Science.gov

Sample records for coupled cluster singles

  1. Full coupled cluster singles, doubles and triples model for the description of electron correlation

    SciTech Connect

    Hoffmann, M.R.

    1984-10-01

    Equations for the determination of the cluster coefficients in a full coupled cluster theory involving single, double and triple cluster operators with respect to an independent particle reference, expressible as a single determinant of spin-orbitals, are derived. The resulting wave operator is full, or untruncated, consistant with the choice of cluster operator truncation and the requirements of the connected cluster theorem. A time-independent diagrammatic approach, based on second quantization and the Wick theorem, is employed. Final equations are presented that avoid the construction of rank three intermediary tensors. The model is seen to be a computationally viable, size-extensive, high-level description of electron correlation in small polyatomic molecules.

  2. Density-fitted singles and doubles coupled cluster on graphics processing units

    SciTech Connect

    Sherrill, David; Sumpter, Bobby G; DePrince, III, A. Eugene

    2014-01-01

    We adapt an algorithm for singles and doubles coupled cluster (CCSD) that uses density fitting (DF) or Cholesky decomposition (CD) in the construction and contraction of all electron repulsion integrals (ERI s) for use on heterogeneous compute nodes consisting of a multicore CPU and at least one graphics processing unit (GPU). The use of approximate 3-index ERI s ameliorates two of the major difficulties in designing scientific algorithms for GPU s: (i) the extremely limited global memory on the devices and (ii) the overhead associated with data motion across the PCI bus. For the benzene trimer described by an aug-cc-pVDZ basis set, the use of a single NVIDIA Tesla C2070 (Fermi) GPU accelerates a CD-CCSD computation by a factor of 2.1, relative to the multicore CPU-only algorithm that uses 6 highly efficient Intel core i7-3930K CPU cores. The use of two Fermis provides an acceleration of 2.89, which is comparable to that observed when using a single NVIDIA Kepler K20c GPU (2.73).

  3. Development and Application of Single-Referenced Perturbation and Coupled-Cluster Theories for Excited Electronic States

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Langhoff, Stephen R. (Technical Monitor)

    1997-01-01

    Recent work on the development of single-reference perturbation theories for the study of excited electronic states will be discussed. The utility of these methods will be demonstrated by comparison to linear-response coupled-cluster excitation energies. Results for some halogen molecules of interest in stratospheric chemistry will be presented.

  4. A hierarchy of local coupled cluster singles and doubles response methods for ionization potentials.

    PubMed

    Wälz, Gero; Usvyat, Denis; Korona, Tatiana; Schütz, Martin

    2016-02-28

    We present a hierarchy of local coupled cluster (CC) linear response (LR) methods to calculate ionization potentials (IPs), i.e., excited states with one electron annihilated relative to a ground state reference. The time-dependent perturbation operator V(t), as well as the operators related to the first-order (with respect to V(t)) amplitudes and multipliers, thus are not number conserving and have half-integer particle rank m. Apart from calculating IPs of neutral molecules, the method offers also the possibility to study ground and excited states of neutral radicals as ionized states of closed-shell anions. It turns out that for comparable accuracy IPs require a higher-order treatment than excitation energies; an IP-CC LR method corresponding to CC2 LR or the algebraic diagrammatic construction scheme through second order performs rather poorly. We therefore systematically extended the order with respect to the fluctuation potential of the IP-CC2 LR Jacobian up to IP-CCSD LR, keeping the excitation space of the first-order (with respect to V(t)) cluster operator restricted to the m=½⊕3/2 subspace and the accuracy of the zero-order (ground-state) amplitudes at the level of CC2 or MP2. For the more expensive diagrams beyond the IP-CC2 LR Jacobian, we employ local approximations. The implemented methods are capable of treating large molecular systems with hundred atoms or more.

  5. On the approximation of the similarity-transformed Hamiltonian in single-reference and multireference coupled cluster theory

    NASA Astrophysics Data System (ADS)

    Evangelista, Francesco A.; Gauss, Jürgen

    2012-06-01

    We consider the recursive single commutator (RSC) approximation of the Baker-Campbell-Hausdorff expansion introduced by Yanai and Chan [T. Yanai, G.K.-L. Chan, J. Chem. Phys. 124 (2006) 194106] and apply it in order to approximate the similarity transformation of the Hamiltonian in both traditional and unitary coupled cluster theory. The equilibrium bond distance, harmonic vibrational frequency, and anharmonic constant of H2, HF, N2, CuH, and Cu2 were computed using the coupled cluster approach with single and double excitations (CCSD) and CCSD with the RSC approximation of the similarity-transformed Hamiltonian (CCSD-RSC). Our results demonstrate that the RSC approximation introduces substantial errors in the estimates of molecular properties. The leading pejorative effects of the RSC approximation can be traced back to the imbalanced description of diagrams arising from the term {1}/{2}[H^,T,T]. Following this analysis we consider a modified RSC scheme correct to fourth-order in the energy, which is found to reproduce CCSD results more closely. The RSC scheme is also applied in conjunction with the state-specific multireference coupled cluster approach of Mukherjee and co-workers [U.S. Mahapatra, B. Datta, D. Mukherjee, J. Chem. Phys. 110 (1999) 6171] to compute the potential energy curve of the BeH2 model, the vibrational frequencies of ozone, and the singlet-triplet splitting of p-benzyne. These examples show that the deterioration of the results caused by the RSC scheme is analogous to the one observed in the single-reference case. Implications for the formulation of approximate internally contracted multireference theories are discussed.

  6. Communication: Acceleration of coupled cluster singles and doubles via orbital-weighted least-squares tensor hypercontraction

    SciTech Connect

    Parrish, Robert M.; Sherrill, C. David; Hohenstein, Edward G.; Kokkila, Sara I. L.; Martínez, Todd J.

    2014-05-14

    We apply orbital-weighted least-squares tensor hypercontraction decomposition of the electron repulsion integrals to accelerate the coupled cluster singles and doubles (CCSD) method. Using accurate and flexible low-rank factorizations of the electron repulsion integral tensor, we are able to reduce the scaling of the most vexing particle-particle ladder term in CCSD from O(N{sup 6}) to O(N{sup 5}), with remarkably low error. Combined with a T{sub 1}-transformed Hamiltonian, this leads to substantial practical accelerations against an optimized density-fitted CCSD implementation.

  7. Experimental synchronization of chaos in a large ring of mutually coupled single-transistor oscillators: phase, amplitude, and clustering effects.

    PubMed

    Minati, Ludovico

    2014-12-01

    In this paper, experimental evidence of multiple synchronization phenomena in a large (n = 30) ring of chaotic oscillators is presented. Each node consists of an elementary circuit, generating spikes of irregular amplitude and comprising one bipolar junction transistor, one capacitor, two inductors, and one biasing resistor. The nodes are mutually coupled to their neighbours via additional variable resistors. As coupling resistance is decreased, phase synchronization followed by complete synchronization is observed, and onset of synchronization is associated with partial synchronization, i.e., emergence of communities (clusters). While component tolerances affect community structure, the general synchronization properties are maintained across three prototypes and in numerical simulations. The clusters are destroyed by adding long distance connections with distant notes, but are otherwise relatively stable with respect to structural connectivity changes. The study provides evidence that several fundamental synchronization phenomena can be reliably observed in a network of elementary single-transistor oscillators, demonstrating their generative potential and opening way to potential applications of this undemanding setup in experimental modelling of the relationship between network structure, synchronization, and dynamical properties. PMID:25554028

  8. Experimental synchronization of chaos in a large ring of mutually coupled single-transistor oscillators: Phase, amplitude, and clustering effects

    SciTech Connect

    Minati, Ludovico E-mail: ludovico.minati@unitn.it

    2014-12-01

    In this paper, experimental evidence of multiple synchronization phenomena in a large (n = 30) ring of chaotic oscillators is presented. Each node consists of an elementary circuit, generating spikes of irregular amplitude and comprising one bipolar junction transistor, one capacitor, two inductors, and one biasing resistor. The nodes are mutually coupled to their neighbours via additional variable resistors. As coupling resistance is decreased, phase synchronization followed by complete synchronization is observed, and onset of synchronization is associated with partial synchronization, i.e., emergence of communities (clusters). While component tolerances affect community structure, the general synchronization properties are maintained across three prototypes and in numerical simulations. The clusters are destroyed by adding long distance connections with distant notes, but are otherwise relatively stable with respect to structural connectivity changes. The study provides evidence that several fundamental synchronization phenomena can be reliably observed in a network of elementary single-transistor oscillators, demonstrating their generative potential and opening way to potential applications of this undemanding setup in experimental modelling of the relationship between network structure, synchronization, and dynamical properties.

  9. Assessment of low-scaling approximations to the equation of motion coupled-cluster singles and doubles equations

    NASA Astrophysics Data System (ADS)

    Goings, Joshua J.; Caricato, Marco; Frisch, Michael J.; Li, Xiaosong

    2014-10-01

    Methods for fast and reliable computation of electronic excitation energies are in short supply, and little is known about their systematic performance. This work reports a comparison of several low-scaling approximations to the equation of motion coupled cluster singles and doubles (EOM-CCSD) and linear-response coupled cluster singles and doubles (LR-CCSD) equations with other single reference methods for computing the vertical electronic transition energies of 11 small organic molecules. The methods, including second order equation-of-motion many-body perturbation theory (EOM-MBPT2) and its partitioned variant, are compared to several valence and Rydberg singlet states. We find that the EOM-MBPT2 method was rarely more than a tenth of an eV from EOM-CCSD calculated energies, yet demonstrates a performance gain of nearly 30%. The partitioned equation-of-motion approach, P-EOM-MBPT2, which is an order of magnitude faster than EOM-CCSD, outperforms the CIS(D) and CC2 in the description of Rydberg states. CC2, on the other hand, excels at describing valence states where P-EOM-MBPT2 does not. The difference between the CC2 and P-EOM-MBPT2 can ultimately be traced back to how each method approximates EOM-CCSD and LR-CCSD. The results suggest that CC2 and P-EOM-MBPT2 are complementary: CC2 is best suited for the description of valence states while P-EOM-MBPT2 proves to be a superior O(N^5) method for the description of Rydberg states.

  10. Density-Functional and Coupled-Cluster Singles-and-Doubles Calculations of the Nuclear Shielding and Indirect Nuclear Spin-Spin Coupling Constants of o-Benzyne.

    PubMed

    Helgaker, Trygve; Jaszuński, Michał

    2007-01-01

    Density-functional theory (DFT) and coupled-cluster singles-and-doubles (CCSD) theory are applied to compute the nuclear magnetic resonance (NMR) shielding and indirect nuclear spin-spin coupling constants of o-benzyne, whose biradical nature makes it difficult to study both experimentally and theoretically. Because of near-equilibrium triplet instabilities that follow from its biradical character, the calculated DFT NMR properties of o-benzyne are unusually sensitive to details of the exchange-correlation functional. However, this sensitivity is greatly reduced if these properties are calculated at the equilibrium of the chosen functional. A strong correlation is demonstrated between the quality of the calculated indirect spin-spin coupling constants and the quality of the calculated lowest triplet excitation energy in o-benzyne. Orbital-unrelaxed coupled-cluster theory should be less affected by such instabilities, and the CCSD NMR properties were only calculated at the experimental equilibrium geometry. For the shielding constants, the results in best agreement with experimental results are obtained with CCSD theory and with the Keal-Tozer KT1 and KT2 functionals. For the triply bonded carbon atoms, these models yield an isotropic shielding of 1.3, -3.3, and -1.2 ppm, respectively, compared with the experimentally observed shielding of 3.7 ppm for incarcerated o-benzyne. For the indirect spin-spin coupling constants, the CCSD model and the Perdew-Burke-Ernzerhof functional both yield reliable results; for the most interesting spin-spin coupling constant, (1)J (C⋮C), we obtain 210 and 209 Hz with these two models, respectively, somewhat above the recently reported experimental value of 177.9 ± 0.7 Hz for o-benzyne inside a molecular container, suggesting large incarceration effects.

