Sample records for coupled climate system

  1. Modelling the Climate - Greenland Ice Sheet Interaction in the Coupled Ice-sheet/Climate Model EC-EARTH - PISM

    NASA Astrophysics Data System (ADS)

    Yang, S.; Madsen, M. S.; Rodehacke, C. B.; Svendsen, S. H.; Adalgeirsdottir, G.

    2014-12-01

    Recent observations show that the Greenland ice sheet (GrIS) has been losing mass with an increasing speed during the past decades. Predicting the GrIS changes and their climate consequences relies on the understanding of the interaction of the GrIS with the climate system on both global and local scales, and requires climate model systems with an explicit and physically consistent ice sheet module. A fully coupled global climate model with a dynamical ice sheet model for the GrIS has recently been developed. The model system, EC-EARTH - PISM, consists of the EC-EARTH, an atmosphere, ocean and sea ice model system, and the Parallel Ice Sheet Model (PISM). The coupling of PISM includes a modified surface physical parameterization in EC-EARTH adapted to the land ice surface over glaciated regions in Greenland. The PISM ice sheet model is forced with the surface mass balance (SMB) directly computed inside the EC-EARTH atmospheric module and accounting for the precipitation, the surface evaporation, and the melting of snow and ice over land ice. PISM returns the simulated basal melt, ice discharge and ice cover (extent and thickness) as boundary conditions to EC-EARTH. This coupled system is mass and energy conserving without being constrained by any anomaly correction or flux adjustment, and hence is suitable for investigation of ice sheet - climate feedbacks. Three multi-century experiments for warm climate scenarios under (1) the RCP85 climate forcing, (2) an abrupt 4xCO2 and (3) an idealized 1% per year CO2 increase are performed using the coupled model system. The experiments are compared with their counterparts of the standard CMIP5 simulations (without the interactive ice sheet) to evaluate the performance of the coupled system and to quantify the GrIS feedbacks. In particular, the evolution of the Greenland ice sheet under the warm climate and its impacts on the climate system are investigated. Freshwater fluxes from the Greenland ice sheet melt to the Arctic and North Atlantic basin and their influence on the ocean stratification and ocean circulation are analysed. The changes in the surface climate and the atmospheric circulation associated with the impact of the Greenland ice sheet changes are quantified. The interaction between the Greenland ice sheet and Arctic sea ice is also examined.

  2. Uncertainty Analysis of Coupled Socioeconomic-Cropping Models: Building Confidence in Climate Change Decision-Support Tools for Local Stakeholders

    NASA Astrophysics Data System (ADS)

    Malard, J. J.; Rojas, M.; Adamowski, J. F.; Gálvez, J.; Tuy, H. A.; Melgar-Quiñonez, H.

    2015-12-01

    While cropping models represent the biophysical aspects of agricultural systems, system dynamics modelling offers the possibility of representing the socioeconomic (including social and cultural) aspects of these systems. The two types of models can then be coupled in order to include the socioeconomic dimensions of climate change adaptation in the predictions of cropping models.We develop a dynamically coupled socioeconomic-biophysical model of agricultural production and its repercussions on food security in two case studies from Guatemala (a market-based, intensive agricultural system and a low-input, subsistence crop-based system). Through the specification of the climate inputs to the cropping model, the impacts of climate change on the entire system can be analysed, and the participatory nature of the system dynamics model-building process, in which stakeholders from NGOs to local governmental extension workers were included, helps ensure local trust in and use of the model.However, the analysis of climate variability's impacts on agroecosystems includes uncertainty, especially in the case of joint physical-socioeconomic modelling, and the explicit representation of this uncertainty in the participatory development of the models is important to ensure appropriate use of the models by the end users. In addition, standard model calibration, validation, and uncertainty interval estimation techniques used for physically-based models are impractical in the case of socioeconomic modelling. We present a methodology for the calibration and uncertainty analysis of coupled biophysical (cropping) and system dynamics (socioeconomic) agricultural models, using survey data and expert input to calibrate and evaluate the uncertainty of the system dynamics as well as of the overall coupled model. This approach offers an important tool for local decision makers to evaluate the potential impacts of climate change and their feedbacks through the associated socioeconomic system.

  3. Agent-based Model for the Coupled Human-Climate System

    NASA Astrophysics Data System (ADS)

    Zvoleff, A.; Werner, B.

    2006-12-01

    Integrated assessment models have been used to predict the outcome of coupled economic growth, resource use, greenhouse gas emissions and climate change, both for scientific and policy purposes. These models generally have employed significant simplifications that suppress nonlinearities and the possibility of multiple equilibria in both their economic (DeCanio, 2005) and climate (Schneider and Kuntz-Duriseti, 2002) components. As one step toward exploring general features of the nonlinear dynamics of the coupled system, we have developed a series of variations on the well studied RICE and DICE models, which employ different forms of agent-based market dynamics and "climate surprises." Markets are introduced through the replacement of the production function of the DICE/RICE models with an agent-based market modeling the interactions of producers, policymakers, and consumer agents. Technological change and population growth are treated endogenously. Climate surprises are representations of positive (for example, ice sheet collapse) or negative (for example, increased aerosols from desertification) feedbacks that are turned on with probability depending on warming. Initial results point toward the possibility of large amplitude instabilities in the coupled human-climate system owing to the mismatch between short outlook market dynamics and long term climate responses. Implications for predictability of future climate will be discussed. Supported by the Andrew W Mellon Foundation and the UC Academic Senate.

  4. The Impact of Ocean Observations in Seasonal Climate Prediction

    NASA Technical Reports Server (NTRS)

    Rienecker, Michele; Keppenne, Christian; Kovach, Robin; Marshak, Jelena

    2010-01-01

    The ocean provides the most significant memory for the climate system. Hence, a critical element in climate forecasting with coupled models is the initialization of the ocean with states from an ocean data assimilation system. Remotely-sensed ocean surface fields (e.g., sea surface topography, SST, winds) are now available for extensive periods and have been used to constrain ocean models to provide a record of climate variations. Since the ocean is virtually opaque to electromagnetic radiation, the assimilation of these satellite data is essential to extracting the maximum information content. More recently, the Argo drifters have provided unprecedented sampling of the subsurface temperature and salinity. Although the duration of this observation set has been too short to provide solid statistical evidence of its impact, there are indications that Argo improves the forecast skill of coupled systems. This presentation will address the impact these different observations have had on seasonal climate predictions with the GMAO's coupled model.

  5. Biospheric feedback effects in a synchronously coupled model of human and Earth systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thornton, Peter E.; Calvin, Katherine; Jones, Andrew D.

    Fossil fuel combustion and land-use change are the first and second largest contributors to industrial-era increases in atmospheric carbon dioxide concentration, which is itself the largest driver of present-day climate change1. Projections of fossil fuel consumption and land-use change are thus fundamental inputs for coupled Earth system models (ESM) used to estimate the physical and biological consequences of future climate system forcing2,3. While empirical datasets are available to inform historical analyses4,5, assessments of future climate change have relied on projections of energy and land use based on energy economic models, constrained using historical and present-day data and forced with assumptionsmore » about future policy, land-use patterns, and socio-economic development trajectories6. Here we show that the influence of biospheric change – the integrated effect of climatic, ecological, and geochemical processes – on land ecosystems has a significant impact on energy, agriculture, and land-use projections for the 21st century. Such feedbacks have been ignored in previous ESM studies of future climate. We find that synchronous exposure of land ecosystem productivity in the economic system to biospheric change as it develops in an ESM results in a 10% reduction of land area used for crop cultivation; increased managed forest area and land carbon; a 15-20% decrease in global crop price; and a 17% reduction in fossil fuel emissions for a low-mid range forcing scenario7. These simulation results demonstrate that biospheric change can significantly alter primary human system forcings to the climate system. This synchronous two-way coupling approach removes inconsistencies in description of climate change between human and biosphere components of the coupled model, mitigating a major source of uncertainty identified in assessments of future climate projections8-10.« less

  6. Integrated modeling of land-use change: the role of coupling, interactions and feedbacks between the human and Earth systems

    NASA Astrophysics Data System (ADS)

    Monier, E.; Kicklighter, D. W.; Ejaz, Q.; Winchester, N.; Paltsev, S.; Reilly, J. M.

    2016-12-01

    Land-use change integrates a large number of components of the human and Earth systems, including climate, energy, water, and land. These complex coupling elements, interactions and feedbacks take place on a variety of space and time scales, thus increasing the complexity of land-use change modeling frameworks. In this study, we aim to identify which coupling elements, interactions and feedbacks are important for modeling land-use change, both at the global and regional level. First, we review the existing land-use change modeling framework used to develop land-use change projections for the Representative Concentration Pathways (RCP) scenarios. In such framework, land-use change is simulated by Integrated Assessment Models (IAMs) and mainly influenced by economic, energy, demographic and policy drivers. IAMs focus on representing the demand for agriculture and forestry goods (crops for food and bioenergy, forest products for construction and bioenergy), the interactions with other sectors of the economy and trade between various regions of the world. Then, we investigate how important various coupling elements and feedbacks with the Earth system are for projections of land-use change at the global and regional level. We focus on the following: i) the climate impacts on land productivity and greenhouse gas emissions, which requires climate change information and coupling to a terrestrial ecosystem model/crop model; ii) the climate and economic impacts on irrigation availability, which requires coupling the LUC modeling framework to a water resources management model and disaggregating rainfed and irrigated croplands; iii) the feedback of land-use change on the global and regional climate system through land-use change emissions and changes in the surface albedo and hydrology, which requires coupling to an Earth system model. Finally, we conclude our study by highlighting the current lack of clarity in how various components of the human and Earth systems are coupled in IAMs , and the need for a lexicon that is agreed upon by the IAM community.

  7. Plausible Effect of Weather on Atlantic Meridional Overturning Circulation with a Coupled General Circulation Model

    NASA Astrophysics Data System (ADS)

    Liu, Zedong; Wan, Xiuquan

    2018-04-01

    The Atlantic meridional overturning circulation (AMOC) is a vital component of the global ocean circulation and the heat engine of the climate system. Through the use of a coupled general circulation model, this study examines the role of synoptic systems on the AMOC and presents evidence that internally generated high-frequency, synoptic-scale weather variability in the atmosphere could play a significant role in maintaining the overall strength and variability of the AMOC, thereby affecting climate variability and change. Results of a novel coupling technique show that the strength and variability of the AMOC are greatly reduced once the synoptic weather variability is suppressed in the coupled model. The strength and variability of the AMOC are closely linked to deep convection events at high latitudes, which could be strongly affected by the weather variability. Our results imply that synoptic weather systems are important in driving the AMOC and its variability. Thus, interactions between atmospheric weather variability and AMOC may be an important feedback mechanism of the global climate system and need to be taken into consideration in future climate change studies.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duane, Greg; Tsonis, Anastasios; Kocarev, Ljupco

    This collaborative reserach has several components but the main idea is that when imperfect copies of a given nonlinear dynamical system are coupled, they may synchronize for some set of coupling parameters. This idea is to be tested for several IPCC-like models each one with its own formulation and representing an “imperfect” copy of the true climate system. By computing the coupling parameters, which will lead the models to a synchronized state, a consensus on climate change simulations may be achieved.

  9. Climate Change, Hydrology and Landscapes of America's Heartland: A Coupled Natural-Human System

    NASA Astrophysics Data System (ADS)

    Lant, C.; Misgna, G.; Secchi, S.; Schoof, J. T.

    2012-12-01

    This paper will present a methodological overview of an NSF-funded project under the Coupled Natural and Human System program. Climate change, coupled with variations and changes in economic and policy environments and agricultural techniques, will alter the landscape of the U.S. Midwest. Assessing the effects of these changes on watersheds, and thus on water quantity, water quality, and agricultural production, entails modeling a coupled natural-human system capable of answering research questions such as: (1) How will the climate of the U.S. Midwest change through the remainder of the 21st Century? (2) How will climate change, together with changing markets and policies, affect land use patterns at various scales, from the U.S. Midwest, to agricultural regions, to watersheds, to farms and fields? (3) Under what policies and prices does landscape change induced by climate change generate a positive or a negative feedback through changes in carbon storage, evapotranspiration, and albedo? (4) Will climate change expand or diminish the agricultural production and ecosystem service generation capacities of specific watersheds? Such research can facilitate early adaptation and make a timely contribution to the successful integration of agricultural, environmental, and trade policy. Rural landscapes behave as a system through a number of feedback mechanisms: climatic, agro-technology, market, and policy. Methods, including agent-based modeling, SWAT modeling, map algebra using logistic regression, and genetic algorithms for analyzing each of these feedback mechanisms will be described. Selected early results that link sub-system models and incorporate critical feedbacks will also be presented.igure 1. Overall Modeling framework for Climate Change, Hydrology and Landscapes of America's Heartland.

  10. Coupled socioeconomic-crop modelling for the participatory local analysis of climate change impacts on smallholder farmers in Guatemala

    NASA Astrophysics Data System (ADS)

    Malard, J. J.; Adamowski, J. F.; Wang, L. Y.; Rojas, M.; Carrera, J.; Gálvez, J.; Tuy, H. A.; Melgar-Quiñonez, H.

    2015-12-01

    The modelling of the impacts of climate change on agriculture requires the inclusion of socio-economic factors. However, while cropping models and economic models of agricultural systems are common, dynamically coupled socio-economic-biophysical models have not received as much success. A promising methodology for modelling the socioeconomic aspects of coupled natural-human systems is participatory system dynamics modelling, in which stakeholders develop mental maps of the socio-economic system that are then turned into quantified simulation models. This methodology has been successful in the water resources management field. However, while the stocks and flows of water resources have also been represented within the system dynamics modelling framework and thus coupled to the socioeconomic portion of the model, cropping models are ill-suited for such reformulation. In addition, most of these system dynamics models were developed without stakeholder input, limiting the scope for the adoption and implementation of their results. We therefore propose a new methodology for the analysis of climate change variability on agroecosystems which uses dynamically coupled system dynamics (socio-economic) and biophysical (cropping) models to represent both physical and socioeconomic aspects of the agricultural system, using two case studies (intensive market-based agricultural development versus subsistence crop-based development) from rural Guatemala. The system dynamics model component is developed with relevant governmental and NGO stakeholders from rural and agricultural development in the case study regions and includes such processes as education, poverty and food security. Common variables with the cropping models (yield and agricultural management choices) are then used to dynamically couple the two models together, allowing for the analysis of the agroeconomic system's response to and resilience against various climatic and socioeconomic shocks.

  11. Development of a High-Resolution Climate Model for Future Climate Change Projection on the Earth Simulator

    NASA Astrophysics Data System (ADS)

    Kanzawa, H.; Emori, S.; Nishimura, T.; Suzuki, T.; Inoue, T.; Hasumi, H.; Saito, F.; Abe-Ouchi, A.; Kimoto, M.; Sumi, A.

    2002-12-01

    The fastest supercomputer of the world, the Earth Simulator (total peak performance 40TFLOPS) has recently been available for climate researches in Yokohama, Japan. We are planning to conduct a series of future climate change projection experiments on the Earth Simulator with a high-resolution coupled ocean-atmosphere climate model. The main scientific aims for the experiments are to investigate 1) the change in global ocean circulation with an eddy-permitting ocean model, 2) the regional details of the climate change including Asian monsoon rainfall pattern, tropical cyclones and so on, and 3) the change in natural climate variability with a high-resolution model of the coupled ocean-atmosphere system. To meet these aims, an atmospheric GCM, CCSR/NIES AGCM, with T106(~1.1o) horizontal resolution and 56 vertical layers is to be coupled with an oceanic GCM, COCO, with ~ 0.28ox 0.19o horizontal resolution and 48 vertical layers. This coupled ocean-atmosphere climate model, named MIROC, also includes a land-surface model, a dynamic-thermodynamic seaice model, and a river routing model. The poles of the oceanic model grid system are rotated from the geographic poles so that they are placed in Greenland and Antarctic land masses to avoild the singularity of the grid system. Each of the atmospheric and the oceanic parts of the model is parallelized with the Message Passing Interface (MPI) technique. The coupling of the two is to be done with a Multi Program Multi Data (MPMD) fashion. A 100-model-year integration will be possible in one actual month with 720 vector processors (which is only 14% of the full resources of the Earth Simulator).

  12. The Coordinated Ocean Wave Climate Project

    NASA Astrophysics Data System (ADS)

    Hemer, Mark; Dobrynin, Mikhail; Erikson, Li; Lionello, Piero; Mori, Nobuhito; Semedo, Alvaro; Wang, Xiaolan

    2016-04-01

    Future 21st Century changes in wind-wave climate have broad implications for marine and coastal infrastructure and ecosystems. Atmosphere-ocean general circulation models (GCM) are now routinely used for assessing and providing future projections of climatological parameters such as temperature and precipitation, but generally these provide no information on ocean wind-waves. To fill this information gap a growing number of studies are using GCM outputs and independently producing global and regional scale wind-wave climate projections. Furthermore, additional studies are actively coupling wind-wave dependent atmosphere-ocean exchanges into GCMs, to improve physical representation and quantify the impact of waves in the coupled climate system, and can also deliver wave characteristics as another variable in the climate system. To consolidate these efforts, understand the sources of variance between projections generated by different methodologies and International groups, and ultimately provide a robust picture of the role of wind-waves in the climate system and their projected changes, we present outcomes of the JCOMM supported Coordinated Ocean Wave Climate Project (COWCLIP). The objective of COWCLIP is twofold: to make community based ensembles of wave climate projections openly accessible, to provide the necessary information to support diligent marine and coastal impacts of climate change studies; and to understand the effects and feedback influences of wind-waves in the coupled ocean-atmosphere climate system. We will present the current status of COWCLIP, providing an overview of the objectives, analysis and results of the initial phase - now complete - and the progress of ongoing phases of the project.

  13. Predictability of North Atlantic Multidecadal Climate Variability

    PubMed

    Griffies; Bryan

    1997-01-10

    Atmospheric weather systems become unpredictable beyond a few weeks, but climate variations can be predictable over much longer periods because of the coupling of the ocean and atmosphere. With the use of a global coupled ocean-atmosphere model, it is shown that the North Atlantic may have climatic predictability on the order of a decade or longer. These results suggest that variations of the dominant multidecadal sea surface temperature patterns in the North Atlantic, which have been associated with changes in climate over Eurasia, can be predicted if an adequate and sustainable system for monitoring the Atlantic Ocean exists.

  14. Biospheric feedback effects in a synchronously coupled model of human and Earth systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thornton, Peter E.; Calvin, Katherine; Jones, Andrew D.

    Fossil fuel combustion and land-use change are the two largest contributors to industrial-era increases in atmospheric CO 2 concentration. Projections of these are thus fundamental inputs for coupled Earth system models (ESMs) used to estimate the physical and biological consequences of future climate system forcing. While historical datasets are available to inform past and current climate analyses, assessments of future climate change have relied on projections of energy and land use from energy economic models, constrained by assumptions about future policy, land-use patterns, and socio-economic development trajectories. We show that the climatic impacts on land ecosystems drives significant feedbacks inmore » energy, agriculture, land-use, and carbon cycle projections for the 21st century. We also find that exposure of human appropriated land ecosystem productivity to biospheric change results in reductions of land area used for crops; increases in managed forest area and carbon stocks; decreases in global crop prices; and reduction in fossil fuel emissions for a low-mid range forcing scenario. Furthermore, the feedbacks between climate-induced biospheric change and human system forcings to the climate system demonstrated here are handled inconsistently, or excluded altogether, in the one-way asynchronous coupling of energy economic models to ESMs used to date.« less

  15. Biospheric feedback effects in a synchronously coupled model of human and Earth systems

    NASA Astrophysics Data System (ADS)

    Thornton, Peter E.; Calvin, Katherine; Jones, Andrew D.; di Vittorio, Alan V.; Bond-Lamberty, Ben; Chini, Louise; Shi, Xiaoying; Mao, Jiafu; Collins, William D.; Edmonds, Jae; Thomson, Allison; Truesdale, John; Craig, Anthony; Branstetter, Marcia L.; Hurtt, George

    2017-07-01

    Fossil fuel combustion and land-use change are the two largest contributors to industrial-era increases in atmospheric CO 2 concentration. Projections of these are thus fundamental inputs for coupled Earth system models (ESMs) used to estimate the physical and biological consequences of future climate system forcing. While historical data sets are available to inform past and current climate analyses, assessments of future climate change have relied on projections of energy and land use from energy-economic models, constrained by assumptions about future policy, land-use patterns and socio-economic development trajectories. Here we show that the climatic impacts on land ecosystems drive significant feedbacks in energy, agriculture, land use and carbon cycle projections for the twenty-first century. We find that exposure of human-appropriated land ecosystem productivity to biospheric change results in reductions of land area used for crops; increases in managed forest area and carbon stocks; decreases in global crop prices; and reduction in fossil fuel emissions for a low-mid-range forcing scenario. The feedbacks between climate-induced biospheric change and human system forcings to the climate system--demonstrated here--are handled inconsistently, or excluded altogether, in the one-way asynchronous coupling of energy-economic models to ESMs used to date.

  16. Biospheric feedback effects in a synchronously coupled model of human and Earth systems

    DOE PAGES

    Thornton, Peter E.; Calvin, Katherine; Jones, Andrew D.; ...

    2017-06-12

    Fossil fuel combustion and land-use change are the two largest contributors to industrial-era increases in atmospheric CO 2 concentration. Projections of these are thus fundamental inputs for coupled Earth system models (ESMs) used to estimate the physical and biological consequences of future climate system forcing. While historical datasets are available to inform past and current climate analyses, assessments of future climate change have relied on projections of energy and land use from energy economic models, constrained by assumptions about future policy, land-use patterns, and socio-economic development trajectories. We show that the climatic impacts on land ecosystems drives significant feedbacks inmore » energy, agriculture, land-use, and carbon cycle projections for the 21st century. We also find that exposure of human appropriated land ecosystem productivity to biospheric change results in reductions of land area used for crops; increases in managed forest area and carbon stocks; decreases in global crop prices; and reduction in fossil fuel emissions for a low-mid range forcing scenario. Furthermore, the feedbacks between climate-induced biospheric change and human system forcings to the climate system demonstrated here are handled inconsistently, or excluded altogether, in the one-way asynchronous coupling of energy economic models to ESMs used to date.« less

  17. Monitoring the performance of the next Climate Forecast System version 3, throughout its development stage at EMC/NCEP

    NASA Astrophysics Data System (ADS)

    Peña, M.; Saha, S.; Wu, X.; Wang, J.; Tripp, P.; Moorthi, S.; Bhattacharjee, P.

    2016-12-01

    The next version of the operational Climate Forecast System (version 3, CFSv3) will be a fully coupled six-components system with diverse applications to earth system modeling, including weather and climate predictions. This system will couple the earth's atmosphere, land, ocean, sea-ice, waves and aerosols for both data assimilation and modeling. It will also use the NOAA Environmental Modeling System (NEMS) software super structure to couple these components. The CFSv3 is part of the next Unified Global Coupled System (UGCS), which will unify the global prediction systems that are now operational at NCEP. The UGCS is being developed through the efforts of dedicated research and engineering teams and through coordination across many CPO/MAPP and NGGPS groups. During this development phase, the UGCS is being tested for seasonal purposes and undergoes frequent revisions. Each new revision is evaluated to quickly discover, isolate and solve problems that negatively impact its performance. In the UGCS-seasonal model, components (e.g., ocean, sea-ice, atmosphere, etc.) are coupled through a NEMS-based "mediator". In this numerical infrastructure, model diagnostics and forecast validation are carried out, both component by component, and as a whole. The next stage, model optimization, will require enhanced performance diagnostics tools to help prioritize areas of numerical improvements. After the technical development of the UGCS-seasonal is completed, it will become the first realization of the CFSv3. All future development of this system will be carried out by the climate team at NCEP, in scientific collaboration with the groups that developed the individual components, as well as the climate community. A unique challenge to evaluate this unified weather-climate system is the large number of variables, which evolve over a wide range of temporal and spatial scales. A small set of performance measures and scorecard displays are been created, and collaboration and software contributions from research and operational centers are being incorporated. A status of the CFSv3/UGCS-seasonal development and examples of its performance and measuring tools will be presented.

  18. Collaborative Project. Understanding the effects of tides and eddies on the ocean dynamics, sea ice cover and decadal/centennial climate prediction using the Regional Arctic Climate Model (RACM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hutchings, Jennifer; Joseph, Renu

    2013-09-14

    The goal of this project is to develop an eddy resolving ocean model (POP) with tides coupled to a sea ice model (CICE) within the Regional Arctic System Model (RASM) to investigate the importance of ocean tides and mesoscale eddies in arctic climate simulations and quantify biases associated with these processes and how their relative contribution may improve decadal to centennial arctic climate predictions. Ocean, sea ice and coupled arctic climate response to these small scale processes will be evaluated with regard to their influence on mass, momentum and property exchange between oceans, shelf-basin, ice-ocean, and ocean-atmosphere. The project willmore » facilitate the future routine inclusion of polar tides and eddies in Earth System Models when computing power allows. As such, the proposed research addresses the science in support of the BER’s Climate and Environmental Sciences Division Long Term Measure as it will improve the ocean and sea ice model components as well as the fully coupled RASM and Community Earth System Model (CESM) and it will make them more accurate and computationally efficient.« less

  19. Sustainability Indicators for Coupled Human-Earth Systems

    NASA Astrophysics Data System (ADS)

    Motesharrei, S.; Rivas, J. R.; Kalnay, E.

    2014-12-01

    Over the last two centuries, the Human System went from having a small impact on the Earth System (including the Climate System) to becoming dominant, because both population and per capita consumption have grown extremely fast, especially since about 1950. We therefore argue that Human System Models must be included into Earth System Models through bidirectional couplings with feedbacks. In particular, population should be modeled endogenously, rather than exogenously as done currently in most Integrated Assessment Models. The growth of the Human System threatens to overwhelm the Carrying Capacity of the Earth System, and may be leading to catastrophic climate change and collapse. We propose a set of Ecological and Economic "Sustainability Indicators" that can employ large data-sets for developing and assessing effective mitigation and adaptation policies. Using the Human and Nature Dynamical Model (HANDY) and Coupled Human-Climate-Water Model (COWA), we carry out experiments with this set of Sustainability Indicators and show that they are applicable to various coupled systems including Population, Climate, Water, Energy, Agriculture, and Economy. Impact of nonrenewable resources and fossil fuels could also be understood using these indicators. We demonstrate interconnections of Ecological and Economic Indicators. Coupled systems often include feedbacks and can thus display counterintuitive dynamics. This makes it difficult for even experts to see coming catastrophes from just the raw data for different variables. Sustainability Indicators boil down the raw data into a set of simple numbers that cross their sustainability thresholds with a large time-lag before variables enter their catastrophic regimes. Therefore, we argue that Sustainability Indicators constitute a powerful but simple set of tools that could be directly used for making policies for sustainability.

  20. Biospheric feedback effects in a synchronously coupled model of human and Earth systems

    NASA Astrophysics Data System (ADS)

    Thornton, P. E.; Calvin, K. V.; Jones, A. D.; Di Vittorio, A. V.; Bond-Lamberty, B. P.; Chini, L. P.; Shi, X.; Mao, J.; Collins, W. D.; Edmonds, J.; Hurtt, G. C.

    2017-12-01

    Fossil fuel combustion and land-use change are the two largest contributors to industrial-era increases in atmospheric CO2 concentration. Projections of these are thus fundamental inputs for coupled Earth system models (ESMs) used to estimate the physical and biological consequences of future climate system forcing. While historical datasets are available to inform past and current climate analyses, assessments of future climate change have relied on projections of energy and land use from energy economic models, constrained by assumptions about future policy, land-use patterns, and socio-economic development trajectories. In this work we show that the climatic impacts on land ecosystems drives significant feedbacks in energy, agriculture, land-use, and carbon cycle projections for the 21st century. We find that exposure of human appropriated land ecosystem productivity to biospheric change results in reductions of land area used for crops; increases in managed forest area and carbon stocks; decreases in global crop prices; and reduction in fossil fuel emissions for a low-mid range forcing scenario. Land ecosystem response to increased carbon dioxide concentration, increased anthropogenic nitrogen deposition, and changes in temperature and precipitation all play a role. The feedbacks between climate-induced biospheric change and human system forcings to the climate system demonstrated in this work are handled inconsistently, or excluded altogether, in the one-way asynchronous coupling of energy economic models to ESMs used to date.

  1. Tropical Cyclone Activity in the High-Resolution Community Earth System Model and the Impact of Ocean Coupling

    NASA Astrophysics Data System (ADS)

    Li, Hui; Sriver, Ryan L.

    2018-01-01

    High-resolution Atmosphere General Circulation Models (AGCMs) are capable of directly simulating realistic tropical cyclone (TC) statistics, providing a promising approach for TC-climate studies. Active air-sea coupling in a coupled model framework is essential to capturing TC-ocean interactions, which can influence TC-climate connections on interannual to decadal time scales. Here we investigate how the choices of ocean coupling can affect the directly simulated TCs using high-resolution configurations of the Community Earth System Model (CESM). We performed a suite of high-resolution, multidecadal, global-scale CESM simulations in which the atmosphere (˜0.25° grid spacing) is configured with three different levels of ocean coupling: prescribed climatological sea surface temperature (SST) (ATM), mixed layer ocean (SLAB), and dynamic ocean (CPL). We find that different levels of ocean coupling can influence simulated TC frequency, geographical distributions, and storm intensity. ATM simulates more storms and higher overall storm intensity than the coupled simulations. It also simulates higher TC track density over the eastern Pacific and the North Atlantic, while TC tracks are relatively sparse within CPL and SLAB for these regions. Storm intensification and the maximum wind speed are sensitive to the representations of local surface flux feedbacks in different coupling configurations. Key differences in storm number and distribution can be attributed to variations in the modeled large-scale climate mean state and variability that arise from the combined effect of intrinsic model biases and air-sea interactions. Results help to improve our understanding about the representation of TCs in high-resolution coupled Earth system models, with important implications for TC-climate applications.

  2. Biogeochemical Coupling between Ocean and Sea Ice

    NASA Astrophysics Data System (ADS)

    Wang, S.; Jeffery, N.; Maltrud, M. E.; Elliott, S.; Wolfe, J.

    2016-12-01

    Biogeochemical processes in ocean and sea ice are tightly coupled at high latitudes. Ongoing changes in Arctic and Antarctic sea ice domain likely influence the coupled system, not only through physical fields but also biogeochemical properties. Investigating the system and its changes requires representation of ocean and sea ice biogeochemical cycles, as well as their coupling in Earth System Models. Our work is based on ACME-HiLAT, a new offshoot of the Community Earth System Model (CESM), including a comprehensive representation of marine ecosystems in the form of the Biogeochemical Elemental Cycling Module (BEC). A full vertical column sea ice biogeochemical module has recently been incorporated into the sea ice component. We have further introduced code modifications to couple key growth-limiting nutrients (N, Si, Fe), dissolved and particulate organic matter, and phytoplankton classes that are important in polar regions between ocean and sea ice. The coupling of ocean and sea ice biology-chemistry will enable representation of key processes such as the release of important climate active constituents or seeding algae from melting sea ice into surface waters. Sensitivity tests suggest sea ice and ocean biogeochemical coupling influences phytoplankton competition, biological production, and the CO2 flux. Sea ice algal seeding plays an important role in determining phytoplankton composition of Arctic early spring blooms, since different groups show various responses to the seeding biomass. Iron coupling leads to increased phytoplankton biomass in the Southern Ocean, which also affects carbon uptake via the biological pump. The coupling of macronutrients and organic matter may have weaker influences on the marine ecosystem. Our developments will allow climate scientists to investigate the fully coupled responses of the sea ice-ocean BGC system to physical changes in polar climate.

  3. A Coupled Regional Climate Simulator for the Gulf of St. Lawrence, Canada

    NASA Astrophysics Data System (ADS)

    Faucher, M.; Saucier, F.; Caya, D.

    2003-12-01

    The climate of Eastern Canada is characterized by atmosphere-ocean-ice interactions due to the closeness of the North Atlantic Ocean and the Labrador Sea. Also, there are three relatively large inner basins: the Gulf of St-Lawrence, the Hudson Bay / Hudson Strait / Foxe Basin system and the Great Lakes, influencing the evolution of weather systems and therefore the regional climate. These basins are characterized by irregular coastlines and variables sea-ice in winter, so that the interactions between the atmosphere and the ocean are more complex. There are coupled general circulation models (GCMs) that are available to study the climate of Eastern Canada, but their resolution (near 350km) is to low to resolve the details of the regional climate of this area and to provide valuable information for climate impact studies. The goal of this work is to develop a coupled regional climate simulator for Eastern Canada to study the climate and its variability, necessary to assess the future climate in a double CO2 situation. An off-line coupling strategy through the interacting fields is used to link the Canadian Regional Climate Model developed at the "Universite du Quebec a Montreal" (CRCM, Caya and Laprise 1999) to the Gulf of St. Lawrence ocean model developed at the "Institut Maurice-Lamontagne" (GOM, Saucier et al. 2002). This strategy involves running both simulators separately and alternatively, using variables from the other simulator to supply the needed forcing fields every day. We present the results of a first series of seasonal simulations performed with this system to show the ability of our climate simulator to reproduce the known characteristics of the regional circulation such as mesoscale oceanic features, fronts and sea-ice. The simulations were done for the period from December 1st, 1989 to March 31st, 1990. The results are compared with those of previous uncoupled runs (Faucher et al. 2003) and with observations.

  4. GFDL's ESM2 global coupled climate-carbon Earth System Models. Part I: physical formulation and baseline simulation characteristics

    USGS Publications Warehouse

    Dunne, John P.; John, Jasmin G.; Adcroft, Alistair J.; Griffies, Stephen M.; Hallberg, Robert W.; Shevalikova, Elena; Stouffer, Ronald J.; Cooke, William; Dunne, Krista A.; Harrison, Matthew J.; Krasting, John P.; Malyshev, Sergey L.; Milly, P.C.D.; Phillipps, Peter J.; Sentman, Lori A.; Samuels, Bonita L.; Spelman, Michael J.; Winton, Michael; Wittenberg, Andrew T.; Zadeh, Niki

    2012-01-01

    We describe the physical climate formulation and simulation characteristics of two new global coupled carbon-climate Earth System Models, ESM2M and ESM2G. These models demonstrate similar climate fidelity as the Geophysical Fluid Dynamics Laboratory's previous CM2.1 climate model while incorporating explicit and consistent carbon dynamics. The two models differ exclusively in the physical ocean component; ESM2M uses Modular Ocean Model version 4.1 with vertical pressure layers while ESM2G uses Generalized Ocean Layer Dynamics with a bulk mixed layer and interior isopycnal layers. Differences in the ocean mean state include the thermocline depth being relatively deep in ESM2M and relatively shallow in ESM2G compared to observations. The crucial role of ocean dynamics on climate variability is highlighted in the El Niño-Southern Oscillation being overly strong in ESM2M and overly weak ESM2G relative to observations. Thus, while ESM2G might better represent climate changes relating to: total heat content variability given its lack of long term drift, gyre circulation and ventilation in the North Pacific, tropical Atlantic and Indian Oceans, and depth structure in the overturning and abyssal flows, ESM2M might better represent climate changes relating to: surface circulation given its superior surface temperature, salinity and height patterns, tropical Pacific circulation and variability, and Southern Ocean dynamics. Our overall assessment is that neither model is fundamentally superior to the other, and that both models achieve sufficient fidelity to allow meaningful climate and earth system modeling applications. This affords us the ability to assess the role of ocean configuration on earth system interactions in the context of two state-of-the-art coupled carbon-climate models.

  5. Description and evaluation of the Earth System Regional Climate Model (RegCM-ES)

    NASA Astrophysics Data System (ADS)

    Farneti, Riccardo; Sitz, Lina; Di Sante, Fabio; Fuentes-Franco, Ramon; Coppola, Erika; Mariotti, Laura; Reale, Marco; Sannino, Gianmaria; Barreiro, Marcelo; Nogherotto, Rita; Giuliani, Graziano; Graffino, Giorgio; Solidoro, Cosimo; Giorgi, Filippo

    2017-04-01

    The increasing availability of satellite remote sensing data, of high temporal frequency and spatial resolution, has provided a new and enhanced view of the global ocean and atmosphere, revealing strong air-sea coupling processes throughout the ocean basins. In order to obtain an accurate representation and better understanding of the climate system, its variability and change, the inclusion of all mechanisms of interaction among the different sub-components, at high temporal and spatial resolution, becomes ever more desirable. Recently, global coupled models have been able to progressively refine their horizontal resolution to attempt to resolve smaller-scale processes. However, regional coupled ocean-atmosphere models can achieve even finer resolutions and provide additional information on the mechanisms of air-sea interactions and feedbacks. Here we describe a new, state-of-the-art, Earth System Regional Climate Model (RegCM-ES). RegCM-ES presently includes the coupling between atmosphere, ocean, land surface and sea-ice components, as well as an hydrological and ocean biogeochemistry model. The regional coupled model has been implemented and tested over some of the COordinated Regional climate Downscaling Experiment (CORDEX) domains. RegCM-ES has shown improvements in the representation of precipitation and SST fields over the tested domains, as well as realistic representations of coupled air-sea processes and interactions. The RegCM-ES model, which can be easily implemented over any regional domain of interest, is open source making it suitable for usage by the large scientific community.

  6. Dynamics of the Coupled Human-climate System Resulting from Closed-loop Control of Solar Geoengineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacMartin, Douglas; Kravitz, Benjamin S.; Keith, David

    2014-07-08

    If solar radiation management (SRM) were ever implemented, feedback of the observed climate state might be used to adjust the radiative forcing of SRM, in order to compensate for uncertainty in either the forcing or the climate response; this would also compensate for unexpected changes in the system, e.g. a nonlinear change in climate sensitivity. This feedback creates an emergent coupled human-climate system, with entirely new dynamics. In addition to the intended response to greenhouse-gas induced changes, the use of feedback would also result in a geoengineering response to natural climate variability. We use a simple box-diffusion dynamic model tomore » understand how changing feedback-control parameters and time delay affect the behavior of this coupled natural-human system, and verify these predictions using the HadCM3L general circulation model. In particular, some amplification of natural variability is unavoidable; any time delay (e.g., to average out natural variability, or due to decision-making) exacerbates this amplification, with oscillatory behavior possible if there is a desire for rapid correction (high feedback gain), but a delayed response needed for decision making. Conversely, the need for feedback to compensate for uncertainty, combined with a desire to avoid excessive amplification, results in a limit on how rapidly SRM could respond to uncertain changes.« less

  7. Ocean-Atmosphere Coupling Processes Affecting Predictability in the Climate System

    NASA Astrophysics Data System (ADS)

    Miller, A. J.; Subramanian, A. C.; Seo, H.; Eliashiv, J. D.

    2017-12-01

    Predictions of the ocean and atmosphere are often sensitive to coupling at the air-sea interface in ways that depend on the temporal and spatial scales of the target fields. We will discuss several aspects of these types of coupled interactions including oceanic and atmospheric forecast applications. For oceanic mesoscale eddies, the coupling can influence the energetics of the oceanic flow itself. For Madden-Julian Oscillation onset, the coupling timestep should resolve the diurnal cycle to properly raise time-mean SST and latent heat flux prior to deep convection. For Atmospheric River events, the evolving SST field can alter the trajectory and intensity of precipitation anomalies along the California coast. Improvements in predictions will also rely on identifying and alleviating sources of biases in the climate states of the coupled system. Surprisingly, forecast skill can also be improved by enhancing stochastic variability in the atmospheric component of coupled models as found in a multiscale ensemble modeling approach.

  8. Secular trends and climate drift in coupled ocean-atmosphere general circulation models

    NASA Astrophysics Data System (ADS)

    Covey, Curt; Gleckler, Peter J.; Phillips, Thomas J.; Bader, David C.

    2006-02-01

    Coupled ocean-atmosphere general circulation models (coupled GCMs) with interactive sea ice are the primary tool for investigating possible future global warming and numerous other issues in climate science. A long-standing problem with such models is that when different components of the physical climate system are linked together, the simulated climate can drift away from observation unless constrained by ad hoc adjustments to interface fluxes. However, 11 modern coupled GCMs, including three that do not employ flux adjustments, behave much better in this respect than the older generation of models. Surface temperature trends in control run simulations (with external climate forcing such as solar brightness and atmospheric carbon dioxide held constant) are small compared with observed trends, which include 20th century climate change due to both anthropogenic and natural factors. Sea ice changes in the models are dominated by interannual variations. Deep ocean temperature and salinity trends are small enough for model control runs to extend over 1000 simulated years or more, but trends in some regions, most notably the Arctic, differ substantially among the models and may be problematic. Methods used to initialize coupled GCMs can mitigate climate drift but cannot eliminate it. Lengthy "spin-ups" of models, made possible by increasing computer power, are one reason for the improvements this paper documents.

  9. Report for Oregon State University Reporting Period: June 2016 to June 2017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hutchings, Jennifer

    The goal of this project is to develop an eddy resolving ocean model (POP) with tides coupled to a sea ice model (CICE) within the Regional Arctic System Model (RASM) to investigate the importance of ocean tides and mesoscale eddies in arctic climate simulations and quantify biases associated with these processes and how their relative contribution may improve decadal to centennial arctic climate predictions. Ocean, sea ice and coupled arctic climate response to these small scale processes will be evaluated with regard to their influence on mass, momentum and property exchange between oceans, shelf-basin, ice-ocean, and ocean-atmosphere. The project willmore » facilitate the future routine inclusion of polar tides and eddies in Earth System Models when computing power allows. As such, the proposed research addresses the science in support of the BER’s Climate and Environmental Sciences Division Long Term Measure as it will improve the ocean and sea ice model components as well as the fully coupled RASM and Community Earth System Model (CESM) and it will make them more accurate and computationally efficient.« less

  10. Desert dust and anthropogenic aerosol interactions in the Community Climate System Model coupled-carbon-climate model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahowald, Natalie; Rothenberg, D.; Lindsay, Keith

    2011-02-01

    Coupled-carbon-climate simulations are an essential tool for predicting the impact of human activity onto the climate and biogeochemistry. Here we incorporate prognostic desert dust and anthropogenic aerosols into the CCSM3.1 coupled carbon-climate model and explore the resulting interactions with climate and biogeochemical dynamics through a series of transient anthropogenic simulations (20th and 21st centuries) and sensitivity studies. The inclusion of prognostic aerosols into this model has a small net global cooling effect on climate but does not significantly impact the globally averaged carbon cycle; we argue that this is likely to be because the CCSM3.1 model has a small climatemore » feedback onto the carbon cycle. We propose a mechanism for including desert dust and anthropogenic aerosols into a simple carbon-climate feedback analysis to explain the results of our and previous studies. Inclusion of aerosols has statistically significant impacts on regional climate and biogeochemistry, in particular through the effects on the ocean nitrogen cycle and primary productivity of altered iron inputs from desert dust deposition.« less

  11. Probabilistic Integrated Assessment of ``Dangerous'' Climate Change

    NASA Astrophysics Data System (ADS)

    Mastrandrea, Michael D.; Schneider, Stephen H.

    2004-04-01

    Climate policy decisions are being made despite layers of uncertainty. Such decisions directly influence the potential for ``dangerous anthropogenic interference with the climate system.'' We mapped a metric for this concept, based on Intergovernmental Panel on Climate Change assessment of climate impacts, onto probability distributions of future climate change produced from uncertainty in key parameters of the coupled social-natural system-climate sensitivity, climate damages, and discount rate. Analyses with a simple integrated assessment model found that, under midrange assumptions, endogenously calculated, optimal climate policy controls can reduce the probability of dangerous anthropogenic interference from ~45% under minimal controls to near zero.

  12. A GUI Based Software for Sizing Stand Alone AC Coupled Hybrid PV-Diesel Power System under Malaysia Climate

    NASA Astrophysics Data System (ADS)

    Syafiqah Syahirah Mohamed, Nor; Amalina Banu Mohamat Adek, Noor; Hamid, Nurul Farhana Abd

    2018-03-01

    This paper presents the development of Graphical User Interface (GUI) software for sizing main component in AC coupled photovoltaic (PV) hybrid power system based on Malaysia climate. This software provides guideline for PV system integrator to design effectively the size of components and system configuration to match the system and load requirement with geographical condition. The concept of the proposed software is balancing the annual average renewable energy generation and load demand. In this study, the PV to diesel generator (DG) ratio is introduced by considering the hybrid system energy contribution. The GUI software is able to size the main components in the PV hybrid system to meet with the set target of energy contribution ratio. The rated powers of the components to be defined are PV array, grid-tie inverter, bi-directional inverter, battery storage and DG. GUI is used to perform all the system sizing procedures to make it user friendly interface as a sizing tool for AC coupled PV hybrid system. The GUI will be done by using Visual Studio 2015 based on the real data under Malaysia Climate.

  13. Assessing Extratropical Influence on Tropical Climatology and Variability with Regional Coupled Data Assimilation

    NASA Astrophysics Data System (ADS)

    Lu, F.; Liu, Z.; Liu, Y.; Zhang, S.; Jacob, R. L.

    2017-12-01

    The Regional Coupled Data Assimilation (RCDA) method is introduced as a tool to study coupled climate dynamics and teleconnections. The RCDA method is built on an ensemble-based coupled data assimilation (CDA) system in a coupled general circulation model (CGCM). The RCDA method limits the data assimilation to the desired model components (e.g. atmosphere) and regions (e.g. the extratropics), and studies the ensemble-mean model response (e.g. tropical response to "observed" extratropical atmospheric variability). When applied to the extratropical influence on tropical climate, the RCDA method has shown some unique advantages, namely the combination of a fully coupled model, real-world observations and an ensemble approach. Tropical variability (e.g. El Niño-Southern Oscillation or ENSO) and climatology (e.g. asymmetric Inter-Tropical Convergence Zone or ITCZ) were initially thought to be determined mostly by local forcing and ocean-atmosphere interaction in the tropics. Since late 20th century, numerous studies have showed that extratropical forcing could affect, or even largely determine some aspects of the tropical climate. Due to the coupled nature of the climate system, however, the challenge of determining and further quantifying the causality of extratropical forcing on the tropical climate remains. Using the RCDA method, we have demonstrated significant control of extratropical atmospheric forcing on ENSO variability in a CGCM, both with model-generated and real-world observation datasets. The RCDA method has also shown robust extratropical impact on the tropical double-ITCZ bias in a CGCM. The RCDA method has provided the first systematic and quantitative assessment of extratropical influence on tropical climatology and variability by incorporating real world observations in a CGCM.

  14. Coupled Regional Ocean-Atmosphere Modeling of the Mount Pinatubo Impact on the Red Sea

    NASA Astrophysics Data System (ADS)

    Stenchikov, G. L.; Osipov, S.

    2017-12-01

    The 1991 eruption of Mount Pinatubo had dramatic effects on the regional climate in the Middle East. Though acknowledged, these effects have not been thoroughly studied. To fill this gap and to advance understanding of the mechanisms that control variability in the Middle East's regional climate, we simulated the impact of the 1991 Pinatubo eruption using a regional coupled ocean-atmosphere modeling system set for the Middle East and North Africa (MENA) domain. We used the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) framework, which couples the Weather Research and Forecasting Model (WRF) model with the Regional Oceanic Modeling System (ROMS). We modified the WRF model to account for the radiative effect of volcanic aerosols. Our coupled ocean-atmosphere simulations verified by available observations revealed strong perturbations in the energy balance of the Red Sea, which drove thermal and circulation responses. Our modeling approach allowed us to separate changes in the atmospheric circulation caused by the impact of the volcano from direct regional radiative cooling from volcanic aerosols. The atmospheric circulation effect was significantly stronger than the direct volcanic aerosols effect. We found that the Red Sea response to the Pinatubo eruption was stronger and qualitatively different from that of the global ocean system. Our results suggest that major volcanic eruptions significantly affect the climate in the Middle East and the Red Sea and should be carefully taken into account in assessments of long-term climate variability and warming trends in MENA and the Red Sea.

  15. Climate Modeling and Causal Identification for Sea Ice Predictability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunke, Elizabeth Clare; Urrego Blanco, Jorge Rolando; Urban, Nathan Mark

    This project aims to better understand causes of ongoing changes in the Arctic climate system, particularly as decreasing sea ice trends have been observed in recent decades and are expected to continue in the future. As part of the Sea Ice Prediction Network, a multi-agency effort to improve sea ice prediction products on seasonal-to-interannual time scales, our team is studying sensitivity of sea ice to a collection of physical process and feedback mechanism in the coupled climate system. During 2017 we completed a set of climate model simulations using the fully coupled ACME-HiLAT model. The simulations consisted of experiments inmore » which cloud, sea ice, and air-ocean turbulent exchange parameters previously identified as important for driving output uncertainty in climate models were perturbed to account for parameter uncertainty in simulated climate variables. We conducted a sensitivity study to these parameters, which built upon a previous study we made for standalone simulations (Urrego-Blanco et al., 2016, 2017). Using the results from the ensemble of coupled simulations, we are examining robust relationships between climate variables that emerge across the experiments. We are also using causal discovery techniques to identify interaction pathways among climate variables which can help identify physical mechanisms and provide guidance in predictability studies. This work further builds on and leverages the large ensemble of standalone sea ice simulations produced in our previous w14_seaice project.« less

  16. Scenario Analysis With Economic-Energy Systems Models Coupled to Simple Climate Models

    NASA Astrophysics Data System (ADS)

    Hanson, D. A.; Kotamarthi, V. R.; Foster, I. T.; Franklin, M.; Zhu, E.; Patel, D. M.

    2008-12-01

    Here, we compare two scenarios based on Stanford University's Energy Modeling Forum Study 22 on global cooperative and non-cooperative climate policies. In the former, efficient transition paths are implemented including technology Research and Development effort, energy conservation programs, and price signals for greenhouse gas (GHG) emissions. In the non-cooperative case, some countries try to relax their regulations and be free riders. Total emissions and costs are higher in the non-cooperative scenario. The simulations, including climate impacts, run to the year 2100. We use the Argonne AMIGA-MARS economic-energy systems model, the Texas AM University's Forest and Agricultural Sector Optimization Model (FASOM), and the University of Illinois's Integrated Science Assessment Model (ISAM), with offline coupling between the FASOM and AMIGA-MARS and an online coupling between AMIGA-MARS and ISAM. This set of models captures the interaction of terrestrial systems, land use, crops and forests, climate change, human activity, and energy systems. Our scenario simulations represent dynamic paths over which all the climate, terrestrial, economic, and energy technology equations are solved simultaneously Special attention is paid to biofuels and how they interact with conventional gasoline/diesel fuel markets. Possible low-carbon penetration paths are based on estimated costs for new technologies, including cellulosic biomass, coal-to-liquids, plug-in electric vehicles, solar and nuclear energy. We explicitly explore key uncertainties that affect mitigation and adaptation scenarios.

  17. Regional Arctic System Model (RASM): A Tool to Advance Understanding and Prediction of Arctic Climate Change at Process Scales

    NASA Astrophysics Data System (ADS)

    Maslowski, W.; Roberts, A.; Osinski, R.; Brunke, M.; Cassano, J. J.; Clement Kinney, J. L.; Craig, A.; Duvivier, A.; Fisel, B. J.; Gutowski, W. J., Jr.; Hamman, J.; Hughes, M.; Nijssen, B.; Zeng, X.

    2014-12-01

    The Arctic is undergoing rapid climatic changes, which are some of the most coordinated changes currently occurring anywhere on Earth. They are exemplified by the retreat of the perennial sea ice cover, which integrates forcing by, exchanges with and feedbacks between atmosphere, ocean and land. While historical reconstructions from Global Climate and Global Earth System Models (GC/ESMs) are in broad agreement with these changes, the rate of change in the GC/ESMs remains outpaced by observations. Reasons for that stem from a combination of coarse model resolution, inadequate parameterizations, unrepresented processes and a limited knowledge of physical and other real world interactions. We demonstrate the capability of the Regional Arctic System Model (RASM) in addressing some of the GC/ESM limitations in simulating observed seasonal to decadal variability and trends in the sea ice cover and climate. RASM is a high resolution, fully coupled, pan-Arctic climate model that uses the Community Earth System Model (CESM) framework. It uses the Los Alamos Sea Ice Model (CICE) and Parallel Ocean Program (POP) configured at an eddy-permitting resolution of 1/12° as well as the Weather Research and Forecasting (WRF) and Variable Infiltration Capacity (VIC) models at 50 km resolution. All RASM components are coupled via the CESM flux coupler (CPL7) at 20-minute intervals. RASM is an example of limited-area, process-resolving, fully coupled earth system model, which due to the additional constraints from lateral boundary conditions and nudging within a regional model domain facilitates detailed comparisons with observational statistics that are not possible with GC/ESMs. In this talk, we will emphasize the utility of RASM to understand sensitivity to variable parameter space, importance of critical processes, coupled feedbacks and ultimately to reduce uncertainty in arctic climate change projections.

  18. integrated Earth System Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Andew; Di Vittorio, Alan; Collins, William

    The integrated Earth system model (iESM) has been developed as a new tool for projecting the joint human/climate system. The iESM is based upon coupling an integrated assessment model (IAM) and an Earth system model (ESM) into a common modeling infrastructure. IAMs are the primary tool for describing the human-Earth system, including the sources of global greenhouse gases (GHGs) and short-lived species (SLS), land use and land cover change (LULCC), and other resource-related drivers of anthropogenic climate change. ESMs are the primary scientific tools for examining the physical, chemical, and biogeochemical impacts of human-induced changes to the climate system. Themore » iESM project integrates the economic and human-dimension modeling of an IAM and a fully coupled ESM within a single simulation system while maintaining the separability of each model if needed. Both IAM and ESM codes are developed and used by large communities and have been extensively applied in recent national and international climate assessments. By introducing heretofore-omitted feedbacks between natural and societal drivers, we can improve scientific understanding of the human-Earth system dynamics. Potential applications include studies of the interactions and feedbacks leading to the timing, scale, and geographic distribution of emissions trajectories and other human influences, corresponding climate effects, and the subsequent impacts of a changing climate on human and natural systems.« less

  19. Isolating the atmospheric circulation response to Arctic sea-ice loss in the coupled climate system

    NASA Astrophysics Data System (ADS)

    Kushner, Paul; Blackport, Russell

    2017-04-01

    In the coupled climate system, projected global warming drives extensive sea-ice loss, but sea-ice loss drives warming that amplifies and can be confounded with the global warming process. This makes it challenging to cleanly attribute the atmospheric circulation response to sea-ice loss within coupled earth-system model (ESM) simulations of greenhouse warming. In this study, many centuries of output from coupled ocean/atmosphere/land/sea-ice ESM simulations driven separately by sea-ice albedo reduction and by projected greenhouse-dominated radiative forcing are combined to cleanly isolate the hemispheric scale response of the circulation to sea-ice loss. To isolate the sea-ice loss signal, a pattern scaling approach is proposed in which the local multidecadal mean atmospheric response is assumed to be separately proportional to the total sea-ice loss and to the total low latitude ocean surface warming. The proposed approach estimates the response to Arctic sea-ice loss with low latitude ocean temperatures fixed and vice versa. The sea-ice response includes a high northern latitude easterly zonal wind response, an equatorward shift of the eddy driven jet, a weakening of the stratospheric polar vortex, an anticyclonic sea level pressure anomaly over coastal Eurasia, a cyclonic sea level pressure anomaly over the North Pacific, and increased wintertime precipitation over the west coast of North America. Many of these responses are opposed by the response to low-latitude surface warming with sea ice fixed. However, both sea-ice loss and low latitude surface warming act in concert to reduce storm track strength throughout the mid and high latitudes. The responses are similar in two related versions of the National Center for Atmospheric Research earth system models, apart from the stratospheric polar vortex response. Evidence is presented that internal variability can easily contaminate the estimates if not enough independent climate states are used to construct them. References: Blackport, R. and P. Kushner, 2017: Isolating the atmospheric circulation response to Arctic sea-ice loss in the coupled climate system. J. Climate, in press. Blackport, R. and P. Kushner, 2016: The Transient and Equilibrium Climate Response to Rapid Summertime Sea Ice Loss in CCSM4. J. Climate, 29, 401-417, doi: 10.1175/JCLI-D-15-0284.1.

  20. Quantifying the importance of model-to-model variability in integrated assessments of 21st century climate

    NASA Astrophysics Data System (ADS)

    Bond-Lamberty, B. P.; Jones, A. D.; Shi, X.; Calvin, K. V.

    2016-12-01

    The C4MIP and CMIP5 model intercomparison projects (MIPs) highlighted uncertainties in climate projections, driven to a large extent by interactions between the terrestrial carbon cycle and climate feedbacks. In addition, the importance of feedbacks between human (energy and economic) systems and natural (carbon and climate) systems is poorly understood, and not considered in the previous MIP protocols. The experiments conducted under the previous Integrated Earth System Model (iESM) project, which coupled a earth system model with an integrated assessment model (GCAM), found that the inclusion of climate feedbacks on the terrestrial system in an RCP4.5 scenario increased ecosystem productivity, resulting in declines in cropland extent and increases in bioenergy production and forest cover. As a follow-up to these studies and to further understand climate-carbon cycle interactions and feedbacks, we examined the robustness of these results by running a suite of GCAM-only experiments using changes in ecosystem productivity derived from both the CMIP5 archive and the Agricultural Model Intercomparison Project. In our results, the effects of climate on yield in an RCP8.5 scenario tended to be more positive than those of AgMIP, but more negative than those of the other CMIP models. We discuss these results and the implications of model-to-model variability for integrated coupling studies of the future earth system.

  1. Multi-millennia simulation of Greenland deglaciation from the Max-Plank-Institute Model (MPI-ISM) 2xCO2 simulation

    NASA Astrophysics Data System (ADS)

    Cabot, Vincent; Vizcaino, Miren; Mikolajewicz, Uwe

    2016-04-01

    Long-term ice sheet and climate coupled simulations are of great interest since they assess how the Greenland Ice Sheet (GrIS) will respond to global warming and how GrIS changes will impact on the climate system. We have run the Max-Plank-Institute Earth System Model coupled with an Ice Sheet Model (SICOPOLIS) over a time period of 10500 years under two times CO2 forcing. This is a coupled atmosphere (ECHAM5T31), ocean (MPI-OM), dynamic vegetation (LPJ), and ice sheet (SICOPOLIS, 10 km horizontal resolution) model. Given the multi-millennia simulation, the horizontal spatial resolution of the atmospheric component is relatively coarse (3.75°). A time-saving technique (asynchronous coupling) is used once the global climate reaches quasi-equilibrium. In our doubling-CO2 simulation, the GrIS is expected to break up into two pieces (one ice cap in the far north on one ice sheet in the south and east) after 3000 years. During the first 500 simulation years, the GrIS climate and surface mass balance (SMB) are mainly affected by the greenhouse effect-forced climate change. After the simulated year 500, the global climate reaches quasi-equilibrium. Henceforth Greenland climate change is mainly due to ice sheet decay. GrIS albedo reduction enhances melt and acts as a powerful feedback for deglaciation. Due to increased cloudiness in the Arctic region as a result of global climate change, summer incoming shortwave radiation is substantially reduced over Greenland, reducing deglaciation rates. At the end of the simulation, Greenland becomes green with forest growing over the newly deglaciated regions. References: Helsen, M. M., van de Berg, W. J., van de Wal, R. S. W., van den Broeke, M. R., and Oerlemans, J. (2013), Coupled regional climate-ice-sheet simulation shows limited Greenland ice loss during the Eemian, Climate of the Past, 9, 1773-1788, doi: 10.5194/cp-9-1773-2013 Helsen, M. M., van de Wal, R. S. W., van den Broeke, M. R., van de Berg, W. J., and Oerlemans, J. (2015), Coupling of climate models and ice sheet models by the surface mass balance gradients: application to the Greenland Ice Sheet, The Cryosphere, 6, 255-272, doi: 10.5194/tc-6-255-2012 Robinson, A., Calov, R., and Ganopolski, A. (2011), Greenland ice sheet model parameters constrained using simulations of the Eemian Interglacial, Climate of the Past, 7, 381-396, doi: 10.5194/cp-7-381-2011 Vizcaino, M., Mikolajewicz, U., Ziemen, F., Rodehacke, C. B., Greve, R., and van den Broeke, M. R. (2015), Coupled simulations of Greenland Ice Sheet and climate change up to A.D. 2300, Geophysical Research Letters, 42, doi: 10.1002/2014GL061142

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, William D.; Craig, Anthony P.; Truesdale, John E.

    The integrated Earth System Model (iESM) has been developed as a new tool for pro- jecting the joint human/climate system. The iESM is based upon coupling an Integrated Assessment Model (IAM) and an Earth System Model (ESM) into a common modeling in- frastructure. IAMs are the primary tool for describing the human–Earth system, including the sources of global greenhouse gases (GHGs) and short-lived species, land use and land cover change, and other resource-related drivers of anthropogenic climate change. ESMs are the primary scientific tools for examining the physical, chemical, and biogeochemical impacts of human-induced changes to the climate system. Themore » iESM project integrates the economic and human dimension modeling of an IAM and a fully coupled ESM within a sin- gle simulation system while maintaining the separability of each model if needed. Both IAM and ESM codes are developed and used by large communities and have been extensively applied in recent national and international climate assessments. By introducing heretofore- omitted feedbacks between natural and societal drivers, we can improve scientific under- standing of the human–Earth system dynamics. Potential applications include studies of the interactions and feedbacks leading to the timing, scale, and geographic distribution of emissions trajectories and other human influences, corresponding climate effects, and the subsequent impacts of a changing climate on human and natural systems. This paper de- scribes the formulation, requirements, implementation, testing, and resulting functionality of the first version of the iESM released to the global climate community.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, W. D.; Craig, A. P.; Truesdale, J. E.

    The integrated Earth system model (iESM) has been developed as a new tool for projecting the joint human/climate system. The iESM is based upon coupling an integrated assessment model (IAM) and an Earth system model (ESM) into a common modeling infrastructure. IAMs are the primary tool for describing the human–Earth system, including the sources of global greenhouse gases (GHGs) and short-lived species (SLS), land use and land cover change (LULCC), and other resource-related drivers of anthropogenic climate change. ESMs are the primary scientific tools for examining the physical, chemical, and biogeochemical impacts of human-induced changes to the climate system. Themore » iESM project integrates the economic and human-dimension modeling of an IAM and a fully coupled ESM within a single simulation system while maintaining the separability of each model if needed. Both IAM and ESM codes are developed and used by large communities and have been extensively applied in recent national and international climate assessments. By introducing heretofore-omitted feedbacks between natural and societal drivers, we can improve scientific understanding of the human–Earth system dynamics. Potential applications include studies of the interactions and feedbacks leading to the timing, scale, and geographic distribution of emissions trajectories and other human influences, corresponding climate effects, and the subsequent impacts of a changing climate on human and natural systems. This paper describes the formulation, requirements, implementation, testing, and resulting functionality of the first version of the iESM released to the global climate community.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nitschke, Kim

    The ARM Climate Research Facility, a DOE scientific user facility, provides the climate research community with strategically located in situ and remote sensing observatories designed to improve the understanding and representation, in climate and earth system models, of clouds and aerosols as well as their interactions and coupling with the Earth’s surface.

  5. Climate and CO2 coupling in the early Cenozoic Greenhouse

    NASA Astrophysics Data System (ADS)

    Rae, J. W. B.; Greenop, R.; Kaminski, M.; Sexton, P. F.; Foster, G. L.; Greene, S. E.; Littley, E.; Kirtland Turner, S.; Ridgwell, A.

    2017-12-01

    The early Cenozoic is a time of climatic extremes: hyperthermals pepper the transition from extreme global warmth to the start of Cenozoic cooling, with these evolving climate regimes accompanied by major changes in ocean chemistry and biota. The exogenic carbon cycle, and ocean-atmospheric CO2 in particular, is thought to have played a key role in these climatic changes, but the carbon chemistry of the early Cenozoic ocean remains poorly constrained. Here we present new boron isotope data from benthic foraminifera, which can be used to constrain relative changes in ocean pH. These are coupled with modelling experiments performed with the cGenie Earth system model to provide new constraints on the carbon cycle and carbonate system of the early Cenozoic. While our benthic boron isotope data do not readily provide a record of surface ocean CO2 , they do place constraints on the whole ocean-atmosphere carbonate system, alongside changes in ocean circulation and biogeochemistry, and also have relatively robust calcite tests and small `vital effects'. During the late Paleocene ascent to peak greenhouse conditions and the middle Eocene descent towards the icehouse, our boron isotope data show close coupling with benthic δ18O, demonstrating a clear link between CO2 and climate. However within the early Eocene our boron isotope data reveal more dynamic changes in deep ocean pH, which may be linked to changes in ocean circulation. Overall, our data demonstrate the ability of CO2 to regulate the climate system across varying boundary conditions, and the influence of both the long-term carbon cycle and shorter-term ocean biogeochemical cycling on Earth's climate.

  6. Ocean-Atmosphere Coupled Model Simulations of Precipitation in the Central Andes

    NASA Technical Reports Server (NTRS)

    Nicholls, Stephen D.; Mohr, Karen I.

    2015-01-01

    The meridional extent and complex orography of the South American continent contributes to a wide diversity of climate regimes ranging from hyper-arid deserts to tropical rainforests to sub-polar highland regions. In addition, South American meteorology and climate are also made further complicated by ENSO, a powerful coupled ocean-atmosphere phenomenon. Modelling studies in this region have typically resorted to either atmospheric mesoscale or atmosphere-ocean coupled global climate models. The latter offers full physics and high spatial resolution, but it is computationally inefficient typically lack an interactive ocean, whereas the former offers high computational efficiency and ocean-atmosphere coupling, but it lacks adequate spatial and temporal resolution to adequate resolve the complex orography and explicitly simulate precipitation. Explicit simulation of precipitation is vital in the Central Andes where rainfall rates are light (0.5-5 mm hr-1), there is strong seasonality, and most precipitation is associated with weak mesoscale-organized convection. Recent increases in both computational power and model development have led to the advent of coupled ocean-atmosphere mesoscale models for both weather and climate study applications. These modelling systems, while computationally expensive, include two-way ocean-atmosphere coupling, high resolution, and explicit simulation of precipitation. In this study, we use the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST), a fully-coupled mesoscale atmosphere-ocean modeling system. Previous work has shown COAWST to reasonably simulate the entire 2003-2004 wet season (Dec-Feb) as validated against both satellite and model analysis data when ECMWF interim analysis data were used for boundary conditions on a 27-9-km grid configuration (Outer grid extent: 60.4S to 17.7N and 118.6W to 17.4W).

  7. The Swedish Regional Climate Modelling Programme, SWECLIM: a review.

    PubMed

    Rummukainen, Markku; Bergström, Sten; Persson, Gunn; Rodhe, Johan; Tjernström, Michael

    2004-06-01

    The Swedish Regional Climate Modelling Programme, SWECLIM, was a 6.5-year national research network for regional climate modeling, regional climate change projections and hydrological impact assessment and information to a wide range of stakeholders. Most of the program activities focussed on the regional climate system of Northern Europe. This led to the establishment of an advanced, coupled atmosphere-ocean-hydrology regional climate model system, a suite of regional climate change projections and progress on relevant data and process studies. These were, in turn, used for information and educational purposes, as a starting point for impact analyses on different societal sectors and provided contributions also to international climate research.

  8. Greenland ice sheet beyond 2100: Simulating its evolution and influence using the coupled climate-ice sheet model EC-Earth - PISM

    NASA Astrophysics Data System (ADS)

    Yang, S.; Christensen, J. H.; Madsen, M. S.; Ringgaard, I. M.; Petersen, R. A.; Langen, P. P.

    2017-12-01

    Greenland ice sheet (GrIS) is observed undergoing a rapid change in the recent decades, with an increasing area of surface melting and ablation and a speeding mass loss. Predicting the GrIS changes and their climate consequences relies on the understanding of the interaction of the GrIS with the climate system on both global and local scales, and requires climate model systems incorporating with an explicit and physically consistent ice sheet module. In this work we study the GrIS evolution and its interaction with the climate system using a fully coupled global climate model with a dynamical ice sheet model for the GrIS. The coupled model system, EC-EARTH - PISM, consisting of the atmosphere-ocean-sea ice model system EC-EARTH, and the Parallel Ice Sheet Model (PISM), has been employed for a 1400-year simulation forced by CMIP5 historical forcing from 1850 to 2005 and continued along an extended RCP8.5 scenario with the forcing peaking at 2200 and stabilized hereafter. The simulation reveals that, following the anthropogenic forcing increase, the global mean surface temperature rapidly rises about 10 °C in the 21st and 22nd century. After the forcing stops increasing after 2200, the temperature change slows down and eventually stabilizes at about 12.5 °C above the preindustrial level. In response to the climate warming, the GrIS starts losing mass slowly in the 21st century, but the ice retreat accelerates substantially after 2100 and ice mass loss continues hereafter at a constant rate of approximately 0.5 m sea level rise equivalence per 100 years, even as the warming rate gradually levels off. Ultimately the volume and extent of GrIS reduce to less than half of its preindustrial value. To understand the interaction of GrIS with the climate system, the characteristics of atmospheric and oceanic circulation in the warm climate are analyzed. The circulation patterns associated with the negative surface mass balance that leads to GrIS retreat are investigated. The impact of the simulated surface warming on the ice flow and ice dynamics is explored.

  9. Elevated atmospheric CO2 negatively impacts photosynthesis through radiative forcing and physiology-mediated climate feedback

    NASA Astrophysics Data System (ADS)

    Zhu, Peng; Zhuang, Qianlai; Ciais, Philippe; Welp, Lisa; Li, Wenyu; Xin, Qinchuan

    2017-02-01

    Increasing atmospheric CO2 affects photosynthesis involving directly increasing leaf carboxylation rates, stomatal closure, and climatic effects. The direct effects are generally thought to be positive leading to increased photosynthesis, while its climatic effects can be regionally positive or negative. These effects are usually considered to be independent from each other, but they are in fact coupled through interactions between land surface exchanges of gases and heat and the physical climate system. In particular, stomatal closure reduces evapotranspiration and increases sensible heat emissions from ecosystems, leading to decreased atmospheric moisture and precipitation and local warming. We use a coupled earth system model to attribute the influence of the increase in CO2 on gross primary productivity (GPP) during the period of 1930-2011. In our model, CO2 radiative effects cause climate change that has only a negligible effect on global GPP (a reduction of 0.9 ± 2% during the last 80 years) because of opposite responses between tropical and northern biomes. On the other hand, CO2 physiological effects on GPP are both positive, by increased carboxylation rates and water use efficiency (7.1 ± 0.48% increase), and negative, by vegetation-climate feedback reducing precipitation, as a consequence of decreased transpiration and increased sensible heat in areas without water limitation (2.7 ± 1.76% reduction).When considering the coupled atmosphere-vegetation system, negative climate feedback on photosynthesis and plant growth due to the current level of CO2 opposes 29-38% of the gains from direct fertilization effects.

  10. Development of a system emulating the global carbon cycle in Earth system models

    NASA Astrophysics Data System (ADS)

    Tachiiri, K.; Hargreaves, J. C.; Annan, J. D.; Oka, A.; Abe-Ouchi, A.; Kawamiya, M.

    2010-08-01

    Recent studies have indicated that the uncertainty in the global carbon cycle may have a significant impact on the climate. Since state of the art models are too computationally expensive for it to be possible to explore their parametric uncertainty in anything approaching a comprehensive fashion, we have developed a simplified system for investigating this problem. By combining the strong points of general circulation models (GCMs), which contain detailed and complex processes, and Earth system models of intermediate complexity (EMICs), which are quick and capable of large ensembles, we have developed a loosely coupled model (LCM) which can represent the outputs of a GCM-based Earth system model, using much smaller computational resources. We address the problem of relatively poor representation of precipitation within our EMIC, which prevents us from directly coupling it to a vegetation model, by coupling it to a precomputed transient simulation using a full GCM. The LCM consists of three components: an EMIC (MIROC-lite) which consists of a 2-D energy balance atmosphere coupled to a low resolution 3-D GCM ocean (COCO) including an ocean carbon cycle (an NPZD-type marine ecosystem model); a state of the art vegetation model (Sim-CYCLE); and a database of daily temperature, precipitation, and other necessary climatic fields to drive Sim-CYCLE from a precomputed transient simulation from a state of the art AOGCM. The transient warming of the climate system is calculated from MIROC-lite, with the global temperature anomaly used to select the most appropriate annual climatic field from the pre-computed AOGCM simulation which, in this case, is a 1% pa increasing CO2 concentration scenario. By adjusting the effective climate sensitivity (equivalent to the equilibrium climate sensitivity for an energy balance model) of MIROC-lite, the transient warming of the LCM could be adjusted to closely follow the low sensitivity (with an equilibrium climate sensitivity of 4.0 K) version of MIROC3.2. By tuning of the physical and biogeochemical parameters it was possible to reasonably reproduce the bulk physical and biogeochemical properties of previously published CO2 stabilisation scenarios for that model. As an example of an application of the LCM, the behavior of the high sensitivity version of MIROC3.2 (with a 6.3 K equilibrium climate sensitivity) is also demonstrated. Given the highly adjustable nature of the model, we believe that the LCM should be a very useful tool for studying uncertainty in global climate change, and we have named the model, JUMP-LCM, after the name of our research group (Japan Uncertainty Modelling Project).

  11. Towards a Fine-Resolution Global Coupled Climate System for Prediction on Decadal/Centennial Scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McClean, Julie L.

    The over-arching goal of this project was to contribute to the realization of a fully coupled fine resolution Earth System Model simulation in which a weather-scale atmosphere is coupled to an ocean in which mesoscale eddies are largely resolved. Both a prototype fine-resolution fully coupled ESM simulation and a first-ever multi-decadal forced fine-resolution global coupled ocean/ice simulation were configured, tested, run, and analyzed as part of this grant. Science questions focused on the gains from the use of high horizontal resolution, particularly in the ocean and sea-ice, with respect to climatically important processes. Both these fine resolution coupled ocean/sea icemore » and fully-coupled simulations and precedent stand-alone eddy-resolving ocean and eddy-permitting coupled ocean/ice simulations were used to explore the high resolution regime. Overall, these studies showed that the presence of mesoscale eddies significantly impacted mixing processes and the global meridional overturning circulation in the ocean simulations. Fourteen refereed publications and a Ph.D. dissertation resulted from this grant.« less

  12. The integrated Earth system model version 1: formulation and functionality

    DOE PAGES

    Collins, W. D.; Craig, A. P.; Truesdale, J. E.; ...

    2015-07-23

    The integrated Earth system model (iESM) has been developed as a new tool for projecting the joint human/climate system. The iESM is based upon coupling an integrated assessment model (IAM) and an Earth system model (ESM) into a common modeling infrastructure. IAMs are the primary tool for describing the human–Earth system, including the sources of global greenhouse gases (GHGs) and short-lived species (SLS), land use and land cover change (LULCC), and other resource-related drivers of anthropogenic climate change. ESMs are the primary scientific tools for examining the physical, chemical, and biogeochemical impacts of human-induced changes to the climate system. Themore » iESM project integrates the economic and human-dimension modeling of an IAM and a fully coupled ESM within a single simulation system while maintaining the separability of each model if needed. Both IAM and ESM codes are developed and used by large communities and have been extensively applied in recent national and international climate assessments. By introducing heretofore-omitted feedbacks between natural and societal drivers, we can improve scientific understanding of the human–Earth system dynamics. Potential applications include studies of the interactions and feedbacks leading to the timing, scale, and geographic distribution of emissions trajectories and other human influences, corresponding climate effects, and the subsequent impacts of a changing climate on human and natural systems. This paper describes the formulation, requirements, implementation, testing, and resulting functionality of the first version of the iESM released to the global climate community.« less

  13. The COSMO-CLM 4.8 regional climate model coupled to regional ocean, land surface and global earth system models using OASIS3-MCT: description and performance

    NASA Astrophysics Data System (ADS)

    Will, Andreas; Akhtar, Naveed; Brauch, Jennifer; Breil, Marcus; Davin, Edouard; Ho-Hagemann, Ha T. M.; Maisonnave, Eric; Thürkow, Markus; Weiher, Stefan

    2017-04-01

    We developed a coupled regional climate system model based on the CCLM regional climate model. Within this model system, using OASIS3-MCT as a coupler, CCLM can be coupled to two land surface models (the Community Land Model (CLM) and VEG3D), the NEMO-MED12 regional ocean model for the Mediterranean Sea, two ocean models for the North and Baltic seas (NEMO-NORDIC and TRIMNP+CICE) and the MPI-ESM Earth system model.We first present the different model components and the unified OASIS3-MCT interface which handles all couplings in a consistent way, minimising the model source code modifications and defining the physical and numerical aspects of the couplings. We also address specific coupling issues like the handling of different domains, multiple usage of the MCT library and exchange of 3-D fields.We analyse and compare the computational performance of the different couplings based on real-case simulations over Europe. The usage of the LUCIA tool implemented in OASIS3-MCT enables the quantification of the contributions of the coupled components to the overall coupling cost. These individual contributions are (1) cost of the model(s) coupled, (2) direct cost of coupling including horizontal interpolation and communication between the components, (3) load imbalance, (4) cost of different usage of processors by CCLM in coupled and stand-alone mode and (5) residual cost including i.a. CCLM additional computations.Finally a procedure for finding an optimum processor configuration for each of the couplings was developed considering the time to solution, computing cost and parallel efficiency of the simulation. The optimum configurations are presented for sequential, concurrent and mixed (sequential+concurrent) coupling layouts. The procedure applied can be regarded as independent of the specific coupling layout and coupling details.We found that the direct cost of coupling, i.e. communications and horizontal interpolation, in OASIS3-MCT remains below 7 % of the CCLM stand-alone cost for all couplings investigated. This is in particular true for the exchange of 450 2-D fields between CCLM and MPI-ESM. We identified remaining limitations in the coupling strategies and discuss possible future improvements of the computational efficiency.

  14. Climate simulation of the twenty-first century with interactive land-use changes

    NASA Astrophysics Data System (ADS)

    Voldoire, Aurore; Eickhout, Bas; Schaeffer, Michiel; Royer, Jean-François; Chauvin, Fabrice

    2007-08-01

    To include land-use dynamics in a general circulation model (GCM), the physical system has to be linked to a system that represents socio-economy. This issue is addressed by coupling an integrated assessment model, IMAGE2.2, to an ocean atmosphere GCM, CNRM-CM3. In the new system, IMAGE2.2 provides CNRM-CM3 with all the external forcings that are scenario dependent: greenhouse gas (GHGs) concentrations, sulfate aerosols charge and land cover. Conversely, the GCM gives IMAGE changes in mean temperature and precipitation. With this new system, we have run an adapted scenario of the IPCC SRES scenario family. We have chosen a single scenario with maximum land-use changes (SRES A2), to illustrate some important feedback issues. Even in this two-way coupled model set-up, land use in this scenario is mainly driven by demographic and agricultural practices, which overpowers a potential influence of climate feedbacks on land-use patterns. This suggests that for scenarios in which socio-economically driven land-use change is very large, land-use changes can be incorporated in GCM simulations as a one-way driving force, without taking into account climate feedbacks. The dynamics of natural vegetation is more closely linked to climate but the time-scale of changes is of the order of a century. Thus, the coupling between natural vegetation and climate could generate important feedbacks but these effects are relevant mainly for multi-centennial simulations.

  15. Status and Plans for Reanalysis at NASA/GMAO

    NASA Technical Reports Server (NTRS)

    Gelaro, Ron

    2017-01-01

    Reanalysis plays a critical role in GMAOs goal to enhance NASA's program of Earth observations, providing vital data sets for climate research and the development of future missions. As the breadth of NASAs observations expands to include multiple components of the Earth system, so does the need to assimilate observations from currently uncoupled components of the system in a more physically consistent manner. GMAOs most recent reanalysis of the satellite era, MERRA-2, has completed the period 1980-present, and is now running as a continuing global climate analysis with two- to three-week latency. MERRA-2 assimilates meteorological and aerosol observations as a weakly coupled assimilation system as a first step toward GMAOs longer term goal of developing an integrated Earth system analysis (IESA) capability that will couple assimilation systems for the atmosphere, ocean, land and chemistry. The GMAO strategy is to progress incrementally toward an IESA through an evolving combination of coupled systems and offline component reanalyses driven by, for example, MERRA-2 atmospheric forcing. Most recently, the GMAO has implemented a weakly coupled assimilation scheme for analyzing ocean skin temperature within the existing atmospheric analysis. The scheme uses background fields from a near-surface ocean diurnal layer model to assimilate surface-sensitive radiances plus in-situ observations along with all other observations in the atmospheric assimilation system. In addition, MERRA-2-driven simulations of the ocean (plus sea ice) and atmospheric chemistry (for the EOS period) are currently underway, as is the development of a coupled atmosphere-ocean assimilation system. This talk will describe the status of these ongoing efforts and the planned steps toward an IESA capability for climate research.

  16. Flood Protection Decision Making Within a Coupled Human and Natural System

    NASA Astrophysics Data System (ADS)

    O'Donnell, Greg; O'Connell, Enda

    2013-04-01

    Due to the perceived threat from climate change, prediction under changing climatic and hydrological conditions has become a dominant theme of hydrological research. Much of this research has been climate model-centric, in which GCM/RCM climate projections have been used to drive hydrological system models to explore potential impacts that should inform adaptation decision-making. However, adaptation fundamentally involves how humans may respond to increasing flood and drought hazards by changing their strategies, activities and behaviours which are coupled in complex ways to the natural systems within which they live and work. Humans are major agents of change in hydrological systems, and representing human activities and behaviours in coupled human and natural hydrological system models is needed to gain insight into the complex interactions that take place, and to inform adaptation decision-making. Governments and their agencies are under pressure to make proactive investments to protect people living in floodplains from the perceived increasing flood hazard. However, adopting this as a universal strategy everywhere is not affordable, particularly in times of economic stringency and given uncertainty about future climatic conditions. It has been suggested that the assumption of stationarity, which has traditionally been invoked in making hydrological risk assessments, is no longer tenable. However, before the assumption of hydrologic nonstationarity is accepted, the ability to cope with the uncertain impacts of global warming on water management via the operational assumption of hydrologic stationarity should be carefully examined. Much can be learned by focussing on natural climate variability and its inherent changes in assessing alternative adaptation strategies. A stationary stochastic multisite flood hazard model has been developed that can exhibit increasing variability/persistence in annual maximum floods, starting with the traditional assumption of independence. This has been coupled to an agent based model of how various stakeholders interact in determining where and when flood protection investments are made in a hypothetical region with multiple sites at risk from flood hazard. Monte Carlo simulation is used to explore how government agencies with finite resources might best invest in flood protection infrastructure in a highly variable climate with a high degree of future uncertainty. Insight is provided into whether proactive or reactive strategies are to be preferred in an increasingly variable climate.

  17. P2S--Coupled simulation with the Precipitation-Runoff Modeling System (PRMS) and the Stream Temperature Network (SNTemp) Models

    USGS Publications Warehouse

    Markstrom, Steven L.

    2012-01-01

    A software program, called P2S, has been developed which couples the daily stream temperature simulation capabilities of the U.S. Geological Survey Stream Network Temperature model with the watershed hydrology simulation capabilities of the U.S. Geological Survey Precipitation-Runoff Modeling System. The Precipitation-Runoff Modeling System is a modular, deterministic, distributed-parameter, physical-process watershed model that simulates hydrologic response to various combinations of climate and land use. Stream Network Temperature was developed to help aquatic biologists and engineers predict the effects of changes that hydrology and energy have on water temperatures. P2S will allow scientists and watershed managers to evaluate the effects of historical climate and projected climate change, landscape evolution, and resource management scenarios on watershed hydrology and in-stream water temperature.

  18. Socio-hydrologic modeling to understand and mediate the competition for water between agriculture development and environmental health: Murrumbidgee River Basin, Australia

    NASA Astrophysics Data System (ADS)

    van Emmerik, T. H. M.; Li, Z.; Sivapalan, M.; Pande, S.; Kandasamy, J.; Savenije, H. H. G.; Chanan, A.; Vigneswaran, S.

    2014-03-01

    Competition for water between humans and ecosystems is set to become a flash point in the coming decades in many parts of the world. An entirely new and comprehensive quantitative framework is needed to establish a holistic understanding of that competition, thereby enabling the development of effective mediation strategies. This paper presents a modeling study centered on the Murrumbidgee River Basin (MRB). The MRB has witnessed a unique system dynamics over the last 100 years as a result of interactions between patterns of water management and climate driven hydrological variability. Data analysis has revealed a pendulum swing between agricultural development and restoration of environmental health and ecosystem services over different stages of basin scale water resource development. A parsimonious, stylized, quasi-distributed coupled socio-hydrologic system model that simulates the two-way coupling between human and hydrological systems of the MRB is used to mimic dominant features of the pendulum swing. The model consists of coupled nonlinear ordinary differential equations that describe the interaction between five state variables that govern the co-evolution: reservoir storage, irrigated area, human population, ecosystem health, and a measure of environmental awareness. The model simulations track the propagation of the external climatic and socio-economic drivers through this coupled, complex system to the emergence of the pendulum swing. The model results point to a competition between human "productive" and environmental "restorative" forces that underpin the pendulum swing. Both the forces are endogenous, i.e., generated by the system dynamics in response to external drivers and mediated by humans through technology change and environmental awareness, respectively. We propose this as a generalizable modeling framework for coupled human hydrological systems that is potentially transferable to systems in different climatic and socio-economic settings.

  19. The prediction of surface temperature in the new seasonal prediction system based on the MPI-ESM coupled climate model

    NASA Astrophysics Data System (ADS)

    Baehr, J.; Fröhlich, K.; Botzet, M.; Domeisen, D. I. V.; Kornblueh, L.; Notz, D.; Piontek, R.; Pohlmann, H.; Tietsche, S.; Müller, W. A.

    2015-05-01

    A seasonal forecast system is presented, based on the global coupled climate model MPI-ESM as used for CMIP5 simulations. We describe the initialisation of the system and analyse its predictive skill for surface temperature. The presented system is initialised in the atmospheric, oceanic, and sea ice component of the model from reanalysis/observations with full field nudging in all three components. For the initialisation of the ensemble, bred vectors with a vertically varying norm are implemented in the ocean component to generate initial perturbations. In a set of ensemble hindcast simulations, starting each May and November between 1982 and 2010, we analyse the predictive skill. Bias-corrected ensemble forecasts for each start date reproduce the observed surface temperature anomalies at 2-4 months lead time, particularly in the tropics. Niño3.4 sea surface temperature anomalies show a small root-mean-square error and predictive skill up to 6 months. Away from the tropics, predictive skill is mostly limited to the ocean, and to regions which are strongly influenced by ENSO teleconnections. In summary, the presented seasonal prediction system based on a coupled climate model shows predictive skill for surface temperature at seasonal time scales comparable to other seasonal prediction systems using different underlying models and initialisation strategies. As the same model underlying our seasonal prediction system—with a different initialisation—is presently also used for decadal predictions, this is an important step towards seamless seasonal-to-decadal climate predictions.

  20. Benthic-Pelagic Coupling in Biogeochemical and Climate Models: Existing Approaches, Recent developments and Roadblocks

    NASA Astrophysics Data System (ADS)

    Arndt, Sandra

    2016-04-01

    Marine sediments are key components in the Earth System. They host the largest carbon reservoir on Earth, provide the only long term sink for atmospheric CO2, recycle nutrients and represent the most important climate archive. Biogeochemical processes in marine sediments are thus essential for our understanding of the global biogeochemical cycles and climate. They are first and foremost, donor controlled and, thus, driven by the rain of particulate material from the euphotic zone and influenced by the overlying bottom water. Geochemical species may undergo several recycling loops (e.g. authigenic mineral precipitation/dissolution) before they are either buried or diffuse back to the water column. The tightly coupled and complex pelagic and benthic process interplay thus delays recycling flux, significantly modifies the depositional signal and controls the long-term removal of carbon from the ocean-atmosphere system. Despite the importance of this mutual interaction, coupled regional/global biogeochemical models and (paleo)climate models, which are designed to assess and quantify the transformations and fluxes of carbon and nutrients and evaluate their response to past and future perturbations of the climate system either completely neglect marine sediments or incorporate a highly simplified representation of benthic processes. On the other end of the spectrum, coupled, multi-component state-of-the-art early diagenetic models have been successfully developed and applied over the past decades to reproduce observations and quantify sediment-water exchange fluxes, but cannot easily be coupled to pelagic models. The primary constraint here is the high computation cost of simulating all of the essential redox and equilibrium reactions within marine sediments that control carbon burial and benthic recycling fluxes: a barrier that is easily exacerbated if a variety of benthic environments are to be spatially resolved. This presentation provides an integrative overview of the benthic-pelagic coupling that accounts for the complex process interplay from the euphotic ocean to the deep sediment. It explores the intensity of the benthic-pelagic coupling across different environments and from the seasonal to the geological timescale. Different modelling approaches of coupling sediment and water column dynamics in regional/global biogeochemical models and (paleo)climate models are critically evaluated and their most important limitations, as well as the implications for our ability to predict the response of the global carbon cycle to past or future perturbations is discussed. Finally, the presentation identifies major roadblocks to the development of new model approaches and highlights how new techniques, new observational and laboratory data, as well as a close interdisciplinary collaboration can overcome these roadblocks.

  1. The Effects of Climate Model Similarity on Local, Risk-Based Adaptation Planning

    NASA Astrophysics Data System (ADS)

    Steinschneider, S.; Brown, C. M.

    2014-12-01

    The climate science community has recently proposed techniques to develop probabilistic projections of climate change from ensemble climate model output. These methods provide a means to incorporate the formal concept of risk, i.e., the product of impact and probability, into long-term planning assessments for local systems under climate change. However, approaches for pdf development often assume that different climate models provide independent information for the estimation of probabilities, despite model similarities that stem from a common genealogy. Here we utilize an ensemble of projections from the Coupled Model Intercomparison Project Phase 5 (CMIP5) to develop probabilistic climate information, with and without an accounting of inter-model correlations, and use it to estimate climate-related risks to a local water utility in Colorado, U.S. We show that the tail risk of extreme climate changes in both mean precipitation and temperature is underestimated if model correlations are ignored. When coupled with impact models of the hydrology and infrastructure of the water utility, the underestimation of extreme climate changes substantially alters the quantification of risk for water supply shortages by mid-century. We argue that progress in climate change adaptation for local systems requires the recognition that there is less information in multi-model climate ensembles than previously thought. Importantly, adaptation decisions cannot be limited to the spread in one generation of climate models.

  2. Coupling integrated assessment and earth system models: concepts and an application to land use change

    NASA Astrophysics Data System (ADS)

    O'Neill, B. C.; Lawrence, P.; Ren, X.

    2016-12-01

    Collaboration between the integrated assessment modeling (IAM) and earth system modeling (ESM) communities is increasing, driven by a growing interest in research questions that require analysis integrating both social and natural science components. This collaboration often takes the form of integrating their respective models. There are a number of approaches available to implement this integration, ranging from one-way linkages to full two-way coupling, as well as approaches that retain a single modeling framework but improve the representation of processes from the other framework. We discuss the pros and cons of these different approaches and the conditions under which a two-way coupling of IAMs and ESMs would be favored over a one-way linkage. We propose a criterion that is necessary and sufficient to motivate two-way coupling: A human process must have an effect on an earth system process that is large enough to cause a change in the original human process that is substantial compared to other uncertainties in the problem being investigated. We then illustrate a test of this criterion for land use-climate interactions based on work using the Community Earth System Model (CESM) and land use scenarios from the Representative Concentration Pathways (RCPs), in which we find that the land use effect on regional climate is unlikely to meet the criterion. We then show an example of implementing a one-way linkage of land use and agriculture between an IAM, the integrated Population-Economy-Technology-Science (iPETS) model, and CESM that produces fully consistent outcomes between iPETS and the CESM land surface model. We use the linked system to model the influence of climate change on crop yields, agricultural land use, crop prices and food consumption under two alternative future climate scenarios. This application demonstrates the ability to link an IAM to a global land surface and climate model in a computationally efficient manner.

  3. An effective drift correction for dynamical downscaling of decadal global climate predictions

    NASA Astrophysics Data System (ADS)

    Paeth, Heiko; Li, Jingmin; Pollinger, Felix; Müller, Wolfgang A.; Pohlmann, Holger; Feldmann, Hendrik; Panitz, Hans-Jürgen

    2018-04-01

    Initialized decadal climate predictions with coupled climate models are often marked by substantial climate drifts that emanate from a mismatch between the climatology of the coupled model system and the data set used for initialization. While such drifts may be easily removed from the prediction system when analyzing individual variables, a major problem prevails for multivariate issues and, especially, when the output of the global prediction system shall be used for dynamical downscaling. In this study, we present a statistical approach to remove climate drifts in a multivariate context and demonstrate the effect of this drift correction on regional climate model simulations over the Euro-Atlantic sector. The statistical approach is based on an empirical orthogonal function (EOF) analysis adapted to a very large data matrix. The climate drift emerges as a dramatic cooling trend in North Atlantic sea surface temperatures (SSTs) and is captured by the leading EOF of the multivariate output from the global prediction system, accounting for 7.7% of total variability. The SST cooling pattern also imposes drifts in various atmospheric variables and levels. The removal of the first EOF effectuates the drift correction while retaining other components of intra-annual, inter-annual and decadal variability. In the regional climate model, the multivariate drift correction of the input data removes the cooling trends in most western European land regions and systematically reduces the discrepancy between the output of the regional climate model and observational data. In contrast, removing the drift only in the SST field from the global model has hardly any positive effect on the regional climate model.

  4. Regional Effects of the Mount Pinatubo Eruption on the Middle East and the Red Sea

    NASA Astrophysics Data System (ADS)

    Osipov, Sergey; Stenchikov, Georgiy

    2017-11-01

    The 1991 eruption of Mount Pinatubo had dramatic effects on the regional climate in the Middle East. Though acknowledged, these effects have not been thoroughly studied. To fill this gap and to advance understanding of the mechanisms that control variability in the Middle East's regional climate, we simulated the impact of the 1991 Pinatubo eruption using a regional coupled ocean-atmosphere modeling system set for the Middle East and North Africa (MENA) domain. We used the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) framework, which couples the Weather Research and Forecasting Model (WRF) model with the Regional Oceanic Modeling System (ROMS). We modified the WRF model to account for the radiative effect of volcanic aerosols. Our coupled ocean-atmosphere simulations verified by available observations revealed strong perturbations in the energy balance of the Red Sea, which drove thermal and circulation responses. Our modeling approach allowed us to separate changes in the atmospheric circulation caused by the impact of the volcano from direct regional radiative cooling from volcanic aerosols. The atmospheric circulation effect was significantly stronger than the direct volcanic aerosols effect. We found that the Red Sea response to the Pinatubo eruption was stronger and qualitatively different from that of the global ocean system. Our results suggest that major volcanic eruptions significantly affect the climate in the Middle East and the Red Sea and should be carefully taken into account in assessments of long-term climate variability and warming trends in MENA and the Red Sea.

  5. Influence of orographic precipitation on the incision within a mountain-piedmont system

    NASA Astrophysics Data System (ADS)

    Zavala, Valeria; Carretier, Sébastien; Bonnet, Stephane

    2017-04-01

    The geomorphological evolution of a mountain-piedmont system depends both on tectonics and climate, as well as on couplings between the mountain and its piedmont. Although the interactions between climate and tectonics are a fundamental point for understanding the landscape evolution, the erosion of a mountain range and the sediment deposition at the mountain front, or piedmont, have been poorly studied as a coupled system. Here we focus on the conditions driving an incision within such a system. Classically, it is thought that incision results from a change in climate or uplift rates. However, it is not clear which are the specific conditions that favor the occurrence of river incision in the piedmont. In particular, studies have shown that the presence of a piedmont can modify the incision patterns, and even drive autogenic incision, without any change in external forcings. This is a crucial issue in order to interpret natural incisions in terms of uplift or climatic modifications. Such a problem is further complicated by the modification of local precipitations and temperatures during uplift, because the progressive effect of climate change may superimpose to uplift. In this work we explore the hypothesis that a mountain-piedmont coupled system may develop incision in its piedmont as a result of enhanced orographic precipitations during surface uplift. We use a landscape evolution model, Cidre, in order to explore the response of a mountain-piemont system in which the mountain is continuously uplifted but in which precipitation rates depend on elevations. Thus precipitation amounts change during the mountain uplift. We test different peaks and amplitudes of the orographic precipitation pattern, maintaining the other conditions constant. Preliminary results show that elevation-dependent precipitations drive temporary but pronounced incisions of the main rivers within the piedmont, contrary to experiments without orographic precipitations.

