potentials and neural spiking across the dorsal cortical surface of the rat brain, combined with silicon probe recordings in the hippocampus, to identify candidate physiological patterns. Parietal, midline, and prefrontal, but not primary cortical areas, displayed localized ripple (100 to 150 hertz) oscillations during sleep, concurrent with hippocampal ripples. Coupling between hippocampal and neocortical ripples was strengthened during sleep following learning. These findings suggest that ripple-ripple coupling supports hippocampal-association cortical transfer of memory traces. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  15. Fano Interference in Classical Oscillators

    ERIC Educational Resources Information Center

    Satpathy, S.; Roy, A.; Mohapatra, A.

    2012-01-01

    We seek to illustrate Fano interference in a classical coupled oscillator by using classical analogues of the atom-laser interaction. We present an analogy between the dressed state picture of coherent atom-laser interaction and a classical coupled oscillator. The Autler-Townes splitting due to the atom-laser interaction is analogous to the…

  16. Impact of hyperbolicity on chimera states in ensembles of nonlocally coupled chaotic oscillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Semenova, N.; Anishchenko, V.; Zakharova, A.

    2016-06-08

    In this work we analyse nonlocally coupled networks of identical chaotic oscillators. We study both time-discrete and time-continuous systems (Henon map, Lozi map, Lorenz system). We hypothesize that chimera states, in which spatial domains of coherent (synchronous) and incoherent (desynchronized) dynamics coexist, can be obtained only in networks of chaotic non-hyperbolic systems and cannot be found in networks of hyperbolic systems. This hypothesis is supported by numerical simulations for hyperbolic and non-hyperbolic cases.

  17. Dynamics in hybrid complex systems of switches and oscillators

    NASA Astrophysics Data System (ADS)

    Taylor, Dane; Fertig, Elana J.; Restrepo, Juan G.

    2013-09-01

    While considerable progress has been made in the analysis of large systems containing a single type of coupled dynamical component (e.g., coupled oscillators or coupled switches), systems containing diverse components (e.g., both oscillators and switches) have received much less attention. We analyze large, hybrid systems of interconnected Kuramoto oscillators and Hopfield switches with positive feedback. In this system, oscillator synchronization promotes switches to turn on. In turn, when switches turn on, they enhance the synchrony of the oscillators to which they are coupled. Depending on the choice of parameters, we find theoretically coexisting stable solutions with either (i) incoherent oscillators and all switches permanently off, (ii) synchronized oscillators and all switches permanently on, or (iii) synchronized oscillators and switches that periodically alternate between the on and off states. Numerical experiments confirm these predictions. We discuss how transitions between these steady state solutions can be onset deterministically through dynamic bifurcations or spontaneously due to finite-size fluctuations.

  18. On controlling networks of limit-cycle oscillators

    NASA Astrophysics Data System (ADS)

    Skardal, Per Sebastian; Arenas, Alex

    2016-09-01

    The control of network-coupled nonlinear dynamical systems is an active area of research in the nonlinear science community. Coupled oscillator networks represent a particularly important family of nonlinear systems, with applications ranging from the power grid to cardiac excitation. Here, we study the control of network-coupled limit cycle oscillators, extending the previous work that focused on phase oscillators. Based on stabilizing a target fixed point, our method aims to attain complete frequency synchronization, i.e., consensus, by applying control to as few oscillators as possible. We develop two types of controls. The first type directs oscillators towards larger amplitudes, while the second does not. We present numerical examples of both control types and comment on the potential failures of the method.

  19. Synchronizing stochastic circadian oscillators in single cells of Neurospora crassa

    NASA Astrophysics Data System (ADS)

    Deng, Zhaojie; Arsenault, Sam; Caranica, Cristian; Griffith, James; Zhu, Taotao; Al-Omari, Ahmad; Schüttler, Heinz-Bernd; Arnold, Jonathan; Mao, Leidong

    2016-10-01

    The synchronization of stochastic coupled oscillators is a central problem in physics and an emerging problem in biology, particularly in the context of circadian rhythms. Most measurements on the biological clock are made at the macroscopic level of millions of cells. Here measurements are made on the oscillators in single cells of the model fungal system, Neurospora crassa, with droplet microfluidics and the use of a fluorescent recorder hooked up to a promoter on a clock controlled gene-2 (ccg-2). The oscillators of individual cells are stochastic with a period near 21 hours (h), and using a stochastic clock network ensemble fitted by Markov Chain Monte Carlo implemented on general-purpose graphical processing units (or GPGPUs) we estimated that >94% of the variation in ccg-2 expression was stochastic (as opposed to experimental error). To overcome this stochasticity at the macroscopic level, cells must synchronize their oscillators. Using a classic measure of similarity in cell trajectories within droplets, the intraclass correlation (ICC), the synchronization surface ICC is measured on >25,000 cells as a function of the number of neighboring cells within a droplet and of time. The synchronization surface provides evidence that cells communicate, and synchronization varies with genotype.

  20. Synchronizing stochastic circadian oscillators in single cells of Neurospora crassa

    PubMed Central

    Deng, Zhaojie; Arsenault, Sam; Caranica, Cristian; Griffith, James; Zhu, Taotao; Al-Omari, Ahmad; Schüttler, Heinz-Bernd; Arnold, Jonathan; Mao, Leidong

    2016-01-01

    The synchronization of stochastic coupled oscillators is a central problem in physics and an emerging problem in biology, particularly in the context of circadian rhythms. Most measurements on the biological clock are made at the macroscopic level of millions of cells. Here measurements are made on the oscillators in single cells of the model fungal system, Neurospora crassa, with droplet microfluidics and the use of a fluorescent recorder hooked up to a promoter on a clock controlled gene-2 (ccg-2). The oscillators of individual cells are stochastic with a period near 21 hours (h), and using a stochastic clock network ensemble fitted by Markov Chain Monte Carlo implemented on general-purpose graphical processing units (or GPGPUs) we estimated that >94% of the variation in ccg-2 expression was stochastic (as opposed to experimental error). To overcome this stochasticity at the macroscopic level, cells must synchronize their oscillators. Using a classic measure of similarity in cell trajectories within droplets, the intraclass correlation (ICC), the synchronization surface ICC is measured on >25,000 cells as a function of the number of neighboring cells within a droplet and of time. The synchronization surface provides evidence that cells communicate, and synchronization varies with genotype. PMID:27786253

  1. Photon-phonon parametric oscillation induced by quadratic coupling in an optomechanical resonator

    NASA Astrophysics Data System (ADS)

    Zhang, Lin; Ji, Fengzhou; Zhang, Xu; Zhang, Weiping

    2017-07-01

    A direct photon-phonon parametric effect of quadratic coupling on the mean-field dynamics of an optomechanical resonator in the large-scale-movement regime is found and investigated. Under a weak pumping power, the mechanical resonator damps to a steady state with a nonlinear static response sensitively modified by the quadratic coupling. When the driving power increases beyond the static energy balance, the steady states lose their stabilities via Hopf bifurcations, and the resonator produces stable self-sustained oscillation (limit-circle behavior) of discrete energies with step-like amplitudes due to the parametric effect of quadratic coupling, which can be understood roughly by the power balance between gain and loss on the resonator. A further increase in the pumping power can induce a chaotic dynamic of the resonator via a typical routine of period-doubling bifurcation, but which can be stabilized by the parametric effect through an inversion-bifurcation process back to the limit-circle states. The bifurcation-to-inverse-bifurcation transitions are numerically verified by the maximal Lyapunov exponents of the dynamics, which indicate an efficient way of suppressing the chaotic behavior of the optomechanical resonator by quadratic coupling. Furthermore, the parametric effect of quadratic coupling on the dynamic transitions of an optomechanical resonator can be conveniently detected or traced by the output power spectrum of the cavity field.

  2. Local complexity predicts global synchronization of hierarchically networked oscillators

    NASA Astrophysics Data System (ADS)

    Xu, Jin; Park, Dong-Ho; Jo, Junghyo

    2017-07-01

    We study the global synchronization of hierarchically-organized Stuart-Landau oscillators, where each subsystem consists of three oscillators with activity-dependent couplings. We considered all possible coupling signs between the three oscillators, and found that they can generate different numbers of phase attractors depending on the network motif. Here, the subsystems are coupled through mean activities of total oscillators. Under weak inter-subsystem couplings, we demonstrate that the synchronization between subsystems is highly correlated with the number of attractors in uncoupled subsystems. Among the network motifs, perfect anti-symmetric ones are unique to generate both single and multiple attractors depending on the activities of oscillators. The flexible local complexity can make global synchronization controllable.

  3. Heat transport in oscillator chains with long-range interactions coupled to thermal reservoirs

    NASA Astrophysics Data System (ADS)

    Iubini, Stefano; Di Cintio, Pierfrancesco; Lepri, Stefano; Livi, Roberto; Casetti, Lapo

    2018-03-01

    We investigate thermal conduction in arrays of long-range interacting rotors and Fermi-Pasta-Ulam (FPU) oscillators coupled to two reservoirs at different temperatures. The strength of the interaction between two lattice sites decays as a power α of the inverse of their distance. We point out the necessity of distinguishing between energy flows towards or from the reservoirs and those within the system. We show that energy flow between the reservoirs occurs via a direct transfer induced by long-range couplings and a diffusive process through the chain. To this aim, we introduce a decomposition of the steady-state heat current that explicitly accounts for such direct transfer of energy between the reservoir. For 0 ≤α <1 , the direct transfer term dominates, meaning that the system can be effectively described as a set of oscillators each interacting with the thermal baths. Also, the heat current exchanged with the reservoirs depends on the size of the thermalized regions: In the case in which such size is proportional to the system size N , the stationary current is independent on N . For α >1 , heat transport mostly occurs through diffusion along the chain: For the rotors transport is normal, while for FPU the data are compatible with an anomalous diffusion, possibly with an α -dependent characteristic exponent.

  4. Heat transport in oscillator chains with long-range interactions coupled to thermal reservoirs.

    PubMed

    Iubini, Stefano; Di Cintio, Pierfrancesco; Lepri, Stefano; Livi, Roberto; Casetti, Lapo

    2018-03-01

    We investigate thermal conduction in arrays of long-range interacting rotors and Fermi-Pasta-Ulam (FPU) oscillators coupled to two reservoirs at different temperatures. The strength of the interaction between two lattice sites decays as a power α of the inverse of their distance. We point out the necessity of distinguishing between energy flows towards or from the reservoirs and those within the system. We show that energy flow between the reservoirs occurs via a direct transfer induced by long-range couplings and a diffusive process through the chain. To this aim, we introduce a decomposition of the steady-state heat current that explicitly accounts for such direct transfer of energy between the reservoir. For 0≤α<1, the direct transfer term dominates, meaning that the system can be effectively described as a set of oscillators each interacting with the thermal baths. Also, the heat current exchanged with the reservoirs depends on the size of the thermalized regions: In the case in which such size is proportional to the system size N, the stationary current is independent on N. For α>1, heat transport mostly occurs through diffusion along the chain: For the rotors transport is normal, while for FPU the data are compatible with an anomalous diffusion, possibly with an α-dependent characteristic exponent.

  5. Coronal loop seismology using damping of standing kink oscillations by mode coupling. II. additional physical effects and Bayesian analysis

    NASA Astrophysics Data System (ADS)

    Pascoe, D. J.; Anfinogentov, S.; Nisticò, G.; Goddard, C. R.; Nakariakov, V. M.

    2017-04-01

    Context. The strong damping of kink oscillations of coronal loops can be explained by mode coupling. The damping envelope depends on the transverse density profile of the loop. Observational measurements of the damping envelope have been used to determine the transverse loop structure which is important for understanding other physical processes such as heating. Aims: The general damping envelope describing the mode coupling of kink waves consists of a Gaussian damping regime followed by an exponential damping regime. Recent observational detection of these damping regimes has been employed as a seismological tool. We extend the description of the damping behaviour to account for additional physical effects, namely a time-dependent period of oscillation, the presence of additional longitudinal harmonics, and the decayless regime of standing kink oscillations. Methods: We examine four examples of standing kink oscillations observed by the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO). We use forward modelling of the loop position and investigate the dependence on the model parameters using Bayesian inference and Markov chain Monte Carlo (MCMC) sampling. Results: Our improvements to the physical model combined with the use of Bayesian inference and MCMC produce improved estimates of model parameters and their uncertainties. Calculation of the Bayes factor also allows us to compare the suitability of different physical models. We also use a new method based on spline interpolation of the zeroes of the oscillation to accurately describe the background trend of the oscillating loop. Conclusions: This powerful and robust method allows for accurate seismology of coronal loops, in particular the transverse density profile, and potentially reveals additional physical effects.

  6. Deformation of biological cells in the acoustic field of an oscillating bubble.

    PubMed

    Zinin, Pavel V; Allen, John S

    2009-02-01

    In this work we develop a theoretical framework of the interaction of microbubbles with bacteria in the ultrasound field using a shell model of the bacteria, following an approach developed previously [P. V. Zinin, Phys. Rev. E 72, 61907 (2005)]. Within the shell model, the motion of the cell in an ultrasonic field is determined by the motion of three components: the internal viscous fluid, a thin elastic shell, and the surrounding viscous fluid. Several conclusions can be drawn from the modeling of sound interaction with a biological cell: (a) the characteristics of a cell's oscillations in an ultrasonic field are determined both by the elastic properties of the shell the viscosities of all components of the system, (b) for dipole quadrupole oscillations the cell's shell deforms due to a change in the shell area this oscillation depends on the surface area modulus K{A} , (c) the relative change in the area has a maximum at frequency f{K} approximately 1/2pi square root[K{A}(rhoa;{3})] , where a is the cell's radius and rho is its density. It was predicted that deformation of the cell wall at the frequency f{K} is high enough to rupture small bacteria such as E . coli in which the quality factor of natural vibrations is less than 1 (Q<1). For bacteria with high value quality factors (Q>1) , the area deformation has a strong peak near a resonance frequency f{K} however, the value of the deformation near the resonance frequency is not high enough to produce sufficient mechanical effect. The theoretical framework developed in this work can be extended for describing the deformation of a biological cell under any arbitrary, external periodic force including radiation forces unduced by acoustical (acoustical levitation) or optical waves (optical tweezers).

  7. Deformation of biological cells in the acoustic field of an oscillating bubble

    PubMed Central

    Zinin, Pavel V.; Allen, John S.

    2009-01-01

    In this work we develop a theoretical framework of the interaction of microbubbles with bacteria in the ultrasound field using a shell model of the bacteria, following an approach developed previously [P. V. Zinin et al., Phys. Rev. E 72, 61907 (2005)]. Within the shell model, the motion of the cell in an ultrasonic field is determined by the motion of three components: the internal viscous fluid, a thin elastic shell, and the surrounding viscous fluid. Several conclusions can be drawn from the modeling of sound interaction with a biological cell: (a) the characteristics of a cell’s oscillations in an ultrasonic field are determined both by the elastic properties of the shell the viscosities of all components of the system, (b) for dipole quadrupole oscillations the cell’s shell deforms due to a change in the shell area this oscillation depends on the surface area modulus KA, (c) the relative change in the area has a maximum at frequency fK∼12πKA/(ρa3), where a is the cell’s radius and ρ is its density. It was predicted that deformation of the cell wall at the frequency fK is high enough to rupture small bacteria such as E. coli in which the quality factor of natural vibrations is less than 1 (Q < 1). For bacteria with high value quality factors (Q > 1), the area deformation has a strong peak near a resonance frequency fK; however, the value of the deformation near the resonance frequency is not high enough to produce sufficient mechanical effect. The theoretical framework developed in this work can be extended for describing the deformation of a biological cell under any arbitrary, external periodic force including radiation forces unduced by acoustical (acoustical levitation) or optical waves (optical tweezers). PMID:19391781

  8. Deformation of biological cells in the acoustic field of an oscillating bubble

    NASA Astrophysics Data System (ADS)

    Zinin, Pavel V.; Allen, John S., III

    2009-02-01

    In this work we develop a theoretical framework of the interaction of microbubbles with bacteria in the ultrasound field using a shell model of the bacteria, following an approach developed previously [P. V. Zinin , Phys. Rev. E 72, 61907 (2005)]. Within the shell model, the motion of the cell in an ultrasonic field is determined by the motion of three components: the internal viscous fluid, a thin elastic shell, and the surrounding viscous fluid. Several conclusions can be drawn from the modeling of sound interaction with a biological cell: (a) the characteristics of a cell’s oscillations in an ultrasonic field are determined both by the elastic properties of the shell the viscosities of all components of the system, (b) for dipole quadrupole oscillations the cell’s shell deforms due to a change in the shell area this oscillation depends on the surface area modulus KA , (c) the relative change in the area has a maximum at frequency fK˜(1)/(2π)KA/(ρa3) , where a is the cell’s radius and ρ is its density. It was predicted that deformation of the cell wall at the frequency fK is high enough to rupture small bacteria such as E . coli in which the quality factor of natural vibrations is less than 1 (Q<1) . For bacteria with high value quality factors (Q>1) , the area deformation has a strong peak near a resonance frequency fK ; however, the value of the deformation near the resonance frequency is not high enough to produce sufficient mechanical effect. The theoretical framework developed in this work can be extended for describing the deformation of a biological cell under any arbitrary, external periodic force including radiation forces unduced by acoustical (acoustical levitation) or optical waves (optical tweezers).

  9. Standing waves, clustering, and phase waves in 1D simulations of kinetic relaxation oscillations in NO+NH 3 on Pt(1 0 0) coupled by diffusion

    NASA Astrophysics Data System (ADS)

    Uecker, Hannes

    2004-04-01

    The Lombardo-Imbihl-Fink (LFI) ODE model of the NO+NH 3 reaction on a Pt(1 0 0) surface shows stable relaxation oscillations with very sharp transitions for temperatures T between 404 and 433 K. Here we study numerically the effect of linear diffusive coupling of these oscillators in one spatial dimension. Depending on the parameters and initial conditions we find a rich variety of spatio-temporal patterns which we group into four main regimes: bulk oscillations (BOs), standing waves (SW), phase clusters (PC), and phase waves (PW). Two key ingredients for SW and PC are identified, namely the relaxation type of the ODE oscillations and a nonlocal (and nonglobal) coupling due to relatively fast diffusion of the kinetically slaved variables NH 3 and H. In particular, the latter replaces the global coupling through the gas phase used to obtain SW and PC in models of related surface reactions. The PW exist only under the assumption of (relatively) slow diffusion of NH 3 and H.

  10. Predictability of spatio-temporal patterns in a lattice of coupled FitzHugh–Nagumo oscillators

    PubMed Central

    Grace, Miriam; Hütt, Marc-Thorsten

    2013-01-01

    In many biological systems, variability of the components can be expected to outrank statistical fluctuations in the shaping of self-organized patterns. In pioneering work in the late 1990s, it was hypothesized that a drift of cellular parameters (along a ‘developmental path’), together with differences in cell properties (‘desynchronization’ of cells on the developmental path) can establish self-organized spatio-temporal patterns (in their example, spiral waves of cAMP in a colony of Dictyostelium discoideum cells) starting from a homogeneous state. Here, we embed a generic model of an excitable medium, a lattice of diffusively coupled FitzHugh–Nagumo oscillators, into a developmental-path framework. In this minimal model of spiral wave generation, we can now study the predictability of spatio-temporal patterns from cell properties as a function of desynchronization (or ‘spread’) of cells along the developmental path and the drift speed of cell properties on the path. As a function of drift speed and desynchronization, we observe systematically different routes towards fully established patterns, as well as strikingly different correlations between cell properties and pattern features. We show that the predictability of spatio-temporal patterns from cell properties contains important information on the pattern formation process as well as on the underlying dynamical system. PMID:23349439

  11. Acetylcholine Release in Prefrontal Cortex Promotes Gamma Oscillations and Theta-Gamma Coupling during Cue Detection.

    PubMed

    Howe, William M; Gritton, Howard J; Lusk, Nicholas A; Roberts, Erik A; Hetrick, Vaughn L; Berke, Joshua D; Sarter, Martin

    2017-03-22

    The capacity for using external cues to guide behavior ("cue detection") constitutes an essential aspect of attention and goal-directed behavior. The cortical cholinergic input system, via phasic increases in prefrontal acetylcholine release, plays an essential role in attention by mediating such cue detection. However, the relationship between cholinergic signaling during cue detection and neural activity dynamics in prefrontal networks remains unclear. Here we combined subsecond measures of cholinergic signaling, neurophysiological recordings, and cholinergic receptor blockade to delineate the cholinergic contributions to prefrontal oscillations during cue detection in rats. We first confirmed that detected cues evoke phasic acetylcholine release. These cholinergic signals were coincident with increased neuronal synchrony across several frequency bands and the emergence of theta-gamma coupling. Muscarinic and nicotinic cholinergic receptors both contributed specifically to gamma synchrony evoked by detected cues, but the effects of blocking the two receptor subtypes were dissociable. Blocking nicotinic receptors primarily attenuated high-gamma oscillations occurring during the earliest phases of the cue detection process, while muscarinic (M1) receptor activity was preferentially involved in the transition from high to low gamma power that followed and corresponded to the mobilization of networks involved in cue-guided decision making. Detected cues also promoted coupling between gamma and theta oscillations, and both nicotinic and muscarinic receptor activity contributed to this process. These results indicate that acetylcholine release coordinates neural oscillations during the process of cue detection. SIGNIFICANCE STATEMENT The capacity of learned cues to direct attention and guide responding ("cue detection") is a key component of goal-directed behavior. Rhythmic neural activity and increases in acetylcholine release in the prefrontal cortex contribute to

  12. Acetylcholine Release in Prefrontal Cortex Promotes Gamma Oscillations and Theta–Gamma Coupling during Cue Detection

    PubMed Central

    Hetrick, Vaughn L.; Berke, Joshua D.

    2017-01-01

    The capacity for using external cues to guide behavior (“cue detection”) constitutes an essential aspect of attention and goal-directed behavior. The cortical cholinergic input system, via phasic increases in prefrontal acetylcholine release, plays an essential role in attention by mediating such cue detection. However, the relationship between cholinergic signaling during cue detection and neural activity dynamics in prefrontal networks remains unclear. Here we combined subsecond measures of cholinergic signaling, neurophysiological recordings, and cholinergic receptor blockade to delineate the cholinergic contributions to prefrontal oscillations during cue detection in rats. We first confirmed that detected cues evoke phasic acetylcholine release. These cholinergic signals were coincident with increased neuronal synchrony across several frequency bands and the emergence of theta–gamma coupling. Muscarinic and nicotinic cholinergic receptors both contributed specifically to gamma synchrony evoked by detected cues, but the effects of blocking the two receptor subtypes were dissociable. Blocking nicotinic receptors primarily attenuated high-gamma oscillations occurring during the earliest phases of the cue detection process, while muscarinic (M1) receptor activity was preferentially involved in the transition from high to low gamma power that followed and corresponded to the mobilization of networks involved in cue-guided decision making. Detected cues also promoted coupling between gamma and theta oscillations, and both nicotinic and muscarinic receptor activity contributed to this process. These results indicate that acetylcholine release coordinates neural oscillations during the process of cue detection. SIGNIFICANCE STATEMENT The capacity of learned cues to direct attention and guide responding (“cue detection”) is a key component of goal-directed behavior. Rhythmic neural activity and increases in acetylcholine release in the prefrontal cortex

  13. Emergence of amplitude death scenario in a network of oscillators under repulsive delay interaction

    NASA Astrophysics Data System (ADS)

    Bera, Bidesh K.; Hens, Chittaranjan; Ghosh, Dibakar

    2016-07-01

    We report the existence of amplitude death in a network of identical oscillators under repulsive mean coupling. Amplitude death appears in a globally coupled network of identical oscillators with instantaneous repulsive mean coupling only when the number of oscillators is more than two. We further investigate that, amplitude death may emerge even in two coupled oscillators as well as network of oscillators if we introduce delay time in the repulsive mean coupling. We have analytically derived the region of amplitude death island and find out how strength of delay controls the death regime in two coupled or a large network of coupled oscillators. We have verified our results on network of delayed Mackey-Glass systems where parameters are set in hyperchaotic regime. We have also tested our coupling approach in two paradigmatic limit cycle oscillators: Stuart-Landau and Van der Pol oscillators.