  11. Analytic energy gradients for the coupled-cluster singles and doubles method with the density-fitting approximation

    NASA Astrophysics Data System (ADS)

    Bozkaya, Uǧur; Sherrill, C. David

    2016-05-01

    An efficient implementation is presented for analytic gradients of the coupled-cluster singles and doubles (CCSD) method with the density-fitting approximation, denoted DF-CCSD. Frozen core terms are also included. When applied to a set of alkanes, the DF-CCSD analytic gradients are significantly accelerated compared to conventional CCSD for larger molecules. The efficiency of our DF-CCSD algorithm arises from the acceleration of several different terms, which are designated as the "gradient terms": computation of particle density matrices (PDMs), generalized Fock-matrix (GFM), solution of the Z-vector equation, formation of the relaxed PDMs and GFM, back-transformation of PDMs and GFM to the atomic orbital (AO) basis, and evaluation of gradients in the AO basis. For the largest member of the alkane set (C10H22), the computational times for the gradient terms (with the cc-pVTZ basis set) are 2582.6 (CCSD) and 310.7 (DF-CCSD) min, respectively, a speed up of more than 8-folds. For gradient related terms, the DF approach avoids the usage of four-index electron repulsion integrals. Based on our previous study [U. Bozkaya, J. Chem. Phys. 141, 124108 (2014)], our formalism completely avoids construction or storage of the 4-index two-particle density matrix (TPDM), using instead 2- and 3-index TPDMs. The DF approach introduces negligible errors for equilibrium bond lengths and harmonic vibrational frequencies.

  12. The multilevel CC3 coupled cluster model

    NASA Astrophysics Data System (ADS)

    Myhre, Rolf H.; Koch, Henrik

    2016-07-01

    We present an efficient implementation of the closed shell multilevel coupled cluster method where coupled cluster singles and doubles (CCSD) is used for the inactive orbital space and CCSD with perturbative triples (CC3) is employed for the smaller active orbital space. Using Cholesky orbitals, the active space can be spatially localized and the computational cost is greatly reduced compared to full CC3 while retaining the accuracy of CC3 excitation energies. For the small organic molecules considered we achieve up to two orders of magnitude reduction in the computational requirements.

  13. Polarizability and optical rotation calculated from the approximate coupled cluster singles and doubles CC2 linear response theory using Cholesky decompositions

    NASA Astrophysics Data System (ADS)

    Pedersen, Thomas Bondo; Sánchez de Merás, Alfredo M. J.; Koch, Henrik

    2004-05-01

    A new implementation of the approximate coupled cluster singles and doubles CC2 linear response model using Cholesky decomposition of the two-electron integrals is presented. Significantly reducing storage demands and computational effort without sacrificing accuracy compared to the conventional model, the algorithm is well suited for large-scale applications. Extensive basis set convergence studies are presented for the static and frequency-dependent electric dipole polarizability of benzene and C60, and for the optical rotation of CNOFH2 and (-)-trans-cyclooctene (TCO). The origin-dependence of the optical rotation is calculated and shown to persist for CC2 even at basis set convergence.

  14. Pair extended coupled cluster doubles

    SciTech Connect

    Henderson, Thomas M.; Scuseria, Gustavo E.; Bulik, Ireneusz W.

    2015-06-07

    The accurate and efficient description of strongly correlated systems remains an important challenge for computational methods. Doubly occupied configuration interaction (DOCI), in which all electrons are paired and no correlations which break these pairs are permitted, can in many cases provide an accurate account of strong correlations, albeit at combinatorial computational cost. Recently, there has been significant interest in a method we refer to as pair coupled cluster doubles (pCCD), a variant of coupled cluster doubles in which the electrons are paired. This is simply because pCCD provides energies nearly identical to those of DOCI, but at mean-field computational cost (disregarding the cost of the two-electron integral transformation). Here, we introduce the more complete pair extended coupled cluster doubles (pECCD) approach which, like pCCD, has mean-field cost and reproduces DOCI energetically. We show that unlike pCCD, pECCD also reproduces the DOCI wave function with high accuracy. Moreover, pECCD yields sensible albeit inexact results even for attractive interactions where pCCD breaks down.

  15. Magnetic anisotropy in single clusters

    NASA Astrophysics Data System (ADS)

    Jamet, Matthieu; Wernsdorfer, Wolfgang; Thirion, Christophe; Dupuis, Véronique; Mélinon, Patrice; Pérez, Alain; Mailly, Dominique

    2004-01-01

    The magnetic measurements on single cobalt and iron nanoclusters containing almost 1000 atoms are presented. Particles are directly buried within the superconducting film of a micro-SQUID (superconducting quantum interference device) which leads to the required sensitivity. The angular dependence of the switching field in three dimensions turns out to be in good agreement with a uniform rotation of cluster magnetization. The Stoner and Wohlfarth model yields therefore an estimation of magnetic anisotropy in a single cluster. In particular, uniaxial, biaxial, and cubic contributions can be separated. Results are interpreted on the basis of a simple atomic model in which clusters are assimilated to “giant spins.” We present an extension of the Néel model to clusters in order to estimate surface anisotropy. In the case of cobalt, this last contribution dominates and numerical simulations allow us to get the morphology of the investigated clusters.

  16. Singlet-paired coupled cluster theory for open shells.

    PubMed

    Gomez, John A; Henderson, Thomas M; Scuseria, Gustavo E

    2016-06-28

    Restricted single-reference coupled cluster theory truncated to single and double excitations accurately describes weakly correlated systems, but often breaks down in the presence of static or strong correlation. Good coupled cluster energies in the presence of degeneracies can be obtained by using a symmetry-broken reference, such as unrestricted Hartree-Fock, but at the cost of good quantum numbers. A large body of work has shown that modifying the coupled cluster ansatz allows for the treatment of strong correlation within a single-reference, symmetry-adapted framework. The recently introduced singlet-paired coupled cluster doubles (CCD0) method is one such model, which recovers correct behavior for strong correlation without requiring symmetry breaking in the reference. Here, we extend singlet-paired coupled cluster for application to open shells via restricted open-shell singlet-paired coupled cluster singles and doubles (ROCCSD0). The ROCCSD0 approach retains the benefits of standard coupled cluster theory and recovers correct behavior for strongly correlated, open-shell systems using a spin-preserving ROHF reference. PMID:27369507

  17. Single System Image Cluster Management

    2004-02-13

    Cluster computing has quickly proven itself to be a capable workhorse for a wide variety of production computing tasks; however, setting up and maintaining a cluster still requires significantly more effort than administrating just a single machine. As computing hardware descreases in price and cluster sizes grow, it is becoming increasingly important to manage clusters cleverly so that a system administration effort can "scale" as well. To ease the task of mananging many machines, administratorsmore » often deploy an environment that is homogeneous across all nodes of a cluster, and maintain a snapshot of the filesystem as a 'master image'. However due to operational, behavioral, and physical constraints, many nodes often require numerous deviations from the master image in order to operate as desired.« less

  18. An energy decomposition analysis for intermolecular interactions from an absolutely localized molecular orbital reference at the coupled-cluster singles and doubles level

    SciTech Connect

    Azar, R. Julian; Head-Gordon, Martin

    2012-01-14

    We propose a wave function-based method for the decomposition of intermolecular interaction energies into chemically-intuitive components, isolating both mean-field- and explicit correlation-level contributions. We begin by solving the locally-projected self-consistent field for molecular interactions equations for a molecular complex, obtaining an intramolecularly polarized reference of self-consistently optimized, absolutely-localized molecular orbitals (ALMOs), determined with the constraint that each fragment MO be composed only of atomic basis functions belonging to its own fragment. As explicit inter-electronic correlation is integral to an accurate description of weak forces underlying intermolecular interaction potentials, namely, coordinated fluctuations in weakly interacting electronic densities, we add dynamical correlation to the ALMO polarized reference at the coupled-cluster singles and doubles level, accounting for explicit dispersion and charge-transfer effects, which map naturally onto the cluster operator. We demonstrate the stability of energy components with basis set extension, follow the hydrogen bond-breaking coordinate in the C{sub s}-symmetry water dimer, decompose the interaction energies of dispersion-bound rare gas dimers and other van der Waals complexes, and examine charge transfer-dominated donor-acceptor interactions in borane adducts. We compare our results with high-level calculations and experiment when possible.

  19. An energy decomposition analysis for intermolecular interactions from an absolutely localized molecular orbital reference at the coupled-cluster singles and doubles level.

    PubMed

    Azar, R Julian; Head-Gordon, Martin

    2012-01-14

    We propose a wave function-based method for the decomposition of intermolecular interaction energies into chemically-intuitive components, isolating both mean-field- and explicit correlation-level contributions. We begin by solving the locally-projected self-consistent field for molecular interactions equations for a molecular complex, obtaining an intramolecularly polarized reference of self-consistently optimized, absolutely-localized molecular orbitals (ALMOs), determined with the constraint that each fragment MO be composed only of atomic basis functions belonging to its own fragment. As explicit inter-electronic correlation is integral to an accurate description of weak forces underlying intermolecular interaction potentials, namely, coordinated fluctuations in weakly interacting electronic densities, we add dynamical correlation to the ALMO polarized reference at the coupled-cluster singles and doubles level, accounting for explicit dispersion and charge-transfer effects, which map naturally onto the cluster operator. We demonstrate the stability of energy components with basis set extension, follow the hydrogen bond-breaking coordinate in the C(s)-symmetry water dimer, decompose the interaction energies of dispersion-bound rare gas dimers and other van der Waals complexes, and examine charge transfer-dominated donor-acceptor interactions in borane adducts. We compare our results with high-level calculations and experiment when possible.

  20. Seniority zero pair coupled cluster doubles theory

    SciTech Connect

    Stein, Tamar; Henderson, Thomas M.; Scuseria, Gustavo E.

    2014-06-07

    Coupled cluster theory with single and double excitations accurately describes weak electron correlation but is known to fail in cases of strong static correlation. Fascinatingly, however, pair coupled cluster doubles (p-CCD), a simplified version of the theory limited to pair excitations that preserve the seniority of the reference determinant (i.e., the number of unpaired electrons), has mean field computational cost and is an excellent approximation to the full configuration interaction (FCI) of the paired space provided that the orbital basis defining the pairing scheme is adequately optimized. In previous work, we have shown that optimization of the pairing scheme in the seniority zero FCI leads to a very accurate description of static correlation. The same conclusion extends to p-CCD if the orbitals are optimized to make the p-CCD energy stationary. We here demonstrate these results with numerous examples. We also explore the contributions of different seniority sectors to the coupled cluster doubles (CCD) correlation energy using different orbital bases. We consider both Hartree-Fock and Brueckner orbitals, and the role of orbital localization. We show how one can pair the orbitals so that the role of the Brueckner orbitals at the CCD level is retained at the p-CCD level. Moreover, we explore ways of extending CCD to accurately describe strongly correlated systems.

  1. Single and dual glycoside clustering around calix[4]arene scaffolds via click thiol-ene coupling and azide-alkyne cycloaddition.