  6. Multi-year downscaling application of two-way coupled WRF v3.4 and CMAQ v5.0.2 over east Asia for regional climate and air quality modeling: model evaluation and aerosol direct effects

    NASA Astrophysics Data System (ADS)

    Hong, Chaopeng; Zhang, Qiang; Zhang, Yang; Tang, Youhua; Tong, Daniel; He, Kebin

    2017-06-01

    In this study, a regional coupled climate-chemistry modeling system using the dynamical downscaling technique was established by linking the global Community Earth System Model (CESM) and the regional two-way coupled Weather Research and Forecasting - Community Multi-scale Air Quality (WRF-CMAQ) model for the purpose of comprehensive assessments of regional climate change and air quality and their interactions within one modeling framework. The modeling system was applied over east Asia for a multi-year climatological application during 2006-2010, driven with CESM downscaling data under Representative Concentration Pathways 4.5 (RCP4.5), along with a short-term air quality application in representative months in 2013 that was driven with a reanalysis dataset. A comprehensive model evaluation was conducted against observations from surface networks and satellite observations to assess the model's performance. This study presents the first application and evaluation of the two-way coupled WRF-CMAQ model for climatological simulations using the dynamical downscaling technique. The model was able to satisfactorily predict major meteorological variables. The improved statistical performance for the 2 m temperature (T2) in this study (with a mean bias of -0.6 °C) compared with the Coupled Model Intercomparison Project Phase 5 (CMIP5) multi-models might be related to the use of the regional model WRF and the bias-correction technique applied for CESM downscaling. The model showed good ability to predict PM2. 5 in winter (with a normalized mean bias (NMB) of 6.4 % in 2013) and O3 in summer (with an NMB of 18.2 % in 2013) in terms of statistical performance and spatial distributions. Compared with global models that tend to underpredict PM2. 5 concentrations in China, WRF-CMAQ was able to capture the high PM2. 5 concentrations in urban areas. In general, the two-way coupled WRF-CMAQ model performed well for both climatological and air quality applications. The coupled modeling system with direct aerosol feedbacks predicted aerosol optical depth relatively well and significantly reduced the overprediction in downward shortwave radiation at the surface (SWDOWN) over polluted regions in China. The performance of cloud variables was not as good as other meteorological variables, and underpredictions of cloud fraction resulted in overpredictions of SWDOWN and underpredictions of shortwave and longwave cloud forcing. The importance of climate-chemistry interactions was demonstrated via the impacts of aerosol direct effects on climate and air quality. The aerosol effects on climate and air quality in east Asia (e.g., SWDOWN and T2 decreased by 21.8 W m-2 and 0.45 °C, respectively, and most pollutant concentrations increased by 4.8-9.5 % in January over China's major cities) were more significant than in other regions because of higher aerosol loadings that resulted from severe regional pollution, which indicates the need for applying online-coupled models over east Asia for regional climate and air quality modeling and to study the important climate-chemistry interactions. This work established a baseline for WRF-CMAQ simulations for a future period under the RCP4.5 climate scenario, which will be presented in a future paper.

  7. The Model Intercomparison Project on the Climatic Response to Volcanic Forcing (VolMIP): Experimental Design and Forcing Input Data for CMIP6

    NASA Technical Reports Server (NTRS)

    Zanchettin, Davide; Khodri, Myriam; Timmreck, Claudia; Toohey, Matthew; Schmidt, Anja; Gerber, Edwin P.; Hegerl, Gabriele; Robock, Alan; Pausata, Francesco; Ball, William T.; hide

    2016-01-01

    The enhancement of the stratospheric aerosol layer by volcanic eruptions induces a complex set of responses causing global and regional climate effects on a broad range of timescales. Uncertainties exist regarding the climatic response to strong volcanic forcing identified in coupled climate simulations that contributed to the fifth phase of the Coupled Model Intercomparison Project (CMIP5). In order to better understand the sources of these model diversities, the Model Intercomparison Project on the climatic response to Volcanic forcing (VolMIP) has defined a coordinated set of idealized volcanic perturbation experiments to be carried out in alignment with the CMIP6 protocol. VolMIP provides a common stratospheric aerosol data set for each experiment to minimize differences in the applied volcanic forcing. It defines a set of initial conditions to assess how internal climate variability contributes to determining the response. VolMIP will assess to what extent volcanically forced responses of the coupled ocean-atmosphere system are robustly simulated by state-of-the-art coupled climate models and identify the causes that limit robust simulated behavior, especially differences in the treatment of physical processes. This paper illustrates the design of the idealized volcanic perturbation experiments in the VolMIP protocol and describes the common aerosol forcing input data sets to be used.

  8. Sun's influence on climate: Explored with SDO

    NASA Astrophysics Data System (ADS)

    Lundstedt, H.

    2010-09-01

    Stunning images and movies recorded of the Sun, with Solar Dynamics Observatory (SDO), makes one wonder: How would this change our view on the Sun-Earth climate coupling? SDO shows a much more variable Sun, on all spatial and temporal scales. Detailed pictures of solar storms are foreseen to improve our understanding of the direct Sun-Earth coupling. Dynamo models, described by dynamical systems using input from helioseismic observations, are foreseen to improve our knowledge of the the Sun's cyclic influence on climate. Both the direct-, and the cycle-influence will be discussed in view of the new SDO observations.

  9. A regime shift in the Sun-Climate connection with the end of the Medieval Climate Anomaly.

    PubMed

    Smirnov, D A; Breitenbach, S F M; Feulner, G; Lechleitner, F A; Prufer, K M; Baldini, J U L; Marwan, N; Kurths, J

    2017-09-11

    Understanding the influence of changes in solar activity on Earth's climate and distinguishing it from other forcings, such as volcanic activity, remains a major challenge for palaeoclimatology. This problem is best approached by investigating how these variables influenced past climate conditions as recorded in high precision paleoclimate archives. In particular, determining if the climate system response to these forcings changes through time is critical. Here we use the Wiener-Granger causality approach along with well-established cross-correlation analysis to investigate the causal relationship between solar activity, volcanic forcing, and climate as reflected in well-established Intertropical Convergence Zone (ITCZ) rainfall proxy records from Yok Balum Cave, southern Belize. Our analysis reveals a consistent influence of volcanic activity on regional Central American climate over the last two millennia. However, the coupling between solar variability and local climate varied with time, with a regime shift around 1000-1300 CE after which the solar-climate coupling weakened considerably.

  10. 75 FR 27990 - Mid-Atlantic Fishery Management Council (MAFMC); Public Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-19

    ... presentation on Climate Change and Responses in a Coupled Marine System; the Mid-Atlantic surfclam (MASC) model is being developed as part of a multi-disciplinary study looking at adaptation to climate change in a...

  11. Arabian Sea Fronts and Barrier Layers

    DTIC Science & Technology

    2015-09-30

    enable accurate prediction of the coupled ocean-atmosphere system that governs the climate of the Northern Indian Ocean. RELATED PROJECTS NASA ...relationship with the Indian Ocean monsoons and regional climate in general. OBJECTIVES The primary objective of this project is to

  12. Reconstruction of the Greenland ice sheet dynamics in a fully coupled Earth System Model

    NASA Astrophysics Data System (ADS)

    Rybak, Oleg; Volodin, Evgeny; Huybrechts, Philippe

    2016-04-01

    Earth system models (ESMs) are undoubtedly effective tools for studying climate dynamics. Incorporation of evolving ice sheets to ESMs is a challenging task because response times of the climate system and of ice sheets differ by several orders of magnitude. Besides, AO GCMs operate on spatial and temporal resolutions substantially differing from those of ice sheet models (ICMs). Therefore elaboration of an effective coupling methodology of an AO GCM and an ICM is the key problem of an ESM construction and utilization. Several downscaling strategies of varying complexity exist now of data exchange between modeled climate system and ice sheets. Application of a particular strategy depends on the research objectives. In our view, the optimum approach for model studying of significant environmental changes (e.g. glacial/interglacial transitions) when ice sheets undergo substantial evolution of geometry and volume would be an asynchronous coupling. The latter allows simulation in the interactive way of growth and decay of ice sheets in the changing climatic conditions. In the focus of the presentation, is the overview of coupling aspects of an AO GCM INMCM32 elaborated in the Institute of Numerical Mathematics (Moscow, Russia) to the Greenland ice sheet model (GrISM, Vrije Uninersiteit Brussel, Belgium). To provide interactive coupling of INMCM32 (spatial resolution 5°×4°, 21 vertical layers and temporal resolution 6 min. in the atmospheric block) and GrISM (spatial resolution 20×20 km, 51 vertical layers and 1 yr temporal resolution), we employ a special energy- and water balance model (EWBM-G), which serves as a buffer providing effective data exchange between INMCM32 and GrISM. EWBM-G operates in a rectangle domain including Greenland. Transfer of daily meanings of simulated climatic variables (air surface temperature and specific humidity) is provided on the lateral boundarias of the domain and inside the domain (sea level air pressure, wind speed and total cloudiness) after applying spline interpolation. EWBM-G calculates annual surface mass balance, SMB, (further transferred as an external forcing to the GrISM) and fresh water flux (transferred to the oceanic block of the INMCM32). After receiving SMB, GrIS is integrated and returns update surface topography back to the INMCM32. The aim of the current research is to establish equilibration time of climate and GrIS in the transient coupled run and to elaborate optimum methodology for performing numerical experiments simulating glacial/interglacial transitions.

  13. Towards an integrated forecasting system for fisheries on habitat-bound stocks

    NASA Astrophysics Data System (ADS)

    Christensen, A.; Butenschön, M.; Gürkan, Z.; Allen, I. J.

    2013-03-01

    First results of a coupled modelling and forecasting system for fisheries on habitat-bound stocks are being presented. The system consists currently of three mathematically, fundamentally different model subsystems coupled offline: POLCOMS providing the physical environment implemented in the domain of the north-west European shelf, the SPAM model which describes sandeel stocks in the North Sea, and the third component, the SLAM model, which connects POLCOMS and SPAM by computing the physical-biological interaction. Our major experience by the coupling model subsystems is that well-defined and generic model interfaces are very important for a successful and extendable coupled model framework. The integrated approach, simulating ecosystem dynamics from physics to fish, allows for analysis of the pathways in the ecosystem to investigate the propagation of changes in the ocean climate and to quantify the impacts on the higher trophic level, in this case the sandeel population, demonstrated here on the basis of hindcast data. The coupled forecasting system is tested for some typical scientific questions appearing in spatial fish stock management and marine spatial planning, including determination of local and basin-scale maximum sustainable yield, stock connectivity and source/sink structure. Our presented simulations indicate that sandeel stocks are currently exploited close to the maximum sustainable yield, even though periodic overfishing seems to have occurred, but large uncertainty is associated with determining stock maximum sustainable yield due to stock inherent dynamics and climatic variability. Our statistical ensemble simulations indicates that the predictive horizon set by climate interannual variability is 2-6 yr, after which only an asymptotic probability distribution of stock properties, like biomass, are predictable.

  14. Advancing coupled human-earth system models: The integrated Earth System Model Project

    NASA Astrophysics Data System (ADS)

    Thomson, A. M.; Edmonds, J. A.; Collins, W.; Thornton, P. E.; Hurtt, G. C.; Janetos, A. C.; Jones, A.; Mao, J.; Chini, L. P.; Calvin, K. V.; Bond-Lamberty, B. P.; Shi, X.

    2012-12-01

    As human and biogeophysical models develop, opportunities for connections between them evolve and can be used to advance our understanding of human-earth systems interaction in the context of a changing climate. One such integration is taking place with the Community Earth System Model (CESM) and the Global Change Assessment Model (GCAM). A multi-disciplinary, multi-institution team has succeeded in integrating the GCAM integrated assessment model of human activity into CESM to dynamically represent the feedbacks between changing climate and human decision making, in the context of greenhouse gas mitigation policies. The first applications of this capability have focused on the feedbacks between climate change impacts on terrestrial ecosystem productivity and human decisions affecting future land use change, which are in turn connected to human decisions about energy systems and bioenergy production. These experiments have been conducted in the context of the RCP4.5 scenario, one of four pathways of future radiative forcing being used in CMIP5, which constrains future human-induced greenhouse gas emissions from energy and land activities to stabilize radiative forcing at 4.5 W/m2 (~650 ppm CO2 -eq) by 2100. When this pathway is run in GCAM with the climate feedback on terrestrial productivity from CESM, there are implications for both the land use and energy system changes required for stabilization. Early findings indicate that traditional definitions of radiative forcing used in scenario development are missing a critical component of the biogeophysical consequences of land use change and their contribution to effective radiative forcing. Initial full coupling of the two global models has important implications for how climate impacts on terrestrial ecosystems changes the dynamics of future land use change for agriculture and forestry, particularly in the context of a climate mitigation policy designed to reduce emissions from land use as well as energy systems. While these initial experiments have relied on offline coupling methodologies, current and future experiments are utilizing a single model code developed to integrate GCAM into CESM as a component of the land model. This unique capability facilitates many new applications to scientific questions arising from human and biogeophysical systems interaction. Future developments will further integrate the energy system decisions and greenhouse gas emissions as simulated in GCAM with the appropriate climate and land system components of CESM.

  15. Climate change increases riverine carbon outgassing, while export to the ocean remains uncertain

    NASA Astrophysics Data System (ADS)

    Langerwisch, F.; Walz, A.; Rammig, A.; Tietjen, B.; Thonicke, K.; Cramer, W.

    2016-07-01

    Any regular interaction of land and river during flooding affects carbon pools within the terrestrial system, riverine carbon and carbon exported from the system. In the Amazon basin carbon fluxes are considerably influenced by annual flooding, during which terrigenous organic material is imported to the river. The Amazon basin therefore represents an excellent example of a tightly coupled terrestrial-riverine system. The processes of generation, conversion and transport of organic carbon in such a coupled terrigenous-riverine system strongly interact and are climate-sensitive, yet their functioning is rarely considered in Earth system models and their response to climate change is still largely unknown. To quantify regional and global carbon budgets and climate change effects on carbon pools and carbon fluxes, it is important to account for the coupling between the land, the river, the ocean and the atmosphere. We developed the RIVerine Carbon Model (RivCM), which is directly coupled to the well-established dynamic vegetation and hydrology model LPJmL, in order to account for this large-scale coupling. We evaluate RivCM with observational data and show that some of the values are reproduced quite well by the model, while we see large deviations for other variables. This is mainly caused by some simplifications we assumed. Our evaluation shows that it is possible to reproduce large-scale carbon transport across a river system but that this involves large uncertainties. Acknowledging these uncertainties, we estimate the potential changes in riverine carbon by applying RivCM for climate forcing from five climate models and three CO2 emission scenarios (Special Report on Emissions Scenarios, SRES). We find that climate change causes a doubling of riverine organic carbon in the southern and western basin while reducing it by 20 % in the eastern and northern parts. In contrast, the amount of riverine inorganic carbon shows a 2- to 3-fold increase in the entire basin, independent of the SRES scenario. The export of carbon to the atmosphere increases as well, with an average of about 30 %. In contrast, changes in future export of organic carbon to the Atlantic Ocean depend on the SRES scenario and are projected to either decrease by about 8.9 % (SRES A1B) or increase by about 9.1 % (SRES A2). Such changes in the terrigenous-riverine system could have local and regional impacts on the carbon budget of the whole Amazon basin and parts of the Atlantic Ocean. Changes in riverine carbon could lead to a shift in the riverine nutrient supply and pH, while changes in the exported carbon to the ocean lead to changes in the supply of organic material that acts as a food source in the Atlantic. On larger scales the increased outgassing of CO2 could turn the Amazon basin from a sink of carbon to a considerable source. Therefore, we propose that the coupling of terrestrial and riverine carbon budgets should be included in subsequent analysis of the future regional carbon budget.

  16. Simulation skill of APCC set of global climate models for Asian summer monsoon rainfall variability

    NASA Astrophysics Data System (ADS)

    Singh, U. K.; Singh, G. P.; Singh, Vikas

    2015-04-01

    The performance of 11 Asia-Pacific Economic Cooperation Climate Center (APCC) global climate models (coupled and uncoupled both) in simulating the seasonal summer (June-August) monsoon rainfall variability over Asia (especially over India and East Asia) has been evaluated in detail using hind-cast data (3 months advance) generated from APCC which provides the regional climate information product services based on multi-model ensemble dynamical seasonal prediction systems. The skill of each global climate model over Asia was tested separately in detail for the period of 21 years (1983-2003), and simulated Asian summer monsoon rainfall (ASMR) has been verified using various statistical measures for Indian and East Asian land masses separately. The analysis found a large variation in spatial ASMR simulated with uncoupled model compared to coupled models (like Predictive Ocean Atmosphere Model for Australia, National Centers for Environmental Prediction and Japan Meteorological Agency). The simulated ASMR in coupled model was closer to Climate Prediction Centre Merged Analysis of Precipitation (CMAP) compared to uncoupled models although the amount of ASMR was underestimated in both models. Analysis also found a high spread in simulated ASMR among the ensemble members (suggesting that the model's performance is highly dependent on its initial conditions). The correlation analysis between sea surface temperature (SST) and ASMR shows that that the coupled models are strongly associated with ASMR compared to the uncoupled models (suggesting that air-sea interaction is well cared in coupled models). The analysis of rainfall using various statistical measures suggests that the multi-model ensemble (MME) performed better compared to individual model and also separate study indicate that Indian and East Asian land masses are more useful compared to Asia monsoon rainfall as a whole. The results of various statistical measures like skill of multi-model ensemble, large spread among the ensemble members of individual model, strong teleconnection (correlation analysis) with SST, coefficient of variation, inter-annual variability, analysis of Taylor diagram, etc. suggest that there is a need to improve coupled model instead of uncoupled model for the development of a better dynamical seasonal forecast system.

  17. Understanding Water-Energy-Ecology Nexus from an Integrated Earth-Human System Perspective

    NASA Astrophysics Data System (ADS)

    Li, H. Y.; Zhang, X.; Wan, W.; Zhuang, Y.; Hejazi, M. I.; Leung, L. R.

    2017-12-01

    Both Earth and human systems exert notable controls on streamflow and stream temperature that influence energy production and ecosystem health. An integrated water model representing river processes and reservoir regulations has been developed and coupled to a land surface model and an integrated assessment model of energy, land, water, and socioeconomics to investigate the energy-water-ecology nexus in the context of climate change and water management. Simulations driven by two climate change projections following the RCP 4.5 and RCP 8.5 radiative forcing scenarios, with and without water management, are analyzed to evaluate the individual and combined effects of climate change and water management on streamflow and stream temperature in the U.S. The simulations revealed important impacts of climate change and water management on hydrological droughts. The simulations also revealed the dynamics of competition between changes in water demand and water availability in the RCP 4.5 and RCP 8.5 scenarios that influence streamflow and stream temperature, with important consequences to thermoelectricity production and future survival of juvenile Salmon. The integrated water model is being implemented to the Accelerated Climate Modeling for Energy (ACME), a coupled Earth System Model, to enable future investigations of the energy-water-ecology nexus in the integrated Earth-Human system.

  18. Observations and High-Resolution Numerical Simulations of a Non-Developing Tropical Disturbance in the Western North Pacific

    DTIC Science & Technology

    2013-09-01

    potential energy CFSR Climate Forecast System Reanalysis COAMPS Coupled Ocean / Atmosphere Mesoscale Prediction System DA data assimilation DART Data...developing (TCS025) tropical disturbance using the adjoint and tangent linear models for the Coupled Ocean – Atmosphere Mesoscale Prediction System (COAMPS...for Medium-range Weather Forecasts ELDORA ELectra DOppler RAdar EOL Earth Observing Laboratory GPS global positioning system GTS Global

  19. Emergent dynamics of the climate-economy system in the Anthropocene.

    PubMed

    Kellie-Smith, Owen; Cox, Peter M

    2011-03-13

    Global CO(2) emissions are understood to be the largest contributor to anthropogenic climate change, and have, to date, been highly correlated with economic output. However, there is likely to be a negative feedback between climate change and human wealth: economic growth is typically associated with an increase in CO(2) emissions and global warming, but the resulting climate change may lead to damages that suppress economic growth. This climate-economy feedback is assumed to be weak in standard climate change assessments. When the feedback is incorporated in a transparently simple model it reveals possible emergent behaviour in the coupled climate-economy system. Formulae are derived for the critical rates of growth of global CO(2) emissions that cause damped or long-term boom-bust oscillations in human wealth, thereby preventing a soft landing of the climate-economy system. On the basis of this model, historical rates of economic growth and decarbonization appear to put the climate-economy system in a potentially damaging oscillatory regime.

  20. Investigating the impact of diurnal cycle of SST on the intraseasonal and climate variability

    NASA Astrophysics Data System (ADS)

    Tseng, W. L.; Hsu, H. H.; Chang, C. W. J.; Keenlyside, N. S.; Lan, Y. Y.; Tsuang, B. J.; Tu, C. Y.

    2016-12-01

    The diurnal cycle is a prominent feature of our climate system and the most familiar example of externally forced variability. Despite this it remains poorly simulated in state-of-the-art climate models. A particular problem is the diurnal cycle in sea surface temperature (SST), which is a key variable in air-sea heat flux exchange. In most models the diurnal cycle in SST is not well resolved, due to insufficient vertical resolution in the upper ocean mixed-layer and insufficiently frequent ocean-atmosphere coupling. Here, we coupled a 1-dimensional ocean model (SIT) to two atmospheric general circulation model (ECHAM5 and CAM5). In particular, we focus on improving the representations of the diurnal cycle in SST in a climate model, and investigate the role of the diurnal cycle in climate and intraseasonal variability.

  1. Estimating the impact of internal climate variability on ice sheet model simulations

    NASA Astrophysics Data System (ADS)

    Tsai, C. Y.; Forest, C. E.; Pollard, D.

    2016-12-01

    Rising sea level threatens human societies and coastal habitats and melting ice sheets are a major contributor to sea level rise (SLR). Thus, understanding uncertainty of both forcing and variability within the climate system is essential for assessing long-term risk of SLR given their impact on ice sheet evolution. The predictability of polar climate is limited by uncertainties from the given forcing, the climate model response to this forcing, and the internal variability from feedbacks within the fully coupled climate system. Among those sources of uncertainty, the impact of internal climate variability on ice sheet changes has not yet been robustly assessed. Here we investigate how internal variability affects ice sheet projections using climate fields from two Community Earth System Model (CESM) large-ensemble (LE) experiments to force a three-dimensional ice sheet model. Each ensemble member in an LE experiment undergoes the same external forcings but with unique initial conditions. We find that for both LEs, 2m air temperature variability over Greenland ice sheet (GrIS) can lead to significantly different ice sheet responses. Our results show that the internal variability from two fully coupled CESM LEs can cause about 25 35 mm differences of GrIS's contribution to SLR in 2100 compared to present day (about 20% of the total change), and 100m differences of SLR in 2300. Moreover, only using ensemble-mean climate fields as the forcing in ice sheet model can significantly underestimate the melt of GrIS. As the Arctic region becomes warmer, the role of internal variability is critical given the complex nonlinear interactions between surface temperature and ice sheet. Our results demonstrate that internal variability from coupled atmosphere-ocean general circulation model can affect ice sheet simulations and the resulting sea-level projections. This study highlights an urgent need to reassess associated uncertainties of projecting ice sheet loss over the next few centuries to obtain robust estimates of the contribution of ice sheet melt to SLR.

  2. 78 FR 70017 - Mid-Atlantic Fishery Management Council (MAFMC); Public Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-22

    ... will hold its regular Business Session to receive Organizational Reports, the South Atlantic and the... Foundation Coupled Natural and Human Systems Surfclam Study: Climate change and responses in a coupled marine... Management. The Council will [[Page 70018

  3. Equilibrium and Effective Climate Sensitivity

    NASA Astrophysics Data System (ADS)

    Rugenstein, M.; Bloch-Johnson, J.

    2016-12-01

    Atmosphere-ocean general circulation models, as well as the real world, take thousands of years to equilibrate to CO2 induced radiative perturbations. Equilibrium climate sensitivity - a fully equilibrated 2xCO2 perturbation - has been used for decades as a benchmark in model intercomparisons, as a test of our understanding of the climate system and paleo proxies, and to predict or project future climate change. Computational costs and limited time lead to the widespread practice of extrapolating equilibrium conditions from just a few decades of coupled simulations. The most common workaround is the "effective climate sensitivity" - defined through an extrapolation of a 150 year abrupt2xCO2 simulation, including the assumption of linear climate feedbacks. The definitions of effective and equilibrium climate sensitivity are often mixed up and used equivalently, and it is argued that "transient climate sensitivity" is the more relevant measure for predicting the next decades. We present an ongoing model intercomparison, the "LongRunMIP", to study century and millennia time scales of AOGCM equilibration and the linearity assumptions around feedback analysis. As a true ensemble of opportunity, there is no protocol and the only condition to participate is a coupled model simulation of any stabilizing scenario simulating more than 1000 years. Many of the submitted simulations took several years to conduct. As of July 2016 the contribution comprises 27 scenario simulations of 13 different models originating from 7 modeling centers, each between 1000 and 6000 years. To contribute, please contact the authors as soon as possible We present preliminary results, discussing differences between effective and equilibrium climate sensitivity, the usefulness of transient climate sensitivity, extrapolation methods, and the state of the coupled climate system close to equilibrium. Caption for the Figure below: Evolution of temperature anomaly and radiative imbalance of 22 simulations with 12 models (color indicates the model). 20 year moving average.

  4. Greenhouse gas policy influences climate via direct effects of land-use change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Andrew D.; Collins, William D.; Edmonds, James A.

    2013-06-01

    Proposed climate mitigation measures do not account for direct biophysical climate impacts of land-use change (LUC), nor do the stabilization targets modeled for the 5th Climate Model Intercomparison Project (CMIP5) Representative Concentration Pathways (RCPs). To examine the significance of such effects on global and regional patterns of climate change, a baseline and alternative scenario of future anthropogenic activity are simulated within the Integrated Earth System Model, which couples the Global Change Assessment Model, Global Land-use Model, and Community Earth System Model. The alternative scenario has high biofuel utilization and approximately 50% less global forest cover compared to the baseline, standardmore » RCP4.5 scenario. Both scenarios stabilize radiative forcing from atmospheric constituents at 4.5 W/m2 by 2100. Thus, differences between their climate predictions quantify the biophysical effects of LUC. Offline radiative transfer and land model simulations are also utilized to identify forcing and feedback mechanisms driving the coupled response. Boreal deforestation is found to strongly influence climate due to increased albedo coupled with a regional-scale water vapor feedback. Globally, the alternative scenario yields a 21st century warming trend that is 0.5 °C cooler than baseline, driven by a 1 W/m2 mean decrease in radiative forcing that is distributed unevenly around the globe. Some regions are cooler in the alternative scenario than in 2005. These results demonstrate that neither climate change nor actual radiative forcing are uniquely related to atmospheric forcing targets such as those found in the RCP’s, but rather depend on particulars of the socioeconomic pathways followed to meet each target.« less

  5. Atmospheric Radiation Measurement (ARM) Climate Research Facility Management Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mather, James

    2016-04-01

    Mission and Vision Statements for the U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility Mission The ARM Climate Research Facility, a DOE scientific user facility, provides the climate research community with strategically located in situ and remote-sensing observatories designed to improve the understanding and representation, in climate and earth system models, of clouds and aerosols as well as their interactions and coupling with the Earth’s surface. Vision To provide a detailed and accurate description of the Earth atmosphere in diverse climate regimes to resolve the uncertainties in climate and Earth system models toward the development ofmore » sustainable solutions for the nation's energy and environmental challenges.« less

  6. Solar variability, coupling between atmospheric layers and climate change.

    PubMed

    Arnold, Neil

    2002-12-15

    One of the enduring puzzles of atmospheric physics is the extent to which changes in the Sun can influence the behaviour of the climate system. While solar-flux changes tend to be relatively modest, a number of observations of atmospheric parameters indicates a disproportionately large response. Global-scale models of the coupled middle and upper atmosphere have provided new insights into some of the mechanisms that may be responsible for the amplification of the solar signal. In particular, modification of the transport of heat and chemicals such as ozone by waves during periods of solar activity has been shown to make an important contribution to the climate of the stratosphere and mesosphere. In this paper, a review of some of the recent advances in understanding the coupling between atmospheric layers and how this work relates to Sun-weather relations and climate change in the troposphere will be presented, along with a discussion of some of the challenges that remain.

  7. Nonlinear Interactions between Climate and Atmospheric Carbon Dioxide Drivers of Terrestrial and Marine Carbon Cycle Changes

    NASA Astrophysics Data System (ADS)

    Hoffman, F. M.; Randerson, J. T.; Moore, J. K.; Goulden, M.; Fu, W.; Koven, C.; Swann, A. L. S.; Mahowald, N. M.; Lindsay, K. T.; Munoz, E.

    2017-12-01

    Quantifying interactions between global biogeochemical cycles and the Earth system is important for predicting future atmospheric composition and informing energy policy. We applied a feedback analysis framework to three sets of Historical (1850-2005), Representative Concentration Pathway 8.5 (2006-2100), and its extension (2101-2300) simulations from the Community Earth System Model version 1.0 (CESM1(BGC)) to quantify drivers of terrestrial and ocean responses of carbon uptake. In the biogeochemically coupled simulation (BGC), the effects of CO2 fertilization and nitrogen deposition influenced marine and terrestrial carbon cycling. In the radiatively coupled simulation (RAD), the effects of rising temperature and circulation changes due to radiative forcing from CO2, other greenhouse gases, and aerosols were the sole drivers of carbon cycle changes. In the third, fully coupled simulation (FC), both the biogeochemical and radiative coupling effects acted simultaneously. We found that climate-carbon sensitivities derived from RAD simulations produced a net ocean carbon storage climate sensitivity that was weaker and a net land carbon storage climate sensitivity that was stronger than those diagnosed from the FC and BGC simulations. For the ocean, this nonlinearity was associated with warming-induced weakening of ocean circulation and mixing that limited exchange of dissolved inorganic carbon between surface and deeper water masses. For the land, this nonlinearity was associated with strong gains in gross primary production in the FC simulation, driven by enhancements in the hydrological cycle and increased nutrient availability. We developed and applied a nonlinearity metric to rank model responses and driver variables. The climate-carbon cycle feedback gain at 2300 was 42% higher when estimated from climate-carbon sensitivities derived from the difference between FC and BGC than when derived from RAD. We re-analyzed other CMIP5 model results to quantify the effects of such nonlinearities on their projected climate-carbon cycle feedback gains.

  8. 2012 Community Earth System Model (CESM) Tutorial - Proposal to DOE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holland, Marika; Bailey, David A

    2013-03-18

    The Community Earth System Model (CESM) is a fully-coupled, global climate model that provides state-of-the-art computer simulations of the Earth's past, present, and future climate states. This document provides the agenda and list of participants for the conference. Web materials for all lectures and practical sessions available from: http://www.cesm.ucar.edu/events/tutorials/073012/ .

  9. Design of Soil Salinity Policies with Tinamit, a Flexible and Rapid Tool to Couple Stakeholder-Built System Dynamics Models with Physically-Based Models

    NASA Astrophysics Data System (ADS)

    Malard, J. J.; Baig, A. I.; Hassanzadeh, E.; Adamowski, J. F.; Tuy, H.; Melgar-Quiñonez, H.

    2016-12-01

    Model coupling is a crucial step to constructing many environmental models, as it allows for the integration of independently-built models representing different system sub-components to simulate the entire system. Model coupling has been of particular interest in combining socioeconomic System Dynamics (SD) models, whose visual interface facilitates their direct use by stakeholders, with more complex physically-based models of the environmental system. However, model coupling processes are often cumbersome and inflexible and require extensive programming knowledge, limiting their potential for continued use by stakeholders in policy design and analysis after the end of the project. Here, we present Tinamit, a flexible Python-based model-coupling software tool whose easy-to-use API and graphical user interface make the coupling of stakeholder-built SD models with physically-based models rapid, flexible and simple for users with limited to no coding knowledge. The flexibility of the system allows end users to modify the SD model as well as the linking variables between the two models themselves with no need for recoding. We use Tinamit to couple a stakeholder-built socioeconomic model of soil salinization in Pakistan with the physically-based soil salinity model SAHYSMOD. As climate extremes increase in the region, policies to slow or reverse soil salinity buildup are increasing in urgency and must take both socioeconomic and biophysical spheres into account. We use the Tinamit-coupled model to test the impact of integrated policy options (economic and regulatory incentives to farmers) on soil salinity in the region in the face of future climate change scenarios. Use of the Tinamit model allowed for rapid and flexible coupling of the two models, allowing the end user to continue making model structure and policy changes. In addition, the clear interface (in contrast to most model coupling code) makes the final coupled model easily accessible to stakeholders with limited technical background.

  10. Vulnerability of water supply from the Oregon Cascades to changing climate: linking science to users and policy

    Treesearch

    Kathleen A. Farley; Christina Tague; Gordon E. Grant

    2011-01-01

    Despite improvements in understanding biophysical response to climate change, a better understanding of how such changes will affect societies is still needed. We evaluated effects of climate change on the coupled human-environmental system of the McKenzie River watershed in the Oregon Cascades in order to assess its vulnerability. Published empirical and modeling...

  11. The Active Role of the Ocean in the Temporal Evolution of Climate Sensitivity

    DOE PAGES

    Garuba, Oluwayemi A.; Lu, Jian; Liu, Fukai; ...

    2017-11-30

    Here, the temporal evolution of the effective climate sensitivity is shown to be influenced by the changing pattern of sea surface temperature (SST) and ocean heat uptake (OHU), which in turn have been attributed to ocean circulation changes. A set of novel experiments are performed to isolate the active role of the ocean by comparing a fully coupled CO 2 quadrupling community Earth System Model (CESM) simulation against a partially coupled one, where the effect of the ocean circulation change and its impact on surface fluxes are disabled. The active OHU is responsible for the reduced effective climate sensitivity andmore » weaker surface warming response in the fully coupled simulation. The passive OHU excites qualitatively similar feedbacks to CO 2 quadrupling in a slab ocean model configuration due to the similar SST spatial pattern response in both experiments. Additionally, the nonunitary forcing efficacy of the active OHU (1.7) explains the very different net feedback parameters in the fully and partially coupled responses.« less

  12. The Active Role of the Ocean in the Temporal Evolution of Climate Sensitivity

    NASA Astrophysics Data System (ADS)

    Garuba, Oluwayemi A.; Lu, Jian; Liu, Fukai; Singh, Hansi A.

    2018-01-01

    The temporal evolution of the effective climate sensitivity is shown to be influenced by the changing pattern of sea surface temperature (SST) and ocean heat uptake (OHU), which in turn have been attributed to ocean circulation changes. A set of novel experiments are performed to isolate the active role of the ocean by comparing a fully coupled CO2 quadrupling community Earth System Model (CESM) simulation against a partially coupled one, where the effect of the ocean circulation change and its impact on surface fluxes are disabled. The active OHU is responsible for the reduced effective climate sensitivity and weaker surface warming response in the fully coupled simulation. The passive OHU excites qualitatively similar feedbacks to CO2 quadrupling in a slab ocean model configuration due to the similar SST spatial pattern response in both experiments. Additionally, the nonunitary forcing efficacy of the active OHU (1.7) explains the very different net feedback parameters in the fully and partially coupled responses.

  13. The Active Role of the Ocean in the Temporal Evolution of Climate Sensitivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garuba, Oluwayemi A.; Lu, Jian; Liu, Fukai

    Here, the temporal evolution of the effective climate sensitivity is shown to be influenced by the changing pattern of sea surface temperature (SST) and ocean heat uptake (OHU), which in turn have been attributed to ocean circulation changes. A set of novel experiments are performed to isolate the active role of the ocean by comparing a fully coupled CO 2 quadrupling community Earth System Model (CESM) simulation against a partially coupled one, where the effect of the ocean circulation change and its impact on surface fluxes are disabled. The active OHU is responsible for the reduced effective climate sensitivity andmore » weaker surface warming response in the fully coupled simulation. The passive OHU excites qualitatively similar feedbacks to CO 2 quadrupling in a slab ocean model configuration due to the similar SST spatial pattern response in both experiments. Additionally, the nonunitary forcing efficacy of the active OHU (1.7) explains the very different net feedback parameters in the fully and partially coupled responses.« less

  14. Perspectives on Hydro-Climatic Change in Rivers Sourced From the Khangai Mountains, Mongolia

    NASA Astrophysics Data System (ADS)

    Venable, N. B.; Fassnacht, S. R.; Tumenjargal, S.; Batbuyan, B.; Odgarav, J.; Sukhbataar, J.; Fernandez-Gimenez, M.; Adyabadam, G.

    2012-12-01

    Patterns of pastoralism have shaped the Mongolian countryside throughout history. These patterns are largely dictated by seasonal and extreme climate and water conditions. While change has always been a part of the traditional herder lifestyle, the magnitude and variety of impacts imposed by natural and human-induced changes in the last few decades has increased, negatively affecting the coupled natural-human systems of Mongolia. Regional hydrologic impacts from increased mining, irrigation, urbanization, and climate change are challenging to measure and model due to sparse and relatively short meteorological and hydrological records. Characterization of the variability inherent in Mongolian hydrological systems in the international literature remains limited. To quantify recent changes to these systems, several river basins near the Khangai Mountains were analyzed. These basins adjoin and include community-based managed and non-managed grazing lands under study as part of an ongoing National Science Foundation Coupled Natural and Human Systems (NSF-CNH) project. Statistically significant increasing temperatures and decreasing streamflows in the study areas support herder's perceptions of hydro-climatic changes and variability. The results of basin characterization combined with water balance modeling and trend analyses illustrate the future potential for further change in these hydro-climatic systems. Alternate land-uses and herder lifestyle modifications may amplify impacts from climatic change. Recent fieldwork also revealed complex surface-groundwater interactions in some areas that may affect model outcomes. Future explorations of longer-term variability through the use of proxies and the development of hydrologic scenarios will place the current basin analyses in context to more fully assess possible impacts to the hydrologic-human systems of Mongolia.

  15. Realistic dust and water cycles in the MarsWRF GCM using coupled two-moment microphysics

    NASA Astrophysics Data System (ADS)

    Lee, Christopher; Richardson, Mark Ian; Mischna, Michael A.; Newman, Claire E.

    2017-10-01

    Dust and water ice aerosols significantly complicate the Martian climate system because the evolution of the two aerosol fields is coupled through microphysics and because both aerosols strongly interact with visible and thermal radiation. The combination of strong forcing feedback and coupling has led to various problems in understanding and modeling of the Martian climate: in reconciling cloud abundances at different locations in the atmosphere, in generating a stable dust cycle, and in preventing numerical instability within models.Using a new microphysics model inside the MarsWRF GCM we show that fully coupled simulations produce more realistic simulation of the Martian climate system compared to a dry, dust only simulations. In the coupled simulations, interannual variability and intra-annual variability are increased, strong 'solstitial pause' features are produced in both winter high latitude regions, and dust storm seasons are more varied, with early southern summer (Ls 180) dust storms and/or more than one storm occurring in some seasons.A new microphysics scheme was developed as a part of this work and has been included in the MarsWRF model. The scheme uses split spectral/spatial size distribution numerics with adaptive bin sizes to track particle size evolution. Significantly, this scheme is highly accurate, numerically stable, and is capable of running with time steps commensurate with those of the parent atmospheric model.

  16. Will high-resolution global ocean models benefit coupled predictions on short-range to climate timescales?

    NASA Astrophysics Data System (ADS)

    Hewitt, Helene T.; Bell, Michael J.; Chassignet, Eric P.; Czaja, Arnaud; Ferreira, David; Griffies, Stephen M.; Hyder, Pat; McClean, Julie L.; New, Adrian L.; Roberts, Malcolm J.

    2017-12-01

    As the importance of the ocean in the weather and climate system is increasingly recognised, operational systems are now moving towards coupled prediction not only for seasonal to climate timescales but also for short-range forecasts. A three-way tension exists between the allocation of computing resources to refine model resolution, the expansion of model complexity/capability, and the increase of ensemble size. Here we review evidence for the benefits of increased ocean resolution in global coupled models, where the ocean component explicitly represents transient mesoscale eddies and narrow boundary currents. We consider lessons learned from forced ocean/sea-ice simulations; from studies concerning the SST resolution required to impact atmospheric simulations; and from coupled predictions. Impacts of the mesoscale ocean in western boundary current regions on the large-scale atmospheric state have been identified. Understanding of air-sea feedback in western boundary currents is modifying our view of the dynamics in these key regions. It remains unclear whether variability associated with open ocean mesoscale eddies is equally important to the large-scale atmospheric state. We include a discussion of what processes can presently be parameterised in coupled models with coarse resolution non-eddying ocean models, and where parameterizations may fall short. We discuss the benefits of resolution and identify gaps in the current literature that leave important questions unanswered.

  17. Sea Ice in the NCEP Seasonal Forecast System

    NASA Astrophysics Data System (ADS)

    Wu, X.; Saha, S.; Grumbine, R. W.; Bailey, D. A.; Carton, J.; Penny, S. G.

    2017-12-01

    Sea ice is known to play a significant role in the global climate system. For a weather or climate forecast system (CFS), it is important that the realistic distribution of sea ice is represented. Sea ice prediction is challenging; sea ice can form or melt, it can move with wind and/or ocean current; sea ice interacts with both the air above and ocean underneath, it influences by, and has impact on the air and ocean conditions. NCEP has developed coupled CFS (version 2, CFSv2) and also carried out CFS reanalysis (CFSR), which includes a coupled model with the NCEP global forecast system, a land model, an ocean model (GFDL MOM4), and a sea ice model. In this work, we present the NCEP coupled model, the CFSv2 sea ice component that includes a dynamic thermodynamic sea ice model and a simple "assimilation" scheme, how sea ice has been assimilated in CFSR, the characteristics of the sea ice from CFSR and CFSv2, and the improvements of sea ice needed for future seasonal prediction system, part of the Unified Global Coupled System (UGCS), which is being developed and under testing, including sea ice data assimilation with the Local Ensemble Transform Kalman Filter (LETKF). Preliminary results from the UGCS testing will also be presented.

  18. Understanding the biological underpinnings of ecohydrological processes

    NASA Astrophysics Data System (ADS)

    Huxman, T. E.; Scott, R. L.; Barron-Gafford, G. A.; Hamerlynck, E. P.; Jenerette, D.; Tissue, D. T.; Breshears, D. D.; Saleska, S. R.

    2012-12-01

    Climate change presents a challenge for predicting ecosystem response, as multiple factors drive both the physical and life processes happening on the land surface and their interactions result in a complex, evolving coupled system. For example, changes in surface temperature and precipitation influence near-surface hydrology through impacts on system energy balance, affecting a range of physical processes. These changes in the salient features of the environment affect biological processes and elicit responses along the hierarchy of life (biochemistry to community composition). Many of these structural or process changes can alter patterns of soil water-use and influence land surface characteristics that affect local climate. Of the many features that affect our ability to predict the future dynamics of ecosystems, it is this hierarchical response of life that creates substantial complexity. Advances in the ability to predict or understand aspects of demography help describe thresholds in coupled ecohydrological system. Disentangling the physical and biological features that underlie land surface dynamics following disturbance are allowing a better understanding of the partitioning of water in the time-course of recovery. Better predicting the timing of phenology and key seasonal events allow for a more accurate description of the full functional response of the land surface to climate. In addition, explicitly considering the hierarchical structural features of life are helping to describe complex time-dependent behavior in ecosystems. However, despite this progress, we have yet to build an ability to fully account for the generalization of the main features of living systems into models that can describe ecohydrological processes, especially acclimation, assembly and adaptation. This is unfortunate, given that many key ecosystem services are functions of these coupled co-evolutionary processes. To date, both the lack of controlled measurements and experimentation has precluded determination of sufficient theoretical development. Understanding the land-surface response and feedback to climate change requires a mechanistic understanding of the coupling of ecological and hydrological processes and an expansion of theory from the life sciences to appropriately contribute to the broader Earth system science goal.

  19. The intraannual variability of land-atmosphere coupling over North America in the Canadian Regional Climate Model (CRCM5)

    NASA Astrophysics Data System (ADS)

    Yang Kam Wing, G.; Sushama, L.; Diro, G. T.

    2016-12-01

    This study investigates the intraannual variability of soil moisture-temperature coupling over North America. To this effect, coupled and uncoupled simulations are performed with the fifth-generation Canadian Regional Climate Model (CRCM5), driven by ERA-Interim. In coupled simulations, land and atmosphere interact freely; in uncoupled simulations, the interannual variability of soil moisture is suppressed by prescribing climatological values for soil liquid and frozen water contents. The study also explores projected changes to coupling by comparing coupled and uncoupled CRCM5 simulations for current (1981-2010) and future (2071-2100) periods, driven by the Canadian Earth System Model. Coupling differs for the northern and southern parts of North America. Over the southern half, it is persistent throughout the year while for the northern half, strongly coupled regions generally follow the freezing line during the cold months. Detailed analysis of the southern Canadian Prairies reveals seasonal differences in the underlying coupling mechanism. During spring and fall, as opposed to summer, the interactive soil moisture phase impacts the snow depth and surface albedo, which further impacts the surface energy budget and thus the surface air temperature; the air temperature then influences the snow depth in a feedback loop. Projected changes to coupling are also season specific: relatively drier soil conditions strengthen coupling during summer, while changes in soil moisture phase, snow depth, and cloud cover impact coupling during colder months. Furthermore, results demonstrate that soil moisture variability amplifies the frequency of temperature extremes over regions of strong coupling in current and future climates.

  20. Socio-hydrologic modeling to understand and mediate the competition for water between agriculture development and environmental health: Murrumbidgee River basin, Australia

    NASA Astrophysics Data System (ADS)

    van Emmerik, T. H. M.; Li, Z.; Sivapalan, M.; Pande, S.; Kandasamy, J.; Savenije, H. H. G.; Chanan, A.; Vigneswaran, S.

    2014-10-01

    Competition for water between humans and ecosystems is set to become a flash point in the coming decades in many parts of the world. An entirely new and comprehensive quantitative framework is needed to establish a holistic understanding of that competition, thereby enabling the development of effective mediation strategies. This paper presents a modeling study centered on the Murrumbidgee River basin (MRB). The MRB has witnessed a unique system dynamics over the last 100 years as a result of interactions between patterns of water management and climate driven hydrological variability. Data analysis has revealed a pendulum swing between agricultural development and restoration of environmental health and ecosystem services over different stages of basin-scale water resource development. A parsimonious, stylized, quasi-distributed coupled socio-hydrologic system model that simulates the two-way coupling between human and hydrological systems of the MRB is used to mimic and explain dominant features of the pendulum swing. The model consists of coupled nonlinear ordinary differential equations that describe the interaction between five state variables that govern the co-evolution: reservoir storage, irrigated area, human population, ecosystem health, and environmental awareness. The model simulations track the propagation of the external climatic and socio-economic drivers through this coupled, complex system to the emergence of the pendulum swing. The model results point to a competition between human "productive" and environmental "restorative" forces that underpin the pendulum swing. Both the forces are endogenous, i.e., generated by the system dynamics in response to external drivers and mediated by humans through technology change and environmental awareness, respectively. Sensitivity analysis carried out with the model further reveals that socio-hydrologic modeling can be used as a tool to explain or gain insight into observed co-evolutionary dynamics of diverse human-water coupled systems. This paper therefore contributes to the ultimate development of a generic modeling framework that can be applied to human-water coupled systems in different climatic and socio-economic settings.

  1. The CESM Large Ensemble Project: Inspiring New Ideas and Understanding

    NASA Astrophysics Data System (ADS)

    Kay, J. E.; Deser, C.

    2016-12-01

    While internal climate variability is known to affect climate projections, its influence is often underappreciated and confused with model error. Why? In general, modeling centers contribute a small number of realizations to international climate model assessments [e.g., phase 5 of the Coupled Model Intercomparison Project (CMIP5)]. As a result, model error and internal climate variability are difficult, and at times impossible, to disentangle. In response, the Community Earth System Model (CESM) community designed the CESM Large Ensemble (CESM-LE) with the explicit goal of enabling assessment of climate change in the presence of internal climate variability. All CESM-LE simulations use a single CMIP5 model (CESM with the Community Atmosphere Model, version 5). The core simulations replay the twenty to twenty-first century (1920-2100) 40+ times under historical and representative concentration pathway 8.5 external forcing with small initial condition differences. Two companion 2000+-yr-long preindustrial control simulations (fully coupled, prognostic atmosphere and land only) allow assessment of internal climate variability in the absence of climate change. Comprehensive outputs, including many daily fields, are available as single-variable time series on the Earth System Grid for anyone to use. Examples of scientists and stakeholders that are using the CESM-LE outputs to help interpret the observational record, to understand projection spread and to plan for a range of possible futures influenced by both internal climate variability and forced climate change will be highlighted the presentation.

  2. Understanding and Projecting Climate and Human Impacts on Terrestrial-Coastal Carbon and Nutrient Fluxes

    NASA Astrophysics Data System (ADS)

    Lohrenz, S. E.; Cai, W. J.; Tian, H.; He, R.; Fennel, K.

    2017-12-01

    Changing climate and land use practices have the potential to dramatically alter coupled hydrologic-biogeochemical processes and associated movement of water, carbon and nutrients through various terrestrial reservoirs into rivers, estuaries, and coastal ocean waters. Consequences of climate- and land use-related changes will be particularly evident in large river basins and their associated coastal outflow regions. Here, we describe a NASA Carbon Monitoring System project that employs an integrated suite of models in conjunction with remotely sensed as well as targeted in situ observations with the objectives of describing processes controlling fluxes on land and their coupling to riverine, estuarine and ocean ecosystems. The nature of our approach, coupling models of terrestrial and ocean ecosystem dynamics and associated carbon processes, allows for assessment of how societal and human-related land use, land use change and forestry and climate-related change affect terrestrial carbon transport as well as export of materials through watersheds to the coastal margins. Our objectives include the following: 1) Provide representation of carbon processes in the terrestrial ecosystem to understand how changes in land use and climatic conditions influence the export of materials to the coastal ocean, 2) Couple the terrestrial exports of carbon, nutrients and freshwater to a coastal biogeochemical model and examine how different climate and land use scenarios influence fluxes across the land-ocean interface, and 3) Project future changes under different scenarios of climate and human impact, and support user needs related to carbon management and other activities (e.g., water quality, hypoxia, ocean acidification). This research is providing information that will contribute to determining an overall carbon balance in North America as well as describing and predicting how human- and climate-related changes impact coastal water quality including possible effects of coastal eutrophication and hypoxia.

  3. Shallow Horizontal GCHP Effectiveness in Arid Climate Soils

    NASA Astrophysics Data System (ADS)

    North, Timothy James

    Ground coupled heat pumps (GCHPs) have been used successfully in many environments to improve the heating and cooling efficiency of both small and large scale buildings. In arid climate regions, such as the Phoenix, Arizona metropolitan area, where the air condi-tioning load is dominated by cooling in the summer, GCHPs are difficult to install and operate. This is because the nature of soils in arid climate regions, in that they are both dry and hot, renders them particularly ineffective at dissipating heat. The first part of this thesis addresses applying the SVHeat finite element modeling soft-ware to create a model of a GCHP system. Using real-world data from a prototype solar-water heating system coupled with a ground-source heat exchanger installed in Menlo Park, California, a relatively accurate model was created to represent a novel GCHP panel system installed in a shallow vertical trench. A sensitivity analysis was performed to evaluate the accuracy of the calibrated model. The second part of the thesis involved adapting the calibrated model to represent an ap-proximation of soil conditions in arid climate regions, using a range of thermal properties for dry soils. The effectiveness of the GCHP in the arid climate region model was then evaluated by comparing the thermal flux from the panel into the subsurface profile to that of the prototype GCHP. It was shown that soils in arid climate regions are particularly inefficient at heat dissipation, but that it is highly dependent on the thermal conductivity inputted into the model. This demonstrates the importance of proper site characterization in arid climate regions. Finally, several soil improvement methods were researched to evaluate their potential for use in improving the effectiveness of shallow horizontal GCHP systems in arid climate regions.

  4. Simulations of the future precipitation climate of the Central Andes using a coupled regional climate model

    NASA Astrophysics Data System (ADS)

    Nicholls, S.; Mohr, K. I.

    2014-12-01

    The meridional extent and complex orography of the South American continent contributes to a wide diversity of climate regimes ranging from hyper-arid deserts to tropical rainforests to sub-polar highland regions. Global climate models, although capable of resolving synoptic-scale South American climate features, are inadequate for fully-resolving the strong gradients between climate regimes and the complex orography which define the Tropical Andes given their low spatial and temporal resolution. Recent computational advances now make practical regional climate modeling with prognostic mesoscale atmosphere-ocean coupled models, such as the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system, to climate research. Previous work has shown COAWST to reasonably simulate the both the entire 2003-2004 wet season (Dec-Feb) as validated against both satellite and model analysis data. More recently, COAWST simulations have also been shown to sensibly reproduce the entire annual cycle of rainfall (Oct 2003 - Oct 2004) with historical climate model input. Using future global climate model input for COAWST, the present work involves year-long cycle spanning October to October for the years 2031, 2059, and 2087 assuming the most likely regional climate pathway (RCP): RCP 6.0. COAWST output is used to investigate how global climate change impacts the spatial distribution, precipitation rates, and diurnal cycle of precipitation patterns in the Central Andes vary in these yearly "snapshots". Initial results show little change to precipitation coverage or its diurnal cycle, however precipitation amounts did tend drier over the Brazilian Plateau and wetter over the Western Amazon and Central Andes. These results suggest potential adjustments to large-scale climate features (such as the Bolivian High).

  5. Abrupt glacial climate shifts controlled by ice sheet changes.

    PubMed

    Zhang, Xu; Lohmann, Gerrit; Knorr, Gregor; Purcell, Conor

    2014-08-21

    During glacial periods of the Late Pleistocene, an abundance of proxy data demonstrates the existence of large and repeated millennial-scale warming episodes, known as Dansgaard-Oeschger (DO) events. This ubiquitous feature of rapid glacial climate change can be extended back as far as 800,000 years before present (BP) in the ice core record, and has drawn broad attention within the science and policy-making communities alike. Many studies have been dedicated to investigating the underlying causes of these changes, but no coherent mechanism has yet been identified. Here we show, by using a comprehensive fully coupled model, that gradual changes in the height of the Northern Hemisphere ice sheets (NHISs) can alter the coupled atmosphere-ocean system and cause rapid glacial climate shifts closely resembling DO events. The simulated global climate responses--including abrupt warming in the North Atlantic, a northward shift of the tropical rainbelts, and Southern Hemisphere cooling related to the bipolar seesaw--are generally consistent with empirical evidence. As a result of the coexistence of two glacial ocean circulation states at intermediate heights of the ice sheets, minor changes in the height of the NHISs and the amount of atmospheric CO2 can trigger the rapid climate transitions via a local positive atmosphere-ocean-sea-ice feedback in the North Atlantic. Our results, although based on a single model, thus provide a coherent concept for understanding the recorded millennial-scale variability and abrupt climate changes in the coupled atmosphere-ocean system, as well as their linkages to the volume of the intermediate ice sheets during glacials.

  6. Amplified Arctic warming by phytoplankton under greenhouse warming.

    PubMed

    Park, Jong-Yeon; Kug, Jong-Seong; Bader, Jürgen; Rolph, Rebecca; Kwon, Minho

    2015-05-12

    Phytoplankton have attracted increasing attention in climate science due to their impacts on climate systems. A new generation of climate models can now provide estimates of future climate change, considering the biological feedbacks through the development of the coupled physical-ecosystem model. Here we present the geophysical impact of phytoplankton, which is often overlooked in future climate projections. A suite of future warming experiments using a fully coupled ocean-atmosphere model that interacts with a marine ecosystem model reveals that the future phytoplankton change influenced by greenhouse warming can amplify Arctic surface warming considerably. The warming-induced sea ice melting and the corresponding increase in shortwave radiation penetrating into the ocean both result in a longer phytoplankton growing season in the Arctic. In turn, the increase in Arctic phytoplankton warms the ocean surface layer through direct biological heating, triggering additional positive feedbacks in the Arctic, and consequently intensifying the Arctic warming further. Our results establish the presence of marine phytoplankton as an important potential driver of the future Arctic climate changes.

  7. Amplified Arctic warming by phytoplankton under greenhouse warming

    PubMed Central

    Park, Jong-Yeon; Kug, Jong-Seong; Bader, Jürgen; Rolph, Rebecca; Kwon, Minho

    2015-01-01

    Phytoplankton have attracted increasing attention in climate science due to their impacts on climate systems. A new generation of climate models can now provide estimates of future climate change, considering the biological feedbacks through the development of the coupled physical–ecosystem model. Here we present the geophysical impact of phytoplankton, which is often overlooked in future climate projections. A suite of future warming experiments using a fully coupled ocean−atmosphere model that interacts with a marine ecosystem model reveals that the future phytoplankton change influenced by greenhouse warming can amplify Arctic surface warming considerably. The warming-induced sea ice melting and the corresponding increase in shortwave radiation penetrating into the ocean both result in a longer phytoplankton growing season in the Arctic. In turn, the increase in Arctic phytoplankton warms the ocean surface layer through direct biological heating, triggering additional positive feedbacks in the Arctic, and consequently intensifying the Arctic warming further. Our results establish the presence of marine phytoplankton as an important potential driver of the future Arctic climate changes. PMID:25902494

  8. THE EARTH SYSTEM PREDICTION SUITE: Toward a Coordinated U.S. Modeling Capability

    PubMed Central

    Theurich, Gerhard; DeLuca, C.; Campbell, T.; Liu, F.; Saint, K.; Vertenstein, M.; Chen, J.; Oehmke, R.; Doyle, J.; Whitcomb, T.; Wallcraft, A.; Iredell, M.; Black, T.; da Silva, AM; Clune, T.; Ferraro, R.; Li, P.; Kelley, M.; Aleinov, I.; Balaji, V.; Zadeh, N.; Jacob, R.; Kirtman, B.; Giraldo, F.; McCarren, D.; Sandgathe, S.; Peckham, S.; Dunlap, R.

    2017-01-01

    The Earth System Prediction Suite (ESPS) is a collection of flagship U.S. weather and climate models and model components that are being instrumented to conform to interoperability conventions, documented to follow metadata standards, and made available either under open source terms or to credentialed users. The ESPS represents a culmination of efforts to create a common Earth system model architecture, and the advent of increasingly coordinated model development activities in the U.S. ESPS component interfaces are based on the Earth System Modeling Framework (ESMF), community-developed software for building and coupling models, and the National Unified Operational Prediction Capability (NUOPC) Layer, a set of ESMF-based component templates and interoperability conventions. This shared infrastructure simplifies the process of model coupling by guaranteeing that components conform to a set of technical and semantic behaviors. The ESPS encourages distributed, multi-agency development of coupled modeling systems, controlled experimentation and testing, and exploration of novel model configurations, such as those motivated by research involving managed and interactive ensembles. ESPS codes include the Navy Global Environmental Model (NavGEM), HYbrid Coordinate Ocean Model (HYCOM), and Coupled Ocean Atmosphere Mesoscale Prediction System (COAMPS®); the NOAA Environmental Modeling System (NEMS) and the Modular Ocean Model (MOM); the Community Earth System Model (CESM); and the NASA ModelE climate model and GEOS-5 atmospheric general circulation model. PMID:29568125

  9. THE EARTH SYSTEM PREDICTION SUITE: Toward a Coordinated U.S. Modeling Capability.

    PubMed

    Theurich, Gerhard; DeLuca, C; Campbell, T; Liu, F; Saint, K; Vertenstein, M; Chen, J; Oehmke, R; Doyle, J; Whitcomb, T; Wallcraft, A; Iredell, M; Black, T; da Silva, A M; Clune, T; Ferraro, R; Li, P; Kelley, M; Aleinov, I; Balaji, V; Zadeh, N; Jacob, R; Kirtman, B; Giraldo, F; McCarren, D; Sandgathe, S; Peckham, S; Dunlap, R

    2016-07-01

    The Earth System Prediction Suite (ESPS) is a collection of flagship U.S. weather and climate models and model components that are being instrumented to conform to interoperability conventions, documented to follow metadata standards, and made available either under open source terms or to credentialed users. The ESPS represents a culmination of efforts to create a common Earth system model architecture, and the advent of increasingly coordinated model development activities in the U.S. ESPS component interfaces are based on the Earth System Modeling Framework (ESMF), community-developed software for building and coupling models, and the National Unified Operational Prediction Capability (NUOPC) Layer, a set of ESMF-based component templates and interoperability conventions. This shared infrastructure simplifies the process of model coupling by guaranteeing that components conform to a set of technical and semantic behaviors. The ESPS encourages distributed, multi-agency development of coupled modeling systems, controlled experimentation and testing, and exploration of novel model configurations, such as those motivated by research involving managed and interactive ensembles. ESPS codes include the Navy Global Environmental Model (NavGEM), HYbrid Coordinate Ocean Model (HYCOM), and Coupled Ocean Atmosphere Mesoscale Prediction System (COAMPS ® ); the NOAA Environmental Modeling System (NEMS) and the Modular Ocean Model (MOM); the Community Earth System Model (CESM); and the NASA ModelE climate model and GEOS-5 atmospheric general circulation model.

  10. The Earth System Prediction Suite: Toward a Coordinated U.S. Modeling Capability

    NASA Technical Reports Server (NTRS)

    Theurich, Gerhard; DeLuca, C.; Campbell, T.; Liu, F.; Saint, K.; Vertenstein, M.; Chen, J.; Oehmke, R.; Doyle, J.; Whitcomb, T.; hide

    2016-01-01

    The Earth System Prediction Suite (ESPS) is a collection of flagship U.S. weather and climate models and model components that are being instrumented to conform to interoperability conventions, documented to follow metadata standards, and made available either under open source terms or to credentialed users.The ESPS represents a culmination of efforts to create a common Earth system model architecture, and the advent of increasingly coordinated model development activities in the U.S. ESPS component interfaces are based on the Earth System Modeling Framework (ESMF), community-developed software for building and coupling models, and the National Unified Operational Prediction Capability (NUOPC) Layer, a set of ESMF-based component templates and interoperability conventions. This shared infrastructure simplifies the process of model coupling by guaranteeing that components conform to a set of technical and semantic behaviors. The ESPS encourages distributed, multi-agency development of coupled modeling systems, controlled experimentation and testing, and exploration of novel model configurations, such as those motivated by research involving managed and interactive ensembles. ESPS codes include the Navy Global Environmental Model (NavGEM), HYbrid Coordinate Ocean Model (HYCOM), and Coupled Ocean Atmosphere Mesoscale Prediction System (COAMPS); the NOAA Environmental Modeling System (NEMS) and the Modular Ocean Model (MOM); the Community Earth System Model (CESM); and the NASA ModelE climate model and GEOS-5 atmospheric general circulation model.

  11. Land-atmosphere coupling and climate prediction over the U.S. Southern Great Plains

    NASA Astrophysics Data System (ADS)

    Williams, Ian N.; Lu, Yaqiong; Kueppers, Lara M.; Riley, William J.; Biraud, Sebastien C.; Bagley, Justin E.; Torn, Margaret S.

    2016-10-01

    Biases in land-atmosphere coupling in climate models can contribute to climate prediction biases, but land models are rarely evaluated in the context of this coupling. We tested land-atmosphere coupling and explored effects of land surface parameterizations on climate prediction in a single-column version of the National Center for Atmospheric Research Community Earth System Model (CESM1.2.2) and an off-line Community Land Model (CLM4.5). The correlation between leaf area index (LAI) and surface evaporative fraction (ratio of latent to total turbulent heat flux) was substantially underpredicted compared to observations in the U.S. Southern Great Plains, while the correlation between soil moisture and evaporative fraction was overpredicted by CLM4.5. To estimate the impacts of these errors on climate prediction, we modified CLM4.5 by prescribing observed LAI, increasing soil resistance to evaporation, increasing minimum stomatal conductance, and increasing leaf reflectance. The modifications improved the predicted soil moisture-evaporative fraction (EF) and LAI-EF correlations in off-line CLM4.5 and reduced the root-mean-square error in summer 2 m air temperature and precipitation in the coupled model. The modifications had the largest effect on prediction during a drought in summer 2006, when a warm bias in daytime 2 m air temperature was reduced from +6°C to a smaller cold bias of -1.3°C, and a corresponding dry bias in precipitation was reduced from -111 mm to -23 mm. The role of vegetation in droughts and heat waves is underpredicted in CESM1.2.2, and improvements in land surface models can improve prediction of climate extremes.

  12. Final Technical Report for Collaborative Research: Developing and Implementing Ocean-Atmosphere Reanalyses for Climate Applications (OARCA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Compo, Gilbert P

    As an important step toward a coupled data assimilation system for generating reanalysis fields needed to assess climate model projections, the Ocean Atmosphere Coupled Reanalysis for Climate Applications (OARCA) project assesses and improves the longest reanalyses currently available of the atmosphere and ocean: the 20th Century Reanalysis Project (20CR) and the Simple Ocean Data Assimilation with sparse observational input (SODAsi) system, respectively. In this project, we make off-line but coordinated improvements in the 20CR and SODAsi datasets, with improvements in one feeding into improvements of the other through an iterative generation of new versions. These datasets now span from themore » 19th to 21st centuries. We then study the extreme weather and variability from days to decades of the resulting datasets. A total of 24 publications have been produced in this project.« less

  13. A transient fully coupled climate-ice-sheet simulation of the last glacial inception

    NASA Astrophysics Data System (ADS)

    Lofverstrom, M.; Otto-Bliesner, B. L.; Lipscomb, W. H.; Fyke, J. G.; Marshall, S.; Sacks, B.; Brady, E. C.

    2017-12-01

    The last glacial inception occurred around 115 ka, following a relative minimum in the Northern Hemisphere summer insolation. It is believed that small and spatially separated ice caps initially formed in the high elevation regions of northern Canada, Scandinavia, and along the Siberian Arctic coast. These ice caps subsequently migrated down in the valleys where they coalesced and formed the initial seeds of the large coherent ice masses that covered the northern parts of the North American and Eurasian continents over most of the last glacial cycle. Sea level records show that the initial growth period lasted for about 10 kyrs, and the resulting ice sheets may have lowered the global sea level by as much as 30 to 50 meters. Here we examine the transient climate system evolution over the period between 118 and 110 ka, using the fully coupled Community Earth System Model, version 2 (CESM2). This model features a two-way coupled high-resolution (4x4 km) ice-sheet component (Community Ice Sheet model, version 2; CISM2) that simulates ice sheets as an interactive component of the climate system. We impose a transient forcing protocol where the greenhouse gas concentrations and the orbital parameters follow the nominal year in the simulation; the model topography is also dynamically evolving in order to reflect changes in ice elevation throughout the simulation. The analysis focuses on how the climate system evolves over this time interval, with a special focus on glacial inception in the high-latitude continents. Results will highlight how the evolving ice sheets compare to data and previous model based reconstructions.

  14. Whole Planet Coupling from Climate to Core: Implications for the Evolution of Rocky Planets and their Prospects for Habitability

    NASA Astrophysics Data System (ADS)

    Foley, B. J.; Driscoll, P. E.

    2015-12-01

    Many factors have conspired to make Earth a home to complex life. Earth has abundant water due to a combination of factors, including orbital distance and the climate regulating feedbacks of the long-term carbon cycle. Earth has plate tectonics, which is crucial for maintaining long-term carbon cycling and may have been an important energy source for the origin of life in seafloor hydrothermal systems. Earth also has a strong magnetic field that shields the atmosphere from the solar wind and the surface from high-energy particles. Synthesizing recent work on these topics shows that water, a temperate climate, plate tectonics, and a strong magnetic field are linked together through a series of negative feedbacks that stabilize the system over geologic timescales. Although the physical mechanism behind plate tectonics on Earth is still poorly understood, climate is thought to be important. In particular, temperate surface temperatures are likely necessary for plate tectonics because they allow for liquid water that may be capable of significantly lowering lithospheric strength, increase convective stresses in the lithosphere, and enhance the effectiveness of "damage" processes such as grainsize reduction. Likewise, plate tectonics is probably crucial for maintaining a temperate climate on Earth through its role in facilitating the long-term carbon cycle, which regulates atmospheric CO2 levels. Therefore, the coupling between plate tectonics and climate is a feedback that is likely of first order importance for the evolution of rocky planets. Finally, plate tectonics is thought to be important for driving the geodynamo. Plate tectonics efficiently cools the mantle, leading to vigorous thermo-chemical convection in the outer core and dynamo action; without plate tectonics inefficient mantle cooling beneath a stagnant lid may prevent a long-lived magnetic field. As the magnetic field shields a planet's atmosphere from the solar wind, the magnetic field may be important for preserving hydrogen, and therefore water, on the surface. Thus whole planet coupling between the magnetic field, atmosphere, mantle, and core is possible. We lay out the basic physics governing whole planet coupling, and discuss the implications this coupling has for the evolution of rocky planets and their prospects for hosting life.

  15. A coupled human-natural systems analysis of irrigated agriculture under changing climate

    NASA Astrophysics Data System (ADS)

    Giuliani, M.; Li, Y.; Castelletti, A.; Gandolfi, C.

    2016-09-01

    Exponentially growing water demands and increasingly uncertain hydrologic regimes due to changes in climate and land use are challenging the sustainability of agricultural water systems. Farmers must adapt their management strategies in order to secure food production and avoid crop failures. Investigating the potential for adaptation policies in agricultural systems requires accounting for their natural and human components, along with their reciprocal interactions. Yet this feedback is generally overlooked in the water resources systems literature. In this work, we contribute a novel modeling approach to study the coevolution of irrigated agriculture under changing climate, advancing the representation of the human component within agricultural systems by using normative meta-models to describe the behaviors of groups of farmers or institutional decisions. These behavioral models, validated against observational data, are then integrated into a coupled human-natural system simulation model to better represent both systems and their coevolution under future changing climate conditions, assuming the adoption of different policy adaptation options, such as cultivating less water demanding crops. The application to the pilot study of the Adda River basin in northern Italy shows that the dynamic coadaptation of water supply and demand allows farmers to avoid estimated potential losses of more than 10 M€/yr under projected climate changes, while unilateral adaptation of either the water supply or the demand are both demonstrated to be less effective. Results also show that the impact of the different policy options varies as function of drought intensity, with water demand adaptation outperforming water supply adaptation when drought conditions become more severe.

  16. Unveiling non-stationary coupling between Amazon and ocean during recent extreme events

    NASA Astrophysics Data System (ADS)

    Ramos, Antônio M. de T.; Zou, Yong; de Oliveira, Gilvan Sampaio; Kurths, Jürgen; Macau, Elbert E. N.

    2018-02-01

    The interplay between extreme events in the Amazon's precipitation and the anomaly in the temperature of the surrounding oceans is not fully understood, especially its causal relations. In this paper, we investigate the climatic interaction between these regions from 1999 until 2012 using modern tools of complex system science. We identify the time scale of the coupling quantitatively and unveil the non-stationary influence of the ocean's temperature. The findings show consistently the distinctions between the coupling in the recent major extreme events in Amazonia, such as the two droughts that happened in 2005 and 2010 and the three floods during 1999, 2009 and 2012. Interestingly, the results also reveal the influence over the anomalous precipitation of Southwest Amazon has become increasingly lagged. The analysis can shed light on the underlying dynamics of the climate network system and consequently can improve predictions of extreme rainfall events.

  17. Toward Process-resolving Synthesis and Prediction of Arctic Climate Change Using the Regional Arctic System Model

    NASA Astrophysics Data System (ADS)

    Maslowski, W.

    2017-12-01

    The Regional Arctic System Model (RASM) has been developed to better understand the operation of Arctic System at process scale and to improve prediction of its change at a spectrum of time scales. RASM is a pan-Arctic, fully coupled ice-ocean-atmosphere-land model with marine biogeochemistry extension to the ocean and sea ice models. The main goal of our research is to advance a system-level understanding of critical processes and feedbacks in the Arctic and their links with the Earth System. The secondary, an equally important objective, is to identify model needs for new or additional observations to better understand such processes and to help constrain models. Finally, RASM has been used to produce sea ice forecasts for September 2016 and 2017, in contribution to the Sea Ice Outlook of the Sea Ice Prediction Network. Future RASM forecasts, are likely to include increased resolution for model components and ecosystem predictions. Such research is in direct support of the US environmental assessment and prediction needs, including those of the U.S. Navy, Department of Defense, and the recent IARPC Arctic Research Plan 2017-2021. In addition to an overview of RASM technical details, selected model results are presented from a hierarchy of climate models together with available observations in the region to better understand potential oceanic contributions to polar amplification. RASM simulations are analyzed to evaluate model skill in representing seasonal climatology as well as interannual and multi-decadal climate variability and predictions. Selected physical processes and resulting feedbacks are discussed to emphasize the need for fully coupled climate model simulations, high model resolution and sensitivity of simulated sea ice states to scale dependent model parameterizations controlling ice dynamics, thermodynamics and coupling with the atmosphere and ocean.

  18. Transient simulations of historical climate change including interactive carbon emissions from land-use change.

    NASA Astrophysics Data System (ADS)

    Matveev, A.; Matthews, H. D.

    2009-04-01

    Carbon fluxes from land conversion are among the most uncertain variables in our understanding of the contemporary carbon cycle, which limits our ability to estimate both the total human contribution to current climate forcing and the net effect of terrestrial biosphere changes on atmospheric CO2 increases. The current generation of coupled climate-carbon models have made significant progress in simulating the coupled climate and carbon cycle response to anthropogenic CO2 emissions, but do not typically include land-use change as a dynamic component of the simulation. In this work we have incorporated a book-keeping land-use carbon accounting model into the University of Victoria Earth System Climate Model (UVic ESCM), and intermediate-complexity coupled climate-carbon model. The terrestrial component of the UVic ESCM allows an aerial competition of five plant functional types (PFTs) in response to climatic conditions and area availability, and tracks the associated changes in affected carbon pools. In order to model CO2 emissions from land conversion in the terrestrial component of the model, we calculate the allocation of carbon to short and long-lived wood products following specified land-cover change, and use varying decay timescales to estimate CO2 emissions. We use recently available spatial datasets of both crop and pasture distributions to drive a series of transient simulations and estimate the net contribution of human land-use change to historical carbon emissions and climate change.

  19. Multiple causes of the Younger Dryas cold period: new insights from coupled model experiments constrained by data assimilation

    NASA Astrophysics Data System (ADS)

    Renssen, Hans; Mairesse, Aurélien; Goosse, Hugues; Mathiot, Pierre; Heiri, Oliver; Roche, Didier M.; Nisancioglu, Kerim H.; Valdes, Paul J.

    2016-04-01

    The Younger Dryas cooling event disrupted the overall warming trend in the North Atlantic region during the last deglaciation. Climate change during the Younger Dryas was abrupt, and thus provides insights into the sensitivity of the climate system to perturbations. The sudden Younger Dryas cooling has traditionally been attributed to a shut-down of the Atlantic meridional overturning circulation by meltwater discharges. However, alternative explanations such as strong negative radiative forcing and a shift in atmospheric circulation have also been offered. In this study we investigate the importance of these different forcings in coupled climate model experiments constrained by data assimilation. We find that the Younger Dryas climate signal as registered in proxy evidence is best simulated using a combination of processes: a weakened Atlantic meridional overturning circulation, moderate negative radiative forcing and an altered atmospheric circulation. We conclude that none of the individual mechanisms alone provide a plausible explanation for the Younger Dryas cold period. We suggest that the triggers for abrupt climate changes like the Younger Dryas are more complex than suggested so far, and that studies on the response of the climate system to perturbations should account for this complexity. Reference: Renssen, H. et al. (2015) Multiple causes of the Younger Dryas cold period. Nature Geoscience 8, 946-949.

  20. C4MIP - The Coupled Climate-Carbon Cycle Model Intercomparison Project: experimental protocol for CMIP6

    NASA Astrophysics Data System (ADS)

    Jones, Chris D.; Arora, Vivek; Friedlingstein, Pierre; Bopp, Laurent; Brovkin, Victor; Dunne, John; Graven, Heather; Hoffman, Forrest; Ilyina, Tatiana; John, Jasmin G.; Jung, Martin; Kawamiya, Michio; Koven, Charlie; Pongratz, Julia; Raddatz, Thomas; Randerson, James T.; Zaehle, Sönke

    2016-08-01

    Coordinated experimental design and implementation has become a cornerstone of global climate modelling. Model Intercomparison Projects (MIPs) enable systematic and robust analysis of results across many models, by reducing the influence of ad hoc differences in model set-up or experimental boundary conditions. As it enters its 6th phase, the Coupled Model Intercomparison Project (CMIP6) has grown significantly in scope with the design and documentation of individual simulations delegated to individual climate science communities. The Coupled Climate-Carbon Cycle Model Intercomparison Project (C4MIP) takes responsibility for design, documentation, and analysis of carbon cycle feedbacks and interactions in climate simulations. These feedbacks are potentially large and play a leading-order contribution in determining the atmospheric composition in response to human emissions of CO2 and in the setting of emissions targets to stabilize climate or avoid dangerous climate change. For over a decade, C4MIP has coordinated coupled climate-carbon cycle simulations, and in this paper we describe the C4MIP simulations that will be formally part of CMIP6. While the climate-carbon cycle community has created this experimental design, the simulations also fit within the wider CMIP activity, conform to some common standards including documentation and diagnostic requests, and are designed to complement the CMIP core experiments known as the Diagnostic, Evaluation and Characterization of Klima (DECK). C4MIP has three key strands of scientific motivation and the requested simulations are designed to satisfy their needs: (1) pre-industrial and historical simulations (formally part of the common set of CMIP6 experiments) to enable model evaluation, (2) idealized coupled and partially coupled simulations with 1 % per year increases in CO2 to enable diagnosis of feedback strength and its components, (3) future scenario simulations to project how the Earth system will respond to anthropogenic activity over the 21st century and beyond. This paper documents in detail these simulations, explains their rationale and planned analysis, and describes how to set up and run the simulations. Particular attention is paid to boundary conditions, input data, and requested output diagnostics. It is important that modelling groups participating in C4MIP adhere as closely as possible to this experimental design.

  1. A new synoptic scale resolving global climate simulation using the Community Earth System Model

    NASA Astrophysics Data System (ADS)

    Small, R. Justin; Bacmeister, Julio; Bailey, David; Baker, Allison; Bishop, Stuart; Bryan, Frank; Caron, Julie; Dennis, John; Gent, Peter; Hsu, Hsiao-ming; Jochum, Markus; Lawrence, David; Muñoz, Ernesto; diNezio, Pedro; Scheitlin, Tim; Tomas, Robert; Tribbia, Joseph; Tseng, Yu-heng; Vertenstein, Mariana

    2014-12-01

    High-resolution global climate modeling holds the promise of capturing planetary-scale climate modes and small-scale (regional and sometimes extreme) features simultaneously, including their mutual interaction. This paper discusses a new state-of-the-art high-resolution Community Earth System Model (CESM) simulation that was performed with these goals in mind. The atmospheric component was at 0.25° grid spacing, and ocean component at 0.1°. One hundred years of "present-day" simulation were completed. Major results were that annual mean sea surface temperature (SST) in the equatorial Pacific and El-Niño Southern Oscillation variability were well simulated compared to standard resolution models. Tropical and southern Atlantic SST also had much reduced bias compared to previous versions of the model. In addition, the high resolution of the model enabled small-scale features of the climate system to be represented, such as air-sea interaction over ocean frontal zones, mesoscale systems generated by the Rockies, and Tropical Cyclones. Associated single component runs and standard resolution coupled runs are used to help attribute the strengths and weaknesses of the fully coupled run. The high-resolution run employed 23,404 cores, costing 250 thousand processor-hours per simulated year and made about two simulated years per day on the NCAR-Wyoming supercomputer "Yellowstone."

  2. Transient coupling relationships of the Holocene Australian monsoon

    NASA Astrophysics Data System (ADS)

    McRobie, F. H.; Stemler, T.; Wyrwoll, K.-H.

    2015-08-01

    The northwest Australian summer monsoon owes a notable degree of its interannual variability to interactions with other regional monsoon systems. Therefore, changes in the nature of these relationships may contribute to variability in monsoon strength over longer time scales. Previous attempts to evaluate how proxy records from the Indonesian-Australian monsoon region correspond to other records from the Indian and East Asian monsoon regions, as well as to El Niño-related proxy records, have been qualitative, relying on 'curve-fitting' methods. Here, we seek a quantitative approach for identifying coupling relationships between paleoclimate proxy records, employing statistical techniques to compute the interdependence of two paleoclimate time series. We verify the use of complex networks to identify coupling relationships between modern climate indices. This method is then extended to a set of paleoclimate proxy records from the Asian, Australasian and South American regions spanning the past 9000 years. The resulting networks demonstrate the existence of coupling relationships between regional monsoon systems on millennial time scales, but also highlight the transient nature of teleconnections during this period. In the context of the northwest Australian summer monsoon, we recognise a shift in coupling relationships from strong interhemispheric links with East Asian and ITCZ-related proxy records in the mid-Holocene to significantly weaker coupling in the later Holocene. Although the identified links cannot explain the underlying physical processes leading to coupling between regional monsoon systems, this method provides a step towards understanding the role that changes in teleconnections play in millennial-to orbital-scale climate variability.

  3. Online coupled regional meteorology-chemistry models in Europe: current status and prospects

    NASA Astrophysics Data System (ADS)

    Baklanov, A.; Schluenzen, K. H.; Suppan, P.; Baldasano, J.; Brunner, D.; Aksoyoglu, S.; Carmichael, G.; Douros, J.; Flemming, J.; Forkel, R.; Galmarini, S.; Gauss, M.; Grell, G.; Hirtl, M.; Joffre, S.; Jorba, O.; Kaas, E.; Kaasik, M.; Kallos, G.; Kong, X.; Korsholm, U.; Kurganskiy, A.; Kushta, J.; Lohmann, U.; Mahura, A.; Manders-Groot, A.; Maurizi, A.; Moussiopoulos, N.; Rao, S. T.; Savage, N.; Seigneur, C.; Sokhi, R.; Solazzo, E.; Solomos, S.; Sørensen, B.; Tsegas, G.; Vignati, E.; Vogel, B.; Zhang, Y.

    2013-05-01

    The simulation of the coupled evolution of atmospheric dynamics, pollutant transport, chemical reactions and atmospheric composition is one of the most challenging tasks in environmental modelling, climate change studies, and weather forecasting for the next decades as they all involve strongly integrated processes. Weather strongly influences air quality (AQ) and atmospheric transport of hazardous materials, while atmospheric composition can influence both weather and climate by directly modifying the atmospheric radiation budget or indirectly affecting cloud formation. Until recently, however, due to the scientific complexities and lack of computational power, atmospheric chemistry and weather forecasting have developed as separate disciplines, leading to the development of separate modelling systems that are only loosely coupled. The continuous increase in computer power has now reached a stage that enables us to perform online coupling of regional meteorological models with atmospheric chemical transport models. The focus on integrated systems is timely, since recent research has shown that meteorology and chemistry feedbacks are important in the context of many research areas and applications, including numerical weather prediction (NWP), AQ forecasting as well as climate and Earth system modelling. However, the relative importance of online integration and its priorities, requirements and levels of detail necessary for representing different processes and feedbacks can greatly vary for these related communities: (i) NWP, (ii) AQ forecasting and assessments, (iii) climate and earth system modelling. Additional applications are likely to benefit from online modelling, e.g.: simulation of volcanic ash or forest fire plumes, pollen warnings, dust storms, oil/gas fires, geo-engineering tests involving changes in the radiation balance. The COST Action ES1004 - European framework for online integrated air quality and meteorology modelling (EuMetChem) - aims at paving the way towards a new generation of online integrated atmospheric chemical transport and meteorology modelling with two-way interactions between different atmospheric processes including dynamics, chemistry, clouds, radiation, boundary layer and emissions. As its first task, we summarise the current status of European modelling practices and experience with online coupled modelling of meteorology with atmospheric chemistry including feedback mechanisms and attempt reviewing the various issues connected to the different modules of such online coupled models but also providing recommendations for coping with them for the benefit of the modelling community at large.

  4. Impacts of Atmosphere-Ocean Coupling on Southern Hemisphere Climate Change

    NASA Technical Reports Server (NTRS)

    Li, Feng; Newman, Paul; Pawson, Steven

    2013-01-01

    Climate in the Southern Hemisphere (SH) has undergone significant changes in recent decades. These changes are closely linked to the shift of the Southern Annular Mode (SAM) towards its positive polarity, which is driven primarily by Antarctic ozone depletion. There is growing evidence that Antarctic ozone depletion has significant impacts on Southern Ocean circulation change. However, it is poorly understood whether and how ocean feedback might impact the SAM and climate change in the SH atmosphere. This outstanding science question is investigated using the Goddard Earth Observing System Coupled Atmosphere-Ocean-Chemistry Climate Model(GEOS-AOCCM).We perform ensemble simulations of the recent past (1960-2010) with and without the interactive ocean. For simulations without the interactive ocean, we use sea surface temperatures and sea ice concentrations produced by the interactive ocean simulations. The differences between these two ensemble simulations quantify the effects of atmosphere-ocean coupling. We will investigate the impacts of atmosphere-ocean coupling on stratospheric processes such as Antarctic ozone depletion and Antarctic polar vortex breakup. We will address whether ocean feedback affects Rossby wave generation in the troposphere and wave propagation into the stratosphere. Another focuson this study is to assess how ocean feedback might affect the tropospheric SAM response to Antarctic ozone depletion

  5. Climate change and stream temperature projections in the Columbia River Basin: biological implications of spatial variation in hydrologic drivers

    USDA-ARS?s Scientific Manuscript database

    Water temperature is a primary physical factor affecting aquatic organisms. Assessment of suitable thermal habitat in freshwater systems is critical for predicting aquatic species responses to changes in climate and for guiding adaptation strategies. We use a hydrologic model coupled with a stream t...

  6. The Earth System Model

    NASA Technical Reports Server (NTRS)

    Schoeberl, Mark; Rood, Richard B.; Hildebrand, Peter; Raymond, Carol

    2003-01-01

    The Earth System Model is the natural evolution of current climate models and will be the ultimate embodiment of our geophysical understanding of the planet. These models are constructed from components - atmosphere, ocean, ice, land, chemistry, solid earth, etc. models and merged together through a coupling program which is responsible for the exchange of data from the components. Climate models and future earth system models will have standardized modules, and these standards are now being developed by the ESMF project funded by NASA. The Earth System Model will have a variety of uses beyond climate prediction. The model can be used to build climate data records making it the core of an assimilation system, and it can be used in OSSE experiments to evaluate. The computing and storage requirements for the ESM appear to be daunting. However, the Japanese ES theoretical computing capability is already within 20% of the minimum requirements needed for some 2010 climate model applications. Thus it seems very possible that a focused effort to build an Earth System Model will achieve succcss.

  7. Future change of water vaiables from HadGEM2-AO simulation

    NASA Astrophysics Data System (ADS)

    Kim, Moon-Hyun; Kang, Hyun-Suk; Lee, Johan; Baek, Hee-Jeong; Cho, Chunho

    2013-04-01

    Complex global models developed for climate prediction are now applied to the future climate projection in a number of global modeling centers around the world. In climate prediction aspects, an atmosphere-ocean coupled model (one-tier climate system) has been recognized to exhibit useful skill for a global or certain regions (Graham et al., 2005). Wang et al. (2005) demonstrates that an AGCM coupled with an ocean model, simulates realistic SST-rainfall relationships for the Asia during the summer period. Also the transition from two-tier to one-tier approach in climate prediction are mainly caused by recent progresses in development of coupled climate models and enlargement of understanding air-sea interactions obtained from international collaborative efforts such as TOGA (the Tropical Ocean-Global Atmosphere) program (Wang et al., 2009). Meanwhile, water resource including river outflow in association with surface and sub-surface water flow is an important part of the global hydrological cycle, and is affected by climate variability and change through recharge processes (Chen et al., 2002), as well as by human interventions in many locations (Petheram et al., 2001). Also, water is critical resource to the social, economic and environmental aspects, and advances of these core elements requires improved water resource management. Better management and use of water need to abundant real time hydro-meteorological (river and weather) information as well as accurate water resource forecasting (Barrett, 1990). For this reason, many studies have recently carrying out the water resource prediction and estimation using hydrology and climate model. For example, Shiklomanov et al. (2011) predicted that water resource in Russian territory increases about 8-10% during 2010-2020 using the unit hydrograph (UH) model based on hydrologic rainfall-runoff model. Anderson et al. (2000) explained the probabilistic seasonal prediction of drought with a simplified climate model coupled hydrology-atmosphere for water resource planning. Arora et al. (1999) and Oki and Sud (1998) developed a method for routing river flows through GCM grid cells. Accordingly, reliable forecasts are expected to help water managers and users with long lead time decisions, leading to greater water use efficiency and better risk management (Wang, 2012). SO, we analysed hydrological cycle and drought index from precipitation, evaporation, runoff, soil moisture, river outflow, and so on using atmosphere-ocean coupled model which called by HadGEM2-AO. Details and added information by this climate projection system about the future water cycle's change will be presented at the workshop. Acknowledgments: This research has been supported by project NIMR-2013-B-2 of the National Institute of Meteorological Research in Korea Meteorological Administration.

  8. Probabilistic projections of 21st century climate change over Northern Eurasia

    NASA Astrophysics Data System (ADS)

    Monier, E.; Sokolov, A. P.; Schlosser, C. A.; Scott, J. R.; Gao, X.

    2013-12-01

    We present probabilistic projections of 21st century climate change over Northern Eurasia using the Massachusetts Institute of Technology (MIT) Integrated Global System Model (IGSM), an integrated assessment model that couples an earth system model of intermediate complexity, with a two-dimensional zonal-mean atmosphere, to a human activity model. Regional climate change is obtained by two downscaling methods: a dynamical downscaling, where the IGSM is linked to a three dimensional atmospheric model; and a statistical downscaling, where a pattern scaling algorithm uses climate-change patterns from 17 climate models. This framework allows for key sources of uncertainty in future projections of regional climate change to be accounted for: emissions projections; climate system parameters (climate sensitivity, strength of aerosol forcing and ocean heat uptake rate); natural variability; and structural uncertainty. Results show that the choice of climate policy and the climate parameters are the largest drivers of uncertainty. We also nd that dierent initial conditions lead to dierences in patterns of change as large as when using different climate models. Finally, this analysis reveals the wide range of possible climate change over Northern Eurasia, emphasizing the need to consider all sources of uncertainty when modeling climate impacts over Northern Eurasia.

  9. Probabilistic projections of 21st century climate change over Northern Eurasia

    NASA Astrophysics Data System (ADS)

    Monier, Erwan; Sokolov, Andrei; Schlosser, Adam; Scott, Jeffery; Gao, Xiang

    2013-12-01

    We present probabilistic projections of 21st century climate change over Northern Eurasia using the Massachusetts Institute of Technology (MIT) Integrated Global System Model (IGSM), an integrated assessment model that couples an Earth system model of intermediate complexity with a two-dimensional zonal-mean atmosphere to a human activity model. Regional climate change is obtained by two downscaling methods: a dynamical downscaling, where the IGSM is linked to a three-dimensional atmospheric model, and a statistical downscaling, where a pattern scaling algorithm uses climate change patterns from 17 climate models. This framework allows for four major sources of uncertainty in future projections of regional climate change to be accounted for: emissions projections, climate system parameters (climate sensitivity, strength of aerosol forcing and ocean heat uptake rate), natural variability, and structural uncertainty. The results show that the choice of climate policy and the climate parameters are the largest drivers of uncertainty. We also find that different initial conditions lead to differences in patterns of change as large as when using different climate models. Finally, this analysis reveals the wide range of possible climate change over Northern Eurasia, emphasizing the need to consider these sources of uncertainty when modeling climate impacts over Northern Eurasia.

  10. The Earth System Prediction Suite: Toward a Coordinated U.S. Modeling Capability

    DOE PAGES

    Theurich, Gerhard; DeLuca, C.; Campbell, T.; ...

    2016-08-22

    The Earth System Prediction Suite (ESPS) is a collection of flagship U.S. weather and climate models and model components that are being instrumented to conform to interoperability conventions, documented to follow metadata standards, and made available either under open-source terms or to credentialed users. Furthermore, the ESPS represents a culmination of efforts to create a common Earth system model architecture, and the advent of increasingly coordinated model development activities in the United States. ESPS component interfaces are based on the Earth System Modeling Framework (ESMF), community-developed software for building and coupling models, and the National Unified Operational Prediction Capability (NUOPC)more » Layer, a set of ESMF-based component templates and interoperability conventions. Our shared infrastructure simplifies the process of model coupling by guaranteeing that components conform to a set of technical and semantic behaviors. The ESPS encourages distributed, multiagency development of coupled modeling systems; controlled experimentation and testing; and exploration of novel model configurations, such as those motivated by research involving managed and interactive ensembles. ESPS codes include the Navy Global Environmental Model (NAVGEM), the Hybrid Coordinate Ocean Model (HYCOM), and the Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS); the NOAA Environmental Modeling System (NEMS) and the Modular Ocean Model (MOM); the Community Earth System Model (CESM); and the NASA ModelE climate model and the Goddard Earth Observing System Model, version 5 (GEOS-5), atmospheric general circulation model.« less

  11. The Earth System Prediction Suite: Toward a Coordinated U.S. Modeling Capability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Theurich, Gerhard; DeLuca, C.; Campbell, T.

    The Earth System Prediction Suite (ESPS) is a collection of flagship U.S. weather and climate models and model components that are being instrumented to conform to interoperability conventions, documented to follow metadata standards, and made available either under open-source terms or to credentialed users. Furthermore, the ESPS represents a culmination of efforts to create a common Earth system model architecture, and the advent of increasingly coordinated model development activities in the United States. ESPS component interfaces are based on the Earth System Modeling Framework (ESMF), community-developed software for building and coupling models, and the National Unified Operational Prediction Capability (NUOPC)more » Layer, a set of ESMF-based component templates and interoperability conventions. Our shared infrastructure simplifies the process of model coupling by guaranteeing that components conform to a set of technical and semantic behaviors. The ESPS encourages distributed, multiagency development of coupled modeling systems; controlled experimentation and testing; and exploration of novel model configurations, such as those motivated by research involving managed and interactive ensembles. ESPS codes include the Navy Global Environmental Model (NAVGEM), the Hybrid Coordinate Ocean Model (HYCOM), and the Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS); the NOAA Environmental Modeling System (NEMS) and the Modular Ocean Model (MOM); the Community Earth System Model (CESM); and the NASA ModelE climate model and the Goddard Earth Observing System Model, version 5 (GEOS-5), atmospheric general circulation model.« less

  12. Adapting inland fisheries management to a changing climate

    USGS Publications Warehouse

    Paukert, Craig P.; Glazer, Bob A.; Hansen, Gretchen J. A.; Irwin, Brian J.; Jacobson, Peter C.; Kershner, Jeffrey L.; Shuter, Brian J.; Whitney, James E.; Lynch, Abigail J.

    2016-01-01

    Natural resource decision makers are challenged to adapt management to a changing climate while balancing short-term management goals with long-term changes in aquatic systems. Adaptation will require developing resilient ecosystems and resilient management systems. Decision makers already have tools to develop or ensure resilient aquatic systems and fisheries such as managing harvest and riparian zones. Because fisheries management often interacts with multiple stakeholders, adaptation strategies involving fisheries managers and other partners focused on land use, policy, and human systems, coupled with long-term monitoring, are necessary for resilient systems. We show how agencies and organizations are adapting to a changing climate in Minnesota and Ontario lakes and Montana streams. We also present how the Florida Fish and Wildlife Commission created a management structure to develop adaptation strategies. These examples demonstrate how organizations and agencies can cope with climate change effects on fishes and fisheries through creating resilient management and ecological systems.

  13. Formation of a CliC/CLIVAR Northern Oceans Regional Panel to advance the understanding of the role of the Arctic in global climate

    NASA Astrophysics Data System (ADS)

    Solomon, A.

    2017-12-01

    The Arctic climate is rapidly transitioning into a new regime with lower sea ice extent and increasingly younger and thinner sea ice pack. The emergent properties of this new regime are yet to be determined since altered feedback processes between ice, ocean, and atmosphere will further impact upper ocean heat content, atmospheric circulation, atmospheric and oceanic stratification, the interactions between subsurface/intermediate warm waters and surface cold and fresh layer, cloud cover, ice growth, among other properties. This emergent new climate regime needs to be understood in terms of the two-way feedback between the Arctic and lower-latitudes (both in the ocean and atmosphere), as well as the local coupling between ocean-sea ice-atmosphere. The net result of these feedbacks will determine the magnitude of future Arctic amplification and potential impacts on mid-latitude weather extremes, among other impacts. A new international panel, the CliC/CLIVAR Northern Oceans Regional Panel, has been established to coordinate efforts that will enhance our ability to monitor the coupled system, understand the driving mechanisms of the system change from a coupled process perspective, and predict the evolution of the emerging "New Arctic" climate. This talk will discuss the scientific motivation for this new panel, the near-term objectives, and plans for deliverables.