  14. Fast Dynamical Coupling Enhances Frequency Adaptation of Oscillators for Robotic Locomotion Control

    PubMed Central

    Nachstedt, Timo; Tetzlaff, Christian; Manoonpong, Poramate

    2017-01-01

    Rhythmic neural signals serve as basis of many brain processes, in particular of locomotion control and generation of rhythmic movements. It has been found that specific neural circuits, named central pattern generators (CPGs), are able to autonomously produce such rhythmic activities. In order to tune, shape and coordinate the produced rhythmic activity, CPGs require sensory feedback, i.e., external signals. Nonlinear oscillators are a standard model of CPGs and are used in various robotic applications. A special class of nonlinear oscillators are adaptive frequency oscillators (AFOs). AFOs are able to adapt their frequency toward the frequency of an external periodic signal and to keep this learned frequency once the external signal vanishes. AFOs have been successfully used, for instance, for resonant tuning of robotic locomotion control. However, the choice of parameters for a standard AFO is characterized by a trade-off between the speed of the adaptation and its precision and, additionally, is strongly dependent on the range of frequencies the AFO is confronted with. As a result, AFOs are typically tuned such that they require a comparably long time for their adaptation. To overcome the problem, here, we improve the standard AFO by introducing a novel adaptation mechanism based on dynamical coupling strengths. The dynamical adaptation mechanism enhances both the speed and precision of the frequency adaptation. In contrast to standard AFOs, in this system, the interplay of dynamics on short and long time scales enables fast as well as precise adaptation of the oscillator for a wide range of frequencies. Amongst others, a very natural implementation of this mechanism is in terms of neural networks. The proposed system enables robotic applications which require fast retuning of locomotion control in order to react to environmental changes or conditions. PMID:28377710

  15. Multichannel X-Band Dielectric-Resonator Oscillator

    NASA Technical Reports Server (NTRS)

    Mysoor, Narayan; Dennis, Matthew; Cook, Brian

    2006-01-01

    A multichannel dielectric-resonator oscillator (DRO), built as a prototype of a local oscillator for an X-band transmitter or receiver, is capable of being electrically tuned among and within 26 adjacent frequency channels, each 1.16 MHz wide, in a band ranging from 7,040 to 7,070 GHz. The tunability of this oscillator is what sets it apart from other DROs, making it possible to use mass-produced oscillator units of identical design in diverse X-band applications in which there are requirements to use different fixed frequencies or to switch among frequency channels. The oscillator (see figure) includes a custom-designed voltage-controlled-oscillator (VCO) monolithic microwave integrated circuit (MMIC), a dielectric resonator disk (puck), and two varactor-coupling circuits, all laid out on a 25-mil (0.635-mm)-thick alumina substrate having a length and width of 17.8 mm. The resonator disk has a diameter of 8.89 mm and a thickness of 4.01 mm. The oscillator is mounted in an 8.9-mm-deep cavity in a metal housing. The VCO MMIC incorporates a negative- resistance oscillator amplifier along with a buffer amplifier. The resonator disk is coupled to a microstrip transmission line connected to the negative-resistance port of the VCO MMIC. The two varactor-coupling circuits include microstrip lines, laid out orthogonally to each other, for coupling with the resonator disk. Each varactor microstrip line is DC-coupled to an external port via a microwave choke. One varactor is used for coarse tuning to select a channel; the other varactor is used (1) for fine tuning across the 1.16-MHz width of each channel and (2) as a feedback port for a phase-lock loop. The resonator disk is positioned to obtain (1) the most desirable bandwidth, (2) relatively tight coupling with the microstrip connected to the coarse-tuning varactor, and (3) relatively loose coupling with the microstrip connected to the fine-tuning varactor. Measurements of performance showed that the oscillator can be

  16. Coexisting synchronous and asynchronous states in locally coupled array of oscillators by partial self-feedback control

    NASA Astrophysics Data System (ADS)

    Bera, Bidesh K.; Ghosh, Dibakar; Parmananda, Punit; Osipov, G. V.; Dana, Syamal K.

    2017-07-01

    We report the emergence of coexisting synchronous and asynchronous subpopulations of oscillators in one dimensional arrays of identical oscillators by applying a self-feedback control. When a self-feedback is applied to a subpopulation of the array, similar to chimera states, it splits into two/more sub-subpopulations coexisting in coherent and incoherent states for a range of self-feedback strength. By tuning the coupling between the nearest neighbors and the amount of self-feedback in the perturbed subpopulation, the size of the coherent and the incoherent sub-subpopulations in the array can be controlled, although the exact size of them is unpredictable. We present numerical evidence using the Landau-Stuart system and the Kuramoto-Sakaguchi phase model.

  17. Simplification and its consequences in biological modelling: conclusions from a study of calcium oscillations in hepatocytes.

    PubMed

    Hetherington, James P J; Warner, Anne; Seymour, Robert M

    2006-04-22

    Systems Biology requires that biological modelling is scaled up from small components to system level. This can produce exceedingly complex models, which obscure understanding rather than facilitate it. The successful use of highly simplified models would resolve many of the current problems faced in Systems Biology. This paper questions whether the conclusions of simple mathematical models of biological systems are trustworthy. The simplification of a specific model of calcium oscillations in hepatocytes is examined in detail, and the conclusions drawn from this scrutiny generalized. We formalize our choice of simplification approach through the use of functional 'building blocks'. A collection of models is constructed, each a progressively more simplified version of a well-understood model. The limiting model is a piecewise linear model that can be solved analytically. We find that, as expected, in many cases the simpler models produce incorrect results. However, when we make a sensitivity analysis, examining which aspects of the behaviour of the system are controlled by which parameters, the conclusions of the simple model often agree with those of the richer model. The hypothesis that the simplified model retains no information about the real sensitivities of the unsimplified model can be very strongly ruled out by treating the simplification process as a pseudo-random perturbation on the true sensitivity data. We conclude that sensitivity analysis is, therefore, of great importance to the analysis of simple mathematical models in biology. Our comparisons reveal which results of the sensitivity analysis regarding calcium oscillations in hepatocytes are robust to the simplifications necessarily involved in mathematical modelling. For example, we find that if a treatment is observed to strongly decrease the period of the oscillations while increasing the proportion of the cycle during which cellular calcium concentrations are rising, without affecting the inter

  18. Rapid, high-frequency, and theta-coupled gamma oscillations in the inferior occipital gyrus during face processing.

    PubMed

    Sato, Wataru; Kochiyama, Takanori; Uono, Shota; Matsuda, Kazumi; Usui, Keiko; Inoue, Yushi; Toichi, Motomi

    2014-11-01

    Neuroimaging studies have found greater activation in the inferior occipital gyrus (IOG), or occipital face area, in response to faces relative to non-facial stimuli. However, the temporal, frequency, and functional profiles of IOG activity during face processing remain unclear. Here, this issue was investigated by recording intracranial field potentials in the IOG during the presentation of faces, mosaics, and houses in upright and inverted orientations. Time-frequency statistical parametric mapping analyses revealed greater gamma-band activation in the IOG beginning at 110 msec and covering 40-300 Hz in response to upright faces relative to upright houses and mosaics. Phase-amplitude cross-frequency coupling analyses revealed more evident theta-gamma couplings at 115-256 msec during the processing of upright faces as compared with that of upright houses and mosaics. Comparable gamma-band activity was observed during the processing of inverted and upright faces at about 100-200 msec, but weaker activity and different coupling with theta-band activity after 200 msec. These patterns of activity were more evident in the right than in the left IOG. These results, together with other evidence on neural communication, suggest that broadband gamma oscillations in the right IOG conduct rapid and multistage (i.e., both featural and configural) face processing in collaboration with theta oscillations transmitted from other brain regions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Dynamical Bayesian inference of time-evolving interactions: from a pair of coupled oscillators to networks of oscillators.

    PubMed

    Duggento, Andrea; Stankovski, Tomislav; McClintock, Peter V E; Stefanovska, Aneta

    2012-12-01

    Living systems have time-evolving interactions that, until recently, could not be identified accurately from recorded time series in the presence of noise. Stankovski et al. [Phys. Rev. Lett. 109, 024101 (2012)] introduced a method based on dynamical Bayesian inference that facilitates the simultaneous detection of time-varying synchronization, directionality of influence, and coupling functions. It can distinguish unsynchronized dynamics from noise-induced phase slips. The method is based on phase dynamics, with Bayesian inference of the time-evolving parameters being achieved by shaping the prior densities to incorporate knowledge of previous samples. We now present the method in detail using numerically generated data, data from an analog electronic circuit, and cardiorespiratory data. We also generalize the method to encompass networks of interacting oscillators and thus demonstrate its applicability to small-scale networks.

  20. True-slime-mould-inspired hydrostatically coupled oscillator system exhibiting versatile behaviours.

    PubMed

    Umedachi, Takuya; Idei, Ryo; Ito, Kentaro; Ishiguro, Akio

    2013-09-01

    Behavioural diversity is an indispensable attribute of living systems, which makes them intrinsically adaptive and responsive to the demands of a dynamically changing environment. In contrast, conventional engineering approaches struggle to suppress behavioural diversity in artificial systems to reach optimal performance in given environments for desired tasks. The goals of this research include understanding the essential mechanism that endows living systems with behavioural diversity and implementing the mechanism in robots to exhibit adaptive behaviours. For this purpose, we have focused on an amoeba-like unicellular organism: the plasmodium of true slime mould. Despite the absence of a central nervous system, the plasmodium exhibits versatile spatiotemporal oscillatory patterns and switches spontaneously among these patterns. By exploiting this behavioural diversity, it is able to exhibit adaptive behaviour according to the situation encountered. Inspired by this organism, we built a real physical robot using hydrostatically coupled oscillators that produce versatile oscillatory patterns and spontaneous transitions among the patterns. The experimental results show that exploiting physical hydrostatic interplay—the physical dynamics of the robot—allows simple phase oscillators to promote versatile behaviours. The results can contribute to an understanding of how a living system generates versatile and adaptive behaviours with physical interplays among body parts.

  1. Human sleep and circadian rhythms: a simple model based on two coupled oscillators.

    PubMed

    Strogatz, S H

    1987-01-01

    We propose a model of the human circadian system. The sleep-wake and body temperature rhythms are assumed to be driven by a pair of coupled nonlinear oscillators described by phase variables alone. The novel aspect of the model is that its equations may be solved analytically. Computer simulations are used to test the model against sleep-wake data pooled from 15 studies of subjects living for weeks in unscheduled, time-free environments. On these tests the model performs about as well as the existing models, although its mathematical structure is far simpler.

  2. Bifurcation analysis of eight coupled degenerate optical parametric oscillators

    NASA Astrophysics Data System (ADS)

    Ito, Daisuke; Ueta, Tetsushi; Aihara, Kazuyuki

    2018-06-01

    A degenerate optical parametric oscillator (DOPO) network realized as a coherent Ising machine can be used to solve combinatorial optimization problems. Both theoretical and experimental investigations into the performance of DOPO networks have been presented previously. However a problem remains, namely that the dynamics of the DOPO network itself can lower the search success rates of globally optimal solutions for Ising problems. This paper shows that the problem is caused by pitchfork bifurcations due to the symmetry structure of coupled DOPOs. Some two-parameter bifurcation diagrams of equilibrium points express the performance deterioration. It is shown that the emergence of non-ground states regarding local minima hampers the system from reaching the ground states corresponding to the global minimum. We then describe a parametric strategy for leading a system to the ground state by actively utilizing the bifurcation phenomena. By adjusting the parameters to break particular symmetry, we find appropriate parameter sets that allow the coherent Ising machine to obtain the globally optimal solution alone.

  3. On the stability analysis of a pair of van der Pol oscillators with delayed self-connection, position and velocity couplings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Kun; Department of Mathematics, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon; Chung, Kwok-wai, E-mail: makchung@cityu.edu.hk

    2013-11-15

    In this paper, we perform a stability analysis of a pair of van der Pol oscillators with delayed self-connection, position and velocity couplings. Bifurcation diagram of the damping, position and velocity coupling strengths is constructed, which gives insight into how stability boundary curves come into existence and how these curves evolve from small closed loops into open-ended curves. The van der Pol oscillator has been considered by many researchers as the nodes for various networks. It is inherently unstable at the zero equilibrium. Stability control of a network is always an important problem. Currently, the stabilization of the zero equilibriummore » of a pair of van der Pol oscillators can be achieved only for small damping strength by using delayed velocity coupling. An interesting question arises naturally: can the zero equilibrium be stabilized for an arbitrarily large value of the damping strength? We prove that it can be. In addition, a simple condition is given on how to choose the feedback parameters to achieve such goal. We further investigate how the in-phase mode or the out-of-phase mode of a periodic solution is related to the stability boundary curve that it emerges from a Hopf bifurcation. Analytical expression of a periodic solution is derived using an integration method. Some illustrative examples show that the theoretical prediction and numerical simulation are in good agreement.« less

  4. Fundamental (f) oscillations in a magnetically coupled solar interior-atmosphere system - An analytical approach

    NASA Astrophysics Data System (ADS)

    Pintér, Balázs; Erdélyi, R.

    2018-01-01

    Solar fundamental (f) acoustic mode oscillations are investigated analytically in a magnetohydrodynamic (MHD) model. The model consists of three layers in planar geometry, representing the solar interior, the magnetic atmosphere, and a transitional layer sandwiched between them. Since we focus on the fundamental mode here, we assume the plasma is incompressible. A horizontal, canopy-like, magnetic field is introduced to the atmosphere, in which degenerated slow MHD waves can exist. The global (f-mode) oscillations can couple to local atmospheric Alfvén waves, resulting, e.g., in a frequency shift of the oscillations. The dispersion relation of the global oscillation mode is derived, and is solved analytically for the thin-transitional layer approximation and for the weak-field approximation. Analytical formulae are also provided for the frequency shifts due to the presence of a thin transitional layer and a weak atmospheric magnetic field. The analytical results generally indicate that, compared to the fundamental value (ω =√{ gk }), the mode frequency is reduced by the presence of an atmosphere by a few per cent. A thin transitional layer reduces the eigen-frequencies further by about an additional hundred microhertz. Finally, a weak atmospheric magnetic field can slightly, by a few percent, increase the frequency of the eigen-mode. Stronger magnetic fields, however, can increase the f-mode frequency by even up to ten per cent, which cannot be seen in observed data. The presence of a magnetic atmosphere in the three-layer model also introduces non-permitted propagation windows in the frequency spectrum; here, f-mode oscillations cannot exist with certain values of the harmonic degree. The eigen-frequencies can be sensitive to the background physical parameters, such as an atmospheric density scale-height or the rate of the plasma density drop at the photosphere. Such information, if ever observed with high-resolution instrumentation and inverted, could help to

  5. Transition from amplitude to oscillation death in a network of oscillators

    NASA Astrophysics Data System (ADS)

    Nandan, Mauparna; Hens, C. R.; Pal, Pinaki; Dana, Syamal K.

    2014-12-01

    We report a transition from a homogeneous steady state (HSS) to inhomogeneous steady states (IHSSs) in a network of globally coupled identical oscillators. We perturb a synchronized population of oscillators in the network with a few local negative or repulsive mean field links. The whole population splits into two clusters for a certain number of repulsive mean field links and a range of coupling strength. For further increase of the strength of interaction, these clusters collapse into a HSS followed by a transition to IHSSs where all the oscillators populate either of the two stable steady states. We analytically determine the origin of HSS and its transition to IHSS in relation to the number of repulsive mean-field links and the strength of interaction using a reductionism approach to the model network. We verify the results with numerical examples of the paradigmatic Landau-Stuart limit cycle system and the chaotic Rössler oscillator as dynamical nodes. During the transition from HSS to IHSSs, the network follows the Turing type symmetry breaking pitchfork or transcritical bifurcation depending upon the system dynamics.

  6. A novel optogenetically tunable frequency modulating oscillator

    PubMed Central

    2018-01-01

    Synthetic biology has enabled the creation of biological reconfigurable circuits, which perform multiple functions monopolizing a single biological machine; Such a system can switch between different behaviours in response to environmental cues. Previous work has demonstrated switchable dynamical behaviour employing reconfigurable logic gate genetic networks. Here we describe a computational framework for reconfigurable circuits in E.coli using combinations of logic gates, and also propose the biological implementation. The proposed system is an oscillator that can exhibit tunability of frequency and amplitude of oscillations. Further, the frequency of operation can be changed optogenetically. Insilico analysis revealed that two-component light systems, in response to light within a frequency range, can be used for modulating the frequency of the oscillator or stopping the oscillations altogether. Computational modelling reveals that mixing two colonies of E.coli oscillating at different frequencies generates spatial beat patterns. Further, we show that these oscillations more robustly respond to input perturbations compared to the base oscillator, to which the proposed oscillator is a modification. Compared to the base oscillator, the proposed system shows faster synchronization in a colony of cells for a larger region of the parameter space. Additionally, the proposed oscillator also exhibits lesser synchronization error in the transient period after input perturbations. This provides a strong basis for the construction of synthetic reconfigurable circuits in bacteria and other organisms, which can be scaled up to perform functions in the field of time dependent drug delivery with tunable dosages, and sets the stage for further development of circuits with synchronized population level behaviour. PMID:29389936

  7. A novel optogenetically tunable frequency modulating oscillator.

    PubMed

    Mahajan, Tarun; Rai, Kshitij

    2018-01-01

    Synthetic biology has enabled the creation of biological reconfigurable circuits, which perform multiple functions monopolizing a single biological machine; Such a system can switch between different behaviours in response to environmental cues. Previous work has demonstrated switchable dynamical behaviour employing reconfigurable logic gate genetic networks. Here we describe a computational framework for reconfigurable circuits in E.coli using combinations of logic gates, and also propose the biological implementation. The proposed system is an oscillator that can exhibit tunability of frequency and amplitude of oscillations. Further, the frequency of operation can be changed optogenetically. Insilico analysis revealed that two-component light systems, in response to light within a frequency range, can be used for modulating the frequency of the oscillator or stopping the oscillations altogether. Computational modelling reveals that mixing two colonies of E.coli oscillating at different frequencies generates spatial beat patterns. Further, we show that these oscillations more robustly respond to input perturbations compared to the base oscillator, to which the proposed oscillator is a modification. Compared to the base oscillator, the proposed system shows faster synchronization in a colony of cells for a larger region of the parameter space. Additionally, the proposed oscillator also exhibits lesser synchronization error in the transient period after input perturbations. This provides a strong basis for the construction of synthetic reconfigurable circuits in bacteria and other organisms, which can be scaled up to perform functions in the field of time dependent drug delivery with tunable dosages, and sets the stage for further development of circuits with synchronized population level behaviour.

  8. Dynamical Bayesian inference of time-evolving interactions: From a pair of coupled oscillators to networks of oscillators

    NASA Astrophysics Data System (ADS)

    Duggento, Andrea; Stankovski, Tomislav; McClintock, Peter V. E.; Stefanovska, Aneta

    2012-12-01

    Living systems have time-evolving interactions that, until recently, could not be identified accurately from recorded time series in the presence of noise. Stankovski [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.109.024101 109, 024101 (2012)] introduced a method based on dynamical Bayesian inference that facilitates the simultaneous detection of time-varying synchronization, directionality of influence, and coupling functions. It can distinguish unsynchronized dynamics from noise-induced phase slips. The method is based on phase dynamics, with Bayesian inference of the time-evolving parameters being achieved by shaping the prior densities to incorporate knowledge of previous samples. We now present the method in detail using numerically generated data, data from an analog electronic circuit, and cardiorespiratory data. We also generalize the method to encompass networks of interacting oscillators and thus demonstrate its applicability to small-scale networks.

  9. Dependence of synchronization on frequency mismatch and network configuration in chemo-mechanical oscillators

    NASA Astrophysics Data System (ADS)

    Kumar, Pawan; Parmananda, P.

    2018-04-01

    In this paper, synchronization among the mercury beating heart (MBH) oscillators is studied. In the first set of experiments, two MBH oscillators were taken. Frequency of one oscillator is kept constant and that of the other is increased monotonically. These were then coupled using bidirectional and unidirectional coupling mechanisms separately. Dependence of synchronization on the frequency difference between the two oscillators is investigated. For the second set of experiments involving unidirectional coupling, an ensemble of fifteen oscillators was taken and different configurations of these oscillators were considered. These include an all-to-all network and fractionally distributed master slave configurations. The effect of both the extent of coupling and network configuration on synchronization among these oscillators was investigated.

  10. Dynamics of entanglement and uncertainty relation in coupled harmonic oscillator system: exact results

    NASA Astrophysics Data System (ADS)

    Park, DaeKil

    2018-06-01

    The dynamics of entanglement and uncertainty relation is explored by solving the time-dependent Schrödinger equation for coupled harmonic oscillator system analytically when the angular frequencies and coupling constant are arbitrarily time dependent. We derive the spectral and Schmidt decompositions for vacuum solution. Using the decompositions, we derive the analytical expressions for von Neumann and Rényi entropies. Making use of Wigner distribution function defined in phase space, we derive the time dependence of position-momentum uncertainty relations. To show the dynamics of entanglement and uncertainty relation graphically, we introduce two toy models and one realistic quenched model. While the dynamics can be conjectured by simple consideration in the toy models, the dynamics in the realistic quenched model is somewhat different from that in the toy models. In particular, the dynamics of entanglement exhibits similar pattern to dynamics of uncertainty parameter in the realistic quenched model.

  11. A coupled-oscillator model with a conservation law for the rhythmic amoeboid movements of plasmodial slime molds

    NASA Astrophysics Data System (ADS)

    Tero, A.; Kobayashi, R.; Nakagaki, T.

    2005-06-01

    Experiments on the fusion and partial separation of plasmodia of the true slime mold Physarum polycephalum are described, concentrating on the spatio-temporal phase patterns of rhythmic amoeboid movement. On the basis of these experimental results we introduce a new model of coupled oscillators with one conserved quantity. Simulations using the model equations reproduce the experimental results well.

  12. Gamma oscillations in a nonlinear regime: a minimal model approach using heterogeneous integrate-and-fire networks.

    PubMed

    Bathellier, Brice; Carleton, Alan; Gerstner, Wulfram

    2008-12-01

    Fast oscillations and in particular gamma-band oscillation (20-80 Hz) are commonly observed during brain function and are at the center of several neural processing theories. In many cases, mathematical analysis of fast oscillations in neural networks has been focused on the transition between irregular and oscillatory firing viewed as an instability of the asynchronous activity. But in fact, brain slice experiments as well as detailed simulations of biological neural networks have produced a large corpus of results concerning the properties of fully developed oscillations that are far from this transition point. We propose here a mathematical approach to deal with nonlinear oscillations in a network of heterogeneous or noisy integrate-and-fire neurons connected by strong inhibition. This approach involves limited mathematical complexity and gives a good sense of the oscillation mechanism, making it an interesting tool to understand fast rhythmic activity in simulated or biological neural networks. A surprising result of our approach is that under some conditions, a change of the strength of inhibition only weakly influences the period of the oscillation. This is in contrast to standard theoretical and experimental models of interneuron network gamma oscillations (ING), where frequency tightly depends on inhibition strength, but it is similar to observations made in some in vitro preparations in the hippocampus and the olfactory bulb and in some detailed network models. This result is explained by the phenomenon of suppression that is known to occur in strongly coupled oscillating inhibitory networks but had not yet been related to the behavior of oscillation frequency.