    PubMed

    Fiore, Michele; Chambery, Angela; Marra, Alberto; Dondoni, Alessandro

    2009-10-01

    We present the first synthesis of calix[4]arene-based S-glycoclusters via photoinduced multiple thiol-ene coupling of tetra- and octa-allyl calix[4]arenes with peracetylated glucosyl thiol (67-88% yields). Moreover we describe the dual clustering at the upper and lower rim of a calix[4]arene with two different sugars (galactose and glucose) via sequential copper(i)-catalyzed azide-alkyne cycloaddition and photoinduced thiol-ene coupling.

  2. Equation-of-motion coupled cluster perturbation theory revisited

    SciTech Connect

    Eriksen, Janus J. Jørgensen, Poul; Olsen, Jeppe; Gauss, Jürgen

    2014-05-07

    The equation-of-motion coupled cluster (EOM-CC) framework has been used for deriving a novel series of perturbative corrections to the coupled cluster singles and doubles energy that formally converges towards the full configuration interaction energy limit. The series is based on a Møller-Plesset partitioning of the Hamiltonian and thus size extensive at any order in the perturbation, thereby remedying the major deficiency inherent to previous perturbation series based on the EOM-CC ansatz.

  3. Third-order Douglas-Kroll Relativistic Coupled-Cluster Theory through Connected Single, Double, Triple, and Quadruple Substitutions: Applications to Diatomic and Triatomic Hydrides

    SciTech Connect

    Hirata, So; Yanai, Takeshi; De Jong, Wibe A.; Nakajima, Takahito; Hirao, Kimihiko

    2004-02-15

    Coupled-cluster methods including through and up to the connected single, double, triple, and quadruple substitutions (CCSD, CCSDT, and CCSDTQ) have been automatically derived and implemented for sequential and parallel executions for use in conjunction with a one-component third-order Douglas-Kroll (DK3) approximation for relativistic corrections. A combination of the converging electron-correlation methods, the accurate relativistic reference wave functions, and the use of systematic basis sets tailored to the relativistic approximation has been shown to predict the experimental singlet-triplet separations within 0.02 eV (0.5 kcal/mol) for five triatomic hydrides (CH2, NH2+, SiH2, PH2+, and AsH2+), the experimental bond lengths within 0.002 angstroms, rotational constants within 0.02 cm-1, vibration-rotation constants within 0.01 cm-1, centrifugal distortion constants within 2 %, harmonic vibration frequencies within 9 cm-1 (0.4 %), anharmonic vibrational constants within 2 cm-1, and dissociation energies within 0.03 eV (0.8 kcal/mol) for twenty diatomic hydrides (BH, CH, NH, OH, FH, AlH, SiH, PH, SH, ClH, GaH, GeH, AsH, SeH, BrH, InH, SnH, SbH, TeH, and IH) containing main-group elements across the second through fifth periods of the periodic table. In these calculations, spin-orbit effects on dissociation energies, which were assumed to be additive, were estimated from the measured spin-orbit coupling constants of atoms and diatomic molecules, and an electronic energy in the complete-basis-set, complete-electron-correlation limit has been extrapolated by the formula which was in turn based on the exponential-Gaussian extrapolation formula of the basis set dependence.

  4. Multi-level coupled cluster theory

    SciTech Connect

    Myhre, Rolf H.; Koch, Henrik; Sánchez de Merás, Alfredo M. J.

    2014-12-14

    We present a general formalism where different levels of coupled cluster theory can be applied to different parts of the molecular system. The system is partitioned into subsystems by Cholesky decomposition of the one-electron Hartree-Fock density matrix. In this way the system can be divided across chemical bonds without discontinuities arising. The coupled cluster wave function is defined in terms of cluster operators for each part and these are determined from a set of coupled equations. The total wave function fulfills the Pauli-principle across all borders and levels of electron correlation. We develop the associated response theory for this multi-level coupled cluster theory and present proof of principle applications. The formalism is an essential tool in order to obtain size-intensive complexity in the calculation of local molecular properties.

  5. Seniority-based coupled cluster theory

    SciTech Connect

    Henderson, Thomas M.; Scuseria, Gustavo E.; Bulik, Ireneusz W.; Stein, Tamar

    2014-12-28

    Doubly occupied configuration interaction (DOCI) with optimized orbitals often accurately describes strong correlations while working in a Hilbert space much smaller than that needed for full configuration interaction. However, the scaling of such calculations remains combinatorial with system size. Pair coupled cluster doubles (pCCD) is very successful in reproducing DOCI energetically, but can do so with low polynomial scaling (N{sup 3}, disregarding the two-electron integral transformation from atomic to molecular orbitals). We show here several examples illustrating the success of pCCD in reproducing both the DOCI energy and wave function and show how this success frequently comes about. What DOCI and pCCD lack are an effective treatment of dynamic correlations, which we here add by including higher-seniority cluster amplitudes which are excluded from pCCD. This frozen pair coupled cluster approach is comparable in cost to traditional closed-shell coupled cluster methods with results that are competitive for weakly correlated systems and often superior for the description of strongly correlated systems.

  6. Photoionization cross section by Stieltjes imaging applied to coupled cluster Lanczos pseudo-spectra

    SciTech Connect

    Cukras, Janusz; Coriani, Sonia; Decleva, Piero; Christiansen, Ove; Norman, Patrick

    2013-09-07

    A recently implemented asymmetric Lanczos algorithm for computing (complex) linear response functions within the coupled cluster singles (CCS), coupled cluster singles and iterative approximate doubles (CC2), and coupled cluster singles and doubles (CCSD) is coupled to a Stieltjes imaging technique in order to describe the photoionization cross section of atoms and molecules, in the spirit of a similar procedure recently proposed by Averbukh and co-workers within the Algebraic Diagrammatic Construction approach. Pilot results are reported for the atoms He, Ne, and Ar and for the molecules H{sub 2}, H{sub 2}O, NH{sub 3}, HF, CO, and CO{sub 2}.

  7. Photoionization cross section by Stieltjes imaging applied to coupled cluster Lanczos pseudo-spectra.

    PubMed

    Cukras, Janusz; Coriani, Sonia; Decleva, Piero; Christiansen, Ove; Norman, Patrick

    2013-09-01

    A recently implemented asymmetric Lanczos algorithm for computing (complex) linear response functions within the coupled cluster singles (CCS), coupled cluster singles and iterative approximate doubles (CC2), and coupled cluster singles and doubles (CCSD) is coupled to a Stieltjes imaging technique in order to describe the photoionization cross section of atoms and molecules, in the spirit of a similar procedure recently proposed by Averbukh and co-workers within the Algebraic Diagrammatic Construction approach. Pilot results are reported for the atoms He, Ne, and Ar and for the molecules H2, H2O, NH3, HF, CO, and CO2. PMID:24028098

  8. Which Ab Initio Wave Function Methods Are Adequate for Quantitative Calculations of the Energies of Biradicals? The Performance of Coupled-Cluster and Multi-Reference Methods Along a Single-Bond Dissociation Coordinate

    SciTech Connect

    Yang, Ke; Jalan, Amrit; Green, William H.; Truhlar, Donald G.

    2013-01-08

    We examine the accuracy of single-reference and multireference correlated wave function methods for predicting accurate energies and potential energy curves of biradicals. The biradicals considered are intermediate species along the bond dissociation coordinates for breaking the F-F bond in F2, the O-O bond in H2O2, and the C-C bond in CH3CH3. We apply a host of single-reference and multireference approximations in a consistent way to the same cases to provide a better assessment of their relative accuracies than was previously possible. The most accurate method studied is coupled cluster theory with all connected excitations through quadruples, CCSDTQ. Without explicit quadruple excitations, the most accurate potential energy curves are obtained by the single-reference RCCSDt method, followed, in order of decreasing accuracy, by UCCSDT, RCCSDT, UCCSDt, seven multireference methods, including perturbation theory, configuration interaction, and coupled-cluster methods (with MRCI+Q being the best and Mk-MR-CCSD the least accurate), four CCSD(T) methods, and then CCSD.

  9. Communication: A simplified coupled-cluster Lagrangian for polarizable embedding.

    PubMed

    Krause, Katharina; Klopper, Wim

    2016-01-28

    A simplified coupled-cluster Lagrangian, which is linear in the Lagrangian multipliers, is proposed for the coupled-cluster treatment of a quantum mechanical system in a polarizable environment. In the simplified approach, the amplitude equations are decoupled from the Lagrangian multipliers and the energy obtained from the projected coupled-cluster equation corresponds to a stationary point of the Lagrangian. PMID:26827193

  10. A coupled-cluster study of photodetachment cross sections of closed-shell anions

    SciTech Connect

    Cukras, Janusz; Decleva, Piero; Coriani, Sonia

    2014-11-07

    We investigate the performance of Stieltjes Imaging applied to Lanczos pseudo-spectra generated at the coupled cluster singles and doubles, coupled cluster singles and approximate iterative doubles and coupled cluster singles levels of theory in modeling the photodetachment cross sections of the closed shell anions H{sup −}, Li{sup −}, Na{sup −}, F{sup −}, Cl{sup −}, and OH{sup −}. The accurate description of double excitations is found to play a much more important role than in the case of photoionization of neutral species.

  11. Cyanide-bridged [Fe8M6] clusters displaying single-molecule magnetism (M=Ni) and electron-transfer-coupled spin transitions (M=Co).

    PubMed

    Mitsumoto, Kiyotaka; Oshiro, Emiko; Nishikawa, Hiroyuki; Shiga, Takuya; Yamamura, Yasuhisa; Saito, Kazuya; Oshio, Hiroki

    2011-08-22

    Cyanide-bridged metal complexes of [Fe(8)M(6)(μ-CN)(14)(CN)(10)(tp)(8)(HL)(10)(CH(3)CN)(2)][PF(6)](4)⋅n CH(3)CN⋅m H(2)O (HL=3-(2-pyridyl)-5-[4-(diphenylamino)phenyl]-1H-pyrazole), tp(-) =hydrotris(pyrazolylborate), 1: M=Ni with n=11 and m=7, and 2: M=Co with n=14 and m=5) were prepared. Complexes 1 and 2 are isomorphous, and crystallized in the monoclinic space group P2(1)/n. They have tetradecanuclear cores composed of eight low-spin (LS) Fe(III) and six high-spin (HS) M(II) ions (M=Ni and Co), all of which are bridged by cyanide ions, to form a crown-like core structure. Magnetic susceptibility measurements revealed that intramolecular ferro- and antiferromagnetic interactions are operative in 1 and in a fresh sample of 2, respectively. Ac magnetic susceptibility measurements of 1 showed frequency-dependent in- and out-of-phase signals, characteristic of single-molecule magnetism (SMM), while desolvated samples of 2 showed thermal- and photoinduced intramolecular electron-transfer-coupled spin transition (ETCST) between the [(LS-Fe(II))(3) (LS-Fe(III))(5)(HS-Co(II))(3)(LS-Co(III))(3)] and the [(LS-Fe(III))(8)(HS-Co(II))(6)] states. PMID:21830241

  12. Approximating electronically excited states with equation-of-motion linear coupled-cluster theory

    SciTech Connect

    Byrd, Jason N. Rishi, Varun; Perera, Ajith; Bartlett, Rodney J.

    2015-10-28

    A new perturbative approach to canonical equation-of-motion coupled-cluster theory is presented using coupled-cluster perturbation theory. A second-order Møller-Plesset partitioning of the Hamiltonian is used to obtain the well known equation-of-motion many-body perturbation theory equations and two new equation-of-motion methods based on the linear coupled-cluster doubles and linear coupled-cluster singles and doubles wavefunctions. These new methods are benchmarked against very accurate theoretical and experimental spectra from 25 small organic molecules. It is found that the proposed methods have excellent agreement with canonical equation-of-motion coupled-cluster singles and doubles state for state orderings and relative excited state energies as well as acceptable quantitative agreement for absolute excitation energies compared with the best estimate theory and experimental spectra.