  14. Global change modeling for Northern Eurasia: a review and strategies to move forward

    NASA Astrophysics Data System (ADS)

    Monier, E.; Kicklighter, D. W.; Sokolov, A. P.; Zhuang, Q.; Sokolik, I. N.; Lawford, R. G.; Kappas, M.; Paltsev, S.; Groisman, P. Y.

    2017-12-01

    Northern Eurasia is made up of a complex and diverse set of physical, ecological, climatic and human systems, which provide important ecosystem services including the storage of substantial stocks of carbon in its terrestrial ecosystems. At the same time, the region has experienced dramatic climate change, natural disturbances and changes in land management practices over the past century. For these reasons, Northern Eurasia is both a critical region to understand and a complex system with substantial challenges for the modeling community. This review is designed to highlight the state of past and ongoing efforts of the research community to understand and model these environmental, socioeconomic, and climatic changes. We further aim to provide perspectives on the future direction of global change modeling to improve our understanding of the role of Northern Eurasia in the coupled human-Earth system. Modeling efforts have shown that environmental and socioeconomic changes in Northern Eurasia can have major impacts on biodiversity, ecosystems services, environmental sustainability, and the carbon cycle of the region, and beyond. These impacts have the potential to feedback onto and alter the global Earth system. We find that past and ongoing studies have largely focused on specific components of Earth system dynamics and have not systematically examined their feedbacks to the global Earth system and to society. We identify the crucial role of Earth system models in advancing our understanding of feedbacks within the region and with the global system. We further argue for the need for integrated assessment models (IAMs), a suite of models that couple human activity models to Earth system models, which are key to address many emerging issues that require a representation of the coupled human-Earth system.

  15. A review of and perspectives on global change modeling for Northern Eurasia

    NASA Astrophysics Data System (ADS)

    Monier, Erwan; Kicklighter, David W.; Sokolov, Andrei P.; Zhuang, Qianlai; Sokolik, Irina N.; Lawford, Richard; Kappas, Martin; Paltsev, Sergey V.; Groisman, Pavel Ya

    2017-08-01

    Northern Eurasia is made up of a complex and diverse set of physical, ecological, climatic and human systems, which provide important ecosystem services including the storage of substantial stocks of carbon in its terrestrial ecosystems. At the same time, the region has experienced dramatic climate change, natural disturbances and changes in land management practices over the past century. For these reasons, Northern Eurasia is both a critical region to understand and a complex system with substantial challenges for the modeling community. This review is designed to highlight the state of past and ongoing efforts of the research community to understand and model these environmental, socioeconomic, and climatic changes. We further aim to provide perspectives on the future direction of global change modeling to improve our understanding of the role of Northern Eurasia in the coupled human-Earth system. Modeling efforts have shown that environmental and socioeconomic changes in Northern Eurasia can have major impacts on biodiversity, ecosystems services, environmental sustainability, and the carbon cycle of the region, and beyond. These impacts have the potential to feedback onto and alter the global Earth system. We find that past and ongoing studies have largely focused on specific components of Earth system dynamics and have not systematically examined their feedbacks to the global Earth system and to society. We identify the crucial role of Earth system models in advancing our understanding of feedbacks within the region and with the global system. We further argue for the need for integrated assessment models (IAMs), a suite of models that couple human activity models to Earth system models, which are key to address many emerging issues that require a representation of the coupled human-Earth system.

  16. Climate-driven polar motion

    NASA Astrophysics Data System (ADS)

    Celaya, Michael A.; Wahr, John M.; Bryan, Frank O.

    1999-06-01

    The output of a coupled climate system model provides a synthetic climate record with temporal and spatial coverage not attainable with observational data, allowing evaluation of climatic excitation of polar motion on timescales of months to decades. Analysis of the geodetically inferred Chandler excitation power shows that it has fluctuated by up to 90% since 1900 and that it has characteristics representative of a stationary Gaussian process. Our model-predicted climate excitation of the Chandler wobble also exhibits variable power comparable to the observed. Ocean currents and bottom pressure shifts acting together can alone drive the 14-month wobble. The same is true of the excitation generated by the combined effects of barometric pressure and winds. The oceanic and atmospheric contributions are this large because of a relatively high degree of constructive interference between seafloor pressure and currents and between atmospheric pressure and winds. In contrast, excitation by the redistribution of water on land appears largely insignificant. Not surprisingly, the full climate effect is even more capable of driving the wobble than the effects of the oceans or atmosphere alone are. Our match to the observed annual excitation is also improved, by about 17%, over previous estimates made with historical climate data. Efforts to explain the 30-year Markowitz wobble meet with less success. Even so, at periods ranging from months to decades, excitation generated by a model of a coupled climate system makes a close approximation to the amplitude of what is geodetically observed.

  17. Climatic Evolution and Habitability of Terrestrial Planets: Perspectives from Coupled Atmosphere-Mantle Systems

    NASA Astrophysics Data System (ADS)

    Basu Sarkar, D.; Moore, W. B.

    2016-12-01

    A multitude of factors including the distance from the host star and the stage of planetary evolution affect planetary climate and habitability. The complex interactions between the atmosphere and dynamics of the deep interior of the planets along with stellar fluxes present a formidable challenge. This work employs simplified approaches to address these complex issues in a systematic way. To be specific, we are investigating the coupled evolution of atmosphere and mantle dynamics. The overarching goal here is to simulate the evolutionary history of the terrestrial planets, for example Venus, Earth and Mars. This research also aims at deciphering the history of Venus-like runaway greenhouse and thus explore the possibility of cataclysmic shifts in climate of Earth-like planets. We focus on volatile cycling within the solid planets to understand the role of carbon/water in climatic and tectonic outcomes of such planets. In doing so, we are considering the feedbacks in the coupled mantle-atmosphere system. The primary feedback between the atmosphere and mantle is the surface temperature established by the greenhouse effect, which regulates the temperature gradient that drives the mantle convection and controls the rate at which volatiles are exchanged through weathering. We start our models with different initial assumptions to determine the final climate outcomes within a reasonable parameter space. Currently, there are very few planetary examples, to sample the climate outcomes, however this will soon change as exoplanets are discovered and examined. Therefore, we will be able to work with a significant number of potential candidates to answer questions like this one: For every Earth is there one Venus? ten? a thousand?

  18. Modeling lakes and reservoirs in the climate system

    USGS Publications Warehouse

    MacKay, M.D.; Neale, P.J.; Arp, C.D.; De Senerpont Domis, L. N.; Fang, X.; Gal, G.; Jo, K.D.; Kirillin, G.; Lenters, J.D.; Litchman, E.; MacIntyre, S.; Marsh, P.; Melack, J.; Mooij, W.M.; Peeters, F.; Quesada, A.; Schladow, S.G.; Schmid, M.; Spence, C.; Stokes, S.L.

    2009-01-01

    Modeling studies examining the effect of lakes on regional and global climate, as well as studies on the influence of climate variability and change on aquatic ecosystems, are surveyed. Fully coupled atmosphere-land surface-lake climate models that could be used for both of these types of study simultaneously do not presently exist, though there are many applications that would benefit from such models. It is argued here that current understanding of physical and biogeochemical processes in freshwater systems is sufficient to begin to construct such models, and a path forward is proposed. The largest impediment to fully representing lakes in the climate system lies in the handling of lakes that are too small to be explicitly resolved by the climate model, and that make up the majority of the lake-covered area at the resolutions currently used by global and regional climate models. Ongoing development within the hydrological sciences community and continual improvements in model resolution should help ameliorate this issue.

  19. Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5

    NASA Astrophysics Data System (ADS)

    Dufresne, J.-L.; Foujols, M.-A.; Denvil, S.; Caubel, A.; Marti, O.; Aumont, O.; Balkanski, Y.; Bekki, S.; Bellenger, H.; Benshila, R.; Bony, S.; Bopp, L.; Braconnot, P.; Brockmann, P.; Cadule, P.; Cheruy, F.; Codron, F.; Cozic, A.; Cugnet, D.; de Noblet, N.; Duvel, J.-P.; Ethé, C.; Fairhead, L.; Fichefet, T.; Flavoni, S.; Friedlingstein, P.; Grandpeix, J.-Y.; Guez, L.; Guilyardi, E.; Hauglustaine, D.; Hourdin, F.; Idelkadi, A.; Ghattas, J.; Joussaume, S.; Kageyama, M.; Krinner, G.; Labetoulle, S.; Lahellec, A.; Lefebvre, M.-P.; Lefevre, F.; Levy, C.; Li, Z. X.; Lloyd, J.; Lott, F.; Madec, G.; Mancip, M.; Marchand, M.; Masson, S.; Meurdesoif, Y.; Mignot, J.; Musat, I.; Parouty, S.; Polcher, J.; Rio, C.; Schulz, M.; Swingedouw, D.; Szopa, S.; Talandier, C.; Terray, P.; Viovy, N.; Vuichard, N.

    2013-05-01

    We present the global general circulation model IPSL-CM5 developed to study the long-term response of the climate system to natural and anthropogenic forcings as part of the 5th Phase of the Coupled Model Intercomparison Project (CMIP5). This model includes an interactive carbon cycle, a representation of tropospheric and stratospheric chemistry, and a comprehensive representation of aerosols. As it represents the principal dynamical, physical, and bio-geochemical processes relevant to the climate system, it may be referred to as an Earth System Model. However, the IPSL-CM5 model may be used in a multitude of configurations associated with different boundary conditions and with a range of complexities in terms of processes and interactions. This paper presents an overview of the different model components and explains how they were coupled and used to simulate historical climate changes over the past 150 years and different scenarios of future climate change. A single version of the IPSL-CM5 model (IPSL-CM5A-LR) was used to provide climate projections associated with different socio-economic scenarios, including the different Representative Concentration Pathways considered by CMIP5 and several scenarios from the Special Report on Emission Scenarios considered by CMIP3. Results suggest that the magnitude of global warming projections primarily depends on the socio-economic scenario considered, that there is potential for an aggressive mitigation policy to limit global warming to about two degrees, and that the behavior of some components of the climate system such as the Arctic sea ice and the Atlantic Meridional Overturning Circulation may change drastically by the end of the twenty-first century in the case of a no climate policy scenario. Although the magnitude of regional temperature and precipitation changes depends fairly linearly on the magnitude of the projected global warming (and thus on the scenario considered), the geographical pattern of these changes is strikingly similar for the different scenarios. The representation of atmospheric physical processes in the model is shown to strongly influence the simulated climate variability and both the magnitude and pattern of the projected climate changes.

  20. Complexity of Tropical Pacific Ecosystem and Biogeochemistry: Diurnal to Decadal, Plankters to Penguins

    NASA Astrophysics Data System (ADS)

    Murtugudde, R. G.; Wang, X.; Valsala, V.; Karnauskas, K. B.

    2016-12-01

    Tropical Pacific spans nearly 50% of the global tropics allowing to have its own mind in terms of climate variability and physical-biogeochemical interactions. While the El Niño-Southern Oscillation (ENSO) and its flavors get much attention, it is fairly clear by now that any further improvements in ENSO prediction skills and reliability of global warming projections must begin to observe and represent bio-physical interactions in the climate and Earth System models. Coupled climate variability over the tropical Pacific has a global reach with its diurnal to decadal timescales being manifest in ecosystem and biogechemistry. Zonal and meridional contrasts in biogeochemistry across the tropical Pacific is closely related to seasonal variability, ENSO diversity and the PDO. Apparent dominance of ocean dynamic controls on biogeochemistry belies the potential biogeochemical feedbacks on ocean dynamics which may well explain some of the chronic biases in the state-of-the-art climate models. The east Pacific cold-tongue is the most productive open ocean region in the world and home to a unique physical-biogeochmical laboratory, viz., the Galapagos. The Galapagos islands not only control the coupled climate variability via their ability to terminate the equatorial undercurrent but also offer a clear example of a biological loophole in terms of their impact on local upwelling and an expanding penguin habitat in the face of global warming. The complex bio-physical interactions in the cold-tongue and their influence on climate predictions and projections require a holisti thinking on future observing systems. Tropical Pacific offers a natural laboratory for designing a robust and sustained physical-biogeochemical observation system that can effectively bridge climate predictions and projections into a unified framework for subseasonal to multidecadal timescales. Such a system will be a foundation for establishing similar systems over the rest of the World ocean to seemlessly merge climate predictions and projections with the need to constantly monitor climate impacts on marine resources. This talk will focus on the zonal contrasts of the ocean dynamics and biogechemistry across the tropical Pacific to make a case for integrated physical-biogeochemical observations for climate predictions and projections.

  1. Modeling Climate-Water Impacts on Electricity Sector Capacity Expansion: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohen, S. M.; Macknick, J.; Averyt, K.

    2014-05-01

    Climate change has the potential to exacerbate water availability concerns for thermal power plant cooling, which is responsible for 41% of U.S. water withdrawals. This analysis describes an initial link between climate, water, and electricity systems using the National Renewable Energy Laboratory (NREL) Regional Energy Deployment System (ReEDS) electricity system capacity expansion model. Average surface water projections from Coupled Model Intercomparison Project 3 (CMIP3) data are applied to surface water rights available to new generating capacity in ReEDS, and electric sector growth is compared with and without climate-influenced water rights. The mean climate projection has only a small impact onmore » national or regional capacity growth and water use because most regions have sufficient unappropriated or previously retired water rights to offset climate impacts. Climate impacts are notable in southwestern states that purchase fewer water rights and obtain a greater share from wastewater and other higher-cost water resources. The electric sector climate impacts demonstrated herein establish a methodology to be later exercised with more extreme climate scenarios and a more rigorous representation of legal and physical water availability.« less

  2. Early warning signals of Atlantic Meridional Overturning Circulation collapse in a fully coupled climate model

    NASA Astrophysics Data System (ADS)

    Boulton, Chris A.; Allison, Lesley C.; Lenton, Timothy M.

    2014-12-01

    The Atlantic Meridional Overturning Circulation (AMOC) exhibits two stable states in models of varying complexity. Shifts between alternative AMOC states are thought to have played a role in past abrupt climate changes, but the proximity of the climate system to a threshold for future AMOC collapse is unknown. Generic early warning signals of critical slowing down before AMOC collapse have been found in climate models of low and intermediate complexity. Here we show that early warning signals of AMOC collapse are present in a fully coupled atmosphere-ocean general circulation model, subject to a freshwater hosing experiment. The statistical significance of signals of increasing lag-1 autocorrelation and variance vary with latitude. They give up to 250 years warning before AMOC collapse, after ~550 years of monitoring. Future work is needed to clarify suggested dynamical mechanisms driving critical slowing down as the AMOC collapse is approached.

  3. Early warning signals of Atlantic Meridional Overturning Circulation collapse in a fully coupled climate model

    PubMed Central

    Boulton, Chris A.; Allison, Lesley C.; Lenton, Timothy M.

    2014-01-01

    The Atlantic Meridional Overturning Circulation (AMOC) exhibits two stable states in models of varying complexity. Shifts between alternative AMOC states are thought to have played a role in past abrupt climate changes, but the proximity of the climate system to a threshold for future AMOC collapse is unknown. Generic early warning signals of critical slowing down before AMOC collapse have been found in climate models of low and intermediate complexity. Here we show that early warning signals of AMOC collapse are present in a fully coupled atmosphere-ocean general circulation model, subject to a freshwater hosing experiment. The statistical significance of signals of increasing lag-1 autocorrelation and variance vary with latitude. They give up to 250 years warning before AMOC collapse, after ~550 years of monitoring. Future work is needed to clarify suggested dynamical mechanisms driving critical slowing down as the AMOC collapse is approached. PMID:25482065

  4. Early warning signals of Atlantic Meridional Overturning Circulation collapse in a fully coupled climate model.

    PubMed

    Boulton, Chris A; Allison, Lesley C; Lenton, Timothy M

    2014-12-08

    The Atlantic Meridional Overturning Circulation (AMOC) exhibits two stable states in models of varying complexity. Shifts between alternative AMOC states are thought to have played a role in past abrupt climate changes, but the proximity of the climate system to a threshold for future AMOC collapse is unknown. Generic early warning signals of critical slowing down before AMOC collapse have been found in climate models of low and intermediate complexity. Here we show that early warning signals of AMOC collapse are present in a fully coupled atmosphere-ocean general circulation model, subject to a freshwater hosing experiment. The statistical significance of signals of increasing lag-1 autocorrelation and variance vary with latitude. They give up to 250 years warning before AMOC collapse, after ~550 years of monitoring. Future work is needed to clarify suggested dynamical mechanisms driving critical slowing down as the AMOC collapse is approached.

  5. Simulation of climate-change effects on streamflow, lake water budgets, and stream temperature using GSFLOW and SNTEMP, Trout Lake Watershed, Wisconsin

    USGS Publications Warehouse

    Hunt, Randall J.; Walker, John F.; Selbig, William R.; Westenbroek, Stephen M.; Regan, R. Steve

    2013-01-01

    Although groundwater and surface water are considered a single resource, historically hydrologic simulations have not accounted for feedback loops between the groundwater system and other hydrologic processes. These feedbacks include timing and rates of evapotranspiration, surface runoff, soil-zone flow, and interactions with the groundwater system. Simulations that iteratively couple the surface-water and groundwater systems, however, are characterized by long run times and calibration challenges. In this study, calibrated, uncoupled transient surface-water and steady-state groundwater models were used to construct one coupled transient groundwater/surface-water model for the Trout Lake Watershed in north-central Wisconsin, USA. The computer code GSFLOW (Ground-water/Surface-water FLOW) was used to simulate the coupled hydrologic system; a surface-water model represented hydrologic processes in the atmosphere, at land surface, and within the soil-zone, and a groundwater-flow model represented the unsaturated zone, saturated zone, stream, and lake budgets. The coupled GSFLOW model was calibrated by using heads, streamflows, lake levels, actual evapotranspiration rates, solar radiation, and snowpack measurements collected during water years 1998–2007; calibration was performed by using advanced features present in the PEST parameter estimation software suite. Simulated streamflows from the calibrated GSFLOW model and other basin characteristics were used as input to the one-dimensional SNTEMP (Stream-Network TEMPerature) model to simulate daily stream temperature in selected tributaries in the watershed. The temperature model was calibrated to high-resolution stream temperature time-series data measured in 2002. The calibrated GSFLOW and SNTEMP models were then used to simulate effects of potential climate change for the period extending to the year 2100. An ensemble of climate models and emission scenarios was evaluated. Downscaled climate drivers for the period 2010–2100 showed increases in maximum and minimum temperature over the scenario period. Scenarios of future precipitation did not show a monotonic trend like temperature. Uncertainty in the climate drivers increased over time for both temperature and precipitation. Separate calibration of the uncoupled groundwater and surface-water models did not provide a representative initial parameter set for coupled model calibration. A sequentially linked calibration, in which the uncoupled models were linked by means of utility software, provided a starting parameter set suitable for coupled model calibration. Even with sequentially linked calibration, however, transmissivity of the lower part of the aquifer required further adjustment during coupled model calibration to attain reasonable parameter values for evaporation rates off a small seepage lake (a lake with no appreciable surface-water outlets) with a long history of study. The resulting coupled model was well calibrated to most types of observed time-series data used for calibration. Daily stream temperatures measured during 2002 were successfully simulated with SNTEMP; the model fit was acceptable for a range of groundwater inflow rates into the streams. Forecasts of potential climate change scenarios showed growing season length increasing by weeks, and both potential and actual evapotranspiration rates increasing appreciably, in response to increasing air temperature. Simulated actual evapotranspiration rates increased less than simulated potential evapotranspiration rates as a result of water limitation in the root zone during the summer high-evapotranspiration period. The hydrologic-system response to climate change was characterized by a reduction in the importance of the snow-melt pulse and an increase in the importance of fall and winter groundwater recharge. The less dynamic hydrologic regime is likely to result in drier soil conditions in rainfed wetlands and uplands, in contrast to less drying in groundwater-fed systems. Seepage lakes showed larger forecast stage declines related to climate change than did drainage lakes (lakes with outlet streams). Seepage lakes higher in the watershed (nearer to groundwater divides) had less groundwater inflow and thus had larger forecast declines in lake stage; however, ground-water inflow to seepage lakes in general tended to increase as a fraction of the lake budgets with lake-stage decline because inward hydraulic gradients increased. Drainage lakes were characterized by less simulated stage decline as reductions in outlet streamflow of set losses to other water flows. Net groundwater inflow tended to decrease in drainage lakes over the scenario period. Simulated stream temperatures increased appreciably with climate change. The estimated increase in annual average temperature ranged from approximately 1 to 2 degrees Celsius by 2100 in the stream characterized by a high groundwater inflow rate and 2 to 3 degrees Celsius in the stream with a lower rate. The climate drivers used for the climate-change scenarios had appreciable variation between the General Circulation Model and emission scenario selected; this uncertainty was reflected in hydrologic flow and temperature model results. Thus, as with all forecasts of this type, the results are best considered to approximate potential outcomes of climate change.

  6. Climate Reanalysis: Progress and Future Prospects

    NASA Technical Reports Server (NTRS)

    Gelaro, Ron

    2018-01-01

    Reanalysis is the process whereby an unchanging data assimilation system is used to provide a consistent reprocessing of observations, typically spanning an extended segment of the historical data record. The process relies on an underlying model to combine often-disparate observations in a physically consistent manner, enabling production of gridded data sets for a broad range of applications including the study of historical weather events, preparation of climatologies, business sector development and, more recently, climate monitoring. Over the last few decades, several generations of reanalyses of the global atmosphere have been produced by various operational and research centers, focusing more or less on the period of regular conventional and satellite observations beginning in the mid to late twentieth century. There have also been successful efforts to extend atmospheric reanalyses back to the late nineteenth and early twentieth centuries, using mostly surface observations. Much progress has resulted from (and contributed to) advancements in numerical weather prediction, especially improved models and data assimilation techniques, increased computing capacity, the availability of new observation types and efforts to recover and improve the quality of historical ones. The recent extension of forecast systems that allow integrated modeling of meteorological, oceanic, land surface, and chemical variables provide the basic elements for coupled data assimilation. This has opened the door to the development of a new generation of coupled reanalyses of the Earth system, or integrated Earth system analyses (IESA). Evidence so far suggests that this approach can improve the analysis of currently uncoupled components of the Earth system, especially at their interface, and lead to increased predictability. However, extensive analysis coupling as envisioned for IESA, while progressing, still presents significant challenges. These include model biases that can be exacerbated when coupled, component systems with different physical characteristics and different spatial and temporal scales, and component observations in different media with different spatial and temporal frequencies and different latencies. Quantification of uncertainty in reanalyses is also a critical challenge and is important for expanding their utility as a tool for climate change assessment. This talk provides a brief overview of the progress of reanalysis development during recent decades, and describes remaining challenges in the progression toward coupled Earth system reanalyses.

  7. Uncertainty Quantification in Climate Modeling and Projection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qian, Yun; Jackson, Charles; Giorgi, Filippo

    The projection of future climate is one of the most complex problems undertaken by the scientific community. Although scientists have been striving to better understand the physical basis of the climate system and to improve climate models, the overall uncertainty in projections of future climate has not been significantly reduced (e.g., from the IPCC AR4 to AR5). With the rapid increase of complexity in Earth system models, reducing uncertainties in climate projections becomes extremely challenging. Since uncertainties always exist in climate models, interpreting the strengths and limitations of future climate projections is key to evaluating risks, and climate change informationmore » for use in Vulnerability, Impact, and Adaptation (VIA) studies should be provided with both well-characterized and well-quantified uncertainty. The workshop aimed at providing participants, many of them from developing countries, information on strategies to quantify the uncertainty in climate model projections and assess the reliability of climate change information for decision-making. The program included a mixture of lectures on fundamental concepts in Bayesian inference and sampling, applications, and hands-on computer laboratory exercises employing software packages for Bayesian inference, Markov Chain Monte Carlo methods, and global sensitivity analyses. The lectures covered a range of scientific issues underlying the evaluation of uncertainties in climate projections, such as the effects of uncertain initial and boundary conditions, uncertain physics, and limitations of observational records. Progress in quantitatively estimating uncertainties in hydrologic, land surface, and atmospheric models at both regional and global scales was also reviewed. The application of Uncertainty Quantification (UQ) concepts to coupled climate system models is still in its infancy. The Coupled Model Intercomparison Project (CMIP) multi-model ensemble currently represents the primary data for assessing reliability and uncertainties of climate change information. An alternative approach is to generate similar ensembles by perturbing parameters within a single-model framework. One of workshop’s objectives was to give participants a deeper understanding of these approaches within a Bayesian statistical framework. However, there remain significant challenges still to be resolved before UQ can be applied in a convincing way to climate models and their projections.« less

  8. Impacts of Irrigation on Daily Extremes in the Coupled Climate System

    NASA Technical Reports Server (NTRS)

    Puma, Michael J.; Cook, Benjamin I.; Krakauer, Nir; Gentine, Pierre; Nazarenka, Larissa; Kelly, Maxwell; Wada, Yoshihide

    2014-01-01

    Widespread irrigation alters regional climate through changes to the energy and water budgets of the land surface. Within general circulation models, simulation studies have revealed significant changes in temperature, precipitation, and other climate variables. Here we investigate the feedbacks of irrigation with a focus on daily extremes at the global scale. We simulate global climate for the year 2000 with and without irrigation to understand irrigation-induced changes. Our simulations reveal shifts in key climate-extreme metrics. These findings indicate that land cover and land use change may be an important contributor to climate extremes both locally and in remote regions including the low-latitudes.

  9. CWRF performance at downscaling China climate characteristics

    NASA Astrophysics Data System (ADS)

    Liang, Xin-Zhong; Sun, Chao; Zheng, Xiaohui; Dai, Yongjiu; Xu, Min; Choi, Hyun I.; Ling, Tiejun; Qiao, Fengxue; Kong, Xianghui; Bi, Xunqiang; Song, Lianchun; Wang, Fang

    2018-05-01

    The performance of the regional Climate-Weather Research and Forecasting model (CWRF) for downscaling China climate characteristics is evaluated using a 1980-2015 simulation at 30 km grid spacing driven by the ECMWF Interim reanalysis (ERI). It is shown that CWRF outperforms the popular Regional Climate Modeling system (RegCM4.6) in key features including monsoon rain bands, diurnal temperature ranges, surface winds, interannual precipitation and temperature anomalies, humidity couplings, and 95th percentile daily precipitation. Even compared with ERI, which assimilates surface observations, CWRF better represents the geographic distributions of seasonal mean climate and extreme precipitation. These results indicate that CWRF may significantly enhance China climate modeling capabilities.

  10. Climate variability and predictability associated with the Indo-Pacific Oceanic Channel Dynamics in the CCSM4 Coupled System Model

    NASA Astrophysics Data System (ADS)

    Yuan, Dongliang; Xu, Peng; Xu, Tengfei

    2017-01-01

    An experiment using the Community Climate System Model (CCSM4), a participant of the Coupled Model Intercomparison Project phase-5 (CMIP5), is analyzed to assess the skills of this model in simulating and predicting the climate variabilities associated with the oceanic channel dynamics across the Indo-Pacific Oceans. The results of these analyses suggest that the model is able to reproduce the observed lag correlation between the oceanic anomalies in the southeastern tropical Indian Ocean and those in the cold tongue in the eastern equatorial Pacific Ocean at a time lag of 1 year. This success may be largely attributed to the successful simulation of the interannual variations of the Indonesian Throughflow, which carries the anomalies of the Indian Ocean Dipole (IOD) into the western equatorial Pacific Ocean to produce subsurface temperature anomalies, which in turn propagate to the eastern equatorial Pacific to generate ENSO. This connection is termed the "oceanic channel dynamics" and is shown to be consistent with the observational analyses. However, the model simulates a weaker connection between the IOD and the interannual variability of the Indonesian Throughflow transport than found in the observations. In addition, the model overestimates the westerly wind anomalies in the western-central equatorial Pacific in the year following the IOD, which forces unrealistic upwelling Rossby waves in the western equatorial Pacific and downwelling Kelvin waves in the east. This assessment suggests that the CCSM4 coupled climate system has underestimated the oceanic channel dynamics and overestimated the atmospheric bridge processes.

  11. Coupled Crop/Hydrology Model to Estimate Expanded Irrigation Impact on Water Resources

    NASA Astrophysics Data System (ADS)

    Handyside, C. T.; Cruise, J.

    2017-12-01

    A coupled agricultural and hydrologic systems model is used to examine the environmental impact of irrigation in the Southeast. A gridded crop model for the Southeast is used to determine regional irrigation demand. This irrigation demand is used in a regional hydrologic model to determine the hydrologic impact of irrigation. For the Southeast to maintain/expand irrigated agricultural production and provide adaptation to climate change and climate variability it will require integrated agricultural and hydrologic system models that can calculate irrigation demand and the impact of the this demand on the river hydrology. These integrated models can be used as (1) historical tools to examine vulnerability of expanded irrigation to past climate extremes (2) future tools to examine the sustainability of expanded irrigation under future climate scenarios and (3) a real-time tool to allow dynamic water resource management. Such tools are necessary to assure stakeholders and the public that irrigation can be carried out in a sustainable manner. The system tools to be discussed include a gridded version of the crop modeling system (DSSAT). The gridded model is referred to as GriDSSAT. The irrigation demand from GriDSSAT is coupled to a regional hydrologic model developed by the Eastern Forest Environmental Threat Assessment Center of the USDA Forest Service) (WaSSI). The crop model provides the dynamic irrigation demand which is a function of the weather. The hydrologic model includes all other competing uses of water. Examples of use the crop model coupled with the hydrologic model include historical analyses which show the change in hydrology as additional acres of irrigated land are added to water sheds. The first order change in hydrology is computed in terms of changes in the Water Availability Stress Index (WASSI) which is the ratio of water demand (irrigation, public water supply, industrial use, etc.) and water availability from the hydrologic model. Also, statistics such as the number of times certain WASSI thresholds are exceeded are calculated to show the impact of expanded irrigation during times of hydrologic drought and the coincident use of water by other sectors. Also, integrated downstream impacts of irrigation are also calculated through changes in flows through the whole river systems.

  12. A Data Driven Framework for Integrating Regional Climate Models

    NASA Astrophysics Data System (ADS)

    Lansing, C.; Kleese van Dam, K.; Liu, Y.; Elsethagen, T.; Guillen, Z.; Stephan, E.; Critchlow, T.; Gorton, I.

    2012-12-01

    There are increasing needs for research addressing complex climate sensitive issues of concern to decision-makers and policy planners at a regional level. Decisions about allocating scarce water across competing municipal, agricultural, and ecosystem demands is just one of the challenges ahead, along with decisions regarding competing land use priorities such as biofuels, food, and species habitat. Being able to predict the extent of future climate change in the context of introducing alternative energy production strategies requires a new generation of modeling capabilities. We will also need more complete representations of human systems at regional scales, incorporating the influences of population centers, land use, agriculture and existing and planned electrical demand and generation infrastructure. At PNNL we are working towards creating a first-of-a-kind capability known as the Integrated Regional Earth System Model (iRESM). The fundamental goal of the iRESM initiative is the critical analyses of the tradeoffs and consequences of decision and policy making for integrated human and environmental systems. This necessarily combines different scientific processes, bridging different temporal and geographic scales and resolving the semantic differences between them. To achieve this goal, iRESM is developing a modeling framework and supporting infrastructure that enable the scientific team to evaluate different scenarios in light of specific stakeholder questions such as "How do regional changes in mean climate states and climate extremes affect water storage and energy consumption and how do such decisions influence possible mitigation and carbon management schemes?" The resulting capability will give analysts a toolset to gain insights into how regional economies can respond to climate change mitigation policies and accelerated deployment of alternative energy technologies. The iRESM framework consists of a collection of coupled models working with high resolution data that can represent the climate, geography, economy, energy supply, and demand of a region under study; an integrated data management framework that captures information about models, model couplings (workflows), observational and derived data sets, numerical experiments, and the provenance metadata connecting them; and a collaborative environment that enables scientific users to explore the datasets, register models and codes, launch workflows, retrieve provenance, and analyze results. In this presentation we address the challenges of coupling heterogeneous codes and handling large data sets. We describe our integration approach, which is based on a loosely coupled software architecture that supports experimentation and evolution of models on different datasets. We present our software prototype and show the scalability of our approach to handle a large number ( > 17,000) of model runs and a significant quantity of data in the order of terabytes. The resulting environment is now used by domain scientists and has proven useful to improve productivity in the evolving development of iRESM model coupling.

  13. SURFEX v8.0 interface with OASIS3-MCT to couple atmosphere with hydrology, ocean, waves and sea-ice models, from coastal to global scales

    NASA Astrophysics Data System (ADS)

    Voldoire, Aurore; Decharme, Bertrand; Pianezze, Joris; Lebeaupin Brossier, Cindy; Sevault, Florence; Seyfried, Léo; Garnier, Valérie; Bielli, Soline; Valcke, Sophie; Alias, Antoinette; Accensi, Mickael; Ardhuin, Fabrice; Bouin, Marie-Noëlle; Ducrocq, Véronique; Faroux, Stéphanie; Giordani, Hervé; Léger, Fabien; Marsaleix, Patrick; Rainaud, Romain; Redelsperger, Jean-Luc; Richard, Evelyne; Riette, Sébastien

    2017-11-01

    This study presents the principles of the new coupling interface based on the SURFEX multi-surface model and the OASIS3-MCT coupler. As SURFEX can be plugged into several atmospheric models, it can be used in a wide range of applications, from global and regional coupled climate systems to high-resolution numerical weather prediction systems or very fine-scale models dedicated to process studies. The objective of this development is to build and share a common structure for the atmosphere-surface coupling of all these applications, involving on the one hand atmospheric models and on the other hand ocean, ice, hydrology, and wave models. The numerical and physical principles of SURFEX interface between the different component models are described, and the different coupled systems in which the SURFEX OASIS3-MCT-based coupling interface is already implemented are presented.

  14. Investigations of the Climate System Response to Climate Engineering in a Hierarchy of Models

    NASA Astrophysics Data System (ADS)

    McCusker, Kelly E.

    Global warming due to anthropogenic emissions of greenhouse gases is causing negative impacts on diverse ecological and human systems around the globe, and these impacts are projected to worsen as climate continues to warm. In the absence of meaningful greenhouse gas emissions reductions, new strategies have been proposed to engineer the climate, with the aim of preventing further warming and avoiding associated climate impacts. We investigate one such strategy here, falling under the umbrella of `solar radiation management', in which sulfate aerosols are injected into the stratosphere. We use a global climate model with a coupled mixed-layer depth ocean and with a fully-coupled ocean general circulation model to simulate the stabilization of climate by balancing increasing carbon dioxide with increasing stratospheric sulfate concentrations. We evaluate whether or not severe climate impacts, such as melting Arctic sea ice, tropical crop failure, or destabilization of the West Antarctic ice sheet, could be avoided. We find that while tropical climate emergencies might be avoided by use of stratospheric aerosol injections, avoiding polar emergencies cannot be guaranteed due to large residual climate changes in those regions, which are in part due to residual atmospheric circulation anomalies. We also find that the inclusion of a fully-coupled ocean is important for determining the regional climate response because of its dynamical feedbacks. The efficacy of stratospheric sulfate aerosol injections, and solar radiation management more generally, depends on its ability to be maintained indefinitely, without interruption from a variety of possible sources, such as technological failure, a breakdown in global cooperation, lack of funding, or negative unintended consequences. We next consider the scenario in which stratospheric sulfate injections are abruptly terminated after a multi- decadal period of implementation while greenhouse gas emissions have continued unabated. We show that upon cessation, an abrupt, spatially broad, and sustained warming over land occurs that is well outside the bounds of 20th century climate variability. We then use an upwelling-diffusion energy balance climate model to further show the sensitivity of these trends to background greenhouse gas emissions, termination year, and climate sensitivity. We find that the rate of warming from cessation of solar radiation management -- of critical importance for ecological and human systems -- is principally controlled by the background greenhouse gas concentrations. It follows that the only way to avoid the risk of an abrupt and dangerous warming that is inherent to the large-scale implementation of solar radiation management is to also strongly reduce greenhouse gas emissions. The climate system responds to radiative forcing on a diverse spectrum of timescales, which will affect what goals can be achieved for a given stratospheric aerosol implementation. We next investigate how different rates of stratospheric sulfate aerosol deployment affect what climate impacts can be avoided by simulating two rates of increasing stratospheric sulfate concentrations in a fully-coupled global climate model. We find that disparate goals are achieved for different rates of deployment; for a slow ramping of sulfate, land surface temperature trends remain small but sea levels continue to rise for decades, whereas a quick ramp-up of sulfate yields large land surface cooling trends and immediately reduces sea level. However, atmospheric circulation changes also act to create a large-scale subsurface ocean environment around Antarctica that is favorable for increased basal melting of ice sheet outlets, thereby leaving the potential open for increased sea level rise even in the absence of large atmospheric surface warming. We show that instead, when greenhouse gases are abruptly returned to preindustrial levels, circulation anomalies are reversed, and the subsurface ocean environment does not pose the same threat to Antarctic ice sheets. We conclude that again, reduction of greenhouse gases is the preferred strategy for avoiding climate impacts of global warming.

  15. Long-term climate change and the geochemical cycle of carbon

    NASA Technical Reports Server (NTRS)

    Marshall, Hal G.; Walker, James C. G.; Kuhn, William R.

    1988-01-01

    The response of the coupled climate-geochemical system to changes in paleography is examined in terms of the biogeochemical carbon cycle. The simple, zonally averaged energy balance climate model combined with a geochemical carbon cycle model, which was developed to study climate changes, is described. The effects of latitudinal distributions of the continents on the carbon cycle are investigated, and the global silicate weathering rate as a function of latitude is measured. It is observed that a concentration of land area at high altitudes results in a high CO2 partial pressure and a high global average temperature, and for land at low latitudes a cold globe and ice are detected. It is noted that the CO2 greenhouse feedback effect is potentially strong and has a stabilizing effect on the climate system.

  16. Modeling large-scale human alteration of land surface hydrology and climate

    NASA Astrophysics Data System (ADS)

    Pokhrel, Yadu N.; Felfelani, Farshid; Shin, Sanghoon; Yamada, Tomohito J.; Satoh, Yusuke

    2017-12-01

    Rapidly expanding human activities have profoundly affected various biophysical and biogeochemical processes of the Earth system over a broad range of scales, and freshwater systems are now amongst the most extensively altered ecosystems. In this study, we examine the human-induced changes in land surface water and energy balances and the associated climate impacts using a coupled hydrological-climate model framework which also simulates the impacts of human activities on the water cycle. We present three sets of analyses using the results from two model versions—one with and the other without considering human activities; both versions are run in offline and coupled mode resulting in a series of four experiments in total. First, we examine climate and human-induced changes in regional water balance focusing on the widely debated issue of the desiccation of the Aral Sea in central Asia. Then, we discuss the changes in surface temperature as a result of changes in land surface energy balance due to irrigation over global and regional scales. Finally, we examine the global and regional climate impacts of increased atmospheric water vapor content due to irrigation. Results indicate that the direct anthropogenic alteration of river flow in the Aral Sea basin resulted in the loss of 510 km3 of water during the latter half of the twentieth century which explains about half of the total loss of water from the sea. Results of irrigation-induced changes in surface energy balance suggest a significant surface cooling of up to 3.3 K over 1° grids in highly irrigated areas but a negligible change in land surface temperature when averaged over sufficiently large global regions. Results from the coupled model indicate a substantial change in 2 m air temperature and outgoing longwave radiation due to irrigation, highlighting the non-local (regional and global) implications of irrigation. These results provide important insights on the direct human alteration of land surface water and energy balances, highlighting the need to incorporate human activities such as irrigation into the framework of global climate models and Earth system models for better prediction of future changes under increasing human influence and continuing global climate change.

  17. Use of Machine Learning Techniques for Iidentification of Robust Teleconnections to East African Rainfall Variability in Observations and Models

    NASA Technical Reports Server (NTRS)

    Roberts, J. Brent; Robertson, Franklin R.; Funk, Chris

    2014-01-01

    Providing advance warning of East African rainfall variations is a particular focus of several groups including those participating in the Famine Early Warming Systems Network. Both seasonal and long-term model projections of climate variability are being used to examine the societal impacts of hydrometeorological variability on seasonal to interannual and longer time scales. The NASA / USAID SERVIR project, which leverages satellite and modeling-based resources for environmental decision making in developing nations, is focusing on the evaluation of both seasonal and climate model projections to develop downscaled scenarios for using in impact modeling. The utility of these projections is reliant on the ability of current models to capture the embedded relationships between East African rainfall and evolving forcing within the coupled ocean-atmosphere-land climate system. Previous studies have posited relationships between variations in El Niño, the Walker circulation, Pacific decadal variability (PDV), and anthropogenic forcing. This study applies machine learning methods (e.g. clustering, probabilistic graphical model, nonlinear PCA) to observational datasets in an attempt to expose the importance of local and remote forcing mechanisms of East African rainfall variability. The ability of the NASA Goddard Earth Observing System (GEOS5) coupled model to capture the associated relationships will be evaluated using Coupled Model Intercomparison Project Phase 5 (CMIP5) simulations.

  18. Collaborative Research: Improving Decadal Prediction of Arctic Climate Variability and Change Using a Regional Arctic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gutowski, William J.

    This project developed and applied a regional Arctic System model for enhanced decadal predictions. It built on successful research by four of the current PIs with support from the DOE Climate Change Prediction Program, which has resulted in the development of a fully coupled Regional Arctic Climate Model (RACM) consisting of atmosphere, land-hydrology, ocean and sea ice components. An expanded RACM, a Regional Arctic System Model (RASM), has been set up to include ice sheets, ice caps, mountain glaciers, and dynamic vegetation to allow investigation of coupled physical processes responsible for decadal-scale climate change and variability in the Arctic. RASMmore » can have high spatial resolution (~4-20 times higher than currently practical in global models) to advance modeling of critical processes and determine the need for their explicit representation in Global Earth System Models (GESMs). The pan-Arctic region is a key indicator of the state of global climate through polar amplification. However, a system-level understanding of critical arctic processes and feedbacks needs further development. Rapid climate change has occurred in a number of Arctic System components during the past few decades, including retreat of the perennial sea ice cover, increased surface melting of the Greenland ice sheet, acceleration and thinning of outlet glaciers, reduced snow cover, thawing permafrost, and shifts in vegetation. Such changes could have significant ramifications for global sea level, the ocean thermohaline circulation and heat budget, ecosystems, native communities, natural resource exploration, and commercial transportation. The overarching goal of the RASM project has been to advance understanding of past and present states of arctic climate and to improve seasonal to decadal predictions. To do this the project has focused on variability and long-term change of energy and freshwater flows through the arctic climate system. The three foci of this research are: - Changes in the freshwater flux between arctic climate system components resulting from decadal changes in land and sea ice, seasonal snow, vegetation, and ocean circulation. - Changing energetics due to decadal changes in ice mass, vegetation, and air-sea interactions. - The role of small-scale atmospheric and oceanic processes that influence decadal variability. This research has been addressing modes of natural climate variability as well as extreme and rapid climate change. RASM can facilitate studies of climate impacts (e.g., droughts and fires) and of ecosystem adaptations to these impacts.« less

  19. Impacts of Interactive Stratospheric Chemistry on Antarctic and Southern Ocean Climate Change in the Goddard Earth Observing System Version 5 (GEOS-5)

    NASA Technical Reports Server (NTRS)

    Li, Feng; Vikhliaev, Yury V.; Newman, Paul A.; Pawson, Steven; Perlwitz, Judith; Waugh, Darryn W.; Douglass, Anne R.

    2016-01-01

    Stratospheric ozone depletion plays a major role in driving climate change in the Southern Hemisphere. To date, many climate models prescribe the stratospheric ozone layer's evolution using monthly and zonally averaged ozone fields. However, the prescribed ozone underestimates Antarctic ozone depletion and lacks zonal asymmetries. In this study we investigate the impact of using interactive stratospheric chemistry instead of prescribed ozone on climate change simulations of the Antarctic and Southern Ocean. Two sets of 1960-2010 ensemble transient simulations are conducted with the coupled ocean version of the Goddard Earth Observing System Model, version 5: one with interactive stratospheric chemistry and the other with prescribed ozone derived from the same interactive simulations. The model's climatology is evaluated using observations and reanalysis. Comparison of the 1979-2010 climate trends between these two simulations reveals that interactive chemistry has important effects on climate change not only in the Antarctic stratosphere, troposphere, and surface, but also in the Southern Ocean and Antarctic sea ice. Interactive chemistry causes stronger Antarctic lower stratosphere cooling and circumpolar westerly acceleration during November-December-January. It enhances stratosphere-troposphere coupling and leads to significantly larger tropospheric and surface westerly changes. The significantly stronger surface wind stress trends cause larger increases of the Southern Ocean Meridional Overturning Circulation, leading to year-round stronger ocean warming near the surface and enhanced Antarctic sea ice decrease.

  20. The impact of SciDAC on US climate change research and the IPCCAR4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wehner, Michael

    2005-07-08

    SciDAC has invested heavily in climate change research. We offer a candid opinion as to the impact of the DOE laboratories' SciDAC projects on the upcoming Fourth Assessment Report of the Intergovernmental Panel on Climate Change. As a result of the direct importance of climate change to society, climate change research is highly coordinated at the international level. The Intergovernmental Panel on Climate Change (IPCC) is charged with providing regular reports on the state of climate change research to government policymakers. These reports are the product of thousands of scientists efforts. A series of reviews involving both scientists and policymakersmore » make them among the most reviewed documents produced in any scientific field. The high profile of these reports acts a driver to many researchers in the climate sciences. The Fourth Assessment Report (AR4) is scheduled to be released in 2007. SciDAC sponsored research has enabled the United States climate modeling community to make significant contributions to this report. Two large multi-Laboratory SciDAC projects are directly relevant to the activities of the IPCC. The first, entitled ''Collaborative Design and Development of the Community Climate System Model for Terascale Computers'', has made important software contributions to the recently released third version of the Community Climate System Model (CCSM3.0) developed at the National Center for Atmospheric Research. This is a multi-institutional project involving Los Alamos National Laboratory, Oak Ridge National Laboratory, Lawrence Berkeley National Laboratory, Pacific Northwest National Laboratory, Argonne National Laboratory, Lawrence Livermore National Laboratory and the National Center for Atmospheric Research. The original principal investigators were Robert Malone and John B. Drake. The current principal investigators are Phil Jones and John B. Drake. The second project, entitled ''Earth System Grid II: Turning Climate Datasets into Community Resources'' aims to facilitate the distribution of the copious amounts of data produced by coupled climate model integrations to the general scientific community. This is also a multi-institutional project involving Argonne National Laboratory, Oak Ridge National Laboratory, Lawrence Berkeley National Laboratory, Lawrence Livermore National Laboratory and the National Center for Atmospheric Research. The principal investigators are Ian Foster, Don Middleton and Dean Williams. Perhaps most significant among the activities of the ''Collaborative Design'', project was the development of an efficient multi-processor coupling package. CCSM3.0 is an extraordinarily complicated physics code. The fully coupled model consists of separate submodels of the atmosphere, ocean, sea ice and land. In addition, comprehensive biogeochemistry and atmospheric chemistry submodels are under intensive current development. Each of these submodels is a large and sophisticated program in its own right. Furthermore, in the coupled model, each of the submodels, including the coupler, is a separate multiprocessor executable program. The coupler package must efficiently coordinate the communication as well as interpolate or aggregate information between these programs. This regridding function is necessary because each major subsystem (air, water or surface) is allowed to have its own independent grid.« less

  1. Dynamical downscaling of historical climate over CORDEX East Asia domain: A comparison of regional ocean-atmosphere coupled model to stand-alone RCM simulations

    NASA Astrophysics Data System (ADS)

    Zou, Liwei; Zhou, Tianjun; Peng, Dongdong

    2016-02-01

    The FROALS (flexible regional ocean-atmosphere-land system) model, a regional ocean-atmosphere coupled model, has been applied to the Coordinated Regional Downscaling Experiment (CORDEX) East Asia domain. Driven by historical simulations from a global climate system model, dynamical downscaling for the period from 1980 to 2005 has been conducted at a uniform horizontal resolution of 50 km. The impacts of regional air-sea couplings on the simulations of East Asian summer monsoon rainfall have been investigated, and comparisons have been made to corresponding simulations performed using a stand-alone regional climate model (RCM). The added value of the FROALS model with respect to the driving global climate model was evident in terms of both climatology and the interannual variability of summer rainfall over East China by the contributions of both the high horizontal resolution and the reasonably simulated convergence of the moisture fluxes. Compared with the stand-alone RCM simulations, the spatial pattern of the simulated low-level monsoon flow over East Asia and the western North Pacific was improved in the FROALS model due to its inclusion of regional air-sea coupling. The results indicated that the simulated sea surface temperature (SSTs) resulting from the regional air-sea coupling were lower than those derived directly from the driving global model over the western North Pacific north of 15°N. These colder SSTs had both positive and negative effects. On the one hand, they strengthened the western Pacific subtropical high, which improved the simulation of the summer monsoon circulation over East Asia. On the other hand, the colder SSTs suppressed surface evaporation and favored weaker local interannual variability in the SST, which led to less summer rainfall and weaker interannual rainfall variability over the Korean Peninsula and Japan. Overall, the reference simulation performed using the FROALS model is reasonable in terms of rainfall over the land area of East Asia and will become the basis for the generation of climate change scenarios for the CORDEX East Asia domain that will be described in future reports.

  2. Multicentury changes in ocean and land contributions to the climate-carbon feedback

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Randerson, J. T.; Lindsay, K.; Munoz, E.

    Improved constraints on carbon cycle responses to climate change are needed to inform mitigation policy, yet our understanding of how these responses may evolve after 2100 remains highly uncertain. Using the Community Earth System Model (v1.0), we quantified climate-carbon feedbacks from 1850 to 2300 for the Representative Concentration Pathway 8.5 and its extension. In three simulations, land and ocean biogeochemical processes experienced the same trajectory of increasing atmospheric CO 2. Each simulation had a different degree of radiative coupling for CO 2 and other greenhouse gases and aerosols, enabling diagnosis of feedbacks. In a fully coupled simulation, global mean surfacemore » air temperature increased by 9.3 K from 1850 to 2300, with 4.4 K of this warming occurring after 2100. Excluding CO 2, warming from other greenhouse gases and aerosols was 1.6 K by 2300, near a 2 K target needed to avoid dangerous anthropogenic interference with the climate system. Ocean contributions to the climate-carbon feedback increased considerably over time and exceeded contributions from land after 2100. The sensitivity of ocean carbon to climate change was found to be proportional to changes in ocean heat content, as a consequence of this heat modifying transport pathways for anthropogenic CO 2 inflow and solubility of dissolved inorganic carbon. By 2300, climate change reduced cumulative ocean uptake by 330 Pg C, from 1410 Pg C to 1080 Pg C. Land fluxes similarly diverged over time, with climate change reducing stocks by 232 Pg C. Regional influence of climate change on carbon stocks was largest in the North Atlantic Ocean and tropical forests of South America. Our analysis suggests that after 2100, oceans may become as important as terrestrial ecosystems in regulating the magnitude of the climate-carbon feedback.« less

  3. Multicentury changes in ocean and land contributions to the climate-carbon feedback

    NASA Astrophysics Data System (ADS)

    Randerson, J. T.; Lindsay, K.; Munoz, E.; Fu, W.; Moore, J. K.; Hoffman, F. M.; Mahowald, N. M.; Doney, S. C.

    2015-06-01

    Improved constraints on carbon cycle responses to climate change are needed to inform mitigation policy, yet our understanding of how these responses may evolve after 2100 remains highly uncertain. Using the Community Earth System Model (v1.0), we quantified climate-carbon feedbacks from 1850 to 2300 for the Representative Concentration Pathway 8.5 and its extension. In three simulations, land and ocean biogeochemical processes experienced the same trajectory of increasing atmospheric CO2. Each simulation had a different degree of radiative coupling for CO2 and other greenhouse gases and aerosols, enabling diagnosis of feedbacks. In a fully coupled simulation, global mean surface air temperature increased by 9.3 K from 1850 to 2300, with 4.4 K of this warming occurring after 2100. Excluding CO2, warming from other greenhouse gases and aerosols was 1.6 K by 2300, near a 2 K target needed to avoid dangerous anthropogenic interference with the climate system. Ocean contributions to the climate-carbon feedback increased considerably over time and exceeded contributions from land after 2100. The sensitivity of ocean carbon to climate change was found to be proportional to changes in ocean heat content, as a consequence of this heat modifying transport pathways for anthropogenic CO2 inflow and solubility of dissolved inorganic carbon. By 2300, climate change reduced cumulative ocean uptake by 330 Pg C, from 1410 Pg C to 1080 Pg C. Land fluxes similarly diverged over time, with climate change reducing stocks by 232 Pg C. Regional influence of climate change on carbon stocks was largest in the North Atlantic Ocean and tropical forests of South America. Our analysis suggests that after 2100, oceans may become as important as terrestrial ecosystems in regulating the magnitude of the climate-carbon feedback.

  4. Using a dynamic vegetation model for future projections of crop yields: application to Belgium in the framework of the VOTES and MASC projects

    NASA Astrophysics Data System (ADS)

    Jacquemin, Ingrid; Henrot, Alexandra-Jane; Fontaine, Corentin M.; Dendoncker, Nicolas; Beckers, Veronique; Debusscher, Bos; Tychon, Bernard; Hambuckers, Alain; François, Louis

    2016-04-01

    Dynamic vegetation models (DVM) were initially designed to describe the dynamics of natural ecosystems as a function of climate and soil, to study the role of the vegetation in the carbon cycle. These models are now directly coupled with climate models in order to evaluate feedbacks between vegetation and climate. But DVM characteristics allow numerous other applications, leading to amelioration of some of their modules (e.g., evaluating sensitivity of the hydrological module to land surface changes) and developments (e.g., coupling with other models like agent-based models), to be used in ecosystem management and land use planning studies. It is in this dynamic context about DVMs that we have adapted the CARAIB (CARbon Assimilation In the Biosphere) model. One of the main improvements is the implementation of a crop module, allowing the assessment of climate change impacts on crop yields. We try to validate this module at different scales: - from the plot level, with the use of eddy-covariance data from agricultural sites in the FLUXNET network, such as Lonzée (Belgium) or other Western European sites (Grignon, Dijkgraaf,…), - to the country level, for which we compare the crop yield calculated by CARAIB to the crop yield statistics for Belgium and for different agricultural regions of the country. Another challenge for the CARAIB DVM was to deal with the landscape dynamics, which is not directly possible due to the lack of consideration of anthropogenic factors in the system. In the framework of the VOTES and the MASC projects, CARAIB is coupled with an agent-based model (ABM), representing the societal component of the system. This coupled module allows the use of climate and socio-economic scenarios, particularly interesting for studies which aim at ensuring a sustainable approach. This module has particularly been exploited in the VOTES project, where the objective was to provide a social, biophysical and economic assessment of the ecosystem services in four municipalities under urban pressure in the center of Belgium. The biophysical valuation was carried out with the coupled module, allowing a quantitative evaluation of key ecosystem services as a function of three climatic and socio-economic scenarios.

  5. Validation of newly designed regional earth system model (RegESM) for Mediterranean Basin

    NASA Astrophysics Data System (ADS)

    Turuncoglu, Ufuk Utku; Sannino, Gianmaria

    2017-05-01

    We present a validation analysis of a regional earth system model system (RegESM) for the Mediterranean Basin. The used configuration of the modeling system includes two active components: a regional climate model (RegCM4) and an ocean modeling system (ROMS). To assess the performance of the coupled modeling system in representing the climate of the basin, the results of the coupled simulation (C50E) are compared to the results obtained by a standalone atmospheric simulation (R50E) as well as several observation datasets. Although there is persistent cold bias in fall and winter, which is also seen in previous studies, the model reproduces the inter-annual variability and the seasonal cycles of sea surface temperature (SST) in a general good agreement with the available observations. The analysis of the near-surface wind distribution and the main circulation of the sea indicates that the coupled model can reproduce the main characteristics of the Mediterranean Sea surface and intermediate layer circulation as well as the seasonal variability of wind speed and direction when it is compared with the available observational datasets. The results also reveal that the simulated near-surface wind speed and direction have poor performance in the Gulf of Lion and surrounding regions that also affects the large positive SST bias in the region due to the insufficient horizontal resolution of the atmospheric component of the coupled modeling system. The simulated seasonal climatologies of the surface heat flux components are also consistent with the CORE.2 and NOCS datasets along with the overestimation in net long-wave radiation and latent heat flux (or evaporation, E), although a large observational uncertainty is found in these variables. Also, the coupled model tends to improve the latent heat flux by providing a better representation of the air-sea interaction as well as total heat flux budget over the sea. Both models are also able to reproduce the temporal evolution of the inter-annual anomaly of surface air temperature and precipitation (P) over defined sub-regions. The Mediterranean water budget (E, P and E-P) estimates also show that the coupled model has high skill in the representation of water budget of the Mediterranean Sea. To conclude, the coupled model reproduces climatological land surface fields and the sea surface variables in the range of observation uncertainty and allow studying air-sea interaction and main regional climate characteristics of the basin.

  6. The evolution of a coupled ice shelf-ocean system under different climate states

    NASA Astrophysics Data System (ADS)

    Grosfeld, Klaus; Sandhäger, Henner

    2004-07-01

    Based on a new approach for coupled applications of an ice shelf model and an ocean general circulation model, we investigate the evolution of an ice shelf-ocean system and its sensitivity to changed climatic boundary conditions. Combining established 3D models into a coupled model system enabled us to study the reaction and feedbacks of each component to changes at their interface, the ice shelf base. After calculating the dynamics for prescribed initial ice shelf and bathymetric geometries, the basal mass balance determines the system evolution. In order to explore possible developments for given boundary conditions, an idealized geometry has been chosen, reflecting basic features of the Filchner-Ronne Ice Shelf, Antarctica. The model system is found to be especially sensitive in regions where high ablation or accretion rates occur. Ice Shelf Water formation as well as the build up of a marine ice body, resulting from accretion of marine ice, is simulated, indicating strong interaction processes. To improve consistency between modeled and observed ice shelf behavior, we incorporate the typical cycle of steady ice front advance and sudden retreat due to tabular iceberg calving in our time-dependent simulations. Our basic hypothesis is that iceberg break off is associated with abrupt crack propagation along elongated anomalies of the inherent stress field of the ice body. This new concept yields glaciologically plausible results and represents an auspicious basis for the development of a thorough calving criterion. Experiments under different climatic conditions (ocean warming of 0.2 and 0.5 °C and doubled surface accumulation rates) show the coupled model system to be sensitive especially to ocean warming. Increased basal melt rates of 100% for the 0.5 °C ocean warming scenario and an asymmetric development of ice shelf thicknesses suggest a high vulnerability of ice shelf regions, which represent pivotal areas between the Antarctic Ice Sheet and the Southern Ocean.

  7. The Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC)

    NASA Astrophysics Data System (ADS)

    Nicolaus, M.; Rex, M.; Dethloff, K.; Shupe, M.; Sommerfeld, A.

    2016-12-01

    The Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) is a key international flagship initiative under the auspices of the International Arctic Science Committee (IASC). The main aim of MOSAiC is to improve our understanding of the functioning of the Arctic coupled system with a complex interplay between processes in the atmosphere, ocean, sea ice and ecosystem coupled through bio-geochemical interactions. The main objective of MOSAiC is to develop a better understanding of these important coupled-system processes so they can be more accurately represented in regional- and global-scale weather- and climate models. Observations covering a full annual cycle over the Arctic Ocean of many critical parameters such as cloud properties, surface energy fluxes, atmospheric aerosols, small-scale sea-ice and oceanic processes, biological feedbacks with the sea-ice ice and ocean, and others have never been made in the central Arctic in all seasons, and certainly not in a coupled system fashion. The main scientific goals focus on data assimilation for numerical weather prediction models, improved sea ice forecasts and climate models, ground truth for satellite remote sensing, energy budget and fluxes through interfaces, sources, sinks and cycles of chemical species, boundary layer processes, habitat conditions and primary productivity and stakeholder services. The MOSAiC Observatory will be deployed in, and drift with, the Arctic sea-ice pack for a full annual cycle, starting in fall 2019 and ending in fall 2020. Initial drift plans are to start in the newly forming fall sea-ice in the East Siberian Sea and follow the Transpolar Drift. The German Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research will made a huge contribution with the icebreaker Polarstern to serve as the central drifting observatory for this year long drift, and the US Department of Energy has committed a comprehensive atmospheric measurement suite. Many other nations and agencies have expressed interest in participation and in gaining access to this unprecedented observational dataset.

  8. Effects of Drake Passage on the Ocean's Thermal and Mechanical Energy Budget in a Coupled AOGCM

    NASA Astrophysics Data System (ADS)

    von der Heydt, A. S.; Viebahn, J. P.

    2016-12-01

    During the Cenozoic Earth's climate has undergone a major long-term transition from `greenhouse' to `icehouse' conditions with extensive ice sheets in the polar regions of both hemispheres. The gradual cooling may be seen as response to the overall slowly decreasing atmospheric CO2-concentration due to weathering processes in the Earth System, however, continental geometry has changed considerably over this period and the long-term gradual trend was interrupted, by several rapid transitions and periods where temperature and greenhouse gas concentrations seem to be decoupled. The Eocene-Oligocene boundary ( 34 Ma, E/O) and mid-Miocene climatic transition ( 13 Ma, MCT) reflect major phases of Antarctic ice sheet build-up and global climate cooling, while Northern Hemisphere ice sheets developed much later ( 2.7Ma). Thresholds in atmospheric CO2-concentration together with feedback mechanisms related to land ice formation are among the favoured mechanisms of these climatic transitions, while the long-proposed ocean circulation changes caused by opening of tectonic gateways seem to play a less direct role. The opening of the Southern Ocean gateways, however, has eventually led to the development of today's strongest ocean current, the Antarctic Circumpolar Current, playing a major role in the transport properties of the global ocean circulation. The overall state of the global ocean circulation, therefore, must precondition the climate system to dramatic events such as major ice sheet formation. Closing Drake Passage in ocean-only and coupled climate models under otherwise present-day boundary conditions has become a classic experiment, indicating that there exists a considerable uncertainty in the climate response of those models to a closed Drake Passage. Here we quantify the climate response to a closed Drake Passage in a state-of-the-art coupled climate model (CESM). We show that the ocean gateway mechanism is robust in the sense that the equatorward expansion of the Southern Ocean sub-polar gyres inevitably leads to widespread warming around Antarctica. Moreover, we provide a framework to characterise the ocean temperature response to a closed Drake Passage in terms of both the mechanical and thermal energy budget of the ocean.

  9. Sensitivity of the Tropical Ocean-Atmosphere to Seasonal and Long-Term Climate Forcing

    NASA Technical Reports Server (NTRS)

    Kim, K.-M.; Lau, K.-M.

    1999-01-01

    Since the pioneer works of Bjerknes (1966,1969) many studies have been conducted to understand the El Nino and Southern Oscillation (ENSO) phenomenon. These studies have led to a basic understanding of the dynamics of El Nino. Central to the couple dynamics of ENSO is the delayed action oscillator theory (Suarez and Schopf 1988), which successfully describes the cyclic feature of El Nino. While the oscillatory feature of El Nino is reasonably well understood, the irregularity of El Nino, the effect of monsoon on ENSO, and the response of coupled system to the global warming are still under debate. In the present study, we attempt to provide some theoretical understanding of possible impacts of seasonal cycle, monsoon, and climate changes on ENSO using intermediate coupled model.

  10. Fast Response of the Tropics to an Abrupt Loss of Arctic Sea Ice via Ocean Dynamics

    NASA Astrophysics Data System (ADS)

    Wang, Kun; Deser, Clara; Sun, Lantao; Tomas, Robert A.

    2018-05-01

    The role of ocean dynamics in the transient adjustment of the coupled climate system to an abrupt loss of Arctic sea ice is investigated using experiments with Community Climate System Model version 4 in two configurations: a thermodynamic slab mixed layer ocean and a full-depth ocean that includes both dynamics and thermodynamics. Ocean dynamics produce a distinct sea surface temperature warming maximum in the eastern equatorial Pacific, accompanied by an equatorward intensification of the Intertropical Convergence Zone and Hadley Circulation. These tropical responses are established within 25 years of ice loss and contrast markedly with the quasi-steady antisymmetric coupled response in the slab-ocean configuration. A heat budget analysis reveals the importance of anomalous vertical advection tied to a monotonic temperature increase below 200 m for the equatorial sea surface temperature warming maximum in the fully coupled model. Ocean dynamics also rapidly modify the midlatitude atmospheric response to sea ice loss.

  11. Interactive coupling of regional climate and sulfate aerosol models over eastern Asia

    NASA Astrophysics Data System (ADS)

    Qian, Yun; Giorgi, Filippo

    1999-03-01

    The NCAR regional climate model (RegCM) is interactively coupled to a simple radiatively active sulfate aerosol model over eastern Asia. Both direct and indirect aerosol effects are represented. The coupled model system is tested for two simulation periods, November 1994 and July 1995, with aerosol sources representative of present-day anthropogenic sulfur emissions. The model sensitivity to the intensity of the aerosol source is also studied. The main conclusions from our work are as follows: (1) The aerosol distribution and cycling processes show substantial regional spatial variability, and temporal variability varying on a range of scales, from the diurnal scale of boundary layer and cumulus cloud evolution to the 3-10 day scale of synoptic scale events and the interseasonal scale of general circulation features; (2) both direct and indirect aerosol forcings have regional effects on surface climate; (3) the regional climate response to the aerosol forcing is highly nonlinear, especially during the summer, due to the interactions with cloud and precipitation processes; (4) in our simulations the role of the aerosol indirect effects is dominant over that of direct effects; (5) aerosol-induced feedback processes can affect the aerosol burdens at the subregional scale. This work constitutes the first step in a long term research project aimed at coupling a hierarchy of chemistry/aerosol models to the RegCM over the eastern Asia region.

  12. An OSSE Study for Deep Argo Array using the GFDL Ensemble Coupled Data Assimilation System

    NASA Astrophysics Data System (ADS)

    Chang, You-Soon; Zhang, Shaoqing; Rosati, Anthony; Vecchi, Gabriel A.; Yang, Xiaosong

    2018-03-01

    An observing system simulation experiment (OSSE) using an ensemble coupled data assimilation system was designed to investigate the impact of deep ocean Argo profile assimilation in a biased numerical climate system. Based on the modern Argo observational array and an artificial extension to full depth, "observations" drawn from one coupled general circulation model (CM2.0) were assimilated into another model (CM2.1). Our results showed that coupled data assimilation with simultaneous atmospheric and oceanic constraints plays a significant role in preventing deep ocean drift. However, the extension of the Argo array to full depth did not significantly improve the quality of the oceanic climate estimation within the bias magnitude in the twin experiment. Even in the "identical" twin experiment for the deep Argo array from the same model (CM2.1) with the assimilation model, no significant changes were shown in the deep ocean, such as in the Atlantic meridional overturning circulation and the Antarctic bottom water cell. The small ensemble spread and corresponding weak constraints by the deep Argo profiles with medium spatial and temporal resolution may explain why the deep Argo profiles did not improve the deep ocean features in the assimilation system. Additional studies using different assimilation methods with improved spatial and temporal resolution of the deep Argo array are necessary in order to more thoroughly understand the impact of the deep Argo array on the assimilation system.

  13. Impact of Physics Parameterization Ordering in a Global Atmosphere Model

    DOE PAGES

    Donahue, Aaron S.; Caldwell, Peter M.

    2018-02-02

    Because weather and climate models must capture a wide variety of spatial and temporal scales, they rely heavily on parameterizations of subgrid-scale processes. The goal of this study is to demonstrate that the assumptions used to couple these parameterizations have an important effect on the climate of version 0 of the Energy Exascale Earth System Model (E3SM) General Circulation Model (GCM), a close relative of version 1 of the Community Earth System Model (CESM1). Like most GCMs, parameterizations in E3SM are sequentially split in the sense that parameterizations are called one after another with each subsequent process feeling the effectmore » of the preceding processes. This coupling strategy is noncommutative in the sense that the order in which processes are called impacts the solution. By examining a suite of 24 simulations with deep convection, shallow convection, macrophysics/microphysics, and radiation parameterizations reordered, process order is shown to have a big impact on predicted climate. In particular, reordering of processes induces differences in net climate feedback that are as big as the intermodel spread in phase 5 of the Coupled Model Intercomparison Project. One reason why process ordering has such a large impact is that the effect of each process is influenced by the processes preceding it. Where output is written is therefore an important control on apparent model behavior. Application of k-means clustering demonstrates that the positioning of macro/microphysics and shallow convection plays a critical role on the model solution.« less

  14. Impact of Physics Parameterization Ordering in a Global Atmosphere Model

    NASA Astrophysics Data System (ADS)

    Donahue, Aaron S.; Caldwell, Peter M.

    2018-02-01

    Because weather and climate models must capture a wide variety of spatial and temporal scales, they rely heavily on parameterizations of subgrid-scale processes. The goal of this study is to demonstrate that the assumptions used to couple these parameterizations have an important effect on the climate of version 0 of the Energy Exascale Earth System Model (E3SM) General Circulation Model (GCM), a close relative of version 1 of the Community Earth System Model (CESM1). Like most GCMs, parameterizations in E3SM are sequentially split in the sense that parameterizations are called one after another with each subsequent process feeling the effect of the preceding processes. This coupling strategy is noncommutative in the sense that the order in which processes are called impacts the solution. By examining a suite of 24 simulations with deep convection, shallow convection, macrophysics/microphysics, and radiation parameterizations reordered, process order is shown to have a big impact on predicted climate. In particular, reordering of processes induces differences in net climate feedback that are as big as the intermodel spread in phase 5 of the Coupled Model Intercomparison Project. One reason why process ordering has such a large impact is that the effect of each process is influenced by the processes preceding it. Where output is written is therefore an important control on apparent model behavior. Application of k-means clustering demonstrates that the positioning of macro/microphysics and shallow convection plays a critical role on the model solution.

  15. Impact of Physics Parameterization Ordering in a Global Atmosphere Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donahue, Aaron S.; Caldwell, Peter M.

    Because weather and climate models must capture a wide variety of spatial and temporal scales, they rely heavily on parameterizations of subgrid-scale processes. The goal of this study is to demonstrate that the assumptions used to couple these parameterizations have an important effect on the climate of version 0 of the Energy Exascale Earth System Model (E3SM) General Circulation Model (GCM), a close relative of version 1 of the Community Earth System Model (CESM1). Like most GCMs, parameterizations in E3SM are sequentially split in the sense that parameterizations are called one after another with each subsequent process feeling the effectmore » of the preceding processes. This coupling strategy is noncommutative in the sense that the order in which processes are called impacts the solution. By examining a suite of 24 simulations with deep convection, shallow convection, macrophysics/microphysics, and radiation parameterizations reordered, process order is shown to have a big impact on predicted climate. In particular, reordering of processes induces differences in net climate feedback that are as big as the intermodel spread in phase 5 of the Coupled Model Intercomparison Project. One reason why process ordering has such a large impact is that the effect of each process is influenced by the processes preceding it. Where output is written is therefore an important control on apparent model behavior. Application of k-means clustering demonstrates that the positioning of macro/microphysics and shallow convection plays a critical role on the model solution.« less

  16. Earth system sensitivity inferred from Pliocene modelling and data

    USGS Publications Warehouse

    Lunt, D.J.; Haywood, A.M.; Schmidt, G.A.; Salzmann, U.; Valdes, P.J.; Dowsett, H.J.

    2010-01-01

    Quantifying the equilibrium response of global temperatures to an increase in atmospheric carbon dioxide concentrations is one of the cornerstones of climate research. Components of the Earths climate system that vary over long timescales, such as ice sheets and vegetation, could have an important effect on this temperature sensitivity, but have often been neglected. Here we use a coupled atmosphere-ocean general circulation model to simulate the climate of the mid-Pliocene warm period (about three million years ago), and analyse the forcings and feedbacks that contributed to the relatively warm temperatures. Furthermore, we compare our simulation with proxy records of mid-Pliocene sea surface temperature. Taking these lines of evidence together, we estimate that the response of the Earth system to elevated atmospheric carbon dioxide concentrations is 30-50% greater than the response based on those fast-adjusting components of the climate system that are used traditionally to estimate climate sensitivity. We conclude that targets for the long-term stabilization of atmospheric greenhouse-gas concentrations aimed at preventing a dangerous human interference with the climate system should take into account this higher sensitivity of the Earth system. ?? 2010 Macmillan Publishers Limited. All rights reserved.

  17. AgMIP Climate Data and Scenarios for Integrated Assessment. Chapter 3

    NASA Technical Reports Server (NTRS)

    Ruane, Alexander C.; Winter, Jonathan M.; McDermid, Sonali P.; Hudson, Nicholas I.

    2015-01-01

    Climate change presents a great challenge to the agricultural sector as changes in precipitation, temperature, humidity, and circulation patterns alter the climatic conditions upon which many agricultural systems rely. Projections of future climate conditions are inherently uncertain owing to a lack of clarity on how society will develop, policies that may be implemented to reduce greenhouse-gas (GHG) emissions, and complexities in modeling the atmosphere, ocean, land, cryosphere, and biosphere components of the climate system. Global climate models (GCMs) are based on well-established physics of each climate component that enable the models to project climate responses to changing GHG concentration scenarios (Stocker et al., 2013).The most recent iteration of the Coupled Model Intercomparison Project (CMIP5; Taylor et al., 2012) utilized representative concentration pathways (RCPs) to cover the range of plausible GHG concentrations out past the year 2100, with RCP8.5 representing an extreme scenario and RCP4.5 representing a lower concentrations scenario (Moss et al., 2010).

  18. Ocean Data Assimilation in Support of Climate Applications: Status and Perspectives.

    PubMed

    Stammer, D; Balmaseda, M; Heimbach, P; Köhl, A; Weaver, A

    2016-01-01

    Ocean data assimilation brings together observations with known dynamics encapsulated in a circulation model to describe the time-varying ocean circulation. Its applications are manifold, ranging from marine and ecosystem forecasting to climate prediction and studies of the carbon cycle. Here, we address only climate applications, which range from improving our understanding of ocean circulation to estimating initial or boundary conditions and model parameters for ocean and climate forecasts. Because of differences in underlying methodologies, data assimilation products must be used judiciously and selected according to the specific purpose, as not all related inferences would be equally reliable. Further advances are expected from improved models and methods for estimating and representing error information in data assimilation systems. Ultimately, data assimilation into coupled climate system components is needed to support ocean and climate services. However, maintaining the infrastructure and expertise for sustained data assimilation remains challenging.

  19. Towards the Prediction of Decadal to Centennial Climate Processes in the Coupled Earth System Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Zhengyu; Kutzbach, J.; Jacob, R.

    2011-12-05

    In this proposal, we have made major advances in the understanding of decadal and long term climate variability. (a) We performed a systematic study of multidecadal climate variability in FOAM-LPJ and CCSM-T31, and are starting exploring decadal variability in the IPCC AR4 models. (b) We develop several novel methods for the assessment of climate feedbacks in the observation. (c) We also developed a new initialization scheme DAI (Dynamical Analogue Initialization) for ensemble decadal prediction. (d) We also studied climate-vegetation feedback in the observation and models. (e) Finally, we started a pilot program using Ensemble Kalman Filter in CGCM for decadalmore » climate prediction.« less

  20. Which complexity of regional climate system models is essential for downscaling anthropogenic climate change in the Northwest European Shelf?

    NASA Astrophysics Data System (ADS)

    Mathis, Moritz; Elizalde, Alberto; Mikolajewicz, Uwe

    2018-04-01

    Climate change impact studies for the Northwest European Shelf (NWES) make use of various dynamical downscaling strategies in the experimental setup of regional ocean circulation models. Projected change signals from coupled and uncoupled downscalings with different domain sizes and forcing global and regional models show substantial uncertainty. In this paper, we investigate influences of the downscaling strategy on projected changes in the physical and biogeochemical conditions of the NWES. Our results indicate that uncertainties due to different downscaling strategies are similar to uncertainties due to the choice of the parent global model and the downscaling regional model. Downscaled change signals reveal to depend stronger on the downscaling strategy than on the model skills in simulating present-day conditions. Uncoupled downscalings of sea surface temperature (SST) changes are found to be tightly constrained by the atmospheric forcing. The incorporation of coupled air-sea interaction, by contrast, allows the regional model system to develop independently. Changes in salinity show a higher sensitivity to open lateral boundary conditions and river runoff than to coupled or uncoupled atmospheric forcings. Dependencies on the downscaling strategy for changes in SST, salinity, stratification and circulation collectively affect changes in nutrient import and biological primary production.

  1. Land-atmosphere coupling and climate prediction over the U.S. Southern Great Plains

    NASA Astrophysics Data System (ADS)

    Williams, I. N.; Lu, Y.; Kueppers, L. M.; Riley, W. J.; Biraud, S.; Bagley, J. E.; Torn, M. S.

    2016-12-01

    Biases in land-atmosphere coupling in climate models can contribute to climate prediction biases, but land models are rarely evaluated in the context of this coupling. We tested land-atmosphere coupling and explored effects of land surface parameterizations on climate prediction in a single-column version of the NCAR Community Earth System Model (CESM1.2.2) and an offline Community Land Model (CLM4.5). The correlation between leaf area index (LAI) and surface evaporative fraction (ratio of latent to total turbulent heat flux) was substantially underpredicted compared to observations in the U.S. Southern Great Plains, while the correlation between soil moisture and evaporative fraction was overpredicted by CLM4.5. These correlations were improved by prescribing observed LAI, increasing soil resistance to evaporation, increasing minimum stomatal conductance, and increasing leaf reflectance. The modifications reduced the root mean squared error (RMSE) in daytime 2 m air temperature from 3.6 C to 2 C in summer (JJA), and reduced RMSE in total JJA precipitation from 133 to 84 mm. The modifications had the largest effect on prediction of summer drought in 2006, when a warm bias in daytime 2 m air temperature was reduced from +6 C to a smaller cold bias of -1.3 C, and a corresponding dry bias in total JJA precipitation was reduced from -111 mm to -23 mm. Thus, the role of vegetation in droughts and heat waves is likely underpredicted in CESM1.2.2, and improvements in land surface models can improve prediction of climate extremes.

  2. Decadal climate predictions improved by ocean ensemble dispersion filtering

    NASA Astrophysics Data System (ADS)

    Kadow, C.; Illing, S.; Kröner, I.; Ulbrich, U.; Cubasch, U.