  13. Alterations in the coupling functions between cortical and cardio-respiratory oscillations due to anaesthesia with propofol and sevoflurane

    NASA Astrophysics Data System (ADS)

    Stankovski, Tomislav; Petkoski, Spase; Raeder, Johan; Smith, Andrew F.; McClintock, Peter V. E.; Stefanovska, Aneta

    2016-05-01

    The precise mechanisms underlying general anaesthesia pose important and still open questions. To address them, we have studied anaesthesia induced by the widely used (intravenous) propofol and (inhalational) sevoflurane anaesthetics, computing cross-frequency coupling functions between neuronal, cardiac and respiratory oscillations in order to determine their mutual interactions. The phase domain coupling function reveals the form of the function defining the mechanism of an interaction, as well as its coupling strength. Using a method based on dynamical Bayesian inference, we have thus identified and analysed the coupling functions for six relationships. By quantitative assessment of the forms and strengths of the couplings, we have revealed how these relationships are altered by anaesthesia, also showing that some of them are differently affected by propofol and sevoflurane. These findings, together with the novel coupling function analysis, offer a new direction in the assessment of general anaesthesia and neurophysiological interactions, in general.

  14. Effects of gap junction inhibition on contraction waves in the murine small intestine in relation to coupled oscillator theory.

    PubMed

    Parsons, Sean P; Huizinga, Jan D

    2015-02-15

    Waves of contraction in the small intestine correlate with slow waves generated by the myenteric network of interstitial cells of Cajal. Coupled oscillator theory has been used to explain steplike gradients in the frequency (frequency plateaux) of contraction waves along the length of the small intestine. Inhibition of gap junction coupling between oscillators should lead to predictable effects on these plateaux and the wave dislocation (wave drop) phenomena associated with their boundaries. It is these predictions that we wished to test. We used a novel multicamera diameter-mapping system to measure contraction along 25- to 30-cm lengths of murine small intestine. There were typically two to three plateaux per length of intestine. Dislocations could be limited to the wavefronts immediately about the terminated wave, giving the appearance of a three-pronged fork, i.e., a fork dislocation; additionally, localized decreases in velocity developed across a number of wavefronts, ending with the terminated wave, which could appear as a fork, i.e., slip dislocations. The gap junction inhibitor carbenoxolone increased the number of plateaux and dislocations and decreased contraction wave velocity. In some cases, the usual frequency gradient was reversed, with a plateau at a higher frequency than its proximal neighbor; thus fork dislocations were inverted, and the direction of propagation was reversed. Heptanol had no effect on the frequency or velocity of contractions but did reduce their amplitude. To understand intestinal motor patterns, the pacemaker network of the interstitial cells of Cajal is best evaluated as a system of coupled oscillators. Copyright © 2015 the American Physiological Society.

  15. Coronal loop seismology using damping of standing kink oscillations by mode coupling

    NASA Astrophysics Data System (ADS)

    Pascoe, D. J.; Goddard, C. R.; Nisticò, G.; Anfinogentov, S.; Nakariakov, V. M.

    2016-05-01

    Context. Kink oscillations of solar coronal loops are frequently observed to be strongly damped. The damping can be explained by mode coupling on the condition that loops have a finite inhomogeneous layer between the higher density core and lower density background. The damping rate depends on the loop density contrast ratio and inhomogeneous layer width. Aims: The theoretical description for mode coupling of kink waves has been extended to include the initial Gaussian damping regime in addition to the exponential asymptotic state. Observation of these damping regimes would provide information about the structuring of the coronal loop and so provide a seismological tool. Methods: We consider three examples of standing kink oscillations observed by the Atmospheric Imaging Assembly (AIA) of the Solar Dynamics Observatory (SDO) for which the general damping profile (Gaussian and exponential regimes) can be fitted. Determining the Gaussian and exponential damping times allows us to perform seismological inversions for the loop density contrast ratio and the inhomogeneous layer width normalised to the loop radius. The layer width and loop minor radius are found separately by comparing the observed loop intensity profile with forward modelling based on our seismological results. Results: The seismological method which allows the density contrast ratio and inhomogeneous layer width to be simultaneously determined from the kink mode damping profile has been applied to observational data for the first time. This allows the internal and external Alfvén speeds to be calculated, and estimates for the magnetic field strength can be dramatically improved using the given plasma density. Conclusions: The kink mode damping rate can be used as a powerful diagnostic tool to determine the coronal loop density profile. This information can be used for further calculations such as the magnetic field strength or phase mixing rate.

  16. Learning of spatio-temporal codes in a coupled oscillator system.

    PubMed

    Orosz, Gábor; Ashwin, Peter; Townley, Stuart

    2009-07-01

    In this paper, we consider a learning strategy that allows one to transmit information between two coupled phase oscillator systems (called teaching and learning systems) via frequency adaptation. The dynamics of these systems can be modeled with reference to a number of partially synchronized cluster states and transitions between them. Forcing the teaching system by steady but spatially nonhomogeneous inputs produces cyclic sequences of transitions between the cluster states, that is, information about inputs is encoded via a "winnerless competition" process into spatio-temporal codes. The large variety of codes can be learned by the learning system that adapts its frequencies to those of the teaching system. We visualize the dynamics using "weighted order parameters (WOPs)" that are analogous to "local field potentials" in neural systems. Since spatio-temporal coding is a mechanism that appears in olfactory systems, the developed learning rules may help to extract information from these neural ensembles.

  17. Transition from amplitude to oscillation death in a network of oscillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nandan, Mauparna; Department of Mathematics, National Institute of Technology, Durgapur 713209; Hens, C. R.

    2014-12-01

    We report a transition from a homogeneous steady state (HSS) to inhomogeneous steady states (IHSSs) in a network of globally coupled identical oscillators. We perturb a synchronized population of oscillators in the network with a few local negative or repulsive mean field links. The whole population splits into two clusters for a certain number of repulsive mean field links and a range of coupling strength. For further increase of the strength of interaction, these clusters collapse into a HSS followed by a transition to IHSSs where all the oscillators populate either of the two stable steady states. We analytically determinemore » the origin of HSS and its transition to IHSS in relation to the number of repulsive mean-field links and the strength of interaction using a reductionism approach to the model network. We verify the results with numerical examples of the paradigmatic Landau-Stuart limit cycle system and the chaotic Rössler oscillator as dynamical nodes. During the transition from HSS to IHSSs, the network follows the Turing type symmetry breaking pitchfork or transcritical bifurcation depending upon the system dynamics.« less

  18. Self-oscillation

    NASA Astrophysics Data System (ADS)

    Jenkins, Alejandro

    2013-04-01

    Physicists are very familiar with forced and parametric resonance, but usually not with self-oscillation, a property of certain dynamical systems that gives rise to a great variety of vibrations, both useful and destructive. In a self-oscillator, the driving force is controlled by the oscillation itself so that it acts in phase with the velocity, causing a negative damping that feeds energy into the vibration: no external rate needs to be adjusted to the resonant frequency. The famous collapse of the Tacoma Narrows bridge in 1940, often attributed by introductory physics texts to forced resonance, was actually a self-oscillation, as was the swaying of the London Millennium Footbridge in 2000. Clocks are self-oscillators, as are bowed and wind musical instruments. The heart is a “relaxation oscillator”, i.e., a non-sinusoidal self-oscillator whose period is determined by sudden, nonlinear switching at thresholds. We review the general criterion that determines whether a linear system can self-oscillate. We then describe the limiting cycles of the simplest nonlinear self-oscillators, as well as the ability of two or more coupled self-oscillators to become spontaneously synchronized (“entrained”). We characterize the operation of motors as self-oscillation and prove a theorem about their limit efficiency, of which Carnot’s theorem for heat engines appears as a special case. We briefly discuss how self-oscillation applies to servomechanisms, Cepheid variable stars, lasers, and the macroeconomic business cycle, among other applications. Our emphasis throughout is on the energetics of self-oscillation, often neglected by the literature on nonlinear dynamical systems.

  19. The Duffin-Kemmer-Petiau oscillator

    NASA Technical Reports Server (NTRS)

    Nedjadi, Youcef; Barrett, Roger

    1995-01-01

    In view of current interest in relativistic spin-one systems and the recent work on the Dirac Oscillator, we introduce the Duffin-Kemmer-Petiau (DKP) equation obtained by using an external potential linear in r. Since, in the non-relativistic limit, the spin 1 representation leads to a harmonic oscillator with a spin-orbit coupling of the Thomas form, we call the equation the DKP oscillator. This oscillator is a relativistic generalization of the quantum harmonic oscillator for scalar and vector bosons. We show that it conserves total angular momentum and that it is exactly solvable. We calculate and discuss the eigenspectrum of the DKP oscillator in the spin 1 representation.

  20. Transverse Mode Coupling Instability of the Bunch with Oscillating Wake Field and Space Charge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balbekov, V.

    Transverse mode coupling instability of a single bunch caused by oscillating wake field is considered in the paper. The instability threshold is found at different frequencies of the wake with space charge tune shift taken into account. The wake phase advance in the bunch length from 0 up tomore » $$4\\pi$$ is investigated. It is shown that the space charge can push the instability threshold up or down dependent on the phase advance. Transition region is investigated thoroughly, and simple asymptotic formulas for the threshold are represented.« less

  1. Corepressive interaction and clustering of degrade-and-fire oscillators

    PubMed Central

    Fernandez, Bastien; Tsimring, Lev S.

    2016-01-01

    Strongly nonlinear degrade-and-fire (DF) oscillations may emerge in genetic circuits having a delayed negative feedback loop as their core element. Here we study the synchronization of DF oscillators coupled through a common repressor field. For weak coupling, initially distinct oscillators remain desynchronized. For stronger coupling, oscillators can be forced to wait in the repressed state until the global repressor field is sufficiently degraded, and then they fire simultaneously forming a synchronized cluster. Our analytical theory provides necessary and sufficient conditions for clustering and specifies the maximum number of clusters that can be formed in the asymptotic regime. We find that in the thermodynamic limit a phase transition occurs at a certain coupling strength from the weakly clustered regime with only microscopic clusters to a strongly clustered regime where at least one giant cluster has to be present. PMID:22181453

  2. Neurodynamic oscillators

    NASA Technical Reports Server (NTRS)

    Espinosa, Ismael; Gonzalez, Hortensia; Quiza, Jorge; Gonazalez, J. Jesus; Arroyo, Ruben; Lara, Ritaluz

    1995-01-01

    Oscillation of electrical activity has been found in many nervous systems, from invertebrates to vertebrates including man. There exists experimental evidence of very simple circuits with the capability of oscillation. Neurons with intrinsic oscillation have been found and also neural circuits where oscillation is a property of the network. These two types of oscillations coexist in many instances. It is nowadays hypothesized that behind synchronization and oscillation there is a system of coupled oscillators responsible for activities that range from locomotion and feature binding in vision to control of sleep and circadian rhythms. The huge knowledge that has been acquired on oscillators from the times of Lord Rayleigh has made the simulation of neural oscillators a very active endeavor. This has been enhanced with more recent physiological findings about small neural circuits by means of intracellular and extracellular recordings as well as imaging methods. The future of this interdisciplinary field looks very promising; some researchers are going into quantum mechanics with the idea of trying to provide a quantum description of the brain. In this work we describe some simulations using neuron models by means of which we form simple neural networks that have the capability of oscillation. We analyze the oscillatory activity with root locus method, cross-correlation histograms, and phase planes. In the more complicated neural network models there is the possibility of chaotic oscillatory activity and we study that by means of Lyapunov exponents. The companion paper shows an example of that kind.

  3. Robust synchronization control scheme of a population of nonlinear stochastic synthetic genetic oscillators under intrinsic and extrinsic molecular noise via quorum sensing.

    PubMed

    Chen, Bor-Sen; Hsu, Chih-Yuan

    2012-10-26

    Collective rhythms of gene regulatory networks have been a subject of considerable interest for biologists and theoreticians, in particular the synchronization of dynamic cells mediated by intercellular communication. Synchronization of a population of synthetic genetic oscillators is an important design in practical applications, because such a population distributed over different host cells needs to exploit molecular phenomena simultaneously in order to emerge a biological phenomenon. However, this synchronization may be corrupted by intrinsic kinetic parameter fluctuations and extrinsic environmental molecular noise. Therefore, robust synchronization is an important design topic in nonlinear stochastic coupled synthetic genetic oscillators with intrinsic kinetic parameter fluctuations and extrinsic molecular noise. Initially, the condition for robust synchronization of synthetic genetic oscillators was derived based on Hamilton Jacobi inequality (HJI). We found that if the synchronization robustness can confer enough intrinsic robustness to tolerate intrinsic parameter fluctuation and extrinsic robustness to filter the environmental noise, then robust synchronization of coupled synthetic genetic oscillators is guaranteed. If the synchronization robustness of a population of nonlinear stochastic coupled synthetic genetic oscillators distributed over different host cells could not be maintained, then robust synchronization could be enhanced by external control input through quorum sensing molecules. In order to simplify the analysis and design of robust synchronization of nonlinear stochastic synthetic genetic oscillators, the fuzzy interpolation method was employed to interpolate several local linear stochastic coupled systems to approximate the nonlinear stochastic coupled system so that the HJI-based synchronization design problem could be replaced by a simple linear matrix inequality (LMI)-based design problem, which could be solved with the help of LMI

  4. Robust synchronization control scheme of a population of nonlinear stochastic synthetic genetic oscillators under intrinsic and extrinsic molecular noise via quorum sensing

    PubMed Central

    2012-01-01

    Background Collective rhythms of gene regulatory networks have been a subject of considerable interest for biologists and theoreticians, in particular the synchronization of dynamic cells mediated by intercellular communication. Synchronization of a population of synthetic genetic oscillators is an important design in practical applications, because such a population distributed over different host cells needs to exploit molecular phenomena simultaneously in order to emerge a biological phenomenon. However, this synchronization may be corrupted by intrinsic kinetic parameter fluctuations and extrinsic environmental molecular noise. Therefore, robust synchronization is an important design topic in nonlinear stochastic coupled synthetic genetic oscillators with intrinsic kinetic parameter fluctuations and extrinsic molecular noise. Results Initially, the condition for robust synchronization of synthetic genetic oscillators was derived based on Hamilton Jacobi inequality (HJI). We found that if the synchronization robustness can confer enough intrinsic robustness to tolerate intrinsic parameter fluctuation and extrinsic robustness to filter the environmental noise, then robust synchronization of coupled synthetic genetic oscillators is guaranteed. If the synchronization robustness of a population of nonlinear stochastic coupled synthetic genetic oscillators distributed over different host cells could not be maintained, then robust synchronization could be enhanced by external control input through quorum sensing molecules. In order to simplify the analysis and design of robust synchronization of nonlinear stochastic synthetic genetic oscillators, the fuzzy interpolation method was employed to interpolate several local linear stochastic coupled systems to approximate the nonlinear stochastic coupled system so that the HJI-based synchronization design problem could be replaced by a simple linear matrix inequality (LMI)-based design problem, which could be solved with

  5. Desynchronization in an ensemble of globally coupled chaotic bursting neuronal oscillators by dynamic delayed feedback control

    NASA Astrophysics Data System (ADS)

    Che, Yanqiu; Yang, Tingting; Li, Ruixue; Li, Huiyan; Han, Chunxiao; Wang, Jiang; Wei, Xile

    2015-09-01

    In this paper, we propose a dynamic delayed feedback control approach or desynchronization of chaotic-bursting synchronous activities in an ensemble of globally coupled neuronal oscillators. We demonstrate that the difference signal between an ensemble's mean field and its time delayed state, filtered and fed back to the ensemble, can suppress the self-synchronization in the ensemble. These individual units are decoupled and stabilized at the desired desynchronized states while the stimulation signal reduces to the noise level. The effectiveness of the method is illustrated by examples of two different populations of globally coupled chaotic-bursting neurons. The proposed method has potential for mild, effective and demand-controlled therapy of neurological diseases characterized by pathological synchronization.

  6. Inference of Stochastic Nonlinear Oscillators with Applications to Physiological Problems

    NASA Technical Reports Server (NTRS)

    Smelyanskiy, Vadim N.; Luchinsky, Dmitry G.

    2004-01-01

    A new method of inferencing of coupled stochastic nonlinear oscillators is described. The technique does not require extensive global optimization, provides optimal compensation for noise-induced errors and is robust in a broad range of dynamical models. We illustrate the main ideas of the technique by inferencing a model of five globally and locally coupled noisy oscillators. Specific modifications of the technique for inferencing hidden degrees of freedom of coupled nonlinear oscillators is discussed in the context of physiological applications.

  7. Different coupled atmosphere-recharge oscillator Low Order Models for ENSO: a projection approach.

    NASA Astrophysics Data System (ADS)

    Bianucci, Marco; Mannella, Riccardo; Merlino, Silvia; Olivieri, Andrea

    2016-04-01

    El Ninõ-Southern Oscillation (ENSO) is a large scale geophysical phenomenon where, according to the celebrated recharge oscillator model (ROM), the Ocean slow variables given by the East Pacific Sea Surface Temperature (SST) and the average thermocline depth (h), interact with some fast "irrelevant" ones, representing mostly the atmosphere (the westerly wind burst and the Madden-Julian Oscillation). The fast variables are usually inserted in the model as an external stochastic forcing. In a recent work (M. Bianucci, "Analytical probability density function for the statistics of the ENSO phenomenon: asymmetry and power law tail" Geophysical Research Letters, under press) the author, using a projection approach applied to general deterministic coupled systems, gives a physically reasonable explanation for the use of stochastic models for mimicking the apparent random features of the ENSO phenomenon. Moreover, in the same paper, assuming that the interaction between the ROM and the fast atmosphere is of multiplicative type, i.e., it depends on the SST variable, an analytical expression for the equilibrium density function of the anomaly SST is obtained. This expression fits well the data from observations, reproducing the asymmetry and the power law tail of the histograms of the NINÕ3 index. Here, using the same theoretical approach, we consider and discuss different kind of interactions between the ROM and the other perturbing variables, and we take into account also non linear ROM as a low order model for ENSO. The theoretical and numerical results are then compared with data from observations.

  8. Beam quality improvement by population-dynamic-coupled combined guiding effect in end-pumped Nd:YVO4 laser oscillator

    NASA Astrophysics Data System (ADS)

    Shen, Yijie; Gong, Mali; Fu, Xing

    2018-05-01

    Beam quality improvement with pump power increasing in an end-pumped laser oscillator is experimentally realized for the first time, to the best of our knowledge. The phenomenon is caused by the population-dynamic-coupled combined guiding effect, a comprehensive theoretical model of which has been well established, in agreement with the experimental results. Based on an 888 nm in-band dual-end-pumped oscillator using four tandem Nd:YVO4 crystals, the output beam quality of M^2= 1.1/1.1 at the pump power of 25 W is degraded to M^2 = 2.5/1.8 at 75 W pumping and then improved to M^2= 1.8/1.3 at 150 W pumping. The near-TEM_{00} mode is obtained with the highest continuous-wave output power of 72.1 W and the optical-to-optical efficiency of 48.1%. This work demonstrates great potential to further scale the output power of end-pumped laser oscillator while keeping good beam quality.

  9. Nonlinear evolution of baryon acoustic oscillations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crocce, Martin; Institut de Ciencies de l'Espai, IEEC-CSIC, Campus UAB, Facultat de Ciencies, Torre C5 par-2, Barcelona 08193; Scoccimarro, Roman

    2008-01-15

    We study the nonlinear evolution of baryon acoustic oscillations in the dark matter power spectrum and the correlation function using renormalized perturbation theory. In a previous paper we showed that renormalized perturbation theory successfully predicts the damping of acoustic oscillations; here we extend our calculation to the enhancement of power due to mode coupling. We show that mode coupling generates additional oscillations that are out of phase with those in the linear spectrum, leading to shifts in the scales of oscillation nodes defined with respect to a smooth spectrum. When Fourier transformed, these out-of-phase oscillations induce percent-level shifts in themore » acoustic peak of the two-point correlation function. We present predictions for these shifts as a function of redshift; these should be considered as a robust lower limit to the more realistic case that includes, in addition, redshift distortions and galaxy bias. We show that these nonlinear effects occur at very large scales, leading to a breakdown of linear theory at scales much larger than commonly thought. We discuss why virialized halo profiles are not responsible for these effects, which can be understood from basic physics of gravitational instability. Our results are in excellent agreement with numerical simulations, and can be used as a starting point for modeling baryon acoustic oscillations in future observations. To meet this end, we suggest a simple physically motivated model to correct for the shifts caused by mode coupling.« less

  10. Coherent States for the Two-Dimensional Dirac-Moshinsky Oscillator Coupled to an External Magnetic Field

    NASA Astrophysics Data System (ADS)

    Ojeda-Guillén, D.; Mota, R. D.; Granados, V. D.

    2015-03-01

    We show that the (2+1)-dimensional Dirac-Moshinsky oscillator coupled to an external magnetic field can be treated algebraically with the SU(1,1) group theory and its group basis. We use the su(1,1) irreducible representation theory to find the energy spectrum and the eigenfunctions. Also, with the su(1,1) group basis we construct the relativistic coherent states in a closed form for this problem. Supported by SNI-México, COFAA-IPN, EDI-IPN, EDD-IPN, SIP-IPN project number 20140598

  11. Complex Dynamics of Delay-Coupled Neural Networks

    NASA Astrophysics Data System (ADS)

    Mao, Xiaochen

    2016-09-01

    This paper reveals the complicated dynamics of a delay-coupled system that consists of a pair of sub-networks and multiple bidirectional couplings. Time delays are introduced into the internal connections and network-couplings, respectively. The stability and instability of the coupled network are discussed. The sufficient conditions for the existence of oscillations are given. Case studies of numerical simulations are given to validate the analytical results. Interesting and complicated neuronal activities are observed numerically, such as rest states, periodic oscillations, multiple switches of rest states and oscillations, and the coexistence of different types of oscillations.

  12. First Experimental Realization of the Dirac Oscillator

    NASA Astrophysics Data System (ADS)

    Franco-Villafañe, J. A.; Sadurní, E.; Barkhofen, S.; Kuhl, U.; Mortessagne, F.; Seligman, T. H.

    2013-10-01

    We present the first experimental microwave realization of the one-dimensional Dirac oscillator, a paradigm in exactly solvable relativistic systems. The experiment relies on a relation of the Dirac oscillator to a corresponding tight-binding system. This tight-binding system is implemented as a microwave system by a chain of coupled dielectric disks, where the coupling is evanescent and can be adjusted appropriately. The resonances of the finite microwave system yield the spectrum of the one-dimensional Dirac oscillator with and without a mass term. The flexibility of the experimental setup allows the implementation of other one-dimensional Dirac-type equations.

  13. Oscillations in interconnected complex networks under intentional attack

    NASA Astrophysics Data System (ADS)

    Zhang, Wen-Ping; Xia, Yongxiang; Tan, Fei

    2016-01-01

    Many real-world networks are interconnected with each other. In this paper, we study the traffic dynamics in interconnected complex networks under an intentional attack. We find that with the shortest time delay routing strategy, the traffic dynamics can show the stable state, periodic, quasi-periodic and chaotic oscillations, when the capacity redundancy parameter changes. Moreover, compared with isolated complex networks, oscillations always take place in interconnected networks more easily. Thirdly, in interconnected networks, oscillations are affected strongly by the coupling probability and coupling preference.