  13. Explicitly correlated coupled-cluster theory with Brueckner orbitals

    NASA Astrophysics Data System (ADS)

    Tew, David P.

    2016-08-01

    Brueckner orbitals are the optimal orbitals for use in F12 explicitly correlated coupled-cluster (CC) treatments. A novel approach, Brueckner coupled-cluster doubles with perturbative triples BCCD(T)(F12*) is presented that avoids the expensive re-evaluation of F12 integrals throughout the orbital optimisation and includes a newly derived basis set correction to the Brueckner reference energy. The generalisation of F12 theory to arbitrary non-Hartree-Fock references and to Fock operators that include scalar relativistic effects is also presented. The performance of the new Brueckner F12 method is assessed for a test set of 50 open- and closed-shell reactions and for the ionisation potentials and electron affinities (EAs) of the first-row transition metal atoms. Benchmark basis set limit coupled-cluster singles, doubles and perturbative triples (CCSD(T)) and BCCD(T) values are reported for all energies in the test sets. BCCD(T)(F12*) performs systematically better than CCSD(T)(F12*) for electron affinities where orbital relaxation effects are significant.

  14. Explicitly correlated ring-coupled-cluster-doubles theory

    SciTech Connect

    Hehn, Anna-Sophia; Klopper, Wim; Tew, David P.

    2015-05-21

    The connection between the random-phase approximation and the ring-coupled-cluster-doubles method bridges the gap between density-functional and wave-function theories and the importance of the random-phase approximation lies in both its broad applicability and this linking role in electronic-structure theory. In this contribution, we present an explicitly correlated approach to the random-phase approximation, based on the direct ring-coupled-cluster-doubles ansatz, which overcomes the problem of slow basis-set convergence, inherent to the random-phase approximation. Benchmark results for a test set of 106 molecules and a selection of 10 organic complexes from the S22 test set demonstrate that convergence to within 99% of the basis-set limit is reached for triple-zeta basis sets for atomisation energies, while quadruple-zeta basis sets are required for interaction energies. Corrections due to single excitations into the complementary auxiliary space reduce the basis-set incompleteness error by one order of magnitude, while contributions due to the coupling of conventional and geminal amplitudes are in general negligible. We find that a non-iterative explicitly correlated correction to first order in perturbation theory exhibits the best ratio of accuracy to computational cost.

  15. An accurate local model for triple substitutions in fourth order M[oslash]ller Plesset theory and in perturbative corrections to singles and doubles coupled cluster methods

    NASA Astrophysics Data System (ADS)

    Maslen, P. E.; Lee, M. S.; Head-Gordon, M.

    2000-03-01

    Two noniterative local models for evaluating the contribution of triple substitutions to the electron correlation energy (as needed in MP4 and CCSD(T)), are developed. The occupied space is spanned by a minimal basis, and the virtual space by an extended basis of atom-centered functions. The triple substitutions are truncated by an atomic criterion such that either zero or one electrons can be transferred between atoms. The covalent model asymptotically recovers 70% of the triples correlation energy for poly-ynes with a 6-31G* basis, while the singly-ionic model recovers 99%.

  16. ATOMIC AND MOLECULAR PHYSICS: Quantum Impurity Models with Coupled Cluster Method

    NASA Astrophysics Data System (ADS)

    Liang, Jin-Jun; Emary, Clive; Brandes, Tobias

    2010-09-01

    We investigate the ground-state properties of the Anderson single impurity model (finite Coulomb impurity repulsion) with the Coupled Cluster Method. We consider different CCM reference states and approximation schemes and make comparison with exact Green's function results for the non-interacting model and with Brillouin-Wigner perturbation theory for the full interacting model. Our results show that coupled cluster techniques are well suited to quantum impurity problems.

  17. Circuit electromechanics with single photon strong coupling

    SciTech Connect

    Xue, Zheng-Yuan Yang, Li-Na; Zhou, Jian

    2015-07-13

    In circuit electromechanics, the coupling strength is usually very small. Here, replacing the capacitor in circuit electromechanics by a superconducting flux qubit, we show that the coupling among the qubit and the two resonators can induce effective electromechanical coupling which can attain the strong coupling regime at the single photon level with feasible experimental parameters. We use dispersive couplings among two resonators and the qubit while the qubit is also driven by an external classical field. These couplings form a three-wave mixing configuration among the three elements where the qubit degree of freedom can be adiabatically eliminated, and thus results in the enhanced coupling between the two resonators. Therefore, our work constitutes the first step towards studying quantum nonlinear effect in circuit electromechanics.

  18. Coupling single emitters to quantum plasmonic circuits

    NASA Astrophysics Data System (ADS)

    Huck, Alexander; Andersen, Ulrik L.

    2016-09-01

    In recent years, the controlled coupling of single-photon emitters to propagating surface plasmons has been intensely studied, which is fueled by the prospect of a giant photonic nonlinearity on a nanoscaled platform. In this article, we will review the recent progress on coupling single emitters to nanowires towards the construction of a new platform for strong light-matter interaction. The control over such a platform might open new doors for quantum information processing and quantum sensing at the nanoscale and for the study of fundamental physics in the ultrastrong coupling regime.

  19. Coupled cluster channels in the homogeneous electron gas

    SciTech Connect

    Shepherd, James J. E-mail: jamesjshepherd@gmail.com; Henderson, Thomas M.; Scuseria, Gustavo E.

    2014-03-28

    We discuss diagrammatic modifications to the coupled cluster doubles (CCD) equations, wherein different groups of terms out of rings, ladders, crossed-rings, and mosaics can be removed to form approximations to the coupled cluster method, of interest due to their similarity with various types of random phase approximations. The finite uniform electron gas (UEG) is benchmarked for 14- and 54-electron systems at the complete basis set limit over a wide density range and performance of different flavours of CCD is determined. These results confirm that rings generally overcorrelate and ladders generally undercorrelate; mosaics-only CCD yields a result surprisingly close to CCD. We use a recently developed numerical analysis [J. J. Shepherd and A. Grüneis, Phys. Rev. Lett. 110, 226401 (2013)] to study the behaviours of these methods in the thermodynamic limit. We determine that the mosaics, on forming the Brueckner one-body Hamiltonian, open a gap in the effective one-particle eigenvalues at the Fermi energy. Numerical evidence is presented which shows that methods based on this renormalisation have convergent energies in the thermodynamic limit including mosaic-only CCD, which is just a renormalised MP2. All other methods including only a single channel, namely, ladder-only CCD, ring-only CCD, and crossed-ring-only CCD, appear to yield divergent energies; incorporation of mosaic terms prevents this from happening.

  20. Coupled cluster algorithms for networks of shared memory parallel processors

    NASA Astrophysics Data System (ADS)

    Bentz, Jonathan L.; Olson, Ryan M.; Gordon, Mark S.; Schmidt, Michael W.; Kendall, Ricky A.

    2007-05-01

    As the popularity of using SMP systems as the building blocks for high performance supercomputers increases, so too increases the need for applications that can utilize the multiple levels of parallelism available in clusters of SMPs. This paper presents a dual-layer distributed algorithm, using both shared-memory and distributed-memory techniques to parallelize a very important algorithm (often called the "gold standard") used in computational chemistry, the single and double excitation coupled cluster method with perturbative triples, i.e. CCSD(T). The algorithm is presented within the framework of the GAMESS [M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.J. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S. Su, T.L. Windus, M. Dupuis, J.A. Montgomery, General atomic and molecular electronic structure system, J. Comput. Chem. 14 (1993) 1347-1363]. (General Atomic and Molecular Electronic Structure System) program suite and the Distributed Data Interface [M.W. Schmidt, G.D. Fletcher, B.M. Bode, M.S. Gordon, The distributed data interface in GAMESS, Comput. Phys. Comm. 128 (2000) 190]. (DDI), however, the essential features of the algorithm (data distribution, load-balancing and communication overhead) can be applied to more general computational problems. Timing and performance data for our dual-level algorithm is presented on several large-scale clusters of SMPs.

  1. High performance organic photovoltaics with plasmonic-coupled metal nanoparticle clusters.

    PubMed

    Park, Hyung Il; Lee, Seunghoon; Lee, Ju Min; Nam, Soo Ah; Jeon, Taewoo; Han, Sang Woo; Kim, Sang Ouk

    2014-10-28

    Performance enhancement of organic photovoltaics using plasmonic nanoparticles has been limited without interparticle plasmon coupling. We demonstrate high performance organic photovoltaics employing gold nanoparticle clusters with controlled morphology as a plasmonic component. Near-field coupling at the interparticle gaps of nanoparticle clusters gives rise to strong enhancement in localized electromagnetic field, which led to the significant improvement of exciton generation and dissociation in the active layer of organic solar cells. A power conversion efficiency of 9.48% is attained by employing gold nanoparticle clusters at the bottom of the organic active layer. This is one of the highest efficiency values reported thus far for the single active layer organic photovoltaics.

  2. Delay-induced cluster patterns in coupled Cayley tree networks

    NASA Astrophysics Data System (ADS)

    Singh, A.; Jalan, S.

    2013-07-01

    We study effects of delay in diffusively coupled logistic maps on the Cayley tree networks. We find that smaller coupling values exhibit sensitiveness to value of delay, and lead to different cluster patterns of self-organized and driven types. Whereas larger coupling strengths exhibit robustness against change in delay values, and lead to stable driven clusters comprising nodes from last generation of the Cayley tree. Furthermore, introduction of delay exhibits suppression as well as enhancement of synchronization depending upon coupling strength values. To the end we discuss the importance of results to understand conflicts and cooperations observed in family business.

  3. Clustering in delay-coupled smooth and relaxational chemical oscillators

    NASA Astrophysics Data System (ADS)

    Blaha, Karen; Lehnert, Judith; Keane, Andrew; Dahms, Thomas; Hövel, Philipp; Schöll, Eckehard; Hudson, John L.

    2013-12-01

    We investigate cluster synchronization in networks of nonlinear systems with time-delayed coupling. Using a generic model for a system close to the Hopf bifurcation, we predict the order of appearance of different cluster states and their corresponding common frequencies depending upon coupling delay. We may tune the delay time in order to ensure the existence and stability of a specific cluster state. We qualitatively and quantitatively confirm these results in experiments with chemical oscillators. The experiments also exhibit strongly nonlinear relaxation oscillations as we increase the voltage, i.e., go further away from the Hopf bifurcation. In this regime, we find secondary cluster states with delay-dependent phase lags. These cluster states appear in addition to primary states with delay-independent phase lags observed near the Hopf bifurcation. Extending the theory on Hopf normal-form oscillators, we are able to account for realistic interaction functions, yielding good agreement with experimental findings.

  4. Coupling term derivation and general implementation of state-specific multireference coupled cluster theories

    NASA Astrophysics Data System (ADS)

    Evangelista, Francesco A.; Allen, Wesley D.; Schaefer, Henry F.