    2017-06-01

    Decadal predictions by Earth system models aim to capture the state and phase of the climate several years in advance. Atmosphere-ocean interaction plays an important role for such climate forecasts. While short-term weather forecasts represent an initial value problem and long-term climate projections represent a boundary condition problem, the decadal climate prediction falls in-between these two time scales. In recent years, more precise initialization techniques of coupled Earth system models and increased ensemble sizes have improved decadal predictions. However, climate models in general start losing the initialized signal and its predictive skill from one forecast year to the next. Here we show that the climate prediction skill of an Earth system model can be improved by a shift of the ocean state toward the ensemble mean of its individual members at seasonal intervals. We found that this procedure, called ensemble dispersion filter, results in more accurate results than the standard decadal prediction. Global mean and regional temperature, precipitation, and winter cyclone predictions show an increased skill up to 5 years ahead. Furthermore, the novel technique outperforms predictions with larger ensembles and higher resolution. Our results demonstrate how decadal climate predictions benefit from ocean ensemble dispersion filtering toward the ensemble mean.Plain Language SummaryDecadal predictions aim to predict the climate several years in advance. Atmosphere-ocean interaction plays an important role for such climate forecasts. The ocean memory due to its heat capacity holds big potential skill. In recent years, more precise initialization techniques of coupled Earth system models (incl. atmosphere and ocean) have improved decadal predictions. Ensembles are another important aspect. Applying slightly perturbed predictions to trigger the famous butterfly effect results in an ensemble. Instead of evaluating one prediction, but the whole ensemble with its ensemble average, improves a prediction system. However, climate models in general start losing the initialized signal and its predictive skill from one forecast year to the next. Our study shows that the climate prediction skill of an Earth system model can be improved by a shift of the ocean state toward the ensemble mean of its individual members at seasonal intervals. We found that this procedure applying the average during the model run, called ensemble dispersion filter, results in more accurate results than the standard prediction. Global mean and regional temperature, precipitation, and winter cyclone predictions show an increased skill up to 5 years ahead. Furthermore, the novel technique outperforms predictions with larger ensembles and higher resolution.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1912436S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1912436S"><span>Representation of the West African Monsoon System in the aerosol-climate model ECHAM6-HAM2</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stanelle, Tanja; Lohmann, Ulrike; Bey, Isabelle</p> <p>2017-04-01</p> <p>The West African Monsoon (WAM) is a major component of the global monsoon system. The temperature contrast between the Saharan land surface in the North and the sea surface temperature in the South dominates the WAM formation. The West African region receives most of its precipitation during the monsoon season between end of June and September. Therefore the existence of the monsoon is of major social and economic importance. We discuss the ability of the climate model ECHAM6 as well as the coupled aerosol climate model ECHAM6-HAM2 to simulate the major features of the WAM system. The north-south temperature gradient is reproduced by both model versions but all model versions fail in reproducing the precipitation amount south of 10° N. A special focus is on the representation of the nocturnal low level jet (NLLJ) and the corresponding enhancement of low level clouds (LLC) at the Guinea Coast, which are a crucial factor for the regional energy budget. Most global climate models have difficulties to represent these features. The pure climate model ECHAM6 is able to simulate the existence of the NLLJ and LLC, but the model does not represent the pronounced diurnal cycle. Overall, the representation of LLC is worse in the coupled model. We discuss the model behaviors on the basis of outputted temperature and humidity tendencies and try to identify potential processes responsible for the model deficiencies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMGC31K..01B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMGC31K..01B"><span>Interweaving climate research and public understanding</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Betts, A. K.</p> <p>2016-12-01</p> <p>For the past 10 years I have been using research into land-atmosphere-cloud coupling to address Vermont's need to understand climate change, and develop plans for greater resilience in the face of increasing severe weather. The research side has shown that the fraction of days with snow cover determines the cold season climate, because snow acts as a fast climate switch between non-overlapping climates with and without snow cover. Clouds play opposite roles in warm and cold seasons: surface cooling in summer and warming in winter. The later fall freeze-up and earlier spring ice-out on lakes, coupled to the earlier spring phenology, are clear markers both of a warming climate, as well as the large interannual variability. Severe flooding events have come with large-scale quasi-stationary weather patterns. This past decade I have given 230 talks to schools, business and professional groups, as well as legislative committees and state government. I have written 80 environmental columns for two Vermont newspapers, as part of a weekly series I helped start in 2008. Commentaries and interviews on radio and TV enable me to explain directly the issues we face, as the burning of fossil fuels destabilizes the climate system. The public in Vermont is eager to learn and understand these issues since many have roots in the land; while professional groups need all the information and guidance possible to prepare for the future. My task as a scientist is to map out what we know in ways that can readily be grasped in terms of past experience, even though the climate system is already moving outside this range - and at the same time outline general principles and hopeful strategies for dealing with global and local climate change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AGUFMPP23B1752E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AGUFMPP23B1752E"><span>The Influence of the Green River Lake System on the Local Climate During the Early Eocene Period</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Elguindi, N.; Thrasher, B.; Sloan, L. C.</p> <p>2006-12-01</p> <p>Several modeling efforts have attempted to reproduce the climate of the early Eocene North America. However when compared to proxy data, General Circulation Models (GCMs) tend to produce a large-scale cold-bias. Although higher resolution Regional Climate Models (RCMs) that are able to resolve many of the sub-GCM scale forcings improve this cold bias, RCMs are still unable to reproduce the warm climate of the Eocene. From geologic data, we know that the greater Green River and the Uinta basins were intermontane basins with a large lake system during portions of the Eocene. We speculate that the lack of presence of these lakes in previous modeling studies may explain part of the persistent cold-bias of GCMs and RCMs. In this study, we utilize a regional climate model coupled with a 1D-lake model in an attempt to reduce the uncertainties and biases associated with climate simulations over Eocene western North American. Specifically, we include the Green River Lake system in our RCM simulation and compare climates with and without lakes to proxy data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.3281W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.3281W"><span>Vegetation-climate feedback causes reduced precipitation in CMIP5 regional Earth system model simulation over Africa</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wu, Minchao; Smith, Benjamin; Schurgers, Guy; Lindström, Joe; Rummukainen, Markku; Samuelsson, Patrick</p> <p>2013-04-01</p> <p>Terrestrial ecosystems have been demonstrated to play a significant role within the climate system, amplifying or dampening climate change via biogeophysical and biogeochemical exchange with the atmosphere and vice versa (Cox et al. 2000; Betts et al. 2004). Africa is particularly vulnerable to climate change and studies of vegetation-climate feedback mechanisms on Africa are still limited. Our study is the first application of A coupled Earth system model at regional scale and resolution over Africa. We applied a coupled regional climate-vegetation model, RCA-GUESS (Smith et al. 2011), over the CORDEX Africa domain, forced by boundary conditions from a CanESM2 CMIP5 simulation under the RCP8.5 future climate scenario. The simulations were from 1961 to 2100 and covered the African continent at a horizontal grid spacing of 0.44°. RCA-GUESS simulates changes in the phenology, productivity, relative cover and population structure of up to eight plant function types (PFTs) in response to forcing from the climate part of the model. These vegetation changes feedback to simulated climate through dynamic adjustments in surface energy fluxes and surface properties. Changes in the net ecosystem-atmosphere carbon flux and its components net primary production (NPP), heterotrophic respiration and emissions from biomass burning were also simulated but do not feedback to climate in our model. Constant land cover was assumed. We compared simulations with and without vegetation feedback switched "on" to assess the influence of vegetation-climate feedback on simulated climate, vegetation and ecosystem carbon cycling. Both positive and negative warming feedbacks were identified in different parts of Africa. In the Sahel savannah zone near 15°N, reduced vegetation cover and productivity, and mortality caused by a deterioration of soil water conditions led to a positive warming feedback mediated by decreased evapotranspiration and increased sensible heat flux between vegetation and the atmosphere. In the equatorial rainforest stronghold region of central Africa, a feedback syndrome characterised by reduced plant production and LAI, a dominance shift from tropical trees to grasses, reduced soil water and reduced rainfall was identified. The likely underlying mechanism was a decline in evaporative water recycling associated with sparser vegetation cover, reminiscent of Earth system model studies in which a similar feedback mechanism was simulated to force dieback of tropical rainforest and reduced precipitation over the Amazon Basin (Cox et al. 2000; Betts et al. 2004; Malhi et al. 2009). Opposite effects are seen in southern Senegal, southern Mali, northern Guinea and Guinea-Bissau, positive evapotranspiration feedback enhancing the cover of trees in forest and savannah, mitigating warming and promoting local moisture recycling as rainfall. We reveal that LAI-driven evapotranspiration feedback may reduced rainfall in parts of Africa, vegetation-climate feedbacks may significantly impact the magnitude and character of simulated changes in climate as well as vegetation and ecosystems in future scenario studies of this region. They should be accounted for in future studies of climate change and its impacts on Africa. Keywords: vegetation-climate feedback, regional climate model, evapotranspiration, CORDEX. References: Betts, R.A., Cox, P.M., Collins, M., Harris, P.P., Huntingford, C. & Jones, C.D. 2004. The role of ecosystem-atmosphere interactions in simulated Amazonian precipitation decrease and forest dieback under global climate warming. Theoretical and Applied Climatology 78: 157-175. Cox, P.M., Betts, R.A., Jones, C.D., Spall, S.A. & Totterdell, I.J. 2000. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408: 184-187. Samuelsson, P., Jones, C., Wilĺen, U., Gollvik, S., Hansson, U. and coauthors. 2011. The Rossby Centre Regional Climate Model RCA3:Model description and performance. Tellus 63A, 4-23. Smith, B., Prentice, I. C. and Sykes, M. T. 2001. Representation of vegetation dynamics in modelling of terrestrial ecosystems: comparing two contrasting approaches within European climate space. Global Ecol. Biogeog. 10, 621-637 Smith, B., Samuelsson, P., Wramneby, A. & Rummukainen, M. 2011. A model of the coupled dynamics of climate, vegetation and terrestrial ecosystem biogeochemistry for regional applications. Tellus 63A: 87-106.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16061800','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16061800"><span>Evolution of carbon sinks in a changing climate.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Fung, Inez Y; Doney, Scott C; Lindsay, Keith; John, Jasmin</p> <p>2005-08-09</p> <p>Climate change is expected to influence the capacities of the land and oceans to act as repositories for anthropogenic CO2 and hence provide a feedback to climate change. A series of experiments with the National Center for Atmospheric Research-Climate System Model 1 coupled carbon-climate model shows that carbon sink strengths vary with the rate of fossil fuel emissions, so that carbon storage capacities of the land and oceans decrease and climate warming accelerates with faster CO2 emissions. Furthermore, there is a positive feedback between the carbon and climate systems, so that climate warming acts to increase the airborne fraction of anthropogenic CO2 and amplify the climate change itself. Globally, the amplification is small at the end of the 21st century in this model because of its low transient climate response and the near-cancellation between large regional changes in the hydrologic and ecosystem responses. Analysis of our results in the context of comparable models suggests that destabilization of the tropical land sink is qualitatively robust, although its degree is uncertain.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1182133','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1182133"><span>Evolution of carbon sinks in a changing climate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Fung, Inez Y.; Doney, Scott C.; Lindsay, Keith; John, Jasmin</p> <p>2005-01-01</p> <p>Climate change is expected to influence the capacities of the land and oceans to act as repositories for anthropogenic CO2 and hence provide a feedback to climate change. A series of experiments with the National Center for Atmospheric Research–Climate System Model 1 coupled carbon–climate model shows that carbon sink strengths vary with the rate of fossil fuel emissions, so that carbon storage capacities of the land and oceans decrease and climate warming accelerates with faster CO2 emissions. Furthermore, there is a positive feedback between the carbon and climate systems, so that climate warming acts to increase the airborne fraction of anthropogenic CO2 and amplify the climate change itself. Globally, the amplification is small at the end of the 21st century in this model because of its low transient climate response and the near-cancellation between large regional changes in the hydrologic and ecosystem responses. Analysis of our results in the context of comparable models suggests that destabilization of the tropical land sink is qualitatively robust, although its degree is uncertain. PMID:16061800</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1916114M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1916114M"><span>The development and application of landscape evolution models to coupled coast-estuarine environments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Morris, Chloe; Coulthard, Tom; Parsons, Daniel R.; Manson, Susan; Barkwith, Andrew</p> <p>2017-04-01</p> <p>Landscape Evolution Models (LEMs) are proven to be useful tools in understanding the morphodynamics of coast and estuarine systems. However, perhaps owing to the lack of research in this area, current models are not capable of simulating the dynamic interactions between these systems and their co-evolution at the meso-scale. Through a novel coupling of numerical models, this research is designed to explore coupled coastal-estuarine interactions, controls on system behaviour and the influence that environmental change could have. This will contribute to the understanding of the morphodynamics of these systems and how they may behave and evolve over the next century in response to climate changes, with the aim of informing management practices. This goal is being achieved through the modification and coupling of the one-line Coastline Evolution Model (CEM) with the hydrodynamic LEM CAESAR-Lisflood (C-L). The major issues faced with coupling these programs are their differing complexities and the limited graphical visualisations produced by the CEM that hinder the dissemination of results. The work towards overcoming these issues and reported here, include a new version of the CEM that incorporates a range of more complex geomorphological processes and boasts a graphical user interface that guides users through model set-up and projects a live output during model runs. The improved version is a stand-alone tool that can be used for further research projects and for teaching purposes. A sensitivity analysis using the Morris method has been completed to identify which key variables, including wave climate, erosion and weathering values, dominate the control of model behaviour. The model is being applied and tested using the evolution of the Holderness Coast, Humber Estuary and Spurn Point on the east coast of England (UK), which possess diverse geomorphologies and complex, co-evolving sediment pathways. Simulations using the modified CEM are currently being completed to ascertain the processes influential to the morphodynamics and evolution of these systems; presently this includes increasing sea levels and changing wave climate patterns. Outputs and findings from these runs will be presented and discussed, with the aid of the improved graphical visualisations and animations that illustrate the evolution of simulated environments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.U13B..12D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.U13B..12D"><span>Does Climate Care about Land?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dawson, E.; Lague, M. M.; Swann, A. L. S.</p> <p>2017-12-01</p> <p>Everyone knows that plants are influenced by the climate they live in. However, the reverse is also true: plants can influence climate both locally and globally by changing atmospheric circulation. Uncovering the role that plants play in climate has been challenging—the interactions are complex and vary greatly in different regions of the world. We lack a systematic understanding of the role of vegetation in the climate system. Using a new simplified land model coupled to a modern Earth System Model (ESM), we are able to separate the individual influences of the land system in the context of modern ESMs. For example, with our model we are able to test how the capacity of the land to hold water influences the atmosphere. If less water is able to evaporate, this could lead to substantial warming, and could even influence clouds. Understanding specifically where and how the atmosphere is influenced by the land surface improves our understanding of how future changes in the land surface will in turn feedback on climate, and how that will impact people. This improved understanding also advances our knowledge of the key role biology plays in driving the global climate system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20020030311','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20020030311"><span>Interaction of the Climate System and the Solid Earth: Analysis of Observations and Models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bryan, Frank</p> <p>2001-01-01</p> <p>Under SENH funding we have carried out a number of diverse analyses of interactions of the climate system (atmosphere, ocean, land surface hydrology) with the solid Earth. While the original work plan emphasized analysis of excitation of variations in Earth rotation, with a lesser emphasis on time variable gravity, opportunities that developed during the proposal period in connection with preparations for the GRACE mission led us to a more balanced effort between these two topics. The results of our research are outlined in several topical sections: (1) oceanic excitation of variations in Earth rotation; (2) short period atmosphere-ocean excitation of variations in Earth rotation; (3) analysis of coupled climate system simulation; (4) observing system simulation studies for GRACE mission design; and (5) oceanic response to atmospheric pressure loading.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.U42A..01L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.U42A..01L"><span>Insights on the energy-water nexus through modeling of the integrated water cycle</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Leung, L. R.; Li, H. Y.; Zhang, X.; Wan, W.; Voisin, N.; Leng, G.</p> <p>2016-12-01</p> <p>For sustainable energy planning, understanding the impacts of climate change, land use change, and water management is essential as they all exert notable controls on streamflow and stream temperature that influence energy production. An integrated water model representing river processes, irrigation water use and water management has been developed and coupled to a land surface model to investigate the energy-water nexus. Simulations driven by two climate change projections with the RCP 4.5 and RCP 8.5 emissions scenarios, with and without water management, are analyzed to evaluate the individual and combined effects of climate change and water management on streamflow and stream temperature. The simulations revealed important impacts of climate change and water management on both floods and droughts. The simulations also revealed the dynamics of competition between changes in water demand and water availability in the climate mitigation (RCP 4.5) and business as usual (RCP 8.5) scenarios that influence streamflow and stream temperature, with important consequences to energy production. The integrated water model is being implemented to the Accelerated Climate Modeling for Energy (ACME) to enable investigation of the energy-water nexus in the fully coupled Earth system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28855518','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28855518"><span>Hydrologic resilience and Amazon productivity.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ahlström, Anders; Canadell, Josep G; Schurgers, Guy; Wu, Minchao; Berry, Joseph A; Guan, Kaiyu; Jackson, Robert B</p> <p>2017-08-30</p> <p>The Amazon rainforest is disproportionately important for global carbon storage and biodiversity. The system couples the atmosphere and land, with moist forest that depends on convection to sustain gross primary productivity and growth. Earth system models that estimate future climate and vegetation show little agreement in Amazon simulations. Here we show that biases in internally generated climate, primarily precipitation, explain most of the uncertainty in Earth system model results; models, empirical data and theory converge when precipitation biases are accounted for. Gross primary productivity, above-ground biomass and tree cover align on a hydrological relationship with a breakpoint at ~2000 mm annual precipitation, where the system transitions between water and radiation limitation of evapotranspiration. The breakpoint appears to be fairly stable in the future, suggesting resilience of the Amazon to climate change. Changes in precipitation and land use are therefore more likely to govern biomass and vegetation structure in Amazonia.Earth system model simulations of future climate in the Amazon show little agreement. Here, the authors show that biases in internally generated climate explain most of this uncertainty and that the balance between water-saturated and water-limited evapotranspiration controls the Amazon resilience to climate change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSME11A..02L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSME11A..02L"><span>Sustaining coupled social-ecological marine systems in Mexico's Gulf of California region</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Leslie, H.</p> <p>2016-02-01</p> <p>Marine ecosystems provide many benefits to people, including food, protection from coastal storms, and places for recreation and spiritual renewal. These benefits are threatened by human impacts at multiple scales, including fisheries over-exploitation and global climatic change. More solutions-oriented knowledge of the connections between people and nature is urgently needed. I will discuss the approach my collaborators and I have developed to investigate the connections between people and marine ecosystems in the context of the small-scale fisheries of Mexico's Gulf of California. To illustrate the value of this coupled systems approach, I will present findings from two geographic scales. First, using a coupled bio-economic model based on several communities in the Mexican state of Baja California Sur (BCS), I will show how fishers' decisions are influenced by both climatic and institutional variation, and the consequences of these interactions for economic and ecological outcomes associated with fishing. Second, I will place these local-scale results in a broader context. Drawing on both natural and social science theory and data, I will show how environmental and institutional factors related to sustainability vary substantially throughout BCS. Fishing communities that exhibit greater potential for social-ecological sustainability in one dimension do not necessarily exhibit it in others. These results highlight the importance of integrative, coupled system analyses when implementing spatial planning and other ecosystem-based strategies and yield an understanding of the sustainability of coupled social-ecological systems that is quite distinct from that provided by either biophysical or social sciences alone.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.1927K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.1927K"><span>Dust influx into the northern Indian Ocean over the last 1.5 Myr.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kunkelová, Tereza; Kroon, Dick; Jung, Simon; de Leau, Erica S.; Odling, Nicholas; Spezzaferri, Silvia; Hayman, Stephanie; Alonso-Garcia, Montserrat; Wright, James D.; Alvarez Zarikian, Carlos; Betzler, Christian; Eberli, Gregor P.; Jovane, Luigi; Laya, Juan Carlos; Hui-Mee, Anna Ling; Reijmer, John; Reolid, Jesus; Sloss, Craig R.</p> <p>2017-04-01</p> <p>Over the last 2 Ma the Earth's climate has been profoundly affected by quasi-periodic changes in the Earth's orbit around the Sun. The Earth's climate reflects cooling and warming associated with this orbital forcing, such as periods of glaciation and warmer interglacials, variations in sea surface temperatures and changes in global wind patterns. During glacial periods, dust input into the oceans increased as a result of stronger surface winds and greater source area from increased desertification. At low latitudes, the seasonality of monsoonal wind direction controls dust transport into the ocean. This research identifies the main controls on dust influx into the northern Indian Ocean over the last 1.5 Ma by analyzing the first high resolution marine sediment record from the Maldives carbonate platform (IODP Expedition 359; Site U1467), an area strongly affected by the monsoon seasons. Here we present variations in the concentration of specific normalized elements, from X-ray fluorescence spectrometry, reflecting the chemistry of the dust particles and source areas. The new dust record will be compared to other records of climate change, mainly from the North Atlantic, to investigate the degree of coupling between driving forces in the Earth's climate in the northern hemisphere. The results of this study will aid our understanding of the monsoon system, low latitude desertification, and the degree of climate coupling, essential for predicting the response of the system to future anthropogenic climate change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMPP11D..05B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMPP11D..05B"><span>Ocean-Ice Sheet Interactions in the Norwegian Sea and Teleconnections to Low Latitude Hydrology and Atmospheric Circulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brendryen, J.; Hannisdal, B.; Haaga, K. A.; Haflidason, H.; Castro, D. D.; Grasmo, K. J.; Sejrup, H. P.; Edwards, R. L.; Cheng, H.; Kelly, M. J.; Lu, Y.</p> <p>2016-12-01</p> <p>Abrupt millennial scale climatic events known as Dansgaard-Oeschger events are a defining feature of the Quaternary climate system dynamics in the North Atlantic and beyond. We present a high-resolution multi-proxy record of ocean-ice sheet interactions in the Norwegian Sea spanning the interval between 50 and 150 ka BP. A comparison with low latitude records indicates a very close connection between the high northern latitude ocean-ice sheet interactions and large scale changes in low latitude atmospheric circulation and hydrology even on sub-millennial scales. The records are placed on a common precise radiometric chronology based on correlations to U/Th dated speleothem records from China and the Alps. This enables a comparison of the records to orbital and other climatically important parameters such as U/Th dated sea-level data from corals and speleothems. We explore the drive-response relationships in these coupled systems with the information transfer (IT) and the convergent cross mapping (CCM) analytical techniques. These methods employ conceptually different approaches to detect the relative strength and directionality of potentially chaotic and nonlinearly coupled systems. IT is a non-parametric measure of information transfer between data records based on transfer entropy, while CCM relies on delay reconstructions using Takens' theorem. This approach enables us to address how the climate system processes interact and how this interaction is affected by external forcing from for example greenhouse gases and orbital variability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1915810R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1915810R"><span>Projecting optimal land-use and -management strategies under population growth and climate change using a coupled ecosystem & land use model framework</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rabin, Sam; Alexander, Peter; Anthoni, Peter; Henry, Roslyn; Huntingford, Chris; Pugh, Thomas; Rounsevell, Mark; Arneth, Almut</p> <p>2017-04-01</p> <p>A major question facing humanity is how well agricultural production systems will be able to feed the world in a future of rapid climate change, population growth, and demand shifts—all while minimizing our impact on the natural world. Global modeling has frequently been used to investigate certain aspects of this question, but in order to properly address the challenge, no one part of the human-environmental system can be assessed in isolation. It is especially critical that the effect on agricultural yields of changing temperature and precipitation regimes (including seasonal timing and frequency and intensity of extreme events), as well as rising atmospheric carbon dioxide levels, be taken into account when planning for future food security. Coupled modeling efforts, where changes in various parts of the Earth system are allowed to feed back onto one another, represent a powerful strategy in this regard. This presentation describes the structure and initial results of an effort to couple a biologically-representative vegetation and crop production simulator, LPJ-GUESS, with the climate emulator IMOGEN and the land-use model PLUMv2. With IMOGEN providing detailed future weather simulations, LPJ-GUESS simulates natural vegetation as well as cropland and pasture/rangeland; the simulated exchange of greenhouse gases between the land and atmosphere feeds back into IMOGEN's predictions. LPJ-GUESS also produces potential vegetation yields for irrigated vs. rainfed crops under three levels of nitrogen fertilizer addition. PLUMv2 combines these potential yields with endogenous demand and agricultural commodity price to calculate an optimal set of land use distributions and management strategies across the world for the next five years of simulation, based on socio-economic scenario data. These land uses are then fed back into LPJ-GUESS, and the cycle of climate, greenhouse gas emissions, crop yields, and land-use change continues. The globally gridded nature of the model—at 0.5-degree resolution across the world—generates spatially explicit projections at a sub-national scale relevant to individual land managers. Here, we present the results of using the LPJ-GUESS-PLUM-IMOGEN coupled model to project agricultural production and management strategies under several scenarios of greenhouse gas emissions (the Representative Concentration Pathways) and socioeconomic futures (the Shared Socioeconomic Pathways) through the year 2100. In the future, the coupled model could be used to generate projections for alternative scenarios: for example, to consider the implications from land-based climate change mitigation policies, or changes to international trade tariffs regimes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AdAtS..35..689G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AdAtS..35..689G"><span>Regional Features and Seasonality of Land-Atmosphere Coupling over Eastern China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gao, Chujie; Chen, Haishan; Sun, Shanlei; Xu, Bei; Ongoma, Victor; Zhu, Siguang; Ma, Hedi; Li, Xing</p> <p>2018-06-01</p> <p>Land-atmosphere coupling is a key process of the climate system, and various coupling mechanisms have been proposed before based on observational and numerical analyses. The impact of soil moisture (SM) on evapotranspiration (ET) and further surface temperature (ST) is an important aspect of such coupling. Using ERA-Interim data and CLM4.0 offline simulation results, this study further explores the relationships between SM/ST and ET to better understand the complex nature of the land-atmosphere coupling (i.e., spatial and seasonal variations) in eastern China, a typical monsoon area. It is found that two diagnostics of land-atmosphere coupling (i.e., SM-ET correlation and ST-ET correlation) are highly dependent on the climatology of SM and ST. By combining the SM-ET and ST-ET relationships, two "hot spots" of land-atmosphere coupling over eastern China are identified: Southwest China and North China. In Southwest China, ST is relatively high throughout the year, but SM is lowest in spring, resulting in a strong coupling in spring. However, in North China, SM is relatively low throughout the year, but ST is highest in summer, which leads to the strongest coupling in summer. Our results emphasize the dependence of land-atmosphere coupling on the seasonal evolution of climatic conditions and have implications for future studies related to land surface feedbacks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..1413642H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..1413642H"><span>Air-Quality and Climate Coupling in High Resolution for Urban Heat Island Study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Halenka, T.; Huszar, P.; Belda, M.</p> <p>2012-04-01</p> <p>Recent studies show considerable effect of atmospheric chemistry and aerosols on climate on regional and local scale. For the purpose of qualifying and quantifying the magnitude of climate forcing due to atmospheric chemistry/aerosols on regional scale and climate change effects on air-quality the regional climate model RegCM and chemistry/aerosol model CAMx was coupled. Climate change impacts on air-quality have been studied in high resolution of 10km with interactive two-way coupling of the effects of air-quality on climate. The experiments with the couple were performed for EC FP7 project MEGAPOLI assessing the impact of the megacities and industrialized areas on climate. New experiments in high resolution are prepared andsimulated for Urban Heat Island studies within the OP Central Europe Project UHI. Meteorological fields generated by RCM drive CAMx transport, chemistry and a dry/wet deposition. A preprocessor utility was developed for transforming RegCM provided fields to CAMx input fields and format. There is critical issue of the emission inventories available for 10km resolution including the urban hot-spots, TNO emissions are adopted for the experiments. Sensitivity tests switching on/off urban areas emissions are analysed as well. The results for year 2005 are presented and discussed, interactive coupling is compared to study the potential of possible impact of urban air-pollution to the urban area climate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1915796W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1915796W"><span>Assessing global climate-terrestrial vegetation feedbacks on carbon and nitrogen cycling in the earth system model EC-Earth</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wårlind, David; Miller, Paul; Nieradzik, Lars; Söderberg, Fredrik; Anthoni, Peter; Arneth, Almut; Smith, Ben</p> <p>2017-04-01</p> <p>There has been great progress in developing an improved European Consortium Earth System Model (EC-Earth) in preparation for the Coupled Model Intercomparison Project Phase 6 (CMIP6) and the next Assessment Report of the IPCC. The new model version has been complemented with ocean biogeochemistry, atmospheric composition (aerosols and chemistry) and dynamic land vegetation components, and has been configured to use the recommended CMIP6 forcing data sets. These new components will give us fresh insights into climate change. This study focuses on the terrestrial biosphere component Lund-Potsdam-Jena General Ecosystem Simulator (LPJ-GUESS) that simulates vegetation dynamics and compound exchange between the terrestrial biosphere and the atmosphere in EC-Earth. LPJ-GUESS allows for vegetation to dynamically evolve, depending on climate input, and in return provides the climate system and land surface scheme with vegetation-dependent fields such as vegetation types and leaf area index. We present the results of a study to examine the feedbacks between the dynamic terrestrial vegetation and the climate and their impact on the terrestrial ecosystem carbon and nitrogen cycles. Our results are based on a set of global, atmosphere-only historical simulations (1870 to 2014) with and without feedback between climate and vegetation and including or ignoring the effect of nitrogen limitation on plant productivity. These simulations show to what extent the addition degree of freedom in EC-Earth, introduced with the coupling of interactive dynamic vegetation to the atmosphere, has on terrestrial carbon and nitrogen cycling, and represent contributions to CMIP6 (C4MIP and LUMIP) and the EU Horizon 2020 project CRESCENDO.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_10 --> <div id="page_11" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="201"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..1112005M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..1112005M"><span>Quantifying the role of ocean initial conditions in decadal prediction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Matei, D.; Pohlmann, H.; Müller, W.; Haak, H.; Jungclaus, J.; Marotzke, J.</p> <p>2009-04-01</p> <p>The forecast skill of decadal climate predictions is investigated using two different initialization strategies. First we apply an assimilation of ocean synthesis data provided by the GECCO project (Köhl and Stammer 2008) as initial conditions for the coupled model ECHAM5/MPI-OM. The results show promising skill up to decadal time scales particularly over the North Atlantic (see also Pohlmann et al. 2009). However, mismatches between the ocean climates of GECCO and the MPI-OM model may lead to inconsistencies in the representation of water masses. Therefore, we pursue an alternative approach to the representation of the observed North Atlantic climate for the period 1948-2007. Using the same MPI-OM ocean model as in the coupled system, we perform an ensemble of four NCEP integrations. The ensemble mean temperature and salinity anomalies are then nudged into the coupled model, followed by hindcast/forecast experiments. The model gives dynamically consistent three-dimensional temperature and salinity fields, thereby avoiding the problems of model drift that were encountered when the assimilation experiment was only driven by reconstructed SSTs (Keenlyside et al. 2008, Pohlmann et al. 2009). Differences between the two assimilation approaches are discussed by comparing them with the observational data in key regions and processes, such as North Atlantic and Tropical Pacific climate, MOC variability, Subpolar Gyre variability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.B14A..03B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.B14A..03B"><span>Response of the Vegetation-Climate System to High Temperature (Invited)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Berry, J. A.</p> <p>2009-12-01</p> <p>High temperature extremes may lead to inhibition of photosynthesis and stomatal closure at the leaf scale. When these responses occur over regional scales, they can initiate a positive feedback loop in the coupled vegetation-climate system. The fraction of net radiation that is used by the land surface to evaporate water decreases leading to deeper, drier boundary layers, fewer clouds, increased solar radiation reaching the surface, and possibility reduced precipitation. These interactions within the vegetation-climate system may amplify natural (or greenhouse gas forced) variations in temperature and further stress the vegetation. Properly modeling of this system depends, among other things, on getting the plant responses to high temperature correct. I will review the current state of this problem and present some studies of rain forest trees to high temperature and drought conducted in the Biosphere 2 enclosure that illustrate how experiments in controlled systems can contribute to our understanding of complex systems to extreme events.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170007430','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170007430"><span>Coupled Data Assimilation for Integrated Earth System Analysis and Prediction: Goals, Challenges, and Recommendations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Penny, Stephen G.; Akella, Santha; Buehner, Mark; Chevallier, Matthieu; Counillon, Francois; Draper, Clara; Frolov, Sergey; Fujii, Yosuke; Karspeck, Alicia; Kumar, Arun</p> <p>2017-01-01</p> <p>The purpose of this report is to identify fundamental issues for coupled data assimilation (CDA), such as gaps in science and limitations in forecasting systems, in order to provide guidance to the World Meteorological Organization (WMO) on how to facilitate more rapid progress internationally. Coupled Earth system modeling provides the opportunity to extend skillful atmospheric forecasts beyond the traditional two-week barrier by extracting skill from low-frequency state components such as the land, ocean, and sea ice. More generally, coupled models are needed to support seamless prediction systems that span timescales from weather, subseasonal to seasonal (S2S), multiyear, and decadal. Therefore, initialization methods are needed for coupled Earth system models, either applied to each individual component (called Weakly Coupled Data Assimilation - WCDA) or applied the coupled Earth system model as a whole (called Strongly Coupled Data Assimilation - SCDA). Using CDA, in which model forecasts and potentially the state estimation are performed jointly, each model domain benefits from observations in other domains either directly using error covariance information known at the time of the analysis (SCDA), or indirectly through flux interactions at the model boundaries (WCDA). Because the non-atmospheric domains are generally under-observed compared to the atmosphere, CDA provides a significant advantage over single-domain analyses. Next, we provide a synopsis of goals, challenges, and recommendations to advance CDA: Goals: (a) Extend predictive skill beyond the current capability of NWP (e.g. as demonstrated by improving forecast skill scores), (b) produce physically consistent initial conditions for coupled numerical prediction systems and reanalyses (including consistent fluxes at the domain interfaces), (c) make best use of existing observations by allowing observations from each domain to influence and improve the full earth system analysis, (d) develop a robust observation-based identification and understanding of mechanisms that determine the variability of weather and climate, (e) identify critical weaknesses in coupled models and the earth observing system, (f) generate full-field estimates of unobserved or sparsely observed variables, (g) improve the estimation of the external forcings causing changes to climate, (h) transition successes from idealized CDA experiments to real-world applications. Challenges: (a) Modeling at the interfaces between interacting components of coupled Earth system models may be inadequate for estimating uncertainty or error covariances between domains, (b) current data assimilation methods may be insufficient to simultaneously analyze domains containing multiple spatiotemporal scales of interest, (c) there is no standardization of observation data or their delivery systems across domains, (d) the size and complexity of many large-scale coupled Earth system models makes it is difficult to accurately represent uncertainty due to model parameters and coupling parameters, (e) model errors lead to local biases that can transfer between the different Earth system components and lead to coupled model biases and long-term model drift, (e) information propagation across model components with different spatiotemporal scales is extremely complicated, and must be improved in current coupled modeling frameworks, (h) there is insufficient knowledge on how to represent evolving errors in non-atmospheric model components (e.g. as sea ice, land and ocean) on the timescales of NWP.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1007318','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1007318"><span>Uncertainty quantification and validation of combined hydrological and macroeconomic analyses.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Hernandez, Jacquelynne; Parks, Mancel Jordan; Jennings, Barbara Joan</p> <p>2010-09-01</p> <p>Changes in climate can lead to instabilities in physical and economic systems, particularly in regions with marginal resources. Global climate models indicate increasing global mean temperatures over the decades to come and uncertainty in the local to national impacts means perceived risks will drive planning decisions. Agent-based models provide one of the few ways to evaluate the potential changes in behavior in coupled social-physical systems and to quantify and compare risks. The current generation of climate impact analyses provides estimates of the economic cost of climate change for a limited set of climate scenarios that account for a small subsetmore » of the dynamics and uncertainties. To better understand the risk to national security, the next generation of risk assessment models must represent global stresses, population vulnerability to those stresses, and the uncertainty in population responses and outcomes that could have a significant impact on U.S. national security.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMGC13C0649R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMGC13C0649R"><span>New Observationally-Based Metrics for the Analysis of Coupled Climate Model and Earth System Model Simulations of the Southern Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Russell, J. L.</p> <p>2014-12-01</p> <p>The exchange of heat and carbon dioxide between the atmosphere and ocean are major controls on Earth's climate under conditions of anthropogenic forcing. The Southern Ocean south of 30°S, occupying just over ¼ of the surface ocean area, accounts for a disproportionate share of the vertical exchange of properties between the deep and surface waters of the ocean and between the surface ocean and the atmosphere; thus this region can be disproportionately influential on the climate system. Despite the crucial role of the Southern Ocean in the climate system, understanding of the particular mechanisms involved remains inadequate, and the model studies underlying many of these results are highly controversial. As part of the overall goal of working toward reducing uncertainties in climate projections, we present an analysis using new data/model metrics based on a unified framework of theory, quantitative datasets, and numerical modeling. These new metrics quantify the mechanisms, processes, and tendencies relevant to the role of the Southern Ocean in climate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4024236','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4024236"><span>Influence of stochastic sea ice parametrization on climate and the role of atmosphere–sea ice–ocean interaction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Juricke, Stephan; Jung, Thomas</p> <p>2014-01-01</p> <p>The influence of a stochastic sea ice strength parametrization on the mean climate is investigated in a coupled atmosphere–sea ice–ocean model. The results are compared with an uncoupled simulation with a prescribed atmosphere. It is found that the stochastic sea ice parametrization causes an effective weakening of the sea ice. In the uncoupled model this leads to an Arctic sea ice volume increase of about 10–20% after an accumulation period of approximately 20–30 years. In the coupled model, no such increase is found. Rather, the stochastic perturbations lead to a spatial redistribution of the Arctic sea ice thickness field. A mechanism involving a slightly negative atmospheric feedback is proposed that can explain the different responses in the coupled and uncoupled system. Changes in integrated Antarctic sea ice quantities caused by the stochastic parametrization are generally small, as memory is lost during the melting season because of an almost complete loss of sea ice. However, stochastic sea ice perturbations affect regional sea ice characteristics in the Southern Hemisphere, both in the uncoupled and coupled model. Remote impacts of the stochastic sea ice parametrization on the mean climate of non-polar regions were found to be small. PMID:24842027</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MAP...130..211C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MAP...130..211C"><span>SST and OLR relationship during Indian summer monsoon: a coupled climate modelling perspective</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chaudhari, Hemantkumar S.; Hazra, Anupam; Pokhrel, Samir; Chakrabarty, Chandrima; Saha, Subodh Kumar; Sreenivas, P.</p> <p>2018-04-01</p> <p>The study mainly investigates sea surface temperature (SST) and outgoing longwave radiation (OLR) relationships in coupled climate model. To support the analysis, high-level cloud and OLR relationship is also investigated. High-level cloud and OLR relationship depicts significant negative correlation over the entire monsoon regime. Coupled climate model is able to produce the same. SST and OLR relationship in observation also depicts significant negative relationship, in particular, over the Equatorial Eastern Indian Ocean (EIO) region. Climate Forecast System version 2 (CFSv2) is able to portray the negative relationship over EIO region; however, it is underestimated as compared to observation. Significant negative correlations elucidate that local SSTs regulate the convection and further it initiates Bjerknes feedback in the central Indian Ocean. It connotes that SST anomalies during monsoon period tend to be determined by oceanic forcing. The heat content of the coastal Bay of Bengal shows highest response to EIO SST by a lag of 1 month. It suggests that the coastal region of the Bay of Bengal is marked by coastally trapped Kelvin waves, which might have come from EIO at a time lag of 1 month. Sea surface height anomalies, depth at 20 °C isotherms and depth at 26 isotherms also supports the above hypothesis. Composite analysis based on EIO index and coupled climate model sensitivity experiments also suggest that the coastal Bay of Bengal region is marked by coastally trapped Kelvin waves, which are propagated from EIO at a time lag of 1 month. Thus, SST and OLR relationship pinpoints that the Bay of Bengal OLR (convection) is governed by local ocean-atmospheric coupling, which is influenced by the delayed response from EIO brought forward through oceanic planetary waves at a lag of 1 month. These results have utmost predictive value for seasonal and extended range forecasting. Thus, OLR and SST relationship can constitute a pivotal role in investigating the atmosphere-ocean interaction.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4521821','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4521821"><span>A Decision Support System Coupling Fuzzy Logic and Probabilistic Graphical Approaches for the Agri-Food Industry: Prediction of Grape Berry Maturity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Brousset, Jean Marie; Abbal, Philippe; Guillemin, Hervé; Perret, Bruno; Goulet, Etienne; Guerin, Laurence; Barbeau, Gérard; Picque, Daniel</p> <p>2015-01-01</p> <p>Agri-food is one of the most important sectors of the industry and a major contributor to the global warming potential in Europe. Sustainability issues pose a huge challenge for this sector. In this context, a big issue is to be able to predict the multiscale dynamics of those systems using computing science. A robust predictive mathematical tool is implemented for this sector and applied to the wine industry being easily able to be generalized to other applications. Grape berry maturation relies on complex and coupled physicochemical and biochemical reactions which are climate dependent. Moreover one experiment represents one year and the climate variability could not be covered exclusively by the experiments. Consequently, harvest mostly relies on expert predictions. A big challenge for the wine industry is nevertheless to be able to anticipate the reactions for sustainability purposes. We propose to implement a decision support system so called FGRAPEDBN able to (1) capitalize the heterogeneous fragmented knowledge available including data and expertise and (2) predict the sugar (resp. the acidity) concentrations with a relevant RMSE of 7 g/l (resp. 0.44 g/l and 0.11 g/kg). FGRAPEDBN is based on a coupling between a probabilistic graphical approach and a fuzzy expert system. PMID:26230334</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H32E..01E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H32E..01E"><span>Assessment of the Impact of Climate Change on the Water Balances and Flooding Conditions of Peninsular Malaysia watersheds by a Coupled Numerical Climate Model - Watershed Hydrology Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ercan, A.; Kavvas, M. L.; Ishida, K.; Chen, Z. Q.; Amin, M. Z. M.; Shaaban, A. J.</p> <p>2017-12-01</p> <p>Impacts of climate change on the hydrologic processes under future climate change conditions were assessed over various watersheds of Peninsular Malaysia by means of a coupled regional climate and physically-based hydrology model that utilized an ensemble of future climate change projections. An ensemble of 15 different future climate realizations from coarse resolution global climate models' (GCMs) projections for the 21st century were dynamically downscaled to 6 km resolution over Peninsular Malaysia by a regional numerical climate model, which was then coupled with the watershed hydrology model WEHY through the atmospheric boundary layer over the selected watersheds of Peninsular Malaysia. Hydrologic simulations were carried out at hourly increments and at hillslope-scale in order to assess the impacts of climate change on the water balances and flooding conditions at the selected watersheds during the 21st century. The coupled regional climate and hydrology model was simulated for a duration of 90 years for each of the 15 realizations. It is demonstrated that the increase in mean monthly flows due to the impact of expected climate change during 2040-2100 is statistically significant at the selected watersheds. Furthermore, the flood frequency analyses for the selected watersheds indicate an overall increasing trend in the second half of the 21st century.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.A51M..04K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.A51M..04K"><span>Isolating the atmospheric circulation response to Arctic sea-ice loss in the coupled climate system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kushner, P. J.; Blackport, R.</p> <p>2016-12-01</p> <p>In the coupled climate system, projected global warming drives extensive sea-ice loss, but sea-ice loss drives warming that amplifies and can be confounded with the global warming process. This makes it challenging to cleanly attribute the atmospheric circulation response to sea-ice loss within coupled earth-system model (ESM) simulations of greenhouse warming. In this study, many centuries of output from coupled ocean/atmosphere/land/sea-ice ESM simulations driven separately by sea-ice albedo reduction and by projected greenhouse-dominated radiative forcing are combined to cleanly isolate the hemispheric scale response of the circulation to sea-ice loss. To isolate the sea-ice loss signal, a pattern scaling approach is proposed in which the local multidecadal mean atmospheric response is assumed to be separately proportional to the total sea-ice loss and to the total low latitude ocean surface warming. The proposed approach estimates the response to Arctic sea-ice loss with low latitude ocean temperatures fixed and vice versa. The sea-ice response includes a high northern latitude easterly zonal wind response, an equatorward shift of the eddy driven jet, a weakening of the stratospheric polar vortex, an anticyclonic sea level pressure anomaly over coastal Eurasia, a cyclonic sea level pressure anomaly over the North Pacific, and increased wintertime precipitation over the west coast of North America. Many of these responses are opposed by the response to low-latitude surface warming with sea ice fixed. However, both sea-ice loss and low latitude surface warming act in concert to reduce storm track strength throughout the mid and high latitudes. The responses are similar in two related versions of the National Center for Atmospheric Research earth system models, apart from the stratospheric polar vortex response. Evidence is presented that internal variability can easily contaminate the estimates if not enough independent climate states are used to construct them.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014NPGD....1..479G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014NPGD....1..479G"><span>On the data-driven inference of modulatory networks in climate science: an application to West African rainfall</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>González, D. L., II; Angus, M. P.; Tetteh, I. K.; Bello, G. A.; Padmanabhan, K.; Pendse, S. V.; Srinivas, S.; Yu, J.; Semazzi, F.; Kumar, V.; Samatova, N. F.</p> <p>2014-04-01</p> <p>Decades of hypothesis-driven and/or first-principles research have been applied towards the discovery and explanation of the mechanisms that drive climate phenomena, such as western African Sahel summer rainfall variability. Although connections between various climate factors have been theorized, not all of the key relationships are fully understood. We propose a data-driven approach to identify candidate players in this climate system, which can help explain underlying mechanisms and/or even suggest new relationships, to facilitate building a more comprehensive and predictive model of the modulatory relationships influencing a climate phenomenon of interest. We applied coupled heterogeneous association rule mining (CHARM), Lasso multivariate regression, and Dynamic Bayesian networks to find relationships within a complex system, and explored means with which to obtain a consensus result from the application of such varied methodologies. Using this fusion of approaches, we identified relationships among climate factors that modulate Sahel rainfall, including well-known associations from prior climate knowledge, as well as promising discoveries that invite further research by the climate science community.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70186688','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70186688"><span>Use of output from high-resolution atmospheric models in landscape-scale hydrologic models: An assessment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Hostetler, S.W.; Giorgi, F.</p> <p>1993-01-01</p> <p>In this paper we investigate the feasibility of coupling regional climate models (RCMs) with landscape-scale hydrologic models (LSHMs) for studies of the effects of climate on hydrologic systems. The RCM used is the National Center for Atmospheric Research/Pennsylvania State University mesoscale model (MM4). Output from two year-round simulations (1983 and 1988) over the western United States is used to drive a lake model for Pyramid Lake in Nevada and a streamfiow model for Steamboat Creek in Oregon. Comparisons with observed data indicate that MM4 is able to produce meteorologic data sets that can be used to drive hydrologic models. Results from the lake model simulations indicate that the use of MM4 output produces reasonably good predictions of surface temperature and evaporation. Results from the streamflow simulations indicate that the use of MM4 output results in good simulations of the seasonal cycle of streamflow, but deficiencies in simulated wintertime precipitation resulted in underestimates of streamflow and soil moisture. Further work with climate (multiyear) simulations is necessary to achieve a complete analysis, but the results from this study indicate that coupling of LSHMs and RCMs may be a useful approach for evaluating the effects of climate change on hydrologic systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19980004829','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19980004829"><span>Global Analysis, Interpretation and Modelling: An Earth Systems Modelling Program</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Moore, Berrien, III; Sahagian, Dork</p> <p>1997-01-01</p> <p>The Goal of the GAIM is: To advance the study of the coupled dynamics of the Earth system using as tools both data and models; to develop a strategy for the rapid development, evaluation, and application of comprehensive prognostic models of the Global Biogeochemical Subsystem which could eventually be linked with models of the Physical-Climate Subsystem; to propose, promote, and facilitate experiments with existing models or by linking subcomponent models, especially those associated with IGBP Core Projects and with WCRP efforts. Such experiments would be focused upon resolving interface issues and questions associated with developing an understanding of the prognostic behavior of key processes; to clarify key scientific issues facing the development of Global Biogeochemical Models and the coupling of these models to General Circulation Models; to assist the Intergovernmental Panel on Climate Change (IPCC) process by conducting timely studies that focus upon elucidating important unresolved scientific issues associated with the changing biogeochemical cycles of the planet and upon the role of the biosphere in the physical-climate subsystem, particularly its role in the global hydrological cycle; and to advise the SC-IGBP on progress in developing comprehensive Global Biogeochemical Models and to maintain scientific liaison with the WCRP Steering Group on Global Climate Modelling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120003515','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120003515"><span>The Aerosol-Monsoon Climate System of Asia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lau, William K. M.; Kyu-Myong, Kim</p> <p>2012-01-01</p> <p>In Asian monsoon countries such as China and India, human health and safety problems caused by air-pollution are worsening due to the increased loading of atmospheric pollutants stemming from rising energy demand associated with the rapid pace of industrialization and modernization. Meanwhile, uneven distribution of monsoon rain associated with flash flood or prolonged drought, has caused major loss of human lives, and damages in crop and properties with devastating societal impacts on Asian countries. Historically, air-pollution and monsoon research are treated as separate problems. However a growing number of recent studies have suggested that the two problems may be intrinsically intertwined and need to be studied jointly. Because of complexity of the dynamics of the monsoon systems, aerosol impacts on monsoons and vice versa must be studied and understood in the context of aerosol forcing in relationship to changes in fundamental driving forces of the monsoon climate system (e.g. sea surface temperature, land-sea contrast etc.) on time scales from intraseasonal variability (weeks) to climate change ( multi-decades). Indeed, because of the large contributions of aerosols to the global and regional energy balance of the atmosphere and earth surface, and possible effects of the microphysics of clouds and precipitation, a better understanding of the response to climate change in Asian monsoon regions requires that aerosols be considered as an integral component of a fully coupled aerosol-monsoon system on all time scales. In this paper, using observations and results from climate modeling, we will discuss the coherent variability of the coupled aerosol-monsoon climate system in South Asia and East Asia, including aerosol distribution and types, with respect to rainfall, moisture, winds, land-sea thermal contrast, heat sources and sink distributions in the atmosphere in seasonal, interannual to climate change time scales. We will show examples of how elevated absorbing aerosols (dust and black carbon) may interact with monsoon dynamics to produce feedback effects on the atmospheric water cycle, leading to in accelerated melting of snowpacks over the Himalayas and Tibetan Plateau, and subsequent changes in evolution of the pre-monsoon and peak monsoon rainfall, moisture and wind distributions in South Asia and East Asia.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19940026119','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19940026119"><span>Linkages between terrestrial ecosystems and the atmosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bretherton, Francis; Dickinson, Robert E.; Fung, Inez; Moore, Berrien, III; Prather, Michael; Running, Steven W.; Tiessen, Holm</p> <p>1992-01-01</p> <p>The primary research issue in understanding the role of terrestrial ecosystems in global change is analyzing the coupling between processes with vastly differing rates of change, from photosynthesis to community change. Representing this coupling in models is the central challenge to modeling the terrestrial biosphere as part of the earth system. Terrestrial ecosystems participate in climate and in the biogeochemical cycles on several temporal scales. Some of the carbon fixed by photosynthesis is incorporated into plant tissue and is delayed from returning to the atmosphere until it is oxidized by decomposition or fire. This slower (i.e., days to months) carbon loop through the terrestrial component of the carbon cycle, which is matched by cycles of nutrients required by plants and decomposers, affects the increasing trend in atmospheric CO2 concentration and imposes a seasonal cycle on that trend. Moreover, this cycle includes key controls over biogenic trace gas production. The structure of terrestrial ecosystems, which responds on even longer time scales (annual to century), is the integrated response to the biogeochemical and environmental constraints that develop over the intermediate time scale. The loop is closed back to the climate system since it is the structure of ecosystems, including species composition, that sets the terrestrial boundary condition in the climate system through modification of surface roughness, albedo, and, to a great extent, latent heat exchange. These separate temporal scales contain explicit feedback loops which may modify ecosystem dynamics and linkages between ecosystems and the atmosphere. The long-term change in climate, resulting from increased atmospheric concentrations of greenhouse gases (e.g., CO2, CH4, and nitrous oxide (N2O)) will further modify the global environment and potentially induce further ecosystem change. Modeling these interactions requires coupling successional models to biogeochemical models to physiological models that describe the exchange of water, energy, and biogenic trace gases between the vegetation and the atmosphere at fine time scales. There does not appear to be any obvious way to allow direct reciprocal coupling of atmospheric general circulation models (GCM's), which inherently run with fine time steps, to ecosystem or successional models, which have coarse temporal resolution, without the interposition of physiological canopy models. This is equally true for biogeochemical models of the exchange of carbon dioxide and trace gases. This coupling across time scales is nontrivial and sets the focus for the modeling strategy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMGC31B1126E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMGC31B1126E"><span>Uncertainty and the Social Cost of Methane Using Bayesian Constrained Climate Models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Errickson, F. C.; Anthoff, D.; Keller, K.</p> <p>2016-12-01</p> <p>Social cost estimates of greenhouse gases are important for the design of sound climate policies and are also plagued by uncertainty. One major source of uncertainty stems from the simplified representation of the climate system used in the integrated assessment models that provide these social cost estimates. We explore how uncertainty over the social cost of methane varies with the way physical processes and feedbacks in the methane cycle are modeled by (i) coupling three different methane models to a simple climate model, (ii) using MCMC to perform a Bayesian calibration of the three coupled climate models that simulates direct sampling from the joint posterior probability density function (pdf) of model parameters, and (iii) producing probabilistic climate projections that are then used to calculate the Social Cost of Methane (SCM) with the DICE and FUND integrated assessment models. We find that including a temperature feedback in the methane cycle acts as an additional constraint during the calibration process and results in a correlation between the tropospheric lifetime of methane and several climate model parameters. This correlation is not seen in the models lacking this feedback. Several of the estimated marginal pdfs of the model parameters also exhibit different distributional shapes and expected values depending on the methane model used. As a result, probabilistic projections of the climate system out to the year 2300 exhibit different levels of uncertainty and magnitudes of warming for each of the three models under an RCP8.5 scenario. We find these differences in climate projections result in differences in the distributions and expected values for our estimates of the SCM. We also examine uncertainty about the SCM by performing a Monte Carlo analysis using a distribution for the climate sensitivity while holding all other climate model parameters constant. Our SCM estimates using the Bayesian calibration are lower and exhibit less uncertainty about extremely high values in the right tail of the distribution compared to the Monte Carlo approach. This finding has important climate policy implications and suggests previous work that accounts for climate model uncertainty by only varying the climate sensitivity parameter may overestimate the SCM.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFMPP21A1403A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFMPP21A1403A"><span>Objective spatiotemporal proxy-model comparisons of the Asian monsoon for the last millennium</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Anchukaitis, K. J.; Cook, E. R.; Ammann, C. M.; Buckley, B. M.; D'Arrigo, R. D.; Jacoby, G.; Wright, W. E.; Davi, N.; Li, J.</p> <p>2008-12-01</p> <p>The Asian monsoon system can be studied using a complementary proxy/simulation approach which evaluates climate models using estimates of past precipitation and temperature, and which subsequently applies the best understanding of the physics of the climate system as captured in general circulation models to evaluate the broad-scale dynamics behind regional paleoclimate reconstructions. Here, we use a millennial-length climate field reconstruction of monsoon season summer (JJA) drought, developed from tree- ring proxies, with coupled climate simulations from NCAR CSM1.4 and CCSM3 to evaluate the cause of large- scale persistent droughts over the last one thousand years. Direct comparisons are made between the external forced response within the climate model and the spatiotemporal field reconstruction. In order to identify patterns of drought associated with internal variability in the climate system, we use a model/proxy analog technique which objectively selects epochs in the model that most closely reproduce those observed in the reconstructions. The concomitant ocean-atmosphere dynamics are then interpreted in order to identify and understand the internal climate system forcing of low frequency monsoon variability. We examine specific periods of extensive or intensive regional drought in the 15th, 17th, and 18th centuries, many of which are coincident with major cultural changes in the region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ClDy...50..571Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ClDy...50..571Z"><span>Influence of surface nudging on climatological mean and ENSO feedbacks in a coupled model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhu, Jieshun; Kumar, Arun</p> <p>2018-01-01</p> <p>Studies have suggested that surface nudging could be an efficient way to reconstruct the subsurface ocean variability, and thus a useful method for initializing climate predictions (e.g., seasonal and decadal predictions). Surface nudging is also the basis for climate models with flux adjustments. In this study, however, some negative aspects of surface nudging on climate simulations in a coupled model are identified. Specifically, a low-resolution version of the NCEP Climate Forecast System, version 2 (CFSv2L) is used to examine the influence of nudging on simulations of climatological mean and on the coupled feedbacks during ENSO. The effect on ENSO feedbacks is diagnosed following a heat budget analysis of mixed layer temperature anomalies. Diagnostics of the climatological mean state indicates that, even though SST biases in all ocean basins, as expected, are eliminated, the fidelity of climatological precipitation, surface winds and subsurface temperature (or the thermocline depth) could be highly ocean basin dependent. This is exemplified by improvements in the climatology of these variables in the tropical Atlantic, but degradations in the tropical Pacific. Furthermore, surface nudging also distorts the dynamical feedbacks during ENSO. For example, while the thermocline feedback played a critical role during the evolution of ENSO in a free simulation, it only played a minor role in the nudged simulation. These results imply that, even though the simulation of surface temperature could be improved in a climate model with surface nudging, the physics behind might be unrealistic.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMGC23G1195T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMGC23G1195T"><span>Surface Water and Energy Budgets for Sub-Saharan Africa in GFDL Coupled Climate Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tian, D.; Wood, E. F.; Vecchi, G. A.; Jia, L.; Pan, M.</p> <p>2015-12-01</p> <p>This study compare surface water and energy budget variables from the Geophysical Fluid Dynamics Laboratory (GFDL) FLOR models with the National Centers for Environmental Prediction (NCEP) Climate Forecast System Reanalysis (CFSR), Princeton University Global Meteorological Forcing Dataset (PGF), and PGF-driven Variable Infiltration Capacity (VIC) model outputs, as well as available observations over the sub-Saharan Africa. The comparison was made for four configurations of the FLOR models that included FLOR phase 1 (FLOR-p1) and phase 2 (FLOR-p2) and two phases of flux adjusted versions (FLOR-FA-p1 and FLOR-FA-p2). Compared to p1, simulated atmospheric states in p2 were nudged to the Modern-Era Retrospective Analysis for Research and Applications (MERRA) reanalysis. The seasonal cycle and annual mean of major surface water (precipitation, evapotranspiration, runoff, and change of storage) and energy variables (sensible heat, ground heat, latent heat, net solar radiation, net longwave radiation, and skin temperature) over a 34-yr period during 1981-2014 were compared in different regions in sub-Saharan Africa (West Africa, East Africa, and Southern Africa). In addition to evaluating the means in three sub-regions, empirical orthogonal functions (EOFs) analyses were conducted to compare both spatial and temporal characteristics of water and energy budget variables from four versions of GFDL FLOR, NCEP CFSR, PGF, and VIC outputs. This presentation will show how well each coupled climate model represented land surface physics and reproduced spatiotemporal characteristics of surface water and energy budget variables. We discuss what caused differences in surface water and energy budgets in land surface components of coupled climate model, climate reanalysis, and reanalysis driven land surface model. The comparisons will reveal whether flux adjustment and nudging would improve depiction of the surface water and energy budgets in coupled climate models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1710715V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1710715V"><span>Detecting hydrological changes through conceptual model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Viola, Francesco; Caracciolo, Domenico; Pumo, Dario; Francipane, Antonio; Valerio Noto, Leonardo</p> <p>2015-04-01</p> <p>Natural changes and human modifications in hydrological systems coevolve and interact in a coupled and interlinked way. If, on one hand, climatic changes are stochastic, non-steady, and affect the hydrological systems, on the other hand, human-induced changes due to over-exploitation of soils and water resources modifies the natural landscape, water fluxes and its partitioning. Indeed, the traditional assumption of static systems in hydrological analysis, which has been adopted for long time, fails whenever transient climatic conditions and/or land use changes occur. Time series analysis is a way to explore environmental changes together with societal changes; unfortunately, the not distinguishability between causes restrict the scope of this method. In order to overcome this limitation, it is possible to couple time series analysis with an opportune hydrological model, such as a conceptual hydrological model, which offers a schematization of complex dynamics acting within a basin. Assuming that model parameters represent morphological basin characteristics and that calibration is a way to detect hydrological signature at a specific moment, it is possible to argue that calibrating the model over different time windows could be a method for detecting potential hydrological changes. In order to test the capabilities of a conceptual model in detecting hydrological changes, this work presents different "in silico" experiments. A synthetic-basin is forced with an ensemble of possible future scenarios generated with a stochastic weather generator able to simulate steady and non-steady climatic conditions. The experiments refer to Mediterranean climate, which is characterized by marked seasonality, and consider the outcomes of the IPCC 5th report for describing climate evolution in the next century. In particular, in order to generate future climate change scenarios, a stochastic downscaling in space and time is carried out using realizations of an ensemble of General Circulation Models (GCMs) for the future scenarios 2046-2065 and 2081-2100. Land use changes (i.e., changes in the fraction of impervious area due to increasing urbanization) are explicitly simulated, while the reference hydrological responses are assessed by the spatially distributed, process-based hydrological model tRIBS, the TIN-based Real-time Integrated Basin Simulator. Several scenarios have been created, describing hypothetical centuries with steady conditions, climate change conditions, land use change conditions and finally complex conditions involving both transient climatic modifications and gradual land use changes. A conceptual lumped model, the EHSM (EcoHydrological Streamflow Model) is calibrated for the above mentioned scenarios with regard to different time-windows. The calibrated parameters show high sensitivity to anthropic variations in land use and/or climatic variability. Land use changes are clearly visible from parameters evolution especially when steady climatic conditions are considered. When the increase in urbanization is coupled with rainfall reduction the ability to detect human interventions through the analysis of conceptual model parameters is weakened.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_11 --> <div id="page_12" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="221"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1815947D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1815947D"><span>Global off-line evaluation of the ISBA-TRIP continental hydrological system used in the CNRM-CM6 climate model for the next CMIP6 exercise</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Decharme, Bertrand; Vergnes, Jean-Pierre; Minvielle, Marie; Colin, Jeanne; Delire, Christine</p> <p>2016-04-01</p> <p>The land surface hydrology represents an active component of the climate system. It is likely to influence the water and energy exchanges at the land surface, the ocean salinity and temperature at the mouth of the largest rivers, and the climate at least at the regional scale. In climate models, the continental hydrology is simulated via Land Surface Models (LSM), which compute water and energy budgets at the surface, coupled to River Routing Model (RRM), which convert the runoff simulated by the LSMs into river discharge in order to transfer the continental fresh water into the oceans and then to close the global hydrological cycle. Validating these Continental Hydrological Systems (CHS) at the global scale is therefore a crucial task, which requires off-line simulations driven by realistic atmospheric fluxes to avoid the systematic biases commonly found in the atmospheric models. In the CNRM-CM6 climate model of Météo-France, that will be used for the next Coupled Climate Intercomparison Project phase 6 (CMIP6) exercise, the land surface hydrology is simulated using the ISBA-TRIP CHS coupled via the OASIS-MCT coupler. The ISBA LSM solves explicitly the one dimensional Fourier law for soil temperature and the mixed form of the Richards equation for soil moisture using a 14-layers discretization over 12m depths. For the snowpack, a discretization using 12 layers allows the explicit representation of some snow key processes as its viscosity, its compaction due to wind, its age and its albedo on the visible and near infrared spectra. The TRIP RRM uses a global river channel network at 0.5° resolution. It is based on a three prognostic equations for the surface stream water, the seasonal floodplains, and the groundwater. The streamflow velocity is computed using the Maning's formula. The floodplain reservoir fills when the river height exceeds the river bankfull height and vice-versa. The flood interacts with the ISBA soil hydrology through infiltration and with the overlying atmosphere through precipitation interception and free water surface evaporation. Finally, the groundwater scheme is based on the two-dimensional groundwater flow equation for the piezometric head. Its coupling with ISBA permits to account for the presence of a water table under the soil moisture column allowing upward capillarity fluxes into the soil. In this study, we will present the off-line evaluation at the global scale of the ISBA-TRIP CHS over a recent period (1979-2010). The system will be compared to observations such as GRACE (Gravity Recovery and Climate Experiment) terrestrial water storage data, snow and permafrost extents from NSIDC (National Snow and Ice Data Center), or in-situ river discharge measurements from several sources. In addition we will also explore the impacts on the simulated water budget to account for some processes such as upward capillarity fluxes from groundwaters or seasonal floodplains. At last, it is envisaged to discuss some results about land/atmosphere interactions induced by these processes in the CNRM-CM6 climate model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC43E1108J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC43E1108J"><span>Natural and anthropogenic land cover change and its impact on the regional climate and hydrological extremes over Sanjiangyuan region</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ji, P.; Yuan, X.</p> <p>2017-12-01</p> <p>Located in the northern Tibetan Plateau, Sanjiangyuan is the headwater region of the Yellow River, Yangtze River and Mekong River. Besides climate change, natural and human-induced land cover change (e.g., Graze for Grass Project) is also influencing the regional hydro-climate and hydrological extremes significantly. To quantify their impacts, a land surface model (LSM) with consideration of soil moisture-lateral surface flow interaction and quasi-three-dimensional subsurface flow, is used to conduct long-term high resolution simulations driven by China Meteorological Administration Land Data Assimilation System forcing data and different land cover scenarios. In particular, the role of surface and subsurface lateral flows is also analyzed by comparing with typical one-dimensional models. Lateral flows help to simulate soil moisture variability caused by topography at hyper-resolution (e.g., 100m), which is also essential for simulating hydrological extremes including soil moisture dryness/wetness and high/low flows. The LSM will also be coupled with a regional climate model to simulate the effect of natural and anthropogenic land cover change on regional climate, with particular focus on the land-atmosphere coupling at different resolutions with different configurations in modeling land surface hydrology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4987822','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4987822"><span>Stochastic ice stream dynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Bertagni, Matteo Bernard; Ridolfi, Luca</p> <p>2016-01-01</p> <p>Ice streams are narrow corridors of fast-flowing ice that constitute the arterial drainage network of ice sheets. Therefore, changes in ice stream flow are key to understanding paleoclimate, sea level changes, and rapid disintegration of ice sheets during deglaciation. The dynamics of ice flow are tightly coupled to the climate system through atmospheric temperature and snow recharge, which are known exhibit stochastic variability. Here we focus on the interplay between stochastic climate forcing and ice stream temporal dynamics. Our work demonstrates that realistic climate fluctuations are able to (i) induce the coexistence of dynamic behaviors that would be incompatible in a purely deterministic system and (ii) drive ice stream flow away from the regime expected in a steady climate. We conclude that environmental noise appears to be crucial to interpreting the past behavior of ice sheets, as well as to predicting their future evolution. PMID:27457960</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC23F..04C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC23F..04C"><span>Variance decomposition shows the importance of human-climate feedbacks in the Earth system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Calvin, K. V.; Bond-Lamberty, B. P.; Jones, A. D.; Shi, X.; Di Vittorio, A. V.; Thornton, P. E.</p> <p>2017-12-01</p> <p>The human and Earth systems are intricately linked: climate influences agricultural production, renewable energy potential, and water availability, for example, while anthropogenic emissions from industry and land use change alter temperature and precipitation. Such feedbacks have the potential to significantly alter future climate change. Current climate change projections contain significant uncertainties, however, and because Earth System Models do not generally include dynamic human (demography, economy, energy, water, land use) components, little is known about how climate feedbacks contribute to that uncertainty. Here we use variance decomposition of a novel coupled human-earth system model to show that the influence of human-climate feedbacks can be as large as 17% of the total variance in the near term for global mean temperature rise, and 11% in the long term for cropland area. The near-term contribution of energy and land use feedbacks to the climate on global mean temperature rise is as large as that from model internal variability, a factor typically considered in modeling studies. Conversely, the contribution of climate feedbacks to cropland extent, while non-negligible, is less than that from socioeconomics, policy, or model. Previous assessments have largely excluded these feedbacks, with the climate community focusing on uncertainty due to internal variability, scenario, and model and the integrated assessment community focusing on uncertainty due to socioeconomics, technology, policy, and model. Our results set the stage for a new generation of models and hypothesis testing to determine when and how bidirectional feedbacks between human and Earth systems should be considered in future assessments of climate change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AGUFM.A41D0056T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AGUFM.A41D0056T"><span>PyMCT: A Very High Level Language Coupling Tool For Climate System Models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tobis, M.; Pierrehumbert, R. T.; Steder, M.; Jacob, R. L.</p> <p>2006-12-01</p> <p>At the Climate Systems Center of the University of Chicago, we have been examining strategies for applying agile programming techniques to complex high-performance modeling experiments. While the "agile" development methodology differs from a conventional requirements process and its associated milestones, the process remain a formal one. It is distinguished by continuous improvement in functionality, large numbers of small releases, extensive and ongoing testing strategies, and a strong reliance on very high level languages (VHLL). Here we report on PyMCT, which we intend as a core element in a model ensemble control superstructure. PyMCT is a set of Python bindings for MCT, the Fortran-90 based Model Coupling Toolkit, which forms the infrastructure for the inter-component communication in the Community Climate System Model (CCSM). MCT provides a scalable model communication infrastructure. In order to take maximum advantage of agile software development methodologies, we exposed MCT functionality to Python, a prominent VHLL. We describe how the scalable architecture of MCT allows us to overcome the relatively weak runtime performance of Python, so that the performance of the combined system is not severely impacted. To demonstrate these advantages, we reimplemented the CCSM coupler in Python. While this alone offers no new functionality, it does provide a rigorous test of PyMCT functionality and performance. We reimplemented the CPL6 library, presenting an interesting case study of the comparison between conventional Fortran-90 programming and the higher abstraction level provided by a VHLL. The powerful abstractions provided by Python will allow much more complex experimental paradigms. In particular, we hope to build on the scriptability of our coupling strategy to enable systematic sensitivity tests. Our most ambitious objective is to combine our efforts with Bayesian inverse modeling techniques toward objective tuning at the highest level, across model architectures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMGC31B1123C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMGC31B1123C"><span>Carbon-climate-human interactions in an integrated human-Earth system model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Calvin, K. V.; Bond-Lamberty, B. P.; Jones, A. D.; Shi, X.</p> <p>2016-12-01</p> <p>The C4MIP and CMIP5 results highlighted large uncertainties in climate projections, driven to a large extent by limited understanding of the interactions between terrestrial carbon-cycle and climate feedbacks, and their associated uncertainties. These feedbacks are dominated by uncertainties in soil processes, disturbance dynamics, ecosystem response to climate change, and agricultural productivity, and land-use change. This research addresses three questions: (1) how do terrestrial feedbacks vary across different levels of climate change, (2) what is the relative contribution of CO2 fertilization and climate change, and (3) how robust are the results across different models and methods? We used a coupled modeling framework that integrates an Integrated Assessment Model (modeling economic and energy activity) with an Earth System Model (modeling the natural earth system) to examine how business-as-usual (RCP 8.5) climate change will affect ecosystem productivity, cropland extent, and other aspects of the human-Earth system. We find that higher levels of radiative forcing result in higher productivity growth, that increases in CO2 concentrations are the dominant contributors to that growth, and that our productivity increases fall in the middle of the range when compared to other CMIP5 models and the AgMIP models. These results emphasize the importance of examining both the anthropogenic and natural components of the earth system, and their long-term interactive feedbacks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GMD....11.1887S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GMD....11.1887S"><span>The Bern Simple Climate Model (BernSCM) v1.0: an extensible and fully documented open-source re-implementation of the Bern reduced-form model for global carbon cycle-climate simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Strassmann, Kuno M.; Joos, Fortunat</p> <p>2018-05-01</p> <p>The Bern Simple Climate Model (BernSCM) is a free open-source re-implementation of a reduced-form carbon cycle-climate model which has been used widely in previous scientific work and IPCC assessments. BernSCM represents the carbon cycle and climate system with a small set of equations for the heat and carbon budget, the parametrization of major nonlinearities, and the substitution of complex component systems with impulse response functions (IRFs). The IRF approach allows cost-efficient yet accurate substitution of detailed parent models of climate system components with near-linear behavior. Illustrative simulations of scenarios from previous multimodel studies show that BernSCM is broadly representative of the range of the climate-carbon cycle response simulated by more complex and detailed models. Model code (in Fortran) was written from scratch with transparency and extensibility in mind, and is provided open source. BernSCM makes scientifically sound carbon cycle-climate modeling available for many applications. Supporting up to decadal time steps with high accuracy, it is suitable for studies with high computational load and for coupling with integrated assessment models (IAMs), for example. Further applications include climate risk assessment in a business, public, or educational context and the estimation of CO2 and climate benefits of emission mitigation options.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1409728-cities-budget-based-management-energy-water-climate-nexus-case-studies-transportation-policy-infrastructure-systems-urban-utility-risk-management','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1409728-cities-budget-based-management-energy-water-climate-nexus-case-studies-transportation-policy-infrastructure-systems-urban-utility-risk-management"><span>Cities and “budget-based” management of the energy-water-climate nexus: Case studies in transportation policy, infrastructure systems, and urban utility risk management</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Sperling, Joshua B.; Ramaswami, Anu</p> <p></p> <p>This article reviews city case studies to inform a framework for developing urban infrastructure design standards and policy instruments that together aim to pursue energy efficiency and greenhouse gas mitigation through city carbon budgets and water use efficiency and climate risk adaptation through city water budgets. Here, this article also proposes combining carbon and water budgeting at the city-scale for achieving successful coupled city carbon and water budget (CCCWB) programs. Under a CCCWB program, key actors including local governments, infrastructure designers/operators, and households would be assigned a GHG emissions and water 'budget' and be required by state or federal levelsmore » to keep within this budget through the use of flexibility mechanisms, incentive programs, and sanctions. Multiple incentives and cross-scale governance arrangements would be tied to energy-water systems integration, resource-efficient transportation and infrastructure development, and effective monitoring and management of energy use, emissions, climate risks to, and security of energy-water-transport-food and other critical systems. As a first step to promote strategies for CCCWB development, we systematically review approaches of and shortcomings to existing budget-based programs in the UK and US, and suggest improvements in three areas: measurement, modeling effectiveness of interventions for staying within a budget, and governance. To date, the majority of climate action or sustainability plans by cities, while mentioning climate impacts as a premise for the plan, do not address these impacts in the plan. They focus primarily on GHG mitigation while ignoring resource depletion challenges and energy-climate-water linkages, whereby water supplies can begin to limit energy production and energy shifts to mitigate climate change can limit water availability. Coupled carbon-water budget plans, programs, and policies - described in this study- may address these concerns as well as the emerging trends that will exacerbate these problems - e.g., including population growth, climatic changes, and emerging policy choices that are not coordinated. Cities and 'Budget-Based' Management of the Energy-Water-Climate Nexus: Case Studies to Inform Strategy for Integrated Performance- and Incentive-Based Design and Policy Instruments.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1409728-cities-budget-based-management-energy-water-climate-nexus-case-studies-transportation-policy-infrastructure-systems-urban-utility-risk-management','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1409728-cities-budget-based-management-energy-water-climate-nexus-case-studies-transportation-policy-infrastructure-systems-urban-utility-risk-management"><span>Cities and “budget-based” management of the energy-water-climate nexus: Case studies in transportation policy, infrastructure systems, and urban utility risk management</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Sperling, Joshua B.; Ramaswami, Anu</p> <p>2017-11-03</p> <p>This article reviews city case studies to inform a framework for developing urban infrastructure design standards and policy instruments that together aim to pursue energy efficiency and greenhouse gas mitigation through city carbon budgets and water use efficiency and climate risk adaptation through city water budgets. Here, this article also proposes combining carbon and water budgeting at the city-scale for achieving successful coupled city carbon and water budget (CCCWB) programs. Under a CCCWB program, key actors including local governments, infrastructure designers/operators, and households would be assigned a GHG emissions and water 'budget' and be required by state or federal levelsmore » to keep within this budget through the use of flexibility mechanisms, incentive programs, and sanctions. Multiple incentives and cross-scale governance arrangements would be tied to energy-water systems integration, resource-efficient transportation and infrastructure development, and effective monitoring and management of energy use, emissions, climate risks to, and security of energy-water-transport-food and other critical systems. As a first step to promote strategies for CCCWB development, we systematically review approaches of and shortcomings to existing budget-based programs in the UK and US, and suggest improvements in three areas: measurement, modeling effectiveness of interventions for staying within a budget, and governance. To date, the majority of climate action or sustainability plans by cities, while mentioning climate impacts as a premise for the plan, do not address these impacts in the plan. They focus primarily on GHG mitigation while ignoring resource depletion challenges and energy-climate-water linkages, whereby water supplies can begin to limit energy production and energy shifts to mitigate climate change can limit water availability. Coupled carbon-water budget plans, programs, and policies - described in this study- may address these concerns as well as the emerging trends that will exacerbate these problems - e.g., including population growth, climatic changes, and emerging policy choices that are not coordinated. Cities and 'Budget-Based' Management of the Energy-Water-Climate Nexus: Case Studies to Inform Strategy for Integrated Performance- and Incentive-Based Design and Policy Instruments.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H42E..02Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H42E..02Y"><span>Effect of Freeze-Thaw Cycles on Soil Nitrogen Reactive Transport in a Polygonal Arctic Tundra Ecosystem at Barrow AK Using 3-D Coupled ALM-PFLOTRAN</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yuan, F.; Wang, G.; Painter, S. L.; Tang, G.; Xu, X.; Kumar, J.; Bisht, G.; Hammond, G. E.; Mills, R. T.; Thornton, P. E.; Wullschleger, S. D.</p> <p>2017-12-01</p> <p>In Arctic tundra ecosystem soil freezing-thawing is one of dominant physical processes through which biogeochemical (e.g., carbon and nitrogen) cycles are tightly coupled. Besides hydraulic transport, freezing-thawing can cause pore water movement and aqueous species gradients, which are additional mechanisms for soil nitrogen (N) reactive-transport in Tundra ecosystem. In this study, we have fully coupled an in-development ESM(i.e., Advanced Climate Model for Energy, ACME)'s Land Model (ALM) aboveground processes with a state-of-the-art massively parallel 3-D subsurface thermal-hydrology and reactive transport code, PFLOTRAN. The resulting coupled ALM-PFLOTRAN model is a Land Surface Model (LSM) capable of resolving 3-D soil thermal-hydrological-biogeochemical cycles. This specific version of PFLOTRAN has incorporated CLM-CN Converging Trophic Cascade (CTC) model and a full and simple but robust soil N cycle. It includes absorption-desorption for soil NH4+ and gas dissolving-degasing process as well. It also implements thermal-hydrology mode codes with three newly-modified freezing-thawing algorithms which can greatly improve computing performance in regarding to numerical stiffness at freezing-point. Here we tested the model in fully 3-D coupled mode at the Next Generation Ecosystem Experiment-Arctic (NGEE-Arctic) field intensive study site at the Barrow Environmental Observatory (BEO), AK. The simulations show that: (1) synchronous coupling of soil thermal-hydrology and biogeochemistry in 3-D can greatly impact ecosystem dynamics across polygonal tundra landscape; and (2) freezing-thawing cycles can add more complexity to the system, resulting in greater mobility of soil N vertically and laterally, depending upon local micro-topography. As a preliminary experiment, the model is also implemented for Pan-Arctic region in 1-D column mode (i.e. no lateral connection), showing significant differences compared to stand-alone ALM. The developed ALM-PFLOTRAN coupling codes embeded within ESM will be used for Pan-Arctic regional evaluation of climate change-caused ecosystem responses and their feedbacks to climate system at various scales.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.B43B0464K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.B43B0464K"><span>Vulnerability on the Roof of the World: Resilience to Climate Change and Natural Resource Policies on the Tibetan Plateau</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Klein, J. A.; Hopping, K. A.; Yeh, E.; Hu, J.; Nyima, Y.; Boone, R.; Galvin, K.; Kang, S.; Ojima, D. S.</p> <p>2010-12-01</p> <p>Pastoralists on the Tibetan Plateau are a marginalized people living in an extreme environment and may be especially vulnerable as the system approaches critical thresholds. In Tibet, temperatures are increasing several times more than the global average while the frequency and severity of severe snowstorms is predicted to increase. Pastoralists are also experiencing reduced mobility and severe grazing restrictions. We are using interdisciplinary frameworks and methods that include a multifactor ecological experiment, household interviews, remote sensing, and a coupled ecosystem and household decision-making model to examine herder and ecosystem vulnerability to climate change and extreme weather events within the context of changing natural resource policies in China. The fully factorial ecological experiment includes two climate changes (warming and spring snow additions) and two types of grazing (yak and pika). We established the experiment in 2008 within the Tibet Autonomous Region (4,870 m) and are monitoring microclimate, vegetation, nutrient availability, carbon fluxes and stable isotopes. We are investigating the sensitivity of the system, whether it is likely to cross critical thresholds, and how resilient this system may be to predicted climate and land use changes. Semi-structured interviews on indigenous knowledge and vulnerability complement the ecological experimental work. We are asking herders about climatic and ecological change and vulnerability to snow disasters. To integrate our ecological and social findings, we are coupling an ecosystem model to an agent-based pastoral household model. Our results from the experiment and the indigenous knowledge study suggest that Kobresia pygmaea, the dominant species and primary grazing resource, is vulnerable to warming. Snow additions can partially mediate this effect. Herders throughout this region share common knowledge about both climatic and ecological changes, but appear to be more closely attuned to ecological shifts than to gradual climate changes. Herder perceptions about climate trends often contradict local weather station data, but herders tend to be in strong agreement that grassland health has declined. These results suggest that rangeland degradation has occurred, and that climate warming may be one driver responsible for these changes. While additional snow may improve ecological conditions, the warming-induced degradation may make the social-ecological system more vulnerable to large snowstorm events. Our findings suggest that climate adaptation strategies should address the effects of both warming and extreme weather events and should also encourage land use policies that will maintain these systems under change. The vulnerability of ecosystems on the roof of the world has implications for the 1x109 people living downstream and for feedbacks to the Earth’s climate system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26455783','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26455783"><span>The emerging threats of climate change on tropical coastal ecosystem services, public health, local economies and livelihood sustainability of small islands: Cumulative impacts and synergies.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hernández-Delgado, E A</p> <p>2015-12-15</p> <p>Climate change has significantly impacted tropical ecosystems critical for sustaining local economies and community livelihoods at global scales. Coastal ecosystems have largely declined, threatening the principal source of protein, building materials, tourism-based revenue, and the first line of defense against storm swells and sea level rise (SLR) for small tropical islands. Climate change has also impacted public health (i.e., altered distribution and increased prevalence of allergies, water-borne, and vector-borne diseases). Rapid human population growth has exacerbated pressure over coupled social-ecological systems, with concomitant non-sustainable impacts on natural resources, water availability, food security and sovereignty, public health, and quality of life, which should increase vulnerability and erode adaptation and mitigation capacity. This paper examines cumulative and synergistic impacts of climate change in the challenging context of highly vulnerable small tropical islands. Multiple adaptive strategies of coupled social-ecological ecosystems are discussed. Multi-level, multi-sectorial responses are necessary for adaptation to be successful. Copyright © 2015 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.A23G0312H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.A23G0312H"><span>Assessing the aerosol direct and first indirect effects using ACM/GCM simulation results</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Huang, H.; Gu, Y.; Xue, Y.; Lu, C. H.</p> <p>2016-12-01</p> <p>Atmospheric aerosols have been found to play an important role in global climate change but there are still large uncertainty in evaluating its role in the climate system. The aerosols generally affect global and regional climate through the scattering and the absorption of solar radiation (direct effect) and through their influences on cloud particle, number and sizes (first indirect effect). The indirect effect will further affects cloud water content, cloud top albedo and surface precipitations. In this study, we investigate the global climatic effect of aerosols using a coupled NCEP Global Forecast System (GFS) and a land surface model (SSiB2) The OPAC (Optical Properties of Aerosols and Clouds) database is used for aerosol effect. The OPAC data provides the optical properties (i.e., the extinction, scattering and absorption coefficient, single-scattering albedo, asymmetry factor and phase function) of ten types of aerosols under various relative humidity conditions for investigating the global direct and first indirect effects of dust aerosols. For indirect forcings due to liquid water, we follow the approach presented by Jiang et al (2011), in which a parameterization of cloud effective radius was calculated to describe its variance with convective strength and aerosol concentration. Since the oceans also play an important role on aerosol climatic effect, we also design a set of simulations using a coupled atmosphere/ocean model (CFS) to evaluate the sensitivity of aerosol effect with two-way atmosphere-ocean interactions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMGC21C0850W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMGC21C0850W"><span>Projecting climate-driven increases in North American fire activity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, D.; Morton, D. C.; Collatz, G. J.</p> <p>2013-12-01</p> <p>Climate regulates fire activity through controls on vegetation productivity (fuels), lightning ignitions, and conditions governing fire spread. In many regions of the world, human management also influences the timing, duration, and extent of fire activity. These coupled interactions between human and natural systems make fire a complex component of the Earth system. Satellite data provide valuable information on the spatial and temporal dynamics of recent fire activity, as active fires, burned area, and land cover information can be combined to separate wildfires from intentional burning for agriculture and forestry. Here, we combined satellite-derived burned area data with land cover and climate data to assess fire-climate relationships in North America between 2000-2012. We used the latest versions of the Global Fire Emissions Database (GFED) burned area product and Modern-Era Retrospective Analysis for Research and Applications (MERRA) climate data to develop regional relationships between burned area and potential evaporation (PE), an integrated dryness metric. Logistic regression models were developed to link burned area with PE and individual climate variables during and preceding the fire season, and optimal models were selected based on Akaike Information Criterion (AIC). Overall, our model explained 85% of the variance in burned area since 2000 across North America. Fire-climate relationships from the era of satellite observations provide a blueprint for potential changes in fire activity under scenarios of climate change. We used that blueprint to evaluate potential changes in fire activity over the next 50 years based on twenty models from the Coupled Model Intercomparison Project Phase 5 (CMIP5). All models suggest an increase of PE under low and high emissions scenarios (Representative Concentration Pathways (RCP) 4.5 and 8.5, respectively), with largest increases in projected burned area across the western US and central Canada. Overall, near-term climate projections point to pronounced changes in fire season length, total burned area, and the frequency of extreme events across North America by 2050.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMIN43B0077R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMIN43B0077R"><span>Understanding Climate Variability of Urban Ecosystems Through the Lens of Citizen Science</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ripplinger, J.; Jenerette, D.; Wang, J.; Chandler, M.; Ge, C.; Koutzoukis, S.</p> <p>2017-12-01</p> <p>The Los Angeles megacity is vulnerable to climate warming - a process that locally exacerbates the urban heat island effect as it intensifies with size and density of the built-up area. We know that large-scale drivers play a role, but in order to understand local-scale climate variation, more research is needed on the biophysical and sociocultural processes driving the urban climate system. In this study, we work with citizen scientists to deploy a high-density network of microsensors across a climate gradient to characterize geographic variation in neighborhood meso- and micro-climates. This research asks: How do urbanization, global climate, and vegetation interact across multiple scales to affect local-scale experiences of temperature? Additionally, citizen scientist-led efforts generated research questions focused on examining microclimatic differences among yard groundcover types (rock mulch vs. lawn vs. artificial turf) and also on variation in temperature related to tree cover. Combining sensor measurements with Weather Research and Forecasting (WRF) spatial models and satellite-based temperature, we estimate spatially-explicit maps of land surface temperature and air temperature to illustrate the substantial difference between surface and air urban heat island intensities and the variable degree of coupling between land surface and air temperature in urban areas. Our results show a strong coupling between air temperature variation and landcover for neighborhoods, with significant detectable signatures from tree cover and impervious surface. Temperature covaried most strongly with urbanization intensity at nighttime during peak summer season, when daily mean air temperature ranged from 12.8C to 30.4C across all groundcover types. The combined effects of neighborhood geography and vegetation determine where and how temperature and tree canopy vary within a city. This citizen science-enabled research shows how large-scale climate drivers and urbanization intensity jointly influence the nature and magnitude of coupling between air temperature and tree cover, and demonstrate how urban vegetation provides an important ecosystem service in cities by decreasing the intensity of local urban heat islands.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/219667-photovoltaic-systems-sizing-algeria','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/219667-photovoltaic-systems-sizing-algeria"><span>Photovoltaic systems sizing for Algeria</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Arab, A.H.; Driss, B.A.; Amimeur, R.</p> <p>1995-02-01</p> <p>The purpose of this work is to develop an optimization method applicable to stand-alone photovoltaic systems as a function of its reliability. For a given loss-of-load probability (LLP), there are many combinations of battery capacity and photovoltaic array peak power. The problem consists in determining the couple which corresponds to a minimum total system cost. The method has been applied to various areas all over Algeria taking into account various climatic zones. The parameter used to define the different climatic zones is the clearness index KT for all the considered sites. The period of the simulation system is 10 years.more » 5 refs., 4 figs., 5 tabs.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFMPP41D1501G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFMPP41D1501G"><span>Replumbing of the Biological Pump caused by Millennial Climate Variability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Galbraith, E.; Sarmiento, J.</p> <p>2008-12-01</p> <p>It has been hypothesized that millennial-timescale variability in the biological pump was a critical instigator of glacial-interglacial cycles. However, even in the absence of changes in ecosystem function (e.g. due to iron fertilization), determining the mechanisms by which physical climate variability alters the biological pump is not simple. Changes in upper ocean circulation and deep water formation have previously been shown to alter both the downward flux of organic matter and the mass of respired carbon in the ocean interior, often in non- intuitive ways. For example, a reduced upward flux of nutrients at the global scale will decrease the global rate of export production, but it could either increase or decrease the respired carbon content of the ocean interior, depending on where the reduced upward flux of nutrients occurs. Furthermore, viable candidates for physical climate forcing are numerous, including changes in the westerly winds, changes in the depth of the thermocline, and changes in the formation rate of North Atlantic Deep Water, among others. We use a simple, prognostic, light-and temperature-dependent model of biogeochemical cycling within a state-of-the- art global coupled ocean-atmosphere model to examine the response of the biological pump to changes in the coupled Earth system over multiple centuries. The biogeochemical model explicitly distinguishes respired carbon from preformed and saturation carbon, allowing the activity of the biological pump to be clearly quantified. Changes are forced in the model by altering the background climate state, and by manipulating the flux of freshwater to the North Atlantic region. We show how these changes in the physical state of the coupled ocean-atmosphere system impact the distribution and mass of respired carbon in the ocean interior, and the relationship these changes bear to global patterns of export production via the redistribution of nutrients.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006cosp...36.2522P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006cosp...36.2522P"><span>CAWSES (Climate and Weather of the Sun-Earth System) Science: Progress thus far and the next steps</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pallamraju, D.; Kozyra, J.; Basu, S.</p> <p></p> <p>Climate and Weather of the Sun Earth System CAWSES is the current program of Scientific Committee for Solar Terrestrial Physics SCOSTEP for 2004 - 2008 The main aim of CAWSES is to bring together scientists from various nations to address the coupled and global nature of the Sun-Earth System phenomena Towards that end CAWSES provides a platform for international cooperation in observations data analysis theory and modeling There has been active international participation thus far with endorsement of the national CAWSES programs in some countries and many scientists around the globe actively volunteering their time in this effort The CAWSES Science Steering Group has organized the CAWSES program into five Themes for better execution of its science Solar Influence on Climate Space Weather Science and Applications Atmospheric Coupling Processes Space Climatology and Capacity Building and Education CAWSES will cooperate with International programs that focus on the Sun-Earth system science and at the same time compliment the work of programs whose scope is beyond the realm of CAWSES This talk will briefly review the science goals of CAWSES provide salient results from different Themes with emphasis on those from the Space Weather Theme This talk will also indicate the next steps that are being planned in this program and solicit inputs from the community for the science efforts to be carried out in the future</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.2037D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.2037D"><span>Future Evolution of Marine Heat Waves in the Mediterranean: Coupled Regional Climate Projections</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Darmaraki, Sofia; Somot, Samuel; Sevault, Florence; Nabat, Pierre; Cavicchia, Leone; Djurdjevic, Vladimir; Cabos, William; Sein, Dmitry</p> <p>2017-04-01</p> <p>FUTURE EVOLUTION OF MARINE HEAT WAVES IN THE MEDITERRANEAN : COUPLED REGIONAL CLIMATE PROJECTIONS The Mediterranean area is identified as a « Hot Spot » region, vulnerable to future climate change with potentially strong impacts over the sea. By 2100, climate models predict increased warming over the sea surface, with possible implications on the Mediterranean thermohaline and surface circulation,associated also with severe impacts on the ecosystems (e.g. fish habitat loss, species extinction and migration, invasive species). However, a robust assesment of the future evolution of the extreme marine temperatures remains still an open issue of primary importance, under the anthropogenic pressure. In this context, we study here the probability and characteristics of marine heat wave (MHW) occurrence in the Mediterranean Sea in future climate projections. To this end, we use an ensemble of fully coupled regional climate system models (RCSM) from the Med- CORDEX initiative. This multi-model approach includes a high-resolution representation of the atmospheric, land and ocean component, with a free air-sea interface.Specifically, dedicated simulations for the 20th and the 21st century are carried out with respect to the different IPCC-AR5 socioeconomic scenarios (1950-2100, RCP8.5, RCP4.5, RCP2.6). Model evaluation for the historical period is performed using satellite and in situ data. Then, the variety of factors that can cause the MHW (e.g. direct radiative forcing, ocean advection, stratification change) are examined to disentangle the dominant driving force. Finally, the spatial variability and temporal evolution of MHW are analyzed on an annual basis, along with additional integrated indicators, useful for marine ecosystems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1249119-simulating-aerosol-indirect-effects-improved-aerosol-cloud-precipitation-representations-coupled-regional-climate-model','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1249119-simulating-aerosol-indirect-effects-improved-aerosol-cloud-precipitation-representations-coupled-regional-climate-model"><span>Simulating Aerosol Indirect Effects with Improved Aerosol-Cloud- Precipitation Representations in a Coupled Regional Climate Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Zhang, Yang; Leung, L. Ruby; Fan, Jiwen</p> <p></p> <p>This is a collaborative project among North Carolina State University, Pacific Northwest National Laboratory, and Scripps Institution of Oceanography, University of California at San Diego to address the critical need for an accurate representation of aerosol indirect effect in climate and Earth system models. In this project, we propose to develop and improve parameterizations of aerosol-cloud-precipitation feedbacks in climate models and apply them to study the effect of aerosols and clouds on radiation and hydrologic cycle. Our overall objective is to develop, improve, and evaluate parameterizations to enable more accurate simulations of these feedbacks in high resolution regional and globalmore » climate models.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_12 --> <div id="page_13" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="241"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29537084','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29537084"><span>The future of fishes and fisheries in the changing oceans.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cheung, W W L</p> <p>2018-03-01</p> <p>This paper aims to highlight the risk of climate change on coupled marine human and natural systems and explore possible solutions to reduce such risk. Specifically, it explores some of the key responses of marine fish stocks and fisheries to climate change and their implications for human society. It highlights the importance of mitigating carbon emission and achieving the Paris Agreement in reducing climate risk on marine fish stocks and fisheries. Finally, it discusses potential opportunities for helping fisheries to reduce climate threats, through local adaptation. A research direction in fish biology and ecology is proposed that would help support the development of these potential solutions. © 2018 The Fisheries Society of the British Isles.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/971893-geoengineering-cloud-seeding-influence-sea-ice-climate-system','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/971893-geoengineering-cloud-seeding-influence-sea-ice-climate-system"><span>Geoengineering by cloud seeding: influence on sea ice and climate system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Rasch, Philip J.; Latham, John; Chen, Chih-Chieh</p> <p>2009-12-18</p> <p>GCM computations using a fully coupled ocean atmosphere model indicate that increasing cloud reflectivity by seeding maritime boundary layer clouds with particles made from seawater may compensate for some of the effects on climate of increasing greenhouse gas concentrations. The chosen seeding strategy (one of many possible scenarios) can restore global averages of temperature, precipitation and sea ice to present day values, but not simultaneously. The response varies nonlinearly with extent of the seeding, and geoengineering generates local changes to important climatic features. The global tradeoffs of restoring ice cover and cooling the planet must be assessed alongside the localmore » changes to climate features.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1910105G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1910105G"><span>Climate variability and the European agricultural production</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Guimarães Nobre, Gabriela; Hunink, Johannes E.; Baruth, Bettina; Aerts, Jeroen C. J. H.; Ward, Philip J.</p> <p>2017-04-01</p> <p>By 2050, the global demand for maize, wheat and other major crops is expected to grow sharply. To meet this challenge, agricultural systems have to increase substantially their production. However, the expanding world population, coupled with a decline of arable land per person, and the variability in global climate, are obstacles to achieving the increasing demand. Creating a resilient agriculture system requires the incorporation of preparedness measures against weather-related events, which can trigger disruptive risks such as droughts. This study examines the influence of large-scale climate variability on agriculture production applying a robust decision-making tool named fast-and-frugal trees (FFT). We created FFTs using a dataset of crop production and indices of climate variability: the El Niño Southern Oscillation (SOI) and the North Atlantic Oscillation (NAO). Our main goal is to predict the occurrence of below-average crop production, using these two indices at different lead times. Initial results indicated that SOI and NAO have strong links with European low sugar beet production. For some areas, the FFTs were able to detect below-average productivity events six months before harvesting with hit rate and predictive positive value higher than 70%. We found that shorter lead times, such as three months before harvesting, have the highest predictive skill. Additionally, we observed that the responses of low production events to the phases of the NAO and SOI vary spatially and seasonally. Through the comprehension of the relationship between large scale climate variability and European drought related agricultural impact, this study reflects on how this information could potentially improve the management of the agricultural sector by coupling the findings with seasonal forecasting system of crop production.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GMD....10.4723G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GMD....10.4723G"><span>231Pa and 230Th in the ocean model of the Community Earth System Model (CESM1.3)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gu, Sifan; Liu, Zhengyu</p> <p>2017-12-01</p> <p>The sediment 231Pa / 230Th activity ratio is emerging as an important proxy for deep ocean circulation in the past. In order to allow for a direct model-data comparison and to improve our understanding of the sediment 231Pa / 230Th activity ratio, we implement 231Pa and 230Th in the ocean component of the Community Earth System Model (CESM). In addition to the fully coupled implementation of the scavenging behavior of 231Pa and 230Th with the active marine ecosystem module (particle-coupled: hereafter p-coupled), another form of 231Pa and 230Th have also been implemented with prescribed particle flux fields of the present climate (particle-fixed: hereafter p-fixed). The comparison of the two forms of 231Pa and 230Th helps to isolate the influence of the particle fluxes from that of ocean circulation. Under present-day climate forcing, our model is able to simulate water column 231Pa and 230Th activity and the sediment 231Pa / 230Th activity ratio in good agreement with available observations. In addition, in response to freshwater forcing, the p-coupled and p-fixed sediment 231Pa / 230Th activity ratios behave similarly over large areas of low productivity on long timescales, but can differ substantially in some regions of high productivity and on short timescales, indicating the importance of biological productivity in addition to ocean transport. Therefore, our model provides a potentially powerful tool to help the interpretation of sediment 231Pa / 230Th reconstructions and to improve our understanding of past ocean circulation and climate changes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.B53J..08L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.B53J..08L"><span>Insights from Modeling the Integrated Climate, Biogeochemical Cycles, Human Activities and Their Interactions in the ACME Earth System Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Leung, L. R.; Thornton, P. E.; Riley, W. J.; Calvin, K. V.