  14. Chimera and modulated drift states in a ring of nonlocally coupled oscillators with heterogeneous phase lags

    NASA Astrophysics Data System (ADS)

    Choe, Chol-Ung; Kim, Ryong-Son; Ri, Ji-Song

    2017-09-01

    We consider a ring of phase oscillators with nonlocal coupling strength and heterogeneous phase lags. We analyze the effects of heterogeneity in the phase lags on the existence and stability of a variety of steady states. A nonlocal coupling with heterogeneous phase lags that allows the system to be solved analytically is suggested and the stability of solutions along the Ott-Antonsen invariant manifold is explored. We present a complete bifurcation diagram for stationary patterns including the uniform drift and modulated drift states as well as chimera state, which reveals that the stable modulated drift state and a continuum of metastable drift states could occur due to the heterogeneity of the phase lags. We verify our theoretical results using the direct numerical simulations of the model system.

  15. Electrical switching and oscillations in vanadium dioxide

    NASA Astrophysics Data System (ADS)

    Pergament, Alexander; Velichko, Andrey; Belyaev, Maksim; Putrolaynen, Vadim

    2018-05-01

    We have studied electrical switching with S-shaped I-V characteristics in two-terminal MOM devices based on vanadium dioxide thin films. The switching effect is associated with the metal-insulator phase transition. Relaxation oscillations are observed in circuits with VO2-based switches. Dependences of the oscillator critical frequency Fmax, threshold power and voltage, as well as the time of current rise, on the switching structure size are obtained by numerical simulation. The empirical dependence of the threshold voltage on the switching region dimensions and film thickness is found. It is shown that, for the VO2 channel sizes of 10 × 10 nm, Fmax can reach the value of 300 MHz at a film thickness of 20 nm. Next, it is shown that oscillatory neural networks can be implemented on the basis of coupled VO2 oscillators. For the weak capacitive coupling, we revealed the dependence of the phase difference upon synchronization on the coupling capacitance value. When the switches are scaled down, the limiting time of synchronization is reduced to Ts 13 μs, and the number of oscillation periods for the entering to the synchronization mode remains constant, Ns 17. In the case of weak thermal coupling in the synchronization mode, we observe in-phase behavior of oscillators, and there is a certain range of parameters of the supply current, in which the synchronization effect becomes possible. With a decrease in dimensions, a decrease in the thermal coupling action radius is observed, which can vary in the range from 0.5 to 50 μm for structures with characteristic dimensions of 0.1-5 μm, respectively. Thermal coupling may have a promising effect for realization of a 3D integrated oscillatory neural network.

  16. Mode competition and hopping in optomechanical nano-oscillators

    NASA Astrophysics Data System (ADS)

    Zhang, Xingwang; Lin, Tong; Tian, Feng; Du, Han; Zou, Yongchao; Chau, Fook Siong; Zhou, Guangya

    2018-04-01

    We investigate the inter-mode nonlinear interaction in the multi-mode optomechanical nano-oscillator which consists of coupled silicon nanocantilevers, where the integrated photonic crystal nanocavities provide the coupling between the optical and mechanical modes. Due to the self-saturation and cross-saturation of the mechanical gain, the inter-mode competition is observed, which leads to the bistable operation of the optomechanical nano-oscillator: only one of the mechanical modes can oscillate at any one time, and the oscillation of one mode extremely suppresses that of the other with a side mode suppression ratio (SMSR) up to 40 dB. In the meantime, mode hopping, i.e., the optomechanical oscillation switches from one mode to the other, is also observed and found to be able to be provoked by excitation laser fluctuations.

  17. Dynamical transitions in large systems of mean field-coupled Landau-Stuart oscillators: Extensive chaos and cluster states.

    PubMed

    Ku, Wai Lim; Girvan, Michelle; Ott, Edward

    2015-12-01

    In this paper, we study dynamical systems in which a large number N of identical Landau-Stuart oscillators are globally coupled via a mean-field. Previously, it has been observed that this type of system can exhibit a variety of different dynamical behaviors. These behaviors include time periodic cluster states in which each oscillator is in one of a small number of groups for which all oscillators in each group have the same state which is different from group to group, as well as a behavior in which all oscillators have different states and the macroscopic dynamics of the mean field is chaotic. We argue that this second type of behavior is "extensive" in the sense that the chaotic attractor in the full phase space of the system has a fractal dimension that scales linearly with N and that the number of positive Lyapunov exponents of the attractor also scales linearly with N. An important focus of this paper is the transition between cluster states and extensive chaos as the system is subjected to slow adiabatic parameter change. We observe discontinuous transitions between the cluster states (which correspond to low dimensional dynamics) and the extensively chaotic states. Furthermore, examining the cluster state, as the system approaches the discontinuous transition to extensive chaos, we find that the oscillator population distribution between the clusters continually evolves so that the cluster state is always marginally stable. This behavior is used to reveal the mechanism of the discontinuous transition. We also apply the Kaplan-Yorke formula to study the fractal structure of the extensively chaotic attractors.

  18. Dynamical transitions in large systems of mean field-coupled Landau-Stuart oscillators: Extensive chaos and cluster states

    NASA Astrophysics Data System (ADS)

    Ku, Wai Lim; Girvan, Michelle; Ott, Edward

    2015-12-01

    In this paper, we study dynamical systems in which a large number N of identical Landau-Stuart oscillators are globally coupled via a mean-field. Previously, it has been observed that this type of system can exhibit a variety of different dynamical behaviors. These behaviors include time periodic cluster states in which each oscillator is in one of a small number of groups for which all oscillators in each group have the same state which is different from group to group, as well as a behavior in which all oscillators have different states and the macroscopic dynamics of the mean field is chaotic. We argue that this second type of behavior is "extensive" in the sense that the chaotic attractor in the full phase space of the system has a fractal dimension that scales linearly with N and that the number of positive Lyapunov exponents of the attractor also scales linearly with N. An important focus of this paper is the transition between cluster states and extensive chaos as the system is subjected to slow adiabatic parameter change. We observe discontinuous transitions between the cluster states (which correspond to low dimensional dynamics) and the extensively chaotic states. Furthermore, examining the cluster state, as the system approaches the discontinuous transition to extensive chaos, we find that the oscillator population distribution between the clusters continually evolves so that the cluster state is always marginally stable. This behavior is used to reveal the mechanism of the discontinuous transition. We also apply the Kaplan-Yorke formula to study the fractal structure of the extensively chaotic attractors.

  19. Persistent fluctuations in synchronization rate in globally coupled oscillators with periodic external forcing

    NASA Astrophysics Data System (ADS)

    Atsumi, Yu; Nakao, Hiroya

    2012-05-01

    A system of phase oscillators with repulsive global coupling and periodic external forcing undergoing asynchronous rotation is considered. The synchronization rate of the system can exhibit persistent fluctuations depending on parameters and initial phase distributions, and the amplitude of the fluctuations scales with the system size for uniformly random initial phase distributions. Using the Watanabe-Strogatz transformation that reduces the original system to low-dimensional macroscopic equations, we show that the fluctuations are collective dynamics of the system corresponding to low-dimensional trajectories of the reduced equations. It is argued that the amplitude of the fluctuations is determined by the inhomogeneity of the initial phase distribution, resulting in system-size scaling for the random case.

  20. Experimental synchronization of chaos in a large ring of mutually coupled single-transistor oscillators: phase, amplitude, and clustering effects.

    PubMed

    Minati, Ludovico

    2014-12-01

    In this paper, experimental evidence of multiple synchronization phenomena in a large (n = 30) ring of chaotic oscillators is presented. Each node consists of an elementary circuit, generating spikes of irregular amplitude and comprising one bipolar junction transistor, one capacitor, two inductors, and one biasing resistor. The nodes are mutually coupled to their neighbours via additional variable resistors. As coupling resistance is decreased, phase synchronization followed by complete synchronization is observed, and onset of synchronization is associated with partial synchronization, i.e., emergence of communities (clusters). While component tolerances affect community structure, the general synchronization properties are maintained across three prototypes and in numerical simulations. The clusters are destroyed by adding long distance connections with distant notes, but are otherwise relatively stable with respect to structural connectivity changes. The study provides evidence that several fundamental synchronization phenomena can be reliably observed in a network of elementary single-transistor oscillators, demonstrating their generative potential and opening way to potential applications of this undemanding setup in experimental modelling of the relationship between network structure, synchronization, and dynamical properties.

  1. Experimental synchronization of chaos in a large ring of mutually coupled single-transistor oscillators: Phase, amplitude, and clustering effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minati, Ludovico, E-mail: lminati@ieee.org, E-mail: ludovico.minati@unitn.it

    In this paper, experimental evidence of multiple synchronization phenomena in a large (n = 30) ring of chaotic oscillators is presented. Each node consists of an elementary circuit, generating spikes of irregular amplitude and comprising one bipolar junction transistor, one capacitor, two inductors, and one biasing resistor. The nodes are mutually coupled to their neighbours via additional variable resistors. As coupling resistance is decreased, phase synchronization followed by complete synchronization is observed, and onset of synchronization is associated with partial synchronization, i.e., emergence of communities (clusters). While component tolerances affect community structure, the general synchronization properties are maintained across three prototypes andmore » in numerical simulations. The clusters are destroyed by adding long distance connections with distant notes, but are otherwise relatively stable with respect to structural connectivity changes. The study provides evidence that several fundamental synchronization phenomena can be reliably observed in a network of elementary single-transistor oscillators, demonstrating their generative potential and opening way to potential applications of this undemanding setup in experimental modelling of the relationship between network structure, synchronization, and dynamical properties.« less

  2. Visualization of Notch signaling oscillation in cells and tissues.

    PubMed

    Shimojo, Hiromi; Harima, Yukiko; Kageyama, Ryoichiro

    2014-01-01

    The Notch signaling effectors Hes1 and Hes7 exhibit oscillatory expression with a period of about 2-3 h during embryogenesis. Hes1 oscillation is important for proliferation and differentiation of neural stem cells, whereas Hes7 oscillation regulates periodic formation of somites. Continuous expression of Hes1 and Hes7 inhibits these developmental processes. Thus, expression dynamics are very important for gene functions, but it is difficult to distinguish between oscillatory and persistent expression by conventional methods such as in situ hybridization and immunostaining. Here, we describe time-lapse imaging methods using destabilized luciferase reporters and a highly sensitive cooled charge-coupled device camera, which can monitor dynamic gene expression. Furthermore, the expression of two genes can be examined simultaneously by a dual reporter system using two-color luciferase reporters. Time-lapse imaging analyses reveal how dynamically gene expression changes in many biological events.

  3. Nature's Autonomous Oscillators

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Yee, J.-H.; Mayr, M.; Schnetzler, R.

    2012-01-01

    Nonlinearity is required to produce autonomous oscillations without external time dependent source, and an example is the pendulum clock. The escapement mechanism of the clock imparts an impulse for each swing direction, which keeps the pendulum oscillating at the resonance frequency. Among nature's observed autonomous oscillators, examples are the quasi-biennial oscillation and bimonthly oscillation of the Earth atmosphere, and the 22-year solar oscillation. The oscillations have been simulated in numerical models without external time dependent source, and in Section 2 we summarize the results. Specifically, we shall discuss the nonlinearities that are involved in generating the oscillations, and the processes that produce the periodicities. In biology, insects have flight muscles, which function autonomously with wing frequencies that far exceed the animals' neural capacity; Stretch-activation of muscle contraction is the mechanism that produces the high frequency oscillation of insect flight, discussed in Section 3. The same mechanism is also invoked to explain the functioning of the cardiac muscle. In Section 4, we present a tutorial review of the cardio-vascular system, heart anatomy, and muscle cell physiology, leading up to Starling's Law of the Heart, which supports our notion that the human heart is also a nonlinear oscillator. In Section 5, we offer a broad perspective of the tenuous links between the fluid dynamical oscillators and the human heart physiology.

  4. Coupling strength assumption in statistical energy analysis

    PubMed Central

    Lafont, T.; Totaro, N.

    2017-01-01

    This paper is a discussion of the hypothesis of weak coupling in statistical energy analysis (SEA). The examples of coupled oscillators and statistical ensembles of coupled plates excited by broadband random forces are discussed. In each case, a reference calculation is compared with the SEA calculation. First, it is shown that the main SEA relation, the coupling power proportionality, is always valid for two oscillators irrespective of the coupling strength. But the case of three subsystems, consisting of oscillators or ensembles of plates, indicates that the coupling power proportionality fails when the coupling is strong. Strong coupling leads to non-zero indirect coupling loss factors and, sometimes, even to a reversal of the energy flow direction from low to high vibrational temperature. PMID:28484335

  5. From biological and social network metaphors to coupled bio-social wireless networks

    PubMed Central

    Barrett, Christopher L.; Eubank, Stephen; Anil Kumar, V.S.; Marathe, Madhav V.

    2010-01-01

    Biological and social analogies have been long applied to complex systems. Inspiration has been drawn from biological solutions to solve problems in engineering products and systems, ranging from Velcro to camouflage to robotics to adaptive and learning computing methods. In this paper, we present an overview of recent advances in understanding biological systems as networks and use this understanding to design and analyse wireless communication networks. We expand on two applications, namely cognitive sensing and control and wireless epidemiology. We discuss how our work in these two applications is motivated by biological metaphors. We believe that recent advances in computing and communications coupled with advances in health and social sciences raise the possibility of studying coupled bio-social communication networks. We argue that we can better utilise the advances in our understanding of one class of networks to better our understanding of the other. PMID:21643462

  6. Magnetosphere-Ionosphere-Thermosphere Response to Quasi-periodic Oscillations in Solar Wind Driving Conditions

    NASA Astrophysics Data System (ADS)

    Liu, J.; Wang, W.; Zhang, B.; Huang, C.

    2017-12-01

    Periodical oscillations with periods of several tens of minutes to several hours are commonly seen in the Alfven wave embedded in the solar wind. It is yet to be known how the solar wind oscillation frequency modulates the solar wind-magnetosphere-ionosphere coupled system. Utilizing the Coupled Magnetosphere-Ionosphere-Thermosphere Model (CMIT), we analyzed the magnetosphere-ionosphere-thermosphere system response to IMF Bz oscillation with periods of 10, 30, and 60 minutes from the perspective of energy budget and electrodynamic coupling processes. Our results indicate that solar wind energy coupling efficiency depends on IMF Bz oscillation frequency; energy coupling efficiency, represented by the ratio between globally integrated Joule heating and Epsilon function, is higher for lower frequency IMF Bz oscillation. Ionospheric Joule heating dissipation not only depends on the direct solar wind driven process but also is affected by the intrinsic nature of magnetosphere (i.e. loading-unloading process). In addition, ionosphere acts as a low-pass filter and tends to filter out very high-frequency solar wind oscillation (i.e. shorter than 10 minutes). Ionosphere vertical ion drift is most sensitive to IMF Bz oscillation compared to hmF2, and NmF2, while NmF2 is less sensitive. This can account for not synchronized NmF2 and hmF2 response to penetration electric fields in association with fast solar wind changes. This research highlights the critical role of IMF Bz oscillation frequency in constructing energy coupling function and understanding electrodynamic processes in the coupled solar wind-magnetosphere-ionosphere system.

  7. Time-varying coupling functions: Dynamical inference and cause of synchronization transitions

    NASA Astrophysics Data System (ADS)

    Stankovski, Tomislav

    2017-02-01

    Interactions in nature can be described by their coupling strength, direction of coupling, and coupling function. The coupling strength and directionality are relatively well understood and studied, at least for two interacting systems; however, there can be a complexity in the interactions uniquely dependent on the coupling functions. Such a special case is studied here: synchronization transition occurs only due to the time variability of the coupling functions, while the net coupling strength is constant throughout the observation time. To motivate the investigation, an example is used to present an analysis of cross-frequency coupling functions between delta and alpha brain waves extracted from the electroencephalography recording of a healthy human subject in a free-running resting state. The results indicate that time-varying coupling functions are a reality for biological interactions. A model of phase oscillators is used to demonstrate and detect the synchronization transition caused by the varying coupling functions during an invariant coupling strength. The ability to detect this phenomenon is discussed with the method of dynamical Bayesian inference, which was able to infer the time-varying coupling functions. The form of the coupling function acts as an additional dimension for the interactions, and it should be taken into account when detecting biological or other interactions from data.

  8. Intermittent and sustained periodic windows in networked chaotic Rössler oscillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Zhiwei; Sun, Yong; University of the Chinese Academy of Sciences, Beijing 100049

    Route to chaos (or periodicity) in dynamical systems is one of fundamental problems. Here, dynamical behaviors of coupled chaotic Rössler oscillators on complex networks are investigated and two different types of periodic windows with the variation of coupling strength are found. Under a moderate coupling, the periodic window is intermittent, and the attractors within the window extremely sensitively depend on the initial conditions, coupling parameter, and topology of the network. Therefore, after adding or removing one edge of network, the periodic attractor can be destroyed and substituted by a chaotic one, or vice versa. In contrast, under an extremely weakmore » coupling, another type of periodic window appears, which insensitively depends on the initial conditions, coupling parameter, and network. It is sustained and unchanged for different types of network structure. It is also found that the phase differences of the oscillators are almost discrete and randomly distributed except that directly linked oscillators more likely have different phases. These dynamical behaviors have also been generally observed in other networked chaotic oscillators.« less

  9. Insensitive dependence of delay-induced oscillation death on complex networks

    NASA Astrophysics Data System (ADS)

    Zou, Wei; Zheng, Xing; Zhan, Meng

    2011-06-01

    Oscillation death (also called amplitude death), a phenomenon of coupling induced stabilization of an unstable equilibrium, is studied for an arbitrary symmetric complex network with delay-coupled oscillators, and the critical conditions for its linear stability are explicitly obtained. All cases including one oscillator, a pair of oscillators, regular oscillator networks, and complex oscillator networks with delay feedback coupling, can be treated in a unified form. For an arbitrary symmetric network, we find that the corresponding smallest eigenvalue of the Laplacian λN (0 >λN ≥ -1) completely determines the death island, and as λN is located within the insensitive parameter region for nearly all complex networks, the death island keeps nearly the largest and does not sensitively depend on the complex network structures. This insensitivity effect has been tested for many typical complex networks including Watts-Strogatz (WS) and Newman-Watts (NW) small world networks, general scale-free (SF) networks, Erdos-Renyi (ER) random networks, geographical networks, and networks with community structures and is expected to be helpful for our understanding of dynamics on complex networks.

  10. Dynamical transitions in large systems of mean field-coupled Landau-Stuart oscillators: Extensive chaos and cluster states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ku, Wai Lim; Girvan, Michelle; Ott, Edward

    In this paper, we study dynamical systems in which a large number N of identical Landau-Stuart oscillators are globally coupled via a mean-field. Previously, it has been observed that this type of system can exhibit a variety of different dynamical behaviors. These behaviors include time periodic cluster states in which each oscillator is in one of a small number of groups for which all oscillators in each group have the same state which is different from group to group, as well as a behavior in which all oscillators have different states and the macroscopic dynamics of the mean field ismore » chaotic. We argue that this second type of behavior is “extensive” in the sense that the chaotic attractor in the full phase space of the system has a fractal dimension that scales linearly with N and that the number of positive Lyapunov exponents of the attractor also scales linearly with N. An important focus of this paper is the transition between cluster states and extensive chaos as the system is subjected to slow adiabatic parameter change. We observe discontinuous transitions between the cluster states (which correspond to low dimensional dynamics) and the extensively chaotic states. Furthermore, examining the cluster state, as the system approaches the discontinuous transition to extensive chaos, we find that the oscillator population distribution between the clusters continually evolves so that the cluster state is always marginally stable. This behavior is used to reveal the mechanism of the discontinuous transition. We also apply the Kaplan-Yorke formula to study the fractal structure of the extensively chaotic attractors.« less

  11. Noise induced oscillations and coherence resonance in a generic model of the nonisothermal chemical oscillator

    PubMed Central

    Simakov, David S. A.; Pérez-Mercader, Juan

    2013-01-01

    Oscillating chemical reactions are common in biological systems and they also occur in artificial non-biological systems. Generally, these reactions are subject to random fluctuations in environmental conditions which translate into fluctuations in the values of physical variables, for example, temperature. We formulate a mathematical model for a nonisothermal minimal chemical oscillator containing a single negative feedback loop and study numerically the effects of stochastic fluctuations in temperature in the absence of any deterministic limit cycle or periodic forcing. We show that noise in temperature can induce sustained limit cycle oscillations with a relatively narrow frequency distribution and some characteristic frequency. These properties differ significantly depending on the noise correlation. Here, we have explored white and colored (correlated) noise. A plot of the characteristic frequency of the noise induced oscillations as a function of the correlation exponent shows a maximum, therefore indicating the existence of autonomous stochastic resonance, i.e. coherence resonance. PMID:23929212

  12. Chimera at the phase-flip transition of an ensemble of identical nonlinear oscillators

    NASA Astrophysics Data System (ADS)

    Gopal, R.; Chandrasekar, V. K.; Senthilkumar, D. V.; Venkatesan, A.; Lakshmanan, M.

    2018-06-01

    A complex collective emerging behavior characterized by coexisting coherent and incoherent domains is termed as a chimera state. We bring out the existence of a new type of chimera in a nonlocally coupled ensemble of identical oscillators driven by a common dynamic environment. The latter facilitates the onset of phase-flip bifurcation/transitions among the coupled oscillators of the ensemble, while the nonlocal coupling induces a partial asynchronization among the out-of-phase synchronized oscillators at this onset. This leads to the manifestation of coexisting out-of-phase synchronized coherent domains interspersed by asynchronous incoherent domains elucidating the existence of a different type of chimera state. In addition to this, a rich variety of other collective behaviors such as clusters with phase-flip transition, conventional chimera, solitary state and complete synchronized state which have been reported using different coupling architectures are found to be induced by the employed couplings for appropriate coupling strengths. The robustness of the resulting dynamics is demonstrated in ensembles of two paradigmatic models, namely Rössler oscillators and Stuart-Landau oscillators.

  13. Impaired cognitive discrimination and discoordination of coupled theta-gamma oscillations in Fmr1 knockout mice

    PubMed Central

    Radwan, Basma; Dvorak, Dino; Fenton, André

    2016-01-01

    Fragile X syndrome (FXS) patients do not make the fragile X mental retardation protein (FMRP). Absence of FMRP causes dysregulated translation, abnormal synaptic plasticity and the most common form of inherited intellectual disability. But FMRP loss has minimal effects on memory itself, making it difficult to understand why absence of FMRP impairs memory discrimination and increases risk of autistic symptoms in patients, such as exaggerated responses to environmental changes. While Fmr1 knockout (KO) and wild-type (WT) mice perform cognitive discrimination tasks, we find abnormal patterns of coupling between theta and gamma oscillations in perisomatic and dendritic hippocampal CA1 local field potentials of the KO. Perisomatic CA1 theta-gamma phase-amplitude coupling (PAC) decreases with familiarity in both the WT and KO, but activating an invisible shock zone, subsequently changing its location, or turning it off, changes the pattern of oscillatory events in the LFPs recorded along the somato-dendritic axis of CA1. The cognition-dependent changes of this pattern of neural activity are relatively constrained in WT mice compared to KO mice, which exhibit abnormally weak changes during the cognitive challenge caused by changing the location of the shock zone and exaggerated patterns of change when the shock zone is turned off. Such pathophysiology might explain how dysregulated translation leads to intellectual disability in FXS. These findings demonstrate major functional abnormalities after the loss of FMRP in the dynamics of neural oscillations and that these impairments would be difficult to detect by steady-state measurements with the subject at rest or in steady conditions. PMID:26792400

  14. Synchronization in counter-rotating oscillators.

    PubMed

    Bhowmick, Sourav K; Ghosh, Dibakar; Dana, Syamal K

    2011-09-01

    An oscillatory system can have opposite senses of rotation, clockwise or anticlockwise. We present a general mathematical description of how to obtain counter-rotating oscillators from the definition of a dynamical system. A type of mixed synchronization emerges in counter-rotating oscillators under diffusive scalar coupling when complete synchronization and antisynchronization coexist in different state variables. We present numerical examples of limit cycle van der Pol oscillator and chaotic Rössler and Lorenz systems. Stability conditions of mixed synchronization are analytically obtained for both Rössler and Lorenz systems. Experimental evidences of counter-rotating limit cycle and chaotic oscillators and mixed synchronization are given in electronic circuits.