    2007-07-01

    Simple closed-form expressions are derived for the "same vacuum" renormalization terms that arise in state-specific multireference coupled cluster (MRCC) theories. Explicit equations are provided for these coupling terms through the triple excitation level of MRCC theory, and a general expression is included for arbitrary-order excitations. The first production-level code (PSIMRCC) for state-specific and rigorously size-extensive Mukherjee multireference coupled cluster singles and doubles (MkCCSD) computations has been written. This code is also capable of evaluating analogous Brillouin-Wigner multireference energies (BWCCSD), including a posteriori size-extensivity corrections. Using correlation-consistent basis sets (cc-pVXZ, X =D,T,Q), MkCCSD and BWCCSD were tested and compared on two classic multireference problems: (1) the dissociation potential curve of molecular fluorine (F2) and (2) the structure and vibrational frequencies of ozone. Comparison with experimental data shows that the Mukherjee method is generally superior to the Brillouin-Wigner theory in predicting energies, structures, and vibrational frequencies. Particularly accurate results for F2 are obtained by applying the MkCCSD method with localized molecular orbitals. Although the MkCCSD theory greatly improves upon single-reference CCSD for the geometric parameters and a1 vibrational frequencies of ozone, the antisymmetric stretching frequency ω3(b2) remains pathological and cannot be properly treated without the inclusion of connected triple excitations. Finally, preliminary multireference MkCCSD results are reported for the singlet-triplet splittings in ortho-, meta-, and para-benzyne, coming within 1.5kcalmol-1 of experiment in all cases.

  5. Synchronization as Aggregation: Cluster Kinetics of Pulse-Coupled Oscillators.

    PubMed

    O'Keeffe, Kevin P; Krapivsky, P L; Strogatz, Steven H

    2015-08-01

    We consider models of identical pulse-coupled oscillators with global interactions. Previous work showed that under certain conditions such systems always end up in sync, but did not quantify how small clusters of synchronized oscillators progressively coalesce into larger ones. Using tools from the study of aggregation phenomena, we obtain exact results for the time-dependent distribution of cluster sizes as the system evolves from disorder to synchrony.

  6. Note: Excited State Studies of Ozone using State-Specific Multireference Coupled Cluster Methods

    SciTech Connect

    Bhaskaran-Nair, Kiran; Kowalski, Karol

    2012-12-07

    Vertical excitation energies obtained with state-specific multi-reference coupled cluster (MRCC) methods are reported for the ozone molecule. Using state-specific MRCC non-iterative methods with singles, doubles, and non-iterative triples (MRCCSD(T)) we obtain 4.40 eV for the challenging doubly excited 21A1 state when using a reliable model space. This estimate is in good agreement with experiment (4.5 eV). We also compare our MRCC results with the excitation energies obtained with high-order equation-of-motion coupled cluster methods

  7. Communication: Finite size correction in periodic coupled cluster theory calculations of solids

    NASA Astrophysics Data System (ADS)

    Liao, Ke; Grüneis, Andreas

    2016-10-01

    We present a method to correct for finite size errors in coupled cluster theory calculations of solids. The outlined technique shares similarities with electronic structure factor interpolation methods used in quantum Monte Carlo calculations. However, our approach does not require the calculation of density matrices. Furthermore we show that the proposed finite size corrections achieve chemical accuracy in the convergence of second-order Møller-Plesset perturbation and coupled cluster singles and doubles correlation energies per atom for insulating solids with two atomic unit cells using 2 × 2 × 2 and 3 × 3 × 3 k-point meshes only.

  8. Report of a Workshop on Parallelization of Coupled Cluster Methods

    SciTech Connect

    Rodney J. Bartlett Erik Deumens

    2008-05-08

    The benchmark, ab initio quantum mechanical methods for molecular structure and spectra are now recognized to be coupled-cluster theory. To benefit from the transiiton to tera- and petascale computers, such coupled-cluster methods must be created to run in a scalable fashion. This Workshop, held as a aprt of the 48th annual Sanibel meeting, at St. Simns, Island, GA, addressed that issue. Representatives of all the principal scientific groups who are addressing this topic were in attendance, to exchange information about the problem and to identify what needs to be done in the future. This report summarized the conclusions of the workshop.

  9. Linear-response theory for Mukherjee's multireference coupled-cluster method: Excitation energies

    NASA Astrophysics Data System (ADS)

    Jagau, Thomas-C.; Gauss, Jürgen

    2012-07-01

    The recently presented linear-response function for Mukherjee's multireference coupled-cluster method (Mk-MRCC) [T.-C. Jagau and J. Gauss, J. Chem. Phys. 137, 044115 (2012)], 10.1063/1.4734308 is employed to determine vertical excitation energies within the singles and doubles approximation (Mk-MRCCSD-LR) for ozone as well as for o-benzyne, m-benzyne, and p-benzyne, which display increasing multireference character in their ground states. In order to assess the impact of a multireference ground-state wavefunction on excitation energies, we compare all our results to those obtained at the single-reference coupled-cluster level of theory within the singles and doubles as well as within the singles, doubles, and triples approximation. Special attention is paid to the artificial splitting of certain excited states which arises from the redundancy intrinsic to Mk-MRCC theory and hinders the straightforward application of the Mk-MRCC-LR method.

  10. Coupled-cluster based basis sets for valence correlation calculations

    NASA Astrophysics Data System (ADS)

    Claudino, Daniel; Gargano, Ricardo; Bartlett, Rodney J.

    2016-03-01

    Novel basis sets are generated that target the description of valence correlation in atoms H through Ar. The new contraction coefficients are obtained according to the Atomic Natural Orbital (ANO) procedure from CCSD(T) (coupled-cluster singles and doubles with perturbative triples correction) density matrices starting from the primitive functions of Dunning et al. [J. Chem. Phys. 90, 1007 (1989); ibid. 98, 1358 (1993); ibid. 100, 2975 (1993)] (correlation consistent polarized valence X-tuple zeta, cc-pVXZ). The exponents of the primitive Gaussian functions are subject to uniform scaling in order to ensure satisfaction of the virial theorem for the corresponding atoms. These new sets, named ANO-VT-XZ (Atomic Natural Orbital Virial Theorem X-tuple Zeta), have the same number of contracted functions as their cc-pVXZ counterparts in each subshell. The performance of these basis sets is assessed by the evaluation of the contraction errors in four distinct computations: correlation energies in atoms, probing the density in different regions of space via (-3 ≤ n ≤ 3) in atoms, correlation energies in diatomic molecules, and the quality of fitting potential energy curves as measured by spectroscopic constants. All energy calculations with ANO-VT-QZ have contraction errors within "chemical accuracy" of 1 kcal/mol, which is not true for cc-pVQZ, suggesting some improvement compared to the correlation consistent series of Dunning and co-workers.

  11. Coupled-cluster based basis sets for valence correlation calculations.

    PubMed

    Claudino, Daniel; Gargano, Ricardo; Bartlett, Rodney J

    2016-03-14

    Novel basis sets are generated that target the description of valence correlation in atoms H through Ar. The new contraction coefficients are obtained according to the Atomic Natural Orbital (ANO) procedure from CCSD(T) (coupled-cluster singles and doubles with perturbative triples correction) density matrices starting from the primitive functions of Dunning et al. [J. Chem. Phys. 90, 1007 (1989); ibid. 98, 1358 (1993); ibid. 100, 2975 (1993)] (correlation consistent polarized valence X-tuple zeta, cc-pVXZ). The exponents of the primitive Gaussian functions are subject to uniform scaling in order to ensure satisfaction of the virial theorem for the corresponding atoms. These new sets, named ANO-VT-XZ (Atomic Natural Orbital Virial Theorem X-tuple Zeta), have the same number of contracted functions as their cc-pVXZ counterparts in each subshell. The performance of these basis sets is assessed by the evaluation of the contraction errors in four distinct computations: correlation energies in atoms, probing the density in different regions of space via ⟨r(n)⟩ (-3 ≤ n ≤ 3) in atoms, correlation energies in diatomic molecules, and the quality of fitting potential energy curves as measured by spectroscopic constants. All energy calculations with ANO-VT-QZ have contraction errors within "chemical accuracy" of 1 kcal/mol, which is not true for cc-pVQZ, suggesting some improvement compared to the correlation consistent series of Dunning and co-workers.

  12. Coupled-cluster based basis sets for valence correlation calculations.

    PubMed

    Claudino, Daniel; Gargano, Ricardo; Bartlett, Rodney J

    2016-03-14

    Novel basis sets are generated that target the description of valence correlation in atoms H through Ar. The new contraction coefficients are obtained according to the Atomic Natural Orbital (ANO) procedure from CCSD(T) (coupled-cluster singles and doubles with perturbative triples correction) density matrices starting from the primitive functions of Dunning et al. [J. Chem. Phys. 90, 1007 (1989); ibid. 98, 1358 (1993); ibid. 100, 2975 (1993)] (correlation consistent polarized valence X-tuple zeta, cc-pVXZ). The exponents of the primitive Gaussian functions are subject to uniform scaling in order to ensure satisfaction of the virial theorem for the corresponding atoms. These new sets, named ANO-VT-XZ (Atomic Natural Orbital Virial Theorem X-tuple Zeta), have the same number of contracted functions as their cc-pVXZ counterparts in each subshell. The performance of these basis sets is assessed by the evaluation of the contraction errors in four distinct computations: correlation energies in atoms, probing the density in different regions of space via ⟨r(n)⟩ (-3 ≤ n ≤ 3) in atoms, correlation energies in diatomic molecules, and the quality of fitting potential energy curves as measured by spectroscopic constants. All energy calculations with ANO-VT-QZ have contraction errors within "chemical accuracy" of 1 kcal/mol, which is not true for cc-pVQZ, suggesting some improvement compared to the correlation consistent series of Dunning and co-workers. PMID:26979680

  13. Panic evacuation of single pedestrians and couples

    NASA Astrophysics Data System (ADS)

    Frank, G. A.; Dorso, C. O.

    2016-02-01

    Understanding the timing requirements for evacuation of people has focused primarily on independent pedestrians rather than pedestrians emotionally connected. However, the main statistical effects observed in crowds, the so-called “faster is slower”, “clever is not always better” and the “low visibility enhancement”, cannot explain the overall behavior of a crowd during an evacuation process when correlated pedestrians due to, for example feelings, are present. Our research addresses this issue and examines the statistical behavior of a mixture of individuals and couples during a (panic) escaping process. We found that the attractive feeling among couples plays an important role in the time delays during the evacuation of a single exit room.

  14. ClusterSculptor: Software for Expert-Steered Classification of Single Particle Mass Spectra

    SciTech Connect

    Zelenyuk, Alla; Imre, Dan G.; Nam, Eun Ju; Han, Yiping; Mueller, Klaus

    2008-08-01

    To take full advantage of the vast amount of highly detailed data acquired by single particle mass spectrometers requires that the data be organized according to some rules that have the potential to be insightful. Most commonly statistical tools are used to cluster the individual particle mass spectra on the basis of their similarity. Cluster analysis is a powerful strategy for the exploration of high-dimensional data in the absence of a-priori hypotheses or data classification models, and the results of cluster analysis can then be used to form such models. More often than not, when examining the data clustering results we find that many clusters contain particles of different types and that many particles of one type end up in a number of separate clusters. Our experience with cluster analysis shows that we have a vast amount of non-compiled knowledge and intuition that should be brought to bear in this effort. We will present new software we call ClusterSculptor that provides comprehensive and intuitive framework to aid scientists in data classification. ClusterSculptor uses k-means as the overall clustering engine, but allows tuning its parameters interactively, based on a non-distorted compact visual presentation of the inherent characteristics of the data in high-dimensional space. ClusterSculptor provides all the tools necessary for a high-dimensional activity we call cluster sculpting. ClusterSculptor is designed to be coupled to SpectraMiner, our data mining and visualization software package. The data are first visualized with SpectraMiner and identified problems are exported to ClusterSculptor, where the user steers the reclassification and recombination of clusters of tens of thousands particle mass spectra in real-time. The resulting sculpted clusters can be then imported back into SpectraMiner. Here we will greatly improved single particle chemical speciation in an example of application of this new tool to a number of particle types of atmospheric

  15. Coupled cluster calculations on TiO2 nanoclusters

    SciTech Connect

    Berardo, Enrico; Hu, Hanshi; Kowalski, Karol; Zwijnenburg, Martijn A.