</p> <p>2017-12-01</p> <p>Towards the goal of understanding the contributions from natural and managed systems to current and future greenhouse gas fluxes and carbon-climate and carbon-CO2 feedbacks, efforts have been underway to improve representations of the terrestrial, river, and human components of the ACME earth system model. Broadly, our efforts include implementation and comparison of approaches to represent the nutrient cycles and nutrient limitations on ecosystem production, extending the river transport model to represent sediment and riverine biogeochemistry, and coupling of human systems such as irrigation, reservoir operations, and energy and land use with the ACME land and river components. Numerical experiments have been designed to understand how terrestrial carbon, nitrogen, and phosphorus cycles regulate climate system feedbacks and the sensitivity of the feedbacks to different model treatments, examine key processes governing sediment and biogeochemistry in the rivers and their role in the carbon cycle, and exploring the impacts of human systems in perturbing the hydrological and carbon cycles and their interactions. This presentation will briefly introduce the ACME modeling approaches and discuss preliminary results and insights from numerical experiments that lay the foundation for improving understanding of the integrated climate-biogeochemistry-human system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC51C0823R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC51C0823R"><span>Observationally-based Metrics of Ocean Carbon and Biogeochemical Variables are Essential for Evaluating Earth System Model Projections</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Russell, J. L.; Sarmiento, J. L.</p> <p>2017-12-01</p> <p>The Southern Ocean is central to the climate's response to increasing levels of atmospheric greenhouse gases as it ventilates a large fraction of the global ocean volume. Global coupled climate models and earth system models, however, vary widely in their simulations of the Southern Ocean and its role in, and response to, the ongoing anthropogenic forcing. Due to its complex water-mass structure and dynamics, Southern Ocean carbon and heat uptake depend on a combination of winds, eddies, mixing, buoyancy fluxes and topography. Understanding how the ocean carries heat and carbon into its interior and how the observed wind changes are affecting this uptake is essential to accurately projecting transient climate sensitivity. Observationally-based metrics are critical for discerning processes and mechanisms, and for validating and comparing climate models. As the community shifts toward Earth system models with explicit carbon simulations, more direct observations of important biogeochemical parameters, like those obtained from the biogeochemically-sensored floats that are part of the Southern Ocean Carbon and Climate Observations and Modeling project, are essential. One goal of future observing systems should be to create observationally-based benchmarks that will lead to reducing uncertainties in climate projections, and especially uncertainties related to oceanic heat and carbon uptake.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20180000725','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20180000725"><span>A Realization of Bias Correction Method in the GMAO Coupled System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chang, Yehui; Koster, Randal; Wang, Hailan; Schubert, Siegfried; Suarez, Max</p> <p>2018-01-01</p> <p>Over the past several decades, a tremendous effort has been made to improve model performance in the simulation of the climate system. The cold or warm sea surface temperature (SST) bias in the tropics is still a problem common to most coupled ocean atmosphere general circulation models (CGCMs). The precipitation biases in CGCMs are also accompanied by SST and surface wind biases. The deficiencies and biases over the equatorial oceans through their influence on the Walker circulation likely contribute the precipitation biases over land surfaces. In this study, we introduce an approach in the CGCM modeling to correct model biases. This approach utilizes the history of the model's short-term forecasting errors and their seasonal dependence to modify model's tendency term and to minimize its climate drift. The study shows that such an approach removes most of model climate biases. A number of other aspects of the model simulation (e.g. extratropical transient activities) are also improved considerably due to the imposed pre-processed initial 3-hour model drift corrections. Because many regional biases in the GEOS-5 CGCM are common amongst other current models, our approaches and findings are applicable to these other models as well.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.5918R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.5918R"><span>Reconstruction of the Eemian climate using a fully coupled Earth system model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rybak, Oleg; Volodin, Evgeny; Morozova, Polina; Huybrechts, Philippe</p> <p>2017-04-01</p> <p>Climate of the Last Interglacial (LIG) between ca. 130 and 115 kyr BP is thought to be a good analogue for future climate warming. Though the driving mechanisms of the past and current climate evolution differ, analysis of the LIG climate may provide important insights for projections of future environmental changes. We do not know properly what was spatial distribution and magnitude of surface air temperature and precipitation anomalies with respect to present. Sparse proxy data are attributed mostly to the continental margins, internal areas of ice sheets and particular regions of the World Ocean. Combining mathematical modeling and indirect evidence can help to identify driving mechanisms and feed-backs which formed climatic conditions of the LIG. In order to reproduce the LIG climate, we carried out transient numerical experiments using a fully coupled Earth System Model (ESM) consisting of an AO GCM, which includes decription of the biosphere, atmospheric and oceanic chemistry ets. (INMCM), developed in the Institute of Numerical Mathematics (Moscow, Russia) and the models of Greenland and Antarctic ice sheets (GrISM and AISM, Vrije Uninersiteit Brussel, Belgium). Though the newest version of the INMCM has rather high spatial resolution, it canot be used in long transient numerical experimemts because of high computational demand. Coupling of the GrISM and AISM to the low resolution version of the INMCM is complicated by essential differences in spatial and temporal scales of cryospheric, atmosphere and the ocean components of the ESM (spatial resolution 5˚×4˚, 21 vertical layers in the atmospheric block, 2.5°×2°, 6 min. temporal resolution; 33 vertical layers in the oceanic block; 20×20 km, 51 vertical layers and 1 yr temporal resolution in the GrISM and AISM). We apply two different coupling strategies. AISM is incorporated into the ESM via using procedures of resampling and interpolation of the input fields of annually averaged air surface temperatures and precipitation fields generated by the INMCM. To provide interactive coupling of the INMCM and the GrISM, we employ a special energy- and water balance model (EWBM-G), which serves as a buffer providing effective data exchange between sub-models. EWBM-G operates in a rectangle domain including Greenland and calculates annual surface mass balance (further transferred as an external forcing to the GrISM) and fresh water flux (transferred to the oceanic block of the INMCM). Orbital parameters of the LIG were set with 1 kyr step with further interpolation to 100 years. Assuming concentrations of greenhouse gases during the LIG were not very much different from the preindustrial values, this potential forcing was neglected. Climatic block of the ESM was called every 100 model years to follow changes in orbital forcing. AISM and GrISM were asynchronously coupled to sub-models of the atmosphere and the ocean with the ratio of model years as 100 to 1. Obtained fields of deviations of air surface temperature from preindustrial values correspond in general to the estimates made in earlier studies. Evaluated contribution of the Greenland ice sheet to the global sea level rise (approximately 2 m) supports the newest estimates based on model results and proxy data analysis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=14759&keyword=ocean+AND+climate+AND+changes&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=14759&keyword=ocean+AND+climate+AND+changes&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>BOREAL FOREST CARBON STOCKS AND WOOD SUPPLY: PAST, PRESENT AND FUTURE RESPONSES TO CHANGING CLIMATE, AGRICULTURE AND SPECIES AVAILABILITY</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>The paper assesses the role in boreal forest growth played by environment. It examines past changes in climate coupled with glaciation, and future changes in climate coupled with agricultural land use and tree species availability. The objective was to define and evaluate potenti...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20010111030','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20010111030"><span>The NASA Seasonal-to-Interannual Prediction Project (NSIPP). [Annual Report for 2000</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rienecker, Michele; Suarez, Max; Adamec, David; Koster, Randal; Schubert, Siegfried; Hansen, James; Koblinsky, Chester (Technical Monitor)</p> <p>2001-01-01</p> <p>The goal of the project is to develop an assimilation and forecast system based on a coupled atmosphere-ocean-land-surface-sea-ice model capable of using a combination of satellite and in situ data sources to improve the prediction of ENSO and other major S-I signals and their global teleconnections. The objectives of this annual report are to: (1) demonstrate the utility of satellite data, especially surface height surface winds, air-sea fluxes and soil moisture, in a coupled model prediction system; and (2) aid in the design of the observing system for short-term climate prediction by conducting OSSE's and predictability studies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1233519-collaborative-project-understanding-climate-model-biases-tropical-atlantic-impact-simulations-extreme-climate-events','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1233519-collaborative-project-understanding-climate-model-biases-tropical-atlantic-impact-simulations-extreme-climate-events"><span>Collaborative Project: Understanding Climate Model Biases in Tropical Atlantic and Their Impact on Simulations of Extreme Climate Events</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Chang, Ping</p> <p></p> <p>Recent studies have revealed that among all the tropical oceans, the tropical Atlantic has experienced the most pronounced warming trend over the 20th century. Many extreme climate events affecting the U.S., such as hurricanes, severe precipitation and drought events, are influenced by conditions in the Gulf of Mexico and the Atlantic Ocean. It is therefore imperative to have accurate simulations of the climatic mean and variability in the Atlantic region to be able to make credible projections of future climate change affecting the U.S. and other countries adjoining the Atlantic Ocean. Unfortunately, almost all global climate models exhibit large biasesmore » in their simulations of tropical Atlantic climate. The atmospheric convection simulation errors in the Amazon region and the associated errors in the trade wind simulations are hypothesized to be a leading cause of the tropical Atlantic biases in climate models. As global climate models have resolutions that are too coarse to resolve some of the atmospheric and oceanic processes responsible for the model biases, we propose to use a high-resolution coupled regional climate model (CRCM) framework to address the tropical bias issue. We propose to combine the expertise in tropical coupled atmosphere-ocean modeling at Texas A&M University (TAMU) and the coupled land-atmosphere modeling expertise at Pacific Northwest National Laboratory (PNNL) to develop a comprehensive CRCM for the Atlantic sector within a general and flexible modeling framework. The atmospheric component of the CRCM will be the NCAR WRF model and the oceanic component will be the Rutgers/UCLA ROMS. For the land component, we will use CLM modified at PNNL to include more detailed representations of vegetation and soil hydrology processes. The combined TAMU-PNNL CRCM model will be used to simulate the Atlantic climate, and the associated land-atmosphere-ocean interactions at a horizontal resolution of 9 km or finer. A particular focus of the model development effort will be to optimize the performance of WRF and ROMS over several thousand of cores by focusing on both the parallel communication libraries and the I/O interfaces, in order to achieve the sustained throughput needed to perform simulations on such fine resolution grids. The CRCM model will be developed within the framework of the Coupler (CPL7) software that is part of the NCAR Community Earth System Model (CESM). Through efforts at PNNL and within the community, WRF and CLM have already been coupled via CPL7. Using the flux coupler approach for the whole CRCM model will allow us to flexibly couple WRF, ROMS, and CLM with each model running on its own grid at different resolutions. In addition, this framework will allow us to easily port parameterizations between CESM and the CRCM, and potentially allow partial coupling between the CESM and the CRCM. TAMU and PNNL will contribute cooperatively to this research endeavor. The TAMU team led by Chang and Saravanan has considerable experience in studying atmosphere-ocean interactions within tropical Atlantic sector and will focus on modeling issues that relate to coupling WRF and ROMS. The PNNL team led by Leung has extensive expertise in atmosphere-land interaction and will be responsible for improving the land surface parameterization. Both teams will jointly work on integrating WRF-ROMS and WRF-CLM to couple WRF, ROMS, and CLM through CPL7. Montuoro of the TAMU Supercomputing Center will be responsible for improving the MPI and Parallel IO interfaces of the CRCM. Both teams will contribute to the design and execution of the proposed numerical experiments and jointly perform analysis of the numerical experiments.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC43C1086C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC43C1086C"><span>Representation of deforestation impacts on climate, water, and nutrient cycles in the ACME earth system model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cai, X.; Riley, W. J.; Zhu, Q.</p> <p>2017-12-01</p> <p>Deforestation causes a series of changes to the climate, water, and nutrient cycles. Employing a state-of-the-art earth system model—ACME (Accelerated Climate Modeling for Energy), we comprehensively investigate the impacts of deforestation on these processes. We first assess the performance of the ACME Land Model (ALM) in simulating runoff, evapotranspiration, albedo, and plant productivity at 42 FLUXNET sites. The single column mode of ACME is then used to examine climate effects (temperature cooling/warming) and responses of runoff, evapotranspiration, and nutrient fluxes to deforestation. This approach separates local effects of deforestation from global circulation effects. To better understand the deforestation effects in a global context, we use the coupled (atmosphere, land, and slab ocean) mode of ACME to demonstrate the impacts of deforestation on global climate, water, and nutrient fluxes. Preliminary results showed that the land component of ACME has advantages in simulating these processes and that local deforestation has potentially large impacts on runoff and atmospheric processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1999WRR....35..583G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1999WRR....35..583G"><span>Five-minute, 1/2°, and 1° data sets of continental watersheds and river networks for use in regional and global hydrologic and climate system modeling studies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Graham, S. T.; Famiglietti, J. S.; Maidment, D. R.</p> <p>1999-02-01</p> <p>A major shortcoming of the land surface component in climate models is the absence of a river transport algorithm. This issue becomes particularly important in fully coupled climate system models (CSMs), where river transport is required to close and realistically represent the global water cycle. The development of a river transport algorithm requires knowledge of watersheds and river networks at a scale that is appropriate for use in CSMs. These data must be derived largely from global digital topographic information. The purpose of this paper is to describe a new data set of watersheds and river networks, which is derived primarily from the TerrainBase 5' Global DTM (digital terrain model) and the CIA World Data Bank II. These data serve as a base map for routing continental runoff to the appropriate coast and therefore into the appropriate ocean or inland sea. Using this data set, the runoff produced in any grid cell, when coupled with a routing algorithm, can easily be transported to the appropriate water body and distributed across that water body as desired. The data set includes watershed and flow direction information, as well as supporting hydrologic data at 5', 1/2°, and 1° resolutions globally. It will be useful in fully coupled land-ocean-atmosphere models, in terrestrial ecosystem models, or in stand-alone macroscale hydrologic-modeling studies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1912409F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1912409F"><span>Transitions between multiple equilibria of paleo climate: a glimpse in to the dynamics of abrupt climate change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ferreira, David; Marshall, John; Ito, Takamitsu; McGee, David; Moreno-Chamarro, Eduardo</p> <p>2017-04-01</p> <p>The dynamics regulating large climatic transitions such as glacial-interglacial cycles or DO events remains a puzzle. Forcings behind these transitions are not robustly identified and potential candidates (e.g. Milankovitch cycles, freshwater perturbations) often appear too weak to explain such dramatic transitions. A potential solution to this long-standing puzzle is that Earth's climate is endowed with multiple equilibrium states of global extent. Such states are commonly found in low-order or conceptual climate models, but it is unclear whether a system as complex as Earth's climate can sustain multiple equilibrium states. Here we report that multiple equilibrium states of the climate system are also possible in a complex, fully dynamical coupled ocean-atmosphere-sea ice GCM with idealized Earth-like geometry, resolved weather systems and a hydrological cycle. In our model, two equilibrium states coexist for the same parameters and external forcings: a Warm climate with a small Northern hemisphere sea ice cap and a large southern one and a Cold climate with large ice caps at both poles. The dynamical states of the Warm and Cold solutions exhibit striking similarities with our present-day climate and the climate of the Last Glacial Maximum, respectively. A carbon cycle model driven by the two dynamical states produces an atmospheric pCO2 draw-down of about 110 pm between the Warm and Cold states, close to Glacial-Interglacial differences found in ice cores. Mechanism controlling the existence of the multiple states and changes in the atmospheric CO2 will be briefly presented. Finally we willdescribe transition experiments from the Cold to the Warm state, focusing on the lead-lags in the system, notably between the Northern and Southern Hemispheres climates.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19890011937','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19890011937"><span>Abrupt climate change and extinction events</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Crowley, Thomas J.</p> <p>1988-01-01</p> <p>There is a growing body of theoretical and empirical support for the concept of instabilities in the climate system, and indications that abrupt climate change may in some cases contribute to abrupt extinctions. Theoretical indications of instabilities can be found in a broad spectrum of climate models (energy balance models, a thermohaline model of deep-water circulation, atmospheric general circulation models, and coupled ocean-atmosphere models). Abrupt transitions can be of several types and affect the environment in different ways. There is increasing evidence for abrupt climate change in the geologic record and involves both interglacial-glacial scale transitions and the longer-term evolution of climate over the last 100 million years. Records from the Cenozoic clearly show that the long-term trend is characterized by numerous abrupt steps where the system appears to be rapidly moving to a new equilibrium state. The long-term trend probably is due to changes associated with plate tectonic processes, but the abrupt steps most likely reflect instabilities in the climate system as the slowly changing boundary conditions caused the climate to reach some threshold critical point. A more detailed analysis of abrupt steps comes from high-resolution studies of glacial-interglacial fluctuations in the Pleistocene. Comparison of climate transitions with the extinction record indicates that many climate and biotic transitions coincide. The Cretaceous-Tertiary extinction is not a candidate for an extinction event due to instabilities in the climate system. It is quite possible that more detailed comparisons and analysis will indicate some flaws in the climate instability-extinction hypothesis, but at present it appears to be a viable candidate as an alternate mechanism for causing abrupt environmental changes and extinctions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/circ/1380/downloads/Chapter10.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/circ/1380/downloads/Chapter10.pdf"><span>The Borderlands and climate change: Chapter 10 in United States-Mexican Borderlands: Facing tomorrow's challenges through USGS science</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Fitzpatrick, Joan; Gray, Floyd; Dubiel, Russell; Langman, Jeff; Moring, J. Bruce; Norman, Laura M.; Page, William R.; Parcher, Jean W.</p> <p>2013-01-01</p> <p>The prediction of global climate change in response to both natural forces and human activity is one of the defining issues of our times. The unprecedented observational capacity of modern earth-orbiting satellites coupled with the development of robust computational representations (models) of the Earth’s weather and climate systems afford us the opportunity to observe and investigate how these systems work now, how they have worked in the past, and how they will work in the future when forced in specific ways. In the most recent report on global climate change by the Intergovernmental Panel on Climate Change (IPCC; Solomon and others, 2007), analyses using multiple climate models support recent observations that the Earth’s climate is changing in response to a combination of natural and human-induced causes. These changes will be significant in the United States–Mexican border region, where the process of climate change affects all of the Borderlands challenge themes discussed in the preceding chapters. The dual possibilities of both significantly-changed climate and increasing variability in climate make it challenging to take full measure of the potential effects because the Borderlands already experience a high degree of interannual variability and climatological extremes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1337200-influence-dynamic-vegetation-carbon-nitrogen-cycle-feedback-community-land-model-clm4','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1337200-influence-dynamic-vegetation-carbon-nitrogen-cycle-feedback-community-land-model-clm4"><span>Influence of dynamic vegetation on carbon-nitrogen cycle feedback in the Community Land Model (CLM4)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Sakaguchi, K.; Zeng, X.; Leung, L. R.; ...</p> <p>2016-12-21</p> <p>Land carbon sensitivity to atmospheric CO 2 concentration (β L) and climate warming (γ L) is a crucial part of carbon-climate feedbacks in the earth system. Using the Community Land Model version 4 with a coupled carbon-nitrogen cycle, we examine whether the inclusion of a dynamic global vegetation model (CNDV) significantly changes the land carbon sensitivity from that obtained with prescribed vegetation cover (CN). For decadal timescale in the late twentieth century, β L is not substantially different between the two models but γ L of CNDV is stronger (more negative) than that of CN. The main reason for themore » difference in γL is not the concurrent change in vegetation cover driving the carbon dynamics, but rather the smaller nitrogen constraint on plant growth in CNDV compared with CN, which arises from the deviation of CNDV's near-equilibrium vegetation distribution from CN’s prescribed, historical land cover. The smaller nitrogen constraint makes the enhanced nitrogen mineralization with warming less effective in stimulating plant productivity to counter moisture stress in a warmer climate, leading to a more negative γ L. This represents a new indirect pathway that has not been identified for dynamic vegetation in the coupled carbon-nitrogen cycle to affect the terrestrial carbon-climate feedbacks in the earth system.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1337200-influence-dynamic-vegetation-carbon-nitrogen-cycle-feedback-community-land-model-clm4','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1337200-influence-dynamic-vegetation-carbon-nitrogen-cycle-feedback-community-land-model-clm4"><span>Influence of dynamic vegetation on carbon-nitrogen cycle feedback in the Community Land Model (CLM4)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Sakaguchi, K.; Zeng, X.; Leung, L. R.</p> <p></p> <p>Land carbon sensitivity to atmospheric CO 2 concentration (β L) and climate warming (γ L) is a crucial part of carbon-climate feedbacks in the earth system. Using the Community Land Model version 4 with a coupled carbon-nitrogen cycle, we examine whether the inclusion of a dynamic global vegetation model (CNDV) significantly changes the land carbon sensitivity from that obtained with prescribed vegetation cover (CN). For decadal timescale in the late twentieth century, β L is not substantially different between the two models but γ L of CNDV is stronger (more negative) than that of CN. The main reason for themore » difference in γL is not the concurrent change in vegetation cover driving the carbon dynamics, but rather the smaller nitrogen constraint on plant growth in CNDV compared with CN, which arises from the deviation of CNDV's near-equilibrium vegetation distribution from CN’s prescribed, historical land cover. The smaller nitrogen constraint makes the enhanced nitrogen mineralization with warming less effective in stimulating plant productivity to counter moisture stress in a warmer climate, leading to a more negative γ L. This represents a new indirect pathway that has not been identified for dynamic vegetation in the coupled carbon-nitrogen cycle to affect the terrestrial carbon-climate feedbacks in the earth system.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C23A1213G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C23A1213G"><span>The frequency response of a coupled ice sheet-ice shelf-ocean system to climate forcing variability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Goldberg, D.; Snow, K.; Jordan, J. R.; Holland, P.; Arthern, R. J.</p> <p>2017-12-01</p> <p>Changes at the West Antarctic ice-ocean boundary in recent decades has triggered significant increases in the regions contribution to global sea-level rise, coincident with large scale, and in some cases potentially unstable, grounding line retreat. Much of the induced change is thought to be driven by fluctuations in the oceanic heat available at the ice-ocean boundary, transported on-shelf via warm Circumpolar Deep Water (CDW). However, the processes in which ocean heat drives ice-sheet loss remains poorly understood, with observational studies routinely hindered by the extreme environment notorious to the Antarctic region. In this study we apply a novel synchronous coupled ice-ocean model, developed within the MITgcm, and are thus able to provide detailed insight into the impacts of short time scale (interannual to decadal) climate variability and feedbacks within the ice-ocean system. Feedbacks and response are assessed in an idealised ice-sheet/ocean-cavity configuration in which the far field ocean condition is adjusted to emulate periodic climate variability patterns. We reveal a non-linear response of the ice-sheet to periodic variations in thermocline depth. These non-linearities illustrate the heightened sensitivity of fast flowing ice-shelves to periodic perturbations in heat fluxes occurring at interannual and decadal time scales. The results thus highlight how small perturbations in variable climate forcing, like that of ENSO, may trigger large changes in ice-sheet response.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/390245-modeling-solar-assisted-hybrid-absorption-desiccant-system-applications-puerto-rico-caribbean','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/390245-modeling-solar-assisted-hybrid-absorption-desiccant-system-applications-puerto-rico-caribbean"><span>Modeling of a solar-assisted hybrid absorption/desiccant system for applications in Puerto Rico and the Caribbean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Hernandez, H.R.; Gonzalez, J.E.; Khan, A.Y.</p> <p>1996-11-01</p> <p>This study is concerned with the feasibility of different arrangements of solar-assisted air conditioning systems for applications in Puerto Rico. The thermodynamic performance of an absorption system alone and coupled to a liquid or a solid desiccant dehumidification system was investigated under variable cooling load conditions. The dynamic modeling was based on heat and mass balances for the systems components. Simulations for climatic conditions in Puerto Rico show that average solar fractions of more than 85% can be achieved with both the absorption system and the hybrid systems for medium size cooling loads. Results indicate that higher coefficients of performancemore » are obtained when the solar assisted absorption system is not coupled to a desiccant dehumidification system.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_13 --> <div id="page_14" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="261"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.H43G1621B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.H43G1621B"><span>Development of a 3D Soil-Plant-Atmosphere Continuum (SPAC) coupled to a Land Surface Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bisht, G.; Riley, W. J.; Lorenzetti, D.; Tang, J.</p> <p>2015-12-01</p> <p>Exchange of water between the atmosphere and biosphere via evapotranspiration (ET) influences global hydrological, energy, and biogeochemical cycles. Isotopic analysis has shown that evapotranspiration over the continents is largely dominated by transpiration. Water is taken up from soil by plant roots, transported through the plant's vascular system, and evaporated from the leaves. Yet current Land Surface Models (LSMs) integrated into Earth System Models (ESMs) treat plant roots as passive components. These models distribute the ET sink vertically over the soil column, neglect the vertical pressure distribution along the plant vascular system, and assume that leaves can directly access water from any soil layer within the root zone. Numerous studies have suggested that increased warming due to climate change will lead drought and heat-induced tree mortality. A more mechanistic treatment of water dynamics in the soil-plant-atmosphere continuum (SPAC) is essential for investigating the fate of ecosystems under a warmer climate. In this work, we describe a 3D SPAC model that can be coupled to a LSM. The SPAC model uses the variably saturated Richards equations to simulate water transport. The model uses individual governing equations and constitutive relationships for the various SPAC components (i.e., soil, root, and xylem). Finite volume spatial discretization and backward Euler temporal discretization is used to solve the SPAC model. The Portable, Extensible Toolkit for Scientific Computation (PETSc) is used to numerically integrate the discretized system of equations. Furthermore, PETSc's multi-physics coupling capability (DMComposite) is used to solve the tightly coupled system of equations of the SPAC model. Numerical results are presented for multiple test problems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15..544H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15..544H"><span>Path Dependence of Regional Climate Change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Herrington, Tyler; Zickfeld, Kirsten</p> <p>2013-04-01</p> <p>Path dependence of the climate response to CO2 forcing has been investigated from a global mean perspective, with evidence suggesting that long-term global mean temperature and precipitation changes are proportional to cumulative CO2 emissions, and independent of emissions pathway. Little research, however, has been done on path dependence of regional climate changes, particularly in areas that could be affected by tipping points. Here, we utilize the UVic Earth System Climate Model version 2.9, an Earth System Model of Intermediate Complexity. It consists of a 3-dimensional ocean general circulation model, coupled with a dynamic-thermodynamic sea ice model, and a thermodynamic energy-moisture balance model of the atmosphere. This is then coupled with a terrestrial carbon cycle model and an ocean carbon-cycle model containing an inorganic carbon and marine ecosystem component. Model coverage is global with a zonal resolution of 3.6 degrees and meridional resolution of 1.8 degrees. The model is forced with idealized emissions scenarios across five cumulative emission groups (1300 GtC, 2300 GtC, 3300 GtC, 4300 GtC, and 5300 GtC) to explore the path dependence of (and the possibility of hysteresis in) regional climate changes. Emission curves include both fossil carbon emissions and emissions from land use changes, and span a variety of peak and decline scenarios with varying emission rates, as well as overshoot and instantaneous pulse scenarios. Tipping points being explored include those responsible for the disappearance of summer Arctic sea-ice, the irreversible melt of the Greenland Ice Sheet, the collapse of the Atlantic Thermohaline Circulation, and the dieback of the Amazonian Rainforest. Preliminary results suggest that global mean climate change after cessation of CO2 emissions is independent of the emissions pathway, only varying with total cumulative emissions, in accordance with results from earlier studies. Forthcoming analysis will investigate path dependence of regional climate change. Some evidence exists to support the idea of hysteresis in the Greenland Ice Sheet, and since tipping points represent non-linear elements of the climate system, we suspect that the other tipping points might also show path dependence.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27723460','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27723460"><span>Future climate change impact assessment of watershed scale hydrologic processes in Peninsular Malaysia by a regional climate model coupled with a physically-based hydrology modelo.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Amin, M Z M; Shaaban, A J; Ercan, A; Ishida, K; Kavvas, M L; Chen, Z Q; Jang, S</p> <p>2017-01-01</p> <p>Impacts of climate change on the hydrologic processes under future climate change conditions were assessed over Muda and Dungun watersheds of Peninsular Malaysia by means of a coupled regional climate and physically-based hydrology model utilizing an ensemble of future climate change projections. An ensemble of 15 different future climate realizations from coarse resolution global climate models' (GCMs) projections for the 21st century was dynamically downscaled to 6km resolution over Peninsular Malaysia by a regional climate model, which was then coupled with the watershed hydrology model WEHY through the atmospheric boundary layer over Muda and Dungun watersheds. Hydrologic simulations were carried out at hourly increments and at hillslope-scale in order to assess the impacts of climate change on the water balances and flooding conditions in the 21st century. The coupled regional climate and hydrology model was simulated for a duration of 90years for each of the 15 realizations. It is demonstrated that the increase in mean monthly flows due to the impact of expected climate change during 2040-2100 is statistically significant from April to May and from July to October at Muda watershed. Also, the increase in mean monthly flows is shown to be significant in November during 2030-2070 and from November to December during 2070-2100 at Dungun watershed. In other words, the impact of the expected climate change will be significant during the northeast and southwest monsoon seasons at Muda watershed and during the northeast monsoon season at Dungun watershed. Furthermore, the flood frequency analyses for both watersheds indicated an overall increasing trend in the second half of the 21st century. Copyright © 2016 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA601142','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA601142"><span>Submesoscale Flows and Mixing in the Ocean Surface Layer Using the Regional Oceanic Modeling System (ROMS)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2013-09-30</p> <p>chemical cycles, water quality, blooms , micro-nutrients, larval dispersal, biome transitions, and coupling to higher tropic levels. We collaborate with...Kurian, 2012: Heat balance and eddies in the Peru- Chile Current System. Climate Dynamics 39, 509-529, doi:10.1007/s00382-011-1170-6. Colas, F., X</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoRL..45..983L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoRL..45..983L"><span>Meridional Modes and Increasing Pacific Decadal Variability Under Anthropogenic Forcing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liguori, Giovanni; Di Lorenzo, Emanuele</p> <p>2018-01-01</p> <p>Pacific decadal variability has strong impacts on the statistics of weather, atmosphere extremes, droughts, hurricanes, marine heatwaves, and marine ecosystems. Sea surface temperature (SST) observations show that the variance of the El Niño-like decadal variability has increased by 30% (1920-2015) with a stronger coupling between the major Pacific climate modes. Although we cannot attribute these trends to global climate change, the examination of 30 members of the Community Earth System Model Large Ensemble (LENS) forced with the RCP8.5 radiative forcing scenario (1920-2100) suggests that significant anthropogenic trends in Pacific decadal variance will emerge by 2020 in response to a more energetic North Pacific Meridional Mode (PMM)—a well-known El Niño precursor. The PMM is a key mechanism for energizing and coupling tropical and extratropical decadal variability. In the LENS, the increase in PMM variance is consistent with an intensification of the winds-evaporation-SST thermodynamic feedback that results from a warmer mean climate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JGRG..119..794W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JGRG..119..794W"><span>Emergent constraints on climate-carbon cycle feedbacks in the CMIP5 Earth system models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wenzel, Sabrina; Cox, Peter M.; Eyring, Veronika; Friedlingstein, Pierre</p> <p>2014-05-01</p> <p>An emergent linear relationship between the long-term sensitivity of tropical land carbon storage to climate warming (γLT) and the short-term sensitivity of atmospheric carbon dioxide (CO2) to interannual temperature variability (γIAV) has previously been identified by Cox et al. (2013) across an ensemble of Earth system models (ESMs) participating in the Coupled Climate-Carbon Cycle Model Intercomparison Project (C4MIP). Here we examine whether such a constraint also holds for a new set of eight ESMs participating in Phase 5 of the Coupled Model Intercomparison Project. A wide spread in tropical land carbon storage is found for the quadrupling of atmospheric CO2, which is of the order of 252 ± 112 GtC when carbon-climate feedbacks are enabled. Correspondingly, the spread in γLT is wide (-49 ± 40 GtC/K) and thus remains one of the key uncertainties in climate projections. A tight correlation is found between the long-term sensitivity of tropical land carbon and the short-term sensitivity of atmospheric CO2 (γLT versus γIAV), which enables the projections to be constrained with observations. The observed short-term sensitivity of CO2 (-4.4 ± 0.9 GtC/yr/K) sharpens the range of γLT to -44 ± 14 GtC/K, which overlaps with the probability density function derived from the C4MIP models (-53 ± 17 GtC/K) by Cox et al. (2013), even though the lines relating γLT and γIAV differ in the two cases. Emergent constraints of this type provide a means to focus ESM evaluation against observations on the metrics most relevant to projections of future climate change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4645171','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4645171"><span>Heat Transport Compensation in Atmosphere and Ocean over the Past 22,000 Years</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Yang, Haijun; Zhao, Yingying; Liu, Zhengyu; Li, Qing; He, Feng; Zhang, Qiong</p> <p>2015-01-01</p> <p>The Earth’s climate has experienced dramatic changes over the past 22,000 years; however, the total meridional heat transport (MHT) of the climate system remains stable. A 22,000-year-long simulation using an ocean-atmosphere coupled model shows that the changes in atmosphere and ocean MHT are significant but tend to be out of phase in most regions, mitigating the total MHT change, which helps to maintain the stability of the Earth’s overall climate. A simple conceptual model is used to understand the compensation mechanism. The simple model can reproduce qualitatively the evolution and compensation features of the MHT over the past 22,000 years. We find that the global energy conservation requires the compensation changes in the atmosphere and ocean heat transports. The degree of compensation is mainly determined by the local climate feedback between surface temperature and net radiation flux at the top of the atmosphere. This study suggests that an internal mechanism may exist in the climate system, which might have played a role in constraining the global climate change over the past 22,000 years. PMID:26567710</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22690862','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22690862"><span>Couples' cultural values, shared parenting, and family emotional climate within Mexican American families.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sotomayor-Peterson, Marcela; Figueredo, Aurelio J; Christensen, Donna H; Taylor, Angela R</p> <p>2012-06-01</p> <p>This study tested a model of shared parenting as its centerpiece that incorporates cultural values as predictors and family emotional climate as the outcome variable of interest. We aimed to assess the predictive power of the Mexican cultural values of familismo and simpatia over couples' shared parenting practices. We anticipated that higher levels of shared parenting would predict family emotional climate. The participants were 61 Mexican American, low income couples, with at least one child between 3 and 4 years of age, recruited from a home-based Head Start program. The predictive model demonstrated excellent goodness of fit, supporting the hypothesis that a positive emotional climate within the family is fostered when Mexican American couples practice a sufficient level of shared parenting. Empirical evidence was previously scarce on this proposition. The findings also provide evidence for the role of cultural values, highlighting the importance of family solidarity and avoidance of confrontation as a pathway to shared parenting within Mexican American couples. © FPI, Inc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24415466','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24415466"><span>The subtle role of climate change on population genetic structure in Canada lynx.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Row, Jeffrey R; Wilson, Paul J; Gomez, Celine; Koen, Erin L; Bowman, Jeff; Thornton, Daniel; Murray, Dennis L</p> <p>2014-07-01</p> <p>Anthropogenically driven climatic change is expected to reshape global patterns of species distribution and abundance. Given recent links between genetic variation and environmental patterns, climate change may similarly impact genetic population structure, but we lack information on the spatial and mechanistic underpinnings of genetic-climate associations. Here, we show that current genetic variability of Canada lynx (Lynx canadensis) is strongly correlated with a winter climate gradient (i.e. increasing snow depth and winter precipitation from west-to-east) across the Pacific-North American (PNO) to North Atlantic Oscillation (NAO) climatic systems. This relationship was stronger than isolation by distance and not explained by landscape variables or changes in abundance. Thus, these patterns suggest that individuals restricted dispersal across the climate boundary, likely in the absence of changes in habitat quality. We propose habitat imprinting on snow conditions as one possible explanation for this unusual phenomenon. Coupling historical climate data with future projections, we also found increasingly diverging snow conditions between the two climate systems. Based on genetic simulations using projected climate data (2041-2070), we predicted that this divergence could lead to a threefold increase in genetic differentiation, potentially leading to isolated east-west populations of lynx in North America. Our results imply that subtle genetic structure can be governed by current climate and that substantive genetic differentiation and related ecological divergence may arise from changing climate patterns. © 2014 John Wiley & Sons Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19970041483','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19970041483"><span>Anthropogenic Sulfate, Clouds, and Climate Forcing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ghan, Steven J.</p> <p>1997-01-01</p> <p>This research work is a joint effort between research groups at the Battelle Pacific Northwest Laboratory, Virginia Tech University, Georgia Institute of Technology, Brookhaven National Laboratory, and Texas A&M University. It has been jointly sponsored by the National Aeronautics and Space Administration, the U.S. Department of Energy, and the U.S. Environmental Protection Agency. In this research, a detailed tropospheric aerosol-chemistry model that predicts oxidant concentrations as well as concentrations of sulfur dioxide and sulfate aerosols has been coupled to a general circulation model that distinguishes between cloud water mass and cloud droplet number. The coupled model system has been first validated and then used to estimate the radiative impact of anthropogenic sulfur emissions. Both the direct radiative impact of the aerosols and their indirect impact through their influence on cloud droplet number are represented by distinguishing between sulfuric acid vapor and fresh and aged sulfate aerosols, and by parameterizing cloud droplet nucleation in terms of vertical velocity and the number concentration of aged sulfur aerosols. Natural sulfate aerosols, dust, and carbonaceous and nitrate aerosols and their influence on the radiative impact of anthropogenic sulfate aerosols, through competition as cloud condensation nuclei, will also be simulated. Parallel simulations with and without anthropogenic sulfur emissions are performed for a global domain. The objectives of the research are: To couple a state-of-the-art tropospheric aerosol-chemistry model with a global climate model. To use field and satellite measurements to evaluate the treatment of tropospheric chemistry and aerosol physics in the coupled model. To use the coupled model to simulate the radiative (and ultimately climatic) impacts of anthropogenic sulfur emissions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017CliPa..13..649H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017CliPa..13..649H"><span>Southern Hemisphere anticyclonic circulation drives oceanic and climatic conditions in late Holocene southernmost Africa</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hahn, Annette; Schefuß, Enno; Andò, Sergio; Cawthra, Hayley C.; Frenzel, Peter; Kugel, Martin; Meschner, Stephanie; Mollenhauer, Gesine; Zabel, Matthias</p> <p>2017-06-01</p> <p>Due to the high sensitivity of southern Africa to climate change, a reliable understanding of its hydrological system is crucial. Recent studies of the regional climatic system have revealed a highly complex interplay of forcing factors on precipitation regimes. This includes the influence of the tropical easterlies, the strength of the southern hemispheric westerlies as well as sea surface temperatures along the coast of the subcontinent. However, very few marine records have been available in order to study the coupling of marine and atmospheric circulation systems. Here we present results from a marine sediment core, recovered in shallow waters off the Gouritz River mouth on the south coast of South Africa. Core GeoB18308-1 allows a closer view of the last ˜ 4 kyr. Climate sensitive organic proxies, like the distribution and isotopic composition of plant-wax lipids as well as indicators for sea surface temperatures and soil input, give information on oceanographic and hydrologic changes during the recorded time period. Moreover, the micropaleontology, mineralogical and elemental composition of the sediments reflect the variability of the terrigenous input to the core site. The combination of down-core sediment signatures and a catchment-wide provenance study indicate that the Little Ice Age ( ˜ 300-650 cal yr BP) was characterized by climatic conditions favorable to torrential flood events. The Medieval Climate Anomaly ( ˜ 950-650 cal yr BP) is expressed by lower sea surface temperatures in the Mossel Bay area and humid conditions in the Gouritz River catchment. These new results suggest that the coincidence of humid conditions and cooler sea surface temperatures along the south coast of South Africa resulted from a strengthened and more southerly anticyclonic circulation. Most probably, the transport of moisture from the Indian Ocean by strong subtropical easterlies was coupled with Agulhas Bank upwelling pulses, which were initiated by an increase in Agulhas Current strength.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040171156&hterms=interpolation+processing&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dinterpolation%2Bprocessing','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040171156&hterms=interpolation+processing&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dinterpolation%2Bprocessing"><span>Coupling the Community Atmospheric Model (CAM) with the Statistical Spectral Interpolation (SSI) System under ESMF</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>daSilva, Arlindo</p> <p>2004-01-01</p> <p>The first set of interoperability experiments illustrates the role ESMF can play in integrating the national Earth science resources. Using existing data assimilation technology from NCEP and the National Weather Service, the Community Atmosphere Model (CAM) was able to ingest conventional and remotely sensed observations, a capability that could open the door to using CAM for weather as well as climate prediction. CAM, which includes land surface capabilities, was developed by NCAR, with key components from GSFC. In this talk we will describe the steps necessary for achieving the coupling of these two systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AdAtS..25..641Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AdAtS..25..641Y"><span>Coupled model simulations of climate changes in the 20th century and beyond</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yu, Yongqiang; Zhi, Hai; Wang, Bin; Wan, Hui; Li, Chao; Liu, Hailong; Li, Wei; Zheng, Weipeng; Zhou, Tianjun</p> <p>2008-07-01</p> <p>Several scenario experiments of the IPCC 4th Assessment Report (AR4) are performed by version g1.0 of a Flexible coupled Ocean-Atmosphere-Land System Model (FGOALS) developed at the Institute of Atmospheric Physics, Chinese Academy of Sciences (IAP/CAS), including the “Climate of the 20th century experiment”, “CO2 1% increase per year to doubling experiment” and two separate IPCC greenhouse gases emission scenarios A1B and B1 experiments. To distinguish between the different impacts of natural variations and human activities on the climate change, three-member ensemble runs are performed for each scenario experiment. The coupled model simulations show: (1) from 1900 to 2000, the global mean temperature increases about 0.5°C and the major increase occurs during the later half of the 20th century, which is in consistent with the observations that highlights the coupled model’s ability to reproduce the climate changes since the industrial revolution; (2) the global mean surface air temperature increases about 1.6°C in the CO2 doubling experiment and 1.5°C and 2.4°C in the A1B and B1 scenarios, respectively. The global warming is indicated by not only the changes of the surface temperature and precipitation but also the temperature increase in the deep ocean. The thermal expansion of the sea water would induce the rise of the global mean sea level. Both the control run and the 20th century climate change run are carried out again with version g1.1 of FGOALS, in which the cold biases in the high latitudes were removed. They are then compared with those from version g1.0 of FGOALS in order to distinguish the effect of the model biases on the simulation of global warming.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1416921','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1416921"><span>Community climate simulations to assess avoided impacts in 1.5 and 2 °C futures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Sanderson, Benjamin M.; Xu, Yangyang; Tebaldi, Claudia</p> <p></p> <p>The Paris Agreement of December 2015 stated a goal to pursue efforts to keep global temperatures below 1.5 °C above preindustrial levels and well below 2 °C. The IPCC was charged with assessing climate impacts at these temperature levels, but fully coupled equilibrium climate simulations do not currently exist to inform such assessments. Here, we produce a set of scenarios using a simple model designed to achieve long-term 1.5 and 2 °C temperatures in a stable climate. These scenarios are then used to produce century-scale ensemble simulations using the Community Earth System Model, providing impact-relevant long-term climate data for stabilization pathways at 1.5 andmore » 2 °C levels and an overshoot 1.5 °C case, which are realized (for the 21st century) in the coupled model and are freely available to the community. We also describe the design of the simulations and a brief overview of their impact-relevant climate response. Exceedance of historical record temperature occurs with 60 % greater frequency in the 2 °C climate than in a 1.5 °C climate aggregated globally, and with twice the frequency in equatorial and arid regions. Extreme precipitation intensity is statistically significantly higher in a 2.0 °C climate than a 1.5 °C climate in some specific regions (but not all). The model exhibits large differences in the Arctic, which is ice-free with a frequency of 1 in 3 years in the 2.0 °C scenario, and 1 in 40 years in the 1.5 °C scenario. Significance of impact differences with respect to multi-model variability is not assessed.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1422851-influence-dimethyl-sulfide-carbon-cycle-biological-production','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1422851-influence-dimethyl-sulfide-carbon-cycle-biological-production"><span>Influence of dimethyl sulfide on the carbon cycle and biological production</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Wang, Shanlin; Maltrud, Mathew; Elliott, Scott</p> <p></p> <p>Dimethyl sulfide (DMS) is a significant source of marine sulfate aerosol and plays an important role in modifying cloud properties. Fully coupled climate simulations using dynamic marine ecosystem and DMS calculations are conducted to estimate DMS fluxes under various climate scenarios and to examine the sign and strength of phytoplankton-DMS-climate feedbacks for the first time. Simulation results show small differences in the DMS production and emissions between pre-industrial and present climate scenarios, except for some areas in the Southern Ocean. There are clear changes in surface ocean DMS concentrations moving into the future, and they are attributable to changes inmore » phytoplankton production and competition driven by complex spatially varying mechanisms. Comparisons between parallel simulations with and without DMS fluxes into the atmosphere show significant differences in marine ecosystems and physical fields. Without DMS, the missing subsequent aerosol indirect effects on clouds and radiative forcing lead to fewer clouds, more solar radiation, and a much warmer climate. Phaeocystis, a uniquely efficient organosulfur producer with a growth advantage under cooler climate states, can benefit from producing the compound through cooling effects of DMS in the climate system. Our results show a tight coupling between the sulfur and carbon cycles. The ocean carbon uptake declines without DMS emissions to the atmosphere. The analysis indicates a weak positive phytoplankton-DMS-climate feedback at the global scale, with large spatial variations driven by individual autotrophic functional groups and complex mechanisms. The sign and strength of the feedback vary with climate states and phytoplankton groups. This highlights the importance of a dynamic marine ecosystem module and the sulfur cycle mechanism in climate projections.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1416921-community-climate-simulations-assess-avoided-impacts-futures','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1416921-community-climate-simulations-assess-avoided-impacts-futures"><span>Community climate simulations to assess avoided impacts in 1.5 and 2 °C futures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Sanderson, Benjamin M.; Xu, Yangyang; Tebaldi, Claudia; ...</p> <p>2017-09-19</p> <p>The Paris Agreement of December 2015 stated a goal to pursue efforts to keep global temperatures below 1.5 °C above preindustrial levels and well below 2 °C. The IPCC was charged with assessing climate impacts at these temperature levels, but fully coupled equilibrium climate simulations do not currently exist to inform such assessments. Here, we produce a set of scenarios using a simple model designed to achieve long-term 1.5 and 2 °C temperatures in a stable climate. These scenarios are then used to produce century-scale ensemble simulations using the Community Earth System Model, providing impact-relevant long-term climate data for stabilization pathways at 1.5 andmore » 2 °C levels and an overshoot 1.5 °C case, which are realized (for the 21st century) in the coupled model and are freely available to the community. We also describe the design of the simulations and a brief overview of their impact-relevant climate response. Exceedance of historical record temperature occurs with 60 % greater frequency in the 2 °C climate than in a 1.5 °C climate aggregated globally, and with twice the frequency in equatorial and arid regions. Extreme precipitation intensity is statistically significantly higher in a 2.0 °C climate than a 1.5 °C climate in some specific regions (but not all). The model exhibits large differences in the Arctic, which is ice-free with a frequency of 1 in 3 years in the 2.0 °C scenario, and 1 in 40 years in the 1.5 °C scenario. Significance of impact differences with respect to multi-model variability is not assessed.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1422851-influence-dimethyl-sulfide-carbon-cycle-biological-production','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1422851-influence-dimethyl-sulfide-carbon-cycle-biological-production"><span>Influence of dimethyl sulfide on the carbon cycle and biological production</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Wang, Shanlin; Maltrud, Mathew; Elliott, Scott; ...</p> <p>2018-02-27</p> <p>Dimethyl sulfide (DMS) is a significant source of marine sulfate aerosol and plays an important role in modifying cloud properties. Fully coupled climate simulations using dynamic marine ecosystem and DMS calculations are conducted to estimate DMS fluxes under various climate scenarios and to examine the sign and strength of phytoplankton-DMS-climate feedbacks for the first time. Simulation results show small differences in the DMS production and emissions between pre-industrial and present climate scenarios, except for some areas in the Southern Ocean. There are clear changes in surface ocean DMS concentrations moving into the future, and they are attributable to changes inmore » phytoplankton production and competition driven by complex spatially varying mechanisms. Comparisons between parallel simulations with and without DMS fluxes into the atmosphere show significant differences in marine ecosystems and physical fields. Without DMS, the missing subsequent aerosol indirect effects on clouds and radiative forcing lead to fewer clouds, more solar radiation, and a much warmer climate. Phaeocystis, a uniquely efficient organosulfur producer with a growth advantage under cooler climate states, can benefit from producing the compound through cooling effects of DMS in the climate system. Our results show a tight coupling between the sulfur and carbon cycles. The ocean carbon uptake declines without DMS emissions to the atmosphere. The analysis indicates a weak positive phytoplankton-DMS-climate feedback at the global scale, with large spatial variations driven by individual autotrophic functional groups and complex mechanisms. The sign and strength of the feedback vary with climate states and phytoplankton groups. This highlights the importance of a dynamic marine ecosystem module and the sulfur cycle mechanism in climate projections.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFMGC22C..04C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFMGC22C..04C"><span>Incorporating agricultural management into an earth system model for the Pacific Northwest region: Interactions between climate, hydrology, agriculture, and economics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chinnayakanahalli, K.; Adam, J. C.; Stockle, C.; Nelson, R.; Brady, M.; Rajagopalan, K.; Barber, M. E.; Dinesh, S.; Malek, K.; Yorgey, G.; Kruger, C.; Marsh, T.; Yoder, J.</p> <p>2011-12-01</p> <p>For better management and decision making in the face of climate change, earth system models must explicitly account for natural resource and agricultural management activities. Including crop system, water management, and economic models into an earth system modeling framework can help in answering questions related to the impacts of climate change on irrigation water and crop productivity, how agricultural producers can adapt to anticipated climate change, and how agricultural practices can mitigate climate change. Herein we describe the coupling of the Variability Infiltration Capacity (VIC) land surface model, which solves the water and energy balances of the hydrologic cycle at regional scales, with a crop-growth model, CropSyst. This new model, VIC-CropSyst, is the land surface model that will be used in a new regional-scale model development project focused on the Pacific Northwest, termed BioEarth. Here we describe the VIC-CropSyst coupling process and its application over the Columbia River basin (CRB) using agricultural-specific land cover information. The Washington State Department of Agriculture (WSDA) and U. S. Department of Agriculture (USDA) cropland data layers were used to identify agricultural land use patterns, in which both irrigated and dry land crops were simulated. The VIC-CropSyst model was applied over the CRB for the historical period of 1976 - 2006 to establish a baseline for surface water availability, irrigation demand, and crop production. The model was then applied under future (2030s) climate change scenarios derived from statistically-downscaled Global Circulation Models output under two emission scenarios (A1B and B1). Differences between simulated future and historical irrigation demand, irrigation water availability, and crop production were used in an economics model to identify the most economically-viable future cropping pattern. The economics model was run under varying scenarios of regional growth, trade, water pricing, and water capacity providing a spectrum of possible future cropping patterns. The resulting cropping patterns were then used in VIC-CropSyst to quantify the impacts of climate change, economic, and water management scenarios on crop production, and water resources availability. This modeling framework provides opportunities to study the interactions between human activities and complex natural processes and is a valuable tool for inclusion in an earth system model with the goal of informing land use and water management.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C33F..06W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C33F..06W"><span>Improving Permafrost Hydrology Prediction Through Data-Model Integration</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wilson, C. J.; Andresen, C. G.; Atchley, A. L.; Bolton, W. R.; Busey, R.; Coon, E.; Charsley-Groffman, L.</p> <p>2017-12-01</p> <p>The CMIP5 Earth System Models were unable to adequately predict the fate of the 16GT of permafrost carbon in a warming climate due to poor representation of Arctic ecosystem processes. The DOE Office of Science Next Generation Ecosystem Experiment, NGEE-Arctic project aims to reduce uncertainty in the Arctic carbon cycle and its impact on the Earth's climate system by improved representation of the coupled physical, chemical and biological processes that drive how much buried carbon will be converted to CO2 and CH4, how fast this will happen, which form will dominate, and the degree to which increased plant productivity will offset increased soil carbon emissions. These processes fundamentally depend on permafrost thaw rate and its influence on surface and subsurface hydrology through thermal erosion, land subsidence and changes to groundwater flow pathways as soil, bedrock and alluvial pore ice and massive ground ice melts. LANL and its NGEE colleagues are co-developing data and models to better understand controls on permafrost degradation and improve prediction of the evolution of permafrost and its impact on Arctic hydrology. The LANL Advanced Terrestrial Simulator was built using a state of the art HPC software framework to enable the first fully coupled 3-dimensional surface-subsurface thermal-hydrology and land surface deformation simulations to simulate the evolution of the physical Arctic environment. Here we show how field data including hydrology, snow, vegetation, geochemistry and soil properties, are informing the development and application of the ATS to improve understanding of controls on permafrost stability and permafrost hydrology. The ATS is being used to inform parameterizations of complex coupled physical, ecological and biogeochemical processes for implementation in the DOE ACME land model, to better predict the role of changing Arctic hydrology on the global climate system. LA-UR-17-26566.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5434087','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5434087"><span>Extreme weather and climate events with ecological relevance: a review</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Meehl, Gerald A.</p> <p>2017-01-01</p> <p>Robust evidence exists that certain extreme weather and climate events, especially daily temperature and precipitation extremes, have changed in regard to intensity and frequency over recent decades. These changes have been linked to human-induced climate change, while the degree to which climate change impacts an individual extreme climate event (ECE) is more difficult to quantify. Rapid progress in event attribution has recently been made through improved understanding of observed and simulated climate variability, methods for event attribution and advances in numerical modelling. Attribution for extreme temperature events is stronger compared with other event types, notably those related to the hydrological cycle. Recent advances in the understanding of ECEs, both in observations and their representation in state-of-the-art climate models, open new opportunities for assessing their effect on human and natural systems. Improved spatial resolution in global climate models and advances in statistical and dynamical downscaling now provide climatic information at appropriate spatial and temporal scales. Together with the continued development of Earth System Models that simulate biogeochemical cycles and interactions with the biosphere at increasing complexity, these make it possible to develop a mechanistic understanding of how ECEs affect biological processes, ecosystem functioning and adaptation capabilities. Limitations in the observational network, both for physical climate system parameters and even more so for long-term ecological monitoring, have hampered progress in understanding bio-physical interactions across a range of scales. New opportunities for assessing how ECEs modulate ecosystem structure and functioning arise from better scientific understanding of ECEs coupled with technological advances in observing systems and instrumentation. This article is part of the themed issue ‘Behavioural, ecological and evolutionary responses to extreme climatic events’. PMID:28483866</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002EGSGA..27.1959F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002EGSGA..27.1959F"><span>Testing For The Linearity of Responses To Multiple Anthropogenic Climate Forcings</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Forest, C. E.; Stone, P. H.; Sokolov, A. P.</p> <p></p> <p>To test whether climate forcings are additive, we compare climate model simulations in which anthropogenic forcings are applied individually and in combination. Tests are performed with different values for climate system properties (climate sensitivity and rate of heat uptake by the deep ocean) as well as for different strengths of the net aerosol forcing, thereby testing for the dependence of linearity on these properties. The MIT 2D Land-Ocean Climate Model used in this study consists of a zonally aver- aged statistical-dynamical atmospheric model coupled to a mixed-layer Q-flux ocean model, with heat anomalies diffused into the deep ocean. Following our previous stud- ies, the anthropogenic forcings are the changes in concentrations of greenhouse gases (1860-1995), sulfate aerosol (1860-1995), and stratospheric and tropospheric ozone (1979-1995). The sulfate aerosol forcing is applied as a surface albedo change. For an aerosol forcing of -1.0 W/m2 and an effective ocean diffusitivity of 2.5 cm2/s, the nonlinearity of the response of global-mean surface temperatures to the combined forcing shows a strong dependence on climate sensitivity. The fractional change in decadal averages ([(TG + TS + TO) - TGSO]/TGSO) for the 1986-1995 period compared to pre-industrial times are 0.43, 0.90, and 1.08 with climate sensitiv- ities of 3.0, 4.5, and 6.2 C, respectively. The values of TGSO for these three cases o are 0.52, 0.62, and 0.76 C. The dependence of linearity on climate system properties, o the role of climate system feedbacks, and the implications for the detection of climate system's response to individual forcings will be presented. Details of the model and forcings can be found at http://web.mit.edu/globalchange/www/.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001AGUFM.A51G..05F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001AGUFM.A51G..05F"><span>Testing for the linearity of responses to multiple anthropogenic climate forcings</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Forest, C. E.; Stone, P. H.; Sokolov, A. P.</p> <p>2001-12-01</p> <p>To test whether climate forcings are additive, we compare climate model simulations in which anthropogenic forcings are applied individually and in combination. Tests are performed with different values for climate system properties (climate sensitivity and rate of heat uptake by the deep ocean) as well as for different strengths of the net aerosol forcing, thereby testing for the dependence of linearity on these properties. The MIT 2D Land-Ocean Climate Model used in this study consists of a zonally averaged statistical-dynamical atmospheric model coupled to a mixed-layer Q-flux ocean model, with heat anomalies diffused into the deep ocean. Following our previous studies, the anthropogenic forcings are the changes in concentrations of greenhouse gases (1860-1995), sulfate aerosol (1860-1995), and stratospheric and tropospheric ozone (1979-1995). The sulfate aerosol forcing is applied as a surface albedo change. For an aerosol forcing of -1.0 W/m2 and an effective ocean diffusitivity of 2.5 cm2/s, the nonlinearity of the response of global-mean surface temperatures to the combined forcing shows a strong dependence on climate sensitivity. The fractional change in decadal averages ([(Δ TG + Δ TS + Δ TO) - Δ TGSO ]/ Δ TGSO) for the 1986-1995 period compared to pre-industrial times are 0.43, 0.90, and 1.08 with climate sensitivities of 3.0, 4.5, and 6.2 oC, respectively. The values of Δ TGSO for these three cases are 0.52, 0.62, and 0.76 oC. The dependence of linearity on climate system properties, the role of climate system feedbacks, and the implications for the detection of climate system's response to individual forcings will be presented. Details of the model and forcings can be found at http://web.mit.edu/globalchange/www/.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28483866','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28483866"><span>Extreme weather and climate events with ecological relevance: a review.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ummenhofer, Caroline C; Meehl, Gerald A</p> <p>2017-06-19</p> <p>Robust evidence exists that certain extreme weather and climate events, especially daily temperature and precipitation extremes, have changed in regard to intensity and frequency over recent decades. These changes have been linked to human-induced climate change, while the degree to which climate change impacts an individual extreme climate event (ECE) is more difficult to quantify. Rapid progress in event attribution has recently been made through improved understanding of observed and simulated climate variability, methods for event attribution and advances in numerical modelling. Attribution for extreme temperature events is stronger compared with other event types, notably those related to the hydrological cycle. Recent advances in the understanding of ECEs, both in observations and their representation in state-of-the-art climate models, open new opportunities for assessing their effect on human and natural systems. Improved spatial resolution in global climate models and advances in statistical and dynamical downscaling now provide climatic information at appropriate spatial and temporal scales. Together with the continued development of Earth System Models that simulate biogeochemical cycles and interactions with the biosphere at increasing complexity, these make it possible to develop a mechanistic understanding of how ECEs affect biological processes, ecosystem functioning and adaptation capabilities. Limitations in the observational network, both for physical climate system parameters and even more so for long-term ecological monitoring, have hampered progress in understanding bio-physical interactions across a range of scales. New opportunities for assessing how ECEs modulate ecosystem structure and functioning arise from better scientific understanding of ECEs coupled with technological advances in observing systems and instrumentation.This article is part of the themed issue 'Behavioural, ecological and evolutionary responses to extreme climatic events'. © 2017 The Author(s).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.B31C0566C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.B31C0566C"><span>Increases in Growing Season Length and Changes in Precipitation at Six Different Arctic and Subarctic Ecosystems from 1906-Present</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Culler, L. E.; Finger, R.; Plane, E.; Ayres, M.; Virginia, R. A.</p> <p>2015-12-01</p> <p>Ecological dynamics across the Arctic are responding to rapid changes in climate. As a whole, the Arctic has warmed at approximately twice the rate of the rest of the world, but changes in temperature and precipitation experienced at regional and local scales are most important for coupled human-natural systems. In addition, biologically-relevant climate indices are necessary for quantifying ecological responses of terrestrial and aquatic systems to varying climate. We compared climatic changes at six different Arctic and sub-Arctic locations, including two in Greenland (Kangerlussuaq, Sisimiut), one in Sweden (Abisko), and three in Alaska (Barrow, Nome, Fairbanks). We amassed weather data (daily temperature and precipitation), dating as far back as 1906, from public-access databases and used these data to calculate indices such as length of growing season, growing season degree days (GDD), and growing season precipitation. Annual GDD increased at all locations (average of 13% increase in GDD since 1980), but especially in western Greenland (16 and 37% in Kangerlussuaq and Sisimiut, respectively). Changes in growing season precipitation were more variable, with only Barrow, AK and Abisko, Sweden experiencing increased precipitation. All other sites experienced stable or slightly declining precipitation. Increasing temperatures and relatively stable precipitation translates to increased evapotranspiration potential, which influences soil moisture, lake depth, vegetation, carbon emissions, and fire susceptibility. Understanding local and regional trends in temperature and precipitation can help explain observed phenological changes and other processes at population, community, and ecosystem levels. In addition, identification of locations most susceptible to future change will allow scientists to closely monitor their ecological dynamics, anticipate changes in coupled human-natural systems, and consider adaptation plans for the most rapidly changing systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.B52C..07L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.B52C..07L"><span>Vegetation Fires in the Coupled Human-Earth System Under Future Environmental and Policy Perspectives</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>le page, Y.; Morton, D. C.; Hurtt, G. C.</p> <p>2013-12-01</p> <p>Fires play a major role in terrestrial ecosystems dynamics and the carbon cycle. Potential changes in fire regimes due to climate change, land use change, or human management could have substantial ecological, climatic and socio-economic impacts, and have recently been emphasized as a source of uncertainty for policy-makers and climate mitigation cost estimates. Anticipating these interactions thus entails interdisciplinary models. Here we describe the development of a new fire modeling framework, which features the essential integration of climatic, vegetation and anthropogenic drivers. The model is an attempt to realistically account for ignition, spread and termination processes, on a 12-hour time step and at 1 degree spatial resolution globally. Because the quantitative influence of fire drivers on these processes are often poorly constrained, the framework includes an optimization procedure whereby key parameters (e.g. influence of moisture on fire spread, probability of cloud-to-ground lightning flashes to actually ignite a fire, human ignition frequency as a function of land use density) are determined to maximize the agreement between modeled and observed burned area over the past decade. The model performs surprisingly well across all biomes, and shows good agreement on non-optimized features, such as seasonality and fire size, which suggests some potential for robust projections. We couple the model to an integrated assessment model and explore the consequences of mitigation policies, land use decisions and climate change on future fire regimes with a focus on the Amazon basin. The coupled model future projections show that business-as-usual land use expansion would increase the frequency of escaped fires in the remaining forest, especially when combined with models projecting a drier climate. Inversely, climate mitigation policies as projected in the IPCC RCP4.5 scenario achieve synergistic benefits, with increased forest extent, less fire ignitions, and higher moisture levels.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1327771','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1327771"><span>C4MIP – The Coupled Climate–Carbon Cycle Model Intercomparison Project: Experimental protocol for CMIP6</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Jones, Chris D.; Arora, Vivek; Friedlingstein, Pierre</p> <p></p> <p>Coordinated experimental design and implementation has become a cornerstone of global climate modelling. Model Intercomparison Projects (MIPs) enable systematic and robust analysis of results across many models, by reducing the influence of ad hoc differences in model set-up or experimental boundary conditions. As it enters its 6th phase, the Coupled Model Intercomparison Project (CMIP6) has grown significantly in scope with the design and documentation of individual simulations delegated to individual climate science communities. The Coupled Climate–Carbon Cycle Model Intercomparison Project (C4MIP) takes responsibility for design, documentation, and analysis of carbon cycle feedbacks and interactions in climate simulations. These feedbacks aremore » potentially large and play a leading-order contribution in determining the atmospheric composition in response to human emissions of CO 2 and in the setting of emissions targets to stabilize climate or avoid dangerous climate change. For over a decade, C4MIP has coordinated coupled climate–carbon cycle simulations, and in this paper we describe the C4MIP simulations that will be formally part of CMIP6. While the climate–carbon cycle community has created this experimental design, the simulations also fit within the wider CMIP activity, conform to some common standards including documentation and diagnostic requests, and are designed to complement the CMIP core experiments known as the Diagnostic, Evaluation and Characterization of Klima (DECK). C4MIP has three key strands of scientific motivation and the requested simulations are designed to satisfy their needs: (1) pre-industrial and historical simulations (formally part of the common set of CMIP6 experiments) to enable model evaluation, (2) idealized coupled and partially coupled simulations with 1 % per year increases in CO 2 to enable diagnosis of feedback strength and its components, (3) future scenario simulations to project how the Earth system will respond to anthropogenic activity over the 21st century and beyond. This study documents in detail these simulations, explains their rationale and planned analysis, and describes how to set up and run the simulations. Particular attention is paid to boundary conditions, input data, and requested output diagnostics. It is important that modelling groups participating in C4MIP adhere as closely as possible to this experimental design.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1327771-c4mip-coupled-climatecarbon-cycle-model-intercomparison-project-experimental-protocol-cmip6','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1327771-c4mip-coupled-climatecarbon-cycle-model-intercomparison-project-experimental-protocol-cmip6"><span>C4MIP – The Coupled Climate–Carbon Cycle Model Intercomparison Project: Experimental protocol for CMIP6</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Jones, Chris D.; Arora, Vivek; Friedlingstein, Pierre; ...</p> <p>2016-08-25</p> <p>Coordinated experimental design and implementation has become a cornerstone of global climate modelling. Model Intercomparison Projects (MIPs) enable systematic and robust analysis of results across many models, by reducing the influence of ad hoc differences in model set-up or experimental boundary conditions. As it enters its 6th phase, the Coupled Model Intercomparison Project (CMIP6) has grown significantly in scope with the design and documentation of individual simulations delegated to individual climate science communities. The Coupled Climate–Carbon Cycle Model Intercomparison Project (C4MIP) takes responsibility for design, documentation, and analysis of carbon cycle feedbacks and interactions in climate simulations. These feedbacks aremore » potentially large and play a leading-order contribution in determining the atmospheric composition in response to human emissions of CO 2 and in the setting of emissions targets to stabilize climate or avoid dangerous climate change. For over a decade, C4MIP has coordinated coupled climate–carbon cycle simulations, and in this paper we describe the C4MIP simulations that will be formally part of CMIP6. While the climate–carbon cycle community has created this experimental design, the simulations also fit within the wider CMIP activity, conform to some common standards including documentation and diagnostic requests, and are designed to complement the CMIP core experiments known as the Diagnostic, Evaluation and Characterization of Klima (DECK). C4MIP has three key strands of scientific motivation and the requested simulations are designed to satisfy their needs: (1) pre-industrial and historical simulations (formally part of the common set of CMIP6 experiments) to enable model evaluation, (2) idealized coupled and partially coupled simulations with 1 % per year increases in CO 2 to enable diagnosis of feedback strength and its components, (3) future scenario simulations to project how the Earth system will respond to anthropogenic activity over the 21st century and beyond. This study documents in detail these simulations, explains their rationale and planned analysis, and describes how to set up and run the simulations. Particular attention is paid to boundary conditions, input data, and requested output diagnostics. It is important that modelling groups participating in C4MIP adhere as closely as possible to this experimental design.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A13L..01C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A13L..01C"><span>Improving Air Quality (and Weather) Predictions using Advanced Data Assimilation Techniques Applied to Coupled Models during KORUS-AQ</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Carmichael, G. R.; Saide, P. E.; Gao, M.; Streets, D. G.; Kim, J.; Woo, J. H.</p> <p>2017-12-01</p> <p>Ambient aerosols are important air pollutants with direct impacts on human health and on the Earth's weather and climate systems through their interactions with radiation and clouds. Their role is dependent on their distributions of size, number, phase and composition, which vary significantly in space and time. There remain large uncertainties in simulated aerosol distributions due to uncertainties in emission estimates and in chemical and physical processes associated with their formation and removal. These uncertainties lead to large uncertainties in weather and air quality predictions and in estimates of health and climate change impacts. Despite these uncertainties and challenges, regional-scale coupled chemistry-meteorological models such as WRF-Chem have significant capabilities in predicting aerosol distributions and explaining aerosol-weather interactions. We explore the hypothesis that new advances in on-line, coupled atmospheric chemistry/meteorological models, and new emission inversion and data assimilation techniques applicable to such coupled models, can be applied in innovative ways using current and evolving observation systems to improve predictions of aerosol distributions at regional scales. We investigate the impacts of assimilating AOD from geostationary satellite (GOCI) and surface PM2.5 measurements on predictions of AOD and PM in Korea during KORUS-AQ through a series of experiments. The results suggest assimilating datasets from multiple platforms can improve the predictions of aerosol temporal and spatial distributions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20100002940&hterms=soil+layers&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dsoil%2Blayers','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20100002940&hterms=soil+layers&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dsoil%2Blayers"><span>Role of Subsurface Physics in the Assimilation of Surface Soil Moisture Observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Reichle, R. H.</p> <p>2010-01-01</p> <p>Root zone soil moisture controls the land-atmosphere exchange of water and energy and exhibits memory that may be useful for climate prediction at monthly scales. Assimilation of satellite-based surface soil moisture observations into a land surface model is an effective way to estimate large-scale root zone soil moisture. The propagation of surface information into deeper soil layers depends on the model-specific representation of subsurface physics that is used in the assimilation system. In a suite of experiments we assimilate synthetic surface soil moisture observations into four different models (Catchment, Mosaic, Noah and CLM) using the Ensemble Kalman Filter. We demonstrate that identical twin experiments significantly overestimate the information that can be obtained from the assimilation of surface soil moisture observations. The second key result indicates that the potential of surface soil moisture assimilation to improve root zone information is higher when the surface to root zone coupling is stronger. Our experiments also suggest that (faced with unknown true subsurface physics) overestimating surface to root zone coupling in the assimilation system provides more robust skill improvements in the root zone compared with underestimating the coupling. When CLM is excluded from the analysis, the skill improvements from using models with different vertical coupling strengths are comparable for different subsurface truths. Finally, the skill improvements through assimilation were found to be sensitive to the regional climate and soil types.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.B53J..04R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.B53J..04R"><span>Ecosystem service impacts of future changes in CO2, climate, and land use as simulated by a coupled vegetation/land-use model system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rabin, S. S.; Alexander, P.; Henry, R.; Anthoni, P.; Pugh, T.; Rounsevell, M.; Arneth, A.</p> <p>2017-12-01</p> <p>In a future of increasing atmospheric carbon dioxide (CO2) concentrations, changing climate, increasing human populations, and changing socioeconomic dynamics, the global agricultural system will need to adapt in order to feed the world. Global modeling can help to explore what these adaptations will look like, and their potential impacts on ecosystem services. To do so, however, the complex interconnections among the atmosphere, terrestrial ecosystems, and society mean that these various parts of the Earth system must be examined as an interconnected whole. With the goal of answering these questions, a model system has been developed that couples a biologically-representative global vegetation model, LPJ-GUESS, with the PLUMv2 land use model. LPJ-GUESS first simulates—at 0.5º resolution across the world—the potential yield of various crops and pasture under a range of management intensities for a time step given its atmospheric CO2 level and climatic forcings. These potential yield simulations are fed into PLUMv2, which uses them in conjunction with endogenous agricultural commodity demand and prices to produce land use and management inputs (fertilizer and irrigation water) at a sub-national level for the next time step. This process is performed through 2100 for a range of future climate and societal scenarios—the Representative Concentration Pathways (RCPs) and the Shared Socioeconomic Pathways (SSPs), respectively—providing a thorough exploration of possible trajectories of land use and land cover change. The land use projections produced by PLUMv2 are fed back into LPJ-GUESS to simulate the future impacts of land use change, along with increasing CO2 and climate change, on terrestrial ecosystems. This integrated analysis examines the resulting impacts on regulating and provisioning ecosystem services affecting biophysics (albedo); carbon, nitrogen, and water cycling; and the emission of biogenic volatile organic compounds (BVOCs).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110015344','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110015344"><span>The Sun, Its Extended Corona, the Interplanetary Space, the Earth's Magnetosphere, Ionosphere, Middle and Low Atmosphere, are All Parts of a Complex System - the Heliosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gopalswamy, Natchimuthuk</p> <p>2011-01-01</p> <p>Various manifestations of solar activity cause disturbances known as space weather effects in the interplanetary space, near-Earth environment, and all the Earth's "spheres. Longterm variations in the frequency, intensity and relative importance of the manifestations of solar activity are due to the slow changes in the output of the solar dynamo, and they define space climate. Space climate governs long-term variations in geomagnetic activity and is the primary natural driver of terrestrial climate. To understand how the variable solar activity affects the Earth's environment, geomagnetic activity and climate on both short and long time scales, we need to understand the origins of solar activity itself and its different manifestations, as well as the sequence of coupling processes linking various parts of the system. This session provides a forum to discuss the chain of processes and relations from the Sun to the Earth's surface: the origin and long-term and short-term evolution of solar activity, initiation and temporal variations in solar flares, CMEs, coronal holes, the solar wind and its interaction with the terrestrial magnetosphere, the ionosphere and its connection to the neutral dominated regions below and the plasma dominated regions above, the stratosphere, its variations due to the changing solar activity and its interactions with the underlying troposphere, and the mechanisms of solar influences on the lower atmosphere on different time-scales. Particularly welcome are papers highlighting the coupling processes between the different domains in this complex system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMPP13C1089T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMPP13C1089T"><span>Evaluating Carbon and Climate Sensitivities of the NOAA/GFDL Earth System Model ESM2Mb to Forcing Perturbations during the Paleocene-Eocene Thermal Maximum</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tandy, H.; Shevliakova, E.; Keller, G.</p> <p>2017-12-01</p> <p>The Paleocene-Eocene Thermal Maximum (PETM, 55.5 Myr) was a period of rapid warming resulting from major changes in the carbon cycle and has been cited as the closest historical analogue to anthropogenic carbon release. Up to now, modeling studies of the PETM used either a low-resolution coupled model of the ocean and atmosphere with prescribed CO2 or CH4, or coupled climate-carbon models of intermediate complexity (i.e. simplified ocean or atmosphere). In this study we carried a suit of numerical experiments with the NOAA/GFDL comprehensive atmosphere-ocean coupled model with integrated terrestrial and marine carbon cycle components, known as an Earth System Model (ESM2Mb). We analyzed the output from millennia-scale ESM2Mb simulations with different combinations of forcings from the pre-PETM and PETM, including greenhouse gas concentrations and solar intensity. In addition we explore sensitivities of climate and carbon cycling to changes in geology such as topography, continental positions, and the presence and absence of large land glaciers. Furthermore, we examine ESM2Mb climate and carbon sensitivities to PETM conditions with a focus on how alternate conditions and forcings relate to the uncertainty in the climate and carbon cycling estimates from paleo observations. We explore changes in atmosphere, land, and ocean temperatures and circulation patterns as well as vegetation distribution, permafrost, and carbon storage in terrestrial and marine ecosystems from pre-PETM to PETM conditions. We found that with the present day land/sea mask and land glaciers in ESM2Mb, changes in only greenhouse gas concentrations (CO2 and CH4) from pre-PETM to PETM conditions induce global warming of 3-5 °C, consistent with the lower range of estimates from paleo proxies. Changes in the carbon permafrost storage from warming cannot explain the rapid increase in the atmospheric CO2 concentration. Changes in the ocean circulation and carbon storage critically depend on geological conditions such as continental positions. The study illustrates how models designed for studying future climate change can capture past paleo events, such as the PETM, and how modern day geological conditions may affect climate and carbon cycle sensitivities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.9430P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.9430P"><span>A Coupled Snow Operations-Skier Demand Model for the Ontario (Canada) Ski Region</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pons, Marc; Scott, Daniel; Steiger, Robert; Rutty, Michelle; Johnson, Peter; Vilella, Marc</p> <p>2016-04-01</p> <p>The multi-billion dollar global ski industry is one of the tourism subsectors most directly impacted by climate variability and change. In the decades ahead, the scholarly literature consistently projects decreased reliability of natural snow cover, shortened and more variable ski seasons, as well as increased reliance on snowmaking with associated increases in operational costs. In order to develop the coupled snow, ski operations and demand model for the Ontario ski region (which represents approximately 18% of Canada's ski market), the research utilized multiple methods, including: a in situ survey of over 2400 skiers, daily operations data from ski resorts over the last 10 years, climate station data (1981-2013), climate change scenario ensemble (AR5 - RCP 8.5), an updated SkiSim model (building on Scott et al. 2003; Steiger 2010), and an agent-based model (building on Pons et al. 2014). Daily snow and ski operations for all ski areas in southern Ontario were modeled with the updated SkiSim model, which utilized current differential snowmaking capacity of individual resorts, as determined from daily ski area operations data. Snowmaking capacities and decision rules were informed by interviews with ski area managers and daily operations data. Model outputs were validated with local climate station and ski operations data. The coupled SkiSim-ABM model was run with historical weather data for seasons representative of an average winter for the 1981-2010 period, as well as an anomalously cold winter (2012-13) and the record warm winter in the region (2011-12). The impact on total skier visits and revenues, and the geographic and temporal distribution of skier visits were compared. The implications of further climate adaptation (i.e., improving the snowmaking capacity of all ski areas to the level of leading resorts in the region) were also explored. This research advances system modelling, especially improving the integration of snow and ski operations models with demand and socioeconomic implications. This innovative integrated systems model approach can be exported to other major ski tourism markets (e.g., Canada, USA, Western and Eastern Europe, Australia, Japan) to facilitate global comparative assessments of ski tourism vulnerability to climate change, establishing the standard for ski tourism vulnerability assessments and advancing scholarly work on sustainable tourism and climate-compatible development in mountain communities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRC..122.9695L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRC..122.9695L"><span>Evaluation of Oceanic Surface Observation for Reproducing the Upper Ocean Structure in ECHAM5/MPI-OM</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Luo, Hao; Zheng, Fei; Zhu, Jiang</p> <p>2017-12-01</p> <p>Better constraints of initial conditions from data assimilation are necessary for climate simulations and predictions, and they are particularly important for the ocean due to its long climate memory; as such, ocean data assimilation (ODA) is regarded as an effective tool for seasonal to decadal predictions. In this work, an ODA system is established for a coupled climate model (ECHAM5/MPI-OM), which can assimilate all available oceanic observations using an ensemble optimal interpolation approach. To validate and isolate the performance of different surface observations in reproducing air-sea climate variations in the model, a set of observing system simulation experiments (OSSEs) was performed over 150 model years. Generally, assimilating sea surface temperature, sea surface salinity, and sea surface height (SSH) can reasonably reproduce the climate variability and vertical structure of the upper ocean, and assimilating SSH achieves the best results compared to the true states. For the El Niño-Southern Oscillation (ENSO), assimilating different surface observations captures true aspects of ENSO well, but assimilating SSH can further enhance the accuracy of ENSO-related feedback processes in the coupled model, leading to a more reasonable ENSO evolution and air-sea interaction over the tropical Pacific. For ocean heat content, there are still limitations in reproducing the long time-scale variability in the North Atlantic, even if SSH has been taken into consideration. These results demonstrate the effectiveness of assimilating surface observations in capturing the interannual signal and, to some extent, the decadal signal but still highlight the necessity of assimilating profile data to reproduce specific decadal variability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26960564','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26960564"><span>Local control on precipitation in a fully coupled climate-hydrology model.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Larsen, Morten A D; Christensen, Jens H; Drews, Martin; Butts, Michael B; Refsgaard, Jens C</p> <p>2016-03-10</p> <p>The ability to simulate regional precipitation realistically by climate models is essential to understand and adapt to climate change. Due to the complexity of associated processes, particularly at unresolved temporal and spatial scales this continues to be a major challenge. As a result, climate simulations of precipitation often exhibit substantial biases that affect the reliability of future projections. Here we demonstrate how a regional climate model (RCM) coupled to a distributed hydrological catchment model that fully integrates water and energy fluxes between the subsurface, land surface, plant cover and the atmosphere, enables a realistic representation of local precipitation. Substantial improvements in simulated precipitation dynamics on seasonal and longer time scales is seen for a simulation period of six years and can be attributed to a more complete treatment of hydrological sub-surface processes including groundwater and moisture feedback. A high degree of local influence on the atmosphere suggests that coupled climate-hydrology models have a potential for improving climate projections and the results further indicate a diminished need for bias correction in climate-hydrology impact studies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4785381','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4785381"><span>Local control on precipitation in a fully coupled climate-hydrology model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Larsen, Morten A. D.; Christensen, Jens H.; Drews, Martin; Butts, Michael B.; Refsgaard, Jens C.</p> <p>2016-01-01</p> <p>The ability to simulate regional precipitation realistically by climate models is essential to understand and adapt to climate change. Due to the complexity of associated processes, particularly at unresolved temporal and spatial scales this continues to be a major challenge. As a result, climate simulations of precipitation often exhibit substantial biases that affect the reliability of future projections. Here we demonstrate how a regional climate model (RCM) coupled to a distributed hydrological catchment model that fully integrates water and energy fluxes between the subsurface, land surface, plant cover and the atmosphere, enables a realistic representation of local precipitation. Substantial improvements in simulated precipitation dynamics on seasonal and longer time scales is seen for a simulation period of six years and can be attributed to a more complete treatment of hydrological sub-surface processes including groundwater and moisture feedback. A high degree of local influence on the atmosphere suggests that coupled climate-hydrology models have a potential for improving climate projections and the results further indicate a diminished need for bias correction in climate-hydrology impact studies. PMID:26960564</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1917512S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1917512S"><span>IPSL-CM5A2. An Earth System Model designed to run long simulations for past and future climates.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sepulchre, Pierre; Caubel, Arnaud; Marti, Olivier; Hourdin, Frédéric; Dufresne, Jean-Louis; Boucher, Olivier</p> <p>2017-04-01</p> <p>The IPSL-CM5A model was developed and released in 2013 "to study the long-term response of the climate system to natural and anthropogenic forcings as part of the 5th Phase of the Coupled Model Intercomparison Project (CMIP5)" [Dufresne et al., 2013]. Although this model also has been used for numerous paleoclimate studies, a major limitation was its computation time, which averaged 10 model-years / day on 32 cores of the Curie supercomputer (on TGCC computing center, France). Such performances were compatible with the experimental designs of intercomparison projects (e.g. CMIP, PMIP) but became limiting for modelling activities involving several multi-millenial experiments, which are typical for Quaternary or "deeptime" paleoclimate studies, in which a fully-equilibrated deep-ocean is mandatory. Here we present the Earth-System model IPSL-CM5A2. Based on IPSL-CM5A, technical developments have been performed both on separate components and on the coupling system in order to speed up the whole coupled model. These developments include the integration of hybrid parallelization MPI-OpenMP in LMDz atmospheric component, the use of a new input-ouput library to perform parallel asynchronous input/output by using computing cores as "IO servers", the use of a parallel coupling library between the ocean and the atmospheric components. Running on 304 cores, the model can now simulate 55 years per day, opening new gates towards multi-millenial simulations. Apart from obtaining better computing performances, one aim of setting up IPSL-CM5A2 was also to overcome the cold bias depicted in global surface air temperature (t2m) in IPSL-CM5A. We present the tuning strategy to overcome this bias as well as the main characteristics (including biases) of the pre-industrial climate simulated by IPSL-CM5A2. Lastly, we shortly present paleoclimate simulations run with this model, for the Holocene and for deeper timescales in the Cenozoic, for which the particular continental configuration was overcome by a new design of the ocean tripolar grid.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFMGC41B0909L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFMGC41B0909L"><span>A Regional Climate Model Evaluation System based on Satellite and other Observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lean, P.; Kim, J.; Waliser, D. E.; Hall, A. D.; Mattmann, C. A.; Granger, S. L.; Case, K.; Goodale, C.; Hart, A.; Zimdars, P.; Guan, B.; Molotch, N. P.; Kaki, S.</p> <p>2010-12-01</p> <p>Regional climate models are a fundamental tool needed for downscaling global climate simulations and projections, such as those contributing to the Coupled Model Intercomparison Projects (CMIPs) that form the basis of the IPCC Assessment Reports. The regional modeling process provides the means to accommodate higher resolution and a greater complexity of Earth System processes. Evaluation of both the global and regional climate models against observations is essential to identify model weaknesses and to direct future model development efforts focused on reducing the uncertainty associated with climate projections. However, the lack of reliable observational data and the lack of formal tools are among the serious limitations to addressing these objectives. Recent satellite observations are particularly useful as they provide a wealth of information on many different aspects of the climate system, but due to their large volume and the difficulties associated with accessing and using the data, these datasets have been generally underutilized in model evaluation studies. Recognizing this problem, NASA JPL / UCLA is developing a model evaluation system to help make satellite observations, in conjunction with in-situ, assimilated, and reanalysis datasets, more readily accessible to the modeling community. The system includes a central database to store multiple datasets in a common format and codes for calculating predefined statistical metrics to assess model performance. This allows the time taken to compare model simulations with satellite observations to be reduced from weeks to days. Early results from the use this new model evaluation system for evaluating regional climate simulations over California/western US regions will be presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMGC43C1046B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMGC43C1046B"><span>A network-base analysis of CMIP5 "historical" experiments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bracco, A.; Foudalis, I.; Dovrolis, C.</p> <p>2012-12-01</p> <p>In computer science, "complex network analysis" refers to a set of metrics, modeling tools and algorithms commonly used in the study of complex nonlinear dynamical systems. Its main premise is that the underlying topology or network structure of a system has a strong impact on its dynamics and evolution. By allowing to investigate local and non-local statistical interaction, network analysis provides a powerful, but only marginally explored, framework to validate climate models and investigate teleconnections, assessing their strength, range, and impacts on the climate system. In this work we propose a new, fast, robust and scalable methodology to examine, quantify, and visualize climate sensitivity, while constraining general circulation models (GCMs) outputs with observations. The goal of our novel approach is to uncover relations in the climate system that are not (or not fully) captured by more traditional methodologies used in climate science and often adopted from nonlinear dynamical systems analysis, and to explain known climate phenomena in terms of the network structure or its metrics. Our methodology is based on a solid theoretical framework and employs mathematical and statistical tools, exploited only tentatively in climate research so far. Suitably adapted to the climate problem, these tools can assist in visualizing the trade-offs in representing global links and teleconnections among different data sets. Here we present the methodology, and compare network properties for different reanalysis data sets and a suite of CMIP5 coupled GCM outputs. With an extensive model intercomparison in terms of the climate network that each model leads to, we quantify how each model reproduces major teleconnections, rank model performances, and identify common or specific errors in comparing model outputs and observations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015NPGeo..22...33G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015NPGeo..22...33G"><span>On the data-driven inference of modulatory networks in climate science: an application to West African rainfall</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>González, D. L., II; Angus, M. P.; Tetteh, I. K.; Bello, G. A.; Padmanabhan, K.; Pendse, S. V.; Srinivas, S.; Yu, J.; Semazzi, F.; Kumar, V.; Samatova, N. F.</p> <p>2015-01-01</p> <p>Decades of hypothesis-driven and/or first-principles research have been applied towards the discovery and explanation of the mechanisms that drive climate phenomena, such as western African Sahel summer rainfall~variability. Although connections between various climate factors have been theorized, not all of the key relationships are fully understood. We propose a data-driven approach to identify candidate players in this climate system, which can help explain underlying mechanisms and/or even suggest new relationships, to facilitate building a more comprehensive and predictive model of the modulatory relationships influencing a climate phenomenon of interest. We applied coupled heterogeneous association rule mining (CHARM), Lasso multivariate regression, and dynamic Bayesian networks to find relationships within a complex system, and explored means with which to obtain a consensus result from the application of such varied methodologies. Using this fusion of approaches, we identified relationships among climate factors that modulate Sahel rainfall. These relationships fall into two categories: well-known associations from prior climate knowledge, such as the relationship with the El Niño-Southern Oscillation (ENSO) and putative links, such as North Atlantic Oscillation, that invite further research.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1333075-data-driven-inference-modulatory-networks-climate-science-application-west-african-rainfall','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1333075-data-driven-inference-modulatory-networks-climate-science-application-west-african-rainfall"><span>On the data-driven inference of modulatory networks in climate science: An application to West African rainfall</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Gonzalez, II, D. L.; Angus, M. P.; Tetteh, I. K.; ...</p> <p>2015-01-13</p> <p>Decades of hypothesis-driven and/or first-principles research have been applied towards the discovery and explanation of the mechanisms that drive climate phenomena, such as western African Sahel summer rainfall~variability. Although connections between various climate factors have been theorized, not all of the key relationships are fully understood. We propose a data-driven approach to identify candidate players in this climate system, which can help explain underlying mechanisms and/or even suggest new relationships, to facilitate building a more comprehensive and predictive model of the modulatory relationships influencing a climate phenomenon of interest. We applied coupled heterogeneous association rule mining (CHARM), Lasso multivariate regression,more » and dynamic Bayesian networks to find relationships within a complex system, and explored means with which to obtain a consensus result from the application of such varied methodologies. Using this fusion of approaches, we identified relationships among climate factors that modulate Sahel rainfall. As a result, these relationships fall into two categories: well-known associations from prior climate knowledge, such as the relationship with the El Niño–Southern Oscillation (ENSO) and putative links, such as North Atlantic Oscillation, that invite further research.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMPP43A1441S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMPP43A1441S"><span>A speleothem record of South Pacific Convergence Zone dynamics during MIS 3 - Evidence for non-stationary coupling between the southern tropical Pacific and Greenland?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sinclair, D. J.; Sherrell, R. M.; Rowe, H. D.; Wright, J. D.; Mortlock, R. A.; Hellstrom, J. C.; Cheng, H.; Min, A.; Edwards, R. L.</p> <p>2014-12-01</p> <p>The South Pacific Convergence Zone (SPCZ) is the largest component of the Intertropical Convergence Zone (ITCZ), and its impact on global climate rivals that of the deep convection at the heart of the Western Pacific Warm Pool. Rapid glacial climate fluctuations, such as Dansgaard-Oeschger (D-O) Events, would have triggered a reorganization of tropical systems such as the SPCZ, manifesting as significantly altered rainfall across the tropical south Pacific. However, a critical lack of high-resolution glacial records from this region means the dynamics of the SPCZ are largely unknown. We present a decade-resolution, absolute-dated speleothem rainfall record from the Island of Niue in the southern Tropical Pacific spanning 25-45 ka. Sr, Mg, δ18O and δ13C variations show that Niue experienced large, rapid fluctuations in rainfall lasting up to 1200 years. Between 40 and 45 ka, these show a remarkable concordance with the timing, duration and shape of D-O events 9-11. Rapid warming in Greenland was accompanied by a sudden increase in rainfall in Niue, implying that the SPCZ was strongly coupled with climate in the high Northern latitudes. These changes are not consistent with a wholesale northward shift in the SPCZ, which would have resulted in drying in Niue, and instead imply that the SPCZ underwent a more complex reorganization, perhaps rotating around its western edge in a manner analogous to modern-day extreme ENSO events. The speleothem record between 25-40 ka also shows large changes in rainfall, with D-O events identifiable. However, these changes are less well matched to Greenland, and include events not captured by the ice cores. It is clear that the SPCZ response to global climate change is complex: while it can closely couple with high-northern latitude climate for periods, this coupling may not be stationary with time. We speculate that this might result from changing precession, influencing which teleconnections dominate climate changes in the south tropical Pacific.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1439707-agmip-framework-improved-agricultural-representation-integrated-assessment-models','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1439707-agmip-framework-improved-agricultural-representation-integrated-assessment-models"><span>An AgMIP framework for improved agricultural representation in integrated assessment models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Ruane, Alex C.; Rosenzweig, Cynthia; Asseng, Senthold</p> <p></p> <p>Integrated assessment models (IAMs) hold great potential to assess how future agricultural systems will be shaped by socioeconomic development, technological innovation, and changing climate conditions. By coupling with climate and crop model emulators, IAMs have the potential to resolve important agricultural feedback loops and identify unintended consequences of socioeconomic development for agricultural systems. Here we propose a framework to develop robust representation of agricultural system responses within IAMs, linking downstream applications with model development and the coordinated evaluation of key climate responses from local to global scales. We survey the strengths and weaknesses of protocol-based assessments linked to the Agriculturalmore » Model Intercomparison and Improvement Project (AgMIP), each utilizing multiple sites and models to evaluate crop response to core climate changes including shifts in carbon dioxide concentration, temperature, and water availability, with some studies further exploring how climate responses are affected by nitrogen levels and adaptation in farm systems. Site-based studies with carefully calibrated models encompass the largest number of activities; however they are limited in their ability to capture the full range of global agricultural system diversity. Representative site networks provide more targeted response information than broadly-sampled networks, with limitations stemming from difficulties in covering the diversity of farming systems. Global gridded crop models provide comprehensive coverage, although with large challenges for calibration and quality control of inputs. Diversity in climate responses underscores that crop model emulators must distinguish between regions and farming system while recognizing model uncertainty. Finally, to bridge the gap between bottom-up and top-down approaches we recommend the deployment of a hybrid climate response system employing a representative network of sites to bias-correct comprehensive gridded simulations, opening the door to accelerated development and a broad range of applications.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ERL....12l5003R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ERL....12l5003R"><span>An AgMIP framework for improved agricultural representation in integrated assessment models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ruane, Alex C.; Rosenzweig, Cynthia; Asseng, Senthold; Boote, Kenneth J.; Elliott, Joshua; Ewert, Frank; Jones, James W.; Martre, Pierre; McDermid, Sonali P.; Müller, Christoph; Snyder, Abigail; Thorburn, Peter J.</p> <p>2017-12-01</p> <p>Integrated assessment models (IAMs) hold great potential to assess how future agricultural systems will be shaped by socioeconomic development, technological innovation, and changing climate conditions. By coupling with climate and crop model emulators, IAMs have the potential to resolve important agricultural feedback loops and identify unintended consequences of socioeconomic development for agricultural systems. Here we propose a framework to develop robust representation of agricultural system responses within IAMs, linking downstream applications with model development and the coordinated evaluation of key climate responses from local to global scales. We survey the strengths and weaknesses of protocol-based assessments linked to the Agricultural Model Intercomparison and Improvement Project (AgMIP), each utilizing multiple sites and models to evaluate crop response to core climate changes including shifts in carbon dioxide concentration, temperature, and water availability, with some studies further exploring how climate responses are affected by nitrogen levels and adaptation in farm systems. Site-based studies with carefully calibrated models encompass the largest number of activities; however they are limited in their ability to capture the full range of global agricultural system diversity. Representative site networks provide more targeted response information than broadly-sampled networks, with limitations stemming from difficulties in covering the diversity of farming systems. Global gridded crop models provide comprehensive coverage, although with large challenges for calibration and quality control of inputs. Diversity in climate responses underscores that crop model emulators must distinguish between regions and farming system while recognizing model uncertainty. Finally, to bridge the gap between bottom-up and top-down approaches we recommend the deployment of a hybrid climate response system employing a representative network of sites to bias-correct comprehensive gridded simulations, opening the door to accelerated development and a broad range of applications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..1412600A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..1412600A"><span>FUPSOL: Modelling the Future and Past Solar Influence on Earth Climate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Anet, J. G.; Rozanov, E.; Peter, T.</p> <p>2012-04-01</p> <p>Global warming is becoming one of the main threats to mankind. There is growing evidence that anthropogenic greenhouse gases have become the dominant factor since about 1970. At the same time natural factors of climate change such as solar and volcanic forcings cannot be neglected on longer time scales. Despite growing scientific efforts over the last decades in both, observations and simulations, the uncertainty of the solar contribution to the past climate change remained unacceptably high (IPCC, 2007), the reasons being on one hand missing observations of solar irradiance prior to the satellite era, and on the other hand a majority of models so far not including all processes relevant for solar-climate interactions. This project aims at elucidating the processes governing the effects of solar activity variations on Earth's climate. We use the state-of-the-art coupled atmosphere-ocean-chemistry-climate model (AOCCM) SOCOL (Schraner et al, 2008) developed in Switzerland by coupling the community Earth System Model (ESM) COSMOS distributed by MPI for Meteorology (Hamburg, Germany) with a comprehensive atmospheric chemistry module. The model solves an extensive set of equations describing the dynamics of the atmosphere and ocean, radiative transfer, transport of species, their chemical transformations, cloud formation and the hydrological cycle. The intention is to show how past solar variations affected climate and how the decrease in solar forcing expected for the next decades will affect climate on global and regional scales. We will simulate the global climate system behavior during Dalton minimum (1790 and 1830) and first half of 21st century with a series of multiyear ensemble experiments and perform these experiments using all known anthropogenic and natural climate forcing taken in different combinations to understand the effects of solar irradiance in different spectral regions and particle precipitation variability. Further on, we will quantify the solar influence on global climate in the future by evaluating the simulations and using information from past analogs such as the Dalton minimum. In the end, the project aims at reducing the uncertainty of the solar contribution to past and future climate change, which so far remained high despite many years of analyses of observational records and theoretical investigations with climate models of different complexity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2016/1047/ofr20161047.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2016/1047/ofr20161047.pdf"><span>An evaluation of 20th century climate for the Southeastern United States as simulated by Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>David E. Rupp,</p> <p>2016-05-05</p> <p>The 20th century climate for the Southeastern United States and surrounding areas as simulated by global climate models used in the Coupled Model Intercomparison Project Phase 5 (CMIP5) was evaluated. A suite of statistics that characterize various aspects of the regional climate was calculated from both model simulations and observation-based datasets. CMIP5 global climate models were ranked by their ability to reproduce the observed climate. Differences in the performance of the models between regions of the United States (the Southeastern and Northwestern United States) warrant a regional-scale assessment of CMIP5 models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/pp/p1650-e/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/pp/p1650-e/"><span>Atlas of Relations Between Climatic Parameters and Distributions of Important Trees and Shrubs in North America - Ecoregions of North America</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Thompson, Robert S.; Anderson, Katherine H.; Pelltier, Richard T.; Shafer, Sarah L.; Bartlein, Patrick J.</p> <p>2007-01-01</p> <p>Climate is the primary factor controlling the continental-scale distribution of plant species, although the relations between climatic parameters and species' ranges are only now beginning to be quantified. This volume examines the relations between climate and the distributions of (1) Kuchler's 'potential natural vegetation' categories for the 48 contiguous States of the United States of America, (2) Bailey's ecoregions of North America, and (3) World Wildlife Fund's ecoregions of North America. For these analyses, we employed a 25-kilometer equal-area grid of modern climatic and bioclimatic parameters for North America, coupled with presence-absence data for the occurrence of each ecoregion under the three classification systems under consideration. The resulting relations between climate and ecoregion distributions are presented in graphical and tabular form. Presentation of ecoregion-climate relations here is intended to be useful for a greater understanding of ecosystem evolution, ecosystem dynamics, and potential effects of future climate change on ecoregions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFMGC23A0899J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFMGC23A0899J"><span>Coupling Climate Models and Forward-Looking Economic Models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Judd, K.; Brock, W. A.</p> <p>2010-12-01</p> <p>Authors: Dr. Kenneth L. Judd, Hoover Institution, and Prof. William A. Brock, University of Wisconsin Current climate models range from General Circulation Models (GCM’s) with millions of degrees of freedom to models with few degrees of freedom. Simple Energy Balance Climate Models (EBCM’s) help us understand the dynamics of GCM’s. The same is true in economics with Computable General Equilibrium Models (CGE’s) where some models are infinite-dimensional multidimensional differential equations but some are simple models. Nordhaus (2007, 2010) couples a simple EBCM with a simple economic model. One- and two- dimensional ECBM’s do better at approximating damages across the globe and positive and negative feedbacks from anthroprogenic forcing (North etal. (1981), Wu and North (2007)). A proper coupling of climate and economic systems is crucial for arriving at effective policies. Brock and Xepapadeas (2010) have used Fourier/Legendre based expansions to study the shape of socially optimal carbon taxes over time at the planetary level in the face of damages caused by polar ice cap melt (as discussed by Oppenheimer, 2005) but in only a “one dimensional” EBCM. Economists have used orthogonal polynomial expansions to solve dynamic, forward-looking economic models (Judd, 1992, 1998). This presentation will couple EBCM climate models with basic forward-looking economic models, and examine the effectiveness and scaling properties of alternative solution methods. We will use a two dimensional EBCM model on the sphere (Wu and North, 2007) and a multicountry, multisector regional model of the economic system. Our aim will be to gain insights into intertemporal shape of the optimal carbon tax schedule, and its impact on global food production, as modeled by Golub and Hertel (2009). We will initially have limited computing resources and will need to focus on highly aggregated models. However, this will be more complex than existing models with forward-looking economic modules, and the initial models will help guide the construction of more refined models that can effectively use more powerful computational environments to analyze economic policies related to climate change. REFERENCES Brock, W., Xepapadeas, A., 2010, “An Integration of Simple Dynamic Energy Balance Climate Models and Ramsey Growth Models,” Department of Economics, University of Wisconsin, Madison, and University of Athens. Golub, A., Hertel, T., etal., 2009, “The opportunity cost of land use and the global potential for greenhouse gas mitigation in agriculture and forestry,” RESOURCE AND ENERGY ECONOMICS, 31, 299-319. Judd, K., 1992, “Projection methods for solving aggregate growth models,” JOURNAL OF ECONOMIC THEORY, 58: 410-52. Judd, K., 1998, NUMERICAL METHODS IN ECONOMICS, MIT Press, Cambridge, Mass. Nordhaus, W., 2007, A QUESTION OF BALANCE: ECONOMIC MODELS OF CLIMATE CHANGE, Yale University Press, New Haven, CT. North, G., R., Cahalan, R., Coakely, J., 1981, “Energy balance climate models,” REVIEWS OF GEOPHYSICS AND SPACE PHYSICS, Vol. 19, No. 1, 91-121, February Wu, W., North, G. R., 2007, “Thermal decay modes of a 2-D energy balance climate model,” TELLUS, 59A, 618-626.