  15. Injection locked coupled opto-electronic oscillator for optical frequency comb generation

    NASA Astrophysics Data System (ADS)

    Williams, Charles; Mandridis, Dimitrios; Davila-Rodriguez, Josue; Delfyett, Peter J.

    2011-06-01

    A CW injection locked Coupled Opto-Electronic Oscillator (COEO) is presented with a 10.24 GHz spaced optical frequency comb output as well as a low noise RF output. A modified Pound-Drever-Hall scheme is employed to ensure long-term stability of the injection lock, feeding back into the cavity length to compensate for cavity resonance drifts relative to the injection seed frequency. Error signal comparison to an actively mode-locked injection locked laser is presented. High optical signal-to-noise ratio of ~35 dB is demonstrated with >20 comblines of useable bandwidth. The optical linewidth, in agreement with injection locking theory, reduces to that of the injection seed frequency, <5 kHz. Low amplitude and absolute phase noise are presented from the optical output of the laser system. The integrated pulse-to-pulse energy fluctuation was found to be reduced by up to a factor of two due to optical injection. Additional decreases were shown for varying injection powers.

  16. Direct observation of coherent energy transfer in nonlinear micromechanical oscillators.

    PubMed

    Chen, Changyao; Zanette, Damián H; Czaplewski, David A; Shaw, Steven; López, Daniel

    2017-05-26

    Energy dissipation is an unavoidable phenomenon of physical systems that are directly coupled to an external environmental bath. In an oscillatory system, it leads to the decay of the oscillation amplitude. In situations where stable oscillations are required, the energy dissipated by the vibrations is usually compensated by replenishment from external energy sources. Consequently, if the external energy supply is removed, the amplitude of oscillations start to decay immediately, since there is no means to restitute the energy dissipated. Here, we demonstrate a novel dissipation engineering strategy that can support stable oscillations without supplying external energy to compensate losses. The fundamental intrinsic mechanism of resonant mode coupling is used to redistribute and store mechanical energy among vibrational modes and coherently transfer it back to the principal mode when the external excitation is off. To experimentally demonstrate this phenomenon, we exploit the nonlinear dynamic response of microelectromechanical oscillators to couple two different vibrational modes through an internal resonance.

  17. Direct observation of coherent energy transfer in nonlinear micromechanical oscillators

    DOE PAGES

    Chen, Changyao; Zanette, Damian H.; Czaplewski, David A.; ...

    2017-05-26

    Energy dissipation is an unavoidable phenomenon of physical systems that are directly coupled to an external environmental bath. In an oscillatory system, it leads to the decay of the oscillation amplitude. In situations where stable oscillations are required, the energy dissipated by the vibrations is usually compensated by replenishment from external energy sources. Consequently, if the external energy supply is removed, the amplitude of oscillations start to decay immediately, since there is no means to restitute the energy dissipated. Here, we demonstrate a novel dissipation engineering strategy that can support stable oscillations without supplying external energy to compensate losses. Themore » fundamental intrinsic mechanism of resonant mode coupling is used to redistribute and store mechanical energy among vibrational modes and coherently transfer it back to the principal mode when the external excitation is off. To experimentally demonstrate this phenomenon, we exploit the nonlinear dynamic response of microelectromechanical oscillators to couple two different vibrational modes through an internal resonance.« less

  18. Direct observation of coherent energy transfer in nonlinear micromechanical oscillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Changyao; Zanette, Damian H.; Czaplewski, David A.

    Energy dissipation is an unavoidable phenomenon of physical systems that are directly coupled to an external environmental bath. In an oscillatory system, it leads to the decay of the oscillation amplitude. In situations where stable oscillations are required, the energy dissipated by the vibrations is usually compensated by replenishment from external energy sources. Consequently, if the external energy supply is removed, the amplitude of oscillations start to decay immediately, since there is no means to restitute the energy dissipated. Here, we demonstrate a novel dissipation engineering strategy that can support stable oscillations without supplying external energy to compensate losses. Themore » fundamental intrinsic mechanism of resonant mode coupling is used to redistribute and store mechanical energy among vibrational modes and coherently transfer it back to the principal mode when the external excitation is off. To experimentally demonstrate this phenomenon, we exploit the nonlinear dynamic response of microelectromechanical oscillators to couple two different vibrational modes through an internal resonance.« less

  19. Role of local network oscillations in resting-state functional connectivity.

    PubMed

    Cabral, Joana; Hugues, Etienne; Sporns, Olaf; Deco, Gustavo

    2011-07-01

    Spatio-temporally organized low-frequency fluctuations (<0.1 Hz), observed in BOLD fMRI signal during rest, suggest the existence of underlying network dynamics that emerge spontaneously from intrinsic brain processes. Furthermore, significant correlations between distinct anatomical regions-or functional connectivity (FC)-have led to the identification of several widely distributed resting-state networks (RSNs). This slow dynamics seems to be highly structured by anatomical connectivity but the mechanism behind it and its relationship with neural activity, particularly in the gamma frequency range, remains largely unknown. Indeed, direct measurements of neuronal activity have revealed similar large-scale correlations, particularly in slow power fluctuations of local field potential gamma frequency range oscillations. To address these questions, we investigated neural dynamics in a large-scale model of the human brain's neural activity. A key ingredient of the model was a structural brain network defined by empirically derived long-range brain connectivity together with the corresponding conduction delays. A neural population, assumed to spontaneously oscillate in the gamma frequency range, was placed at each network node. When these oscillatory units are integrated in the network, they behave as weakly coupled oscillators. The time-delayed interaction between nodes is described by the Kuramoto model of phase oscillators, a biologically-based model of coupled oscillatory systems. For a realistic setting of axonal conduction speed, we show that time-delayed network interaction leads to the emergence of slow neural activity fluctuations, whose patterns correlate significantly with the empirically measured FC. The best agreement of the simulated FC with the empirically measured FC is found for a set of parameters where subsets of nodes tend to synchronize although the network is not globally synchronized. Inside such clusters, the simulated BOLD signal between nodes

  20. Gravitational Wave Oscillations in Bigravity.

    PubMed

    Max, Kevin; Platscher, Moritz; Smirnov, Juri

    2017-09-15

    We derive consistent equations for gravitational wave oscillations in bigravity. In this framework a second dynamical tensor field is introduced in addition to general relativity and coupled such that one massless and one massive linear combination arise. Only one of the two tensors is the physical metric coupling to matter, and thus the basis in which gravitational waves propagate is different from the basis where the wave is produced and detected. Therefore, one should expect-in analogy to neutrino oscillations-to observe an oscillatory behavior. We show for the first time how this behavior arises explicitly, discuss phenomenological implications, and present new limits on the graviton parameter space in bigravity.

  1. Emergence and transitions of dynamic patterns of thickness oscillation of the plasmodium of the true slime mold Physarum polycephalum

    NASA Astrophysics Data System (ADS)

    Takagi, Seiji; Ueda, Tetsuo

    2008-03-01

    The emergence and transitions of various spatiotemporal patterns of thickness oscillation were studied in the freshly isolated protoplasm of the Physarum plasmodium. New patterns, such as standing waves, and chaotic and rotating spirals, developed successively before the well-documented synchronous pattern appeared. There was also a spontaneous opposite transition from synchrony to chaotic and rotating spirals. Rotating spiral waves were observed in the large migrating plasmodium, where the vein structures were being destroyed. Thus, the Physarum plasmodium exhibits versatile patterns, which are generally expected in coupled oscillator systems. This paper discusses the physiological roles of spatiotemporal patterns, comparing them with other biological systems.

  2. Primordial oscillations in life: Direct observation of glycolytic oscillations in individual HeLa cervical cancer cells

    NASA Astrophysics Data System (ADS)

    Amemiya, Takashi; Shibata, Kenichi; Itoh, Yoshihiro; Itoh, Kiminori; Watanabe, Masatoshi; Yamaguchi, Tomohiko

    2017-10-01

    We report the first direct observation of glycolytic oscillations in HeLa cervical cancer cells, which we regard as primordial oscillations preserved in living cells. HeLa cells starved of glucose or both glucose and serum exhibited glycolytic oscillations in nicotinamide adenine dinucleotide (NADH), exhibiting asynchronous intercellular behaviors. Also found were spatially homogeneous and inhomogeneous intracellular NADH oscillations in the individual cells. Our results demonstrate that starved HeLa cells may be induced to exhibit glycolytic oscillations by either high-uptake of glucose or the enhancement of a glycolytic pathway (Crabtree effect or the Warburg effect), or both. Their asynchronous collective behaviors in the oscillations were probably due to a weak intercellular coupling. Elucidation of the relationship between the mechanism of glycolytic dynamics in cancer cells and their pathophysiological characteristics remains a challenge in future.

  3. Gravitational wave-Gauge field oscillations

    NASA Astrophysics Data System (ADS)

    Caldwell, R. R.; Devulder, C.; Maksimova, N. A.

    2016-09-01

    Gravitational waves propagating through a stationary gauge field transform into gauge field waves and back again. When multiple families of flavor-space locked gauge fields are present, the gravitational and gauge field waves exhibit novel dynamics. At high frequencies, the system behaves like coupled oscillators in which the gravitational wave is the central pacemaker. Due to energy conservation and exchange among the oscillators, the wave amplitudes lie on a multidimensional sphere, reminiscent of neutrino flavor oscillations. This phenomenon has implications for cosmological scenarios based on flavor-space locked gauge fields.

  4. Global competition and local cooperation in a network of neural oscillators

    NASA Astrophysics Data System (ADS)

    Terman, David; Wang, DeLiang

    An architecture of locally excitatory, globally inhibitory oscillator networks is proposed and investigated both analytically and by computer simulation. The model for each oscillator corresponds to a standard relaxation oscillator with two time scales. Oscillators are locally coupled by a scheme that resembles excitatory synaptic coupling, and each oscillator also inhibits other oscillators through a common inhibitor. Oscillators are driven to be oscillatory by external stimulation. The network exhibits a mechanism of selective gating, whereby an oscillator jumping up to its active phase rapidly recruits the oscillators stimulated by the same pattern, while preventing the other oscillators from jumping up. We show analytically that with the selective gating mechanism, the network rapidly achieves both synchronization within blocks of oscillators that are stimulated by connected regions and desynchronization between different blocks. Computer simulations demonstrate the model's promising ability for segmenting multiple input patterns in real time. This model lays a physical foundation for the oscillatory correlation theory of feature binding and may provide an effective computational framework for scene segmentation and figure/ ground segregation.

  5. Power spectra and auto correlation analysis of hyperfine-induced long period oscillations in the tunneling current of coupled quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harack, B.; Leary, A.; Coish, W. A.

    2013-12-04

    We outline power spectra and auto correlation analysis performed on temporal oscillations in the tunneling current of coupled vertical quantum dots. The current is monitored for ∼2325 s blocks as the magnetic field is stepped through a high bias feature displaying hysteresis and switching: hallmarks of the hyperfine interaction. Quasi-periodic oscillations of ∼2 pA amplitude and of ∼100 s period are observed in the current inside the hysteretic feature. Compared to the baseline current outside the hysteretic feature the power spectral density is enhanced by up to three orders of magnitude and the auto correlation displays clear long lived oscillationsmore » about zero.« less

  6. Finite amplitude transverse oscillations of a magnetic rope

    NASA Astrophysics Data System (ADS)

    Kolotkov, Dmitrii Y.; Nisticò, Giuseppe; Rowlands, George; Nakariakov, Valery M.

    2018-07-01

    The effects of finite amplitudes on the transverse oscillations of a quiescent prominence represented by a magnetic rope are investigated in terms of the model proposed by Kolotkov et al. (2016). We consider a weakly nonlinear case governed by a quadratic nonlinearity, and also analyse the fully nonlinear equations of motion. We treat the prominence as a massive line current located above the photosphere and interacting with the magnetised dipped environment via the Lorentz force. In this concept the magnetic dip is produced by two external current sources located at the photosphere. Finite amplitude horizontal and vertical oscillations are found to be strongly coupled between each other. The coupling is more efficient for larger amplitudes and smaller attack angles between the direction of the driver and the horizontal axis. Spatial structure of oscillations is represented by Lissajous-like curves with the limit cycle of a hourglass shape, appearing in the resonant case, when the frequency of the vertical mode is twice the horizontal mode frequency. A metastable equilibrium of the prominence is revealed, which is stable for small amplitude displacements, and becomes horizontally unstable, when the amplitude exceeds a threshold value. The maximum oscillation amplitudes are also analytically derived and analysed. Typical oscillation periods are determined by the oscillation amplitude, prominence current, its mass and position above the photosphere, and the parameters of the magnetic dip. The main new effects of the finite amplitude are the coupling of the horizontally and vertically polarised transverse oscillations (i.e. the lack of a simple, elliptically polarised regime) and the presence of metastable equilibria of prominences.

  7. Synchrony, waves and ripple in spatially coupled Kuramoto oscillators with Mexican hat connectivity.

    PubMed

    Heitmann, Stewart; Ermentrout, G Bard

    2015-06-01

    Spatiotemporal waves of synchronized activity are known to arise in oscillatory neural networks with lateral inhibitory coupling. How such patterns respond to dynamic changes in coupling strength is largely unexplored. The present study uses analysis and simulation to investigate the evolution of wave patterns when the strength of lateral inhibition is varied dynamically. Neural synchronization was modeled by a spatial ring of Kuramoto oscillators with Mexican hat lateral coupling. Broad bands of coexisting stable wave solutions were observed at all levels of inhibition. The stability of these waves was formally analyzed in both the infinite ring and the finite ring. The broad range of multi-stability predicted hysteresis in transitions between neighboring wave solutions when inhibition is slowly varied. Numerical simulation confirmed the predicted transitions when inhibition was ramped down from a high initial value. However, non-wave solutions emerged from the uniform solution when inhibition was ramped upward from zero. These solutions correspond to spatially periodic deviations of phase that we call ripple states. Numerical continuation showed that stable ripple states emerge from synchrony via a supercritical pitchfork bifurcation. The normal form of this bifurcation was derived analytically, and its predictions compared against the numerical results. Ripple states were also found to bifurcate from wave solutions, but these were locally unstable. Simulation also confirmed the existence of hysteresis and ripple states in two spatial dimensions. Our findings show that spatial synchronization patterns can remain structurally stable despite substantial changes in network connectivity.

  8. Production of squeezed states for macroscopic mechanical oscillator

    NASA Technical Reports Server (NTRS)

    Kulagin, V. V.

    1994-01-01

    The possibility of squeezed states generation for macroscopic mechanical oscillator is discussed. It is shown that one can obtain mechanical oscillator in squeezed state via coupling it to electromagnetic oscillator (Fabry-Perot resonator) and pumping this Fabry-Perot resonator with a field in squeezed state. The degradation of squeezing due to mechanical and optical losses is also analyzed.

  9. Mechano-biological Coupling of Cellular Responses to Microgravity

    NASA Astrophysics Data System (ADS)

    Long, Mian; Wang, Yuren; Zheng, Huiqiong; Shang, Peng; Duan, Enkui; Lü, Dongyuan

    2015-11-01

    Cellular response to microgravity is a basic issue in space biological sciences as well as space physiology and medicine. It is crucial to elucidate the mechano-biological coupling mechanisms of various biological organisms, since, from the principle of adaptability, all species evolved on the earth must possess the structure and function that adapts their living environment. As a basic element of an organism, a cell usually undergoes mechanical and chemical remodeling to sense, transmit, transduce, and respond to the alteration of gravitational signals. In the past decades, new computational platforms and experimental methods/techniques/devices are developed to mimic the biological effects of microgravity environment from the viewpoint of biomechanical approaches. Mechanobiology of plant gravisensing in the responses of statolith movements along the gravity vector and the relevant signal transduction and molecular regulatory mechanisms are investigated at gene, transcription, and protein levels. Mechanotransduction of bone or immune cell responses and stem cell development and tissue histogenesis are elucidated under microgravity. In this review, several important issues are briefly discussed. Future issues on gravisensing and mechanotransducing mechanisms are also proposed for ground-based studies as well as space missions.

  10. Self-organisation of random oscillators with Lévy stable distributions

    NASA Astrophysics Data System (ADS)

    Moradi, Sara; Anderson, Johan

    2017-08-01

    A novel possibility of self-organized behaviour of stochastically driven oscillators is presented. It is shown that synchronization by Lévy stable processes is significantly more efficient than that by oscillators with Gaussian statistics. The impact of outlier events from the tail of the distribution function was examined by artificially introducing a few additional oscillators with very strong coupling strengths and it is found that remarkably even one such rare and extreme event may govern the long term behaviour of the coupled system. In addition to the multiplicative noise component, we have investigated the impact of an external additive Lévy distributed noise component on the synchronisation properties of the oscillators.

  11. Impaired cognitive discrimination and discoordination of coupled theta-gamma oscillations in Fmr1 knockout mice.

    PubMed

    Radwan, Basma; Dvorak, Dino; Fenton, André A

    2016-04-01

    Fragile X syndrome (FXS) patients do not make the fragile X mental retardation protein (FMRP). The absence of FMRP causes dysregulated translation, abnormal synaptic plasticity and the most common form of inherited intellectual disability. But FMRP loss has minimal effects on memory itself, making it difficult to understand why the absence of FMRP impairs memory discrimination and increases risk of autistic symptoms in patients, such as exaggerated responses to environmental changes. While Fmr1 knockout (KO) and wild-type (WT) mice perform cognitive discrimination tasks, we find abnormal patterns of coupling between theta and gamma oscillations in perisomatic and dendritic hippocampal CA1 local field potentials of the KO. Perisomatic CA1 theta-gamma phase-amplitude coupling (PAC) decreases with familiarity in both the WT and KO, but activating an invisible shock zone, subsequently changing its location, or turning it off, changes the pattern of oscillatory events in the LFPs recorded along the somato-dendritic axis of CA1. The cognition-dependent changes of this pattern of neural activity are relatively constrained in WT mice compared to KO mice, which exhibit abnormally weak changes during the cognitive challenge caused by changing the location of the shock zone and exaggerated patterns of change when the shock zone is turned off. Such pathophysiology might explain how dysregulated translation leads to intellectual disability in FXS. These findings demonstrate major functional abnormalities after the loss of FMRP in the dynamics of neural oscillations and that these impairments would be difficult to detect by steady-state measurements with the subject at rest or in steady conditions. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. The Dirac-Moshinsky oscillator coupled to an external field and its connection to quantum optics

    NASA Astrophysics Data System (ADS)

    Torres, Juan Mauricio; Sadurní, Emerson; Seligman, Thomas H.

    2010-12-01

    The Dirac-Moshinsky oscillator is an elegant example of an exactly solvable quantum relativistic model that under certain circumstances can be mapped onto the Jaynes-Cummings model in quantum optics. In this work we show, how to do this in detail. Then we extend it by considering its coupling with an external (isospin) field and find the conditions that maintain solvability. We use this extended system to explore entanglement in relativistic systems and then identify its quantum optical analog: two different atoms interacting with an electromagnetic mode. We show different aspects of entanglement which gain relevance in this last system, which can be used to emulate the former.

  13. Probabilistic information transmission in a network of coupled oscillators reveals speed-accuracy trade-off in responding to threats

    PubMed Central

    Chicoli, Amanda; Paley, Derek A.

    2016-01-01

    Individuals in a group may obtain information from other group members about the environment, including the location of a food source or the presence of a predator. Here, we model how information spreads in a group using a susceptible-infected-removed epidemic model. We apply this model to a simulated shoal of fish using the motion dynamics of a coupled oscillator model, in order to test the biological hypothesis that polarized or aligned shoaling leads to faster and more accurate escape responses. The contributions of this study are the (i) application of a probabilistic model of epidemics to the study of collective animal behavior; (ii) testing the biological hypothesis that group cohesion improves predator escape; (iii) quantification of the effect of social cues on startle propagation; and (iv) investigation of the variation in response based on network connectivity. We find that when perfectly aligned individuals in a group are startled, there is a rapid escape by individuals that directly detect the threat, as well as by individuals responding to their neighbors. However, individuals that are not startled do not head away from the threat. In startled groups that are randomly oriented, there is a rapid, accurate response by individuals that directly detect the threat, followed by less accurate responses by individuals responding to neighbor cues. Over the simulation duration, however, even unstartled individuals head away from the threat. This study illustrates a potential speed-accuracy trade-off in the startle response of animal groups, in agreement with several previous experimental studies. Additionally, the model can be applied to a variety of group decision-making processes, including those involving higher-dimensional motion. PMID:27907996

  14. Probabilistic information transmission in a network of coupled oscillators reveals speed-accuracy trade-off in responding to threats

    NASA Astrophysics Data System (ADS)

    Chicoli, Amanda; Paley, Derek A.

    2016-11-01

    Individuals in a group may obtain information from other group members about the environment, including the location of a food source or the presence of a predator. Here, we model how information spreads in a group using a susceptible-infected-removed epidemic model. We apply this model to a simulated shoal of fish using the motion dynamics of a coupled oscillator model, in order to test the biological hypothesis that polarized or aligned shoaling leads to faster and more accurate escape responses. The contributions of this study are the (i) application of a probabilistic model of epidemics to the study of collective animal behavior; (ii) testing the biological hypothesis that group cohesion improves predator escape; (iii) quantification of the effect of social cues on startle propagation; and (iv) investigation of the variation in response based on network connectivity. We find that when perfectly aligned individuals in a group are startled, there is a rapid escape by individuals that directly detect the threat, as well as by individuals responding to their neighbors. However, individuals that are not startled do not head away from the threat. In startled groups that are randomly oriented, there is a rapid, accurate response by individuals that directly detect the threat, followed by less accurate responses by individuals responding to neighbor cues. Over the simulation duration, however, even unstartled individuals head away from the threat. This study illustrates a potential speed-accuracy trade-off in the startle response of animal groups, in agreement with several previous experimental studies. Additionally, the model can be applied to a variety of group decision-making processes, including those involving higher-dimensional motion.

  15. Probabilistic information transmission in a network of coupled oscillators reveals speed-accuracy trade-off in responding to threats.