    2013-08-14

    The excitation energies of the four lowest-lying singlet excited states of the TiO2 Ti2O4 and Ti3O6 clusters are calculated by a variety of different Equation-of-Motion Coupled Cluster (EOM-CC) approaches in order to obtain benchmark values for the optical excitations of titanium dioxide clusters. More specifically we investigate what is the effect of the inclusion of triple excitations "triples" in the (EOM-)CC scheme on the calculated excited states of those clusters. While for the monomer and dimer the inclusion of triples causes only a rigid shift in the excitation energies, in the case of the trimer the crossing of the interested states is observed. Coupled cluster approaches where triples are treated perturbatively were found to offer no advantage over EOM-CCSD, whereas the active-space methods (EOM-CCSDt(II/I)) proved to yield results very close to the full EOM-CCSDT, but at a much lower computational cost.

  16. The use of gene clusters to infer functional coupling.

    SciTech Connect

    Overbeek, R.; Fonstein, M.; D'Souza, M.; Pusch, G. D.; Mathematics and Computer Science; Integrated Genomics; Univ. of Chicago

    1999-03-01

    Previously, we presented evidence that it is possible to predict functional coupling between genes based on conservation of gene clusters between genomes. With the rapid increase in the availability of prokaryotic sequence data, it has become possible to verify and apply the technique. In this paper, we extend our characterization of the parameters that determine the utility of the approach, and we generalize the approach in a way that supports detection of common classes of functionally coupled genes (e.g., transport and signal transduction clusters). Now that the analysis includes over 30 complete or nearly complete genomes, it has become clear that this approach will play a significant role in supporting efforts to assign functionality to the remaining uncharacterized genes in sequenced genomes.

  17. A nonperturbative light-front coupled-cluster method

    NASA Astrophysics Data System (ADS)

    Hiller, J. R.

    2012-10-01

    The nonperturbative Hamiltonian eigenvalue problem for bound states of a quantum field theory is formulated in terms of Dirac's light-front coordinates and then approximated by the exponential-operator technique of the many-body coupled-cluster method. This approximation eliminates any need for the usual approximation of Fock-space truncation. Instead, the exponentiated operator is truncated, and the terms retained are determined by a set of nonlinear integral equations. These equations are solved simultaneously with an effective eigenvalue problem in the valence sector, where the number of constituents is small. Matrix elements can be calculated, with extensions of techniques from standard coupled-cluster theory, to obtain form factors and other observables.

  18. The Use of Gene Clusters to Infer Functional Coupling

    NASA Astrophysics Data System (ADS)

    Overbeek, Ross; Fonstein, Michael; D'Souza, Mark; Pusch, Gordon D.; Maltsev, Natalia

    1999-03-01

    Previously, we presented evidence that it is possible to predict functional coupling between genes based on conservation of gene clusters between genomes. With the rapid increase in the availability of prokaryotic sequence data, it has become possible to verify and apply the technique. In this paper, we extend our characterization of the parameters that determine the utility of the approach, and we generalize the approach in a way that supports detection of common classes of functionally coupled genes (e.g., transport and signal transduction clusters). Now that the analysis includes over 30 complete or nearly complete genomes, it has become clear that this approach will play a significant role in supporting efforts to assign functionality to the remaining uncharacterized genes in sequenced genomes.

  19. Orbital spaces in the divide-expand-consolidate coupled cluster method.

    PubMed

    Ettenhuber, Patrick; Baudin, Pablo; Kjærgaard, Thomas; Jørgensen, Poul; Kristensen, Kasper

    2016-04-28

    The theoretical foundation for solving coupled cluster singles and doubles (CCSD) amplitude equations to a desired precision in terms of independent fragment calculations using restricted local orbital spaces is reinvestigated with focus on the individual error sources. Four different error sources are identified theoretically and numerically and it is demonstrated that, for practical purposes, local orbital spaces for CCSD calculations can be identified from calculations at the MP2 level. The development establishes a solid theoretical foundation for local CCSD calculations for the independent fragments, and thus for divide-expand-consolidate coupled cluster calculations for large molecular systems with rigorous error control. Based on this theoretical foundation, we have developed an algorithm for determining the orbital spaces needed for obtaining the single fragment energies to a requested precision and numerically demonstrated the robustness and precision of this algorithm. PMID:27131540

  20. Orbital spaces in the divide-expand-consolidate coupled cluster method

    NASA Astrophysics Data System (ADS)

    Ettenhuber, Patrick; Baudin, Pablo; Kjærgaard, Thomas; Jørgensen, Poul; Kristensen, Kasper

    2016-04-01

    The theoretical foundation for solving coupled cluster singles and doubles (CCSD) amplitude equations to a desired precision in terms of independent fragment calculations using restricted local orbital spaces is reinvestigated with focus on the individual error sources. Four different error sources are identified theoretically and numerically and it is demonstrated that, for practical purposes, local orbital spaces for CCSD calculations can be identified from calculations at the MP2 level. The development establishes a solid theoretical foundation for local CCSD calculations for the independent fragments, and thus for divide-expand-consolidate coupled cluster calculations for large molecular systems with rigorous error control. Based on this theoretical foundation, we have developed an algorithm for determining the orbital spaces needed for obtaining the single fragment energies to a requested precision and numerically demonstrated the robustness and precision of this algorithm.

  1. Experimental and theoretical approach for the clustering of globally coupled density oscillators based on phase response.

    PubMed

    Horie, Masanobu; Sakurai, Tatsunari; Kitahata, Hiroyuki

    2016-01-01

    We investigated the phase-response curve of a coupled system of density oscillators with an analytical approach. The behaviors of two-, three-, and four-coupled systems seen in the experiments were reproduced by the model considering the phase-response curve. Especially in a four-coupled system, the clustering state and its incidence rate as functions of the coupling strength are well reproduced with this approach. Moreover, we confirmed that the shape of the phase-response curve we obtained analytically was close to that observed in the experiment where a perturbation is added to a single-density oscillator. We expect that this approach to obtaining the phase-response curve is general in the sense that it could be applied to coupled systems of other oscillators such as electrical-circuit oscillators, metronomes, and so on.

  2. Ferromagnetic spin coupling in the chromium dimer cation: Measurements by photodissociation spectroscopy combined with coupled-cluster calculations

    SciTech Connect

    Egashira, Kazuhiro; Yamada, Yurika; Kita, Yukiumi; Tachikawa, Masanori

    2015-02-07

    The magnetic coupling of the chromium dimer cation, Cr{sub 2}{sup +}, has been an outstanding problem for decades. An optical absorption spectrum of Cr{sub 2}{sup +} has been obtained by photodissociation spectroscopy in the photon-energy range from 2.0 to 5.0 eV. Besides, calculations have been performed by the equation-of-motion coupled-cluster singles and doubles method for vertical excitation of the species. Their coincidence supports our assignment that the ground electronic state exhibits a ferromagnetic spin coupling, which is contrary to those of neutral and negatively charged dimers, Cr{sub 2} and Cr{sub 2}{sup −}, in their lowest spin states.

  3. Early massive clusters and the bouncing coupled dark energy

    NASA Astrophysics Data System (ADS)

    Baldi, Marco

    2012-02-01

    The abundance of the most massive objects in the Universe at different epochs is a very sensitive probe of the cosmic background evolution and of the growth history of density perturbations, and could provide a powerful tool to distinguish between a cosmological constant and a dynamical dark energy field. In particular, the recent detection of very massive clusters of galaxies at high redshifts has attracted significant interest as a possible indication of a failure of the standard Λ cold dark matter model. Several attempts have been made in order to explain such detections in the context of non-Gaussian scenarios or interacting dark energy models, showing that both these alternative cosmologies predict an enhanced number density of massive clusters at high redshifts, possibly alleviating the tension. However, all the models proposed so far also overpredict the abundance of massive clusters at the present epoch, and are therefore in contrast with observational bounds on the low-redshift halo mass function. In this paper we present for the first time a new class of interacting dark energy models that simultaneously account for an enhanced number density of massive clusters at high redshifts and for both the standard cluster abundance at the present time and the standard power spectrum normalization at cosmic microwave background (CMB). The key feature of this new class of models is the 'bounce' of the dark energy scalar field on the cosmological constant barrier at relatively recent epochs. We present the background and linear perturbations evolution of the model, showing that the standard amplitude of density perturbations is recovered both at CMB and at the present time, and we demonstrate by means of large N-body simulations that our scenario predicts an enhanced number of massive clusters at high redshifts without affecting the present halo abundance. Such behaviour could not arise in non-Gaussian models, and is therefore a characteristic feature of the

  4. Mode couplings and resonance instabilities in dust clusters.

    PubMed

    Qiao, Ke; Kong, Jie; Oeveren, Eric Van; Matthews, Lorin S; Hyde, Truell W

    2013-10-01

    The normal modes for three to seven particle two-dimensional (2D) dust clusters in a complex plasma are investigated using an N-body simulation. The ion wakefield downstream of each particle is shown to induce coupling between horizontal and vertical modes. The rules of mode coupling are investigated by classifying the mode eigenvectors employing the Bessel and trigonometric functions indexed by order integers (m, n). It is shown that coupling only occurs between two modes with the same m and that horizontal modes having a higher shear contribution exhibit weaker coupling. Three types of resonances are shown to occur when two coupled modes have the same frequency. Discrete instabilities caused by both the first and third type of resonances are verified and instabilities caused by the third type of resonance are found to induce melting. The melting procedure is observed to go through a two-step process with the solid-liquid transition closely obeying the Lindemann criterion. PMID:24229289

  5. Ferromagnetism in Silicon Single Crystals with Positively Charged Vacancy Clusters

    NASA Astrophysics Data System (ADS)

    Liu, Yu; Zhang, Xinghong; Yuan, Quan; Han, Jiecai; Zhou, Shengqiang; Song, Bo

    Defect-induced ferromagnetism provides an alternative for organic and semiconductor spintronics. Here, we investigated the magnetism in Silicon after neutron irradiation and try to correlate the observed magnetism to particular defects in Si. Commercially available p-type Si single crystal wafer is cut into pieces for performing neutron irradiations. The magnetic impurities are ruled out as they can not be detected by secondary ion mass spectroscopy. With positron annihilation lifetime spectroscopy, the positron trapping center corresponding to lifetime 375 ps is assigned to a kind of stable vacancy clusters of hexagonal rings (V6) and its concentration is enhanced by increasing neutron doses. After irradiation, the samples still show strong diamagnetism. The weak ferromagnetic signal in Si after irradiation enhances and then weakens with increasing irradiation doses. The saturation magnetization at room temperature is almost the same as that at 5 K. The X-ray magnetic circular dichroism further provides the direct evidence that Silicon is the origin of this ferromagnetism. Using first-principles calculations, it is found that positively charged V6 brings the spin polarization and the defects have coupling with each other. The work is financially supported by the Helmholtz Postdoc Programme (Initiative and Networking Fund, PD-146).