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/55301','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/55301"><span>Detection of the Coupling between Vegetation Leaf Area and Climate in a Multifunctional Watershed, Northwestern China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Lu Hao; Cen Pan; Peilong Liu; Decheng Zhou; Liangxia Zhang; Zhe Xiong; Yongqiang Liu; Ge Sun</p> <p>2016-01-01</p> <p>Accurate detection and quantification of vegetation dynamics and drivers of observed climatic and anthropogenic change in space and time is fundamental for our understanding of the atmosphere–biosphere interactions at local and global scales. This case study examined the coupled spatial patterns of vegetation dynamics and climatic variabilities during the past...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011EOSTr..92S.452S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011EOSTr..92S.452S"><span>Was ocean acidification responsible for history's greatest extinction?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schultz, Colin</p> <p>2011-11-01</p> <p>Two hundred fifty million years ago, the world suffered the greatest recorded extinction of all time. More than 90% of marine animals and a majority of terrestrial species disappeared, yet the cause of the Permian-Triassic boundary (PTB) dieoff remains unknown. Various theories abound, with most focusing on rampant Siberian volcanism and its potential consequences: global warming, carbon dioxide poisoning, ocean acidification, or the severe drawdown of oceanic dissolved oxygen levels, also known as anoxia. To narrow the range of possible causes, Montenegro et al. ran climate simulations for PTB using the University of Victoria Earth System Climate Model, a carbon cycle-climate coupled general circulation model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.A23F..03A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.A23F..03A"><span>Ensemble Downscaling of Winter Seasonal Forecasts: The MRED Project</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Arritt, R. W.; Mred Team</p> <p>2010-12-01</p> <p>The Multi-Regional climate model Ensemble Downscaling (MRED) project is a multi-institutional project that is producing large ensembles of downscaled winter seasonal forecasts from coupled atmosphere-ocean seasonal prediction models. Eight regional climate models each are downscaling 15-member ensembles from the National Centers for Environmental Prediction (NCEP) Climate Forecast System (CFS) and the new NASA seasonal forecast system based on the GEOS5 atmospheric model coupled with the MOM4 ocean model. This produces 240-member ensembles, i.e., 8 regional models x 15 global ensemble members x 2 global models, for each winter season (December-April) of 1982-2003. Results to date show that combined global-regional downscaled forecasts have greatest skill for seasonal precipitation anomalies during strong El Niño events such as 1982-83 and 1997-98. Ensemble means of area-averaged seasonal precipitation for the regional models generally track the corresponding results for the global model, though there is considerable inter-model variability amongst the regional models. For seasons and regions where area mean precipitation is accurately simulated the regional models bring added value by extracting greater spatial detail from the global forecasts, mainly due to better resolution of terrain in the regional models. Our results also emphasize that an ensemble approach is essential to realizing the added value from the combined global-regional modeling system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1031025-csiro-mk3l-climate-system-model-v1-coupled-cable-land-surface-scheme-v1-evaluation-control-climatology','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1031025-csiro-mk3l-climate-system-model-v1-coupled-cable-land-surface-scheme-v1-evaluation-control-climatology"><span>The CSIRO Mk3L climate system model v1.0 coupled to the CABLE land surface scheme v1.4b: evaluation of the control climatology</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Mao, Jiafu; Phipps, S.J.; Pitman, A.J.</p> <p></p> <p>The CSIRO Mk3L climate system model, a reduced-resolution coupled general circulation model, has previously been described in this journal. The model is configured for millennium scale or multiple century scale simulations. This paper reports the impact of replacing the relatively simple land surface scheme that is the default parameterisation in Mk3L with a sophisticated land surface model that simulates the terrestrial energy, water and carbon balance in a physically and biologically consistent way. An evaluation of the new model s near-surface climatology highlights strengths and weaknesses, but overall the atmospheric variables, including the near-surface air temperature and precipitation, are simulatedmore » well. The impact of the more sophisticated land surface model on existing variables is relatively small, but generally positive. More significantly, the new land surface scheme allows an examination of surface carbon-related quantities including net primary productivity which adds significantly to the capacity of Mk3L. Overall, results demonstrate that this reduced-resolution climate model is a good foundation for exploring long time scale phenomena. The addition of the more sophisticated land surface model enables an exploration of important Earth System questions including land cover change and abrupt changes in terrestrial carbon storage.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003EAEJA.....4984B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003EAEJA.....4984B"><span>Towards a community Earth System Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Blackmon, M.</p> <p>2003-04-01</p> <p>The Community Climate System Model, version 2 (CCSM2), was released in June 2002. CCSM2 has several new components and features, which I will discuss briefly. I will also show a few results from a multi-century equilibrium run with this model, emphasizing the improvements over the earlier simulation using the original CSM. A few flaws and inadequacies in CCSM2 have been identified. I will also discuss briefly work underway to improve the model and present results, if available. CCSM2, with improvements, will be the basis for the development of a Community Earth System Model (CESM). The highest priority for expansion of the model involves incorporation of biogeosciences into the coupled model system, with emphasis given to the carbon, nitrogen and iron cycles. The overall goal of the biogeosciences project within CESM is to understand the regulation of planetary energetics, planetary ecology, and planetary metabolism through exchanges of energy, momentum, and materials among atmosphere, land, and ocean, and the response of the climate system through these processes to changes in land cover and land use. In particular, this research addresses how biogeochemical coupling of carbon, nitrogen, and iron cycles affects climate and how human perturbations of these cycles alter climate. To accomplish these goals, the Community Land Model, the land component of CCSM2, is being developed to include river routing, carbon and nitrogen cycles, emissions of mineral aerosols and biogenic volatile organic compounds, dry deposition of various gases, and vegetation dynamics. The carbon and nitrogen cycles are being implemented using parameterizations developed as part of a state-of-the-art ecosystem biogeochemistry model. The primary goal of this research is to provide an accurate net flux of CO2 between the land and the atmosphere so that CESM can be used to study the dynamics of the coupled climate-carbon system. Emissions of biogenic volatile organic compounds are also based on a state-of-the-art emissions model and depend on plant type, leaf area index, photosynthetically active radiation, and leaf temperature. Dust emissions and deposition are being developed to implement a fully coupled dust cycle in CCSM, including the radiative effects of dust and carbon feedbacks related to fertilization of ocean and terrestrial ecosystems. Dust mobilization depends on surface wind speed, soil moisture, plant cover, and soil texture. Dust dry deposition processes include sedimentation and turbulent mix-out. A major research focus is how natural and human-mediated changes in land cover and ecosystem functions alter surface energy fluxes, the hydrological cycle, and biogeochemical cycles. Human land uses include conversion of natural vegetation to cropland, soil degradation, and urbanization. Climate feedbacks associated with natural changes in land cover are being assessed by developing and implementing a model of natural vegetation dynamics for use with the Community Land Model. Development of a marine ecosystem model is also underway. The ecosystem model is based on the global, mixed-layer marine ecosystem model of Moore et al., which includes parameterizations for such things as iron limitation and scavenging, zooplankton grazing, nitrogen fixation, calcification, and ballast-based remineralization. A series of experiments is being planned to assess the coupling of the ecology to the biogeochemistry, to adequately tune some of the model parameters that are poorly constrained by data, to explore new parameterizations and processes (e.g., riverine and atmospheric inputs of nutrients), and to conduct uncoupled application studies (e.g., deliberate carbon sequestration, retrospective historical simulations, iron-dust deposition response). Longer term plans include investigating biogeochemical processes in the coastal zone and how to incorporate these processes into a global ocean model, either through subgrid-scale parameterizations or model nesting. A Whole Atmosphere Community Climate Model(WACCM) is being developed. The vertical extent of the model is 150 km at present, but extension to 500 km is eventually expected. Interactive chemistry is being incorporated. This model will be used as the atmospheric component of CESM for some experiments. One expected application is the study of solar variability and its impact on climate variability in the troposphere and at the atmosphere, ocean, land interface. Preliminary results using some of these model components will be shown. A timeline for development and use of the models will be given.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015ESDD....6..819O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015ESDD....6..819O"><span>Coupled Climate-Economy-Biosphere (CoCEB) model - Part 1: Abatement share and investment in low-carbon technologies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ogutu, K. B. Z.; D'Andrea, F.; Ghil, M.; Nyandwi, C.; Manene, M. M.; Muthama, J. N.</p> <p>2015-04-01</p> <p>The Coupled Climate-Economy-Biosphere (CoCEB) model described herein takes an integrated assessment approach to simulating global change. By using an endogenous economic growth module with physical and human capital accumulation, this paper considers the sustainability of economic growth, as economic activity intensifies greenhouse gas emissions that in turn cause economic damage due to climate change. Different types of fossil fuels and different technologies produce different volumes of carbon dioxide in combustion. The shares of different fuels and their future evolution are not known. We assume that the dynamics of hydrocarbon-based energy share and their replacement with renewable energy sources in the global energy balance can be modeled into the 21st century by use of logistic functions. Various climate change mitigation policy measures are considered. While many integrated assessment models treat abatement costs merely as an unproductive loss of income, we consider abatement activities also as an investment in overall energy efficiency of the economy and decrease of overall carbon intensity of the energy system. The paper shows that these efforts help to reduce the volume of industrial carbon dioxide emissions, lower temperature deviations, and lead to positive effects in economic growth.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014ClDy...42.1425M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014ClDy...42.1425M"><span>Global seasonal climate predictability in a two tiered forecast system: part I: boreal summer and fall seasons</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Misra, Vasubandhu; Li, H.; Wu, Z.; DiNapoli, S.</p> <p>2014-03-01</p> <p>This paper shows demonstrable improvement in the global seasonal climate predictability of boreal summer (at zero lead) and fall (at one season lead) seasonal mean precipitation and surface temperature from a two-tiered seasonal hindcast forced with forecasted SST relative to two other contemporary operational coupled ocean-atmosphere climate models. The results from an extensive set of seasonal hindcasts are analyzed to come to this conclusion. This improvement is attributed to: (1) The multi-model bias corrected SST used to force the atmospheric model. (2) The global atmospheric model which is run at a relatively high resolution of 50 km grid resolution compared to the two other coupled ocean-atmosphere models. (3) The physics of the atmospheric model, especially that related to the convective parameterization scheme. The results of the seasonal hindcast are analyzed for both deterministic and probabilistic skill. The probabilistic skill analysis shows that significant forecast skill can be harvested from these seasonal hindcasts relative to the deterministic skill analysis. The paper concludes that the coupled ocean-atmosphere seasonal hindcasts have reached a reasonable fidelity to exploit their SST anomaly forecasts to force such relatively higher resolution two tier prediction experiments to glean further boreal summer and fall seasonal prediction skill.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRD..12212982G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRD..12212982G"><span>Regional Responses to Black Carbon Aerosols: The Importance of Air-Sea Interaction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gnanadesikan, A.; Scott, A. A.; Pradal, M.-A.; Seviour, W. J. M.; Waugh, D. W.</p> <p>2017-12-01</p> <p>The impact of modern black carbon aerosols on climate via their changes in radiative balance is studied using a coupled model where sea surface temperatures (SSTs) are allowed to vary and an atmosphere-only version of the same model where SSTs are held fixed. Allowing the ocean to respond is shown to have a profound impact on the pattern of temperature change. Particularly, large impacts are found in the North Pacific (which cools by up to 1 K in the coupled model) and in north central Asia (which warms in the coupled simulation and cools in the fixed SST simulation). Neither set of experiments shows large changes in surface temperatures in the Southeast Asian region where the atmospheric burden of black carbon is highest. These results are related to the stabilization of the atmosphere and changes in oceanic heat transport. Over the North Pacific, atmospheric stabilization results in an increase in stratiform clouds. The resulting shading reduces evaporation, freshening the surface layer of the ocean and reducing the inflow of warm subtropical waters. Over the land, a delicate balance between greater atmospheric absorption, shading of the surface and changes in latent cooling of the surface helps to determine whether warming or cooling is seen. Our results emphasize the importance of coupling in determining the response of the climate system to black carbon and suggest that black carbon may play an important role in modulating climate change over the North Pacific.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC24A..02T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC24A..02T"><span>Assessing the impact of model and climate uncertainty in malaria simulations for the Kenyan Highlands.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tompkins, A. M.; Thomson, M. C.</p> <p>2017-12-01</p> <p>Simulations of the impact of climate variations on a vector-bornedisease such as malaria are subject to a number of sources ofuncertainty. These include the model structure and parameter settingsin addition to errors in the climate data and the neglect of theirspatial heterogeneity, especially over complex terrain. We use aconstrained genetic algorithm to confront these two sources ofuncertainty for malaria transmission in the highlands of Kenya. Thetechnique calibrates the parameter settings of a process-based,mathematical model of malaria transmission to vary within theirassessed level of uncertainty and also allows the calibration of thedriving climate data. The simulations show that in highland settingsclose to the threshold for sustained transmission, the uncertainty inclimate is more important to address than the malaria modeluncertainty. Applications of the coupled climate-malaria modelling system are briefly presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27854068','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27854068"><span>Fisheries regulatory regimes and resilience to climate change.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ojea, Elena; Pearlman, Isaac; Gaines, Steven D; Lester, Sarah E</p> <p>2017-05-01</p> <p>Climate change is already producing ecological, social, and economic impacts on fisheries, and these effects are expected to increase in frequency and magnitude in the future. Fisheries governance and regulations can alter socio-ecological resilience to climate change impacts via harvest control rules and incentives driving fisher behavior, yet there are no syntheses or conceptual frameworks for examining how institutions and their regulatory approaches can alter fisheries resilience to climate change. We identify nine key climate resilience criteria for fisheries socio-ecological systems (SES), defining resilience as the ability of the coupled system of interacting social and ecological components (i.e., the SES) to absorb change while avoiding transformation into a different undesirable state. We then evaluate the capacity of four fisheries regulatory systems that vary in their degree of property rights, including open access, limited entry, and two types of rights-based management, to increase or inhibit resilience. Our exploratory assessment of evidence in the literature suggests that these regulatory regimes vary widely in their ability to promote resilient fisheries, with rights-based approaches appearing to offer more resilience benefits in many cases, but detailed characteristics of the regulatory instruments are fundamental.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003AGUFM.U31A..04R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003AGUFM.U31A..04R"><span>Climate Change, Air Pollution, and the Economics of Health Impacts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Reilly, J.; Yang, T.; Paltsev, S.; Wang, C.; Prinn, R.; Sarofim, M.</p> <p>2003-12-01</p> <p>Climate change and air pollution are intricately linked. The distinction between greenhouse substances and other air pollutants is resolved at least for the time being in the context of international negotiations on climate policy through the identification of CO2, CH4, N2O, SF6 and the per- and hydro- fluorocarbons as substances targeted for control. Many of the traditional air pollutant emissions including for example CO, NMVOCs, NOx, SO2, aerosols, and NH3 also directly or indirectly affect the radiative balance of the atmosphere. Among both sets of gases are precursors of and contributors to pollutants such as tropopospheric ozone, itself a strong greenhouse gas, particulate matter, and other pollutants that affect human health. Fossil fuel combustion, production, or transportation is a significant source for many of these substances. Climate policy can thus affect traditional air pollution or air pollution policy can affect climate. Health effects of acute or chronic exposure to air pollution include increased asthma, lung cancer, heart disease and bronchitis among others. These, in turn, redirect resources in the economy toward medical expenditures or result in lost labor or non-labor time with consequent effects on economic activity, itself producing a potential feedback on emissions levels. Study of these effects ultimately requires a fully coupled earth system model. Toward that end we develop an approach for introducing air pollution health impacts into the Emissions Prediction and Policy Analysis (EPPA) model, a component of the MIT Integrated Global Systems Model (IGSM) a coupled economics-chemistry-atmosphere-ocean-terrestrial biosphere model of earth systems including an air pollution model resolving the urban scale. This preliminary examination allows us to consider how climate policy affects air pollution and consequent health effects, and to study the potential impacts of air pollution policy on climate. The novel contribution is the effort to endogenize air pollution impacts within the EPPA model, allowing us to study potential economic effects and feedbacks. We find strong interaction between air pollution and economies, although precise estimates of the effects require further investigation and refined resolution of the urban scale chemistry model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1182883-simple-object-oriented-open-source-model-scientific-policy-analyses-global-climate-system-hector-v1','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1182883-simple-object-oriented-open-source-model-scientific-policy-analyses-global-climate-system-hector-v1"><span>A simple object-oriented and open-source model for scientific and policy analyses of the global climate system – Hector v1.0</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Hartin, Corinne A.; Patel, Pralit L.; Schwarber, Adria; ...</p> <p>2015-04-01</p> <p>Simple climate models play an integral role in the policy and scientific communities. They are used for climate mitigation scenarios within integrated assessment models, complex climate model emulation, and uncertainty analyses. Here we describe Hector v1.0, an open source, object-oriented, simple global climate carbon-cycle model. This model runs essentially instantaneously while still representing the most critical global-scale earth system processes. Hector has a three-part main carbon cycle: a one-pool atmosphere, land, and ocean. The model's terrestrial carbon cycle includes primary production and respiration fluxes, accommodating arbitrary geographic divisions into, e.g., ecological biomes or political units. Hector actively solves the inorganicmore » carbon system in the surface ocean, directly calculating air–sea fluxes of carbon and ocean pH. Hector reproduces the global historical trends of atmospheric [CO 2], radiative forcing, and surface temperatures. The model simulates all four Representative Concentration Pathways (RCPs) with equivalent rates of change of key variables over time compared to current observations, MAGICC (a well-known simple climate model), and models from the 5th Coupled Model Intercomparison Project. Hector's flexibility, open-source nature, and modular design will facilitate a broad range of research in various areas.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1306153-future-changes-regional-precipitation-simulated-half-degree-coupled-climate-model-sensitivity-horizontal-resolution','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1306153-future-changes-regional-precipitation-simulated-half-degree-coupled-climate-model-sensitivity-horizontal-resolution"><span>Future changes in regional precipitation simulated by a half-degree coupled climate model: Sensitivity to horizontal resolution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Shields, Christine A.; Kiehl, Jeffrey T.; Meehl, Gerald A.</p> <p>2016-06-02</p> <p>The global fully coupled half-degree Community Climate System Model Version 4 (CCSM4) was integrated for a suite of climate change ensemble simulations including five historical runs, five Representative Concentration Pathway 8.5 [RCP8.5) runs, and a long Pre-Industrial control run. This study focuses on precipitation at regional scales and its sensitivity to horizontal resolution. The half-degree historical CCSM4 simulations are compared to observations, where relevant, and to the standard 1° CCSM4. Both the halfdegree and 1° resolutions are coupled to a nominal 1° ocean. North American and South Asian/Indian monsoon regimes are highlighted because these regimes demonstrate improvements due to highermore » resolution, primarily because of better-resolved topography. Agriculturally sensitive areas are analyzed and include Southwest, Central, and Southeast U.S., Southern Europe, and Australia. Both mean and extreme precipitation is discussed for convective and large-scale precipitation processes. Convective precipitation tends to decrease with increasing resolution and large-scale precipitation tends to increase. Improvements for the half-degree agricultural regions can be found for mean and extreme precipitation in the Southeast U.S., Southern Europe, and Australian regions. Climate change responses differ between the model resolutions for the U.S. Southwest/Central regions and are seasonally dependent in the Southeast and Australian regions. Both resolutions project a clear drying signal across Southern Europe due to increased greenhouse warming. As a result, differences between resolutions tied to the representation of convective and large-scale precipitation play an important role in the character of the climate change and depend on regional influences.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018BGeo...15.1947G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018BGeo...15.1947G"><span>Plant functional diversity affects climate-vegetation interaction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Groner, Vivienne P.; Raddatz, Thomas; Reick, Christian H.; Claussen, Martin</p> <p>2018-04-01</p> <p>We present how variations in plant functional diversity affect climate-vegetation interaction towards the end of the African Humid Period (AHP) in coupled land-atmosphere simulations using the Max Planck Institute Earth system model (MPI-ESM). In experiments with AHP boundary conditions, the extent of the <q>green</q> Sahara varies considerably with changes in plant functional diversity. Differences in vegetation cover extent and plant functional type (PFT) composition translate into significantly different land surface parameters, water cycling, and surface energy budgets. These changes have not only regional consequences but considerably alter large-scale atmospheric circulation patterns and the position of the tropical rain belt. Towards the end of the AHP, simulations with the standard PFT set in MPI-ESM depict a gradual decrease of precipitation and vegetation cover over time, while simulations with modified PFT composition show either a sharp decline of both variables or an even slower retreat. Thus, not the quantitative but the qualitative PFT composition determines climate-vegetation interaction and the climate-vegetation system response to external forcing. The sensitivity of simulated system states to changes in PFT composition raises the question how realistically Earth system models can actually represent climate-vegetation interaction, considering the poor representation of plant diversity in the current generation of land surface models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GMD....10.3715V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GMD....10.3715V"><span>The BRIDGE HadCM3 family of climate models: HadCM3@Bristol v1.0</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Valdes, Paul J.; Armstrong, Edward; Badger, Marcus P. S.; Bradshaw, Catherine D.; Bragg, Fran; Crucifix, Michel; Davies-Barnard, Taraka; Day, Jonathan J.; Farnsworth, Alex; Gordon, Chris; Hopcroft, Peter O.; Kennedy, Alan T.; Lord, Natalie S.; Lunt, Dan J.; Marzocchi, Alice; Parry, Louise M.; Pope, Vicky; Roberts, William H. G.; Stone, Emma J.; Tourte, Gregory J. L.; Williams, Jonny H. T.</p> <p>2017-10-01</p> <p>Understanding natural and anthropogenic climate change processes involves using computational models that represent the main components of the Earth system: the atmosphere, ocean, sea ice, and land surface. These models have become increasingly computationally expensive as resolution is increased and more complex process representations are included. However, to gain robust insight into how climate may respond to a given forcing, and to meaningfully quantify the associated uncertainty, it is often required to use either or both ensemble approaches and very long integrations. For this reason, more computationally efficient models can be very valuable tools. Here we provide a comprehensive overview of the suite of climate models based around the HadCM3 coupled general circulation model. This model was developed at the UK Met Office and has been heavily used during the last 15 years for a range of future (and past) climate change studies, but has now been largely superseded for many scientific studies by more recently developed models. However, it continues to be extensively used by various institutions, including the BRIDGE (Bristol Research Initiative for the Dynamic Global Environment) research group at the University of Bristol, who have made modest adaptations to the base HadCM3 model over time. These adaptations mean that the original documentation is not entirely representative, and several other relatively undocumented configurations are in use. We therefore describe the key features of a number of configurations of the HadCM3 climate model family, which together make up HadCM3@Bristol version 1.0. In order to differentiate variants that have undergone development at BRIDGE, we have introduced the letter B into the model nomenclature. We include descriptions of the atmosphere-only model (HadAM3B), the coupled model with a low-resolution ocean (HadCM3BL), the high-resolution atmosphere-only model (HadAM3BH), and the regional model (HadRM3B). These also include three versions of the land surface scheme. By comparing with observational datasets, we show that these models produce a good representation of many aspects of the climate system, including the land and sea surface temperatures, precipitation, ocean circulation, and vegetation. This evaluation, combined with the relatively fast computational speed (up to 1000 times faster than some CMIP6 models), motivates continued development and scientific use of the HadCM3B family of coupled climate models, predominantly for quantifying uncertainty and for long multi-millennial-scale simulations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A13C2084E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A13C2084E"><span>The Strength of Cloud Feedbacks and the Structure of Tropical Climate Change - A CESM Sensitivity Study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Erfani, E.; Burls, N.</p> <p>2017-12-01</p> <p>The nature of local coupled ocean-atmosphere interactions within the tropics is determined by background conditions such as the depth of the equatorial thermocline, the water vapor content of the tropical atmosphere, and the radiative forcing of tropical clouds. These factors are set not only by the coupled tropical variability itself but also by extra-tropical conditions. For example, the strength of the cold tongue is ultimately controlled by the temperature of waters subducted in the extra-tropics and transported to the equator by the ocean subtropical cells (STCs). Similarly, inter-hemispheric asymmetries in extra-tropical atmospheric heating are communicated to the tropics affecting cross-equatorial heat transport and ITCZ position. Acknowledging from a fully coupled perspective the influence of both tropical and extra-tropical conditions, we are performing a suite of CESM experiments across which we systematically alter the strength of convective and stratus cloud feedbacks. By systematically exploring the sensitivity of the tropical coupled system to imposed changes in the strength of tropical and extra-tropical cloud feedbacks to CO2-induced warming this work aims to formalize our understanding of cloud controls on tropical climate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013GeoRL..40..651F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013GeoRL..40..651F"><span>Biogeochemical carbon coupling influences global precipitation in geoengineering experiments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fyfe, J. C.; Cole, J. N. S.; Arora, V. K.; Scinocca, J. F.</p> <p>2013-02-01</p> <p><title type="main">Abstract Climate model studies in which CO2-induced global warming is offset by engineered decreases of incoming solar radiation are generally robust in their prediction of reduced amounts of global precipitation. While this precipitation response has been explained on the basis of changes in net radiation controlling evaporative processes at the surface, there has been relatively little consideration of the relative role of biogeochemical carbon-cycle interactions. To address this issue, we employ an Earth System Model that includes oceanic and terrestrial carbon components to isolate the impact of biogeochemical carbon coupling on the precipitation response in geoengineering experiments for two types of solar radiation management. We show that carbon coupling is responsible for a large fraction of the global precipitation reduction in such geoengineering experiments and that the primary effect comes from reduced transpiration through the leaves of plants and trees in the terrestrial component of the carbon cycle due to elevated CO2. Our results suggest that biogeochemical interactions are as important as changes in net radiation and that climate models that do not account for such carbon coupling may significantly underestimate precipitation reductions in a geoengineered world.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/964360-carbon-land-model-intercomparison-project-lamp-model-data-comparison-system-evaluation-coupled-biosphere-atmosphere-models','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/964360-carbon-land-model-intercomparison-project-lamp-model-data-comparison-system-evaluation-coupled-biosphere-atmosphere-models"><span>The Carbon-Land Model Intercomparison Project (C-LAMP): A Model-Data Comparison System for Evaluation of Coupled Biosphere-Atmosphere Models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Hoffman, Forrest M; Randerson, Jim; Thornton, Peter E</p> <p>2009-01-01</p> <p>The need to capture important climate feebacks in general circulation models (GCMs) has resulted in new efforts to include atmospheric chemistry and land and ocean biogeochemistry into the next generation of production climate models, now often referred to as Earth System Models (ESMs). While many terrestrial and ocean carbon models have been coupled to GCMs, recent work has shown that such models can yield a wide range of results, suggesting that a more rigorous set of offline and partially coupled experiments, along with detailed analyses of processes and comparisons with measurements, are warranted. The Carbon-Land Model Intercomparison Project (C-LAMP) providesmore » a simulation protocol and model performance metrics based upon comparisons against best-available satellite- and ground-based measurements (Hoffman et al., 2007). C-LAMP provides feedback to the modeling community regarding model improvements and to the measurement community by suggesting new observational campaigns. C-LAMP Experiment 1 consists of a set of uncoupled simulations of terrestrial carbon models specifically designed to examine the ability of the models to reproduce surface carbon and energy fluxes at multiple sites and to exhibit the influence of climate variability, prescribed atmospheric carbon dioxide (CO{sub 2}), nitrogen (N) deposition, and land cover change on projections of terrestrial carbon fluxes during the 20th century. Experiment 2 consists of partially coupled simulations of the terrestrial carbon model with an active atmosphere model exchanging energy and moisture fluxes. In all experiments, atmospheric CO{sub 2} follows the prescribed historical trajectory from C{sup 4}MIP. In Experiment 2, the atmosphere model is forced with prescribed sea surface temperatures (SSTs) and corresponding sea ice concentrations from the Hadley Centre; prescribed CO{sub 2} is radiatively active; and land, fossil fuel, and ocean CO{sub 2} fluxes are advected by the model. Both sets of experiments have been performed using two different terrestrial biogeochemistry modules coupled to the Community Land Model version 3 (CLM3) in the Community Climate System Model version 3 (CCSM3): The CASA model of Fung, et al., and the carbon-nitrogen (CN) model of Thornton. Comparisons against Ameriflus site measurements, MODIS satellite observations, NOAA flask records, TRANSCOM inversions, and Free Air CO{sub 2} Enrichment (FACE) site measurements, and other datasets have been performed and are described in Randerson et al. (2009). The C-LAMP diagnostics package was used to validate improvements to CASA and CN for use in the next generation model, CLM4. It is hoped that this effort will serve as a prototype for an international carbon-cycle model benchmarking activity for models being used for the Inter-governmental Panel on Climate Change (IPCC) Fifth Assessment Report. More information about C-LAMP, the experimental protocol, performance metrics, output standards, and model-data comparisons from the CLM3-CASA and CLM3-CN models are available at http://www.climatemodeling.org/c-lamp.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.9723G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.9723G"><span>The InterFrost benchmark of Thermo-Hydraulic codes for cold regions hydrology - first inter-comparison results</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Grenier, Christophe; Roux, Nicolas; Anbergen, Hauke; Collier, Nathaniel; Costard, Francois; Ferrry, Michel; Frampton, Andrew; Frederick, Jennifer; Holmen, Johan; Jost, Anne; Kokh, Samuel; Kurylyk, Barret; McKenzie, Jeffrey; Molson, John; Orgogozo, Laurent; Rivière, Agnès; Rühaak, Wolfram; Selroos, Jan-Olof; Therrien, René; Vidstrand, Patrik</p> <p>2015-04-01</p> <p>The impacts of climate change in boreal regions has received considerable attention recently due to the warming trends that have been experienced in recent decades and are expected to intensify in the future. Large portions of these regions, corresponding to permafrost areas, are covered by water bodies (lakes, rivers) that interact with the surrounding permafrost. For example, the thermal state of the surrounding soil influences the energy and water budget of the surface water bodies. Also, these water bodies generate taliks (unfrozen zones below) that disturb the thermal regimes of permafrost and may play a key role in the context of climate change. Recent field studies and modeling exercises indicate that a fully coupled 2D or 3D Thermo-Hydraulic (TH) approach is required to understand and model the past and future evolution of landscapes, rivers, lakes and associated groundwater systems in a changing climate. However, there is presently a paucity of 3D numerical studies of permafrost thaw and associated hydrological changes, and the lack of study can be partly attributed to the difficulty in verifying multi-dimensional results produced by numerical models. Numerical approaches can only be validated against analytical solutions for a purely thermic 1D equation with phase change (e.g. Neumann, Lunardini). When it comes to the coupled TH system (coupling two highly non-linear equations), the only possible approach is to compare the results from different codes to provided test cases and/or to have controlled experiments for validation. Such inter-code comparisons can propel discussions to try to improve code performances. A benchmark exercise was initialized in 2014 with a kick-off meeting in Paris in November. Participants from USA, Canada, Germany, Sweden and France convened, representing altogether 13 simulation codes. The benchmark exercises consist of several test cases inspired by existing literature (e.g. McKenzie et al., 2007) as well as new ones. They range from simpler, purely thermal cases (benchmark T1) to more complex, coupled 2D TH cases (benchmarks TH1, TH2, and TH3). Some experimental cases conducted in cold room complement the validation approach. A web site hosted by LSCE (Laboratoire des Sciences du Climat et de l'Environnement) is an interaction platform for the participants and hosts the test cases database at the following address: https://wiki.lsce.ipsl.fr/interfrost. The results of the first stage of the benchmark exercise will be presented. We will mainly focus on the inter-comparison of participant results for the coupled cases (TH1, TH2 & TH3). Further perspectives of the exercise will also be presented. Extensions to more complex physical conditions (e.g. unsaturated conditions and geometrical deformations) are contemplated. In addition, 1D vertical cases of interest to the Climate Modeling community will be proposed. Keywords: Permafrost; Numerical modeling; River-soil interaction; Arctic systems; soil freeze-thaw</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.H31J..03H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.H31J..03H"><span>Quantifying Impacts of Land-use and Land Cover Change in a Changing Climate at the Regional Scale using an Integrated Earth System Modeling Approach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Huang, M.</p> <p>2016-12-01</p> <p>Earth System models (ESMs) are effective tools for investigating the water-energy-food system interactions under climate change. In this presentation, I will introduce research efforts at the Pacific Northwest National Laboratory towards quantifying impacts of LULCC on the water-energy-food nexus in a changing climate using an integrated regional Earth system modeling framework: the Platform for Regional Integrated Modeling and Analysis (PRIMA). Two studies will be discussed to showcase the capability of PRIMA: (1) quantifying changes in terrestrial hydrology over the Conterminous US (CONUS) from 2005 to 2095 using the Community Land Model (CLM) driven by high-resolution downscaled climate and land cover products from PRIMA, which was designed for assessing the impacts of and potential responses to climate and anthropogenic changes at regional scales; (2) applying CLM over the CONUS to provide the first county-scale model validation in simulating crop yields and assessing associated impacts on the water and energy budgets using CLM. The studies demonstrate the benefits of incorporating and coupling human activities into complex ESMs, and critical needs to account for the biogeophysical and biogeochemical effects of LULCC in climate impacts studies, and in designing mitigation and adaptation strategies at a scale meaningful for decision-making. Future directions in quantifying LULCC impacts on the water-energy-food nexus under a changing climate, as well as feedbacks among climate, energy production and consumption, and natural/managed ecosystems using an Integrated Multi-scale, Multi-sector Modeling framework will also be discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ApJ...835L...1W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ApJ...835L...1W"><span>Effects of Variable Eccentricity on the Climate of an Earth-like World</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Way, M. J.; Georgakarakos, Nikolaos</p> <p>2017-01-01</p> <p>The Kepler era of exoplanetary discovery has presented the astronomical community with a cornucopia of planetary systems that are very different from the one that we inhabit. It has long been known that Jupiter plays a major role in the orbital parameters of Mars and its climate, but there is also a long-standing belief that Jupiter would play a similar role for Earth if not for the Moon. Using a three-dimensional general circulation model (3D GCM) with a fully coupled ocean, we simulate what would happen to the climate of an Earth-like world if Mars did not exist, but a Jupiter-like planet was much closer to Earth’s orbit. We investigate two scenarios that involve the evolution of the Earth-like planet’s orbital eccentricity from 0 to 0.283 over 6500 years, and from 0 to 0.066 on a timescale of 4500 years. In both cases we discover that they would maintain relatively temperate climates over the timescales simulated. More Earth-like planets in multi-planet systems will be discovered as we continue to survey the skies and the results herein show that the proximity of large gas giant planets may play an important role in the habitability of these worlds. These are the first such 3D GCM simulations using a fully coupled ocean with a planetary orbit that evolves over time due to the presence of a giant planet.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016RvGeo..54....5B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016RvGeo..54....5B"><span>Observations, inferences, and mechanisms of the Atlantic Meridional Overturning Circulation: A review</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Buckley, Martha W.; Marshall, John</p> <p>2016-03-01</p> <p>This is a review about the Atlantic Meridional Overturning Circulation (AMOC), its mean structure, temporal variability, controlling mechanisms, and role in the coupled climate system. The AMOC plays a central role in climate through its heat and freshwater transports. Northward ocean heat transport achieved by the AMOC is responsible for the relative warmth of the Northern Hemisphere compared to the Southern Hemisphere and is thought to play a role in setting the mean position of the Intertropical Convergence Zone north of the equator. The AMOC is a key means by which heat anomalies are sequestered into the ocean's interior and thus modulates the trajectory of climate change. Fluctuations in the AMOC have been linked to low-frequency variability of Atlantic sea surface temperatures with a host of implications for climate variability over surrounding landmasses. On intra-annual timescales, variability in AMOC is large and primarily reflects the response to local wind forcing; meridional coherence of anomalies is limited to that of the wind field. On interannual to decadal timescales, AMOC changes are primarily geostrophic and related to buoyancy anomalies on the western boundary. A pacemaker region for decadal AMOC changes is located in a western "transition zone" along the boundary between the subtropical and subpolar gyres. Decadal AMOC anomalies are communicated meridionally from this region. AMOC observations, as well as the expanded ocean observational network provided by the Argo array and satellite altimetry, are inspiring efforts to develop decadal predictability systems using coupled atmosphere-ocean models initialized by ocean data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GBioC..32..551F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GBioC..32..551F"><span>Reversal of Increasing Tropical Ocean Hypoxia Trends With Sustained Climate Warming</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fu, Weiwei; Primeau, Francois; Keith Moore, J.; Lindsay, Keith; Randerson, James T.</p> <p>2018-04-01</p> <p>Dissolved oxygen (O2) is essential for the survival of marine animals. Climate change impacts on future oxygen distributions could modify species biogeography, trophic interactions, biodiversity, and biogeochemistry. The Coupled Model Intercomparison Project Phase 5 models predict a decreasing trend in marine O2 over the 21st century. Here we show that this increasing hypoxia trend reverses in the tropics after 2100 in the Community Earth System Model forced by atmospheric CO2 from the Representative Concentration Pathway 8.5 and Extended Concentration Pathway 8.5. In tropical intermediate waters between 200 and 1,000 m, the model predicts a steady decline of O2 and an expansion of oxygen minimum zones (OMZs) during the 21st century. By 2150, however, the trend reverses with oxygen concentration increasing and OMZ volume shrinking through 2300. A novel five-box model approach in conjunction with output from the full Earth system model is used to separate the contributions of biological and physical processes to the trends in tropical oxygen. The tropical O2 recovery is caused mainly by reductions in tropical biological export, coupled with a modest increase in ventilation after 2200. The time-evolving oxygen distribution impacts marine nitrogen cycling, with potentially important climate feedbacks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1235117-el-nino-southern-oscillation-frequency-cascade','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1235117-el-nino-southern-oscillation-frequency-cascade"><span>El Niño$-$Southern Oscillation frequency cascade</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Stuecker, Malte F.; Jin, Fei -Fei; Timmermann, Axel</p> <p>2015-10-19</p> <p>The El Niño$-$Southern Oscillation (ENSO) phenomenon, the most pronounced feature of internally generated climate variability, occurs on interannual timescales and impacts the global climate system through an interaction with the annual cycle. The tight coupling between ENSO and the annual cycle is particularly pronounced over the tropical Western Pacific. In this paper, we show that this nonlinear interaction results in a frequency cascade in the atmospheric circulation, which is characterized by deterministic high-frequency variability on near-annual and subannual timescales. Finally, through climate model experiments and observational analysis, it is documented that a substantial fraction of the anomalous Northwest Pacific anticyclonemore » variability, which is the main atmospheric link between ENSO and the East Asian Monsoon system, can be explained by these interactions and is thus deterministic and potentially predictable.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1235117-el-nino-southern-oscillation-frequency-cascade','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1235117-el-nino-southern-oscillation-frequency-cascade"><span>El Niño$-$Southern Oscillation frequency cascade</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Stuecker, Malte F.; Jin, Fei -Fei; Timmermann, Axel</p> <p></p> <p>The El Niño$-$Southern Oscillation (ENSO) phenomenon, the most pronounced feature of internally generated climate variability, occurs on interannual timescales and impacts the global climate system through an interaction with the annual cycle. The tight coupling between ENSO and the annual cycle is particularly pronounced over the tropical Western Pacific. In this paper, we show that this nonlinear interaction results in a frequency cascade in the atmospheric circulation, which is characterized by deterministic high-frequency variability on near-annual and subannual timescales. Finally, through climate model experiments and observational analysis, it is documented that a substantial fraction of the anomalous Northwest Pacific anticyclonemore » variability, which is the main atmospheric link between ENSO and the East Asian Monsoon system, can be explained by these interactions and is thus deterministic and potentially predictable.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AdG.....4....3H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AdG.....4....3H"><span>Agents, Bayes, and Climatic Risks - a modular modelling approach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Haas, A.; Jaeger, C.</p> <p>2005-08-01</p> <p>When insurance firms, energy companies, governments, NGOs, and other agents strive to manage climatic risks, it is by no way clear what the aggregate outcome should and will be. As a framework for investigating this subject, we present the LAGOM model family. It is based on modules depicting learning social agents. For managing climate risks, our agents use second order probabilities and update them by means of a Bayesian mechanism while differing in priors and risk aversion. The interactions between these modules and the aggregate outcomes of their actions are implemented using further modules. The software system is implemented as a series of parallel processes using the CIAMn approach. It is possible to couple modules irrespective of the language they are written in, the operating system under which they are run, and the physical location of the machine.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMGC12A..01E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMGC12A..01E"><span>The Emergence of Land Use as a Global Force in the Earth System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ellis, E. C.</p> <p>2015-12-01</p> <p>Human societies have emerged as a global force capable of transforming the biosphere, hydrosphere, lithosphere, atmosphere and climate. As a result, the long-term dynamics of the Earth system can no longer be understood or predicted without understanding their coupling with human societal dynamics. Here, a general causal theory is presented to explain why behaviorally modern humans, unlike any prior multicellular species, gained this unprecedented capacity to reshape the Earth system and how this societal capacity has changed from the Pleistocene to the present and future. Sociocultural niche construction theory, building on existing theories of ecosystem engineering, niche construction, the extended evolutionary synthesis, cultural evolution, ultrasociality and social change, can explain both the long-term upscaling of human societies and their unprecedented capacity to transform the Earth system. Regime shifts in human sociocultural niche construction, from the clearing of land using fire, to shifting cultivation, to intensive agriculture, to global food systems dependent on fossil fuel combustion, have enabled human societies to scale up while gaining the capacity to reshape the global patterns and processes of biogeography, ecosystems, landscapes, biomes, the biosphere, and ultimately the functioning of the Earth system. Just as Earth's geophysical climate system shapes the long-term dynamics of energy and material flow across the "spheres" of the Earth system, human societies, interacting at global scale to form "human systems", are increasingly shaping the global dynamics of energy, material, biotic and information flow across the spheres of the Earth system, including a newly emerged anthroposphere comprised of human societies and their material cultures. Human systems and the anthroposphere are strongly coupled with climate and other Earth systems and are dynamic in response to evolutionary changes in human social organization, cooperative ecosystem engineering, non-kin exchange relationships, and energy systems. It is hoped that intentional societal efforts to alter the dynamics of human systems can ultimately move Earth systems towards more beneficial and less detrimental outcomes for both human societies and nonhuman species.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1376038-documenting-climate-models-simulations','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1376038-documenting-climate-models-simulations"><span>Documenting Climate Models and Their Simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Guilyardi, Eric; Balaji, V.; Lawrence, Bryan; ...</p> <p>2013-05-01</p> <p>The results of climate models are of increasing and widespread importance. No longer is climate model output of sole interest to climate scientists and researchers in the climate change impacts and adaptation fields. Now nonspecialists such as government officials, policy makers, and the general public all have an increasing need to access climate model output and understand its implications. For this host of users, accurate and complete metadata (i.e., information about how and why the data were produced) is required to document the climate modeling results. We describe a pilot community initiative to collect and make available documentation of climatemore » models and their simulations. In an initial application, a metadata repository is being established to provide information of this kind for a major internationally coordinated modeling activity known as CMIP5 (Coupled Model Intercomparison Project, Phase 5). We expected that for a wide range of stakeholders, this and similar community-managed metadata repositories will spur development of analysis tools that facilitate discovery and exploitation of Earth system simulations.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1395035-ensemble-based-parameter-estimation-coupled-gcm-using-adaptive-spatial-average-method','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1395035-ensemble-based-parameter-estimation-coupled-gcm-using-adaptive-spatial-average-method"><span>Ensemble-Based Parameter Estimation in a Coupled GCM Using the Adaptive Spatial Average Method</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Liu, Y.; Liu, Z.; Zhang, S.; ...</p> <p>2014-05-29</p> <p>Ensemble-based parameter estimation for a climate model is emerging as an important topic in climate research. And for a complex system such as a coupled ocean–atmosphere general circulation model, the sensitivity and response of a model variable to a model parameter could vary spatially and temporally. An adaptive spatial average (ASA) algorithm is proposed to increase the efficiency of parameter estimation. Refined from a previous spatial average method, the ASA uses the ensemble spread as the criterion for selecting “good” values from the spatially varying posterior estimated parameter values; these good values are then averaged to give the final globalmore » uniform posterior parameter. In comparison with existing methods, the ASA parameter estimation has a superior performance: faster convergence and enhanced signal-to-noise ratio.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.A51E0117X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.A51E0117X"><span>Assess Climate Change's Impact on Coastal Rivers using a Coupled Climate-Hydrology Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xue, Z. G.; Gochis, D.; Yu, W.; Zang, Z.; Sampson, K. M.; Keim, B. D.</p> <p>2016-12-01</p> <p>In this study we present a coupled climate-hydrological model reproducing the water cycle of three coastal river basins along the northern Gulf of Mexico for the past three decades (1985-2014). Model simulated climate condition, surface physics, and streamflow were well validated against in situ data and satellite-derived products, giving us the confidence that the newly developed WRF-Hydro model can be a robust tool for evaluating climate change's impact on hydrological regime. Trend analysis of model simulated monthly and annual time series indicates that local climate is getting hotter and dryer, specifically during the growing season. Wavelet analysis reveals that local evapotranspiration is strongly correlated with temperature, while soil moisture, water surplus, and streamflow are coupled with precipitation. In addition, local climate is closely correlated with large-scale climate dynamics such as AMO and ENSO. A possible change-point is detected around year 2004, after which, the monthly precipitation decreased by 14.2%, evapotranspiration increased by 2.9%, and water surplus decreased by 36.5%. The implication of the difference between the water surplus (runoff) calculated using the classic Thornthwaite method and river discharge estimated using streamflow records to the coastal environment is also discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19087944','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19087944"><span>Decadal climate prediction (project GCEP).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Haines, Keith; Hermanson, Leon; Liu, Chunlei; Putt, Debbie; Sutton, Rowan; Iwi, Alan; Smith, Doug</p> <p>2009-03-13</p> <p>Decadal prediction uses climate models forced by changing greenhouse gases, as in the International Panel for Climate Change, but unlike longer range predictions they also require initialization with observations of the current climate. In particular, the upper-ocean heat content and circulation have a critical influence. Decadal prediction is still in its infancy and there is an urgent need to understand the important processes that determine predictability on these timescales. We have taken the first Hadley Centre Decadal Prediction System (DePreSys) and implemented it on several NERC institute compute clusters in order to study a wider range of initial condition impacts on decadal forecasting, eventually including the state of the land and cryosphere. The eScience methods are used to manage submission and output from the many ensemble model runs required to assess predictive skill. Early results suggest initial condition skill may extend for several years, even over land areas, but this depends sensitively on the definition used to measure skill, and alternatives are presented. The Grid for Coupled Ensemble Prediction (GCEP) system will allow the UK academic community to contribute to international experiments being planned to explore decadal climate predictability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018QSRv..182...37F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018QSRv..182...37F"><span>The changing role of fire in conifer-dominated temperate rainforest through the last 14,000 years</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fletcher, M.-S.; Bowman, D. M. J. S.; Whitlock, C.; Mariani, M.; Stahle, L.</p> <p>2018-02-01</p> <p>Climate, fire and vegetation dynamics are often tightly coupled through time. Here, we use a 14 kyr sedimentary charcoal and pollen record from Lake Osborne, Tasmania, Australia, to explore how this relationship changes under varying climatic regimes within a temperate rainforest ecosystem. Superposed epoch analysis reveals a significant relationship between fire and vegetation change throughout the Holocene at our site. Our data indicates an initial resilience of the rainforest system to fire under a stable cool and humid climate regime between ca. 12-6 ka. In contrast, fires that occurred after 6 ka, under an increasingly variable climate regime wrought by the onset of the El Niño-Southern Oscillation (ENSO), resulted in a series of changes within the local rainforest vegetation that culminated in the replacement of rainforest by fire-promoted Eucalypt forest. We suggest that an increasingly variable ENSO-influenced climate regime inhibited rainforest recovery from fire because of slower growth, reduced fecundity and increased fire frequency, thus contributing to the eventual collapse of the rainforest system.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1393746-vulnerability-us-thermoelectric-power-generation-climate-change-when-incorporating-state-level-environmental-regulations','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1393746-vulnerability-us-thermoelectric-power-generation-climate-change-when-incorporating-state-level-environmental-regulations"><span>Vulnerability of US thermoelectric power generation to climate change when incorporating state-level environmental regulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Liu, Lu; Hejazi, Mohamad; Li, Hongyi</p> <p></p> <p>This study explores the interactions between climate and thermoelectric generation in the U.S. by coupling an Earth System Model with a thermoelectric power generation model. We validated model simulations of power production for selected power plants (~44% of existing thermoelectric capacity) against reported values. In addition, we projected future usable capacity for existing power plants under two different climate change scenarios. Results indicate that climate change alone may reduce average thermoelectric generating capacity by 2%-3% by the 2060s. Reductions up to 12% are expected if environmental requirements are enforced without waivers for thermal variation. This study concludes that the impactmore » of climate change on the U.S. thermoelectric power system is less than previous estimates due to an inclusion of a spatially-disaggregated representation of environmental regulations and provisional variances that temporarily relieve power plants from permit requirements. This work highlights the significance of accounting for legal constructs in which the operation of power plants are managed, and underscores the effects of provisional variances in addition to environmental requirements.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.U32A..04S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.U32A..04S"><span>Socio-hydrologic Modeling to Understand and Mediate the Competition for Water between Humans and Ecosystems: Murrumbidgee River Basin, Australia (Invited)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sivapalan, M.</p> <p>2013-12-01</p> <p>Competition for water between humans and ecosystems is set to become a flash point in coming decades in all parts of the world. An entirely new and comprehensive quantitative framework is needed to establish a holistic understanding of that competition, thereby enabling development of effective mediation strategies. This paper presents a case study centered on the Murrumbidgee river basin in eastern Australia that illustrates the dynamics of the balance between water extraction and use for food production and efforts to mitigate and reverse consequent degradation of the riparian environment. Interactions between patterns of water management and climate driven hydrological variability within the prevailing socio-economic environment have contributed to the emergence of new whole system dynamics over the last 100 years. In particular, data analysis reveals a pendulum swing between an exclusive focus on agricultural development and food production in the initial stages of water resource development and its attendant socio-economic benefits, followed by the gradual realization of the adverse environmental impacts, efforts to mitigate these with the use of remedial measures, and ultimately concerted efforts and externally imposed solutions to restore environmental health and ecosystem services. A quasi-distributed coupled socio-hydrologic system model that explicitly includes the two-way coupling between human and hydrological systems, including evolution of human values/norms relating to water and the environment, is able to mimic broad features of this pendulum swing. The model consists of coupled nonlinear differential equations that include four state variables describing the co-evolution of storage capacity, irrigated area, human population, and ecosystem health. The model is used to generate insights into the dominant controls of the trajectory of co-evolution of the coupled human-water system, to serve as the theoretical framework for more detailed analysis of the system, and to generate organizing principles that may be transferable to other systems in different climatic and socio-economic settings.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28893985','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28893985"><span>Coupling of pollination services and coffee suitability under climate change.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Imbach, Pablo; Fung, Emily; Hannah, Lee; Navarro-Racines, Carlos E; Roubik, David W; Ricketts, Taylor H; Harvey, Celia A; Donatti, Camila I; Läderach, Peter; Locatelli, Bruno; Roehrdanz, Patrick R</p> <p>2017-09-26</p> <p>Climate change will cause geographic range shifts for pollinators and major crops, with global implications for food security and rural livelihoods. However, little is known about the potential for coupled impacts of climate change on pollinators and crops. Coffee production exemplifies this issue, because large losses in areas suitable for coffee production have been projected due to climate change and because coffee production is dependent on bee pollination. We modeled the potential distributions of coffee and coffee pollinators under current and future climates in Latin America to understand whether future coffee-suitable areas will also be suitable for pollinators. Our results suggest that coffee-suitable areas will be reduced 73-88% by 2050 across warming scenarios, a decline 46-76% greater than estimated by global assessments. Mean bee richness will decline 8-18% within future coffee-suitable areas, but all are predicted to contain at least 5 bee species, and 46-59% of future coffee-suitable areas will contain 10 or more species. In our models, coffee suitability and bee richness each increase (i.e., positive coupling) in 10-22% of future coffee-suitable areas. Diminished coffee suitability and bee richness (i.e., negative coupling), however, occur in 34-51% of other areas. Finally, in 31-33% of the future coffee distribution areas, bee richness decreases and coffee suitability increases. Assessing coupled effects of climate change on crop suitability and pollination can help target appropriate management practices, including forest conservation, shade adjustment, crop rotation, or status quo, in different regions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMOS22A..01C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMOS22A..01C"><span>Eastern Boundary Upwelling Ecosystems: Review and Observing Needs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chavez, F.; Garçon, V. C.; Dewitte, B.; Montes, I.</p> <p>2015-12-01</p> <p>Eastern Boundary Upwelling Systems (EBUS) cover less than 3% of the world ocean surface but play a significant role in the climate system, and contribute disproportionately to ocean biological productivity with up to 40% of the reported global fish catch. Coupled with the vast coastal human populations, these regions play key socio-economic roles. Human pressure on these productive ecosystems and their services is increasing, requiring new and evolving scientific approaches to collect information and use it in management. Here we review and compare the physical, chemical and biological characteristics of the four major EBUS: Benguela, California, Northwest Africa and Peru/Chile. Long-term trends and climate variability are emphasized. Technologies and systems for observing and understanding the changing marine ecosystems of EBUS are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013GMD.....6.2063M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013GMD.....6.2063M"><span>An integrated assessment modeling framework for uncertainty studies in global and regional climate change: the MIT IGSM-CAM (version 1.0)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Monier, E.; Scott, J. R.; Sokolov, A. P.; Forest, C. E.; Schlosser, C. A.</p> <p>2013-12-01</p> <p>This paper describes a computationally efficient framework for uncertainty studies in global and regional climate change. In this framework, the Massachusetts Institute of Technology (MIT) Integrated Global System Model (IGSM), an integrated assessment model that couples an Earth system model of intermediate complexity to a human activity model, is linked to the National Center for Atmospheric Research (NCAR) Community Atmosphere Model (CAM). Since the MIT IGSM-CAM framework (version 1.0) incorporates a human activity model, it is possible to analyze uncertainties in emissions resulting from both uncertainties in the underlying socio-economic characteristics of the economic model and in the choice of climate-related policies. Another major feature is the flexibility to vary key climate parameters controlling the climate system response to changes in greenhouse gases and aerosols concentrations, e.g., climate sensitivity, ocean heat uptake rate, and strength of the aerosol forcing. The IGSM-CAM is not only able to realistically simulate the present-day mean climate and the observed trends at the global and continental scale, but it also simulates ENSO variability with realistic time scales, seasonality and patterns of SST anomalies, albeit with stronger magnitudes than observed. The IGSM-CAM shares the same general strengths and limitations as the Coupled Model Intercomparison Project Phase 3 (CMIP3) models in simulating present-day annual mean surface temperature and precipitation. Over land, the IGSM-CAM shows similar biases to the NCAR Community Climate System Model (CCSM) version 3, which shares the same atmospheric model. This study also presents 21st century simulations based on two emissions scenarios (unconstrained scenario and stabilization scenario at 660 ppm CO2-equivalent) similar to, respectively, the Representative Concentration Pathways RCP8.5 and RCP4.5 scenarios, and three sets of climate parameters. Results of the simulations with the chosen climate parameters provide a good approximation for the median, and the 5th and 95th percentiles of the probability distribution of 21st century changes in global mean surface air temperature from previous work with the IGSM. Because the IGSM-CAM framework only considers one particular climate model, it cannot be used to assess the structural modeling uncertainty arising from differences in the parameterization suites of climate models. However, comparison of the IGSM-CAM projections with simulations of 31 CMIP5 models under the RCP4.5 and RCP8.5 scenarios show that the range of warming at the continental scale shows very good agreement between the two ensemble simulations, except over Antarctica, where the IGSM-CAM overestimates the warming. This demonstrates that by sampling the climate system response, the IGSM-CAM, even though it relies on one single climate model, can essentially reproduce the range of future continental warming simulated by more than 30 different models. Precipitation changes projected in the IGSM-CAM simulations and the CMIP5 multi-model ensemble both display a large uncertainty at the continental scale. The two ensemble simulations show good agreement over Asia and Europe. However, the ranges of precipitation changes do not overlap - but display similar size - over Africa and South America, two continents where models generally show little agreement in the sign of precipitation changes and where CCSM3 tends to be an outlier. Overall, the IGSM-CAM provides an efficient and consistent framework to explore the large uncertainty in future projections of global and regional climate change associated with uncertainty in the climate response and projected emissions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMGC22A..01N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMGC22A..01N"><span>Evaluating the Impacts of Climate Change on the Operations and Future Development of the U.S. Electricity System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Newmark, R. L.; Cohen, S. M.; Averyt, K.; Macknick, J.; Meldrum, J.; Sullivan, P.</p> <p>2014-12-01</p> <p>Climate change has the potential to exacerbate reliability concerns for the power sector through changes in water availability and air temperatures. The power sector is responsible for 41% of U.S. freshwater withdrawals, primarily for power plant cooling needs, and any changes in the water available for the power sector, given increasing competition among water users, could affect decisions about new power plant builds and reliable operations for existing generators. Similarly, increases in air temperatures can reduce power plant efficiencies, which in turn increases fuel consumption as well as water withdrawal and consumption rates. This analysis describes an initial link between climate, water, and electricity systems using the National Renewable Energy Laboratory's (NREL) Regional Energy Deployment System (ReEDS) electricity system capacity expansion model. Average surface water runoff projections from Coupled Model Intercomparison Project 5 (CMIP5) data are applied to surface water available to generating capacity in ReEDS, and electric sector growth is compared with and without climate-influenced water availability for the 134 electricity balancing regions in the ReEDS model. In addition, air temperature changes are considered for their impacts on electricity load, transmission capacity, and power plant efficiencies and water use rates. Mean climate projections have only a small impact on national or regional capacity growth and water use because most regions have sufficient unappropriated or previously retired water access to offset climate impacts. Climate impacts are notable in southwestern states, which experience reduced water access purchases and a greater share of water acquired from wastewater and other higher-cost water resources. The electric sector climate impacts demonstrated herein establish a methodology to be later exercised with more extreme climate scenarios and a more rigorous representation of legal and physical water availability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A44C..08M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A44C..08M"><span>The Role of Air-sea Coupling in the Response of Climate Extremes to Aerosols</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mahajan, S.</p> <p>2017-12-01</p> <p>Air-sea interactions dominate the climate of surrounding regions and thus also modulate the climate response to local and remote aerosol forcings. To clearly isolate the role of air-sea coupling in the climate response to aerosols, we conduct experiments with a full complexity atmosphere model that is coupled to a series of ocean models progressively increasing in complexity. The ocean models range from a data ocean model with prescribed SSTs, to a slab ocean model that only allows thermodynamic interactions, to a full dynamic ocean model. In a preliminary study, we have conducted single forcing experiments with black carbon aerosols in an atmosphere GCM coupled to a data ocean model and a slab ocean model. We find that while black carbon aerosols can intensify mean and extreme summer monsoonal precipitation over the Indian sub-continent, air-sea coupling can dramatically modulate this response. Black carbon aerosols in the vicinity of the Arabian Sea result in an increase of sea surface temperatures there in the slab ocean model, which intensify the low-level Somali Jet. The associated increase in moisture transport into Western India enhances the mean as well as extreme precipitation. In prescribed SST experiments, where SSTs are not allowed to respond BC aerosols, the response is muted. We will present results from a hierarchy of GCM simulations that investigate the role of air-sea coupling in the climate response to aerosols in more detail.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA556948','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA556948"><span>Development and Utilization of Regional Oceanic Modeling System (ROMS). Delicacy, Imprecision, and Uncertainty of Oceanic Simulations: An Investigation with the Regional Oceanic Modeling System (ROMS). Mixing in the Ocean Surface Layer Using the Regional Oceanic Modeling System (ROMS).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2011-09-30</p> <p>community use for ROMS is biogeochemisty: chemical cycles, water quality, blooms , micro-nutrients, larval dispersal, biome transitions, and coupling to...J.C. McWilliams, X. Capet, and J. Kurian, 2010: Heat balance and eddies in the Peru- Chile Current System. Climate Dynamics, 37, in press. doi10.1007</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1337245-how-soa-change-future-soa-future','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1337245-how-soa-change-future-soa-future"><span>How will SOA change in the future?: SOA IN THE FUTURE</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Lin, Guangxing; Penner, Joyce E.; Zhou, Cheng</p> <p>2016-02-17</p> <p>Secondary organic aerosol (SOA) plays a significant role in the Earth system by altering its radiative balance. Here we use an Earth system model coupled with an explicit SOA formation module to estimate the response of SOA concentrations to changes in climate, anthropogenic emissions, and human land use in the future. We find that climate change is the major driver for SOA change under the representative concentration pathways for the 8.5 future scenario. Climate change increases isoprene emission rate by 18% with the effect of temperature increases outweighing that of the CO2 inhibition effect. Annual mean global SOA mass ismore » increased by 25% as a result of climate change. However, anthropogenic emissions and land use change decrease SOA. The net effect is that future global SOA burden in 2100 is nearly the same as that of the present day. The SOA concentrations over the Northern Hemisphere are predicted to decline in the future due to the control of sulfur emissions.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC44B..04H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC44B..04H"><span>The Arctic-Subarctic Sea Ice System is Entering a Seasonal Regime: Implications for Future Arctic Amplication</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Haine, T. W. N.; Martin, T.</p> <p>2017-12-01</p> <p>The loss of Arctic sea ice is a conspicuous example of climate change. Climate models project ice-free conditions during summer this century under realistic emission scenarios, reflecting the increase in seasonality in ice cover. To quantify the increased seasonality in the Arctic-Subarctic sea ice system, we define a non-dimensional seasonality number for sea ice extent, area, and volume from satellite data and realistic coupled climate models. We show that the Arctic-Subarctic, i.e. the northern hemisphere, sea ice now exhibits similar levels of seasonality to the Antarctic, which is in a seasonal regime without significant change since satellite observations began in 1979. Realistic climate models suggest that this transition to the seasonal regime is being accompanied by a maximum in Arctic amplification, which is the faster warming of Arctic latitudes compared to the global mean, in the 2010s. The strong link points to a peak in sea-ice-related feedbacks that occurs long before the Arctic becomes ice-free in summer.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040082117','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040082117"><span>Observing Human-induced Linkages between Urbanization and Earth's Climate System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Shepherd, J. Marshall; Jin, Menglin</p> <p>2004-01-01</p> <p>Urbanization is one of the extreme cases of land use change. Most of world s population has moved to urban areas. Although currently only 1.2% of the land is considered urban, the spatial coverage and density of cities are expected to rapidly increase in the near future. It is estimated that by the year 2025, 60% of the world s population will live in cities. Human activity in urban environments also alters atmospheric composition; impacts components of the water cycle; and modifies the carbon cycle and ecosystems. However, our understanding of urbanization on the total Earth-climate system is incomplete. Better understanding of how the Earth s atmosphere-ocean-land-biosphere components interact as a coupled system and the influence of the urban environment on this climate system is critical. The goal of the 2003 AGU Union session Human-induced climate variations on urban areas: From observations to modeling was to bring together scientists from interdisciplinary backgrounds to discuss the data, scientific approaches and recent results on observing and modeling components of the urban environment with the intent of sampling our current stand and discussing future direction on this topic. Herein, a summary and discussion of the observations component of the session are presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.A33G0328S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.A33G0328S"><span>Windblown Dust and Air Quality Under a Changing Climate in the Pacific Northwest</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sharratt, B. S.; Tatarko, J.; Abatzoglou, J. T.; Fox, F.; Huggins, D. R.</p> <p>2016-12-01</p> <p>Wind erosion is a concern for sustainable agriculture and societal health in the US Pacific Northwest. Indeed, wind erosion continues to cause exceedances of the National Ambient Air Quality Standard for PM10 in the region. Can we expect air quality to deteriorate or improve as climate changes? Will wind erosion escalate in the future under a warmer and drier climate as forecast for Australia, southern prairies of Canada, northern China, and United States Corn Belt and Colorado Plateau? To answer these questions, we used 18 global climate models, cropping systems simulation model (CropSyst), and the Wind Erosion Prediction System (WEPS) to simulate the complex interactions among climate, crop production, and wind erosion. These simulations were carried out in eastern Washington where wind erosion of agricultural lands contribute to poor air quality in the region. Our results suggest that an increase in temperature and CO2 concentration, coupled with nominal increases in precipitation, will enhance biomass production and reduce soil and PM10 losses by the mid-21st century. This study reveals that climate change may reduce the risk of wind erosion and improve air quality in the Inland Pacific Northwest.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017BGeo...14.3051B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017BGeo...14.3051B"><span>Quantifying uncertainties of permafrost carbon-climate feedbacks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Burke, Eleanor J.; Ekici, Altug; Huang, Ye; Chadburn, Sarah E.; Huntingford, Chris; Ciais, Philippe; Friedlingstein, Pierre; Peng, Shushi; Krinner, Gerhard</p> <p>2017-06-01</p> <p>The land surface models JULES (Joint UK Land Environment Simulator, two versions) and ORCHIDEE-MICT (Organizing Carbon and Hydrology in Dynamic Ecosystems), each with a revised representation of permafrost carbon, were coupled to the Integrated Model Of Global Effects of climatic aNomalies (IMOGEN) intermediate-complexity climate and ocean carbon uptake model. IMOGEN calculates atmospheric carbon dioxide (CO2) and local monthly surface climate for a given emission scenario with the land-atmosphere CO2 flux exchange from either JULES or ORCHIDEE-MICT. These simulations include feedbacks associated with permafrost carbon changes in a warming world. Both IMOGEN-JULES and IMOGEN-ORCHIDEE-MICT were forced by historical and three alternative future-CO2-emission scenarios. Those simulations were performed for different climate sensitivities and regional climate change patterns based on 22 different Earth system models (ESMs) used for CMIP3 (phase 3 of the Coupled Model Intercomparison Project), allowing us to explore climate uncertainties in the context of permafrost carbon-climate feedbacks. Three future emission scenarios consistent with three representative concentration pathways were used: RCP2.6, RCP4.5 and RCP8.5. Paired simulations with and without frozen carbon processes were required to quantify the impact of the permafrost carbon feedback on climate change. The additional warming from the permafrost carbon feedback is between 0.2 and 12 % of the change in the global mean temperature (ΔT) by the year 2100 and 0.5 and 17 % of ΔT by 2300, with these ranges reflecting differences in land surface models, climate models and emissions pathway. As a percentage of ΔT, the permafrost carbon feedback has a greater impact on the low-emissions scenario (RCP2.6) than on the higher-emissions scenarios, suggesting that permafrost carbon should be taken into account when evaluating scenarios of heavy mitigation and stabilization. Structural differences between the land surface models (particularly the representation of the soil carbon decomposition) are found to be a larger source of uncertainties than differences in the climate response. Inertia in the permafrost carbon system means that the permafrost carbon response depends on the temporal trajectory of warming as well as the absolute amount of warming. We propose a new policy-relevant metric - the frozen carbon residence time (FCRt) in years - that can be derived from these complex land surface models and used to quantify the permafrost carbon response given any pathway of global temperature change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.7897M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.7897M"><span>Recent trends in energy flows through the Arctic climate system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mayer, Michael; Haimberger, Leo</p> <p>2016-04-01</p> <p>While Arctic climate change can be diagnosed in many parameters, a comprehensive assessment of long-term changes and low frequency variability in the coupled Arctic energy budget still remains challenging due to the complex physical processes involved and the lack of observations. Here we draw on strongly improved observational capabilities of the past 15 years and employ observed radiative fluxes from CERES along with state-of-the-art atmospheric as well as coupled ocean-ice reanalyses to explore recent changes in energy flows through the Arctic climate system. Various estimates of ice volume and ocean heat content trends imply that the energy imbalance of the Arctic climate system was >1 Wm-2 during the 2000-2015 period, where most of the extra heat warmed the ocean and a comparatively small fraction was used to melt sea ice. The energy imbalance was partly fed by enhanced oceanic heat transports into the Arctic, especially in the mid 2000s. Seasonal trends of net radiation show a very clear signal of the ice-albedo feedback. Stronger radiative energy input during summer means increased seasonal oceanic heat uptake and accelerated sea ice melt. In return, lower minimum sea ice extent and higher SSTs lead to enhanced heat release from the ocean during fall season. These results are consistent with modeling studies finding an enhancement of the annual cycle of surface energy exchanges in a warming Arctic. Moreover, stronger heat fluxes from the ocean to the atmosphere in fall tend to warm the arctic boundary layer and reduce meridional temperature gradients, thereby reducing atmospheric energy transports into the polar cap. Although the observed results are a robust finding, extended high-quality datasets are needed to reliably separate trends from low frequency variability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150000805','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150000805"><span>Development of the GEOS-5 Atmospheric General Circulation Model: Evolution from MERRA to MERRA2.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Molod, Andrea; Takacs, Lawrence; Suarez, Max; Bacmeister, Julio</p> <p>2014-01-01</p> <p>The Modern-Era Retrospective Analysis for Research and Applications-2 (MERRA2) version of the GEOS-5 (Goddard Earth Observing System Model - 5) Atmospheric General Circulation Model (AGCM) is currently in use in the NASA Global Modeling and Assimilation Office (GMAO) at a wide range of resolutions for a variety of applications. Details of the changes in parameterizations subsequent to the version in the original MERRA reanalysis are presented here. Results of a series of atmosphere-only sensitivity studies are shown to demonstrate changes in simulated climate associated with specific changes in physical parameterizations, and the impact of the newly implemented resolution-aware behavior on simulations at different resolutions is demonstrated. The GEOS-5 AGCM presented here is the model used as part of the GMAO's MERRA2 reanalysis, the global mesoscale "nature run", the real-time numerical weather prediction system, and for atmosphere-only, coupled ocean-atmosphere and coupled atmosphere-chemistry simulations. The seasonal mean climate of the MERRA2 version of the GEOS-5 AGCM represents a substantial improvement over the simulated climate of the MERRA version at all resolutions and for all applications. Fundamental improvements in simulated climate are associated with the increased re-evaporation of frozen precipitation and cloud condensate, resulting in a wetter atmosphere. Improvements in simulated climate are also shown to be attributable to changes in the background gravity wave drag, and to upgrades in the relationship between the ocean surface stress and the ocean roughness. The series of "resolution aware" parameters related to the moist physics were shown to result in improvements at higher resolutions, and result in AGCM simulations that exhibit seamless behavior across different resolutions and applications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.H53A1653R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.H53A1653R"><span>Multi-objective Optimization for the Robust Performance of Drinking Water Treatment Plants under Climate Change and Climate Extremes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Raseman, W. J.; Kasprzyk, J. R.; Rosario-Ortiz, F.; Summers, R. S.; Stewart, J.; Livneh, B.</p> <p>2016-12-01</p> <p>To promote public health, the United States Environmental Protection Agency (US EPA), and similar entities around the world enact strict laws to regulate drinking water quality. These laws, such as the Stage 1 and 2 Disinfectants and Disinfection Byproducts (D/DBP) Rules, come at a cost to water treatment plants (WTPs) which must alter their operations and designs to meet more stringent standards and the regulation of new contaminants of concern. Moreover, external factors such as changing influent water quality due to climate extremes and climate change, may force WTPs to adapt their treatment methods. To grapple with these issues, decision support systems (DSSs) have been developed to aid WTP operation and planning. However, there is a critical need to better address long-term decision making for WTPs. In this poster, we propose a DSS framework for WTPs for long-term planning, which improves upon the current treatment of deep uncertainties within the overall potable water system including the impact of climate on influent water quality and uncertainties in treatment process efficiencies. We present preliminary results exploring how a multi-objective evolutionary algorithm (MOEA) search can be coupled with models of WTP processes to identify high-performing plans for their design and operation. This coupled simulation-optimization technique uses Borg MOEA, an auto-adaptive algorithm, and the Water Treatment Plant Model, a simulation model developed by the US EPA to assist in creating the D/DBP Rules. Additionally, Monte Carlo sampling methods were used to study the impact of uncertainty of influent water quality on WTP decision-making and generate plans for robust WTP performance.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.4525B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.4525B"><span>Toward seamless weather-climate and environmental prediction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brunet, Gilbert</p> <p>2016-04-01</p> <p>Over the last decade or so, predicting the weather, climate and atmospheric composition has emerged as one of the most important areas of scientific endeavor. This is partly because the remarkable increase in skill of current weather forecasts has made society more and more dependent on them day to day for a whole range of decision making. And it is partly because climate change is now widely accepted and the realization is growing rapidly that it will affect every person in the world profoundly, either directly or indirectly. One of the important endeavors of our societies is to remain at the cutting-edge of modelling and predicting the evolution of the fully coupled environmental system: atmosphere (weather and composition), oceans, land surface (physical and biological), and cryosphere. This effort will provide an increasingly accurate and reliable service across all the socio-economic sectors that are vulnerable to the effects of adverse weather and climatic conditions, whether now or in the future. This emerging challenge was at the center of the World Weather Open Science Conference (Montreal, 2014).The outcomes of the conference are described in the World Meteorological Organization (WMO) book: Seamless Prediction of the Earth System: from Minutes to Months, (G. Brunet, S. Jones, P. Ruti Eds., WMO-No. 1156, 2015). It is freely available on line at the WMO website. We will discuss some of the outcomes of the conference for the WMO World Weather Research Programme (WWRP) and Global Atmospheric Watch (GAW) long term goals and provide examples of seamless modelling and prediction across a range of timescales at convective and sub-kilometer scales for regional coupled forecasting applications at Environment and Climate Change Canada (ECCC).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMGC51C0433S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMGC51C0433S"><span>A Semi-empirical Model of the Stratosphere in the Climate System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sodergren, A. H.; Bodeker, G. E.; Kremser, S.; Meinshausen, M.; McDonald, A.</p> <p>2014-12-01</p> <p>Chemistry climate models (CCMs) currently used to project changes in Antarctic ozone are extremely computationally demanding. CCM projections are uncertain due to lack of knowledge of future emissions of greenhouse gases (GHGs) and ozone depleting substances (ODSs), as well as parameterizations within the CCMs that have weakly constrained tuning parameters. While projections should be based on an ensemble of simulations, this is not currently possible due to the complexity of the CCMs. An inexpensive but realistic approach to simulate changes in stratospheric ozone, and its coupling to the climate system, is needed as a complement to CCMs. A simple climate model (SCM) can be used as a fast emulator of complex atmospheric-ocean climate models. If such an SCM includes a representation of stratospheric ozone, the evolution of the global ozone layer can be simulated for a wide range of GHG and ODS emissions scenarios. MAGICC is an SCM used in previous IPCC reports. In the current version of the MAGICC SCM, stratospheric ozone changes depend only on equivalent effective stratospheric chlorine (EESC). In this work, MAGICC is extended to include an interactive stratospheric ozone layer using a semi-empirical model of ozone responses to CO2and EESC, with changes in ozone affecting the radiative forcing in the SCM. To demonstrate the ability of our new, extended SCM to generate projections of global changes in ozone, tuning parameters from 19 coupled atmosphere-ocean general circulation models (AOGCMs) and 10 carbon cycle models (to create an ensemble of 190 simulations) have been used to generate probability density functions of the dates of return of stratospheric column ozone to 1960 and 1980 levels for different latitudes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1129318-meeting-radiative-forcing-targets-representative-concentration-pathways-world-agricultural-climate-impacts','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1129318-meeting-radiative-forcing-targets-representative-concentration-pathways-world-agricultural-climate-impacts"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kyle, G. Page; Mueller, C.; Calvin, Katherine V.</p> <p></p> <p>This study assesses how climate impacts on agriculture may change the evolution of the agricultural and energy systems in meeting the end-of-century radiative forcing targets of the Representative Concentration Pathways (RCPs). We build on the recently completed ISI-MIP exercise that has produced global gridded estimates of future crop yields for major agricultural crops using climate model projections of the RCPs from the Coupled Model Intercomparison Project Phase 5 (CMIP5). For this study we use the bias-corrected outputs of the HadGEM2-ES climate model as inputs to the LPJmL crop growth model, and the outputs of LPJmL to modify inputs to themore » GCAM integrated assessment model. Our results indicate that agricultural climate impacts generally lead to an increase in global cropland, as compared with corresponding emissions scenarios that do not consider climate impacts on agricultural productivity. This is driven mostly by negative impacts on wheat, rice, other grains, and oil crops. Still, including agricultural climate impacts does not significantly increase the costs or change the technological strategies of global, whole-system emissions mitigation. In fact, to meet the most aggressive climate change mitigation target (2.6 W/m2 in 2100), the net mitigation costs are slightly lower when agricultural climate impacts are considered. Key contributing factors to these results are (a) low levels of climate change in the low-forcing scenarios, (b) adaptation to climate impacts, simulated in GCAM through inter-regional shifting in the production of agricultural goods, and (c) positive average climate impacts on bioenergy crop yields.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMNH51B1950B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMNH51B1950B"><span>Influence of Climate Oscillations on Extreme Precipitation in Texas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bhatia, N.; Singh, V. P.; Srivastav, R. K.</p> <p>2016-12-01</p> <p>Much research in the field of hydroclimatology is focusing on the impact of climate variability on hydrologic extremes. Recent studies show that the unique geographical location and the enormous areal extent, coupled with extensive variations in climate oscillations, have intensified the regional hydrologic cycle of Texas. The state-wide extreme precipitation events can actually be attributed to sea-surface pressure and temperature anomalies, such as Bermuda High and Jet Streams, which are further triggered by such climate oscillations. This study aims to quantify the impact of five major Atlantic and Pacific Ocean related climate oscillations: (i) Atlantic Multidecadal Oscillation (AMO), (ii) North Atlantic Oscillation (NAO), (iii) Pacific Decadal Oscillation (PDO), (iv) Pacific North American Pattern (PNA), and (v) Southern Oscillation Index (SOI), on extreme precipitation in Texas. Their respective effects will be determined for both climate divisions delineated by the National Climatic Data Centre (NCDC) and climate regions defined by the Köppen Climate Classification System. This study will adopt a weighted correlation approach to attain the robust correlation coefficients while addressing the regionally variable data outliers for extreme precipitation. Further, the variation of robust correlation coefficients across Texas is found to be related to the station elevation, historical average temperature, and total precipitation in the months of extremes. The research will shed light on the relationship between precipitation extremes and climate variability, thus aiding regional water boards in planning, designing, and managing the respective systems as per the future climate change.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014CliPa..10.2135S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014CliPa..10.2135S"><span>Interaction of ice sheets and climate during the past 800 000 years</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stap, L. B.; van de Wal, R. S. W.; de Boer, B.; Bintanja, R.; Lourens, L. J.</p> <p>2014-12-01</p> <p>During the Cenozoic, land ice and climate interacted on many different timescales. On long timescales, the effect of land ice on global climate and sea level is mainly set by large ice sheets in North America, Eurasia, Greenland and Antarctica. The climatic forcing of these ice sheets is largely determined by the meridional temperature profile resulting from radiation and greenhouse gas (GHG) forcing. As a response, the ice sheets cause an increase in albedo and surface elevation, which operates as a feedback in the climate system. To quantify the importance of these climate-land ice processes, a zonally averaged energy balance climate model is coupled to five one-dimensional ice sheet models, representing the major ice sheets. In this study, we focus on the transient simulation of the past 800 000 years, where a high-confidence CO2 record from ice core samples is used as input in combination with Milankovitch radiation changes. We obtain simulations of atmospheric temperature, ice volume and sea level that are in good agreement with recent proxy-data reconstructions. We examine long-term climate-ice-sheet interactions by a comparison of simulations with uncoupled and coupled ice sheets. We show that these interactions amplify global temperature anomalies by up to a factor of 2.6, and that they increase polar amplification by 94%. We demonstrate that, on these long timescales, the ice-albedo feedback has a larger and more global influence on the meridional atmospheric temperature profile than the surface-height-temperature feedback. Furthermore, we assess the influence of CO2 and insolation by performing runs with one or both of these variables held constant. We find that atmospheric temperature is controlled by a complex interaction of CO2 and insolation, and both variables serve as thresholds for northern hemispheric glaciation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29754421','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29754421"><span>Dynamical mechanisms of Arctic amplification.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Dethloff, Klaus; Handorf, Dörthe; Jaiser, Ralf; Rinke, Annette; Klinghammer, Pia</p> <p>2018-05-12</p> <p>The Arctic has become a hot spot of climate change, but the nonlinear interactions between regional and global scales in the coupled climate system responsible for Arctic amplification are not well understood and insufficiently described in climate models. Here, we compare reanalysis data with model simulations for low and high Arctic sea ice conditions to identify model biases with respect to atmospheric Arctic-mid-latitude linkages. We show that an appropriate description of Arctic sea ice forcing is able to reproduce the observed winter cooling in mid-latitudes as result of improved tropospheric-stratospheric planetary wave propagation triggering a negative phase of the Arctic Oscillation/North Atlantic Oscillation in late winter. © 2018 New York Academy of Sciences.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMPP51A1042O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMPP51A1042O"><span>Coupled Long-Term Evolution of Climate and the Greenland Ice Sheet During the Last Interglacial and Implications for the Future</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Otto-Bliesner, B. L.; Lofverstrom, M.; Lipscomb, W.; Fyke, J. G.; Marshall, S.; Sacks, B.</p> <p>2017-12-01</p> <p>The Greenland Ice Sheet (GrIS) is expected to contribute increasingly to global sea level rise by the end of this century, and potentially several meters in this millennium, but still with considerable uncertainty. The rate of Greenland melt will impact on regional sea levels. The Last Interglacial (LIG, 129 ka to 116 ka) is recognized as an important period for testing our knowledge of climate-ice sheet interactions in warm climate states. Although the LIG was discussed in the First Assessment Report of the IPCC, it gained more prominence in the IPCC Fourth and Fifth Assessment (AR4 and AR5) with reconstructions highlighting that global mean sea level was at least 5 m higher (but probably no more than 10 m higher) than present for several thousand years during the LIG. Model results assessed for the AR5 suggest a sea level contribution of 1.4 to 4.3 m from the GrIS. These model simulations, though, did not include all the feedbacks of the climate system and the GrIS. Here, we examine the response of the Arctic climate system and the GrIS in simulations with the Community Earth System Model (CESM) fully coupled to the Community Ice Sheet Model (CISM), using a surface energy balance scheme and without bias corrections. The analysis focuses on how the GrIS responds to the imposed high boreal summer insolation of the LIG and in addition, to the long-term feedbacks of high-latitude vegetation changes. Results will highlight the evolution of the ice sheet and the surface mass balance (patterns of ablation and accumulation) as compared to data-based reconstructions for the LIG. We conclude with a discussion on how the LIG may be informative as a potential process analogue for the GrIS response for future centuries to come.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA616458','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA616458"><span>Physically Consistent Eddy-resolving State Estimation and Prediction of the Coupled Pan-Arctic Climate System at Daily to Interannual Time Scales Using the Regional Arctic Climate Model (RACM)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2014-09-30</p> <p>large biases aloft manifest themselves as large circulation biases at the surface (Fig. 3). Wintertime sea level pressure ( SLP ) contours align closely...extends Arctic, and the Icelandic low is very weak and shifted eastward from its proper location. Summer SLP biases in RASM_nonudg are smaller than...winter SLP biases, but are still substantial, and are again greatly improved in RASM_nudg. Although the magnitude of SLP biases is somewhat smaller</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMGC33F..06C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMGC33F..06C"><span>Divergences of Two Coupled Human and Natural Systems on the Mongolian Plateau</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, J.</p> <p>2014-12-01</p> <p>Central to the concept of coupled natural and human (CNH) systems is that humans and nature are organized in interacting sub-systems that make a cohesive whole at multiple spatial and temporal scales. Following an overview of the challenges in implementing the CNH concept at the regional level, we used widely available measures of states in the social, economic, and ecological systems, including gross domestic product, population size, net primary productivity, and livestock and their ratios, to examine the CNH dynamics on the Mongolian Plateau during 1981-2010. Our cross-border analysis of the coupled dynamics over the past three decades demonstrated striking contrasts between Inner Mongolia (IM) and Mongolia (MG), with policies playing shifting roles on the above measures. For prioritizing future research on the CNH concept, we propose the hypothesis that while the divergence of IM and MG for 1981-2010 was largely driven by market economic reforms, the importance of socioeconomic forces relative to climate changes will gradually decrease in IM while they remain important in MG.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMNG34A..08H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMNG34A..08H"><span>Creation of Synthetic Surface Temperature and Precipitation Ensembles Through A Computationally Efficient, Mixed Method Approach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hartin, C.; Lynch, C.; Kravitz, B.; Link, R. P.; Bond-Lamberty, B. P.</p> <p>2017-12-01</p> <p>Typically, uncertainty quantification of internal variability relies on large ensembles of climate model runs under multiple forcing scenarios or perturbations in a parameter space. Computationally efficient, standard pattern scaling techniques only generate one realization and do not capture the complicated dynamics of the climate system (i.e., stochastic variations with a frequency-domain structure). In this study, we generate large ensembles of climate data with spatially and temporally coherent variability across a subselection of Coupled Model Intercomparison Project Phase 5 (CMIP5) models. First, for each CMIP5 model we apply a pattern emulation approach to derive the model response to external forcing. We take all the spatial and temporal variability that isn't explained by the emulator and decompose it into non-physically based structures through use of empirical orthogonal functions (EOFs). Then, we perform a Fourier decomposition of the EOF projection coefficients to capture the input fields' temporal autocorrelation so that our new emulated patterns reproduce the proper timescales of climate response and "memory" in the climate system. Through this 3-step process, we derive computationally efficient climate projections consistent with CMIP5 model trends and modes of variability, which address a number of deficiencies inherent in the ability of pattern scaling to reproduce complex climate model behavior.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1083576','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1083576"><span>Final Report on Hierarchical Coupled Modeling and Prediction of Regional Climate Change in the Atlantic Sector</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Saravanan, Ramalingam</p> <p>2011-10-30</p> <p>During the course of this project, we have accomplished the following: a) Carried out studies of climate changes in the past using a hierarchy of intermediate coupled models (Chang et al., 2008; Wan et al 2009; Wen et al., 2010a,b) b) Completed the development of a Coupled Regional Climate Model (CRCM; Patricola et al., 2011a,b) c) Carried out studies testing hypotheses testing the origin of systematic errors in the CRCM (Patricola et al., 2011a,b) d) Carried out studies of the impact of air-sea interaction on hurricanes, in the context of barrier layer interactions (Balaguru et al)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930015732','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930015732"><span>Operational seasonal and interannual predictions of ocean conditions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Leetmaa, Ants</p> <p>1992-01-01</p> <p>Dr. Leetmaa described current work at the U.S. National Meteorological Center (NMC) on coupled systems leading to a seasonal prediction system. He described the way in which ocean thermal data is quality controlled and used in a four dimensional data assimilation system. This consists of a statistical interpolation scheme, a primitive equation ocean general circulation model, and the atmospheric fluxes that are required to force this. This whole process generated dynamically consist thermohaline and velocity fields for the ocean. Currently routine weekly analyses are performed for the Atlantic and Pacific oceans. These analyses are used for ocean climate diagnostics and as initial conditions for coupled forecast models. Specific examples of output products were shown both in the Pacific and the Atlantic Ocean.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/8356','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/8356"><span>Constraining climatic controls on hillslope dynamics using a coupled model for the transport of soil and tracers: Application to loess-mantled hillslopes, Charwell River, South Island, New Zealand</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>J.J. Roering; P. Almond; P. Tonkin; J. McKean</p> <p>2004-01-01</p> <p>Landscapes reflect a legacy of tectonic and climatic forcing as modulated by surface processes. Because the morphologic characteristics of landscapes often do not allow us to uniquely define the relative roles of tectonic deformation and climate, additional constraints are required to interpret and predict landscape dynamics. Here we describe a coupled model for the...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70027837','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70027837"><span>Evidence and implications of recent climate change in Northern Alaska and other Arctic regions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Hinzman, L.D.; Bettez, N.D.; Bolton, W.R.; Chapin, F.S.; Dyurgerov, M.B.; Fastie, C.L.; Griffith, B.; Hollister, R.D.; Hope, Allen; Huntington, H.P.; Jensen, A.M.; Jia, G.J.; Jorgenson, T.; Kane, D.L.; Klein, D.R.; Kofinas, G.; Lynch, A.H.; Lloyd, A.H.; McGuire, A.D.; Nelson, Frederick E.; Oechel, W.C.; Osterkamp, T.E.; Racine, C.H.; Romanovsky, V.E.; Stone, R.S.; Stow, D.A.; Sturm, M.; Tweedie, C.E.; Vourlitis, G.L.; Walker, M.D.; Walker, D.A.; Webber, P.J.; Welker, J.M.; Winker, K.S.; Yoshikawa, K.</p> <p>2005-01-01</p> <p>The Arctic climate is changing. Permafrost is warming, hydrological processes are changing and biological and social systems are also evolving in response to these changing conditions. Knowing how the structure and function of arctic terrestrial ecosystems are responding to recent and persistent climate change is paramount to understanding the future state of the Earth system and how humans will need to adapt. Our holistic review presents a broad array of evidence that illustrates convincingly; the Arctic is undergoing a system-wide response to an altered climatic state. New extreme and seasonal surface climatic conditions are being experienced, a range of biophysical states and processes influenced by the threshold and phase change of freezing point are being altered, hydrological and biogeochemical cycles are shifting, and more regularly human sub-systems are being affected. Importantly, the patterns, magnitude and mechanisms of change have sometimes been unpredictable or difficult to isolate due to compounding factors. In almost every discipline represented, we show how the biocomplexity of the Arctic system has highlighted and challenged a paucity of integrated scientific knowledge, the lack of sustained observational and experimental time series, and the technical and logistic constraints of researching the Arctic environment. This study supports ongoing efforts to strengthen the interdisciplinarity of arctic system science and improve the coupling of large scale experimental manipulation with sustained time series observations by incorporating and integrating novel technologies, remote sensing and modeling. ?? Springer 2005.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.2208B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.2208B"><span>Regional Climate Simulations with COSMO-CLM for West Africa using three different soil-vegetation-atmosphere-transfer (SVAT) module</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Breil, Marcus; Panitz, Hans-Jürgen</p> <p>2014-05-01</p> <p>Climate predictions on decadal timescales constitute a new field of research, closing the gap between short-term and seasonal weather predictions and long-term climate projections. Therefore, the Federal Ministry of Education and Research in Germany (BMBF) has recently funded the research program MiKlip (Mittelfristige Klimaprognosen), which aims to create a model system that can provide reliable decadal climate forecasts. Recent studies have suggested that one region with high potential decadal predictability is West Africa. Therefore, the project DEPARTURE (DEcadal Prediction of African Rainfall and ATlantic HURricanE Activity) was established within the MiKlip program to assess the feasibility and the potential added value of regional decadal climate predictions for West Africa. To quantify the potential decadal climate predictability, a multi-model approach with the three different regional climate models REMO, WRF and COSMO-CLM (CCLM) will be realized. The presented research will contribute to DEPARTURE by performing hindcast ensemble simulations with CCLM, driven by global decadal MPI-ESM-LR simulations. Thereby, one focus is on the dynamic soil-vegetation-climate interaction on decadal timescales. Recent studies indicate that there are significant feedbacks between the land-surface and the atmosphere, which might influence the decadal climate variability substantially. To investigate this connection, two different SVATs (Community Land Model (CLM), and VEG3D) will be coupled with the CCLM, replacing TERRA_ML, the standard SVAT implemented in CCLM. Thus, sensitive model parameters shall be identified, whereby the understanding of important processes might be improved. As a first step, TERRA_ML is substituted by VEG3D, a SVAT developed at the IMK-TRO, Karlsruhe, Germany. Compared to TERRA_ML, VEG3D includes an explicit vegetation layer by using a big leaf approach, inducing higher correlations with observations as it has been shown in previous studies. The coupling of VEG3D with CCLM is performed by using the OASIS3-MCT coupling software, developed by CERFACS, Toulouse, France. Results of CCLM simulations using both SVATs are analysed and compared for the DEPARTURE model domain. Thereby ERA-Interim driven CCLM simulations with VEG3D showed better agreement with observational data than simulations with TERRA_ML, especially for dense vegetaded areas. This will be demonstrated exemplarily. Additionally, results for MPI-ESM-LR driven decadal hindcast simulations (1966 - 1975) are analysed and presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRD..123...58Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRD..123...58Z"><span>Simulation of the Central Indian Ocean Mode in CESM: Implications for the Indian Summer Monsoon System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhou, Lei; Murtugudde, Raghu; Neale, Richard B.; Jochum, Markus</p> <p>2018-01-01</p> <p>The simulation of the Indian summer monsoon and its pronounced intraseasonal component in a modern climate model remains a significant challenge. Recently, using observations and reanalysis products, the central Indian Ocean (CIO) mode was found to be a natural mode in the ocean-atmosphere coupled system and also shown to have a close mechanistic connection with the monsoon intraseasonal oscillation (MISO). In this study, the simulation of the actual CIO mode in historical Community Earth System Model (CESM) outputs is assessed by comparing with observations and reanalysis products. The simulation of the Madden-Julian Oscillation, a major component of tropical intraseasonal variabilities (ISVs), is satisfactory. However, the CIO mode is not well captured in any of the CESM simulations considered here. The force and response relationship between the atmosphere and the ocean associated with the CIO mode in CESM is opposite to that in nature. The simulated meridional gradient of large-scale zonal winds is too weak, which precludes the necessary energy conversion from the mean state to the ISVs and cuts off the energy source to MISO in CESM. The inability of CESM to reproduce the CIO mode seen clearly in nature highlights the CIO mode as a new dynamical framework for diagnosing the deficiencies in Indian summer monsoon simulation in climate models. The CIO mode is a coupled metric for evaluating climate models and may be a better indicator of a model's skill to accurately capture the tropical multiscale interactions over subseasonal to interannual timescales.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMOS21A1361J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMOS21A1361J"><span>Isolating Tracers of Phytoplankton with Allometric Zooplankton (TOPAZ) from Modular Ocean Model (MOM5) to Couple it with a Global Ocean Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jung, H. C.; Moon, B. K.; Wie, J.; Park, H. S.; Kim, K. Y.; Lee, J.; Byun, Y. H.</p> <p>2017-12-01</p> <p>This research is motivated by a need to develop a new coupled ocean-biogeochemistry model, a key tool for climate projections. The Modular Ocean Model (MOM5) is a global ocean/ice model developed by the Geophysical Fluid Dynamics Laboratory (GFDL) in the US, and it incorporates Tracers of Phytoplankton with Allometric Zooplankton (TOPAZ), which simulates the marine biota associated with carbon cycles. We isolated TOPAZ from MOM5 into a stand-alone version (TOPAZ-SA), and had it receive initial data and ocean physical fields required. Then, its reliability was verified by comparing the simulation results from the TOPAZ-SA with the MOM5/TOPAZ. This stand-alone version of TOPAZ is to be coupled to the Nucleus for European Modelling of the Ocean (NEMO). Here we present the preliminary results. Acknowledgements This research was supported by the project "Research and Development for KMA Weather, Climate, and Earth system Services" (NIMS-2016-3100) of the National Institute of Meteorological Sciences/Korea Meteorological Administration.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26057724','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26057724"><span>Alternative future analysis for assessing the potential impact of climate change on urban landscape dynamics.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>He, Chunyang; Zhao, Yuanyuan; Huang, Qingxu; Zhang, Qiaofeng; Zhang, Da</p> <p>2015-11-01</p> <p>Assessing the impact of climate change on urban landscape dynamics (ULD) is the foundation for adapting to climate change and maintaining urban landscape sustainability. This paper demonstrates an alternative future analysis by coupling a system dynamics (SD) and a cellular automata (CA) model. The potential impact of different climate change scenarios on ULD from 2009 to 2030 was simulated and evaluated in the Beijing-Tianjin-Tangshan megalopolis cluster area (BTT-MCA). The results suggested that the integrated model, which combines the advantages of the SD and CA model, has the strengths of spatial quantification and flexibility. Meanwhile, the results showed that the influence of climate change would become more severe over time. In 2030, the potential urban area affected by climate change will be 343.60-1260.66 km(2) (5.55 -20.37 % of the total urban area, projected by the no-climate-change-effect scenario). Therefore, the effects of climate change should not be neglected when designing and managing urban landscape. Copyright © 2015 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.B31B0308G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.B31B0308G"><span>Modeling high resolution space-time variations in energy demand/CO2 emissions of human inhabited landscapes in the United States under a changing climate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Godbole, A. V.; Gurney, K. R.</p> <p>2010-12-01</p> <p>With urban and exurban areas now accounting for more than 50% of the world's population, projected to increase 20% by 2050 (UN World Urbanization Prospects, 2009), urban-climate interactions are of renewed interest to the climate change scientific community (Karl et. al, 1988; Kalnay and Cai, 2003; Seto and Shepherd, 2009). Until recently, climate modeling efforts treated urban-human systems as independent of the earth system. With studies pointing to the disproportionately large influence of urban areas on their surrounding environment (Small et. al, 2010), modeling efforts have begun to explicitly account for urban processes in land models, like the CLM 4.0 urban layer, for example (Oleson.et. al, 2008, 2010). A significant portion of the urban energy demand comes from the space heating and cooling requirement of the residential and commercial sectors - as much as 51% (DOE, RECS 2005) and 11% (Belzer, D. 2006) respectively, in the United States. Thus, these sectors are both responsible for a significant fraction of fossil fuel CO2 emissions and will be influenced by a changing climate through changes in energy use and energy supply planning. This points to the possibility of interactive processes and feedbacks with the climate system. Space conditioning energy demand is strongly driven by external air temperature (Ruth, M. et.al, 2006) in addition to other socio-economic variables such as building characteristics (age of structure, activity cycle, weekend/weekday usage profile), occupant characteristics (age of householder, household income) and energy prices (Huang, 2006; Santin et. al, 2009; Isaac and van Vuuren, 2009). All of these variables vary both in space and time. Projections of climate change have begun to simulate changes in temperature at much higher resolution than in the past (Diffenbaugh et. al, 2005). Hence, in order to understand how climate change and variability will potentially impact energy use/emissions and energy planning, these two components of the human-climate system must be coupled in climate modeling efforts to better understand the impacts and feedbacks. To implement modeling strategies for coupling the human and climate systems, their interactions must first be examined in greater detail at high spatial and temporal resolutions. This work attempts to quantify the impact of high resolution variations in projected climate change on energy use/emissions in the United States. We develop a predictive model for the space heating component of residential and commercial energy demand by leveraging results from the high resolution fossil fuel CO2 inventory of the Vulcan Project (Gurney et al., 2009). This predictive model is driven by high resolution temperature data from the RegCM3 model obtained by implementing a downscaling algorithm (Chow and Levermore, 2007). We will present the energy use/emissions in both the space and time domain from two different predictive models highlighting strengths and weaknesses in both. Furthermore, we will explore high frequency variations in the projected temperature field and how these might place potentially large burdens on energy supply and delivery.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.H43N..04A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.H43N..04A"><span>Coupling Agent-Based and Groundwater Modeling to Explore Demand Management Strategies for Shared Resources</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Al-Amin, S.</p> <p>2015-12-01</p> <p>Municipal water demands in growing population centers in the arid southwest US are typically met through increased groundwater withdrawals. Hydro-climatic uncertainties attributed to climate change and land use conversions may also alter demands and impact the replenishment of groundwater supply. Groundwater aquifers are not necessarily confined within municipal and management boundaries, and multiple diverse agencies may manage a shared resource in a decentralized approach, based on individual concerns and resources. The interactions among water managers, consumers, and the environment influence the performance of local management strategies and regional groundwater resources. This research couples an agent-based modeling (ABM) framework and a groundwater model to analyze the effects of different management approaches on shared groundwater resources. The ABM captures the dynamic interactions between household-level consumers and policy makers to simulate water demands under climate change and population growth uncertainties. The groundwater model is used to analyze the relative effects of management approaches on reducing demands and replenishing groundwater resources. The framework is applied for municipalities located in the Verde River Basin, Arizona that withdraw groundwater from the Verde Formation-Basin Fill-Carbonate aquifer system. Insights gained through this simulation study can be used to guide groundwater policy-making under changing hydro-climatic scenarios for a long-term planning horizon.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120008825','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120008825"><span>High Resolution Global Climate Modeling with GEOS-5: Intense Precipitation, Convection and Tropical Cyclones on Seasonal Time-Scales.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Putnam, WilliamM.</p> <p>2011-01-01</p> <p>In 2008 the World Modeling Summit for Climate Prediction concluded that "climate modeling will need-and is ready-to move to fundamentally new high-resolution approaches to capitalize on the seamlessness of the weather-climate continuum." Following from this, experimentation with very high-resolution global climate modeling has gained enhanced priority within many modeling groups and agencies. The NASA Goddard Earth Observing System model (GEOS-5) has been enhanced to provide a capability for the execution at the finest horizontal resolutions POS,SIOle with a global climate model today. Using this high-resolution, non-hydrostatic version of GEOS-5, we have developed a unique capability to explore the intersection of weather and climate within a seamless prediction system. Week-long weather experiments, to mUltiyear climate simulations at global resolutions ranging from 3.5- to 14-km have demonstrated the predictability of extreme events including severe storms along frontal systems, extra-tropical storms, and tropical cyclones. The primary benefits of high resolution global models will likely be in the tropics, with better predictions of the genesis stages of tropical cyclones and of the internal structure of their mature stages. Using satellite data we assess the accuracy of GEOS-5 in representing extreme weather phenomena, and their interaction within the global climate on seasonal time-scales. The impacts of convective parameterization and the frequency of coupling between the moist physics and dynamics are explored in terms of precipitation intensity and the representation of deep convection. We will also describe the seasonal variability of global tropical cyclone activity within a global climate model capable of representing the most intense category 5 hurricanes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70036730','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70036730"><span>Are there pre-Quaternary geological analogues for a future greenhouse warming?