    PubMed

    Chicoli, Amanda; Paley, Derek A

    2016-11-01

    Individuals in a group may obtain information from other group members about the environment, including the location of a food source or the presence of a predator. Here, we model how information spreads in a group using a susceptible-infected-removed epidemic model. We apply this model to a simulated shoal of fish using the motion dynamics of a coupled oscillator model, in order to test the biological hypothesis that polarized or aligned shoaling leads to faster and more accurate escape responses. The contributions of this study are the (i) application of a probabilistic model of epidemics to the study of collective animal behavior; (ii) testing the biological hypothesis that group cohesion improves predator escape; (iii) quantification of the effect of social cues on startle propagation; and (iv) investigation of the variation in response based on network connectivity. We find that when perfectly aligned individuals in a group are startled, there is a rapid escape by individuals that directly detect the threat, as well as by individuals responding to their neighbors. However, individuals that are not startled do not head away from the threat. In startled groups that are randomly oriented, there is a rapid, accurate response by individuals that directly detect the threat, followed by less accurate responses by individuals responding to neighbor cues. Over the simulation duration, however, even unstartled individuals head away from the threat. This study illustrates a potential speed-accuracy trade-off in the startle response of animal groups, in agreement with several previous experimental studies. Additionally, the model can be applied to a variety of group decision-making processes, including those involving higher-dimensional motion.

  16. Synchronization of an ensemble of oscillators regulated by their spatial movement.

    PubMed

    Sarkar, Sumantra; Parmananda, P

    2010-12-01

    Synchronization for a collection of oscillators residing in a finite two dimensional plane is explored. The coupling between any two oscillators in this array is unidirectional, viz., master-slave configuration. Initially the oscillators are distributed randomly in space and their autonomous time-periods follow a Gaussian distribution. The duty cycles of these oscillators, which work under an on-off scenario, are normally distributed as well. It is realized that random hopping of oscillators is a necessary condition for observing global synchronization in this ensemble of oscillators. Global synchronization in the context of the present work is defined as the state in which all the oscillators are rendered identical. Furthermore, there exists an optimal amplitude of random hopping for which the attainment of this global synchronization is the fastest. The present work is deemed to be of relevance to the synchronization phenomena exhibited by pulse coupled oscillators such as a collection of fireflies. © 2010 American Institute of Physics.

  17. Stability of two-mode internal resonance in a nonlinear oscillator

    NASA Astrophysics Data System (ADS)

    Zanette, Damián H.

    2018-05-01

    We analyze the stability of synchronized periodic motion for two coupled oscillators, representing two interacting oscillation modes in a nonlinear vibrating beam. The main oscillation mode is governed by the forced Duffing equation, while the other mode is linear. By means of the multiple-scale approach, the system is studied in two situations: an open-loop configuration, where the excitation is an external force, and a closed-loop configuration, where the system is fed back with an excitation obtained from the oscillation itself. The latter is relevant to the functioning of time-keeping micromechanical devices. While the accessible amplitudes and frequencies of stationary oscillations are identical in the two situations, their stability properties are substantially different. Emphasis is put on resonant oscillations, where energy transfer between the two coupled modes is maximized and, consequently, the strong interdependence between frequency and amplitude caused by nonlinearity is largely suppressed.

  18. Nonreciprocal wave scattering on nonlinear string-coupled oscillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lepri, Stefano, E-mail: stefano.lepri@isc.cnr.it; Istituto Nazionale di Fisica Nucleare, Sezione di Firenze, via G. Sansone 1, I-50019 Sesto Fiorentino; Pikovsky, Arkady

    2014-12-01

    We study scattering of a periodic wave in a string on two lumped oscillators attached to it. The equations can be represented as a driven (by the incident wave) dissipative (due to radiation losses) system of delay differential equations of neutral type. Nonlinearity of oscillators makes the scattering non-reciprocal: The same wave is transmitted differently in two directions. Periodic regimes of scattering are analyzed approximately, using amplitude equation approach. We show that this setup can act as a nonreciprocal modulator via Hopf bifurcations of the steady solutions. Numerical simulations of the full system reveal nontrivial regimes of quasiperiodic and chaoticmore » scattering. Moreover, a regime of a “chaotic diode,” where transmission is periodic in one direction and chaotic in the opposite one, is reported.« less

  19. Circuit oscillations in odor perception and memory.

    PubMed

    Kay, Leslie M

    2014-01-01

    Olfactory system neural oscillations as seen in the local field potential have been studied for many decades. Recent research has shown that there is a functional role for the most studied gamma oscillations (40-100Hz in rats and mice, and 20Hz in insects), without which fine odor discrimination is poor. When these oscillations are increased artificially, fine discrimination is increased, and when rats learn difficult and highly overlapping odor discriminations, gamma is increased in power. Because of the depth of study on this oscillation, it is possible to point to specific changes in neural firing patterns as represented by the increase in gamma oscillation amplitude. However, we know far less about the mechanisms governing beta oscillations (15-30Hz in rats and mice), which are best associated with associative learning of responses to odor stimuli. These oscillations engage every part of the olfactory system that has so far been tested, plus the hippocampus, and the beta oscillation frequency band is the one that is most reliably coherent with other regions during odor processing. Respiratory oscillations overlapping with the theta frequency band (2-12Hz) are associated with odor sniffing and normal breathing in rats. They also show coupling in some circumstances between olfactory areas and rare coupling between the hippocampus and olfactory bulb. The latter occur in specific learning conditions in which coherence strength is negatively or positively correlated with performance, depending on the task. There is still much to learn about the role of neural oscillations in learning and memory, but techniques that have been brought to bear on gamma oscillations (current source density, computational modeling, slice physiology, behavioral studies) should deliver much needed knowledge of these events. © 2014 Elsevier B.V. All rights reserved.

  20. Disorder-induced localization of excitability in an array of coupled lasers

    NASA Astrophysics Data System (ADS)

    Lamperti, M.; Perego, A. M.

    2017-10-01

    We report on the localization of excitability induced by disorder in an array of coupled semiconductor lasers with a saturable absorber. Through numerical simulations we show that the exponential localization of excitable waves occurs if a certain critical amount of randomness is present in the coupling coefficients among the lasers. The results presented in this Rapid Communication demonstrate that disorder can induce localization in lattices of excitable nonlinear oscillators, and can be of interest in the study of photonics-based random networks, neuromorphic systems, and, by analogy, in biology, in particular, in the investigation of the collective dynamics of neuronal cell populations.

  1. Power harvesting by electromagnetic coupling from wind-induced limit cycle oscillations

    NASA Astrophysics Data System (ADS)

    Boccalero, G.; Olivieri, S.; Mazzino, A.; Boragno, C.

    2017-09-01

    Recent developments of low-power microprocessors open to new applications such as wireless sensor networks (WSN) with the consequent problem of autonomous powering. For this purpose, a possible strategy is represented by energy harvesting from wind or other flows exploiting fluid-structure interactions. In this work, we present an updated picture of a flutter-based device characterized by fully passive dynamics and a simple constructive layout, where limit cycle oscillations are undergone by an elastically bounded wing. In this case, the conversion from mechanical to electrical energy is performed by means of an electromagnetic coupling between a pair of coils and magnets. A centimetric-size prototype is shown to harvest energy from low wind velocities (between 2 and 4 m s-1), reaching a power peak of 14 mW, representing a valuable amount for applications related to WSN. A mathematical description of the nonlinear dynamics is then provided by a quasi-steady phenomenological model, revealing satisfactory agreement with the experimental framework within a certain parametric range and representing a useful tool for future optimizations.

  2. Oscillating scalar fields in extended quintessence

    NASA Astrophysics Data System (ADS)

    Li, Dan; Pi, Shi; Scherrer, Robert J.

    2018-01-01

    We study a rapidly oscillating scalar field with potential V (ϕ )=k |ϕ |n nonminimally coupled to the Ricci scalar R via a term of the form (1 -8 π G0ξ ϕ2)R in the action. In the weak coupling limit, we calculate the effect of the nonminimal coupling on the time-averaged equation of state parameter γ =(p +ρ )/ρ . The change in ⟨γ ⟩ is always negative for n ≥2 and always positive for n <0.71 (which includes the case where the oscillating scalar field could serve as dark energy), while it can be either positive or negative for intermediate values of n . Constraints on the time variation of G force this change to be infinitesimally small at the present time whenever the scalar field dominates the expansion, but constraints in the early universe are not as stringent. The rapid oscillation induced in G also produces an additional contribution to the Friedman equation that behaves like an effective energy density with a stiff equation of state, but we show that, under reasonable assumptions, this effective energy density is always smaller than the density of the scalar field itself.

  3. Membrane-bound MinDE complex acts as a toggle switch that drives Min oscillation coupled to cytoplasmic depletion of MinD

    PubMed Central

    Vecchiarelli, Anthony G.; Li, Min; Mizuuchi, Michiyo; Hwang, Ling Chin; Seol, Yeonee; Neuman, Keir C.; Mizuuchi, Kiyoshi

    2016-01-01

    The Escherichia coli Min system self-organizes into a cell-pole to cell-pole oscillator on the membrane to prevent divisions at the cell poles. Reconstituting the Min system on a lipid bilayer has contributed to elucidating the oscillatory mechanism. However, previous in vitro patterns were attained with protein densities on the bilayer far in excess of those in vivo and failed to recapitulate the standing wave oscillations observed in vivo. Here we studied Min protein patterning at limiting MinD concentrations reflecting the in vivo conditions. We identified “burst” patterns—radially expanding and imploding binding zones of MinD, accompanied by a peripheral ring of MinE. Bursts share several features with the in vivo dynamics of the Min system including standing wave oscillations. Our data support a patterning mechanism whereby the MinD-to-MinE ratio on the membrane acts as a toggle switch: recruiting and stabilizing MinD on the membrane when the ratio is high and releasing MinD from the membrane when the ratio is low. Coupling this toggle switch behavior with MinD depletion from the cytoplasm drives a self-organized standing wave oscillator. PMID:26884160

  4. Membrane-bound MinDE complex acts as a toggle switch that drives Min oscillation coupled to cytoplasmic depletion of MinD.

    PubMed

    Vecchiarelli, Anthony G; Li, Min; Mizuuchi, Michiyo; Hwang, Ling Chin; Seol, Yeonee; Neuman, Keir C; Mizuuchi, Kiyoshi

    2016-03-15

    The Escherichia coli Min system self-organizes into a cell-pole to cell-pole oscillator on the membrane to prevent divisions at the cell poles. Reconstituting the Min system on a lipid bilayer has contributed to elucidating the oscillatory mechanism. However, previous in vitro patterns were attained with protein densities on the bilayer far in excess of those in vivo and failed to recapitulate the standing wave oscillations observed in vivo. Here we studied Min protein patterning at limiting MinD concentrations reflecting the in vivo conditions. We identified "burst" patterns--radially expanding and imploding binding zones of MinD, accompanied by a peripheral ring of MinE. Bursts share several features with the in vivo dynamics of the Min system including standing wave oscillations. Our data support a patterning mechanism whereby the MinD-to-MinE ratio on the membrane acts as a toggle switch: recruiting and stabilizing MinD on the membrane when the ratio is high and releasing MinD from the membrane when the ratio is low. Coupling this toggle switch behavior with MinD depletion from the cytoplasm drives a self-organized standing wave oscillator.

  5. Thin-film optoacoustic transducers for subcellular Brillouin oscillation imaging of individual biological cells.

    PubMed

    Pérez-Cota, Fernando; Smith, Richard J; Moradi, Emilia; Marques, Leonel; Webb, Kevin F; Clark, Matt

    2015-10-01

    At low frequencies ultrasound is a valuable tool to mechanically characterize and image biological tissues. There is much interest in using high-frequency ultrasound to investigate single cells. Mechanical characterization of vegetal and biological cells by measurement of Brillouin oscillations has been demonstrated using ultrasound in the GHz range. This paper presents a method to extend this technique from the previously reported single-point measurements and line scans into a high-resolution acoustic imaging tool. Our technique uses a three-layered metal-dielectric-metal film as a transducer to launch acoustic waves into the cell we want to study. The design of this transducer and measuring system is optimized to overcome the vulnerability of a cell to the exposure of laser light and heat without sacrificing the signal-to-noise ratio. The transducer substrate shields the cell from the laser radiation, efficiently generates acoustic waves, facilitates optical detection in transmission, and aids with heat dissipation away from the cell. This paper discusses the design of the transducers and instrumentation and presents Brillouin frequency images on phantom, fixed, and living cells.

  6. Traveling wave solutions in a chain of periodically forced coupled nonlinear oscillators

    NASA Astrophysics Data System (ADS)

    Duanmu, M.; Whitaker, N.; Kevrekidis, P. G.; Vainchtein, A.; Rubin, J. E.

    2016-06-01

    Motivated by earlier studies of artificial perceptions of light called phosphenes, we analyze traveling wave solutions in a chain of periodically forced coupled nonlinear oscillators modeling this phenomenon. We examine the discrete model problem in its co-traveling frame and systematically obtain the corresponding traveling waves in one spatial dimension. Direct numerical simulations as well as linear stability analysis are employed to reveal the parameter regions where the traveling waves are stable, and these waves are, in turn, connected to the standing waves analyzed in earlier work. We also consider a two-dimensional extension of the model and demonstrate the robust evolution and stability of planar fronts. Our simulations also suggest the radial fronts tend to either annihilate or expand and flatten out, depending on the phase value inside and the parameter regime. Finally, we observe that solutions that initially feature two symmetric fronts with bulged centers evolve in qualitative agreement with experimental observations of phosphenes.

  7. Influence of topology in the mobility enhancement of pulse-coupled oscillator synchronization

    NASA Astrophysics Data System (ADS)

    Beardo, A.; Prignano, L.; Sagarra, O.; Díaz-Guilera, A.

    2017-12-01

    In this work we revisit the nonmonotonic behavior (NMB) of synchronization time with velocity reported for systems of mobile pulse-coupled oscillators (PCOs). We devise a control parameter that allows us to predict in which range of velocities NMB may occur, also uncovering the conditions allowing us to establish the emergence of NMB based on specific features of the connectivity rule. Specifically, our results show that if the connectivity rule is such that the interaction patterns are sparse and, more importantly, include a large fraction of nonreciprocal interactions, then the system will display NMB. We furthermore provide a microscopic explanation relating the presence of such features of the connectivity patterns to the existence of local clusters unable to synchronize, termed frustrated clusters, for which we also give a precise definition in terms of simple graph concepts. We conclude that, if the probability of finding a frustrated cluster in a system of moving PCOs is high enough, NMB occurs in a predictable range of velocities.

  8. Traveling wave solutions in a chain of periodically forced coupled nonlinear oscillators

    DOE PAGES

    Duanmu, M.; Whitaker, N.; Kevrekidis, P. G.; ...

    2016-02-27

    Artificial perceptions of light called phosphenes were motivated by earlier studies. We analyze traveling wave solutions in a chain of periodically forced coupled nonlinear oscillators modeling this phenomenon. We examine the discrete model problem in its co-traveling frame and systematically obtain the corresponding traveling waves in one spatial dimension. Direct numerical simulations as well as linear stability analysis are employed to reveal the parameter regions where the traveling waves are stable, and these waves are, in turn, connected to the standing waves analyzed in earlier work. We also consider a two-dimensional extension of the model and demonstrate the robust evolutionmore » and stability of planar fronts. Moreover, our simulations also suggest the radial fronts tend to either annihilate or expand and flatten out, depending on the phase value inside and the parameter regime. Finally, we observe that solutions that initially feature two symmetric fronts with bulged centers evolve in qualitative agreement with experimental observations of phosphenes.« less

  9. Traveling wave solutions in a chain of periodically forced coupled nonlinear oscillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duanmu, M.; Whitaker, N.; Kevrekidis, P. G.

    Artificial perceptions of light called phosphenes were motivated by earlier studies. We analyze traveling wave solutions in a chain of periodically forced coupled nonlinear oscillators modeling this phenomenon. We examine the discrete model problem in its co-traveling frame and systematically obtain the corresponding traveling waves in one spatial dimension. Direct numerical simulations as well as linear stability analysis are employed to reveal the parameter regions where the traveling waves are stable, and these waves are, in turn, connected to the standing waves analyzed in earlier work. We also consider a two-dimensional extension of the model and demonstrate the robust evolutionmore » and stability of planar fronts. Moreover, our simulations also suggest the radial fronts tend to either annihilate or expand and flatten out, depending on the phase value inside and the parameter regime. Finally, we observe that solutions that initially feature two symmetric fronts with bulged centers evolve in qualitative agreement with experimental observations of phosphenes.« less

  10. [Multi-channel in vivo recording techniques: analysis of phase coupling between spikes and rhythmic oscillations of local field potentials].

    PubMed

    Wang, Ce-Qun; Chen, Qiang; Zhang, Lu; Xu, Jia-Min; Lin, Long-Nian

    2014-12-25

    The purpose of this article is to introduce the measurements of phase coupling between spikes and rhythmic oscillations of local field potentials (LFPs). Multi-channel in vivo recording techniques allow us to record ensemble neuronal activity and LFPs simultaneously from the same sites in the brain. Neuronal activity is generally characterized by temporal spike sequences, while LFPs contain oscillatory rhythms in different frequency ranges. Phase coupling analysis can reveal the temporal relationships between neuronal firing and LFP rhythms. As the first step, the instantaneous phase of LFP rhythms can be calculated using Hilbert transform, and then for each time-stamped spike occurred during an oscillatory epoch, we marked instantaneous phase of the LFP at that time stamp. Finally, the phase relationships between the neuronal firing and LFP rhythms were determined by examining the distribution of the firing phase. Phase-locked spikes are revealed by the non-random distribution of spike phase. Theta phase precession is a unique phase relationship between neuronal firing and LFPs, which is one of the basic features of hippocampal place cells. Place cells show rhythmic burst firing following theta oscillation within a place field. And phase precession refers to that rhythmic burst firing shifted in a systematic way during traversal of the field, moving progressively forward on each theta cycle. This relation between phase and position can be described by a linear model, and phase precession is commonly quantified with a circular-linear coefficient. Phase coupling analysis helps us to better understand the temporal information coding between neuronal firing and LFPs.

  11. The pedestrian watchmaker: Genetic clocks from engineered oscillators

    PubMed Central

    Cookson, Natalie A.; Tsimring, Lev S.; Hasty, Jeff

    2010-01-01

    The crucial role of time-keeping has required organisms to develop sophisticated regulatory networks to ensure the reliable propagation of periodic behavior. These biological clocks have long been a focus of research; however, a clear understanding of how they maintain oscillations in the face of unpredictable environments and the inherent noise of biological systems remains elusive. Here, we review the current understanding of circadian oscillations using Drosophila melanogaster as a typical example and discuss the utility of an alternative synthetic biology approach to studying these highly intricate systems. PMID:19903483

  12. When eyes drive hand: Influence of non-biological motion on visuo-motor coupling.

    PubMed

    Thoret, Etienne; Aramaki, Mitsuko; Bringoux, Lionel; Ystad, Sølvi; Kronland-Martinet, Richard

    2016-01-26

    Many studies stressed that the human movement execution but also the perception of motion are constrained by specific kinematics. For instance, it has been shown that the visuo-manual tracking of a spotlight was optimal when the spotlight motion complies with biological rules such as the so-called 1/3 power law, establishing the co-variation between the velocity and the trajectory curvature of the movement. The visual or kinesthetic perception of a geometry induced by motion has also been shown to be constrained by such biological rules. In the present study, we investigated whether the geometry induced by the visuo-motor coupling of biological movements was also constrained by the 1/3 power law under visual open loop control, i.e. without visual feedback of arm displacement. We showed that when someone was asked to synchronize a drawing movement with a visual spotlight following a circular shape, the geometry of the reproduced shape was fooled by visual kinematics that did not respect the 1/3 power law. In particular, elliptical shapes were reproduced when the circle is trailed with a kinematics corresponding to an ellipse. Moreover, the distortions observed here were larger than in the perceptual tasks stressing the role of motor attractors in such a visuo-motor coupling. Finally, by investigating the direct influence of visual kinematics on the motor reproduction, our result conciliates previous knowledge on sensorimotor coupling of biological motions with external stimuli and gives evidence to the amodal encoding of biological motion. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Beam splitter coupled CDSE optical parametric oscillator

    DOEpatents

    Levinos, Nicholas J.; Arnold, George P.

    1980-01-01

    An optical parametric oscillator is disclosed in which the resonant radiation is separated from the pump and output radiation so that it can be manipulated without interfering with them. Thus, for example, very narrow band output may readily be achieved by passing the resonant radiation through a line narrowing device which does not in itself interfere with either the pump radiation or the output radiation.

  14. Experimental observation of complete and anticipation synchronization of heterogeneous oscillators using a common dynamical environment

    NASA Astrophysics Data System (ADS)

    Singla, Tanu; Chandrasekhar, E.; Singh, B. P.; Parmananda, P.

    2014-12-01

    Complete and anticipation synchronization of nonlinear oscillators from different origins is attempted experimentally. This involves coupling these heterogeneous oscillators to a common dynamical environment. Initially, this phenomenon was studied using two parameter mismatched Chua circuits. Subsequently, three different timeseries: a) x variable of the Lorenz oscillator b) the X-component of Earth's magnetic field and c) per-day temperature variation of the Region Santa Cruz in Mumbai, India are environmentally coupled, under the master-slave scenario, with a Chua circuit. Our results indicate that environmental coupling is a potent tool to provoke complete and anticipation synchronization of heterogeneous oscillators from distinct origins.

  15. The Dirac-Moshinsky oscillator coupled to an external field and its connection to quantum optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torres, Juan Mauricio; Sadurni, Emerson; Seligman, Thomas H.

    2010-12-23

    The Dirac-Moshinsky oscillator is an elegant example of an exactly solvable quantum relativistic model that under certain circumstances can be mapped onto the Jaynes-Cummings model in quantum optics. In this work we show, how to do this in detail. Then we extend it by considering its coupling with an external (isospin) field and find the conditions that maintain solvability. We use this extended system to explore entanglement in relativistic systems and then identify its quantum optical analog: two different atoms interacting with an electromagnetic mode. We show different aspects of entanglement which gain relevance in this last system, which canmore » be used to emulate the former.« less

  16. Multivariable harmonic balance analysis of the neuronal oscillator for leech swimming.

    PubMed

    Chen, Zhiyong; Zheng, Min; Friesen, W Otto; Iwasaki, Tetsuya

    2008-12-01

    Biological systems, and particularly neuronal circuits, embody a very high level of complexity. Mathematical modeling is therefore essential for understanding how large sets of neurons with complex multiple interconnections work as a functional system. With the increase in computing power, it is now possible to numerically integrate a model with many variables to simulate behavior. However, such analysis can be time-consuming and may not reveal the mechanisms underlying the observed phenomena. An alternative, complementary approach is mathematical analysis, which can demonstrate direct and explicit relationships between a property of interest and system parameters. This paper introduces a mathematical tool for analyzing neuronal oscillator circuits based on multivariable harmonic balance (MHB). The tool is applied to a model of the central pattern generator (CPG) for leech swimming, which comprises a chain of weakly coupled segmental oscillators. The results demonstrate the effectiveness of the MHB method and provide analytical explanations for some CPG properties. In particular, the intersegmental phase lag is estimated to be the sum of a nominal value and a perturbation, where the former depends on the structure and span of the neuronal connections and the latter is roughly proportional to the period gradient, communication delay, and the reciprocal of the intersegmental coupling strength.

  17. Olivary subthreshold oscillations and burst activity revisited

    PubMed Central

    Bazzigaluppi, Paolo; De Gruijl, Jornt R.; van der Giessen, Ruben S.; Khosrovani, Sara; De Zeeuw, Chris I.; de Jeu, Marcel T. G.