  6. Orbital-optimized coupled-cluster theory does not reproduce the full configuration-interaction limit.

    PubMed

    Köhn, Andreas; Olsen, Jeppe

    2005-02-22

    It is shown that due to the mixing of the usual projection approach of coupled cluster with variational orbital optimization, orbital-optimized coupled cluster (OCC) fails to reproduce the full configuration-interaction (full CI) limit when the cluster operator becomes complete. It is pointed out that the fulfillment of the projected singles equations, which define the orbital gradient in Brueckner coupled cluster (BCC), is mandatory for a correct behavior. As numerical examples we present general OCC and BCC calculations up to the full CI limit on CH(2) and an active-space model of ozone. The observed deviations of OCC from full CI are of the order of the correlation error obtained in calculations with up to quadruples excitations. Thus the failure of OCC may be considered tolerable in more approximate calculations but clearly prohibitive for any benchmark application. For applications to active-space models a hybrid approach for OCC is suggested in which for active particle-hole rotations the Brueckner orbital gradient is employed, whereas for the remaining orbital rotations the variational orbital gradient is retained. PMID:15836029

  7. Simulation of circularly polarized luminescence spectra using coupled cluster theory

    NASA Astrophysics Data System (ADS)

    McAlexander, Harley R.; Crawford, T. Daniel

    2015-04-01

    We report the first computations of circularly polarized luminescence (CPL) rotatory strengths at the equation-of-motion coupled cluster singles and doubles (EOM-CCSD) level of theory. Using a test set of eight chiral ketones, we compare both dipole and rotatory strengths for absorption (electronic circular dichroism) and emission to the results from time-dependent density-functional theory (TD-DFT) and available experimental data for both valence and Rydberg transitions. For two of the compounds, we obtained optimized geometries of the lowest several excited states using both EOM-CCSD and TD-DFT and determined that structures and EOM-CCSD transition properties obtained with each structure were sufficiently similar that TD-DFT optimizations were acceptable for the remaining test cases. Agreement between EOM-CCSD and the Becke three-parameter exchange function and Lee-Yang-Parr correlation functional (B3LYP) corrected using the Coulomb attenuating method (CAM-B3LYP) is typically good for most of the transitions, though agreement with the uncorrected B3LYP functional is significantly worse for all reported properties. The choice of length vs. velocity representation of the electric dipole operator has little impact on the EOM-CCSD transition strengths for nearly all of the states we examined. For a pair of closely related β, γ-enones, (1R)-7-methylenebicyclo[2.2.1]heptan-2-one and (1S)-2-methylenebicyclo[2.2.1]heptan-7-one, we find that EOM-CCSD and CAM-B3LYP agree with the energetic ordering of the two possible excited-state conformations, resulting in good agreement with experimental rotatory strengths in both absorption and emission, whereas B3LYP yields a qualitatively incorrect result for the CPL signal of (1S)-2-methylenebicyclo[2.2.1]heptan-7-one. Finally, we predict that one of the compounds considered here, trans-bicyclo[3.3.0]octane-3,7-dione, is unique in that it exhibits an achiral ground state and a chiral first excited state, leading to a strong CPL

  8. Simulation of circularly polarized luminescence spectra using coupled cluster theory

    SciTech Connect

    McAlexander, Harley R.; Crawford, T. Daniel

    2015-04-21

    We report the first computations of circularly polarized luminescence (CPL) rotatory strengths at the equation-of-motion coupled cluster singles and doubles (EOM-CCSD) level of theory. Using a test set of eight chiral ketones, we compare both dipole and rotatory strengths for absorption (electronic circular dichroism) and emission to the results from time-dependent density-functional theory (TD-DFT) and available experimental data for both valence and Rydberg transitions. For two of the compounds, we obtained optimized geometries of the lowest several excited states using both EOM-CCSD and TD-DFT and determined that structures and EOM-CCSD transition properties obtained with each structure were sufficiently similar that TD-DFT optimizations were acceptable for the remaining test cases. Agreement between EOM-CCSD and the Becke three-parameter exchange function and Lee-Yang-Parr correlation functional (B3LYP) corrected using the Coulomb attenuating method (CAM-B3LYP) is typically good for most of the transitions, though agreement with the uncorrected B3LYP functional is significantly worse for all reported properties. The choice of length vs. velocity representation of the electric dipole operator has little impact on the EOM-CCSD transition strengths for nearly all of the states we examined. For a pair of closely related β, γ-enones, (1R)-7-methylenebicyclo[2.2.1]heptan-2-one and (1S)-2-methylenebicyclo[2.2.1]heptan-7-one, we find that EOM-CCSD and CAM-B3LYP agree with the energetic ordering of the two possible excited-state conformations, resulting in good agreement with experimental rotatory strengths in both absorption and emission, whereas B3LYP yields a qualitatively incorrect result for the CPL signal of (1S)-2-methylenebicyclo[2.2.1]heptan-7-one. Finally, we predict that one of the compounds considered here, trans-bicyclo[3.3.0]octane-3,7-dione, is unique in that it exhibits an achiral ground state and a chiral first excited state, leading to a strong CPL

  9. High-accuracy coupled cluster calculations of atomic properties

    SciTech Connect

    Borschevsky, A.; Yakobi, H.; Eliav, E.; Kaldor, U.

    2015-01-22

    The four-component Fock-space coupled cluster and intermediate Hamiltonian methods are implemented to evaluate atomic properties. The latter include the spectra of nobelium and lawrencium (elements 102 and 103) in the range 20000-30000 cm{sup −1}, the polarizabilities of elements 112-114 and 118, required for estimating their adsorption enthalpies on surfaces used to separate them in accelerators, and the nuclear quadrupole moments of some heavy atoms. The calculations on superheavy elements are supported by the very good agreement with experiment obtained for the lighter homologues.

  10. High-accuracy coupled cluster calculations of atomic properties

    NASA Astrophysics Data System (ADS)

    Borschevsky, A.; Yakobi, H.; Eliav, E.; Kaldor, U.

    2015-01-01

    The four-component Fock-space coupled cluster and intermediate Hamiltonian methods are implemented to evaluate atomic properties. The latter include the spectra of nobelium and lawrencium (elements 102 and 103) in the range 20000-30000 cm-1, the polarizabilities of elements 112-114 and 118, required for estimating their adsorption enthalpies on surfaces used to separate them in accelerators, and the nuclear quadrupole moments of some heavy atoms. The calculations on superheavy elements are supported by the very good agreement with experiment obtained for the lighter homologues.

  11. Communication: Improved pair approximations in local coupled-cluster methods

    SciTech Connect

    Schwilk, Max; Werner, Hans-Joachim; Usvyat, Denis

    2015-03-28

    In local coupled cluster treatments the electron pairs can be classified according to the magnitude of their energy contributions or distances into strong, close, weak, and distant pairs. Different approximations are introduced for the latter three classes. In this communication, an improved simplified treatment of close and weak pairs is proposed, which is based on long-range cancellations of individually slowly decaying contributions in the amplitude equations. Benchmark calculations for correlation, reaction, and activation energies demonstrate that these approximations work extremely well, while pair approximations based on local second-order Møller-Plesset theory can lead to errors that are 1-2 orders of magnitude larger.

  12. Predictive coupled-cluster isomer orderings for some SinCm (m, n ≤ 12) clusters: A pragmatic comparison between DFT and complete basis limit coupled-cluster benchmarks

    NASA Astrophysics Data System (ADS)

    Byrd, Jason N.; Lutz, Jesse J.; Jin, Yifan; Ranasinghe, Duminda S.; Montgomery, John A.; Perera, Ajith; Duan, Xiaofeng F.; Burggraf, Larry W.; Sanders, Beverly A.; Bartlett, Rodney J.

    2016-07-01

    The accurate determination of the preferred Si12C12 isomer is important to guide experimental efforts directed towards synthesizing SiC nano-wires and related polymer structures which are anticipated to be highly efficient exciton materials for the opto-electronic devices. In order to definitively identify preferred isomeric structures for silicon carbon nano-clusters, highly accurate geometries, energies, and harmonic zero point energies have been computed using coupled-cluster theory with systematic extrapolation to the complete basis limit for set of silicon carbon clusters ranging in size from SiC3 to Si12C12. It is found that post-MBPT(2) correlation energy plays a significant role in obtaining converged relative isomer energies, suggesting that predictions using low rung density functional methods will not have adequate accuracy. Utilizing the best composite coupled-cluster energy that is still computationally feasible, entailing a 3-4 SCF and coupled-cluster theory with singles and doubles extrapolation with triple-ζ (T) correlation, the closo Si12C12 isomer is identified to be the preferred isomer in the support of previous calculations [X. F. Duan and L. W. Burggraf, J. Chem. Phys. 142, 034303 (2015)]. Additionally we have investigated more pragmatic approaches to obtaining accurate silicon carbide isomer energies, including the use of frozen natural orbital coupled-cluster theory and several rungs of standard and double-hybrid density functional theory. Frozen natural orbitals as a way to compute post-MBPT(2) correlation energy are found to be an excellent balance between efficiency and accuracy.

  13. Predictive coupled-cluster isomer orderings for some SinCm (m, n ≤ 12) clusters: A pragmatic comparison between DFT and complete basis limit coupled-cluster benchmarks.

    PubMed

    Byrd, Jason N; Lutz, Jesse J; Jin, Yifan; Ranasinghe, Duminda S; Montgomery, John A; Perera, Ajith; Duan, Xiaofeng F; Burggraf, Larry W; Sanders, Beverly A; Bartlett, Rodney J

    2016-07-14

    The accurate determination of the preferred Si12C12 isomer is important to guide experimental efforts directed towards synthesizing SiC nano-wires and related polymer structures which are anticipated to be highly efficient exciton materials for the opto-electronic devices. In order to definitively identify preferred isomeric structures for silicon carbon nano-clusters, highly accurate geometries, energies, and harmonic zero point energies have been computed using coupled-cluster theory with systematic extrapolation to the complete basis limit for set of silicon carbon clusters ranging in size from SiC3 to Si12C12. It is found that post-MBPT(2) correlation energy plays a significant role in obtaining converged relative isomer energies, suggesting that predictions using low rung density functional methods will not have adequate accuracy. Utilizing the best composite coupled-cluster energy that is still computationally feasible, entailing a 3-4 SCF and coupled-cluster theory with singles and doubles extrapolation with triple-ζ (T) correlation, the closo Si12C12 isomer is identified to be the preferred isomer in the support of previous calculations [X. F. Duan and L. W. Burggraf, J. Chem. Phys. 142, 034303 (2015)]. Additionally we have investigated more pragmatic approaches to obtaining accurate silicon carbide isomer energies, including the use of frozen natural orbital coupled-cluster theory and several rungs of standard and double-hybrid density functional theory. Frozen natural orbitals as a way to compute post-MBPT(2) correlation energy are found to be an excellent balance between efficiency and accuracy. PMID:27421410

  14. Predictive coupled-cluster isomer orderings for some SinCm (m, n ≤ 12) clusters: A pragmatic comparison between DFT and complete basis limit coupled-cluster benchmarks.