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Haywood, A.M.; Ridgwell, A.; Lunt, D.J.; Hill, D.J.; Pound, M.J.; Dowsett, H.J.; Dolan, A.M.; Francis, J.E.; Williams, M.</p> <p>2011-01-01</p> <p>Given the inherent uncertainties in predicting how climate and environments will respond to anthropogenic emissions of greenhouse gases, it would be beneficial to society if science could identify geological analogues to the human race's current grand climate experiment. This has been a focus of the geological and palaeoclimate communities over the last 30 years, with many scientific papers claiming that intervals in Earth history can be used as an analogue for future climate change. Using a coupled ocean-atmosphere modelling approach, we test this assertion for the most probable pre-Quaternary candidates of the last 100 million years: the Mid- and Late Cretaceous, the Palaeocene-Eocene Thermal Maximum (PETM), the Early Eocene, as well as warm intervals within the Miocene and Pliocene epochs. These intervals fail as true direct analogues since they either represent equilibrium climate states to a long-term CO2 forcing-whereas anthropogenic emissions of greenhouse gases provide a progressive (transient) forcing on climate-or the sensitivity of the climate system itself to CO2 was different. While no close geological analogue exists, past warm intervals in Earth history provide a unique opportunity to investigate processes that operated during warm (high CO2) climate states. Palaeoclimate and environmental reconstruction/modelling are facilitating the assessment and calculation of the response of global temperatures to increasing CO2 concentrations in the longer term (multiple centuries); this is now referred to as the Earth System Sensitivity, which is critical in identifying CO2 thresholds in the atmosphere that must not be crossed to avoid dangerous levels of climate change in the long term. Palaeoclimatology also provides a unique and independent way to evaluate the qualities of climate and Earth system models used to predict future climate. ?? 2011 The Royal Society.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21282155','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21282155"><span>Are there pre-Quaternary geological analogues for a future greenhouse warming?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Haywood, Alan M; Ridgwell, Andy; Lunt, Daniel J; Hill, Daniel J; Pound, Matthew J; Dowsett, Harry J; Dolan, Aisling M; Francis, Jane E; Williams, Mark</p> <p>2011-03-13</p> <p>Given the inherent uncertainties in predicting how climate and environments will respond to anthropogenic emissions of greenhouse gases, it would be beneficial to society if science could identify geological analogues to the human race's current grand climate experiment. This has been a focus of the geological and palaeoclimate communities over the last 30 years, with many scientific papers claiming that intervals in Earth history can be used as an analogue for future climate change. Using a coupled ocean-atmosphere modelling approach, we test this assertion for the most probable pre-Quaternary candidates of the last 100 million years: the Mid- and Late Cretaceous, the Palaeocene-Eocene Thermal Maximum (PETM), the Early Eocene, as well as warm intervals within the Miocene and Pliocene epochs. These intervals fail as true direct analogues since they either represent equilibrium climate states to a long-term CO(2) forcing--whereas anthropogenic emissions of greenhouse gases provide a progressive (transient) forcing on climate--or the sensitivity of the climate system itself to CO(2) was different. While no close geological analogue exists, past warm intervals in Earth history provide a unique opportunity to investigate processes that operated during warm (high CO(2)) climate states. Palaeoclimate and environmental reconstruction/modelling are facilitating the assessment and calculation of the response of global temperatures to increasing CO(2) concentrations in the longer term (multiple centuries); this is now referred to as the Earth System Sensitivity, which is critical in identifying CO(2) thresholds in the atmosphere that must not be crossed to avoid dangerous levels of climate change in the long term. Palaeoclimatology also provides a unique and independent way to evaluate the qualities of climate and Earth system models used to predict future climate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1182238','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1182238"><span>2014 Earth System Grid Federation and Ultrascale Visualization Climate Data Analysis Tools Conference Report</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Williams, Dean N.</p> <p>2015-01-27</p> <p>The climate and weather data science community met December 9–11, 2014, in Livermore, California, for the fourth annual Earth System Grid Federation (ESGF) and Ultrascale Visualization Climate Data Analysis Tools (UV-CDAT) Face-to-Face (F2F) Conference, hosted by the Department of Energy, National Aeronautics and Space Administration, National Oceanic and Atmospheric Administration, the European Infrastructure for the European Network of Earth System Modelling, and the Australian Department of Education. Both ESGF and UVCDATremain global collaborations committed to developing a new generation of open-source software infrastructure that provides distributed access and analysis to simulated and observed data from the climate and weather communities.more » The tools and infrastructure created under these international multi-agency collaborations are critical to understanding extreme weather conditions and long-term climate change. In addition, the F2F conference fosters a stronger climate and weather data science community and facilitates a stronger federated software infrastructure. The 2014 F2F conference detailed the progress of ESGF, UV-CDAT, and other community efforts over the year and sets new priorities and requirements for existing and impending national and international community projects, such as the Coupled Model Intercomparison Project Phase Six. Specifically discussed at the conference were project capabilities and enhancements needs for data distribution, analysis, visualization, hardware and network infrastructure, standards, and resources.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ThApC.tmp..288L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ThApC.tmp..288L"><span>The dependence on atmospheric resolution of ENSO and related East Asian-western North Pacific summer climate variability in a coupled model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, Bo; Zhao, Guijie; Huang, Gang; Wang, Pengfei; Yan, Bangliang</p> <p>2017-08-01</p> <p>The authors present results for El Niño-Southern Oscillation (ENSO) and East Asian-western North Pacific climate variability simulated in a new version high-resolution coupled model (ICM.V2) developed at the Center for Monsoon System Research of the Institute of Atmospheric Physics (CMSR, IAP), Chinese Academy of Sciences. The analyses are based on the last 100-year output of a 1000-year simulation. Results are compared to an earlier version of the same coupled model (ICM.V1), reanalysis, and observations. The two versions of ICM have similar physics but different atmospheric resolution. The simulated climatological mean states show marked improvement over many regions, especially the tropics in ICM.V2 compared to those in ICM.V1. The common bias in the cold tongue has reduced, and the warm biases along the ocean boundaries have improved as well. With improved simulation of ENSO, including its period and strength, the ENSO-related western North Pacific summer climate variability becomes more realistic compared to the observations. The simulated East Asian summer monsoon anomalies in the El Niño decaying summer are substantially more realistic in ICM.V2, which might be related to a better simulation of the Indo-Pacific Ocean capacitor (IPOC) effect and Pacific decadal oscillation (PDO).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70157598','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70157598"><span>Application of a coupled vegetation competition and groundwater simulation model to study effects of sea level rise and storm surges on coastal vegetation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Teh, Su Yean; Turtora, Michael; DeAngelis, Donald L.; Jiang Jiang,; Pearlstine, Leonard G.; Smith, Thomas; Koh, Hock Lye</p> <p>2015-01-01</p> <p>Global climate change poses challenges to areas such as low-lying coastal zones, where sea level rise (SLR) and storm-surge overwash events can have long-term effects on vegetation and on soil and groundwater salinities, posing risks of habitat loss critical to native species. An early warning system is urgently needed to predict and prepare for the consequences of these climate-related impacts on both the short-term dynamics of salinity in the soil and groundwater and the long-term effects on vegetation. For this purpose, the U.S. Geological Survey’s spatially explicit model of vegetation community dynamics along coastal salinity gradients (MANHAM) is integrated into the USGS groundwater model (SUTRA) to create a coupled hydrology–salinity–vegetation model, MANTRA. In MANTRA, the uptake of water by plants is modeled as a fluid mass sink term. Groundwater salinity, water saturation and vegetation biomass determine the water available for plant transpiration. Formulations and assumptions used in the coupled model are presented. MANTRA is calibrated with salinity data and vegetation pattern for a coastal area of Florida Everglades vulnerable to storm surges. A possible regime shift at that site is investigated by simulating the vegetation responses to climate variability and disturbances, including SLR and storm surges based on empirical information.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/6224058-optimal-coupling-feasibility-solar-powered-year-round-ejector-air-conditioner','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/6224058-optimal-coupling-feasibility-solar-powered-year-round-ejector-air-conditioner"><span>Optimal coupling and feasibility of a solar-powered year-round ejector air conditioner</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Sokolov, M.; Hershgal, D.</p> <p>1993-06-01</p> <p>An ejector refrigeration system that uses a conventional refrigerant (R-114) is introduced as a possible mechanism for providing solar-based air-conditioning. Optimal coupling conditions between the collectors' energy output and energy requirements of the cooling system, are investigated. Operation at such optimal conditions assures maximized overall efficiency. Procedures leading to the evaluation of the performance of a real system are disclosed. Design curves for such a system with R-114 as refrigerant are provided. A multi-ejectors arrangement that provides an efficient adjustment for variations of ambient conditions, is described. Year-round air-conditioning is facilitated by rerouting the refrigerant flow through a heating modemore » of the system. Calculations are carried out for illustrative configurations in which relatively low condensing temperature (water reservoirs, cooling towers, or moderate climate) can be maintained.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20060026284&hterms=climate+change+anthropogenic&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dclimate%2Bchange%2Banthropogenic','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20060026284&hterms=climate+change+anthropogenic&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dclimate%2Bchange%2Banthropogenic"><span>Satellite Observations of the Effect of Natural and Anthropogenic Aerosols on Clouds</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kaufman, Yoram J.</p> <p>2006-01-01</p> <p>Our knowledge of atmospheric aerosols (smoke, pollution, dust or sea salt particles, small enough to be suspended in the air), their evolution, composition, variability in space and time and interaction with clouds and precipitation is still lacking despite decades of research. Understanding the global aerosol system is critical to quantifying anthropogenic climate change, to determine climate sensitivity from observations and to understand the hydrological cycle. While a single instrument was used to demonstrate 50 years ago that the global CO2 levels are rising, posing threat of global warming, we need an array of satellites and field measurements coupled with chemical transport models to understand the global aerosol system. This complexity of the aerosol problem results from their short lifetime (1 week) and variable chemical composition. A new generation of satellites provides exciting opportunities to measure the global distribution of aerosols, distinguishing natural from anthropogenic aerosol and measuring their interaction with clouds and climate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.B14D..01R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.B14D..01R"><span>Intensification of Climate-Carbon Feedbacks after 2100 and Implications for Disturbance Regimes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Randerson, J. T.; Lindsay, K. T.; Munoz, E.; Fu, W.; Hoffman, F. M.; Moore, J. K.; Doney, S. C.; Mahowald, N. M.; Bonan, G. B.</p> <p>2014-12-01</p> <p>Long-term ecosystem and carbon cycle responses to climate change are needed to inform mitigation policy, yet our understanding of how these responses may evolve after 2100 remains highly uncertain. Using the Community Earth System Model (version 1.0), we quantified climate-carbon feedbacks from 1850 to 2300 for the Representative Concentration Pathway 8.5 (and its extension). In three simulations, land and ocean biogeochemical models were exposed to the same trajectory of increasing atmospheric CO2. In one simulation, atmospheric CO2 and other forcing agents were radiatively active (fully coupled), modifying temperature and other aspects of climate. In another, CO2 was radiatively uncoupled, and in the third, both CO2 and other atmospheric forcing agents (including CH4, N2O, and aerosols) were radiatively uncoupled. In the fully coupled simulation, global mean air temperatures increased by 9.3°C from 1850 to 2300, with 4.4°C of this warming occurring after 2100. Without radiative forcing from CO2, cumulative warming was much lower at 2.4°C, but exceeding 2°C targets needed to avoid dangerous interference with the climate system. In response to climate change, ocean and land rates of carbon uptake were reduced, with the size of the impact increasing over time. In the oceans, reductions in cumulative carbon uptake from climate change increased from 3% during the 20th century to 40% during the 23rd century. By 2300, climate change had reduced cumulative ocean uptake by 330 Pg C, from 1410 Pg C to 1080 Pg C. Most of this reduction occurred after 2100 as a consequence of increases in surface stratification and decreases in Atlantic meridional overturning circulation. Land fluxes similarly diverged over time, with climate change inducing a cumulative loss of 230 Pg C by 2300. On land the intensification of the hydrological cycle globally increased terrestrial water storage, although asymmetric responses were observed across different continents in the tropics. Net loss of carbon from tropical forest ecosystems, in response to large temperature increases, were partly offset by increases in carbon uptake in temperate and high latitude ecosystems. We conclude by presenting an assessment of how climate variability over land and burned area change century by century.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=336801&Lab=NERL&keyword=land+AND+use+AND+change&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=336801&Lab=NERL&keyword=land+AND+use+AND+change&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>A Coupled Surface Nudging Scheme for use in Retrospective Weather and Climate Simulations for Environmental Applications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>A surface analysis nudging scheme coupling atmospheric and land surface thermodynamic parameters has been implemented into WRF v3.8 (latest version) for use with retrospective weather and climate simulations, as well as for applications in air quality, hydrology, and ecosystem mo...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMIN11E..04D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMIN11E..04D"><span>Emerging Cyber Infrastructure for NASA's Large-Scale Climate Data Analytics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Duffy, D.; Spear, C.; Bowen, M. K.; Thompson, J. H.; Hu, F.; Yang, C. P.; Pierce, D.</p> <p>2016-12-01</p> <p>The resolution of NASA climate and weather simulations have grown dramatically over the past few years with the highest-fidelity models reaching down to 1.5 KM global resolutions. With each doubling of the resolution, the resulting data sets grow by a factor of eight in size. As the climate and weather models push the envelope even further, a new infrastructure to store data and provide large-scale data analytics is necessary. The NASA Center for Climate Simulation (NCCS) has deployed the Data Analytics Storage Service (DASS) that combines scalable storage with the ability to perform in-situ analytics. Within this system, large, commonly used data sets are stored in a POSIX file system (write once/read many); examples of data stored include Landsat, MERRA2, observing system simulation experiments, and high-resolution downscaled reanalysis. The total size of this repository is on the order of 15 petabytes of storage. In addition to the POSIX file system, the NCCS has deployed file system connectors to enable emerging analytics built on top of the Hadoop File System (HDFS) to run on the same storage servers within the DASS. Coupled with a custom spatiotemporal indexing approach, users can now run emerging analytical operations built on MapReduce and Spark on the same data files stored within the POSIX file system without having to make additional copies. This presentation will discuss the architecture of this system and present benchmark performance measurements from traditional TeraSort and Wordcount to large-scale climate analytical operations on NetCDF data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1998JCli...11..831G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1998JCli...11..831G"><span>A Decadal Climate Cycle in the North Atlantic Ocean as Simulated by the ECHO Coupled GCM.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Grötzner, A.; Latif, M.; Barnett, T. P.</p> <p>1998-05-01</p> <p>In this paper a decadal climate cycle in the North Atlantic that was derived from an extended-range integration with a coupled ocean-atmosphere general circulation model is described. The decadal mode shares many features with the observed decadal variability in the North Atlantic. The period of the simulated oscillation, however, is somewhat longer than that estimated from observations. While the observations indicate a period of about 12 yr, the coupled model simulation yields a period of about 17 yr. The cyclic nature of the decadal variability implies some inherent predictability at these timescales.The decadal mode is based on unstable air-sea interactions and must be therefore regarded as an inherently coupled mode. It involves the subtropical gyre and the North Atlantic oscillation. The memory of the coupled system, however, resides in the ocean and is related to horizontal advection and to the oceanic adjustment to low-frequency wind stress curl variations. In particular, it is found that variations in the intensity of the Gulf Stream and its extension are crucial to the oscillation. Although differing in details, the North Atlantic decadal mode and the North Pacific mode described by M. Latif and T. P. Barnett are based on the same fundamental mechanism: a feedback loop between the wind driven subtropical gyre and the extratropical atmospheric circulation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19810036697&hterms=fossils&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dfossils','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19810036697&hterms=fossils&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dfossils"><span>Response of the global climate to changes in atmospheric chemical composition due to fossil fuel burning</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cess, R. D.; Hameed, S.; Hogan, J. S.</p> <p>1980-01-01</p> <p>Tropospheric ozone and methane might increase in the future as the result of increasing anthropogenic emissions of CO, NOx and CH4 due to fossil fuel burning. Since O3 and CH4 are both greenhouse gases, increases in their concentrations could augment global warming due to larger future amounts of atmospheric CO2. To test this possible climatic impact, a zonal energy-balance climate model has been combined with a vertically-averaged tropospheric chemical model. The latter model includes all relevant chemical reactions which affect species derived from H2O, O2, CH4 and NOx. The climate model correspondingly incorporates changes in the infrared heating of the surface-troposphere system resulting from chemically induced changes in tropospheric ozone and methane. This coupled climate-chemical model indicates that global climate is sensitive to changes in emissions of CO, NOx and CH4, and that future increases in these emissions could enhance global warming due to increasing atmospheric CO2.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19900043766&hterms=climate+change+deserts&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dclimate%2Bchange%2Bdeserts','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19900043766&hterms=climate+change+deserts&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dclimate%2Bchange%2Bdeserts"><span>Investigation of biogeophysical feedback on the African climate using a two-dimensional model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Xue, Yongkang; Liou, Kuo-Nan; Kasahara, Akira</p> <p>1990-01-01</p> <p>A numerical scheme is specifically designed to develop a time-dependent climate model to ensure the conservation of mass, momentum, energy, and water vapor, in order to study the biogeophysical feedback for the climate of Africa. A vegetation layer is incorporated in the present two-dimensional climate model. Using the coupled climate-vegetation model, two tests were performed involving the removal and expansion of the Sahara Desert. Results show that variations in the surface conditions produce a significant feedback to the climate system. It is noted that the simulation responses to the temperature and zonal wind in the case of an expanded desert agree with the climatological data for African dry years. Perturbed simulations have also been performed by changing the albedo only, without allowing the variation in the vegetation layer. It is shown that the variation in latent heat release is significant and is related to changes in the vegetation cover. As a result, precipitation and cloud cover are reduced.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMPP31E..02J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMPP31E..02J"><span>Forced Climate Changes in West Antarctica and the Indo-Pacific by Northern Hemisphere Ice Sheet Topography</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jones, T. R.; Roberts, W. H. G.; Steig, E. J.; Cuffey, K. M.; Markle, B. R.; White, J. W. C.</p> <p>2017-12-01</p> <p>The behavior of the Indo-Pacific climate system across the last deglaciation is widely debated. Resolving these debates requires long term and continuous climate proxy records. Here, we use an ultra-high resolution and continuous water isotope record from an ice core in the Pacific sector of West Antarctica. In conjunction with the HadCM3 coupled ocean-atmosphere GCM, we demonstrate that the climate of both West Antarctica and the Indo-Pacific were substantially altered during the last deglaciation by the same forcing mechanism. Critically, these changes are not dependent on ENSO strength, but rather the location of deep tropical convection, which shifts at 16 ka in response to climate perturbations induced by the Laurentide Ice Sheet. The changed rainfall patterns in the tropics explain the deglacial shift from expanded-grasslands to rainforest-dominated ecosystems in Indonesia. High-frequency climate variability in the Southern Hemisphere is also changed, through a tropical Pacific teleconnection link dependent on the propogration of Rossby Waves.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMGC52B..06T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMGC52B..06T"><span>Seasonal Prediction of Hydro-Climatic Extremes in the Greater Horn of Africa Under Evolving Climate Conditions to Support Adaptation Strategies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tadesse, T.; Zaitchik, B. F.; Habib, S.; Funk, C. C.; Senay, G. B.; Dinku, T.; Policelli, F. S.; Block, P.; Baigorria, G. A.; Beyene, S.; Wardlow, B.; Hayes, M. J.</p> <p>2014-12-01</p> <p>The development of effective strategies to adapt to changes in the character of droughts and floods in Africa will rely on improved seasonal prediction systems that are robust to an evolving climate baseline and can be integrated into disaster preparedness and response. Many efforts have been made to build models to improve seasonal forecasts in the Greater Horn of Africa region (GHA) using satellite and climate data, but these efforts and models must be improved and translated into future conditions under evolving climate conditions. This has considerable social significance, but is challenged by the nature of climate predictability and the adaptability of coupled natural and human systems facing exposure to climate extremes. To address these issues, work is in progress under a project funded by NASA. The objectives of the project include: 1) Characterize and explain large-scale drivers in the ocean-atmosphere-land system associated with years of extreme flood or drought in the GHA. 2) Evaluate the performance of state-of-the-art seasonal forecast methods for prediction of decision-relevant metrics of hydrologic extremes. 3) Apply seasonal forecast systems to prediction of socially relevant impacts on crops, flood risk, and economic outcomes, and assess the value of these predictions to decision makers. 4) Evaluate the robustness of seasonal prediction systems to evolving climate conditions. The National Drought Mitigation Center (University of Nebraska-Lincoln, USA) is leading this project in collaboration with the USGS, Johns Hopkins University, University of Wisconsin-Madison, the International Research Institute for Climate and Society, NASA, and GHA local experts. The project is also designed to have active engagement of end users in various sectors, university researchers, and extension agents in GHA through workshops and/or webinars. This project is expected improve and implement new and existing climate- and remote sensing-based agricultural, meteorological, and hydrologic drought and flood monitoring products (or indicators) that can enhance the preparedness for extreme climate events and climate change adaptation and mitigation strategies in the GHA. Even though this project is in its first year, the preliminary results and future plans to carry out the objectives will be presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Nonli..30R..32L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Nonli..30R..32L"><span>Edge states in the climate system: exploring global instabilities and critical transitions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lucarini, Valerio; Bódai, Tamás</p> <p>2017-07-01</p> <p>Multistability is a ubiquitous feature in systems of geophysical relevance and provides key challenges for our ability to predict a system’s response to perturbations. Near critical transitions small causes can lead to large effects and—for all practical purposes—irreversible changes in the properties of the system. As is well known, the Earth climate is multistable: present astronomical and astrophysical conditions support two stable regimes, the warm climate we live in, and a snowball climate characterized by global glaciation. We first provide an overview of methods and ideas relevant for studying the climate response to forcings and focus on the properties of critical transitions in the context of both stochastic and deterministic dynamics, and assess strengths and weaknesses of simplified approaches to the problem. Following an idea developed by Eckhardt and collaborators for the investigation of multistable turbulent fluid dynamical systems, we study the global instability giving rise to the snowball/warm multistability in the climate system by identifying the climatic edge state, a saddle embedded in the boundary between the two basins of attraction of the stable climates. The edge state attracts initial conditions belonging to such a boundary and, while being defined by the deterministic dynamics, is the gate facilitating noise-induced transitions between competing attractors. We use a simplified yet Earth-like intermediate complexity climate model constructed by coupling a primitive equations model of the atmosphere with a simple diffusive ocean. We refer to the climatic edge states as Melancholia states and provide an extensive analysis of their features. We study their dynamics, their symmetry properties, and we follow a complex set of bifurcations. We find situations where the Melancholia state has chaotic dynamics. In these cases, we have that the basin boundary between the two basins of attraction is a strange geometric set with a nearly zero codimension, and relate this feature to the time scale separation between instabilities occurring on weather and climatic time scales. We also discover a new stable climatic state that is similar to a Melancholia state and is characterized by non-trivial symmetry properties.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2009/5049/pdf/Walker.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2009/5049/pdf/Walker.pdf"><span>Using a coupled groundwater/surfacewater model to predict climate-change impacts to lakes in the Trout Lake watershed, Northern Wisconsin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Walker, John F.; Hunt, Randall J.; Markstrom, Steven L.; Hay, Lauren E.; Doherty, John</p> <p>2009-01-01</p> <p>A major focus of the U.S. Geological Survey’s Trout Lake Water, Energy, and Biogeochemical Budgets (WEBB) project is the development of a watershed model to allow predictions of hydrologic response to future conditions including land-use and climate change. The coupled groundwater/surface-water model GSFLOW was chosen for this purpose because it could easily incorporate an existing groundwater flow model and it provides for simulation of surface-water processes. The Trout Lake watershed in northern Wisconsin is underlain by a highly conductive outwash sand aquifer. In this area, streamflow is dominated by groundwater contributions; however, surface runoff occurs during intense rainfall periods and spring snowmelt. Surface runoff also occurs locally near stream/lake areas where the unsaturated zone is thin. A diverse data set, collected from 1992 to 2007 for the Trout Lake WEBB project and the co-located and NSF-funded North Temperate Lakes LTER project, includes snowpack, solar radiation, potential evapotranspiration, lake levels, groundwater levels, and streamflow. The timeseries processing software TSPROC (Doherty 2003) was used to distill the large time series data set to a smaller set of observations and summary statistics that captured the salient hydrologic information. The timeseries processing reduced hundreds of thousands of observations to less than 5,000. Model calibration included specific predictions for several lakes in the study area using the PEST parameter estimation suite of software (Doherty 2007). The calibrated model was used to simulate the hydrologic response in the study lakes to a variety of climate change scenarios culled from the IPCC Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Solomon et al. 2007). Results from the simulations indicate climate change could result in substantial changes to the lake levels and components of the hydrologic budget of a seepage lake in the flow system. For a drainage lake lower in the flow system, the impacts of climate change are diminished. </p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C11D..05H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C11D..05H"><span>An Investigation of the Radiative Effects and Climate Feedbacks of Sea Ice Sources of Sea Salt Aerosol</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Horowitz, H. M.; Alexander, B.; Bitz, C. M.; Jaegle, L.; Burrows, S. M.</p> <p>2017-12-01</p> <p>In polar regions, sea ice is a major source of sea salt aerosol through lofting of saline frost flowers or blowing saline snow from the sea ice surface. Under continued climate warming, an ice-free Arctic in summer with only first-year, more saline sea ice in winter is likely. Previous work has focused on climate impacts in summer from increasing open ocean sea salt aerosol emissions following complete sea ice loss in the Arctic, with conflicting results suggesting no net radiative effect or a negative climate feedback resulting from a strong first aerosol indirect effect. However, the radiative forcing from changes to the sea ice sources of sea salt aerosol in a future, warmer climate has not previously been explored. Understanding how sea ice loss affects the Arctic climate system requires investigating both open-ocean and sea ice sources of sea-salt aerosol and their potential interactions. Here, we implement a blowing snow source of sea salt aerosol into the Community Earth System Model (CESM) dynamically coupled to the latest version of the Los Alamos sea ice model (CICE5). Snow salinity is a key parameter affecting blowing snow sea salt emissions and previous work has assumed constant regional snow salinity over sea ice. We develop a parameterization for dynamic snow salinity in the sea ice model and examine how its spatial and temporal variability impacts the production of sea salt from blowing snow. We evaluate and constrain the snow salinity parameterization using available observations. Present-day coupled CESM-CICE5 simulations of sea salt aerosol concentrations including sea ice sources are evaluated against in situ and satellite (CALIOP) observations in polar regions. We then quantify the present-day radiative forcing from the addition of blowing snow sea salt aerosol with respect to aerosol-radiation and aerosol-cloud interactions. The relative contributions of sea ice vs. open ocean sources of sea salt aerosol to radiative forcing in polar regions is discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFMGC22C..06J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFMGC22C..06J"><span>Regional-Scale Forcing and Feedbacks from Alternative Scenarios of Global-Scale Land Use Change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jones, A. D.; Chini, L. P.; Collins, W.; Janetos, A. C.; Mao, J.; Shi, X.; Thomson, A. M.; Torn, M. S.</p> <p>2011-12-01</p> <p>Future patterns of land use change depend critically on the degree to which terrestrial carbon management strategies, such as biological carbon sequestration and biofuels, are utilized in order to mitigate global climate change. Furthermore, land use change associated with terrestrial carbon management induces biogeophysical changes to surface energy budgets that perturb climate at regional and possibly global scales, activating different feedback processes depending on the nature and location of the land use change. As a first step in a broader effort to create an integrated earth system model, we examine two scenarios of future anthropogenic activity generated by the Global Change Assessment Model (GCAM) within the full-coupled Community Earth System Model (CESM). Each scenario stabilizes radiative forcing from greenhouse gases and aerosols at 4.5 W/m^2. In the first, stabilization is achieved through a universal carbon tax that values terrestrial carbon equally with fossil carbon, leading to modest afforestation globally and low biofuel utilization. In the second scenario, stabilization is achieved with a tax on fossil fuel and industrial carbon alone. In this case, biofuel utilization increases dramatically and crop area expands to claim approximately 50% of forest cover globally. By design, these scenarios exhibit identical climate forcing from atmospheric constituents. Thus, differences among them can be attributed to the biogeophysical effects of land use change. In addition, we utilize offline radiative transfer and offline land model simulations to identify forcing and feedback mechanisms operating in different regions. We find that boreal deforestation has a strong climatic signature due to significant albedo change coupled with a regional-scale water vapor feedback. Tropical deforestation, on the other hand, has more subtle effects on climate. Globally, the two scenarios yield warming trends over the 21st century that differ by 0.5 degrees Celsius. This work demonstrates the importance of land use in shaping future patterns of climate change, both globally and regionally.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ACP....18.7961R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ACP....18.7961R"><span>On the representation of aerosol activation and its influence on model-derived estimates of the aerosol indirect effect</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rothenberg, Daniel; Avramov, Alexander; Wang, Chien</p> <p>2018-06-01</p> <p>Interactions between aerosol particles and clouds contribute a great deal of uncertainty to the scientific community's understanding of anthropogenic climate forcing. Aerosol particles serve as the nucleation sites for cloud droplets, establishing a direct linkage between anthropogenic particulate emissions and clouds in the climate system. To resolve this linkage, the community has developed parameterizations of aerosol activation which can be used in global climate models to interactively predict cloud droplet number concentrations (CDNCs). However, different activation schemes can exhibit different sensitivities to aerosol perturbations in different meteorological or pollution regimes. To assess the impact these different sensitivities have on climate forcing, we have coupled three different core activation schemes and variants with the CESM-MARC (two-Moment, Multi-Modal, Mixing-state-resolving Aerosol model for Research of Climate (MARC) coupled with the National Center for Atmospheric Research's (NCAR) Community Earth System Model (CESM; version 1.2)). Although the model produces a reasonable present-day CDNC climatology when compared with observations regardless of the scheme used, ΔCDNCs between the present and preindustrial era regionally increase by over 100 % in zonal mean when using the most sensitive parameterization. These differences in activation sensitivity may lead to a different evolution of the model meteorology, and ultimately to a spread of over 0.8 W m-2 in global average shortwave indirect effect (AIE) diagnosed from the model, a range which is as large as the inter-model spread from the AeroCom intercomparison. Model-derived AIE strongly scales with the simulated preindustrial CDNC burden, and those models with the greatest preindustrial CDNC tend to have the smallest AIE, regardless of their ΔCDNC. This suggests that present-day evaluations of aerosol-climate models may not provide useful constraints on the magnitude of the AIE, which will arise from differences in model estimates of the preindustrial aerosol and cloud climatology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMGC51G..05K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMGC51G..05K"><span>Opportunities and Examples for Integration of Socio-environmental Approaches to Support Climate-informed Decisions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kenney, M. A.</p> <p>2014-12-01</p> <p>Climate and environmental decisions require science that couples human and natural systems to quantify or articulate the observed physical, natural, and societal changes or likely consequences of different decision options. Despite the need for such policy-relevant research, multidisciplinary collaborations can be wrought with challenges of data integration, model interoperability, and communication across disciplinary divides. In this talk, I will present several examples where I have collaborated with colleagues from the physical, natural, and social sciences to develop novel, actionable science to inform decision-making. Specifically, I will discuss a cost analysis of water and sediment diversions to optimize land building in the Mississippi River delta (winner of American Geophysical Union Water Resources Research Editor's Choice Award 2014) and the development of a National Climate Indicator System that uses knowledge across the physical, natural, and social sciences to establish an end-to-end indicator system of climate changes, impacts, vulnerabilities, and responses. The latter project is in the process of moving from research to operations, an additional challenge and opportunity, as we work with the U.S. Global Change Research Program and their affiliated Federal agencies to establish it beyond the research prototype. Using these examples, I will provide some lessons learned that would have general applicability to socio-environmental research collaborations and integration of data, models, and information systems to support climate and environmental decision-making.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19940026113','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19940026113"><span>Towards coupled physical-biogeochemical models of the ocean carbon cycle</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rintoul, Stephen R.</p> <p>1992-01-01</p> <p>The purpose of this review is to discuss the critical gaps in our knowledge of ocean dynamics and biogeochemical cycles. It is assumed that the ultimate goal is the design of a model of the earth system that can predict the response to changes in the external forces driving climate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.B44A..03X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.B44A..03X"><span>Spatiotemporal Exploration of Impacts of Coupled Climate and Socioeconomic Changes on Grassland Ecosystems (Invited)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xie, Y.</p> <p>2013-12-01</p> <p>Although the coupled impacts of climate change and human adaptation on land cover change has been a prime research topic in recent years, a majority of reported efforts are examining the coupled effects of climate and socioeconomic factors qualitatively. Even though some are applying statistical methods, they often look into the impacts of coupled climate variations and socioeconomic transformations on land cover changes in a detached or sequential manner, or they handle socioeconomic influences indirectly through land use changes. Very few of them deal with the coupled effects concurrently through times and cross regions. We assimilate a big dataset of climate change, plant community growth condition, and socioeconomic transformation in Inner Mongolia of China. The study area consists of twelve types of plant communities, reflecting an east-to-west water-temperature gradient from moist meadow-type, to typical steppe-type and then to arid desert-type communities. The enhanced vegetation index (EVI), derived from MODIS at a 250 m resolution and 16-day intervals from May 8 to September 28 during 2000-2010, is adopted as a proxy for vegetation growth. The inter-annual and intra-annual changes of seven climate factors (barometric pressure, humidity, precipitation, sunlight hours, temperature, vapor pressure and wind speed) during the same period are synchronized with the EVI observations. Ten socioeconomic variables (urban population, urban GDP, rural GDP, grain output, livestock, fixed assets investment, local government revenue, per capita net income of farmers and pastoralists, the total length of highways, and rural population) are collected over 34 counties in the study area and during the same period. The GIS-based spatial database approach is adopted to integrate all of the above data into a big spatiotemporal dataset. We develop a multi-controlled panel-data regression model to investigate spatiotemporal changes of vegetation growth and their underlying causes of coupled climate and human impacts. We are able to examine the causal relationships between vegetation growth and coupled climate change and socioeconomic transformation either from the perspective of seasonal, annual, eco-regional, or by-county change, respectively. Most importantly, we can investigate the causal relations concurrently over seasons and years and across administrative or ecological regions. The findings confirm that climate changes and human socioeconomic activities jointly affect vegetation growth and its trajectory of change; these climate and human factors reveal varied levels of impacts (sunshine hour, humidity, vapor, grain production, precipitation, urban-GDP, livestock, and urban population in descending order positively affect vegetation growth, while rural-GDP and rural population negatively do); and the causal relationships show clear seasonal trends, annual fluctuations, and regional disparities, depending on a variety of ecologically and economically varying contextual factors. The potential of applying our model and approach in the Eurasian Steppes is very promising.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1988hepu.conf.....B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1988hepu.conf.....B"><span>Overview of ground coupled heat pump research and technology transfer activities</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Baxter, V. D.; Mei, V. C.</p> <p></p> <p>Highlights of DOE-sponsored ground coupled heat pump (GCHP) research at Oak Ridge National Laboratory (ORNL) are presented. ORNL, in cooperation with Niagara Mohawk Power Company, Climate Master, Inc., and Brookhaven National Laboratory developed and demonstrated an advanced GCHP design concept with shorter ground coils that can reduce installed costs for northern climates. In these areas it can also enhance the competitiveness of GCHP systems versus air-source heat pumps by lowering their payback from 6 to 7 years to 3 to 5 years. Ground coil heat exchanger models (based primarily on first principles) have been developed and used by others to generate less conservative ground coil sizing methods. An aggressive technology transfer initiative was undertaken to publicize results of this research and make it available to the industry. Included in this effort were an international workshop, trade press releases and articles, and participation in a live teleconference on GCHP technology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1612369D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1612369D"><span>Convergence in France facing Big Data era and Exascale challenges for Climate Sciences</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Denvil, Sébastien; Dufresne, Jean-Louis; Salas, David; Meurdesoif, Yann; Valcke, Sophie; Caubel, Arnaud; Foujols, Marie-Alice; Servonnat, Jérôme; Sénési, Stéphane; Derouillat, Julien; Voury, Pascal</p> <p>2014-05-01</p> <p>The presentation will introduce a french national project : CONVERGENCE that has been funded for four years. This project will tackle big data and computational challenges faced by climate modeling community in HPC context. Model simulations are central to the study of complex mechanisms and feedbacks in the climate system and to provide estimates of future and past climate changes. Recent trends in climate modelling are to add more physical components in the modelled system, increasing the resolution of each individual component and the more systematic use of large suites of simulations to address many scientific questions. Climate simulations may therefore differ in their initial state, parameter values, representation of physical processes, spatial resolution, model complexity, and degree of realism or degree of idealisation. In addition, there is a strong need for evaluating, improving and monitoring the performance of climate models using a large ensemble of diagnostics and better integration of model outputs and observational data. High performance computing is currently reaching the exascale and has the potential to produce this exponential increase of size and numbers of simulations. However, post-processing, analysis, and exploration of the generated data have stalled and there is a strong need for new tools to cope with the growing size and complexity of the underlying simulations and datasets. Exascale simulations require new scalable software tools to generate, manage and mine those simulations ,and data to extract the relevant information and to take the correct decision. The primary purpose of this project is to develop a platform capable of running large ensembles of simulations with a suite of models, to handle the complex and voluminous datasets generated, to facilitate the evaluation and validation of the models and the use of higher resolution models. We propose to gather interdisciplinary skills to design, using a component-based approach, a specific programming environment for scalable scientific simulations and analytics, integrating new and efficient ways of deploying and analysing the applications on High Performance Computing (HPC) system. CONVERGENCE, gathering HPC and informatics expertise that cuts across the individual partners and the broader HPC community, will allow the national climate community to leverage information technology (IT) innovations to address its specific needs. Our methodology consists in developing an ensemble of generic elements needed to run the French climate models with different grids and different resolution, ensuring efficient and reliable execution of these models, managing large volume and number of data and allowing analysis of the results and precise evaluation of the models. These elements include data structure definition and input-output (IO), code coupling and interpolation, as well as runtime and pre/post-processing environments. A common data and metadata structure will allow transferring consistent information between the various elements. All these generic elements will be open source and publicly available. The IPSL-CM and CNRM-CM climate models will make use of these elements that will constitute a national platform for climate modelling. This platform will be used, in its entirety, to optimise and tune the next version of the IPSL-CM model and to develop a global coupled climate model with a regional grid refinement. It will also be used, at least partially, to run ensembles of the CNRM-CM model at relatively high resolution and to run a very-high resolution prototype of this model. The climate models we developed are already involved in many international projects. For instance we participate to the CMIP (Coupled Model Intercomparison Project) project that is very demanding but has a high visibility: its results are widely used and are in particular synthesised in the IPCC (Intergovernmental Panel on Climate Change) assessment reports. The CONVERGENCE project will constitute an invaluable step for the French climate community to prepare and better contribute to the next phase of the CMIP project.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.6560B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.6560B"><span>Quantifying alluvial fan sensitivity to climate in Death Valley, California, from field observations and numerical models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brooke, Sam; Whittaker, Alexander; Armitage, John; D'Arcy, Mitch; Watkins, Stephen</p> <p>2017-04-01</p> <p>A quantitative understanding of landscape sensitivity to climate change remains a key challenge in the Earth Sciences. The stream-flow deposits of coupled catchment-fan systems offer one way to decode past changes in external boundary conditions as they comprise simple, closed systems that can be represented effectively by numerical models. Here we combine the collection and analysis of grain size data on well-dated alluvial fan surfaces in Death Valley, USA, with numerical modelling to address the extent to which sediment routing systems record high-frequency, high-magnitude climate change. We compile a new database of Holocene and Late-Pleistocene grain size trends from 11 alluvial fans in Death Valley, capturing high-resolution grain size data ranging from the Recent to 100 kyr in age. We hypothesise the observed changes in average surface grain size and fining rate over time are a record of landscape response to glacial-interglacial climatic forcing. With this data we are in a unique position to test the predictions of landscape evolution models and evaluate the extent to which climate change has influenced the volume and calibre of sediment deposited on alluvial fans. To gain insight into our field data and study area, we employ an appropriately-scaled catchment-fan model that calculates an eroded volumetric sediment budget to be deposited in a subsiding basin according to mass balance where grain size trends are predicted by a self-similarity fining model. We use the model to compare predicted trends in alluvial fan stratigraphy as a function of boundary condition change for a range of model parameters and input grain size distributions. Subsequently, we perturb our model with a plausible glacial-interglacial magnitude precipitation change to estimate the requisite sediment flux needed to generate observed field grain size trends in Death Valley. Modelled fluxes are then compared with independent measurements of sediment supply over time. Our results constitute one of the first attempts to combine the detailed collection of alluvial fan grain size data in time and space with coupled catchment-fan models, affording us the means to evaluate how well field and model data can be reconciled for simple sediment routing systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFMGC21E..01W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFMGC21E..01W"><span>A Regional Climate Model Evaluation System based on contemporary Satellite and other Observations for Assessing Regional Climate Model Fidelity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Waliser, D. E.; Kim, J.; Mattman, C.; Goodale, C.; Hart, A.; Zimdars, P.; Lean, P.</p> <p>2011-12-01</p> <p>Evaluation of climate models against observations is an essential part of assessing the impact of climate variations and change on regionally important sectors and improving climate models. Regional climate models (RCMs) are of a particular concern. RCMs provide fine-scale climate needed by the assessment community via downscaling global climate model projections such as those contributing to the Coupled Model Intercomparison Project (CMIP) that form one aspect of the quantitative basis of the IPCC Assessment Reports. The lack of reliable fine-resolution observational data and formal tools and metrics has represented a challenge in evaluating RCMs. Recent satellite observations are particularly useful as they provide a wealth of information and constraints on many different processes within the climate system. Due to their large volume and the difficulties associated with accessing and using contemporary observations, however, these datasets have been generally underutilized in model evaluation studies. Recognizing this problem, NASA JPL and UCLA have developed the Regional Climate Model Evaluation System (RCMES) to help make satellite observations, in conjunction with in-situ and reanalysis datasets, more readily accessible to the regional modeling community. The system includes a central database (Regional Climate Model Evaluation Database: RCMED) to store multiple datasets in a common format and codes for calculating and plotting statistical metrics to assess model performance (Regional Climate Model Evaluation Tool: RCMET). This allows the time taken to compare model data with satellite observations to be reduced from weeks to days. RCMES is a component of the recent ExArch project, an international effort for facilitating the archive and access of massive amounts data for users using cloud-based infrastructure, in this case as applied to the study of climate and climate change. This presentation will describe RCMES and demonstrate its utility using examples from RCMs applied to the southwest US as well as to Africa based on output from the CORDEX activity. Application of RCMES to the evaluation of multi-RCM hindcast for CORDEX-Africa will be presented in a companion paper in A41.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70040707','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70040707"><span>Projected future changes in vegetation in western North America in the 21st century</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Xiaoyan, Jiang; Rauscher, Sara A.; Ringler, Todd D.; Lawrence, David M.; Williams, A. Park; Allen, Craig D.; Steiner, Allison L.; Cai, D. Michael; McDowell, Nate G.</p> <p>2013-01-01</p> <p>Rapid and broad-scale forest mortality associated with recent droughts, rising temperature, and insect outbreaks has been observed over western North America (NA). Climate models project additional future warming and increasing drought and water stress for this region. To assess future potential changes in vegetation distributions in western NA, the Community Earth System Model (CESM) coupled with its Dynamic Global Vegetation Model (DGVM) was used under the future A2 emissions scenario. To better span uncertainties in future climate, eight sea surface temperature (SST) projections provided by phase 3 of the Coupled Model Intercomparison Project (CMIP3) were employed as boundary conditions. There is a broad consensus among the simulations, despite differences in the simulated climate trajectories across the ensemble, that about half of the needleleaf evergreen tree coverage (from 24% to 11%) will disappear, coincident with a 14% (from 11% to 25%) increase in shrubs and grasses by the end of the twenty-first century in western NA, with most of the change occurring over the latter half of the twenty-first century. The net impact is a ~6 GtC or about 50% decrease in projected ecosystem carbon storage in this region. The findings suggest a potential for a widespread shift from tree-dominated landscapes to shrub and grass-dominated landscapes in western NA because of future warming and consequent increases in water deficits. These results highlight the need for improved process-based understanding of vegetation dynamics, particularly including mortality and the subsequent incorporation of these mechanisms into earth system models to better quantify the vulnerability of western NA forests under climate change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012PhDT.......103T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012PhDT.......103T"><span>Soil Moisture-Atmosphere Feedbacks on Atmospheric Tracers: The Effects of Soil Moisture on Precipitation and Near-Surface Chemistry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tawfik, Ahmed B.</p> <p></p> <p>The atmospheric component is described by rapid fluctuations in typical state variables, such as temperature and water vapor, on timescales of hours to days and the land component evolves on daily to yearly timescales. This dissertation examines the connection between soil moisture and atmospheric tracers under varying degrees of soil moisture-atmosphere coupling. Land-atmosphere coupling is defined over the United States using a regional climate model. A newly examined soil moisture-precipitation feedback is identified for winter months extending the previous summer feedback to colder temperature climates. This feedback is driven by the freezing and thawing of soil moisture, leading to coupled land-atmosphere conditions near the freezing line. Soil moisture can also affect the composition of the troposphere through modifying biogenic emissions of isoprene (C5H8). A novel first-order Taylor series decomposition indicates that isoprene emissions are jointly driven by temperature and soil moisture in models. These compounds are important precursors for ozone formation, an air pollutant and a short-lived forcing agent for climate. A mechanistic description of commonly observed relationships between ground-level ozone and meteorology is presented using the concept of soil moisture-temperature coupling regimes. The extent of surface drying was found to be a better predictor of ozone concentrations than temperature or humidity for the Eastern U.S. This relationship is evaluated in a coupled regional chemistry-climate model under several land-atmosphere coupling and isoprene emissions cases. The coupled chemistry-climate model can reproduce the observed soil moisture-temperature coupling pattern, yet modeled ozone is insensitive to changes in meteorology due to the balance between isoprene and the primary atmospheric oxidant, the hydroxyl radical (OH). Overall, this work highlights the importance of soil moisture-atmosphere coupling for previously neglected cold climate regimes, controlling isoprene emissions variability, and providing a processed-based description of observed ozone-meteorology relationships. From the perspective of ozone air quality, the lack of sensitivity of ozone to meteorology suggests a systematic deficiency in chemistry models in high isoprene emission regions. This shortcoming must be addressed to better estimate tropospheric ozone radiative forcing and to understanding how ozone air quality may respond to future warming.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.A33R..01W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.A33R..01W"><span>Vegetation-climate feedback causes reduced precipitation and tropical rainforest cover in CMIP5 regional Earth system model simulation over Africa</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wu, M.; Smith, B.; Samuelsson, P.; Rummukainen, M.; Schurgers, G.</p> <p>2012-12-01</p> <p>We applied a coupled regional climate-vegetation model, RCA-GUESS (Smith et al. 2011), over the CORDEX Africa domain, forced by boundary conditions from a CanESM2 CMIP5 simulation under the RCP8.5 future climate scenario. The simulations were from 1961 to 2100 and covered the African continent at a horizontal grid spacing of 0.44°. RCA-GUESS simulates changes in the phenology, productivity, relative cover and population structure of up to eight plant function types (PFTs) in response to forcing from the climate part of the model. These vegetation changes feed back to simulated climate through dynamic adjustments in surface energy fluxes and surface properties. Changes in the net ecosystem-atmosphere carbon flux and its components net primary production (NPP), heterotrophic respiration and emissions from biomass burning were also simulated but do not feed back to climate in our model. Constant land cover was assumed. We compared simulations with and without vegetation feedback switched "on" to assess the influence of vegetation-climate feedback on simulated climate, vegetation and ecosystem carbon cycling. Both positive and negative warming feedbacks were identified in different parts of Africa. In the Sahel savannah zone near 15°N, reduced vegetation cover and productivity, and mortality caused by a deterioration of soil water conditions led to a positive warming feedback mediated by decreased evapotranspiration and increased sensible heat flux between vegetation and the atmosphere. In the equatorial rainforest stronghold region of central Africa, a feedback syndrome characterised by reduced plant production and LAI, a dominance shift from tropical trees to grasses, reduced soil water and reduced rainfall was identified. The likely underlying mechanism was a decline in evaporative water recycling associated with sparser vegetation cover, reminiscent of Earth system model studies in which a similar feedback mechanism was simulated to force dieback of tropical rainforest and reduced precipitation over the Amazon Basin (Cox et al. 2000; Betts et al. 2004; Malhi et al. 2009). Opposite effects are seen in southern Senegal, southern Mali, northern Guinea and Guinea-Bissau, positive evapotranspiration feedback enhancing the cover of trees in forest and savannah, mitigating warming and promoting local moisture recycling as rainfall. Our study, the first application of a coupled Earth system model at regional scale and resolution over Africa, reveals that vegetation-climate feedbacks may significantly impact the magnitude and character of simulated changes in climate as well as vegetation and ecosystems in future scenario studies of this region. They should be accounted for in future studies of climate change and its impacts on Africa.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EaFut...5..337D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EaFut...5..337D"><span>Climate model uncertainty in impact assessments for agriculture: A multi-ensemble case study on maize in sub-Saharan Africa</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dale, Amy; Fant, Charles; Strzepek, Kenneth; Lickley, Megan; Solomon, Susan</p> <p>2017-03-01</p> <p>We present maize production in sub-Saharan Africa as a case study in the exploration of how uncertainties in global climate change, as reflected in projections from a range of climate model ensembles, influence climate impact assessments for agriculture. The crop model AquaCrop-OS (Food and Agriculture Organization of the United Nations) was modified to run on a 2° × 2° grid and coupled to 122 climate model projections from multi-model ensembles for three emission scenarios (Coupled Model Intercomparison Project Phase 3 [CMIP3] SRES A1B and CMIP5 Representative Concentration Pathway [RCP] scenarios 4.5 and 8.5) as well as two "within-model" ensembles (NCAR CCSM3 and ECHAM5/MPI-OM) designed to capture internal variability (i.e., uncertainty due to chaos in the climate system). In spite of high uncertainty, most notably in the high-producing semi-arid zones, we observed robust regional and sub-regional trends across all ensembles. In agreement with previous work, we project widespread yield losses in the Sahel region and Southern Africa, resilience in Central Africa, and sub-regional increases in East Africa and at the southern tip of the continent. Spatial patterns of yield losses corresponded with spatial patterns of aridity increases, which were explicitly evaluated. Internal variability was a major source of uncertainty in both within-model and between-model ensembles and explained the majority of the spatial distribution of uncertainty in yield projections. Projected climate change impacts on maize production in different regions and nations ranged from near-zero or positive (upper quartile estimates) to substantially negative (lower quartile estimates), highlighting a need for risk management strategies that are adaptive and robust to uncertainty.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMGC43C1177B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMGC43C1177B"><span>On the Edge: the Impact of Climate Change, Climate Extremes, and Climate-driven Disturbances on the Food-Energy-Water Nexus in the Colorado River Basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bennett, K. E.; McDowell, N. G.; Tidwell, V. C.; Xu, C.; Solander, K.; Jonko, A. K.; Wilson, C. J.; Middleton, R. S.</p> <p>2016-12-01</p> <p>The Colorado River Basin (CRB) is a critical watershed in terms of vulnerability to climate change and supporting the food-energy-water nexus. Climate-driven disturbances in the CRB—including wildfire, drought, and pests—threaten the watershed's ability to reliably support a wide array of ecosystem services while meeting the interrelated demands of the food-energy-water nexus. Our work illustrates future changes for upper Colorado River headwater basins using the Variable Infiltration Capacity hydrologic model driven by downscaled CMIP5 global climate data coupled with pseudo-dynamic vegetation shifts associated with changing fire and drought conditions. We examine future simulated streamflow within the context of an operational model framework to consider the impacts on water operators and managers who rely upon the timely and continual delivery of streamflow. We focus on results for a large case study basin within the CRB—the San Juan River—showing future scenarios where this ecosystem is pushed towards the extremes. Our findings illustrate that landscape change in the CRB cause delayed snowmelt and increased evapotranspiration from shrublands, which leads to increases in the frequency and magnitude of both droughts and floods within disturbed systems. By 2080, coupled climate and landscape change produces a dramatically altered hydrograph resulting in larger peak flows, reduced lower flows, and lower overall streamflow. Operationally, this results in increased future water delivery challenges and lower reservoir storages driven by changes in the headwater basins. Ultimately, our work shows that the already-stressed CRB ecosystem could, in the future, be pushed over a tipping point, significantly impacting the basin's ability to reliably supply water for food, energy, and urban uses.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.H33F1381M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.H33F1381M"><span>Emergent properties of climate-vegetation feedbacks in the North American Monsoon Macrosystem</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mathias, A.; Niu, G.; Zeng, X.</p> <p>2012-12-01</p> <p>The ability of ecosystems to adapt naturally to climate change and associated disturbances (e.g. wildfires, spread of invasive species) is greatly affected by the stability of feedback interactions between climate and vegetation. In order to study climate-vegetation interactions, such as CO2 and H2O exchange in the North American Monsoon System (NAMS), we plan to couple a community land surface model (NoahMP or CLM) used in regional climate models (WRF) with an individual based, spatially explicit vegetation model (ECOTONE). Individual based modeling makes it possible to link individual plant traits with properties of plant communities. Community properties, such as species composition and species distribution arise from dynamic interactions of individual plants with each other, and with their environment. Plants interact with each other through intra- and interspecific competition for resources (H2O, nitrogen), and the outcome of these interactions depends on the properties of the plant community and the environment itself. In turn, the environment is affected by the resulting change in community structure, which may have an impact on the drivers of climate change. First, we performed sensitivity tests of ECOTONE to assess its ability to reproduce vegetation distribution in the NAMS. We compared the land surface model and ECOTONE with regard to their capability to accurately simulate soil moisture, CO2 flux and above ground biomass. For evaluating the models we used the eddy-correlation sensible and latent heat fluxes, CO2 flux and observations of other climate and environmental variables (e.g. soil temperature and moisture) from the Santa Rita experimental range. The model intercomparison helped us understand the advantages and disadvantages of each model, providing us guidance for coupling the community land surface model (NoahMP or CLM) with ECOTONE.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4032513','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4032513"><span>The Southern Ocean in the Coupled Model Intercomparison Project phase 5</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Meijers, A. J. S.</p> <p>2014-01-01</p> <p>The Southern Ocean is an important part of the global climate system, but its complex coupled nature makes both its present state and its response to projected future climate forcing difficult to model. Clear trends in wind, sea-ice extent and ocean properties emerged from multi-model intercomparison in the Coupled Model Intercomparison Project phase 3 (CMIP3). Here, we review recent analyses of the historical and projected wind, sea ice, circulation and bulk properties of the Southern Ocean in the updated Coupled Model Intercomparison Project phase 5 (CMIP5) ensemble. Improvements to the models include higher resolutions, more complex and better-tuned parametrizations of ocean mixing, and improved biogeochemical cycles and atmospheric chemistry. CMIP5 largely reproduces the findings of CMIP3, but with smaller inter-model spreads and biases. By the end of the twenty-first century, mid-latitude wind stresses increase and shift polewards. All water masses warm, and intermediate waters freshen, while bottom waters increase in salinity. Surface mixed layers shallow, warm and freshen, whereas sea ice decreases. The upper overturning circulation intensifies, whereas bottom water formation is reduced. Significant disagreement exists between models for the response of the Antarctic Circumpolar Current strength, for reasons that are as yet unclear. PMID:24891395</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.A31I..08Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.A31I..08Z"><span>Understanding the land-atmospheric interaction in drought forecast from CFSv2 for the 2011 Texas and 2012 Upper Midwest US droughts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Y.; Roundy, J. K.; Ek, M. B.; Wood, E. F.</p> <p>2015-12-01</p> <p>Prediction and thus preparedness in advance of hydrological extremes, such as drought and flood events, is crucial for proactively reducing their social and economic impacts. In the summers of 2011 Texas, and 2012 the Upper Midwest, experienced intense droughts that affected crops and the food market in the US. It is expected that seasonal forecasts with sufficient skill would reduce the negative impacts through planning and preparation. However, the forecast skill from models such as Climate Forecast System Version 2 (CFSv2) from National Centers for Environmental Prediction (NCEP) is low over the US, especially during the warm season (Jun - Sep), which restricts their practical use for drought prediction. This study analyzes the processes that lead to premature termination of 2011 and 2012 US summer droughts in CFSv2 forecast resulting in its low forecast skill. Using the North American Land Data Assimilation System version 2 (NLDAS2) and Climate Forecast System Reanalysis (CFSR) as references, this study investigates the forecast skills of CFSv2 initialized at 00, 06, 12, 18z from May 15 - 31 (leads out to September) for each event in terms of land-atmosphere interaction, through a recently developed Coupling Drought Index (CDI), which is based on the Convective Triggering Potential-Humidity Index-soil moisture (CTP-HI-SM) classification of four climate regimes: wet coupling, dry coupling, transitional and atmospherically controlled. A recycling model is used to trace the moisture sources in the CFSv2 forecasts of anomalous precipitation, which lead to the breakdown of drought conditions and a lack of drought forecasting skills. This is then compared with tracing the moisture source in CFSR with the same recycling model, which is used as the verification for the same periods. This helps to identify the parameterization that triggered precipitation in CFSv2 during 2011 and 2012 summer in the US thus has the potential to improve the forecast skill of CSFv2.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFMIN11E..02N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFMIN11E..02N"><span>GEOSS AIP-2 Climate Change and Biodiversity Use Scenarios: Interoperability Infrastructures (Invited)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nativi, S.; Santoro, M.</p> <p>2009-12-01</p> <p>Currently, one of the major challenges for scientific community is the study of climate change effects on life on Earth. To achieve this, it is crucial to understand how climate change will impact on biodiversity and, in this context, several application scenarios require modeling the impact of climate change on distribution of individual species. In the context of GEOSS AIP-2 (Global Earth Observation System of Systems, Architecture Implementation Pilot- Phase 2), the Climate Change & Biodiversity thematic Working Group developed three significant user scenarios. A couple of them make use of a GEOSS-based framework to study the impact of climate change factors on regional species distribution. The presentation introduces and discusses this framework which provides an interoperability infrastructures to loosely couple standard services and components to discover and access climate and biodiversity data, and run forecast and processing models. The framework is comprised of the following main components and services: a)GEO Portal: through this component end user is able to search, find and access the needed services for the scenario execution; b)Graphical User Interface (GUI): this component provides user interaction functionalities. It controls the workflow manager to perform the required operations for the scenario implementation; c)Use Scenario controller: this component acts as a workflow controller implementing the scenario business process -i.e. a typical climate change & biodiversity projection scenario; d)Service Broker implementing Mediation Services: this component realizes a distributed catalogue which federates several discovery and access components (exposing them through a unique CSW standard interface). Federated components publish climate, environmental and biodiversity datasets; e)Ecological Niche Model Server: this component is able to run one or more Ecological Niche Models (ENM) on selected biodiversity and climate datasets; f)Data Access Transaction server: this component publishes the model outputs. The framework was successfully tested in two use scenarios of the GEOSS AIP-2 Climate Change and Biodiversity WG aiming to predict species distribution changes due to Climate Change factors, with the scientific patronage of the University of Colorado and the University of Alaska. The first scenario dealt with the Pikas specie regional distribution in the Great Basin area (North America). While, the second one concerned the modeling of the Arctic Food Chain species in the North Pole area -the relationships between different environmental parameters and Polar Bears distribution was analyzed. Results are published in the GEOSS AIP-2 web site: http://www.ogcnetwork.net/AIP2develop .</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC31D1036M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC31D1036M"><span>Feasible Electricity Infrastructure Pathways in the Context of Climate-Water Change Constraints</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Miara, A.; Vorosmarty, C. J.; Macknick, J.; Cohen, S. M.; Tidwell, V. C.; Newmark, R. L.; Fekete, B. M.; Corsi, F.; Sun, Y.; Proussevitch, A. A.; Glidden, S.</p> <p>2017-12-01</p> <p>The carbon and water intensity of US electricity generation has recently decreased due to the natural gas revolution and deployment of renewable technologies. Yet, power plants that require water for cooling still provide 80% of electricity generation and projected climate-water conditions may limit their power output and affect reliability. Understanding the connections and tradeoffs across water, electricity and climate systems is timely, as the nation tries to mitigate and adapt to a changing climate. Electricity expansion models are used to provide insight on power sector pathways given certain policy goals and economic conditions, but do not typically account for productivity limitations due to physical climate-water constraints. Here, we account for such constraints by coupling an electricity expansion model (Regional Energy Deployment System - ReEDS) with the combined Water Balance and Thermoelectric Power and Thermal Pollution Models (WBM-TP2M), which calculate the available capacity at power plants as a function of hydrologic flows, climate conditions, power plant technology and environmental regulations. To fully capture and incorporate climate-water impacts into ReEDS, a specific rule-set was designed for the temporal and spatial downscaling and up-scaling of ReEDS results into WBM-TP2M inputs and visa versa - required to achieve a modeling `loop' that will enable convergence on a feasible solution in the context of economic and geophysical constraints and opportunities. This novel modeling approach is the next phase of research for understanding electricity system vulnerabilities and adaptation measures using energy-water-climate modeling, which to-date has been limited by a focus on individual generators without analyzing power generation as a collective regional system. This study considers four energy policy/economic pathways under future climate-water resource conditions, designed under the National Energy Water System assessment framework. Results highlight the importance of linking Earth-system and economic modeling tools and provide insight on potential electricity infrastructure pathways that are sustainable, in terms lowering both water use and carbon emissions, and reliable in the face of future climate-water resource constraints.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.2288S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.2288S"><span>Storylines of socio-economic and climatic drivers for land use and their hydrological impacts in alpine catchments - the STELLA project example</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Strasser, Ulrich; Formayer, Herbert; Förster, Kristian; Marke, Thomas; Meißl, Gertraud; Schermer, Markus; Stotten, Friederike; Themessl, Matthias</p> <p>2016-04-01</p> <p>Future land use in Alpine catchments is controlled by the evolution of socio-economy and climate. Estimates of their coupled development should hence fulfill the principles of plausibility (be convincing) and consistency (be unambiguous). In the project STELLA, coupled future climate and land use scenarios are used as input in a hydrological modelling exercise with the physically-based, distributed water balance model WaSiM. The aim of the project is to quantify the effects of these two framing components on the future water cycle. The test site for the simulations is the catchment of the Brixentaler Ache in Tyrol/Austria (47.5°N, 322 km2). The so-called „storylines" of future coupled climate and forest/land use management, policy, social cooperation, tourism and economy have jointly been developed in an inter- and transdisciplinary assessment with local actors. The climate background is given by simulations for the A1B (temperature conditions like today in Merano/Italy, 46.7°N) and RCP 8.5 (temperature conditions like today in Bologna/Italy, 44.5°N) emission scenarios. These two climate scenarios were combined with three potential socio-economic developments („local"/„glocal"/ „superglobal"), each in a positive and in a negative specification. From these twelve storylines of coupled climate/land use future, a set of four storylines was selected to be used in transient hydrological modelling experiments. Historical simulations of the water balance for the test site reveal the pattern of land use being the most prominent factor for the spatial distribution of its components. A new prototype for a snow-canopy interaction simulation module provides explicit rates of intercepted and sublimated snow from the trees and stems of the different forest stands in the catchment. This new canopy module will be used to model the coupled climate/land use future storylines for the Brixental. The aim is to quantify the effects of climate change and land use on the water balance and streamflow, both separately and in their respective combination.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010TellA..62..737U','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010TellA..62..737U"><span>Probabilistic hindcasts and projections of the coupled climate, carbon cycle and Atlantic meridional overturning circulation system: a Bayesian fusion of century-scale observations with a simple model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Urban, Nathan M.; Keller, Klaus</p> <p>2010-10-01</p> <p>How has the Atlantic Meridional Overturning Circulation (AMOC) varied over the past centuries and what is the risk of an anthropogenic AMOC collapse? We report probabilistic projections of the future climate which improve on previous AMOC projection studies by (i) greatly expanding the considered observational constraints and (ii) carefully sampling the tail areas of the parameter probability distribution function (pdf). We use a Bayesian inversion to constrain a simple model of the coupled climate, carbon cycle and AMOC systems using observations to derive multicentury hindcasts and projections. Our hindcasts show considerable skill in representing the observational constraints. We show that robust AMOC risk estimates can require carefully sampling the parameter pdfs. We find a low probability of experiencing an AMOC collapse within the 21st century for a business-as-usual emissions scenario. The probability of experiencing an AMOC collapse within two centuries is 1/10. The probability of crossing a forcing threshold and triggering a future AMOC collapse (by 2300) is approximately 1/30 in the 21st century and over 1/3 in the 22nd. Given the simplicity of the model structure and uncertainty in the forcing assumptions, our analysis should be considered a proof of concept and the quantitative conclusions subject to severe caveats.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A21F2211K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A21F2211K"><span>Can decadal climate predictions be improved by ocean ensemble dispersion filtering?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kadow, C.; Illing, S.; Kröner, I.; Ulbrich, U.; Cubasch, U.</p> <p>2017-12-01</p> <p>Decadal predictions by Earth system models aim to capture the state and phase of the climate several years inadvance. Atmosphere-ocean interaction plays an important role for such climate forecasts. While short-termweather forecasts represent an initial value problem and long-term climate projections represent a boundarycondition problem, the decadal climate prediction falls in-between these two time scales. The ocean memorydue to its heat capacity holds big potential skill on the decadal scale. In recent years, more precise initializationtechniques of coupled Earth system models (incl. atmosphere and ocean) have improved decadal predictions.Ensembles are another important aspect. Applying slightly perturbed predictions results in an ensemble. Insteadof using and evaluating one prediction, but the whole ensemble or its ensemble average, improves a predictionsystem. However, climate models in general start losing the initialized signal and its predictive skill from oneforecast year to the next. Here we show that the climate prediction skill of an Earth system model can be improvedby a shift of the ocean state toward the ensemble mean of its individual members at seasonal intervals. Wefound that this procedure, called ensemble dispersion filter, results in more accurate results than the standarddecadal prediction. Global mean and regional temperature, precipitation, and winter cyclone predictions showan increased skill up to 5 years ahead. Furthermore, the novel technique outperforms predictions with largerensembles and higher resolution. Our results demonstrate how decadal climate predictions benefit from oceanensemble dispersion filtering toward the ensemble mean. This study is part of MiKlip (fona-miklip.de) - a major project on decadal climate prediction in Germany.We focus on the Max-Planck-Institute Earth System Model using the low-resolution version (MPI-ESM-LR) andMiKlip's basic initialization strategy as in 2017 published decadal climate forecast: http://www.fona-miklip.de/decadal-forecast-2017-2026/decadal-forecast-for-2017-2026/ More informations about this study in JAMES:DOI: 10.1002/2016MS000787</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1610009S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1610009S"><span>Exploring coupled 4D-Var data assimilation using an idealised atmosphere-ocean model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Smith, Polly; Fowler, Alison; Lawless, Amos; Haines, Keith</p> <p>2014-05-01</p> <p>The successful application of data assimilation techniques to operational numerical weather prediction and ocean forecasting systems has led to an increased interest in their use for the initialisation of coupled atmosphere-ocean models in prediction on seasonal to decadal timescales. Coupled data assimilation presents a significant challenge but offers a long list of potential benefits including improved use of near-surface observations, reduction of initialisation shocks in coupled forecasts, and generation of a consistent system state for the initialisation of coupled forecasts across all timescales. In this work we explore some of the fundamental questions in the design of coupled data assimilation systems within the context of an idealised one-dimensional coupled atmosphere-ocean model. The system is based on the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecast System (IFS) atmosphere model and a K-Profile Parameterisation (KKP) mixed layer ocean model developed by the National Centre for Atmospheric Science (NCAS) climate group at the University of Reading. It employs a strong constraint incremental 4D-Var scheme and is designed to enable the effective exploration of various approaches to performing coupled model data assimilation whilst avoiding many of the issues associated with more complex models. Working with this simple framework enables a greater range and quantity of experiments to be performed. Here, we will describe the development of our simplified single-column coupled atmosphere-ocean 4D-Var assimilation system and present preliminary results from a series of identical twin experiments devised to investigate and compare the behaviour and sensitivities of different coupled data assimilation methodologies. This includes comparing fully and weakly coupled assimilations with uncoupled assimilation, investigating whether coupled assimilation can eliminate or lessen initialisation shock in coupled model forecasts, and exploring the effect of the assimilation window length in coupled assimilations. These experiments will facilitate a greater theoretical understanding of the coupled atmosphere-ocean data assimilation problem and thus help guide the design and implementation of different coupling strategies within operational systems. This research is funded by the European Space Agency (ESA) and the UK Natural Environment Research Council (NERC). The ESA funded component is part of the Data Assimilation Projects - Coupled Model Data Assimilation initiative whose goal is to advance data assimilation techniques in fully coupled atmosphere-ocean models (see http://www.esa-da.org/). It is being conducted in parallel to the development of prototype weakly coupled data assimilation systems at both the UK Met Office and ECMWF.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMOS23C2025A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMOS23C2025A"><span>Response of the pelagic system of the Pacific Ocean off Baja California Peninsula to the projected effects of climate change: insights from a numerical model.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Arellano, B.; Rivas, D.</p> <p>2015-12-01</p> <p>The response of the physical and biological dynamics of the Pacific Ocean off Baja California to the projected effects of climate change are studied using numerical simulations. This region is part of the California Current System, which is a highly productive ecosystem due to the seasonal upwelling, supporting all the trophic levels and important fisheries. The response of the ecosystem to the effects of climate change is uncertain and the information generated by models could be useful to predict future conditions. A three-dimensional hydrodinamical model is coupled to a Nitrate-Phytoplankton-Zooplankton-Detritus (NPZD) trophic model, and it is forced by the GFDL 3.0 model outputs. Monthly climatologies of variables such as temperature, nutrients, wind, and ocean circulation patterns during the historical period 1985-2005 are compared to the available observed data in order to assess the model's ability to reproduce the observed patterns. The system's response to a high-emission scenario proposed by the Intergovernmental Panel of Climate Change (IPCC) is also studied. The experiments are carried out using data correspondig to the RCP 6.0 scenario during the period 2006-2050.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A23M..04M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A23M..04M"><span>Seasonal Forecast Skill And Teleconnections Over East Africa</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>MacLeod, D.; Palmer, T.</p> <p>2017-12-01</p> <p>Many people living in East Africa are significantly exposed to risks arising from climate variability. The region experiences two rainy seasons and poor performance of either or both of these (such as seen recently in 2016/17) reduces agricultural productivity and threatens food security. In combination with other factors this can lead to famine. By utilizing seasonal climate forecasts, preparatory actions can be taken in order to mitigate the risks arising from such climate variability. As part of the project ForPAc: "Towards forecast-based preparedness action", we are working with humanitarian agencies in Kenya to build such early warning systems on subseasonal-to-seasonal timescales. Here, the seasonal predictability and forecast skill of the two East African rainy seasons will be presented. Results from the new ECMWF operational forecasting system SEAS5 will be shown and compared to the previous System 4. Analysis of a new 110 year long atmosphere-only simulation will also be discussed, demonstrating impacts of atmosphere-ocean coupling as well as putting operational forecast skill in a long-term context. Particular focus will be given to the model representation of teleconnections of seasonal climate with global sea surface temperatures; highlighting sources of forecast error and informing future model development.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.B52D..07H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.B52D..07H"><span>Global Coupled Carbon and Nitrogen Models: Successes, Failures and What next?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Holland, E. A.</p> <p>2011-12-01</p> <p>Over the last few years, there has been a great deal of progress in modeling coupled terrestrial global carbon and nitrogen cycles and their roles in Earth System models. The collection of recent models provides some surprising results and insights. A critical question for Earth system models is: How do the coupled C/N model results impact atmospheric carbon dioxide concentrations compared to carbon only models? Some coupled models predict increased atmospheric carbon dioxide concentrations, the result expected from nitrogen-limited photosynthesis uptake of carbon dioxide, while others predict little change or decreased carbon dioxide uptake with a coupled carbon and nitrogen cycle. With this range of impacts for climate critical atmospheric carbon dioxide concentrations, there is clearly a need for additional comparison of measurements and models. Randerson et al.'s CLAMP study provided important constraints and comparison for primarily for aboveground carbon uptake. However, nitrogen supply is largely determined decomposition and soil processes. I will present comparisons of NCAR's CESM results with soil and litter carbon and nitrogen fluxes and standing stocks. These belowground data sets of both carbon and nitrogen provide important benchmarks for coupled C/N models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC43G1140C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC43G1140C"><span>US Drought-Heat Wave Relationships in Past Versus Current Climates</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cheng, L.; Hoerling, M. P.; Eischeid, J.; Liu, Z.</p> <p>2017-12-01</p> <p>This study explores the relationship between droughts and heat waves over various regions of the contiguous United States that are distinguished by so-called energy-limited versus water-limited climatologies. We first examine the regional sensitivity of heat waves to soil moisture variability under 19th century climate conditions, and then compare to sensitivities under current climate that has been subjected to human-induced change. Our approach involves application of the conditional statistical framework of vine copula. Vine copula is known for its flexibility in reproducing various dependence structures exhibited by climate variables. Here we highlight its feature for evaluating the importance of conditional relationships between variables and processes that capture underlying physical factors involved in their interdependence during drought/heat waves. Of particular interest is identifying changes in coupling strength between heat waves and land surface conditions that may yield more extreme events as a result of land surface feedbacks. We diagnose two equilibrium experiments a coupled climate model (CESM1), one subjected to Year-1850 external forcing and the other to Year-2000 radiative forcing. We calculate joint heat wave/drought relationships for each climate state, and also calculate their change as a result of external radiative forcing changes across this 150-yr period. Our results reveal no material change in the dependency between heat waves and droughts, aside from small increases in coupling strength over the Great Plains. Overall, hot U.S. summer droughts of 1850-vintage do not become hotter in the current climate -- aside from the warming contribution of long-term climate change, in CESM1. The detectability of changes in hotter droughts as a consequence of anthropogenic forced changes in this single effect, i.e. coupling strength between soil moisture and hot summer temperature, is judged to be low at this time.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20030032302','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20030032302"><span>Workshop on Spanning Regional-to-Global Pollution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Thompson, Anne M.; Newman, Paul A.; Gleason, James F.; Brune, William H.; Dickerson, Russell R.</p> <p>2002-01-01</p> <p>Pollution is often considered a localized phenomenon, but it is now clear that it travels from region-to-region, country to country, and even continent to continent. In addition to urban pollution in developed countries, large emissions from developing nations and large-scale biomass fires add to the global pollution burden. Ozone and aerosols are two components of pollution that contribute to radiative forcing of the earth s climate. In turn, as climate changes, rates of chemical and microphysical reactions may be perturbed. Considering the earth as a coupled chemical-microphysical-climate system poses challenges for models and observations alike. These issues were the topic of a Workshop held in May 2002 at NASA GSFC s Laboratory for Atmospheres. Highlights of the Workshop are summarized in this article.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.9176H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.9176H"><span>Regional climate projections for the MENA-CORDEX domain: analysis of projected temperature and precipitation changes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hänsler, Andreas; Weber, Torsten; Eggert, Bastian; Saeed, Fahad; Jacob, Daniela</p> <p>2014-05-01</p> <p>Within the CORDEX initiative a multi-model suite of regionalized climate change information will be made available for several regions of the world. The German Climate Service Center (CSC) is taking part in this initiative by applying the regional climate model REMO to downscale global climate projections of different coupled general circulation models (GCMs) for several CORDEX domains. Also for the MENA-CORDEX domain, a set of regional climate change projections has been established at the CSC by downscaling CMIP5 projections of the Max-Planck-Institute Earth System Model (MPI-ESM) for the scenarios RCP4.5 and RCP8.5 with the regional model REMO for the time period from 1950 to 2100 to a horizontal resolution of 0.44 degree. In this study we investigate projected changes in future climate conditions over the domain towards the end of the 21st century. Focus in the analysis is given to projected changes in the temperature and rainfall characteristics and their differences for the two scenarios will be highlighted.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20050139775&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dsecret','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20050139775&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dsecret"><span>It's a Sooty Problem: Black Carbon and Aerosols from Space</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kaufman, Yoram J.</p> <p>2005-01-01</p> <p>Our knowledge of atmospheric aerosols (smoke, pollution, dust or sea salt particles, small enough to be suspended in the air), their evolution, composition, variability in space and time and interaction with solar radiation, clouds and precipitation is lacking despite decades of research. Just recently we recognized that understanding the global aerosol system is fundamental for progress in climate change and hydrological cycle research. While a single instrument was used to demonstrate 50 yrs ago that the global CO2 levels are rising, posing thread to our climate, we need an may of satellites, surface networks of radiometers, elaborated laboratory and field experiments coupled with chemical transport models to understand the global aerosol system. This complexity of the aerosol problem results from their short lifetime (1 week), variability of the chemical composition and complex chemical and physical processes in the atmosphere. The result is a heterogeneous distribution of aerosol and their properties. The new generation of satellites and surface networks of radiometers provides exciting opportunities to measure the aerosol properties and their interaction with clouds and climate. However farther development in the satellite capability, aerosol chemical models and climate models is needed to fully decipher the aerosol secrets with accuracy required to predict future climates.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.8049U','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.8049U"><span>Vulnerability-based evaluation of water supply design under climate change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Umit Taner, Mehmet; Ray, Patrick; Brown, Casey</p> <p>2015-04-01</p> <p>Long-lived water supply infrastructures are strategic investments in the developing world, serving the purpose of balancing water deficits compounded by both population growth and socio-economic development. Robust infrastructure design under climate change is compelling, and often addressed by focusing on the outcomes of climate model projections ('scenario-led' planning), or by identifying design options that are less vulnerable to a wide range of plausible futures ('vulnerability-based' planning). Decision-Scaling framework combines these two approaches by first applying a climate stress test on the system to explore vulnerabilities across many traces of the future, and then employing climate projections to inform the decision-making process. In this work, we develop decision scaling's nascent risk management concepts further, directing actions on vulnerabilities identified during the climate stress test. In the process, we present a new way to inform climate vulnerability space using climate projections, and demonstrate the use of multiple decision criteria to guide to a final design recommendation. The concepts are demonstrated for a water supply project in the Mombasa Province of Kenya, planned to provide domestic and irrigation supply. Six storage design capacities (from 40 to 140 million cubic meters) are explored through a stress test, under a large number climate traces representing both natural climate variability and plausible climate changes. Design outcomes are simulated over a 40-year planning period with a coupled hydrologic-water resources systems model and using standard reservoir operation rules. Resulting performance is expressed in terms of water supply reliability and economic efficiency. Ensemble climate projections are used for assigning conditional likelihoods to the climate traces using a statistical distance measure. The final design recommendations are presented and discussed for the decision criteria of expected regret, satisficing, and conditional value-at-risk (CVaR).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26545372','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26545372"><span>Assessment of the climate change impacts on fecal coliform contamination in a tidal estuarine system.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Liu, Wen-Cheng; Chan, Wen-Ting</p> <p>2015-12-01</p> <p>Climate change is one of the key factors affecting the future microbiological water quality in rivers and tidal estuaries. A coupled 3D hydrodynamic and fecal coliform transport model was developed and applied to the Danshuei River estuarine system for predicting the influences of climate change on microbiological water quality. The hydrodynamic and fecal coliform model was validated using observational salinity and fecal coliform distributions. According to the analyses of the statistical error, predictions of the salinity and the fecal coliform concentration from the model simulation quantitatively agreed with the observed data. The validated model was then applied to predict the fecal coliform contamination as a result of climate change, including the change of freshwater discharge and the sea level rise. We found that the reduction of freshwater discharge under climate change scenarios resulted in an increase in the fecal coliform concentration. The sea level rise would decrease fecal coliform distributions because both the water level and the water volume increased. A reduction in freshwater discharge has a negative impact on the fecal coliform concentration, whereas a rising sea level has a positive influence on the fecal coliform contamination. An appropriate strategy for the effective microbiological management in tidal estuaries is required to reveal the persistent trends of climate in the future.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/15011632','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/15011632"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Meehl, G A; Covey, C; McAvaney, B</p> <p></p> <p>The Coupled Model Intercomparison Project (CMIP) is designed to allow study and intercomparison of multi-model simulations of present-day and future climate. The latter are represented by idealized forcing of compounded 1% per year CO2 increase to the time of CO2 doubling near year 70 in simulations with global coupled models that contain, typically, components representing atmosphere, ocean, sea ice and land surface. Results from CMIP diagnostic subprojects were presented at the Second CMIP Workshop held at the Max Planck Institute for Meteorology in Hamburg, Germany, in September, 2003. Significant progress in diagnosing and understanding results from global coupled models hasmore » been made since the First CMIP Workshop in Melbourne, Australia in 1998. For example, the issue of flux adjustment is slowly fading as more and more models obtain stable multi-century surface climates without them. El Nino variability, usually about half the observed amplitude in the previous generation of coupled models, is now more accurately simulated in the present generation of global coupled models, though there are still biases in simulating the patterns of maximum variability. Typical resolutions of atmospheric component models contained in coupled models is now usually around 2.5 degrees latitude-longitude, with the ocean components often having about twice the atmospheric model resolution, with even higher resolution in the equatorial tropics. Some new-generation coupled models have atmospheric model resolutions of around 1.5 degrees latitude-longitude. Modeling groups now routinely run the CMIP control and 1% CO2 simulations in addition to 20th and 21st century climate simulations with a variety of forcings (e.g. volcanoes, solar variability, anthropogenic sulfate aerosols, ozone, and greenhouse gases (GHGs), with the anthropogenic forcings for future climate as well). However, persistent systematic errors noted in previous generations of global coupled models still are present in the present generation (e.g. over-extensive equatorial Pacific cold tongue, double ITCZ). This points to the next challenge for the global coupled climate modeling community. Planning and imminent commencement of the IPCC Fourth Assessment Report (AR4) has prompted rapid coupled model development, which will lead to an expanded CMIP-like activity to collect and analyze results for the control, 1% CO2, 20th, 21st and 22nd century simulations performed for the AR4. The international climate community is encouraged to become involved in this analysis effort, and details are provided below in how to do so.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC31C1011H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC31C1011H"><span>Evaluating impacts of climate change on future water scarcity in an intensively managed semi-arid region using a coupled model of biophysical processes and water rights</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Han, B.; Flores, A. N.; Benner, S. G.</p> <p>2017-12-01</p> <p>In semiarid and arid regions where water supply is intensively managed, future water scarcity is a product of complex interactions between climate change and human activities. Evaluating future water scarcity under alternative scenarios of climate change, therefore, necessitates modeling approaches that explicitly represent the coupled biophysical and social processes responsible for the redistribution of water in these regions. At regional scales a particular challenge lies in adequately capturing not only the central tendencies of change in projections of climate change, but also the associated plausible range of variability in those projections. This study develops a framework that combines a stochastic weather generator, historical climate observations, and statistically downscaled General Circulation Model (GCM) projections. The method generates a large ensemble of daily climate realizations, avoiding deficiencies of using a few or mean values of individual GCM realizations. Three climate change scenario groups reflecting the historical, RCP4.5, and RCP8.5 future projections are developed. Importantly, the model explicitly captures the spatiotemporally varying irrigation activities as constrained by local water rights in a rapidly growing, semi-arid human-environment system in southwest Idaho. We use this modeling framework to project water use and scarcity patterns under the three future climate change scenarios. The model is built using the Envision alternative futures modeling framework. Climate projections for the region show future increases in both precipitation and temperature, especially under the RCP8.5 scenario. The increase of temperature has a direct influence on the increase of the irrigation water use and water scarcity, while the influence of increased precipitation on water use is less clear. The predicted changes are potentially useful in identifying areas in the watershed particularly sensitive to water scarcity, the relative importance of changes in precipitation versus temperature as a driver of scarcity, and potential shortcomings of the current water management framework in the region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/931346-developing-models-predictive-climate-science','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/931346-developing-models-predictive-climate-science"><span>Developing Models for Predictive Climate Science</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Drake, John B; Jones, Philip W</p> <p>2007-01-01</p> <p>The Community Climate System Model results from a multi-agency collaboration designed to construct cutting-edge climate science simulation models for a broad research community. Predictive climate simulations are currently being prepared for the petascale computers of the near future. Modeling capabilities are continuously being improved in order to provide better answers to critical questions about Earth's climate. Climate change and its implications are front page news in today's world. Could global warming be responsible for the July 2006 heat waves in Europe and the United States? Should more resources be devoted to preparing for an increase in the frequency of strongmore » tropical storms and hurricanes like Katrina? Will coastal cities be flooded due to a rise in sea level? The National Climatic Data Center (NCDC), which archives all weather data for the nation, reports that global surface temperatures have increased over the last century, and that the rate of increase is three times greater since 1976. Will temperatures continue to climb at this rate, will they decline again, or will the rate of increase become even steeper? To address such a flurry of questions, scientists must adopt a systematic approach and develop a predictive framework. With responsibility for advising on energy and technology strategies, the DOE is dedicated to advancing climate research in order to elucidate the causes of climate change, including the role of carbon loading from fossil fuel use. Thus, climate science--which by nature involves advanced computing technology and methods--has been the focus of a number of DOE's SciDAC research projects. Dr. John Drake (ORNL) and Dr. Philip Jones (LANL) served as principal investigators on the SciDAC project, 'Collaborative Design and Development of the Community Climate System Model for Terascale Computers.' The Community Climate System Model (CCSM) is a fully-coupled global system that provides state-of-the-art computer simulations of the Earth's past, present, and future climate states. The collaborative SciDAC team--including over a dozen researchers at institutions around the country--developed, validated, documented, and optimized the performance of CCSM using the latest software engineering approaches, computational technology, and scientific knowledge. Many of the factors that must be accounted for in a comprehensive model of the climate system are illustrated in figure 1.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMED31F3487H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMED31F3487H"><span>Assessing ocean vertical mixing schemes for the study of climate change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Howard, A. M.; Lindo, F.; Fells, J.; Tulsee, V.; Cheng, Y.; Canuto, V.</p> <p>2014-12-01</p> <p>Climate change is a burning issue of our time. It is critical to know the consequences of choosing "business as usual" vs. mitigating our emissions for impacts e.g. ecosystem disruption, sea-level rise, floods and droughts. To make predictions we must model realistically each component of the climate system. The ocean must be modeled carefully as it plays a critical role, including transporting heat and storing heat and dissolved carbon dioxide. Modeling the ocean realistically in turn requires physically based parameterizations of key processes in it that cannot be explicitly represented in a global climate model. One such process is vertical mixing. The turbulence group at NASA-GISS has developed a comprehensive new vertical mixing scheme (GISSVM) based on turbulence theory, including surface convection and wind shear, interior waves and double-diffusion, and bottom tides. The GISSVM is tested in stand-alone ocean simulations before being used in coupled climate models. It is also being upgraded to more faithfully represent the physical processes. To help assess mixing schemes, students use data from NASA-GISS to create visualizations and calculate statistics including mean bias and rms differences and correlations of fields. These are created and programmed with MATLAB. Results with the commonly used KPP mixing scheme and the present GISSVM and candidate improved variants of GISSVM will be compared between stand-alone ocean models and coupled models and observations. This project introduces students to modeling of a complex system, an important theme in contemporary science and helps them gain a better appreciation of climate science and a new perspective on it. They also gain familiarity with MATLAB, a widely used tool, and develop skills in writing and understanding programs. Moreover they contribute to the advancement of science by providing information that will help guide the improvement of the GISSVM and hence of ocean and climate models and ultimately our understanding and prediction of climate. The PI is both a member of the turbulence group at NASA-GISS and an associate professor at Medgar Evers College of CUNY, a minority serving institution in an urban setting in central Brooklyn. This Project is supported by NSF award AGS-1359293 REU site: CUNY/GISS Center for Global Climate Research.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1167615-improving-subtropical-boundary-layer-cloudiness-ncep-gfs','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1167615-improving-subtropical-boundary-layer-cloudiness-ncep-gfs"><span>Improving Subtropical Boundary Layer Cloudiness in the 2011 NCEP GFS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Fletcher, J. K.; Bretherton, Christopher S.; Xiao, Heng</p> <p>2014-09-23</p> <p>The current operational version of National Centers for Environmental Prediction (NCEP) Global Forecasting System (GFS) shows significant low cloud bias. These biases also appear in the Coupled Forecast System (CFS), which is developed from the GFS. These low cloud biases degrade seasonal and longer climate forecasts, particularly of short-wave cloud radiative forcing, and affect predicted sea surface temperature. Reducing this bias in the GFS will aid the development of future CFS versions and contributes to NCEP's goal of unified weather and climate modelling. Changes are made to the shallow convection and planetary boundary layer parameterisations to make them more consistentmore » with current knowledge of these processes and to reduce the low cloud bias. These changes are tested in a single-column version of GFS and in global simulations with GFS coupled to a dynamical ocean model. In the single-column model, we focus on changing parameters that set the following: the strength of shallow cumulus lateral entrainment, the conversion of updraught liquid water to precipitation and grid-scale condensate, shallow cumulus cloud top, and the effect of shallow convection in stratocumulus environments. Results show that these changes improve the single-column simulations when compared to large eddy simulations, in particular through decreasing the precipitation efficiency of boundary layer clouds. These changes, combined with a few other model improvements, also reduce boundary layer cloud and albedo biases in global coupled simulations.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.B13I0331C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.B13I0331C"><span>Heat Waves, Urban Vegetation, and Air Pollution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Churkina, G.; Grote, R.; Butler, T. M.</p> <p>2014-12-01</p> <p>Fast-track programs to plant millions of trees in cities around the world aim at the reduction of summer temperatures, increase carbon storage, storm water control, provision of space for recreation, as well as poverty alleviation. Although these multiple benefits speak positively for urban greening programs, the programs do not take into account how close human and natural systems are coupled in urban areas. Elevated temperatures together with anthropogenic emissions of air and water pollutants distinguish the urban system. Urban and sub-urban vegetation responds to ambient changes and reacts with pollutants. Neglecting the existence of this coupling may lead to unforeseen drawbacks of urban greening programs. The potential for emissions from urban vegetation combined with anthropogenic emissions to produce ozone has long been recognized. This potential increases under rising temperatures. Here we investigate how global change induced heat waves affect emissions of volatile organic compounds (VOC) from urban vegetation and corresponding ground-level ozone levels. We also quantify other ecosystem services provided by urban vegetation (e.g., cooling and carbon storage) and their sensitivity to climate change. In this study we use Weather Research and Forecasting Model with coupled atmospheric chemistry (WRF-CHEM) to quantify these feedbacks in Berlin, Germany during the heat waves in 2003 and 2006. We highlight the importance of the vegetation for urban areas under changing climate and discuss associated tradeoffs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20100028367','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20100028367"><span>Heliophysics 2009 Roadmap and Global Change: Possibilities for Improved Understanding of the Connection</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Spann, Jim</p> <p>2010-01-01</p> <p>Heliophysics is the science that includes all aspects of the research needed to understand the Sun and its effects on the Earth and the solar system. Six science targets: 1. Origins of Near-Earth Plasma - to understand the origin and transport of terrestrial plasma from its source to the magnetosphere and solar wind. 2. Solar Energetic Particle Acceleration and Transport - to understand how and where solar eruptions accelerate energetic particles that reach Earth. 3. Ion-Neutral Coupling in the Atmosphere - to understand how neutral winds control ionospheric variability. 4. Climate Impacts of Space Radiation - to understand our atmosphere s response to auroral, radiation belt, and solar energetic particles, and the associated effects on nitric oxide (NO) and ozone. 5. Dynamic Geospace Coupling - to understand how magnetospheric dynamics provides energy into the coupled ionosphere-magnetosphere system. 6. Heliospheric Magnetics - to understand the flow and dynamics of transient magnetic structures form the solar interior to Earth.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/lanina/ensoforecast.shtml','SCIGOVWS'); return false;" href="http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/lanina/ensoforecast.shtml"><span>Climate Prediction Center - Outlooks: CFS Forecast of Seasonal Climate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.science.gov/aboutsearch.html">Science.gov Websites</a></p> <p></p> <p></p> <p>National Weather Service NWS logo - Click to go to the NWS home page <em>Climate</em> Prediction Center Home Site government Web resources and services. CFS Seasonal <em>Climate</em> Forecasts CFS Forecast of Seasonal <em>Climate</em> discontinued after October 2012. This page displays seasonal <em>climate</em> anomalies from the NCEP coupled forecast</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A51N..01H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A51N..01H"><span>How does Interactive Chemistry Influence the Representation of Stratosphere-Troposphere Coupling in a Climate Model?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Haase, S.; Matthes, K. B.</p> <p>2017-12-01</p> <p>Changes in stratospheric ozone can trigger tropospheric circulation changes. In the Southern hemisphere (SH), the observed shift of the Southern Annular Mode was attributed to the observed trend in lower stratospheric ozone. In the Northern Hemisphere (NH), a recent study showed that extremely low stratospheric ozone conditions during spring produce robust anomalies in the troposphere (zonal wind, temperature and precipitation). This could only be reproduced in a coupled chemistry climate model indicating that chemical-dynamical feedbacks are also important on the NH. To further investigate the importance of interactive chemistry for surface climate, we conducted a set of experiments using NCAR's Community Earth System Model (CESM1) with the Whole Atmosphere Community Climate Model (WACCM) as the atmosphere component. WACCM contains a fully interactive stratospheric chemistry module in its standard configuration. It also allows for an alternative configuration, referred to as SC-WACCM, in which the chemistry (O3, NO, O, O2, CO2 and chemical and shortwave heating rates) is specified as a 2D field in the radiation code. A comparison of the interactive vs. the specified chemistry version enables us to evaluate the relative importance of interactive chemistry by systematically inhibiting the feedbacks between chemistry and dynamics. To diminish the effect of temporal interpolation when prescribing ozone, we use daily resolved zonal mean ozone fields for the specified chemistry run. Here, we investigate the differences in stratosphere-troposphere coupling between the interactive and specified chemistry simulations for the mainly chemically driven SH as well as for the mainly dynamically driven NH. We will especially consider years that are characterized by extremely low stratospheric ozone on the one hand and by large dynamical disturbances, i.e. Sudden Stratospheric Warmings, on the other hand.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27609899','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27609899"><span>Social and economic impacts of climate.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Carleton, Tamma A; Hsiang, Solomon M</p> <p>2016-09-09</p> <p>For centuries, thinkers have considered whether and how climatic conditions-such as temperature, rainfall, and violent storms-influence the nature of societies and the performance of economies. A multidisciplinary renaissance of quantitative empirical research is illuminating important linkages in the coupled climate-human system. We highlight key methodological innovations and results describing effects of climate on health, economics, conflict, migration, and demographics. Because of persistent "adaptation gaps," current climate conditions continue to play a substantial role in shaping modern society, and future climate changes will likely have additional impact. For example, we compute that temperature depresses current U.S. maize yields by ~48%, warming since 1980 elevated conflict risk in Africa by ~11%, and future warming may slow global economic growth rates by ~0.28 percentage points per year. In general, we estimate that the economic and social burden of current climates tends to be comparable in magnitude to the additional projected impact caused by future anthropogenic climate changes. Overall, findings from this literature point to climate as an important influence on the historical evolution of the global economy, they should inform how we respond to modern climatic conditions, and they can guide how we predict the consequences of future climate changes. Copyright © 2016, American Association for the Advancement of Science.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1815157L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1815157L"><span>Extreme Events in China under Climate Change: Uncertainty and related impacts (CSSP-FOREX)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Leckebusch, Gregor C.; Befort, Daniel J.; Hodges, Kevin I.</p> <p>2016-04-01</p> <p>Suitable adaptation strategies or the timely initiation of related mitigation efforts in East Asia will strongly depend on robust and comprehensive information about future near-term as well as long-term potential changes in the climate system. Therefore, understanding the driving mechanisms associated with the East Asian climate is of major importance. The FOREX project (Fostering Regional Decision Making by the Assessment of Uncertainties of Future Regional Extremes and their Linkage to Global Climate System Variability for China and East Asia) focuses on the investigation of extreme wind and rainfall related events over Eastern Asia and their possible future changes. Here, analyses focus on the link between local extreme events and their driving weather systems. This includes the coupling between local rainfall extremes and tropical cyclones, the Meiyu frontal system, extra-tropical teleconnections and monsoonal activity. Furthermore, the relation between these driving weather systems and large-scale variability modes, e.g. NAO, PDO, ENSO is analysed. Thus, beside analysing future changes of local extreme events, the temporal variability of their driving weather systems and related large-scale variability modes will be assessed in current CMIP5 global model simulations to obtain more robust results. Beyond an overview of FOREX itself, first results regarding the link between local extremes and their steering weather systems based on observational and reanalysis data are shown. Special focus is laid on the contribution of monsoonal activity, tropical cyclones and the Meiyu frontal system on the inter-annual variability of the East Asian summer rainfall.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMPP32A..01S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMPP32A..01S"><span>Reconstructing Climate Change: The Model-Data Ping-Pong</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stocker, T. F.</p> <p>2017-12-01</p> <p>When Cesare Emiliani, the father of paleoceanography, made the first attempts at a quantitative reconstruction of Pleistocene climate change in the early 1950s, climate models were not yet conceived. The understanding of paleoceanographic records was therefore limited, and scientists had to resort to plausibility arguments to interpret their data. With the advent of coupled climate models in the early 1970s, for the first time hypotheses about climate processes and climate change could be tested in a dynamically consistent framework. However, only a model hierarchy can cope with the long time scales and the multi-component physical-biogeochemical Earth System. There are many examples how climate models have inspired the interpretation of paleoclimate data on the one hand, and conversely, how data have questioned long-held concepts and models. In this lecture I critically revisit a few examples of this model-data ping-pong, such as the bipolar seesaw, the mid-Holocene greenhouse gas increase, millennial and rapid CO2 changes reconstructed from polar ice cores, and the interpretation of novel paleoceanographic tracers. These examples also highlight many of the still unsolved questions and provide guidance for future research. The combination of high-resolution paleoceanographic data and modeling has never been more relevant than today. It will be the key for an appropriate risk assessment of impacts on the Earth System that are already underway in the Anthropocene.