    2012-01-01

    The inferior olive (IO) forms one of the major gateways for information that travels to the cerebellar cortex. Olivary neurons process sensory and motor signals that are subsequently relayed to Purkinje cells. The intrinsic subthreshold membrane potential oscillations of the olivary neurons are thought to be important for gating this flow of information. In vitro studies have revealed that the phase of the subthreshold oscillation determines the size of the olivary burst and may gate the information flow or encode the temporal state of the olivary network. Here, we investigated whether the same phenomenon occurred in murine olivary cells in an intact olivocerebellar system using the in vivo whole-cell recording technique. Our in vivo findings revealed that the number of wavelets within the olivary burst did not encode the timing of the spike relative to the phase of the oscillation but was related to the amplitude of the oscillation. Manipulating the oscillation amplitude by applying Harmaline confirmed the inverse relationship between the amplitude of oscillation and the number of wavelets within the olivary burst. Furthermore, we demonstrated that electrotonic coupling between olivary neurons affect this modulation of the olivary burst size. Based on these results, we suggest that the olivary burst size might reflect the “expectancy” of a spike to occur rather than the spike timing, and that this process requires the presence of gap junction coupling. PMID:23189043

  18. A novel model of interaction between high frequency electromagnetic non-ionizing fields and microtubules viewed as coupled two-degrees of freedom harmonic oscillators.

    PubMed

    Caligiuri, Luigi Maxmilian

    2015-01-01

    The question regarding the potential biological and adverse health effects of non-ionizing electromagnetic fields on living organisms is of primary importance in biophysics and medicine. Despite the several experimental evidences showing such occurrence in a wide frequency range from extremely low frequency to microwaves, a definitive theoretical model able to explain a possible mechanism of interaction between electromagnetic fields and living matter, especially in the case of weak and very weak intensities, is still missing. In this paper it has been suggested a possible mechanism of interaction involving the resonant absorption of electromagnetic radiation by microtubules. To this aim these have been modeled as non-dissipative forced harmonic oscillators characterized by two coupled "macroscopic" degrees of freedom, respectively describing longitudinal and transversal vibrations induced by the electromagnetic field. We have shown that the proposed model, although at a preliminary stage, is able to explain the ability of even weak electromagnetic radiating electromagnetic fields to transfer high quantities of energy to living systems by means of a resonant mechanism, so capable to easily damage microtubules structure.

  19. IVF, same-sex couples and the value of biological ties.

    PubMed

    Di Nucci, Ezio

    2016-12-01

    Ought parents, in general, to value being biologically tied to their children? Is it important, in particular, that both parents be biologically tied to their children? I will address these fundamental questions by looking at a fairly new practice within IVF treatments, so-called IVF-with-ROPA (Reception of Oocytes from Partner), which allows lesbian couples to 'share motherhood', with one partner providing the eggs while the other becomes pregnant. I believe that IVF-with-ROPA is, just like other IVF treatments, morally permissible, but here I argue that the increased biological ties which IVF-with-ROPA allows for do not have any particular value beside the satisfaction of a legitimate wish, because there is no intrinsic value in a biological tie between parents and children; further, I argue that equality within parental projects cannot be achieved by redistributing biological ties. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  20. Stability switches and multistability coexistence in a delay-coupled neural oscillators system.

    PubMed

    Song, Zigen; Xu, Jian

    2012-11-21

    In this paper, we present a neural network system composed of two delay-coupled neural oscillators, where each of these can be regarded as the dynamical system describing the average activity of neural population. Analyzing the corresponding characteristic equation, the local stability of rest state is studied. The system exhibits the switch phenomenon between the rest state and periodic activity. Furthermore, the Hopf bifurcation is analyzed and the bifurcation curve is given in the parameters plane. The stability of the bifurcating periodic solutions and direction of the Hopf bifurcation are exhibited. Regarding time delay and coupled weight as the bifurcation parameters, the Fold-Hopf bifurcation is investigated in detail in terms of the central manifold reduction and normal form method. The neural system demonstrates the coexistence of the rest states and periodic activities in the different parameter regions. Employing the normal form of the original system, the coexistence regions are illustrated approximately near the Fold-Hopf singularity point. Finally, numerical simulations are performed to display more complex dynamics. The results illustrate that system may exhibit the rich coexistence of the different neuro-computational properties, such as the rest states, periodic activities, and quasi-periodic behavior. In particular, some periodic activities can evolve into the bursting-type behaviors with the varying time delay. It implies that the coexistence of the quasi-periodic activity and bursting-type behavior can be obtained if the suitable value of system parameter is chosen. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Dissipative structures and biological rhythms

    NASA Astrophysics Data System (ADS)

    Goldbeter, Albert

    2017-10-01

    Sustained oscillations abound in biological systems. They occur at all levels of biological organization over a wide range of periods, from a fraction of a second to years, and with a variety of underlying mechanisms. They control major physiological functions, and their dysfunction is associated with a variety of physiological disorders. The goal of this review is (i) to give an overview of the main rhythms observed at the cellular and supracellular levels, (ii) to briefly describe how the study of biological rhythms unfolded in the course of time, in parallel with studies on chemical oscillations, (iii) to present the major roles of biological rhythms in the control of physiological functions, and (iv) the pathologies associated with the alteration, disappearance, or spurious occurrence of biological rhythms. Two tables present the main examples of cellular and supracellular rhythms ordered according to their period, and their role in physiology and pathophysiology. Among the rhythms discussed are neural and cardiac rhythms, metabolic oscillations such as those occurring in glycolysis in yeast, intracellular Ca++ oscillations, cyclic AMP oscillations in Dictyostelium amoebae, the segmentation clock that controls somitogenesis, pulsatile hormone secretion, circadian rhythms which occur in all eukaryotes and some bacteria with a period close to 24 h, the oscillatory dynamics of the enzymatic network driving the cell cycle, and oscillations in transcription factors such as NF-ΚB and tumor suppressors such as p53. Ilya Prigogine's concept of dissipative structures applies to temporal oscillations and allows us to unify within a common framework the various rhythms observed at different levels of biological organization, regardless of their period and underlying mechanism.

  2. 2 kW pump-light-stripper-free distributed side-coupled cladding-pumped fiber oscillator

    NASA Astrophysics Data System (ADS)

    Ying, Hanyuan; Yu, Yu; Cao, Jianqiu; Huang, Zhihe; Pan, Zhiyong; Wang, Zefeng; Chen, Jinbao

    2017-06-01

    A 2 kW pump-light-stripper-free all-fiber distributed-pumping oscillator fabricated with the distributed side-coupled cladding-pumped Yb-doped fiber is demonstrated for the first time, to the best of our knowledge. An output power of 1969 W with a slope efficiency of 72.2% is obtained. By utilizing the final-section counter-pumping scheme, pure output spectra free from residual pump light are obtained without using any pump light stripper, which demonstrates that the pump light stripper is not indispensable for this configuration. Besides, no stimulated Raman scattering component is observed in the output spectra. The laser has the M 2 factor ranging from 2.0 to 2.6. We believe that the pertinent results are helpful and valuable for designing high-power fiber laser systems.

  3. Distinct collective states due to trade-off between attractive and repulsive couplings

    NASA Astrophysics Data System (ADS)

    Sathiyadevi, K.; Chandrasekar, V. K.; Senthilkumar, D. V.; Lakshmanan, M.

    2018-03-01

    We investigate the effect of repulsive coupling together with an attractive coupling in a network of nonlocally coupled oscillators. To understand the complex interaction between these two couplings we introduce a control parameter in the repulsive coupling which plays a crucial role in inducing distinct complex collective patterns. In particular, we show the emergence of various cluster chimera death states through a dynamically distinct transition route, namely the oscillatory cluster state and coherent oscillation death state as a function of the repulsive coupling in the presence of the attractive coupling. In the oscillatory cluster state, the oscillators in the network are grouped into two distinct dynamical states of homogeneous and inhomogeneous oscillatory states. Further, the network of coupled oscillators follow the same transition route in the entire coupling range. Depending upon distinct coupling ranges, the system displays different number of clusters in the death state and oscillatory state. We also observe that the number of coherent domains in the oscillatory cluster state exponentially decreases with increase in coupling range and obeys a power-law decay. Additionally, we show analytical stability for observed solitary state, synchronized state, and incoherent oscillation death state.

  4. Synchronization properties of network motifs: Influence of coupling delay and symmetry

    NASA Astrophysics Data System (ADS)

    D'Huys, O.; Vicente, R.; Erneux, T.; Danckaert, J.; Fischer, I.

    2008-09-01

    We investigate the effect of coupling delays on the synchronization properties of several network motifs. In particular, we analyze the synchronization patterns of unidirectionally coupled rings, bidirectionally coupled rings, and open chains of Kuramoto oscillators. Our approach includes an analytical and semianalytical study of the existence and stability of different in-phase and out-of-phase periodic solutions, complemented by numerical simulations. The delay is found to act differently on networks possessing different symmetries. While for the unidirectionally coupled ring the coupling delay is mainly observed to induce multistability, its effect on bidirectionally coupled rings is to enhance the most symmetric solution. We also study the influence of feedback and conclude that it also promotes the in-phase solution of the coupled oscillators. We finally discuss the relation between our theoretical results on delay-coupled Kuramoto oscillators and the synchronization properties of networks consisting of real-world delay-coupled oscillators, such as semiconductor laser arrays and neuronal circuits.

  5. Microfluidic oscillators with widely tunable periods

    PubMed Central

    Kim, Sung-Jin; Yokokawa, Ryuji; Takayama, Shuichi

    2013-01-01

    We present experiments and theory of a constant flow-driven microfluidic oscillator with widely tunable oscillation periods. This oscillator converts two constant input-flows from a syringe pump into an alternating, periodic output-flow with oscillation periods that can be adjusted to between 0.3 s to 4.1 h by tuning an external membrane capacitor. This capacitor allows multiple adjustable periods at a given input flow-rate, thus providing great flexibility in device operation. Also, we show that a sufficiently large external capacitance, relative to the internal capacitance of the microfluidic valve itself, is a critical requirement for oscillation. These widely tunable microfluidic oscillators are envisioned to be broadly useful for the study of biological rhythms, as on-chip timing sources for microfluidic logic circuits, and other applications that require variation in timed flow switching. PMID:23429765

  6. Oscillation-Induced Signal Transmission and Gating in Neural Circuits

    PubMed Central

    Jahnke, Sven; Memmesheimer, Raoul-Martin; Timme, Marc

    2014-01-01

    Reliable signal transmission constitutes a key requirement for neural circuit function. The propagation of synchronous pulse packets through recurrent circuits is hypothesized to be one robust form of signal transmission and has been extensively studied in computational and theoretical works. Yet, although external or internally generated oscillations are ubiquitous across neural systems, their influence on such signal propagation is unclear. Here we systematically investigate the impact of oscillations on propagating synchrony. We find that for standard, additive couplings and a net excitatory effect of oscillations, robust propagation of synchrony is enabled in less prominent feed-forward structures than in systems without oscillations. In the presence of non-additive coupling (as mediated by fast dendritic spikes), even balanced oscillatory inputs may enable robust propagation. Here, emerging resonances create complex locking patterns between oscillations and spike synchrony. Interestingly, these resonances make the circuits capable of selecting specific pathways for signal transmission. Oscillations may thus promote reliable transmission and, in co-action with dendritic nonlinearities, provide a mechanism for information processing by selectively gating and routing of signals. Our results are of particular interest for the interpretation of sharp wave/ripple complexes in the hippocampus, where previously learned spike patterns are replayed in conjunction with global high-frequency oscillations. We suggest that the oscillations may serve to stabilize the replay. PMID:25503492

  7. An Optimal Free Energy Dissipation Strategy of the MinCDE Oscillator in Regulating Symmetric Bacterial Cell Division

    PubMed Central

    Xiong, Liping; Lan, Ganhui

    2015-01-01

    Sustained molecular oscillations are ubiquitous in biology. The obtained oscillatory patterns provide vital functions as timekeepers, pacemakers and spacemarkers. Models based on control theory have been introduced to explain how specific oscillatory behaviors stem from protein interaction feedbacks, whereas the energy dissipation through the oscillating processes and its role in the regulatory function remain unexplored. Here we developed a general framework to assess an oscillator’s regulation performance at different dissipation levels. Using the Escherichia coli MinCDE oscillator as a model system, we showed that a sufficient amount of energy dissipation is needed to switch on the oscillation, which is tightly coupled to the system’s regulatory performance. Once the dissipation level is beyond this threshold, unlike stationary regulators’ monotonic performance-to-cost relation, excess dissipation at certain steps in the oscillating process damages the oscillator’s regulatory performance. We further discovered that the chemical free energy from ATP hydrolysis has to be strategically assigned to the MinE-aided MinD release and the MinD immobilization steps for optimal performance, and a higher energy budget improves the robustness of the oscillator. These results unfold a novel mode by which living systems trade energy for regulatory function. PMID:26317492

  8. Revisiting the hypothesis of equating the 6-year oscillation in the length-of-day to the mantle-inner core gravitational coupling

    NASA Astrophysics Data System (ADS)

    Chao, B. F.

    2016-12-01

    The steady 6-year oscillation observed in the length-of-day variation (ΔLOD) has been postulated to be, among others, an intrinsic oscillatory mode of the Earth's axial spin due to the mantle-inner core gravitational (MICG) coupling [Buffett and Mound, 2005]. Here I develop the general equation of motion of the 3-D MICG system from first principles in terms of multipole-multipole interactions (as in molecular electric field) under simple but realistic assumptions including the buoyancy effect of the fluid outer core. When specialized to the governing of the simple-harmonic oscillation in ΔLOD, the restoring force thereof is predominated, not surprisingly, by the [degree-2, order-2] density anomalies in the lower mantle and the upper inner core. Equating the corresponding "spring constant" to that belonging to the 6-year ΔLOD oscillation, one can estimate the difference between the two inner-core equatorial principal moments of inertia to be (BIC-AIC) ≈ 1.08 x 1031 kg m2 accurate perhaps to within a factor of 2, or a tri-axiality factor about 8 times larger than that of the whole Earth. Moreover, the orientation of the two principal axes can be identified in accordance with the timing of the 6-year ΔLOD oscillation. The physical excitation of the 6-year ΔLOD oscillation, ±0.12 ms in amplitude, is beyond the present scope.

  9. Biological competition: Decision rules, pattern formation, and oscillations

    PubMed Central

    Grossberg, Stephen

    1980-01-01

    Competition solves a universal problem about pattern processing by cellular systems. Competition allows cells to automatically retune their sensitivity to avoid noise and saturation effects. All competitive systems induce decision schemes that permit them to be classified. Systems are identified that achieve global pattern formation, or decision-making, no matter how their parameters are chosen. Oscillations can occur due to contradictions in a system's decision scheme. The pattern formation and oscillation results are extreme examples of a complementarity principle that seems to hold for competitive systems. Nonlinear competitive systems can sometimes appear, to a macroscopic observer, to have linear and cooperative properties, although the two types of systems are not equivalent. This observation is relevant to theories about the evolutionary transition from competitive to cooperative behavior. PMID:16592807

  10. Gap Junction Modulation of Low-Frequency Oscillations in the Cerebellar Granule Cell Layer.

    PubMed

    Robinson, Jennifer Claire; Chapman, C Andrew; Courtemanche, Richard

    2017-08-01

    Local field potential (LFP) oscillations in the granule cell layer (GCL) of the cerebellar cortex have been identified previously in the awake rat and monkey during immobility. These low-frequency oscillations are thought to be generated through local circuit interactions between Golgi cells and granule cells within the GCL. Golgi cells display rhythmic firing and pacemaking properties, and also are electrically coupled through gap junctions within the GCL. Here, we tested if gap junctions in the rat cerebellar cortex contribute to the generation of LFP oscillations in the GCL. We recorded LFP oscillations under urethane anesthesia, and examined the effects of local infusion of gap junction blockers on 5-15 Hz oscillations. Local infusion of the gap junction blockers carbenoxolone and mefloquine resulted in significant decreases in the power of oscillations over a 30-min period, but the power of oscillations was unchanged in control experiments following vehicle injections. In addition, infusion of gap junction blockers had no significant effect on multi-unit activity, suggesting that the attenuation of low-frequency oscillations was likely due to reductions in electrical coupling rather than a decreased excitability within the granule cell layer. Our results indicate that electrical coupling among the Golgi cell networks in the cerebellar cortex contributes to the local circuit mechanisms that promote the occurrence of GCL LFP slow oscillations in the anesthetized rat.

  11. A θ-γ oscillation code for neuronal coordination during motor behavior.

    PubMed

    Igarashi, Jun; Isomura, Yoshikazu; Arai, Kensuke; Harukuni, Rie; Fukai, Tomoki

    2013-11-20

    Sequential motor behavior requires a progression of discrete preparation and execution states. However, the organization of state-dependent activity in neuronal ensembles of motor cortex is poorly understood. Here, we recorded neuronal spiking and local field potential activity from rat motor cortex during reward-motivated movement and observed robust behavioral state-dependent coordination between neuronal spiking, γ oscillations, and θ oscillations. Slow and fast γ oscillations appeared during distinct movement states and entrained neuronal firing. γ oscillations, in turn, were coupled to θ oscillations, and neurons encoding different behavioral states fired at distinct phases of θ in a highly layer-dependent manner. These findings indicate that θ and nested dual band γ oscillations serve as the temporal structure for the selection of a conserved set of functional channels in motor cortical layer activity during animal movement. Furthermore, these results also suggest that cross-frequency couplings between oscillatory neuronal ensemble activities are part of the general coding mechanism in cortex.

  12. Signal Processing, Pattern Formation and Adaptation in Neural Oscillators

    DTIC Science & Technology

    2016-11-29

    nonlinear oscillations of outer hair cells. We obtained analytical forms for auditory tuning curves of both unidirectionally and bidirectionally coupled...oscillations of outer hair cells in the cochlea, mode-locking of chopper cells to sound in the cochlear nucleus, and entrainment of cortical...oscillations of outer hair cells (e.g., Fredrickson-Hemsing, Ji, Bruinsma, & Bozovic, 2012), mode-locking of choppers in the cochlear nucleus (e.g., Laudanski

  13. Coupling intensity between discharge and magnetic circuit in Hall thrusters

    NASA Astrophysics Data System (ADS)

    Wei, Liqiu; Yang, Xinyong; Ding, Yongjie; Yu, Daren; Zhang, Chaohai

    2017-03-01

    Coupling oscillation is a newly discovered plasma oscillation mode that utilizes the coupling between the discharge circuit and magnetic circuit, whose oscillation frequency spectrum ranges from several kilohertz to megahertz. The coupling coefficient parameter represents the intensity of coupling between the discharge and magnetic circuits. According to previous studies, the coupling coefficient is related to the material and the cross-sectional area of the magnetic coils, and the magnetic circuit of the Hall thruster. However, in our recent study on coupling oscillations, it was found that the Hall current equivalent position and radius have important effects on the coupling intensity between the discharge and magnetic circuits. This causes a difference in the coupling coefficient for different operating conditions of Hall thrusters. Through non-intrusive methods for measuring the Hall current equivalent radius and the axial position, it is found that with an increase in the discharge voltage and magnetic field intensity, the Hall current equivalent radius increases and its axial position moves towards the exit plane. Thus, both the coupling coefficient and the coupling intensity between the discharge and magnetic circuits increase. Contribution to the Topical Issue "Physics of Ion Beam Sources", edited by Holger Kersten and Horst Neumann.

  14. Frequency-stabilization of mode-locked laser-based photonic microwave oscillator

    NASA Technical Reports Server (NTRS)

    Yu, Nan; Tu, Meirong; Salik, Ertan; Maleki, Lute

    2005-01-01

    In this paper, we will describe our recent phase-noise measurements of photonic microwave oscillators. We will aslo discuss our investigation of the frequency stability link between the optical and microwave frequencies in the coupled oscillator.

  15. Josephson flux-flow oscillator: The microscopic tunneling approach

    NASA Astrophysics Data System (ADS)

    Gulevich, D. R.; Koshelets, V. P.; Kusmartsev, F. V.

    2017-07-01

    We elaborate a theoretical description of large Josephson junctions which is based on Werthamer's microscopic tunneling theory. The model naturally incorporates coupling of electromagnetic radiation to the tunnel currents and, therefore, is particularly suitable for description of the self-coupling effect in Josephson junction. In our numerical calculations we treat the arising integro-differential equation, which describes temporal evolution of the superconducting phase difference coupled to the electromagnetic field, by the Odintsov-Semenov-Zorin algorithm. This allows us to avoid evaluation of the time integrals at each time step while taking into account all the memory effects. To validate the obtained microscopic model of large Josephson junction we focus our attention on the Josephson flux-flow oscillator. The proposed microscopic model of flux-flow oscillator does not involve the phenomenological damping parameter, rather the damping is taken into account naturally in the tunnel current amplitudes calculated at a given temperature. The theoretically calculated current-voltage characteristics is compared to our experimental results obtained for a set of fabricated flux-flow oscillators of different lengths.

  16. Uncovering Oscillations, Complexity, and Chaos in Chemical Kinetics Using Mathematica

    NASA Astrophysics Data System (ADS)

    Ferreira, M. M. C.; Ferreira, W. C., Jr.; Lino, A. C. S.; Porto, M. E. G.

    1999-06-01

    Unlike reactions with no peculiar temporal behavior, in oscillatory reactions concentrations can rise and fall spontaneously in a cyclic or disorganized fashion. In this article, the software Mathematica is used for a theoretical study of kinetic mechanisms of oscillating and chaotic reactions. A first simple example is introduced through a three-step reaction, called the Lotka model, which exhibits a temporal behavior characterized by damped oscillations. The phase plane method of dynamic systems theory is introduced for a geometric interpretation of the reaction kinetics without solving the differential rate equations. The equations are later numerically solved using the built-in routine NDSolve and the results are plotted. The next example, still with a very simple mechanism, is the Lotka-Volterra model reaction, which oscillates indefinitely. The kinetic process and rate equations are also represented by a three-step reaction mechanism. The most important difference between this and the former reaction is that the undamped oscillation has two autocatalytic steps instead of one. The periods of oscillations are obtained by using the discrete Fourier transform (DFT)-a well-known tool in spectroscopy, although not so common in this context. In the last section, it is shown how a simple model of biochemical interactions can be useful to understand the complex behavior of important biological systems. The model consists of two allosteric enzymes coupled in series and activated by its own products. This reaction scheme is important for explaining many metabolic mechanisms, such as the glycolytic oscillations in muscles, yeast glycolysis, and the periodic synthesis of cyclic AMP. A few of many possible dynamic behaviors are exemplified through a prototype glycolytic enzymatic reaction proposed by Decroly and Goldbeter. By simply modifying the initial concentrations, limit cycles, chaos, and birhythmicity are computationally obtained and visualized.

  17. Direct observation of surface-state thermal oscillations in SmB6 oscillators

    NASA Astrophysics Data System (ADS)

    Casas, Brian; Stern, Alex; Efimkin, Dmitry K.; Fisk, Zachary; Xia, Jing

    2018-01-01

    SmB6 is a mixed valence Kondo insulator that exhibits a sharp increase in resistance following an activated behavior that levels off and saturates below 4 K. This behavior can be explained by the proposal of SmB6 representing a new state of matter, a topological Kondo insulator, in which a Kondo gap is developed, and topologically protected surface conduction dominates low-temperature transport. Exploiting its nonlinear dynamics, a tunable SmB6 oscillator device was recently demonstrated, where a small dc current generates large oscillating voltages at frequencies from a few Hz to hundreds of MHz. This behavior was explained by a theoretical model describing the thermal and electronic dynamics of coupled surface and bulk states. However, a crucial aspect of this model, the predicted temperature oscillation in the surface state, has not been experimentally observed to date. This is largely due to the technical difficulty of detecting an oscillating temperature of the very thin surface state. Here we report direct measurements of the time-dependent surface-state temperature in SmB6 with a RuO2 microthermometer. Our results agree quantitatively with the theoretically simulated temperature waveform, and hence support the validity of the oscillator model, which will provide accurate theoretical guidance for developing future SmB6 oscillators at higher frequencies.

  18. Computational modeling of the cell-autonomous mammalian circadian oscillator.

    PubMed

    Podkolodnaya, Olga A; Tverdokhleb, Natalya N; Podkolodnyy, Nikolay L

    2017-02-24

    This review summarizes various mathematical models of cell-autonomous mammalian circadian clock. We present the basics necessary for understanding of the cell-autonomous mammalian circadian oscillator, modern experimental data essential for its reconstruction and some special problems related to the validation of mathematical circadian oscillator models. This work compares existing mathematical models of circadian oscillator and the results of the computational studies of the oscillating systems. Finally, we discuss applications of the mathematical models of mammalian circadian oscillator for solving specific problems in circadian rhythm biology.

  19. Bifurcation study of phase oscillator systems with attractive and repulsive interaction.

    PubMed

    Burylko, Oleksandr; Kazanovich, Yakov; Borisyuk, Roman

    2014-08-01

    We study a model of globally coupled phase oscillators that contains two groups of oscillators with positive (synchronizing) and negative (desynchronizing) incoming connections for the first and second groups, respectively. This model was previously studied by Hong and Strogatz (the Hong-Strogatz model) in the case of a large number of oscillators. We consider a generalized Hong-Strogatz model with a constant phase shift in coupling. Our approach is based on the study of invariant manifolds and bifurcation analysis of the system. In the case of zero phase shift, various invariant manifolds are analytically described and a new dynamical mode is found. In the case of a nonzero phase shift we obtained a set of bifurcation diagrams for various systems with three or four oscillators. It is shown that in these cases system dynamics can be complex enough and include multistability and chaotic oscillations.

  20. Bifurcation study of phase oscillator systems with attractive and repulsive interaction

    NASA Astrophysics Data System (ADS)

    Burylko, Oleksandr; Kazanovich, Yakov; Borisyuk, Roman

    2014-08-01

    We study a model of globally coupled phase oscillators that contains two groups of oscillators with positive (synchronizing) and negative (desynchronizing) incoming connections for the first and second groups, respectively. This model was previously studied by Hong and Strogatz (the Hong-Strogatz model) in the case of a large number of oscillators. We consider a generalized Hong-Strogatz model with a constant phase shift in coupling. Our approach is based on the study of invariant manifolds and bifurcation analysis of the system. In the case of zero phase shift, various invariant manifolds are analytically described and a new dynamical mode is found. In the case of a nonzero phase shift we obtained a set of bifurcation diagrams for various systems with three or four oscillators. It is shown that in these cases system dynamics can be complex enough and include multistability and chaotic oscillations.

  1. Multiple time scale analysis of pressure oscillations in solid rocket motors

    NASA Astrophysics Data System (ADS)

    Ahmed, Waqas; Maqsood, Adnan; Riaz, Rizwan

    2018-03-01

    In this study, acoustic pressure oscillations for single and coupled longitudinal acoustic modes in Solid Rocket Motor (SRM) are investigated using Multiple Time Scales (MTS) method. Two independent time scales are introduced. The oscillations occur on fast time scale whereas the amplitude and phase changes on slow time scale. Hopf bifurcation is employed to investigate the properties of the solution. The supercritical bifurcation phenomenon is observed for linearly unstable system. The amplitude of the oscillations result from equal energy gain and loss rates of longitudinal acoustic modes. The effect of linear instability and frequency of longitudinal modes on amplitude and phase of oscillations are determined for both single and coupled modes. For both cases, the maximum amplitude of oscillations decreases with the frequency of acoustic mode and linear instability of SRM. The comparison of analytical MTS results and numerical simulations demonstrate an excellent agreement.

  2. Observation of two coupled Faraday waves in a vertically vibrating Hele-Shaw cell with one of them oscillating horizontally

    NASA Astrophysics Data System (ADS)

    Li, Xiaochen; Li, Xiaoming; Liao, Shijun

    2018-01-01

    A system of two coupled Faraday waves is experimentally observed at the two interfaces of the three layers of fluids (air, pure ethanol, and silicon oil) in a covered Hele-Shaw cell with periodic vertical vibration. Both the upper and lower Faraday waves are subharmonic, but they coexist in different forms: the upper one vibrates vertically, while the crests of the lower one oscillate horizontally with unchanged wave height, and the troughs of the lower one usually remain in the same place (relative to the basin). Besides, they are strongly coupled: the wave height of the lower Faraday waves is either a linear function (when forcing frequency is fixed) or a parabolic function (when acceleration amplitude is fixed) of that of the upper one with a same wavelength.

  3. Discriminator Stabilized Superconductor/Ferroelectric Thin Film Local Oscillator

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert R. (Inventor); Miranda, Felix A. (Inventor)

    2000-01-01

    A tunable local oscillator with a tunable circuit that includes a resonator and a transistor as an active element for oscillation. Tuning of the circuit is achieved with an externally applied dc bias across coupled lines on the resonator. Preferably the resonator is a high temperature superconductor microstrip ring resonator with integral coupled lines formed over a thin film ferroelectric material. A directional coupler samples the output of the oscillator which is fed into a diplexer for determining whether the oscillator is performing at a desired frequency. The high-pass and lowpass outputs of the diplexer are connected to diodes respectively for inputting the sampled signals into a differential operational amplifier. The amplifier compares the sampled signals and emits an output signal if there is a difference between the resonant and crossover frequencies. Based on the sampled signal, a bias supplied to the ring resonator is either increased or decreased for raising or lowering the resonant frequency by decreasing or increasing, respectively, the dielectric constant of the ferroelectric.

  4. An efficient approach to suppress the negative role of contrarian oscillators in synchronization

    NASA Astrophysics Data System (ADS)

    Zhang, Xiyun; Ruan, Zhongyuan; Liu, Zonghua

    2013-09-01

    It has been found that contrarian oscillators usually take a negative role in the collective behaviors formed by conformist oscillators. However, experiments revealed that it is also possible to achieve a strong coherence even when there are contrarians in the system such as neuron networks with both excitable and inhibitory neurons. To understand the underlying mechanism of this abnormal phenomenon, we here consider a complex network of coupled Kuramoto oscillators with mixed positive and negative couplings and present an efficient approach, i.e., tit-for-tat strategy, to suppress the negative role of contrarian oscillators in synchronization and thus increase the order parameter of synchronization. Two classes of contrarian oscillators are numerically studied and a brief theoretical analysis is provided to explain the numerical results.

  5. Strong feedback limit of the Goodwin circadian oscillator

    NASA Astrophysics Data System (ADS)

    Woller, Aurore; Gonze, Didier; Erneux, Thomas

    2013-03-01

    The three-variable Goodwin model constitutes a prototypical oscillator based on a negative feedback loop. It was used as a minimal model for circadian oscillations. Other core models for circadian clocks are variants of the Goodwin model. The Goodwin oscillator also appears in many studies of coupled oscillator networks because of its relative simplicity compared to other biophysical models involving a large number of variables and parameters. Because the synchronization properties of Goodwin oscillators still remain difficult to explore mathematically, further simplifications of the Goodwin model have been sought. In this paper, we investigate the strong negative feedback limit of Goodwin equations by using asymptotic techniques. We find that Goodwin oscillations approach a sequence of decaying exponentials that can be described in terms of a single-variable leaky integrated-and-fire model.

  6. An exact solution for the steady state phase distribution in an array of oscillators coupled on a hexagonal lattice

    NASA Technical Reports Server (NTRS)

    Pogorzelski, Ronald J.

    2004-01-01

    When electronic oscillators are coupled to nearest neighbors to form an array on a hexagonal lattice, the planar phase distributions desired for excitation of a phased array antenna are not steady state solutions of the governing non-linear equations describing the system. Thus the steady state phase distribution deviates from planar. It is shown to be possible to obtain an exact solution for the steady state phase distribution and thus determine the deviation from the desired planar distribution as a function of beam steering angle.

  7. Quantitative analysis of circadian single cell oscillations in response to temperature

    PubMed Central

    Kramer, Achim; Herzel, Hanspeter

    2018-01-01

    Body temperature rhythms synchronize circadian oscillations in different tissues, depending on the degree of cellular coupling: the responsiveness to temperature is higher when single circadian oscillators are uncoupled. So far, the role of coupling in temperature responsiveness has only been studied in organotypic tissue slices of the central circadian pacemaker, because it has been assumed that peripheral target organs behave like uncoupled multicellular oscillators. Since recent studies indicate that some peripheral tissues may exhibit cellular coupling as well, we asked whether peripheral network dynamics also influence temperature responsiveness. Using a novel technique for long-term, high-resolution bioluminescence imaging of primary cultured cells, exposed to repeated temperature cycles, we were able to quantitatively measure period, phase, and amplitude of central (suprachiasmatic nuclei neuron dispersals) and peripheral (mouse ear fibroblasts) single cell oscillations in response to temperature. Employing temperature cycles of different lengths, and different cell densities, we found that some circadian characteristics appear cell-autonomous, e.g. period responses, while others seem to depend on the quality/degree of cellular communication, e.g. phase relationships, robustness of the oscillation, and amplitude. Overall, our findings indicate a strong dependence on the cell’s ability for intercellular communication, which is not only true for neuronal pacemakers, but, importantly, also for cells in peripheral tissues. Hence, they stress the importance of comparative studies that evaluate the degree of coupling in a given tissue, before it may be used effectively as a target for meaningful circadian manipulation. PMID:29293562

  8. Asymmetric noise-induced large fluctuations in coupled systems

    NASA Astrophysics Data System (ADS)

    Schwartz, Ira B.; Szwaykowska, Klimka; Carr, Thomas W.

    2017-10-01

    Networks of interacting, communicating subsystems are common in many fields, from ecology, biology, and epidemiology to engineering and robotics. In the presence of noise and uncertainty, interactions between the individual components can lead to unexpected complex system-wide behaviors. In this paper, we consider a generic model of two weakly coupled dynamical systems, and we show how noise in one part of the system is transmitted through the coupling interface. Working synergistically with the coupling, the noise on one system drives a large fluctuation in the other, even when there is no noise in the second system. Moreover, the large fluctuation happens while the first system exhibits only small random oscillations. Uncertainty effects are quantified by showing how characteristic time scales of noise-induced switching scale as a function of the coupling between the two coupled parts of the experiment. In addition, our results show that the probability of switching in the noise-free system scales inversely as the square of reduced noise intensity amplitude, rendering the virtual probability of switching an extremely rare event. Our results showing the interplay between transmitted noise and coupling are also confirmed through simulations, which agree quite well with analytic theory.

  9. Torsional oscillations of magnetized relativistic stars

    NASA Astrophysics Data System (ADS)

    Messios, Neophytos; Papadopoulos, Demetrios B.; Stergioulas, Nikolaos

    2001-12-01

    Strong magnetic fields in relativistic stars can be a cause of crust fracturing, resulting in the excitation of global torsional oscillations. Such oscillations could become observable in gravitational waves or in high-energy radiation, thus becoming a tool for probing the equation of state of relativistic stars. As the eigenfrequency of torsional oscillation modes is affected by the presence of a strong magnetic field, we study torsional modes in magnetized relativistic stars. We derive the linearized perturbation equations that govern torsional oscillations coupled to the oscillations of a magnetic field, when variations in the metric are neglected (Cowling approximation). The oscillations are described by a single two-dimensional wave equation, which can be solved as a boundary-value problem to obtain eigenfrequencies. We find that, in the non-magnetized case, typical oscillation periods of the fundamental l=2 torsional modes can be nearly a factor of 2 larger for relativistic stars than previously computed in the Newtonian limit. For magnetized stars, we show that the influence of the magnetic field is highly dependent on the assumed magnetic field configuration, and simple estimates obtained previously in the literature cannot be used for identifying normal modes observationally.

  10. Self-synchronization in an ensemble of nonlinear oscillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ostrovsky, L. A., E-mail: lev.ostrovsky@gmail.com; Galperin, Y. V.; Skirta, E. A.

    2016-06-15

    The paper describes the results of study of a system of coupled nonlinear, Duffing-type oscillators, from the viewpoint of their self-synchronization, i.e., generation of a coherent field (order parameter) via instability of an incoherent (random-phase) initial state. We consider both the cases of dissipative coupling (e.g., via the joint radiation) and reactive coupling in a Hamiltonian system.

  11. Frequency jumps in single chip microwave LC oscillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gualco, Gabriele; Grisi, Marco; Boero, Giovanni, E-mail: giovanni.boero@epfl.ch

    2014-12-15

    We report on the experimental observation of oscillation frequency jumps in microwave LC oscillators fabricated using standard complementary metal-oxide-semiconductor technologies. The LC oscillators, operating at a frequency of about 20 GHz, consist of a single turn planar coil, a metal-oxide-metal capacitor, and two cross-coupled metal-oxide-semiconductor field effect transistors used as negative resistance network. At 300 K as well as at 77 K, the oscillation frequency is a continuous function of the oscillator bias voltage. At 4 K, frequency jumps as large as 30 MHz are experimentally observed. This behavior is tentatively attributed to the emission and capture of single electrons from defects andmore » dopant atoms.« less

  12. Dynamics of a linear system coupled to a chain of light nonlinear oscillators analyzed through a continuous approximation

    NASA Astrophysics Data System (ADS)

    Charlemagne, S.; Ture Savadkoohi, A.; Lamarque, C.-H.

    2018-07-01

    The continuous approximation is used in this work to describe the dynamics of a nonlinear chain of light oscillators coupled to a linear main system. A general methodology is applied to an example where the chain has local nonlinear restoring forces. The slow invariant manifold is detected at fast time scale. At slow time scale, equilibrium and singular points are sought around this manifold in order to predict periodic regimes and strongly modulated responses of the system. Analytical predictions are in good accordance with numerical results and represent a potent tool for designing nonlinear chains for passive control purposes.

  13. Modelling emergence of oscillations in communicating bacteria: a structured approach from one to many cells

    PubMed Central

    Mina, Petros; di Bernardo, Mario; Savery, Nigel J.; Tsaneva-Atanasova, Krasimira

    2013-01-01

    Population-level measurements of phenotypic behaviour in biological systems may not necessarily reflect individual cell behaviour. To assess qualitative changes in the behaviour of a single cell, when alone and when part of a community, we developed an agent-based model describing the metabolic states of a population of quorum-coupled cells. The modelling is motivated by published experimental work of a synthetic genetic regulatory network (GRN) used in Escherichia coli cells that exhibit oscillatory behaviour across the population. To decipher the mechanisms underlying oscillations in the system, we investigate the behaviour of the model via numerical simulation and bifurcation analysis. In particular, we study the effect of an increase in population size as well as the spatio-temporal behaviour of the model. Our results demonstrate that oscillations are possible only in the presence of a high concentration of the coupling chemical and are due to a time scale separation in key regulatory components of the system. The model suggests that the population establishes oscillatory behaviour as the system's preferred stable state. This is achieved via an effective increase in coupling across the population. We conclude that population effects in GRN design need to be taken into consideration and be part of the design process. This is important in planning intervention strategies or designing specific cell behaviours. PMID:23135248

  14. Modelling emergence of oscillations in communicating bacteria: a structured approach from one to many cells.

    PubMed

    Mina, Petros; di Bernardo, Mario; Savery, Nigel J; Tsaneva-Atanasova, Krasimira

    2013-01-06

    Population-level measurements of phenotypic behaviour in biological systems may not necessarily reflect individual cell behaviour. To assess qualitative changes in the behaviour of a single cell, when alone and when part of a community, we developed an agent-based model describing the metabolic states of a population of quorum-coupled cells. The modelling is motivated by published experimental work of a synthetic genetic regulatory network (GRN) used in Escherichia coli cells that exhibit oscillatory behaviour across the population. To decipher the mechanisms underlying oscillations in the system, we investigate the behaviour of the model via numerical simulation and bifurcation analysis. In particular, we study the effect of an increase in population size as well as the spatio-temporal behaviour of the model. Our results demonstrate that oscillations are possible only in the presence of a high concentration of the coupling chemical and are due to a time scale separation in key regulatory components of the system. The model suggests that the population establishes oscillatory behaviour as the system's preferred stable state. This is achieved via an effective increase in coupling across the population. We conclude that population effects in GRN design need to be taken into consideration and be part of the design process. This is important in planning intervention strategies or designing specific cell behaviours.

  15. GROWING TRANSVERSE OSCILLATIONS OF A MULTISTRANDED LOOP OBSERVED BY SDO/AIA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Tongjiang; Ofman, Leon; Su, Yang

    The first evidence of transverse oscillations of a multistranded loop with growing amplitudes and internal coupling observed by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory is presented. The loop oscillation event occurred on 2011 March 8, triggered by a coronal mass ejection (CME). The multiwavelength analysis reveals the presence of multithermal strands in the oscillating loop, whose dynamic behaviors are temperature-dependent, showing differences in their oscillation amplitudes, phases, and emission evolution. The physical parameters of growing oscillations of two strands in 171 A are measured and the three-dimensional loop geometry is determined using STEREO-A/EUVI data. These strandsmore » have very similar frequencies, and between two 193 A strands a quarter-period phase delay sets up. These features suggest the coupling between kink oscillations of neighboring strands and the interpretation by the collective kink mode as predicted by some models. However, the temperature dependence of the multistranded loop oscillations was not studied previously and needs further investigation. The transverse loop oscillations are associated with intensity and loop width variations. We suggest that the amplitude-growing kink oscillations may be a result of continuous non-periodic driving by magnetic deformation of the CME, which deposits energy into the loop system at a rate faster than its loss.« less

  16. Theoretical analysis of cross-talking signals between counter-streaming electron beams in a vacuum tube oscillator

    NASA Astrophysics Data System (ADS)

    Shin, Y. M.; Ryskin, N. M.; Won, J. H.; Han, S. T.; Park, G. S.

    2006-03-01

    The basic theory of cross-talking signals between counter-streaming electron beams in a vacuum tube oscillator consisting of two two-cavity klystron amplifiers reversely coupled through input/output slots is theoretically investigated. Application of Kirchhoff's laws to the coupled equivalent RLC circuit model of the device provides four nonlinear coupled equations, which are the first-order time-delayed differential equations. Analytical solutions obtained through linearization of the equations provide oscillation frequencies and thresholds of four fundamental eigenstates, symmetric/antisymmetric 0/π modes. Time-dependent output signals are numerically analyzed with variation of the beam current, and a self-modulation mechanism and transition to chaos scenario are examined. The oscillator shows a much stronger multistability compared to a delayed feedback klystron oscillator owing to the competitions among more diverse eigenmodes. A fully developed chaos region also appears at a relatively lower beam current, ˜3.5Ist, compared to typical vacuum tube oscillators (10-100Ist), where Ist is a start-oscillation current.

  17. Communication: Biological applications of coupled-cluster frozen-density embedding

    NASA Astrophysics Data System (ADS)

    Heuser, Johannes; Höfener, Sebastian

    2018-04-01

    We report the implementation of the Laplace-transform scaled opposite-spin (LT-SOS) resolution-of-the-identity second-order approximate coupled-cluster singles and doubles (RICC2) combined with frozen-density embedding for excitation energies and molecular properties. In the present work, we furthermore employ the Hartree-Fock density for the interaction energy leading to a simplified Lagrangian which is linear in the Lagrangian multipliers. This approximation has the key advantage of a decoupling of the coupled-cluster amplitude and multipliers, leading also to a significant reduction in computation time. Using the new simplified Lagrangian in combination with efficient wavefunction models such as RICC2 or LT-SOS-RICC2 and density-functional theory (DFT) for the environment molecules (CC2-in-DFT) enables the efficient study of biological applications such as the rhodopsin and visual cone pigments using ab initio methods as routine applications.

  18. Membrane Lipid Oscillation: An Emerging System of Molecular Dynamics in the Plant Membrane.

    PubMed

    Nakamura, Yuki

    2018-03-01

    Biological rhythm represents a major biological process of living organisms. However, rhythmic oscillation of membrane lipid content is poorly described in plants. The development of lipidomic technology has led to the illustration of precise molecular profiles of membrane lipids under various growth conditions. Compared with conventional lipid signaling, which produces unpredictable lipid changes in response to ever-changing environmental conditions, lipid oscillation generates a fairly predictable lipid profile, adding a new layer of biological function to the membrane system and possible cross-talk with the other chronobiological processes. This mini review covers recent studies elucidating membrane lipid oscillation in plants.

  19. Entanglement dynamics in short- and long-range harmonic oscillators

    NASA Astrophysics Data System (ADS)

    Nezhadhaghighi, M. Ghasemi; Rajabpour, M. A.

    2014-11-01

    We study the time evolution of the entanglement entropy in the short- and long-range-coupled harmonic oscillators that have well-defined continuum limit field theories. We first introduce a method to calculate the entanglement evolution in generic coupled harmonic oscillators after quantum quench. Then we study the entanglement evolution after quantum quench in harmonic systems in which the couplings decay effectively as 1 /rd +α with the distance r . After quenching the mass from a nonzero value to zero we calculate numerically the time evolution of von Neumann and Rényi entropies. We show that for 1 <α <2 we have a linear growth of entanglement and then saturation independent of the initial state. For 0 <α <1 depending on the initial state we can have logarithmic growth or just fluctuation of entanglement. We also calculate the mutual information dynamics of two separated individual harmonic oscillators. Our findings suggest that in our system there is no particular connection between having a linear growth of entanglement after quantum quench and having a maximum group velocity or generalized Lieb-Robinson bound.

  20. The Madden-Julian oscillation in ECHAM4 coupled and uncoupled general circulation models

    DOE PAGES

    Sperber, Kenneth R.; Gualdi, Silvio; Legutke, Stephanie; ...

    2005-06-29

    The Madden-Julian oscillation (MJO) dominates tropical variability on timescales of 30–70 days. During the boreal winter/spring, it is manifested as an eastward propagating disturbance, with a strong convective signature over the eastern hemisphere. The space–time structure of the MJO is analyzed using simulations with the ECHAM4 atmospheric general circulation model run with observed monthly mean sea-surface temperatures (SSTs), and coupled to three different ocean models. The coherence of the eastward propagation of MJO convection is sensitive to the ocean model to which ECHAM4 is coupled. For ECHAM4/OPYC and ECHO-G, models for which ~100 years of daily data is available, Montemore » Carlo sampling indicates that their metrics of eastward propagation are different at the 1% significance level. The flux-adjusted coupled simulations, ECHAM4/OPYC and ECHO-G, maintain a more realistic mean-state, and have a more realistic MJO simulation than the nonadjusted scale interaction experiment (SINTEX) coupled runs. The SINTEX model exhibits a cold bias in Indian Ocean and tropical West Pacific Ocean sea-surface temperature of ~0.5°C. This cold bias affects the distribution of time-mean convection over the tropical eastern hemisphere. Furthermore, the eastward propagation of MJO convection in this model is not as coherent as in the two models that used flux adjustment or when compared to an integration of ECHAM4 with prescribed observed SST. This result suggests that simulating a realistic basic state is at least as important as air–sea interaction for organizing the MJO. While all of the coupled models simulate the warm (cold) SST anomalies that precede (succeed) the MJO convection, the interaction of the components of the net surface heat flux that lead to these anomalies are different over the Indian Ocean. The ECHAM4/OPYC model in which the atmospheric model is run at a horizontal resolution of T42, has eastward propagating zonal wind anomalies and latent heat