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20170003213&hterms=sea&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dsea','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20170003213&hterms=sea&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dsea"><span>A Review of Recent Changes in Southern Ocean Sea Ice, Their Drivers and Forcings</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hobbs, William R.; Massom, Rob; Stammerjohn, Sharon; Reid, Phillip; Williams, Guy; Meier, Walter</p> <p>2016-01-01</p> <p>Over the past 37years, satellite records show an increase in Antarctic sea ice cover that is most pronounced in the period of sea ice growth. This trend is dominated by increased sea ice coverage in the western Ross Sea, and is mitigated by a strong decrease in the Bellingshausen and Amundsen seas. The trends in sea ice areal coverage are accompanied by related trends in yearly duration. These changes have implications for ecosystems, as well as global and regional climate. In this review, we summarize the researchto date on observing these trends, identifying their drivers, and assessing the role of anthropogenic climate change. Whilst the atmosphere is thought to be the primary driver, the ocean is also essential in explaining the seasonality of the trend patterns. Detecting an anthropogenic signal in Antarctic sea ice is particularly challenging for a number of reasons: the expected response is small compared to the very high natural variability of the system; the observational record is relatively short; and the ability of global coupled climate models to faithfully represent the complex Antarctic climate system is in doubt.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012HESSD...9.4777W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012HESSD...9.4777W"><span>Dryland ecohydrology and climate change: critical issues and technical advances</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, L.; D'Odorico, P.; Evans, J. P.; Eldridge, D.; McCabe, M. F.; Caylor, K. K.; King, E. G.</p> <p>2012-04-01</p> <p>Drylands cover about 40% of the terrestrial land surface and account for approximately 40% of global net primary productivity. Water is fundamental to the biophysical processes that sustain ecosystem function and food production, particularly in drylands, where a tight coupling exists between water resource availability and ecosystem productivity, surface energy balance, and biogeochemical cycles. Currently, drylands support at least 2 billion people and comprise both natural and managed ecosystems. In this synthesis, we identify some current critical issues in the understanding of dryland systems and discuss how arid and semiarid environments are responding to the changes in climate and land use. Specifically, we focus on dryland agriculture and food security, dryland population growth, desertification, shrub encroachment and dryland development issues as factors of change requiring increased understanding and management. We also review recent technical advances in the quantitative assessment of human versus climate change related drivers of desertification, evapotranspiration partitioning using field deployable stable water isotope systems and the remote sensing of key ecohydrological processes. These technological advances provide new tools that assist in addressing major critical issues in dryland ecohydrology under climate change</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22706645','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22706645"><span>Development and application of earth system models.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Prinn, Ronald G</p> <p>2013-02-26</p> <p>The global environment is a complex and dynamic system. Earth system modeling is needed to help understand changes in interacting subsystems, elucidate the influence of human activities, and explore possible future changes. Integrated assessment of environment and human development is arguably the most difficult and most important "systems" problem faced. To illustrate this approach, we present results from the integrated global system model (IGSM), which consists of coupled submodels addressing economic development, atmospheric chemistry, climate dynamics, and ecosystem processes. An uncertainty analysis implies that without mitigation policies, the global average surface temperature may rise between 3.5 °C and 7.4 °C from 1981-2000 to 2091-2100 (90% confidence limits). Polar temperatures, absent policy, are projected to rise from about 6.4 °C to 14 °C (90% confidence limits). Similar analysis of four increasingly stringent climate mitigation policy cases involving stabilization of greenhouse gases at various levels indicates that the greatest effect of these policies is to lower the probability of extreme changes. The IGSM is also used to elucidate potential unintended environmental consequences of renewable energy at large scales. There are significant reasons for attention to climate adaptation in addition to climate mitigation that earth system models can help inform. These models can also be applied to evaluate whether "climate engineering" is a viable option or a dangerous diversion. We must prepare young people to address this issue: The problem of preserving a habitable planet will engage present and future generations. Scientists must improve communication if research is to inform the public and policy makers better.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMPP41E..07H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMPP41E..07H"><span>Climatic variability during the last deglaciation: A stalagmite-based multi-proxy record from Mawmluh cave, India</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Huguet, C.; Munnuru Singamshetty, K.; Routh, J.; Fietz, S.; Mangini, A.; Ghosh, P.; Lone, M. A.; Rangarajan, R.; Eliasson, J.</p> <p>2016-12-01</p> <p>The Mawmluh cave in northeastern India, is affected by global climate patterns displaying glacial-interglacial patterns and also the Indian Summer Monsoon (ISM). Precipitation from the ISM plays a vital role for the local community and thus, understanding the driving forces of ISM fluctuations became a recent focus of a number of paleoclimate studies. Here, we used the stalagmite KM-1 from Mawmluh cave to reconstruct climate variability during the last glacial-interglacial transition from 22 to 6 ka. For the first time, molecular proxy data (TEX86 and MBT/CBT derived from isoprenoid and branched GDGTs respectively) were coupled to stable isotope records (δ13C and δ18O) and compared to other speleothem records in Asia. ISM system abruptly transition between a suppressed and active state which is associated to changes in vegetation and thus shifts in δ13C. The abrupt δ13C shift observed in our record indicate changes to wetter climate in the Holocene, which are coupled to increase in abundance of GDGTs indicating higher production and/or transfer to KM-1. The TEX86-derived temperature roughly follows the glaciation-deglaciation cycle and Holocene changes. The TEX86 results show good correspondence with the δ18O records for temperature highlighting the potential for the use of molecular proxy in speleothem based climate reconstructions. While the MBT/CBT proxy is also defined as a temperature proxy it is not coupled with δ18O patterns, and thus shows no clear temperature signal. A decoupling between MBT/CBT from soils and the connected speleothems as well as a precipitation-moisture effect on this proxy have been previously reported. In this particular case the MBT/CBT seems to be better related to precipitation-monsoon changes, and thus warrant further exploration as a complementary proxy to isotope records for monsoon strength.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.P24C..01M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.P24C..01M"><span>Climate at high obliquity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Marshall, J.; Ferreira, D.; O'Gorman, P. A.; Seager, S.</p> <p>2011-12-01</p> <p>One method of studying earth-like exoplanets is to view earth as an exoplanet and consider how its climate might change if, for example, its obliquity were ranged from 0 to 90 degrees. High values of obliquity challenge our understanding of climate dynamics because if obliquity exceeds 54 degrees, then polar latitudes receive more energy per unit area than do equatorial latitudes. Thus the pole will become warmer than the equator and we are led to consider a world in which the meridional temperature gradients, and associated prevailing zonal wind, have the opposite sign to the present earth. The problem becomes even richer when one considers the dynamics of an ocean, should one exist below. A central question for the ocean circulation is: what is the pattern of surface winds at high obliquities?, for it is the winds that drive the ocean currents and thermohaline circulation. How do atmospheric weather systems growing in the easterly sheared middle latitude jets determine the surface wind pattern? Should one expect middle latitude easterly winds? Finally, a key aspect with regard to habitability is to understand how the atmosphere and ocean of this high obliquity planet work cooperatively together to transport energy meridionally, mediating the warmth of the poles and the coldness of the equator. How extreme are seasonal temperature fluctuations? Should one expect to find ice around the equator? Possible answers to some of these questions have been sought by experimentation with a coupled atmosphere, ocean and sea-ice General Circulation Model of an earth-like aquaplanet: i.e. a planet like our own but on which there is only an ocean but no land. The coupled climate is studied across a range of obliquities (23.5, 54 and 90). We present some of the descriptive climatology of our solutions and how they shed light on the deeper questions of coupled climate dynamics that motivate them. We also review what they tell us about habitability on such planets.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010ems..confE.788H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010ems..confE.788H"><span>Urban impact on air quality in RegCM/CAMx couple for MEGAPOLI project - high resolution sensitivity study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Halenka, T.; Huszar, P.; Belda, M.</p> <p>2010-09-01</p> <p>Recent studies show considerable effect of atmospheric chemistry and aerosols on climate on regional and local scale. For the purpose of qualifying and quantifying the magnitude of climate forcing due to atmospheric chemistry/aerosols on regional scale, the development of coupling of regional climate model and chemistry/aerosol model was started on the Department of Meteorology and Environmental Protection, Charles University, Prague, for the EC FP6 Project QUANTIFY and EC FP6 Project CECILIA. For this coupling, existing regional climate model and chemistry transport model have been used at very high resolution of 10km grid. Climate is calculated using RegCM while chemistry is solved by CAMx. The experiments with the couple have been prepared for EC FP7 project MEGAPOLI assessing the impact of the megacities and industrialized areas on climate. Meteorological fields generated by RCM drive CAMx transport, chemistry and a dry/wet deposition. A preprocessor utility was developed for transforming RegCM provided fields to CAMx input fields and format. New domain have been settled for MEGAPOLI purpose in 10km resolution including all the European "megacities" regions, i.e. London metropolitan area, Paris region, industrialized Ruhr area, Po valley etc. There is critical issue of the emission inventories available for 10km resolution including the urban hot-spots, TNO emissions are adopted for this sensitivity study in 10km resolution for comparison of the results with the simulation based on merged TNO emissions, i.e. basically original EMEP emissions at 50 km grid. The sensitivity test to switch on/off Paris area emissions is analysed as well. Preliminary results for year 2005 are presented and discussed to reveal whether the concept of effective emission indices could help to parameterize the urban plume effects in lower resolution models. Interactive coupling is compared to study the potential of possible impact of urban air-pollution to the urban area climate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.B51J..03K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.B51J..03K"><span>Using a Multi-Method Approach to Examine Social-Ecological Vulnerability to Climate Change and Natural Resource Policies on the Tibetan Plateau</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Klein, J.; Hopping, K. A.; Yeh, E.; Nyima, Y.; Galvin, K.; Boone, R.; Dorje, T.; Ojima, D. S.</p> <p>2012-12-01</p> <p>Pastoralists and ecosystems on the Tibetan Plateau are facing a suite of novel stresses. Temperatures are increasing several times more than the global average. The frequency and severity of severe snowstorms, which lead to critical losses of livestock, are also increasing. Pastoralists are also experiencing changes to their livelihood activities, including reduced mobility and severe grazing restrictions. We are using interdisciplinary frameworks and methods that integrate results from a multifactor ecological experiment, household interviews, remote sensing, and a coupled ecosystem and household decision-making model to examine herder and ecosystem vulnerability to climate change and extreme weather events (snow disasters) within the context of changing natural resource management policies in China. The fully factorial ecological experiment includes two climate changes (warming and spring snow additions) and two types of grazing (yak and pika) that are being affected by current policy. We established the experiment in 2008 within the Tibet Autonomous Region. We are monitoring microclimate, vegetation, nutrient availability, ecosystem carbon fluxes and stable isotope signatures of select plant species. Through this experiment, we are investigating the sensitivity of the system, whether it can cross critical thresholds, and how resilient this system may be to predicted future climate and land use changes. Semi-structured, in-depth interviews on indigenous knowledge and vulnerability complement the ecological experimental work. We are asking herders about climate and ecological change and their drivers and are also conducting interviews on vulnerability to snow disasters across a three site, 300-500mm precipitation gradient. We are using remote sensing to identify biophysical landscape change over time. To integrate our ecological and social findings, we are coupling the Savanna ecosystem model to the DECUMA agent-based pastoral household model. Our results to date from the experiment and the indigenous knowledge study suggest that Kobresia pygmaea, the dominant plant species and the primary grazing resource, is vulnerable to warming. Moreover, several lines of evidence suggest that warming is causing delayed spring phenology, with important ecosystem and livelihood implications. Herders are observing climatic and ecological changes, knowledge which is important for adaptation, but people whose livelihoods are most directly derived from the rangelands, those situated at higher elevations, and those who are more mobile across the landscape are most attuned to these changes. These results suggest that rangeland degradation and delayed spring phenology are occurring, and that climate warming may be responsible for these changes. While additional snow may improve ecological conditions, the warming-induced degradation may make the social-ecological system more vulnerable to large snowstorm events. Our findings suggest that climate adaptation strategies should address the effects of both climate warming and the changing nature of extreme weather events and should also encourage land use policies that will maintain these systems under change. Moreover, policies that encourage mobility and rangeland-based livelihoods will enhance adaptation to climate change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1377777-cmip5-scientific-gaps-recommendations-cmip6','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1377777-cmip5-scientific-gaps-recommendations-cmip6"><span>CMIP5 Scientific Gaps and Recommendations for CMIP6</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Stouffer, R. J.; Eyring, V.; Meehl, G. A.; ...</p> <p>2017-01-23</p> <p>The Coupled Model Intercomparison Project (CMIP) is an ongoing coordinated international activity of numerical experimentation of unprecedented scope and impact on climate science. Its most recent phase, the fifth phase (CMIP5), has created nearly 2 PB of output from dozens of experiments performed by dozens of comprehensive climate models available to the climate science research community. In so doing, it has greatly advanced climate science. While CMIP5 has given answers to important science questions, with the help of a community survey we identify and motivate three broad topics here that guided the scientific framework of the next phase of CMIP,more » that is, CMIP6: (1) How does the Earth system respond to changes in forcing? (2) What are the origins and consequences of systematic model biases? (3) How can we assess future climate changes given internal climate variability, predictability, and uncertainties in scenarios? CMIP has demonstrated the power of idealized experiments to better understand how the climate system works. We expect that these idealized approaches will continue to contribute to CMIP6. The quantification of radiative forcings and responses was poor, and thus it requires new methods and experiments to address this gap. There are a number of systematic model biases that appear in all phases of CMIP that remain a major climate modeling challenge. In conclusion, these biases need increased attention to better understand their origins and consequences through targeted experiments. Improving understanding of the mechanisms’ underlying internal climate variability for more skillful decadal climate predictions and long-term projections remains another challenge for CMIP6.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1377777','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1377777"><span>CMIP5 Scientific Gaps and Recommendations for CMIP6</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Stouffer, R. J.; Eyring, V.; Meehl, G. A.</p> <p></p> <p>The Coupled Model Intercomparison Project (CMIP) is an ongoing coordinated international activity of numerical experimentation of unprecedented scope and impact on climate science. Its most recent phase, the fifth phase (CMIP5), has created nearly 2 PB of output from dozens of experiments performed by dozens of comprehensive climate models available to the climate science research community. In so doing, it has greatly advanced climate science. While CMIP5 has given answers to important science questions, with the help of a community survey we identify and motivate three broad topics here that guided the scientific framework of the next phase of CMIP,more » that is, CMIP6: (1) How does the Earth system respond to changes in forcing? (2) What are the origins and consequences of systematic model biases? (3) How can we assess future climate changes given internal climate variability, predictability, and uncertainties in scenarios? CMIP has demonstrated the power of idealized experiments to better understand how the climate system works. We expect that these idealized approaches will continue to contribute to CMIP6. The quantification of radiative forcings and responses was poor, and thus it requires new methods and experiments to address this gap. There are a number of systematic model biases that appear in all phases of CMIP that remain a major climate modeling challenge. In conclusion, these biases need increased attention to better understand their origins and consequences through targeted experiments. Improving understanding of the mechanisms’ underlying internal climate variability for more skillful decadal climate predictions and long-term projections remains another challenge for CMIP6.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.3064D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.3064D"><span>Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dethloff, Klaus; Rex, Markus; Shupe, Matthew</p> <p>2016-04-01</p> <p>The Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) is an international initiative under the International Arctic Science Committee (IASC) umbrella that aims to improve numerical model representations of sea ice, weather, and climate processes through coupled system observations and modeling activities that link the central Arctic atmosphere, sea ice, ocean, and the ecosystem. Observations of many critical parameters such as cloud properties, surface energy fluxes, atmospheric aerosols, small-scale sea-ice and oceanic processes, biological feedbacks with the sea-ice ice and ocean, and others have never been made in the central Arctic in all seasons, and certainly not in a coupled system fashion. The primary objective of MOSAiC is to develop a better understanding of these important coupled-system processes so they can be more accurately represented in regional- and global-scale weather- and climate models. Such enhancements will contribute to improved modeling of global climate and weather, and Arctic sea-ice predictive capabilities. The MOSAiC observations are an important opportunity to gather the high quality and comprehensive observations needed to improve numerical modeling of critical, scale-dependent processes impacting Arctic predictability given diminished sea ice coverage and increased model complexity. Model improvements are needed to understand the effects of a changing Arctic on mid-latitude weather and climate. MOSAiC is specifically designed to provide the multi-parameter, coordinated observations needed to improve sub-grid scale model parameterizations especially with respect to thinner ice conditions. To facilitate, evaluate, and develop the needed model improvements, MOSAiC will employ a hierarchy of modeling approaches ranging from process model studies, to regional climate model intercomparisons, to operational forecasts and assimilation of real-time observations. Model evaluations prior to the field program will be used to identify specific gaps and parameterization needs. Preliminary modeling and operational forecasting will also be necessary to directly guide field planning and optimal implementation of field resources, and to support the safety of the project. The MOSAiC Observatory will be deployed in, and drift with, the Arctic sea-ice pack for at least a full annual cycle, starting in fall 2019 and ending in autumn 2020. Initial plans are for the drift to start in the newly forming autumn sea-ice in, or near, the East Siberian Sea. The specific location will be selected to allow for the observatory to follow the Transpolar Drift towards the North Pole and on to the Fram Strait. IASC has adopted MOSAiC as a key international activity, the German Alfred Wegener Institute has made the huge contribution of the icebreaker Polarstern to serve as the central drifting observatory for this year long endeavor, and the US Department of Energy has committed a comprehensive atmospheric measurement suite. Many other nations and agencies have expressed interest in participation and in gaining access to this unprecedented observational dataset. International coordination is needed to support this groundbreaking endeavor.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001BAMS...82.2357B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001BAMS...82.2357B"><span>The Community Climate System Model.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Blackmon, Maurice; Boville, Byron; Bryan, Frank; Dickinson, Robert; Gent, Peter; Kiehl, Jeffrey; Moritz, Richard; Randall, David; Shukla, Jagadish; Solomon, Susan; Bonan, Gordon; Doney, Scott; Fung, Inez; Hack, James; Hunke, Elizabeth; Hurrell, James; Kutzbach, John; Meehl, Jerry; Otto-Bliesner, Bette; Saravanan, R.; Schneider, Edwin K.; Sloan, Lisa; Spall, Michael; Taylor, Karl; Tribbia, Joseph; Washington, Warren</p> <p>2001-11-01</p> <p>The Community Climate System Model (CCSM) has been created to represent the principal components of the climate system and their interactions. Development and applications of the model are carried out by the U.S. climate research community, thus taking advantage of both wide intellectual participation and computing capabilities beyond those available to most individual U.S. institutions. This article outlines the history of the CCSM, its current capabilities, and plans for its future development and applications, with the goal of providing a summary useful to present and future users. The initial version of the CCSM included atmosphere and ocean general circulation models, a land surface model that was grafted onto the atmosphere model, a sea-ice model, and a flux coupler that facilitates information exchanges among the component models with their differing grids. This version of the model produced a successful 300-yr simulation of the current climate without artificial flux adjustments. The model was then used to perform a coupled simulation in which the atmospheric CO2 concentration increased by 1% per year. In this version of the coupled model, the ocean salinity and deep-ocean temperature slowly drifted away from observed values. A subsequent correction to the roughness length used for sea ice significantly reduced these errors. An updated version of the CCSM was used to perform three simulations of the twentieth century's climate, and several pro-jections of the climate of the twenty-first century. The CCSM's simulation of the tropical ocean circulation has been significantly improved by reducing the background vertical diffusivity and incorporating an anisotropic horizontal viscosity tensor. The meridional resolution of the ocean model was also refined near the equator. These changes have resulted in a greatly improved simulation of both the Pacific equatorial undercurrent and the surface countercurrents. The interannual variability of the sea surface temperature in the central and eastern tropical Pacific is also more realistic in simulations with the updated model. Scientific challenges to be addressed with future versions of the CCSM include realistic simulation of the whole atmosphere, including the middle and upper atmosphere, as well as the troposphere; simulation of changes in the chemical composition of the atmosphere through the incorporation of an integrated chemistry model; inclusion of global, prognostic biogeochemical components for land, ocean, and atmosphere; simulations of past climates, including times of extensive continental glaciation as well as times with little or no ice; studies of natural climate variability on seasonal-to-centennial timescales; and investigations of anthropogenic climate change. In order to make such studies possible, work is under way to improve all components of the model. Plans call for a new version of the CCSM to be released in 2002. Planned studies with the CCSM will require much more computer power than is currently available.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002AdAtS..19..487L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002AdAtS..19..487L"><span>Climate Simulations based on a different-grid nested and coupled model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Dan; Ji, Jinjun; Li, Yinpeng</p> <p>2002-05-01</p> <p>An atmosphere-vegetation interaction model (A VIM) has been coupled with a nine-layer General Cir-culation Model (GCM) of Institute of Atmospheic Physics/State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (IAP/LASG), which is rhomboidally truncated at zonal wave number 15, to simulate global climatic mean states. A VIM is a model having inter-feedback between land surface processes and eco-physiological processes on land. As the first step to couple land with atmosphere completely, the physiological processes are fixed and only the physical part (generally named the SVAT (soil-vegetation-atmosphere-transfer scheme) model) of AVIM is nested into IAP/LASG L9R15 GCM. The ocean part of GCM is prescribed and its monthly sea surface temperature (SST) is the climatic mean value. With respect to the low resolution of GCM, i.e., each grid cell having lon-gitude 7.5° and latitude 4.5°, the vegetation is given a high resolution of 1.5° by 1.5° to nest and couple the fine grid cells of land with the coarse grid cells of atmosphere. The coupling model has been integrated for 15 years and its last ten-year mean of outputs was chosen for analysis. Compared with observed data and NCEP reanalysis, the coupled model simulates the main characteris-tics of global atmospheric circulation and the fields of temperature and moisture. In particular, the simu-lated precipitation and surface air temperature have sound results. The work creates a solid base on coupling climate models with the biosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1613362H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1613362H"><span>WASCAL - West African Science Service Center on Climate Change and Adapted Land Use Regional Climate Simulations and Land-Atmosphere Simulations for West Africa at DKRZ and elsewhere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hamann, Ilse; Arnault, Joel; Bliefernicht, Jan; Klein, Cornelia; Heinzeller, Dominikus; Kunstmann, Harald</p> <p>2014-05-01</p> <p>Changing climate and hydro-meteorological boundary conditions are among the most severe challenges to Africa in the 21st century. In particular West Africa faces an urgent need to develop effective adaptation and mitigation strategies to cope with negative impacts on humans and environment due to climate change, increased hydro-meteorological variability and land use changes. To help meet these challenges, the German Federal Ministry of Education and Research (BMBF) started an initiative with institutions in Germany and West African countries to establish together a West African Science Service Center on Climate Change and Adapted Land Use (WASCAL). This activity is accompanied by an establishment of trans-boundary observation networks, an interdisciplinary core research program and graduate research programs on climate change and related issues for strengthening the analytical capabilities of the Science Service Center. A key research activity of the WASCAL Competence Center is the provision of regional climate simulations in a fine spatio-temporal resolution for the core research sites of WASCAL for the present and the near future. The climate information is needed for subsequent local climate impact studies in agriculture, water resources and further socio-economic sectors. The simulation experiments are performed using regional climate models such as COSMO-CLM, RegCM and WRF and statistical techniques for a further refinement of the projections. The core research sites of WASCAL are located in the Sudanian Savannah belt in Northern Ghana, Southern Burkina Faso and Northern Benin. The climate in this region is semi-arid with six rainy months. Due to the strong population growth in West Africa, many areas of the Sudanian Savannah have been already converted to farmland since the majority of the people are living directly or indirectly from the income produced in agriculture. The simulation experiments of the Competence Center and the Core Research Program are accompanied by the WASCAL Graduate Research Program on the West African Climate System. The GRP-WACS provides ten scholarships per year for West African PhD students with a duration of three years. Present and future WASCAL PhD students will constitute one important user group of the Linux cluster that will be installed at the Competence Center in Ouagadougou, Burkina Faso. Regional Land-Atmosphere Simulations A key research activity of the WASCAL Core Research Program is the analysis of interactions between the land surface and the atmosphere to investigate how land surface changes affect hydro-meteorological surface fluxes such as evapotranspiration. Since current land surface models of global and regional climate models neglect dominant lateral hydrological processes such as surface runoff, a novel land surface model is used, the NCAR Distributed Hydrological Modeling System (NDHMS). This model can be coupled to WRF (WRF-Hydro) to perform two-way coupled atmospheric-hydrological simulations for the watershed of interest. Hardware and network prerequisites include a HPC cluster, network switches, internal storage media, Internet connectivity of sufficient bandwidth. Competences needed are HPC, storage, and visualization systems optimized for climate research, parallelization and optimization of climate models and workflows, efficient management of highest data volumes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1185970-cold-climate-retrofit-applications-air-air-heat-pumps','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1185970-cold-climate-retrofit-applications-air-air-heat-pumps"><span>Cold Climate and Retrofit Applications for Air-to-Air Heat Pumps</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Baxter, Van D</p> <p>2015-01-01</p> <p>Air source heat pumps (ASHP) including air-to-air ASHPs are easily applied to buildings almost anywhere for new construction as well as retrofits or renovations. They are widespread in milder climate regions but their use in cold regions is hampered due to low heating efficiency and capacity at cold outdoor temperatures. Retrofitting air-to-air ASHPs to existing buildings is relatively easy if the building already has an air distribution system. For buildings without such systems alternative approaches are necessary. Examples are ductless, minisplit heat pumps or central heat pumps coupled to small diameter, high velocity (SDHV) air distribution systems. This article presentsmore » two subjects: 1) a summary of R&D investigations aimed at improving the cold weather performance of ASHPs, and 2) a brief discussion of building retrofit options using air-to-air ASHP systems.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1328687','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1328687"><span>Ultra-scale Visualization Climate Data Analysis Tools (UV-CDAT)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Williams, Dean N.; Silva, Claudio</p> <p>2013-09-30</p> <p>For the past three years, a large analysis and visualization effort—funded by the Department of Energy’s Office of Biological and Environmental Research (BER), the National Aeronautics and Space Administration (NASA), and the National Oceanic and Atmospheric Administration (NOAA)—has brought together a wide variety of industry-standard scientific computing libraries and applications to create Ultra-scale Visualization Climate Data Analysis Tools (UV-CDAT) to serve the global climate simulation and observational research communities. To support interactive analysis and visualization, all components connect through a provenance application–programming interface to capture meaningful history and workflow. Components can be loosely coupled into the framework for fast integrationmore » or tightly coupled for greater system functionality and communication with other components. The overarching goal of UV-CDAT is to provide a new paradigm for access to and analysis of massive, distributed scientific data collections by leveraging distributed data architectures located throughout the world. The UV-CDAT framework addresses challenges in analysis and visualization and incorporates new opportunities, including parallelism for better efficiency, higher speed, and more accurate scientific inferences. Today, it provides more than 600 users access to more analysis and visualization products than any other single source.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JHyd..548..436L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JHyd..548..436L"><span>Harmonizing human-hydrological system under climate change: A scenario-based approach for the case of the headwaters of the Tagus River</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lobanova, Anastasia; Liersch, Stefan; Tàbara, J. David; Koch, Hagen; Hattermann, Fred F.; Krysanova, Valentina</p> <p>2017-05-01</p> <p>Conventional water management strategies, that serve solely socio-economic demands and neglect changing natural conditions of the river basins, face significant challenges in governing complex human-hydrological systems, especially in the areas with constrained water availability. In this study we assess the possibility to harmonize the inter-sectoral water allocation scheme within a highly altered human-hydrological system under reduction in water availability, triggered by projected climate change applying scenario-based approach. The Tagus River Basin headwaters, with significant disproportion in the water resources allocation between the environmental and socio-economic targets were taken as a perfect example of such system out of balance. We propose three different water allocation strategies for this region, including two conventional schemes and one imposing shift to sustainable water management and environmental restoration of the river. We combine in one integrated modelling framework the eco-hydrological process-based Soil and Water Integrated Model (SWIM), coupled with the conceptual reservoir and water allocation modules driven by the latest bias-corrected climate projections for the region and investigate possible water allocation scenarios in the region under constrained water availability in the future. Our results show that the socio-economic demands have to be re-considered and lowered under any water allocation strategy, as the climate impacts may significantly reduce water availability in the future. Further, we show that a shift to sustainable water management strategy and river restoration is possible even under reduced water availability. Finally, our results suggest that the adaptation of complex human-hydrological systems to climate change and a shift to a more sustainable water management are likely to be parts of one joint strategy to cope with climate change impacts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoRL..45.3673D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoRL..45.3673D"><span>Growing Land-Sea Temperature Contrast and the Intensification of Arctic Cyclones</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Day, Jonathan J.; Hodges, Kevin I.</p> <p>2018-04-01</p> <p>Cyclones play an important role in the coupled dynamics of the Arctic climate system on a range of time scales. Modeling studies suggest that storminess will increase in Arctic summer due to enhanced land-sea thermal contrast along the Arctic coastline, in a region known as the Arctic Frontal Zone (AFZ). However, the climate models used in these studies are poor at reproducing the present-day Arctic summer cyclone climatology and so their projections of Arctic cyclones and related quantities, such as sea ice, may not be reliable. In this study we perform composite analysis of Arctic cyclone statistics using AFZ variability as an analog for climate change. High AFZ years are characterized both by increased cyclone frequency and dynamical intensity, compared to low years. Importantly, the size of the response in this analog suggests that General Circulation Models may underestimate the response of Arctic cyclones to climate change, given a similar change in baroclinicity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JAMES...9.2230M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JAMES...9.2230M"><span>Representing agriculture in Earth System Models: Approaches and priorities for development</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McDermid, S. S.; Mearns, L. O.; Ruane, A. C.</p> <p>2017-09-01</p> <p>Earth System Model (ESM) advances now enable improved representations of spatially and temporally varying anthropogenic climate forcings. One critical forcing is global agriculture, which is now extensive in land-use and intensive in management, owing to 20th century development trends. Agriculture and food systems now contribute nearly 30% of global greenhouse gas emissions and require copious inputs and resources, such as fertilizer, water, and land. Much uncertainty remains in quantifying important agriculture-climate interactions, including surface moisture and energy balances and biogeochemical cycling. Despite these externalities and uncertainties, agriculture is increasingly being leveraged to function as a net sink of anthropogenic carbon, and there is much emphasis on future sustainable intensification. Given its significance as a major environmental and climate forcing, there now exist a variety of approaches to represent agriculture in ESMs. These approaches are reviewed herein, and range from idealized representations of agricultural extent to the development of coupled climate-crop models that capture dynamic feedbacks. We highlight the robust agriculture-climate interactions and responses identified by these modeling efforts, as well as existing uncertainties and model limitations. To this end, coordinated and benchmarking assessments of land-use-climate feedbacks can be leveraged for further improvements in ESM's agricultural representations. We suggest key areas for continued model development, including incorporating irrigation and biogeochemical cycling in particular. Last, we pose several critical research questions to guide future work. Our review focuses on ESM representations of climate-surface interactions over managed agricultural lands, rather than on ESMs as an estimation tool for crop yields and productivity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1319174-analysis-radiant-cooling-system-configurations-integrated-cooling-tower-different-indian-climatic-zones','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1319174-analysis-radiant-cooling-system-configurations-integrated-cooling-tower-different-indian-climatic-zones"><span>Analysis of Radiant Cooling System Configurations Integrated with Cooling Tower for Different Indian Climatic Zones</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Mathur, Jyotirmay; Bhandari, Mahabir S; Jain, Robin</p> <p></p> <p>Radiant cooling system has proven to be a low energy consumption system for building cooling needs. This study describes the use of cooling tower in radiant cooling system to improve the overall system efficiency. A comprehensive simulation feasibility study of the application of cooling tower in radiant cooling system was performed for the fifteen cities in different climatic zones of India. It was found that in summer, the wet bulb temperature (WBT) of the different climatic zones except warm-humid is suitable for the integration of cooling tower with radiant cooling system. In these climates, cooling tower can provide on averagemore » 24 C to 27 C water In order to achieve the energy saving potential, three different configurations of radiant cooling system have been compared in terms of energy consumption. The different configurations of the radiant cooling system integrated with cooling tower are: (1) provide chilled water to the floor, wall and ceiling mounted tubular installation. (2) provide chilled water to the wall and ceiling mounted tabular installation. In this arrangement a separate chiller has also been used to provide chilled water at 16 C to the floor mounted tubular installation. (3) provide chilled water to the wall mounted tabular installation and a separate chiller is used to provide chilled water at 16 C to the floor and ceiling mounted tabular installation. A dedicated outdoor air system is also coupled for dehumidification and ventilation in all three configurations. A conventional all-air system was simulated as a baseline to compare these configurations for assessing the energy saving potential.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1910740B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1910740B"><span>"Global warming, continental drying? Interpreting projected aridity changes over land under climate change"</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Berg, Alexis</p> <p>2017-04-01</p> <p>In recent years, a number of studies have suggested that, as climate warms, the land surface will globally become more arid. Such results usually rely on drought or aridity diagnostics, such as the Palmer Drought Severity Index or the Aridity Index (ratio of precipitation over potential evapotranspiration, PET), applied to climate model projections of surface climate. From a global perspective, the projected widespread drying of the land surface is generally interpreted as the result of the dominant, ubiquitous warming-induced PET increase, which overwhelms the slight overall precipitation increase projected over land. However, several lines of evidence, based on (paleo)observations and climate model projections, raise questions regarding this interpretation of terrestrial climate change. In this talk, I will review elements of the literature supporting these different perspectives, and will present recent results based on CMIP5 climate model projections regarding changes in aridity over land that shed some light on this discussion. Central to the interpretation of projected land aridity changes is the understanding of projected PET trends over land and their link with changes in other variables of the terrestrial water cycle (ET, soil moisture) and surface climate in the context of the coupled land-atmosphere system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.2828D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.2828D"><span>Impact of climate change on European weather extremes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Duchez, Aurelie; Forryan, Alex; Hirschi, Joel; Sinha, Bablu; New, Adrian; Freychet, Nicolas; Scaife, Adam; Graham, Tim</p> <p>2015-04-01</p> <p>An emerging science consensus is that global climate change will result in more extreme weather events with concomitant increasing financial losses. Key questions that arise are: Can an upward trend in natural extreme events be recognised and predicted at the European scale? What are the key drivers within the climate system that are changing and making extreme weather events more frequent, more intense, or both? Using state-of-the-art coupled climate simulations from the UK Met Office (HadGEM3-GC2, historical and future scenario runs) as well as reanalysis data, we highlight the potential of the currently most advanced forecasting systems to progress understanding of the causative drivers of European weather extremes, and assess future frequency and intensity of extreme weather under various climate change scenarios. We characterize European extremes in these simulations using a subset of the 27 core indices for temperature and precipitation from The Expert Team on Climate Change Detection and Indices (Tank et al., 2009). We focus on temperature and precipitation extremes (e.g. extremes in daily and monthly precipitation and temperatures) and relate them to the atmospheric modes of variability over Europe in order to establish the large-scale atmospheric circulation patterns that are conducive to the occurrence of extreme precipitation and temperature events. Klein Tank, Albert M.G., and Francis W. Zwiers. Guidelines on Analysis of Extremes in a Changing Climate in Support of Informed Decisions for Adaptation. WMO-TD No. 1500. Climate Data and Monitoring. World Meteorological Organization, 2009.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMNG33A1574F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMNG33A1574F"><span>Separation of spatial-temporal patterns ('climatic modes') by combined analysis of really measured and generated numerically vector time series</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Feigin, A. M.; Mukhin, D.; Volodin, E. M.; Gavrilov, A.; Loskutov, E. M.</p> <p>2013-12-01</p> <p>The new method of decomposition of the Earth's climate system into well separated spatial-temporal patterns ('climatic modes') is discussed. The method is based on: (i) generalization of the MSSA (Multichannel Singular Spectral Analysis) [1] for expanding vector (space-distributed) time series in basis of spatial-temporal empirical orthogonal functions (STEOF), which makes allowance delayed correlations of the processes recorded in spatially separated points; (ii) expanding both real SST data, and longer by several times SST data generated numerically, in STEOF basis; (iii) use of the numerically produced STEOF basis for exclusion of 'too slow' (and thus not represented correctly) processes from real data. The application of the method allows by means of vector time series generated numerically by the INM RAS Coupled Climate Model [2] to separate from real SST anomalies data [3] two climatic modes possessing by noticeably different time scales: 3-5 and 9-11 years. Relations of separated modes to ENSO and PDO are investigated. Possible applications of spatial-temporal climatic patterns concept to prognosis of climate system evolution is discussed. 1. Ghil, M., R. M. Allen, M. D. Dettinger, K. Ide, D. Kondrashov, et al. (2002) "Advanced spectral methods for climatic time series", Rev. Geophys. 40(1), 3.1-3.41. 2. http://83.149.207.89/GCM_DATA_PLOTTING/GCM_INM_DATA_XY_en.htm 3. http://iridl.ldeo.columbia.edu/SOURCES/.KAPLAN/.EXTENDED/.v2/.ssta/</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29440736','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29440736"><span>Toward a consistent modeling framework to assess multi-sectoral climate impacts.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Monier, Erwan; Paltsev, Sergey; Sokolov, Andrei; Chen, Y-H Henry; Gao, Xiang; Ejaz, Qudsia; Couzo, Evan; Schlosser, C Adam; Dutkiewicz, Stephanie; Fant, Charles; Scott, Jeffery; Kicklighter, David; Morris, Jennifer; Jacoby, Henry; Prinn, Ronald; Haigh, Martin</p> <p>2018-02-13</p> <p>Efforts to estimate the physical and economic impacts of future climate change face substantial challenges. To enrich the currently popular approaches to impact analysis-which involve evaluation of a damage function or multi-model comparisons based on a limited number of standardized scenarios-we propose integrating a geospatially resolved physical representation of impacts into a coupled human-Earth system modeling framework. Large internationally coordinated exercises cannot easily respond to new policy targets and the implementation of standard scenarios across models, institutions and research communities can yield inconsistent estimates. Here, we argue for a shift toward the use of a self-consistent integrated modeling framework to assess climate impacts, and discuss ways the integrated assessment modeling community can move in this direction. We then demonstrate the capabilities of such a modeling framework by conducting a multi-sectoral assessment of climate impacts under a range of consistent and integrated economic and climate scenarios that are responsive to new policies and business expectations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017NatEn...217109L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017NatEn...217109L"><span>Vulnerability of US thermoelectric power generation to climate change when incorporating state-level environmental regulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, Lu; Hejazi, Mohamad; Li, Hongyi; Forman, Barton; Zhang, Xiao</p> <p>2017-08-01</p> <p>Previous modelling studies suggest that thermoelectric power generation is vulnerable to climate change, whereas studies based on historical data suggest the impact will be less severe. Here we explore the vulnerability of thermoelectric power generation in the United States to climate change by coupling an Earth system model with a thermoelectric power generation model, including state-level representation of environmental regulations on thermal effluents. We find that the impact of climate change is lower than in previous modelling estimates due to an inclusion of a spatially disaggregated representation of environmental regulations and provisional variances that temporarily relieve power plants from permit requirements. More specifically, our results indicate that climate change alone may reduce average generating capacity by 2-3% by the 2060s, while reductions of up to 12% are expected if environmental requirements are enforced without waivers for thermal variation. Our work highlights the significance of accounting for legal constructs and underscores the effects of provisional variances in addition to environmental requirements.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16433093','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16433093"><span>Integrated approaches to climate-crop modelling: needs and challenges.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Betts, Richard A</p> <p>2005-11-29</p> <p>This paper discusses the need for a more integrated approach to modelling changes in climate and crops, and some of the challenges posed by this. While changes in atmospheric composition are expected to exert an increasing radiative forcing of climate change leading to further warming of global mean temperatures and shifts in precipitation patterns, these are not the only climatic processes which may influence crop production. Changes in the physical characteristics of the land cover may also affect climate; these may arise directly from land use activities and may also result from the large-scale responses of crops to seasonal, interannual and decadal changes in the atmospheric state. Climate models used to drive crop models may, therefore, need to consider changes in the land surface, either as imposed boundary conditions or as feedbacks from an interactive climate-vegetation model. Crops may also respond directly to changes in atmospheric composition, such as the concentrations of carbon dioxide (CO2), ozone (03) and compounds of sulphur and nitrogen, so crop models should consider these processes as well as climate change. Changes in these, and the responses of the crops, may be intimately linked with meteorological processes so crop and climate models should consider synergies between climate and atmospheric chemistry. Some crop responses may occur at scales too small to significantly influence meteorology, so may not need to be included as feedbacks within climate models. However, the volume of data required to drive the appropriate crop models may be very large, especially if short-time-scale variability is important. Implementation of crop models within climate models would minimize the need to transfer large quantities of data between separate modelling systems. It should also be noted that crop responses to climate change may interact with other impacts of climate change, such as hydrological changes. For example, the availability of water for irrigation may be affected by changes in runoff as a direct consequence of climate change, and may also be affected by climate-related changes in demand for water for other uses. It is, therefore, necessary to consider the interactions between the responses of several impacts sectors to climate change. Overall, there is a strong case for a much closer coupling between models of climate, crops and hydrology, but this in itself poses challenges arising from issues of scale and errors in the models. A strategy is proposed whereby the pursuit of a fully coupled climate-chemistry-crop-hydrology model is paralleled by continued use of separate climate and land surface models but with a focus on consistency between the models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.B23C0210M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.B23C0210M"><span>Dynamics of global vegetation biomass simulated by the integrated Earth System Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mao, J.; Shi, X.; Di Vittorio, A. V.; Thornton, P. E.; Piao, S.; Yang, X.; Truesdale, J. E.; Bond-Lamberty, B. P.; Chini, L. P.; Thomson, A. M.; Hurtt, G. C.; Collins, W.; Edmonds, J.</p> <p>2014-12-01</p> <p>The global vegetation biomass stores huge amounts of carbon and is thus important to the global carbon budget (Pan et al., 2010). For the past few decades, different observation-based estimates and modeling of biomass in the above- and below-ground vegetation compartments have been comprehensively conducted (Saatchi et al., 2011; Baccini et al., 2012). However, uncertainties still exist, in particular for the simulation of biomass magnitude, tendency, and the response of biomass to climatic conditions and natural and human disturbances. The recently successful coupling of the integrated Earth System Model (iESM) (Di Vittorio et al., 2014; Bond-Lamberty et al., 2014), which links the Global Change Assessment Model (GCAM), Global Land-use Model (GLM), and Community Earth System Model (CESM), offers a great opportunity to understand the biomass-related dynamics in a fully-coupled natural and human modeling system. In this study, we focus on the systematic analysis and evaluation of the iESM simulated historical (1850-2005) and future (2006-2100) biomass changes and the response of the biomass dynamics to various impact factors, in particular the human-induced Land Use/Land Cover Change (LULCC). By analyzing the iESM simulations with and without the interactive LULCC feedbacks, we further study how and where the climate feedbacks affect socioeconomic decisions and LULCC, such as to alter vegetation carbon storage. References Pan Y et. al: A large and persistent carbon sink in the World's forests. Science 2011, 333:988-993. Saatchi SS et al: Benchmark map of forest carbon stocks in tropical regions across three continents. Proc Natl Acad Sci 2011, 108:9899-9904. Baccini A et al: Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nature Clim Change 2012, 2:182-185. Di Vittorio AV et al: From land use to land cover: restoring the afforestation signal in a coupled integrated assessment-earth system model and the implications for CMIP5 RCP simulations. Biogeosciences Discuss 2014, 11:7151-7188. Bond-Lamberty, B et al: Coupling earth system and integrated assessment models: The problem of steady state. Geosci. Model Dev. Discuss 2014, 7: 1499-1524, doi:10.5194/gmdd-7-1499-2014.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1610495V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1610495V"><span>Socio-hydrologic Modeling to Understand and Mediate the Competition for Water between Humans and Ecosystems: Murrumbidgee River Basin, Australia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>van Emmerik, Tim; Sivapalan, Murugesu; Li, Zheng; Pande, Saket; Savenije, Hubert</p> <p>2014-05-01</p> <p>Around the world the demand for water resources is growing in order to satisfy rapidly increasing human populations, leading to competition for water between humans and ecosystems. An entirely new and comprehensive quantitative framework is needed to establish a holistic understanding of that competition, thereby enabling development and evaluation of effective mediation strategies. We present a case study centered on the Murrumbidgee river basin in eastern Australia that illustrates the dynamics of the balance between water extraction and use for food production and efforts to mitigate and reverse consequent degradation of the riparian environment. Interactions between patterns of water resources management and climate driven hydrological variability within the prevailing socio-economic environment have contributed to the emergence of new whole system dynamics over the last 100 years. In particular, data analysis reveals a pendulum swing between an exclusive focus on agricultural development and food production in the initial stages of water resources development and its attendant socio-economic benefits, followed by the gradual realization of the adverse environmental impacts, efforts to mitigate these with the use of remedial measures, and ultimately concerted efforts and externally imposed solutions to restore environmental health and ecosystem services. A quasi-distributed coupled socio-hydrologic system model that explicitly includes the two-way coupling between human and hydrological systems, including evolution of human values/norms relating to water and the environment, is able to mimic broad features of this pendulum swing. The model consists of coupled nonlinear differential equations that include four state variables describing the co-evolution of storage capacity, irrigated area, human population, and ecosystem health, which are all connected by feedback mechanisms. The model is used to generate insights into the dominant controls of the trajectory of co-evolution of the coupled human-water system, to serve as the theoretical framework for more detailed analysis of the system, and to generate organizing principles that may be transferable to other systems in different climatic and socio-economic settings.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013GMDD....6.3085W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013GMDD....6.3085W"><span>Dynamic coupling of regional atmosphere to biosphere in the new generation regional climate system model REMO-iMOVE</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wilhelm, C.; Rechid, D.; Jacob, D.</p> <p>2013-05-01</p> <p>The main objective of this study is the coupling of the regional climate model REMO to a 3rd generation land surface scheme and the evaluation of the new model version of REMO, called REMO with interactive MOsaic-based VEgetation: REMO-iMOVE. Attention is paid to the documentation of the technical aspects of the new model constituents and the coupling mechanism. We compare simulation results of REMO-iMOVE and of the reference version REMO2009, to investigate the sensitivity of the regional model to the new land surface scheme. An 11 yr climate model run (1995-2005), forced with ECMWF ERA-Interim lateral boundary conditions, over Europe in 0.44° resolution of both model versions was carried out, to represent present day European climate. The result of these experiments are compared to multiple temperature, precipitation, heat flux and leaf area index observation data, to determine the differences in the model versions. The new model version has further the ability to model net primary productivity for the given plant functional types. This new feature is thoroughly evaluated by literature values of net primary productivity of different plant species in European climatic regions. The new model version REMO-iMOVE is able to model the European climate in the same quality as the parent model version REMO2009 does. The differences in the results of the two model versions stem from the differences in the dynamics of vegetation cover and density and can be distinct in some regions, due to the influences of these parameters to the surface heat and moisture fluxes. The modeled inter-annual variability in the phenology as well as the net primary productivity lays in the range of observations and literature values for most European regions. This study also reveals the need for a more sophisticated soil moisture representation in the newly developed model version REMO-iMOVE to be able to treat the differences in plant functional types. This gets especially important if the model will be used in dynamic vegetation studies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMPP44A..03Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMPP44A..03Z"><span>Heinrich events simulated across the glacial</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ziemen, F. A.; Mikolajewicz, U.</p> <p>2015-12-01</p> <p>Heinrich events are among the most prominent climate change events recorded in proxies across the northern hemisphere. They are the archetype of ice sheet — climate interactions on millennial time scales. Nevertheless, the exact mechanisms that cause Heinrich events are still under discussion, and their climatic consequences are far from being fully understood. We contribute to answering the open questions by studying Heinrich events in a coupled ice sheet model (ISM) atmosphere-ocean-vegetation general circulation model (AOVGCM) framework, where this variability occurs as part of the model generated internal variability. The setup consists of a northern hemisphere setup of the modified Parallel Ice Sheet Model (mPISM) coupled to the global AOVGCM ECHAM5/MPIOM/LPJ. The simulations were performed fully coupled and with transient orbital and greenhouse gas forcing. They span from several millennia before the last glacial maximum into the deglaciation. We analyze simulations where the ISM is coupled asynchronously to the AOVGCM and simulations where the ISM and the ocean model are coupled synchronously and the atmosphere model is coupled asynchronously to them. The modeled Heinrich events show a marked influence of the ice discharge on the Atlantic circulation and heat transport.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMGC21D1129L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMGC21D1129L"><span>Coupled Atmosphere-Surface Modeling of Lake Levels of the North American Great Lakes under Climate Change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lofgren, B. M.; Xiao, C.</p> <p>2016-12-01</p> <p>The influence of projected climate change on the water levels of the Great Lakes is subject to considerable uncertainty, and methods that have long been used to determine this sensitivity have been discredited. A strong candidate, albeit expensive, to replace problematic methods is to use outputs that result from dynamical downscaling of future climate simulations, focused on the hydroclimate of the Great Lakes basin. We have produced initial estimates of Great Lakes water levels in the mid- and late 21st century using the Weather Research and Forecasting (WRF) model, including its lake module, driven by lateral boundary conditions from the Geophysical Fluid Dynamics Lab Climate Model version 3.0 (GFDL CM3), under RCP4.5 and 8.5 scenarios. Future lake levels are influenced by the balance between projected general increases in precipitation and increases in evapotranspiration from both land and lake in the basin, driven primarily by the surface radiative energy budget and secondarily by air temperature. The net result was drops in lake level of up to 15 cm, in contrast to the results from much-used older methods, which often projected drops exceeding 1 m. Future plans include increased detail in the simulation of water flow overland and in river channels using WRF-Hydro, and full coupling of regional atmospheric systems with 3-dimensional dynamical lake implementation of the Finite Volume Community Ocean Model (FVCOM).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H42B..05G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H42B..05G"><span>Why we shouldn't underestimate the impact of plant functional diversity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Groner, V.; Raddatz, T.; Reick, C. H.; Claussen, M.</p> <p>2017-12-01</p> <p>We present a series of coupled land-atmosphere simulations with different combinations of plant functional types (PFTs) from mid-Holocene to preindustrial to show how plant functional diversity affects simulated climate-vegetation interaction under changing environmental conditions in subtropical Africa. Scientists nowadays agree that the establishment of the ``green'' Sahara was triggered by external changes in the Earth's orbit and amplified by internal feedback mechanisms. The timing and abruptness of the transition to the ``desert'' state are in turn still under debate. While some previous studies indicated an abrupt collapse of vegetation implying a strong climate-vegetation feedback, others suggested a gradual vegetation decline thereby questioning the existence of a strong climate-vegetation feedback. However, none of these studies explicitly accounted for the role of plant diversity. We show that the introduction or removal of a single PFT can bring about significant impacts on the simulated climate-vegetation system response to changing orbital forcing. While simulations with the standard set of PFTs show a gradual decrease of precipitation and vegetation cover over time, the reduction of plant functional diversity can cause either an abrupt decline of both variables or an even slower response to the external forcing. PFT composition seems to be the decisive factor for the system response to external forcing, and an increase in plant functional diversity does not necessarily increase the stability of the climate-vegetation system. From this we conclude that accounting for plant functional diversity in future studies - not only on palaeo climates - could significantly improve the understanding of climate-vegetation interaction in semi-arid regions, the predictability of the vegetation response to changing climate, and respectively, of the resulting feedback on precipitation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMNH11C..01P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMNH11C..01P"><span>Science and Systems in Support of Multi-hazard Early Warnings and Decisions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pulwarty, R. S.</p> <p>2015-12-01</p> <p>The demand for improved climate knowledge and information is well documented. As noted in the IPCC (SREX, AR5), the UNISDR Global Assessment Reports and other assessments, this demand has increased pressure for information to support planning under changing rates and emergence of multiple hazards including climate extremes (drought, heat waves, floods). "Decision support" is now a popular term in the climate applications research community. While existing decision support activities can be identified in many disparate settings (e.g. federal, academic, private), the challenge of changing environments (coupled physical and social) is actually one of crafting implementation strategies for improving decision quality (not just meeting "user needs"). This includes overcoming weaknesses in co-production models, moving beyond DSSs as simply "software", coordinating innovation mapping and diffusion, and providing fora and gaming tools to identify common interests and differences in the way risks are perceived and managed among the affected groups. We outline the development and evolution of multi-hazard early warning systems in the United States and elsewhere, focusing on climate-related hazards. In particular, the presentation will focus on the climate science and information needed for (1) improved monitoring and modeling, (2) generating risk profiles, (3) developing information systems and scenarios for critical thresholds, (4) the net benefits of using new information (5) characterizing and bridging the "last mile" in the context of longer-term risk management.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/638275-asian-australian-monsoon-el-nino-southern-oscillation-ncar-climate-system-model','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/638275-asian-australian-monsoon-el-nino-southern-oscillation-ncar-climate-system-model"><span>The Asian-Australian monsoon and El Nino-Southern Oscillation in the NCAR Climate System Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Meehl, G.A.; Arblaster, J.M.</p> <p></p> <p>Features associated with the Asian-Australian monsoon system and El Nino-Southern Oscillation (ENSO) are described in the National Center for Atmospheric Research (NCAR) global coupled Climate System Model (CSM). Simulation characteristics are compared with a version of the atmospheric component of the CSM, the NCAR CCM3, run with time-evolving SSTs from 1950 to 1994, and with observations. The CSM is shown to represent most major features of the monsoon system in terms of mean climatology, interannual variability, and connections to the tropical Pacific. This includes a representation of the Southern Oscillation links between strong Asian-Australian monsoons and associated negative SST anomaliesmore » in the eastern equatorial Pacific. The equatorial SST gradient across the Pacific in the CSM is shown to be similar to the observed with somewhat cooler mean SSTs across the entire Pacific by about 1--2 C. The seasonal cycle of SSTs in the eastern equatorial Pacific has the characteristic signature seen in the observations of relatively warmer SSTs propagating westward in the first half of the year followed by the reestablishment of the cold tongue with relatively colder SSTs propagating westward in the second half of the year. Like other global coupled models, the propagation is similar to the observed but with the establishment of the relatively warmer water in the first half of the year occurring about 1--2 months later than observed. The seasonal cycle of precipitation in the tropical eastern Pacific is also similar to other global coupled models in that there is a tendency for a stronger-than-observed double ITCZ year round, particularly in northern spring, but with a well-reproduced annual maximum of ITCZ strength north of the equator in the second half of the year.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.H34E..05S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.H34E..05S"><span>Socio-Hydrology: Conceptual and Methodological Challenges in the Bidirectional Coupling of Human and Water Systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Scott, C. A.</p> <p>2014-12-01</p> <p>This presentation reviews conceptual advances in the emerging field of socio-hydrology that focuses on coupled human and water systems. An important current challenge is how to better couple the bidirectional influences between human and water systems, which lead to emergent dynamics. The interactions among (1) the structure and dynamics of systems with (2) human values and norms lead to (3) outcomes, which in turn influence subsequent interactions. Human influences on hydrological systems are relatively well understood, chiefly resulting from developments in the field of water resources. The ecosystem-service concept of cultural value has expanded understanding of decision-making beyond economic rationality criteria. Hydrological impacts on social processes are less well developed conceptually, but this is changing with growing attention to vulnerability, adaptation, and resilience, particularly in the face of climate change. Methodological limitations, especially in characterizing the range of human responses to hydrological events and drivers, still pose challenges to modeling bidirectional human-water influences. Evidence from multiple case studies, synthesized in more broadly generic syndromes, helps surmount these methodological limitations and offers the potential to improve characterization and quantification of socio-hydrological systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/20006334-phase-change-wallboard-mechanical-night-ventilation-commercial-buildings-potential-hvac-system-downsizing','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/20006334-phase-change-wallboard-mechanical-night-ventilation-commercial-buildings-potential-hvac-system-downsizing"><span>Phase-change wallboard and mechanical night ventilation in commercial buildings: Potential for HVAC system downsizing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Stetiu, C.; Feustel, H.E.</p> <p>1998-07-01</p> <p>As thermal storage media, phase-change materials (PCMs) such as paraffin, eutectic salts, etc. offer an order-of-magnitude increase in thermal storage capacity, and their discharge is almost isothermal. By embedding PCMs in dypsum board, plaster, or other wall-covering materials, the building structure acquires latent storage properties. Structural elements containing PCMs can store large amounts of energy while maintaining the indoor temperature within a relatively narrow range. As heat storage takes place inside the building where the loads occur, rather than at a central exterior location, the internal loads are removed without the need for additional transport energy. Distributed latent storage canmore » thus be used to reduce the peak power demand of a building, downsize the cooling system, and/or switch to low-energy cooling sources. The authors used RADCOOL, a thermal building simulation program based on the finite difference approach, to numerically evaluate the thermal performance of PCM wallboard coupled with mechanical night ventilation in office buildings offers the opportunity for system downsizing in climates where the outside air temperature drops below 18 C at night. In climates where the outside air temperature remains above 19 C at night, the use of PCM wallboard should be coupled with discharge mechanisms other than mechanical night ventilation with outside air.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A31J2306Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A31J2306Y"><span>Mesosacle eddies in a high resolution OGCM and coupled ocean-atmosphere GCM</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yu, Y.; Liu, H.; Lin, P.</p> <p>2017-12-01</p> <p>The present study described high-resolution climate modeling efforts including oceanic, atmospheric and coupled general circulation model (GCM) at the state key laboratory of numerical modeling for atmospheric sciences and geophysical fluid dynamics (LASG), Institute of Atmospheric Physics (IAP). The high-resolution OGCM is established based on the latest version of the LASG/IAP Climate system Ocean Model (LICOM2.1), but its horizontal resolution and vertical resolution are increased to 1/10° and 55 layers, respectively. Forced by the surface fluxes from the reanalysis and observed data, the model has been integrated for approximately more than 80 model years. Compared with the simulation of the coarse-resolution OGCM, the eddy-resolving OGCM not only better simulates the spatial-temporal features of mesoscale eddies and the paths and positions of western boundary currents but also reproduces the large meander of the Kuroshio Current and its interannual variability. Another aspect, namely, the complex structures of equatorial Pacific currents and currents in the coastal ocean of China, are better captured due to the increased horizontal and vertical resolution. Then we coupled the high resolution OGCM to NCAR CAM4 with 25km resolution, in which the mesoscale air-sea interaction processes are better captured.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3260605','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3260605"><span>Understanding of Coupled Terrestrial Carbon, Nitrogen and Water Dynamics—An Overview</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Chen, Baozhang; Coops, Nicholas C.</p> <p>2009-01-01</p> <p>Coupled terrestrial carbon (C), nitrogen (N) and hydrological processes play a crucial role in the climate system, providing both positive and negative feedbacks to climate change. In this review we summarize published research results to gain an increased understanding of the dynamics between vegetation and atmosphere processes. A variety of methods, including monitoring (e.g., eddy covariance flux tower, remote sensing, etc.) and modeling (i.e., ecosystem, hydrology and atmospheric inversion modeling) the terrestrial carbon and water budgeting, are evaluated and compared. We highlight two major research areas where additional research could be focused: (i) Conceptually, the hydrological and biogeochemical processes are closely linked, however, the coupling processes between terrestrial C, N and hydrological processes are far from well understood; and (ii) there are significant uncertainties in estimates of the components of the C balance, especially at landscape and regional scales. To address these two questions, a synthetic research framework is needed which includes both bottom-up and top-down approaches integrating scalable (footprint and ecosystem) models and a spatially nested hierarchy of observations which include multispectral remote sensing, inventories, existing regional clusters of eddy-covariance flux towers and CO2 mixing ratio towers and chambers. PMID:22291528</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22291528','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22291528"><span>Understanding of coupled terrestrial carbon, nitrogen and water dynamics-an overview.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chen, Baozhang; Coops, Nicholas C</p> <p>2009-01-01</p> <p>Coupled terrestrial carbon (C), nitrogen (N) and hydrological processes play a crucial role in the climate system, providing both positive and negative feedbacks to climate change. In this review we summarize published research results to gain an increased understanding of the dynamics between vegetation and atmosphere processes. A variety of methods, including monitoring (e.g., eddy covariance flux tower, remote sensing, etc.) and modeling (i.e., ecosystem, hydrology and atmospheric inversion modeling) the terrestrial carbon and water budgeting, are evaluated and compared. We highlight two major research areas where additional research could be focused: (i) Conceptually, the hydrological and biogeochemical processes are closely linked, however, the coupling processes between terrestrial C, N and hydrological processes are far from well understood; and (ii) there are significant uncertainties in estimates of the components of the C balance, especially at landscape and regional scales. To address these two questions, a synthetic research framework is needed which includes both bottom-up and top-down approaches integrating scalable (footprint and ecosystem) models and a spatially nested hierarchy of observations which include multispectral remote sensing, inventories, existing regional clusters of eddy-covariance flux towers and CO(2) mixing ratio towers and chambers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUSM.H21A..03B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUSM.H21A..03B"><span>Climate Information Responding to User Needs (CIRUN)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Busalacchi, A. J.</p> <p>2009-05-01</p> <p>For the past several decades many different US agencies have been involved in collecting Earth observations, e.g., NASA, NOAA, DoD, USGS, USDA. More recently, the US has led the international effort to design a Global Earth Observation System of Systems (GEOSS). Yet, there has been little substantive progress at the synthesis and integration of the various research and operational, space-based and in situ, observations. Similarly, access to such a range of observations across the atmosphere, ocean, and land surface remains fragmented. With respect to prediction of the Earth System, the US has not developed a comprehensive strategy. For climate, the US (e.g., NOAA, NASA, DoE) has taken a two-track strategy. At the more immediate time scale, coupled ocean-atmosphere models of the physical climate system have built upon the tradition of daily numerical weather prediction in order to extend the forecast window to seasonal to interannual times scales. At the century time scale, the nascent development of Earth System models, combining components of the physical climate system with biogeochemical cycles, are being used to provide future climate change projections in response to anticipated greenhouse gas forcings. Between these to two approaches to prediction lies a key deficiency of interest to decision makers, especially as it pertains to adaptation, i.e., deterministic prediction of the Earth System at time scales from days to decades with spatial scales from global to regional. One of many obstacles to be overcome is the design of present day observation and prediction products based on user needs. To date, most of such products have evolved from the technology and research "push" rather than the user or stakeholder "pull". In the future as planning proceeds for a national climate service, emphasis must be given to a more coordinated approach in which stakeholders' needs help design future Earth System observational and prediction products, and similarly, such products need to be tailored to provide decision support.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMGC12B..08H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMGC12B..08H"><span>The Impact of Climate Projection Method on the Analysis of Climate Change in Semi-arid Basins</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Halper, E.; Shamir, E.</p> <p>2016-12-01</p> <p>In small basins with arid climates, rainfall characteristics are highly variable and stream flow is tightly coupled with the nuances of rainfall events (e.g. hourly precipitation patterns Climate change assessments in these basins typically employ CMIP5 projections downscaled with Bias Corrected Statistical Downscaling and Bias Correction/Constructed Analogs (BCSD-BCCA) methods, but these products have drawbacks. Specifically, BCSD-BCCA these projections do not explicitly account for localized physical precipitation mechanisms (e.g. monsoon and snowfall) that are essential to many hydrological systems in the U. S. Southwest. An investigation of the impact of different types of precipitation projections for two kinds of hydrologic studies is being conducted under the U.S. Bureau of Reclamation's Science and Technology Grant Program. An innovative modeling framework consisting of a weather generator of likely hourly precipitation scenarios, coupled with rainfall-runoff, river routing and groundwater models, has been developed in the Nogales, Arizona area. This framework can simulate the impact of future climate on municipal water operations. This framework allows the rigorous comparison of the BCSD-BCCA methods with alternative approaches including rainfall output from dynamical downscaled Regional Climate Models (RCM), a stochastic rainfall generator forced by either Global Climate Models (GCM) or RCM, and projections using historical records conditioned on either GCM or RCM. The results will provide guide for the use of climate change projections into hydrologic studies of semi-arid areas. The project extends this comparison to analyses of flood control. Large flows on the Bill Williams River are a concern for the operation of dams along the Lower Colorado River. After adapting the weather generator for this region, we will evaluate the model performance for rainfall and stream flow, with emphasis on statistical features important to the specific needs of flood management. The end product of the research is to develop a test to guide selection of a precipitation projection method (including downscaling procedure) for a given region and objective.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1166830-from-land-use-land-cover-restoring-afforestation-signal-coupled-integrated-assessment-earth-system-model-implications-cmip5-rcp-simulations','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1166830-from-land-use-land-cover-restoring-afforestation-signal-coupled-integrated-assessment-earth-system-model-implications-cmip5-rcp-simulations"><span>From land use to land cover: Restoring the afforestation signal in a coupled integrated assessment - earth system model and the implications for CMIP5 RCP simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Di Vittorio, Alan V.; Chini, Louise M.; Bond-Lamberty, Benjamin</p> <p>2014-11-27</p> <p>Climate projections depend on scenarios of fossil fuel emissions and land use change, and the IPCC AR5 parallel process assumes consistent climate scenarios across Integrated Assessment and Earth System Models (IAMs and ESMs). To facilitate consistency, CMIP5 used a novel land use harmonization to provide ESMs with seamless, 1500-2100 land use trajectories generated by historical data and four IAMs. However, we have identified and partially addressed a major gap in the CMIP5 land coupling design. The CMIP5 Community ESM (CESM) global afforestation is only 22% of RCP4.5 afforestation from 2005 to 2100. Likewise, only 17% of the Global Change Assessmentmore » Model’s (GCAM’s) 2040 RCP4.5 afforestation signal, and none of the pasture loss, were transmitted to CESM within a newly integrated model. This is a critical problem because afforestation is necessary for achieving the RCP4.5 climate stabilization. We attempted to rectify this problem by modifying only the ESM component of the integrated model, enabling CESM to simulate 66% of GCAM’s afforestation in 2040, and 94% of GCAM’s pasture loss as grassland and shrubland losses. This additional afforestation increases vegetation carbon gain by 19 PgC and decreases atmospheric CO2 gain by 8 ppmv from 2005 to 2040, implying different climate scenarios between CMIP5 GCAM and CESM. Similar inconsistencies likely exist in other CMIP5 model results, primarily because land cover information is not shared between models, with possible contributions from afforestation exceeding model-specific, potentially viable forest area. Further work to harmonize land cover among models will be required to adequately rectify this problem.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.H33C1545C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.H33C1545C"><span>Climate Change Impacts on River Temperature in the Southeastern United States: A Case Study of the Tennessee River Basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cheng, Y.; Niemeyer, R. J.; Mao, Y.; Yearsley, J. R.; Nijssen, B.</p> <p>2016-12-01</p> <p>In the coming decades, climate change and population growth are expected to affect water and energy supply as well as demand in the southeastern United States. Changes in temperature and precipitation impact river flow and stream temperature with implications for hydropower generation, industrial and municipal water supply, cooling for thermo-electric power plants, agricultural irrigation, ecosystem functions and flood control. At the same time, water and energy demand are expected to change in response to temperature increase, population growth and changing crop water requirements. As part of a multi-institution study of the food-energy-water nexus in the southeastern U.S., we are developing coupled hydrological and stream temperature models that will be linked to water resources, power systems and crop models at a later stage. Here we evaluate the ability of our system to simulate water supply and stream temperature in the Tennessee River Basin using the Variable Infiltration Capacity (VIC) macroscale hydrology model coupled to the River Basin Model (RBM), a 1-D semi-Lagrangian river temperature model, which has recently been expanded with a two-layer reservoir temperature model. Simulations with VIC-RBM were performed for the Tennessee River Basin at 1/8-degree spatial resolution and a temporal resolution of 1 day or less. Reservoir releases were prescribed based on historic operating rules. In future iterations, these releases will be modeled directly by a water resources model that incorporates flood control, and power and agricultural water demands. We compare simulated flows, as well as stream and reservoir temperatures with observed flows and temperatures throughout the basin. In preparation for later stages of the project, we also perform a set of climate change sensitivity experiments to evaluate how changes in climate may impact river and reservoir temperature.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29760117','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29760117"><span>Inter-decadal variability of phytoplankton biomass along the coastal West Antarctic Peninsula.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kim, Hyewon; Ducklow, Hugh W; Abele, Doris; Ruiz Barlett, Eduardo M; Buma, Anita G J; Meredith, Michael P; Rozema, Patrick D; Schofield, Oscar M; Venables, Hugh J; Schloss, Irene R</p> <p>2018-06-28</p> <p>The West Antarctic Peninsula (WAP) is a climatically sensitive region where periods of strong warming have caused significant changes in the marine ecosystem and food-web processes. Tight coupling between phytoplankton and higher trophic levels implies that the coastal WAP is a bottom-up controlled system, where changes in phytoplankton dynamics may largely impact other food-web components. Here, we analysed the inter-decadal time series of year-round chlorophyll- a (Chl) collected from three stations along the coastal WAP: Carlini Station at Potter Cove (PC) on King George Island, Palmer Station on Anvers Island and Rothera Station on Adelaide Island. There were trends towards increased phytoplankton biomass at Carlini Station (PC) and Palmer Station, while phytoplankton biomass declined significantly at Rothera Station over the studied period. The impacts of two relevant climate modes to the WAP, the El Niño-Southern Oscillation and the Southern Annular Mode, on winter and spring phytoplankton biomass appear to be different among the three sampling stations, suggesting an important role of local-scale forcing than large-scale forcing on phytoplankton dynamics at each station. The inter-annual variability of seasonal bloom progression derived from considering all three stations together captured ecologically meaningful, seasonally co-occurring bloom patterns which were primarily constrained by water-column stability strength. Our findings highlight a coupled link between phytoplankton and physical and climate dynamics along the coastal WAP, which may improve our understanding of overall WAP food-web responses to climate change and variability.This article is part of the theme issue 'The marine system of the West Antarctic Peninsula: status and strategy for progress in a region of rapid change'. © 2018 The Author(s).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.5778B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.5778B"><span>The Effect of Solar Forcing on the Greenland Ice Sheet during the Holocene - A Model Study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bügelmayer, Marianne; Roche, Didier; Renssen, Hans</p> <p>2014-05-01</p> <p>Abrupt climate changes did not only happen during glacials but also during interglacials such as the Holocene. Marine sediments provide evidence for the periodic occurrence of centennial-scale events with enhanced iceberg discharge during the past 11.000 years (Bond et al., 2001). These events were chronologically linked to reduced solar activity as reconstructed using cosmogenic isotopes (Bond et al., 2001), indicating that even an external forcing that is considered to be small, has a potential impact on climate due to several feedback mechanisms (Renssen et al., 2006). The interactions between climate and solar irradiance have been investigated using numerical models (e.g. Haigh, 1996; Renssen et al, 2006), but so far without dynamically computing the Greenland ice sheet and iceberg calving. Thus, the impact of solar variations on iceberg discharge and the underlying mechanisms have not been analysed so far. To analyse the effect of variations in solar activity on the Greenland ice sheet (GIS) and the iceberg calving, as well as possible feedback mechanisms that enhance the impact of the total solar irradiance, we use the earth system model of intermediate complexity (iLOVECLIM, Roche et al., 2013), coupled to the ice sheet/ice shelf model GRISLI (Ritz et al., 2001) and to a dynamic-thermodynamic iceberg module (Jongma et al., 2009, Bügelmayer et al., 2014) to perform transient experiments of the last 6000 years. The experiments are conducted applying reconstructed atmospheric greenhouse gas concentrations, volcanic aerosol loads, orbital parameters and variations in the total solar irradiance. We present the response of the coupled model to different solar irradiance scenarios to evaluate modeled GIS sensitivity to relatively modest variations in radiative forcing. Moreover, we investigate the dependence of the model results on the chosen model sensitivity. References: Bond, G., Kromer, B., Beer, J., Muscheler, R., Evans, M. N., Showers, W., … Bonani, G. (2001): Persistent solar influence on North Atlantic climate during the Holocene. Science (New York, N.Y.), 294(5549), 2130-6. doi:10.1126/science.1065680 Bügelmayer, M., Roche, D.M., Renssen, H. (2014): How do icebergs affect the Greenland ice sheet under pre-industrial conditions? - A model study with a fully coupled ice sheet-climate model. The Cryosphere Discussions 8, 187-228. Haigh, J. D. (1996): The Impact of Solar Variability on Climate. Science, 272, 981-984. Jongma, J.I., Driesschaert, E., Fichefet, T., Goosse, H., Renssen, H., (2009): The effect of dynamic-thermodynamic icebergs on the Southern Ocean climate in a three-dimensional model. Ocean Modelling 26, 104-113. Renssen, H., Goosse, H., Muscheler, R., & Branch, R. (2006): Coupled climate model simulation of Holocene cooling events: oceanic feedback amplifies solar forcing. Climate of the Past, 2, 79-90. Ritz, C., Rommelaere, V. and Dumas, C.(2001): Modeling the evolution of Antarctic ice sheet over the last 420,000 years: Implications for altitude changes in the Vostok region, Journal of Geophysical Research, 106, 31943-31964, doi:10.1029/2001JD900232. Roche, D.M., Dumas, C., Bügelmayer, M., Charbit, S., Ritz, C. (2013): Adding a dynamical cryosphere into iLOVECLIM (version 1.0) - Part 1: Coupling with the GRISLI ice-sheet model, Geoscientific Model Development Discussion, 6, 5215-5249.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19890011986','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19890011986"><span>Earth orbital variations and vertebrate bioevolution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mclean, Dewey M.</p> <p>1988-01-01</p> <p>Cause of the Pleistocene-Holocene transition mammalian extinctions at the end of the last age is the subject of debate between those advocating human predation and climate change. Identification of an ambient air temperature (AAT)-uterine blood flow (UBF) coupling phenomenon supports climate change as a factor in the extinctions, and couples the extinctions to earth orbital variations that drive ice age climatology. The AAT-UBF phenomenon couples mammalian bioevolution directly to climate change via effects of environmental heat upon blood flow to the female uterus and damage to developing embryos. Extinctions were in progress during climatic warming before the Younger Dryas event, and after, at times when the AAT-UBF couple would have been operative; however, impact of a sudden short-term cooling on mammals in the process of adapting to smaller size and relatively larger S/V would have been severe. Variations in earth's orbit, and orbital forcing of atmospheric CO2 concentrations, were causes of the succession of Pleistocene ice ages. Coincidence of mammalian extinctions with terminations of the more intense cold stages links mammalian bioevolution to variations in earth's orbit. Earth orbital variations are a driving source of vertebrate bioevolution.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016GMD.....9.3231G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016GMD.....9.3231G"><span>OMIP contribution to CMIP6: experimental and diagnostic protocol for the physical component of the Ocean Model Intercomparison Project</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Griffies, Stephen M.; Danabasoglu, Gokhan; Durack, Paul J.; Adcroft, Alistair J.; Balaji, V.; Böning, Claus W.; Chassignet, Eric P.; Curchitser, Enrique; Deshayes, Julie; Drange, Helge; Fox-Kemper, Baylor; Gleckler, Peter J.; Gregory, Jonathan M.; Haak, Helmuth; Hallberg, Robert W.; Heimbach, Patrick; Hewitt, Helene T.; Holland, David M.; Ilyina, Tatiana; Jungclaus, Johann H.; Komuro, Yoshiki; Krasting, John P.; Large, William G.; Marsland, Simon J.; Masina, Simona; McDougall, Trevor J.; Nurser, A. J. George; Orr, James C.; Pirani, Anna; Qiao, Fangli; Stouffer, Ronald J.; Taylor, Karl E.; Treguier, Anne Marie; Tsujino, Hiroyuki; Uotila, Petteri; Valdivieso, Maria; Wang, Qiang; Winton, Michael; Yeager, Stephen G.</p> <p>2016-09-01</p> <p>The Ocean Model Intercomparison Project (OMIP) is an endorsed project in the Coupled Model Intercomparison Project Phase 6 (CMIP6). OMIP addresses CMIP6 science questions, investigating the origins and consequences of systematic model biases. It does so by providing a framework for evaluating (including assessment of systematic biases), understanding, and improving ocean, sea-ice, tracer, and biogeochemical components of climate and earth system models contributing to CMIP6. Among the WCRP Grand Challenges in climate science (GCs), OMIP primarily contributes to the regional sea level change and near-term (climate/decadal) prediction GCs.OMIP provides (a) an experimental protocol for global ocean/sea-ice models run with a prescribed atmospheric forcing; and (b) a protocol for ocean diagnostics to be saved as part of CMIP6. We focus here on the physical component of OMIP, with a companion paper (Orr et al., 2016) detailing methods for the inert chemistry and interactive biogeochemistry. The physical portion of the OMIP experimental protocol follows the interannual Coordinated Ocean-ice Reference Experiments (CORE-II). Since 2009, CORE-I (Normal Year Forcing) and CORE-II (Interannual Forcing) have become the standard methods to evaluate global ocean/sea-ice simulations and to examine mechanisms for forced ocean climate variability. The OMIP diagnostic protocol is relevant for any ocean model component of CMIP6, including the DECK (Diagnostic, Evaluation and Characterization of Klima experiments), historical simulations, FAFMIP (Flux Anomaly Forced MIP), C4MIP (Coupled Carbon Cycle Climate MIP), DAMIP (Detection and Attribution MIP), DCPP (Decadal Climate Prediction Project), ScenarioMIP, HighResMIP (High Resolution MIP), as well as the ocean/sea-ice OMIP simulations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..1513426T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..1513426T"><span>On the linkages between the global carbon-nitrogen-phosphorus cycles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tanaka, Katsumasa; Mackenzie, Fred; Bouchez, Julien; Knutti, Reto</p> <p>2013-04-01</p> <p>State-of-the-art earth system models used for long-term climate projections are becoming ever more complex in terms of not only spatial resolution but also the number of processes. Biogeochemical processes are beginning to be incorporated into these models. The motivation of this study is to quantify how climate projections are influenced by biogeochemical feedbacks. In the climate modeling community, it is virtually accepted that climate-Carbon (C) cycle feedbacks accelerate the future warming (Cox et al. 2000; Friedlingstein et al. 2006). It has been demonstrated that the Nitrogen (N) cycle suppresses climate-C cycle feedbacks (Thornton et al. 2009). On the contrary, biogeochemical studies show that the coupled C-N-Phosphorus (P) cycles are intimately interlinked via biosphere and the N-P cycles amplify C cycle feedbacks (Ver et al. 1999). The question as to whether the N-P cycles enhance or attenuate C cycle feedbacks is debated and has a significant implication for projections of future climate. We delve into this problem by using the Terrestrial-Ocean-aTmosphere Ecosystem Model 3 (TOTEM3), a globally-aggregated C-N-P cycle box model. TOTEM3 is a process-based model that describes the biogeochemical reactions and physical transports involving these elements in the four domains of the Earth system: land, atmosphere, coastal ocean, and open ocean. TOTEM3 is a successor of earlier TOTEM models (Ver et al. 1999; Mackenzie et al. 2011). In our presentation, we provide an overview of fundamental features and behaviors of TOTEM3 such as the mass balance at the steady state and the relaxation time scales to various types of perturbation. We also show preliminary results to investigate how the N-P cycles influence the behavior of the C cycle. References Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ (2000) Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 408, 184-187. Friedlingstein P, Cox P, Betts R, Bopp L, von Bloh W, Brovkin V, Cadule P, Doney S, Eby M, Fung I, Bala G, John J, Jones C, Joos F, Kato T, Kawamiya M, Knorr W, Lindsay K, Matthews HD, Raddatz T, Rayner P, Reick C, Roeckner E, Schnitzler KG, Schnur R, Strassmann K, Weaver AJ, Yoshikawa C, Zeng N (2006) Climate-Carbon Cycle Feedback Analysis: Results from the C4MIP Model Intercomparison. Journal of Climate, 19, 3337-3353. Mackenzie FT, De Carlo EH, Lerman A (2011) Coupled C, N, P, and O biogeochemical cycling at the land-ocean interface. In: Wolanski E, McLusky DS (eds) Treatise on Estuarine and Coastal Science, vol 5. Academic Press, Waltham, pp 317-342. Thornton PE, Doney SC, Lindsay K, Moore JK, Mahowald N, Randerson JT, Fung I, Lamarque JF, Feddema JJ, Lee YH (2009) Carbon-nitrogen interactions regulate climate-carbon cycle feedbacks: results from an atmosphere-ocean general circulation model. Biogeosciences, 6, 2099-2120. Ver LMB, Mackenzie FT, Lerman A (1999) Biogeochemical responses of the carbon cycle to natural and human perturbations: Past, present, and future. American Journal of Science, 299, 762-801.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018HESS...22..305Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018HESS...22..305Z"><span>Impacts of future climate change on urban flood volumes in Hohhot in northern China: benefits of climate change mitigation and adaptations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhou, Qianqian; Leng, Guoyong; Huang, Maoyi</p> <p>2018-01-01</p> <p>As China becomes increasingly urbanised, flooding has become a regular occurrence in its major cities. Assessing the effects of future climate change on urban flood volumes is crucial to informing better management of such disasters given the severity of the devastating impacts of flooding (e.g. the 2016 flooding events across China). Although recent studies have investigated the impacts of future climate change on urban flooding, the effects of both climate change mitigation and adaptation have rarely been accounted for together in a consistent framework. In this study, we assess the benefits of mitigating climate change by reducing greenhouse gas (GHG) emissions and locally adapting to climate change by modifying drainage systems to reduce urban flooding under various climate change scenarios through a case study conducted in northern China. The urban drainage model - Storm Water Management Model - was used to simulate urban flood volumes using current and two adapted drainage systems (i.e. pipe enlargement and low-impact development, LID), driven by bias-corrected meteorological forcing from five general circulation models in the Coupled Model Intercomparison Project Phase 5 archive. Results indicate that urban flood volume is projected to increase by 52 % over 2020-2040 compared to the volume in 1971-2000 under the business-as-usual scenario (i.e. Representative Concentration Pathway (RCP) 8.5). The magnitudes of urban flood volumes are found to increase nonlinearly with changes in precipitation intensity. On average, the projected flood volume under RCP 2.6 is 13 % less than that under RCP 8.5, demonstrating the benefits of global-scale climate change mitigation efforts in reducing local urban flood volumes. Comparison of reduced flood volumes between climate change mitigation and local adaptation (by improving drainage systems) scenarios suggests that local adaptation is more effective than climate change mitigation in reducing future flood volumes. This has broad implications for the research community relative to drainage system design and modelling in a changing environment. This study highlights the importance of accounting for local adaptation when coping with future urban floods.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1421346-impacts-future-climate-change-urban-flood-volumes-hohhot-northern-china-benefits-climate-change-mitigation-adaptations','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1421346-impacts-future-climate-change-urban-flood-volumes-hohhot-northern-china-benefits-climate-change-mitigation-adaptations"><span>Impacts of future climate change on urban flood volumes in Hohhot in northern China: benefits of climate change mitigation and adaptations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Zhou, Qianqian; Leng, Guoyong; Huang, Maoyi</p> <p>2018-01-15</p> <p>As China becomes increasingly urbanised, flooding has become a regular occurrence in its major cities. Assessing the effects of future climate change on urban flood volumes is crucial to informing better management of such disasters given the severity of the devastating impacts of flooding (e.g. the 2016 flooding events across China). Although recent studies have investigated the impacts of future climate change on urban flooding, the effects of both climate change mitigation and adaptation have rarely been accounted for together in a consistent framework. In this study, we assess the benefits of mitigating climate change by reducing greenhouse gas (GHG)more » emissions and locally adapting to climate change by modifying drainage systems to reduce urban flooding under various climate change scenarios through a case study conducted in northern China. The urban drainage model – Storm Water Management Model – was used to simulate urban flood volumes using current and two adapted drainage systems (i.e. pipe enlargement and low-impact development, LID), driven by bias-corrected meteorological forcing from five general circulation models in the Coupled Model Intercomparison Project Phase 5 archive. Results indicate that urban flood volume is projected to increase by 52 % over 2020–2040 compared to the volume in 1971–2000 under the business-as-usual scenario (i.e. Representative Concentration Pathway (RCP) 8.5). The magnitudes of urban flood volumes are found to increase nonlinearly with changes in precipitation intensity. On average, the projected flood volume under RCP 2.6 is 13 % less than that under RCP 8.5, demonstrating the benefits of global-scale climate change mitigation efforts in reducing local urban flood volumes. Comparison of reduced flood volumes between climate change mitigation and local adaptation (by improving drainage systems) scenarios suggests that local adaptation is more effective than climate change mitigation in reducing future flood volumes. This has broad implications for the research community relative to drainage system design and modelling in a changing environment. Furthermore, this study highlights the importance of accounting for local adaptation when coping with future urban floods.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1421346','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1421346"><span>Impacts of future climate change on urban flood volumes in Hohhot in northern China: benefits of climate change mitigation and adaptations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Zhou, Qianqian; Leng, Guoyong; Huang, Maoyi</p> <p></p> <p>As China becomes increasingly urbanised, flooding has become a regular occurrence in its major cities. Assessing the effects of future climate change on urban flood volumes is crucial to informing better management of such disasters given the severity of the devastating impacts of flooding (e.g. the 2016 flooding events across China). Although recent studies have investigated the impacts of future climate change on urban flooding, the effects of both climate change mitigation and adaptation have rarely been accounted for together in a consistent framework. In this study, we assess the benefits of mitigating climate change by reducing greenhouse gas (GHG)more » emissions and locally adapting to climate change by modifying drainage systems to reduce urban flooding under various climate change scenarios through a case study conducted in northern China. The urban drainage model – Storm Water Management Model – was used to simulate urban flood volumes using current and two adapted drainage systems (i.e. pipe enlargement and low-impact development, LID), driven by bias-corrected meteorological forcing from five general circulation models in the Coupled Model Intercomparison Project Phase 5 archive. Results indicate that urban flood volume is projected to increase by 52 % over 2020–2040 compared to the volume in 1971–2000 under the business-as-usual scenario (i.e. Representative Concentration Pathway (RCP) 8.5). The magnitudes of urban flood volumes are found to increase nonlinearly with changes in precipitation intensity. On average, the projected flood volume under RCP 2.6 is 13 % less than that under RCP 8.5, demonstrating the benefits of global-scale climate change mitigation efforts in reducing local urban flood volumes. Comparison of reduced flood volumes between climate change mitigation and local adaptation (by improving drainage systems) scenarios suggests that local adaptation is more effective than climate change mitigation in reducing future flood volumes. This has broad implications for the research community relative to drainage system design and modelling in a changing environment. Furthermore, this study highlights the importance of accounting for local adaptation when coping with future urban floods.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4991281','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4991281"><span>Assessing water resource system vulnerability to unprecedented hydrological drought using copulas to characterize drought duration and deficit</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Pflug, Georg; Hall, Jim W.; Hochrainer‐Stigler, Stefan</p> <p>2015-01-01</p> <p>Abstract Global climate models suggest an increase in evapotranspiration, changing storm tracks, and moisture delivery in many parts of the world, which are likely to cause more prolonged and severe drought, yet the weakness of climate models in modeling persistence of hydroclimatic variables and the uncertainties associated with regional climate projections mean that impact assessments based on climate model output may underestimate the risk of multiyear droughts. In this paper, we propose a vulnerability‐based approach to test water resource system response to drought. We generate a large number of synthetic streamflow series with different drought durations and deficits and use them as input to a water resource system model. Marginal distributions of the streamflow for each month are generated by bootstrapping the historical data, while the joint probability distributions of consecutive months are constructed using a copula‐based method. Droughts with longer durations and larger deficits than the observed record are generated by perturbing the copula parameter and by adopting an importance sampling strategy for low flows. In this way, potential climate‐induced changes in monthly hydrological persistence are factored into the vulnerability analysis. The method is applied to the London water system (England) to investigate under which drought conditions severe water use restrictions would need to be imposed. Results indicate that the water system is vulnerable to drought conditions outside the range of historical events. The vulnerability assessment results were coupled with climate model information to compare alternative water management options with respect to their vulnerability to increasingly long and severe drought. PMID:27609995</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3586611','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3586611"><span>Development and application of earth system models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Prinn, Ronald G.</p> <p>2013-01-01</p> <p>The global environment is a complex and dynamic system. Earth system modeling is needed to help understand changes in interacting subsystems, elucidate the influence of human activities, and explore possible future changes. Integrated assessment of environment and human development is arguably the most difficult and most important “systems” problem faced. To illustrate this approach, we present results from the integrated global system model (IGSM), which consists of coupled submodels addressing economic development, atmospheric chemistry, climate dynamics, and ecosystem processes. An uncertainty analysis implies that without mitigation policies, the global average surface temperature may rise between 3.5 °C and 7.4 °C from 1981–2000 to 2091–2100 (90% confidence limits). Polar temperatures, absent policy, are projected to rise from about 6.4 °C to 14 °C (90% confidence limits). Similar analysis of four increasingly stringent climate mitigation policy cases involving stabilization of greenhouse gases at various levels indicates that the greatest effect of these policies is to lower the probability of extreme changes. The IGSM is also used to elucidate potential unintended environmental consequences of renewable energy at large scales. There are significant reasons for attention to climate adaptation in addition to climate mitigation that earth system models can help inform. These models can also be applied to evaluate whether “climate engineering” is a viable option or a dangerous diversion. We must prepare young people to address this issue: The problem of preserving a habitable planet will engage present and future generations. Scientists must improve communication if research is to inform the public and policy makers better. PMID:22706645</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4152262','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4152262"><span>Exploiting parallels between livestock and wildlife: Predicting the impact of climate change on gastrointestinal nematodes in ruminants</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Rose, Hannah; Hoar, Bryanne; Kutz, Susan J.; Morgan, Eric R.</p> <p>2014-01-01</p> <p>Global change, including climate, policy, land use and other associated environmental changes, is likely to have a major impact on parasitic disease in wildlife, altering the spatio-temporal patterns of transmission, with wide-ranging implications for wildlife, domestic animals, humans and ecosystem health. Predicting the potential impact of climate change on parasites infecting wildlife will become increasingly important in the management of species of conservation concern and control of disease at the wildlife–livestock and wildlife–human interface, but is confounded by incomplete knowledge of host–parasite interactions, logistical difficulties, small sample sizes and limited opportunities to manipulate the system. By exploiting parallels between livestock and wildlife, existing theoretical frameworks and research on livestock and their gastrointestinal nematodes can be adapted to wildlife systems. Similarities in the gastrointestinal nematodes and the life-histories of wild and domestic ruminants, coupled with a detailed knowledge of the ecology and life-cycle of the parasites, render the ruminant-GIN host–parasite system particularly amenable to a cross-disciplinary approach. PMID:25197625</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/865217','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/865217"><span>Compensated intruder-detection systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>McNeilly, David R.; Miller, William R.</p> <p>1984-01-01</p> <p>Intruder-detection systems in which intruder-induced signals are transmitted through a medium also receive spurious signals induced by changes in a climatic condition affecting the medium. To combat this, signals received from the detection medium are converted to a first signal. The system also provides a reference signal proportional to climate-induced changes in the medium. The first signal and the reference signal are combined for generating therefrom an output signal which is insensitive to the climatic changes in the medium. An alarm is energized if the output signal exceeds a preselected value. In one embodiment, an acoustic cable is coupled to a fence to generate a first electrical signal proportional to movements thereof. False alarms resulting from wind-induced movements of the fence (detection medium) are eliminated by providing an anemometer-driven voltage generator to provide a reference voltage proportional to the velocity of wind incident on the fence. An analog divider receives the first electrical signal and the reference signal as its numerator and denominator inputs, respectively, and generates therefrom an output signal which is insensitive to the wind-induced movements in the fence.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMGC11D1042S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMGC11D1042S"><span>Design strategies for human & earth systems modeling to meet emerging multi-scale decision support needs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Spak, S.; Pooley, M.</p> <p>2012-12-01</p> <p>The next generation of coupled human and earth systems models promises immense potential and grand challenges as they transition toward new roles as core tools for defining and living within planetary boundaries. New frontiers in community model development include not only computational, organizational, and geophysical process questions, but also the twin objectives of more meaningfully integrating the human dimension and extending applicability to informing policy decisions on a range of new and interconnected issues. We approach these challenges by posing key policy questions that require more comprehensive coupled human and geophysical models, identify necessary model and organizational processes and outputs, and work backwards to determine design criteria in response to these needs. We find that modular community earth system model design must: * seamlessly scale in space (global to urban) and time (nowcasting to paleo-studies) and fully coupled on all component systems * automatically differentiate to provide complete coupled forward and adjoint models for sensitivity studies, optimization applications, and 4DVAR assimilation across Earth and human observing systems * incorporate diagnostic tools to quantify uncertainty in couplings, and in how human activity affects them * integrate accessible community development and application with JIT-compilation, cloud computing, game-oriented interfaces, and crowd-sourced problem-solving We outline accessible near-term objectives toward these goals, and describe attempts to incorporate these design objectives in recent pilot activities using atmosphere-land-ocean-biosphere-human models (WRF-Chem, IBIS, UrbanSim) at urban and regional scales for policy applications in climate, energy, and air quality.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1810336','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1810336"><span>Solar influence on climate during the past millennium: Results from transient simulations with the NCAR Climate System Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Ammann, Caspar M.; Joos, Fortunat; Schimel, David S.; Otto-Bliesner, Bette L.; Tomas, Robert A.</p> <p>2007-01-01</p> <p>The potential role of solar variations in modulating recent climate has been debated for many decades and recent papers suggest that solar forcing may be less than previously believed. Because solar variability before the satellite period must be scaled from proxy data, large uncertainty exists about phase and magnitude of the forcing. We used a coupled climate system model to determine whether proxy-based irradiance series are capable of inducing climatic variations that resemble variations found in climate reconstructions, and if part of the previously estimated large range of past solar irradiance changes could be excluded. Transient simulations, covering the published range of solar irradiance estimates, were integrated from 850 AD to the present. Solar forcing as well as volcanic and anthropogenic forcing are detectable in the model results despite internal variability. The resulting climates are generally consistent with temperature reconstructions. Smaller, rather than larger, long-term trends in solar irradiance appear more plausible and produced modeled climates in better agreement with the range of Northern Hemisphere temperature proxy records both with respect to phase and magnitude. Despite the direct response of the model to solar forcing, even large solar irradiance change combined with realistic volcanic forcing over past centuries could not explain the late 20th century warming without inclusion of greenhouse gas forcing. Although solar and volcanic effects appear to dominate most of the slow climate variations within the past thousand years, the impacts of greenhouse gases have dominated since the second half of the last century. PMID:17360418</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C33B1191R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C33B1191R"><span>The Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rex, M.; Shupe, M.; Dethloff, K.</p> <p>2017-12-01</p> <p>MOSAiC is an international initiative under the umbrella of the International Arctic Science Committee (IASC) designed by an international consortium of leading polar research institutes. Rapid changes in the Arctic lead to an urgent need for reliable information about the state and evolution of the Arctic climate system. This requires more observations and improved modelling over various spatial and temporal scales, and across a wide variety of disciplines. Observations of many critical parameters were never made in the central Arctic for a full annual cycle. MOSAiC will be the first year-around expedition into the central Arctic exploring the coupled climate system. The research vessel Polarstern will drift with the sea ice across the central Arctic during the years 2019 to 2020. The drift starts in the Siberian sector of the Arctic in late summer. A distributed regional network of observational sites will be established on the sea ice in an area of up to 50 km distance from Polarstern, representing a grid cell of climate models. The ship and the surrounding network will drift with the natural sea ice drift across the polar cap towards the Atlantic. The focus of MOSAiC lies on in-situ observations of the climate processes that couple atmosphere, ocean, sea ice, biogeochemistry and ecosystem. These measurements will be supported by weather and sea ice predictions and remote sensing operations to make the expedition successful. The expedition includes aircraft operations and cruises by icebreakers from MOSAiC partners. All these observations will be used for the main scientific goals of MOSAiC, enhancing the understanding of the regional and global consequences of Arctic climate change and sea ice loss and improve weather and climate prediction. More precisely, the results are needed to advance the data assimilation for numerical weather prediction models, sea ice forecasts and climate models and ground truth for satellite remote sensing. Additionally, the understanding of energy budget and fluxes through interfaces, sources, sinks and cycles of chemical species, boundary layer processes, and primary productivity will be investigated during the expedition. MOSAiC will support safer maritime and offshore operations, contribute to an improved scientific future fishery and traffic along the northern sea routes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25657652','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25657652"><span>Reconstruction of fire regimes through integrated paleoecological proxy data and ecological modeling.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Iglesias, Virginia; Yospin, Gabriel I; Whitlock, Cathy</p> <p>2014-01-01</p> <p>Fire is a key ecological process affecting vegetation dynamics and land cover. The characteristic frequency, size, and intensity of fire are driven by interactions between top-down climate-driven and bottom-up fuel-related processes. Disentangling climatic from non-climatic drivers of past fire regimes is a grand challenge in Earth systems science, and a topic where both paleoecology and ecological modeling have made substantial contributions. In this manuscript, we (1) review the use of sedimentary charcoal as a fire proxy and the methods used in charcoal-based fire history reconstructions; (2) identify existing techniques for paleoecological modeling; and (3) evaluate opportunities for coupling of paleoecological and ecological modeling approaches to better understand the causes and consequences of past, present, and future fire activity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4302794','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4302794"><span>Reconstruction of fire regimes through integrated paleoecological proxy data and ecological modeling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Iglesias, Virginia; Yospin, Gabriel I.; Whitlock, Cathy</p> <p>2015-01-01</p> <p>Fire is a key ecological process affecting vegetation dynamics and land cover. The characteristic frequency, size, and intensity of fire are driven by interactions between top-down climate-driven and bottom-up fuel-related processes. Disentangling climatic from non-climatic drivers of past fire regimes is a grand challenge in Earth systems science, and a topic where both paleoecology and ecological modeling have made substantial contributions. In this manuscript, we (1) review the use of sedimentary charcoal as a fire proxy and the methods used in charcoal-based fire history reconstructions; (2) identify existing techniques for paleoecological modeling; and (3) evaluate opportunities for coupling of paleoecological and ecological modeling approaches to better understand the causes and consequences of past, present, and future fire activity. PMID:25657652</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150021875','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150021875"><span>ISMIP6: Ice Sheet Model Intercomparison Project for CMIP6</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Nowicki, S.</p> <p>2015-01-01</p> <p>ISMIP6 (Ice Sheet Model Intercomparison Project for CMIP6) targets the Cryosphere in a Changing Climate and the Future Sea Level Grand Challenges of the WCRP (World Climate Research Program). Primary goal is to provide future sea level contribution from the Greenland and Antarctic ice sheets, along with associated uncertainty. Secondary goal is to investigate feedback due to dynamic ice sheet models. Experiment design uses and augment the existing CMIP6 (Coupled Model Intercomparison Project Phase 6) DECK (Diagnosis, Evaluation, and Characterization of Klima) experiments. Additonal MIP (Model Intercomparison Project)- specific experiments will be designed for ISM (Ice Sheet Model). Effort builds on the Ice2sea, SeaRISE (Sea-level Response to Ice Sheet Evolution) and COMBINE (Comprehensive Modelling of the Earth System for Better Climate Prediction and Projection) efforts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1916169B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1916169B"><span>Visualizing projected Climate Changes - the CMIP5 Multi-Model Ensemble</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Böttinger, Michael; Eyring, Veronika; Lauer, Axel; Meier-Fleischer, Karin</p> <p>2017-04-01</p> <p>Large ensembles add an additional dimension to climate model simulations. Internal variability of the climate system can be assessed for example by multiple climate model simulations with small variations in the initial conditions or by analyzing the spread in large ensembles made by multiple climate models under common protocols. This spread is often used as a measure of uncertainty in climate projections. In the context of the fifth phase of the WCRP's Coupled Model Intercomparison Project (CMIP5), more than 40 different coupled climate models were employed to carry out a coordinated set of experiments. Time series of the development of integral quantities such as the global mean temperature change for all models visualize the spread in the multi-model ensemble. A similar approach can be applied to 2D-visualizations of projected climate changes such as latitude-longitude maps showing the multi-model mean of the ensemble by adding a graphical representation of the uncertainty information. This has been demonstrated for example with static figures in chapter 12 of the last IPCC report (AR5) using different so-called stippling and hatching techniques. In this work, we focus on animated visualizations of multi-model ensemble climate projections carried out within CMIP5 as a way of communicating climate change results to the scientific community as well as to the public. We take a closer look at measures of robustness or uncertainty used in recent publications suitable for animated visualizations. Specifically, we use the ESMValTool [1] to process and prepare the CMIP5 multi-model data in combination with standard visualization tools such as NCL and the commercial 3D visualization software Avizo to create the animations. We compare different visualization techniques such as height fields or shading with transparency for creating animated visualization of ensemble mean changes in temperature and precipitation including corresponding robustness measures. [1] Eyring, V., Righi, M., Lauer, A., Evaldsson, M., Wenzel, S., Jones, C., Anav, A., Andrews, O., Cionni, I., Davin, E. L., Deser, C., Ehbrecht, C., Friedlingstein, P., Gleckler, P., Gottschaldt, K.-D., Hagemann, S., Juckes, M., Kindermann, S., Krasting, J., Kunert, D., Levine, R., Loew, A., Mäkelä, J., Martin, G., Mason, E., Phillips, A. S., Read, S., Rio, C., Roehrig, R., Senftleben, D., Sterl, A., van Ulft, L. H., Walton, J., Wang, S., and Williams, K. D.: ESMValTool (v1.0) - a community diagnostic and performance metrics tool for routine evaluation of Earth system models in CMIP, Geosci. Model Dev., 9, 1747-1802, doi:10.5194/gmd-9-1747-2016, 2016.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>