    PubMed

    Byrd, Jason N; Lutz, Jesse J; Jin, Yifan; Ranasinghe, Duminda S; Montgomery, John A; Perera, Ajith; Duan, Xiaofeng F; Burggraf, Larry W; Sanders, Beverly A; Bartlett, Rodney J

    2016-07-14

    The accurate determination of the preferred Si12C12 isomer is important to guide experimental efforts directed towards synthesizing SiC nano-wires and related polymer structures which are anticipated to be highly efficient exciton materials for the opto-electronic devices. In order to definitively identify preferred isomeric structures for silicon carbon nano-clusters, highly accurate geometries, energies, and harmonic zero point energies have been computed using coupled-cluster theory with systematic extrapolation to the complete basis limit for set of silicon carbon clusters ranging in size from SiC3 to Si12C12. It is found that post-MBPT(2) correlation energy plays a significant role in obtaining converged relative isomer energies, suggesting that predictions using low rung density functional methods will not have adequate accuracy. Utilizing the best composite coupled-cluster energy that is still computationally feasible, entailing a 3-4 SCF and coupled-cluster theory with singles and doubles extrapolation with triple-ζ (T) correlation, the closo Si12C12 isomer is identified to be the preferred isomer in the support of previous calculations [X. F. Duan and L. W. Burggraf, J. Chem. Phys. 142, 034303 (2015)]. Additionally we have investigated more pragmatic approaches to obtaining accurate silicon carbide isomer energies, including the use of frozen natural orbital coupled-cluster theory and several rungs of standard and double-hybrid density functional theory. Frozen natural orbitals as a way to compute post-MBPT(2) correlation energy are found to be an excellent balance between efficiency and accuracy.

  15. Single universal curve for cluster radioactivities and {alpha} decay

    SciTech Connect

    Poenaru, D. N.; Gherghescu, R. A.; Greiner, W.

    2011-01-15

    One single line of universal (UNIV) curve for {alpha} decay and cluster radioactivities is obtained by plotting the sum of the decimal logarithm of the half-life and cluster preformation probability versus the decimal logarithm of the penetrability of external barrier. This fission-like theory is compared to the universal decay law (UDL) derived using {alpha}-like R-matrix theory. The experimental data on heavy cluster decay in three groups of even-even, even-odd, and odd-even parent nuclei are reproduced with comparable accuracy by both types of universal curves, UNIV and UDL.

  16. Polarizabilities and first hyperpolarizabilities of HF, Ne, and BH from full configuration interaction and coupled cluster calculations

    NASA Astrophysics Data System (ADS)

    Larsen, Helena; Olsen, Jeppe; Hättig, Christof; Jørgensen, Poul; Christiansen, Ove; Gauss, Jürgen

    1999-08-01

    Static and frequency-dependent polarizabilities and first hyperpolarizabilities have been calculated for HF and Ne using full configuration interaction (FCI) and a hierarchy of coupled cluster models: coupled cluster singles (CCS), an approximate coupled cluster singles and doubles model (CC2), coupled cluster singles and doubles (CCSD), an approximate coupled cluster singles, doubles, and triples model (CC3), and coupled cluster singles, doubles, and triples (CCSDT). A previous study of BH concerning FCI benchmarking has been extended to include CC3 and static CCSDT values. Systematic improvements of the polarizabilities and the hyperpolarizabilities are found going from CCS to CCSD and from CCSD to CC3 or CCSDT. Little or no improvement of the polarizabilities and no improvement of the hyperpolarizabilities are seen when going from CCS to CC2. The CCSD results represent a significant improvement over CCS and CC2 but are again surpassed by the CC3 results which agree very well with the FCI values. The relative error for the static polarizability at the CC3 level is 0.11% for Ne and, respectively, 0.16% and 0.20% for αxx and αzz of HF. For βzzz and βzxx the errors are 0.50% and 1.7%, respectively. Only in the challenging case of BH does CCSDT improve the CC3 values. The dispersion for the polarizabilities and hyperpolarizabilities is predicted with increasing accuracy in the CCS-CC2-CCSD-CC3 sequence as expected from the increasing accuracy of the electronic excitation energies. For all molecules the effect of orbital relaxation has been investigated for the static properties. The inclusion of orbital relaxation gives results that are somewhat different from the unrelaxed results but are in general no improvement.

  17. Phase clustering in complex networks of delay-coupled oscillators

    NASA Astrophysics Data System (ADS)

    Pérez, Toni; Eguíluz, Víctor M.; Arenas, Alex

    2011-06-01

    We study the clusterization of phase oscillators coupled with delay in complex networks. For the case of diffusive oscillators, we formulate the equations relating the topology of the network and the phases and frequencies of the oscillators (functional response). We solve them exactly in directed networks for the case of perfect synchronization. We also compare the reliability of the solution of the linear system for non-linear couplings. Taking advantage of the form of the solution, we propose a frequency adaptation rule to achieve perfect synchronization. We also propose a mean-field theory for uncorrelated random networks that proves to be pretty accurate to predict phase synchronization in real topologies, as for example, the Caenorhabditis elegans or the autonomous systems connectivity.

  18. Automatic derivation and evaluation of vibrational coupled cluster theory equations

    NASA Astrophysics Data System (ADS)

    Seidler, Peter; Christiansen, Ove

    2009-12-01

    A scheme for automatic derivation and evaluation of the expressions occurring in vibrational coupled cluster theory is introduced. The method is based on a Baker-Campbell-Hausdorff expansion of the similarity transformed Hamiltonian and is general both with respect to the excitation level in the parameter space and the mode coupling level in the Hamiltonian. In addition to deriving general expressions, intermediates that lower the computational scaling are automatically detected. The final equations are then evaluated. Due to the commutator based nature of the algorithm, it is also applicable to the evaluation of quantities needed for response theory. Different aspects of the theory and implementation are illustrated by calculations on model systems. Furthermore, all fundamental excitation energies of ethylene oxide are calculated.

  19. First-order exchange energy of intermolecular interactions from coupled cluster density matrices and their cumulants.

    PubMed

    Korona, Tatiana

    2008-06-14

    A new method for the calculation of the first-order intermolecular exchange energy is proposed. It is based on the partition of two-particle density matrices of monomers into the antisymmetrized product of one-particle density matrices and the remaining cumulant part. This partition is used to modify the formula for the first-order exchange energy developed by Moszynski et al. [J. Chem. Phys. 100, 5080 (1994)]. The new expression has been applied for the case of monomer density matrices derived from the expectation value expression for the coupled cluster singles and doubles wave function. In this way an accurate method of calculation of the first-order exchange energy for many-electron systems has been obtained, where both monomers are described on the coupled cluster level. Numerical results are presented for several benchmark van der Waals systems to illustrate the performance of the new approach.

  20. Coupled two-way clustering analysis of gene microarray data

    NASA Astrophysics Data System (ADS)

    Getz, Gad; Levine, Erel; Domany, Eytan

    2000-10-01

    We present a coupled two-way clustering approach to gene microarray data analysis. The main idea is to identify subsets of the genes and samples, such that when one of these is used to cluster the other, stable and significant partitions emerge. The search for such subsets is a computationally complex task. We present an algorithm, based on iterative clustering, that performs such a search. This analysis is especially suitable for gene microarray data, where the contributions of a variety of biological mechanisms to the gene expression levels are entangled in a large body of experimental data. The method was applied to two gene microarray data sets, on colon cancer and leukemia. By identifying relevant subsets of the data and focusing on them we were able to discover partitions and correlations that were masked and hidden when the full dataset was used in the analysis. Some of these partitions have clear biological interpretation; others can serve to identify possible directions for future research.

  1. Transition properties from the Hermitian formulation of the coupled cluster polarization propagator

    SciTech Connect

    Tucholska, Aleksandra M. Modrzejewski, Marcin; Moszynski, Robert

    2014-09-28

    Theory of one-electron transition density matrices has been formulated within the time-independent coupled cluster method for the polarization propagator [R. Moszynski, P. S. Żuchowski, and B. Jeziorski, Coll. Czech. Chem. Commun. 70, 1109 (2005)]. Working expressions have been obtained and implemented with the coupled cluster method limited to single, double, and linear triple excitations (CC3). Selected dipole and quadrupole transition probabilities of the alkali earth atoms, computed with the new transition density matrices are compared to the experimental data. Good agreement between theory and experiment is found. The results obtained with the new approach are of the same quality as the results obtained with the linear response coupled cluster theory. The one-electron density matrices for the ground state in the CC3 approximation have also been implemented. The dipole moments for a few representative diatomic molecules have been computed with several variants of the new approach, and the results are discussed to choose the approximation with the best balance between the accuracy and computational efficiency.

  2. Phage cluster relationships identified through single gene analysis

    PubMed Central

    2013-01-01

    Background Phylogenetic comparison of bacteriophages requires whole genome approaches such as dotplot analysis, genome pairwise maps, and gene content analysis. Currently mycobacteriophages, a highly studied phage group, are categorized into related clusters based on the comparative analysis of whole genome sequences. With the recent explosion of phage isolation, a simple method for phage cluster prediction would facilitate analysis of crude or complex samples without whole genome isolation and sequencing. The hypothesis of this study was that mycobacteriophage-cluster prediction is possible using comparison of a single, ubiquitous, semi-conserved gene. Tape Measure Protein (TMP) was selected to test the hypothesis because it is typically the longest gene in mycobacteriophage genomes and because regions within the TMP gene are conserved. Results A single gene, TMP, identified the known Mycobacteriophage clusters and subclusters using a Gepard dotplot comparison or a phylogenetic tree constructed from global alignment and maximum likelihood comparisons. Gepard analysis of 247 mycobacteriophage TMP sequences appropriately recovered 98.8% of the subcluster assignments that were made by whole-genome comparison. Subcluster-specific primers within TMP allow for PCR determination of the mycobacteriophage subcluster from DNA samples. Using the single-gene comparison approach for siphovirus coliphages, phage groupings by TMP comparison reflected relationships observed in a whole genome dotplot comparison and confirm the potential utility of this approach to another widely studied group of phages. Conclusions TMP sequence comparison and PCR results support the hypothesis that a single gene can be used for distinguishing phage cluster and subcluster assignments. TMP single-gene analysis can quickly and accurately aid in mycobacteriophage classification. PMID:23777341

  3. Spatial Entanglement and Optimal Single-Mode Coupling

    SciTech Connect

    Grice, Warren P; Bennink, Ryan S; Goodman, Douglas S; Ryan, Andrew T

    2011-01-01

    The challenge of optimizing the emission into single spatial modes of photons from spontaneous parametric down-conversion is addressed from the perspective of spatial entanglement. It is shown that single-mode coupling is most efficient in the absence of entanglement. Evidence of the relationship between spatial entanglement and pump focusing is revealed through experimental results, and numerical simulations show that spatial entanglement and single-mode coupling are optimized under nearly identical pump parameters.

  4. Higher-order diagrammatic vibrational coupled-cluster theory.

    PubMed

    Faucheaux, Jacob A; Hirata, So

    2015-10-01

    Diagrammatically size-consistent and basis-set-free vibrational coupled-cluster (XVCC) theory for both zero-point energies and transition frequencies of a molecule, the latter through the equation-of-motion (EOM) formalism, is defined for an nth-order Taylor-series potential energy surface (PES). Quantum-field-theoretical tools (the rules of normal-ordered second quantization and Feynman-Goldstone diagrams) for deriving their working equations are established. The equations of XVCC and EOM-XVCC including up to the mth-order excitation operators are derived and implemented with the aid of computer algebra in the range of 1 ≤ m ≤ 8. Algorithm optimizations known as strength reduction, intermediate reuse, and factorization are carried out before code generation, reducing the cost scaling of the mth-order XVCC and EOM-XVCC in an nth-order Taylor-series PES (m ≥ n) to the optimal value of O(N(m+⌊n/2⌋)), where N is the number of modes. The calculated zero-point energies and frequencies of fundamentals, overtones, and combinations as well as Fermi-resonant modes display rapid and nearly monotonic convergence with m towards the exact values for the PES. The theory with the same excitation rank as the truncation order of the Taylor-series PES (m = n) seems to strike the best cost-accuracy balance, achieving the accuracy of a few tenths of cm(-1) for transitions involving (m - 3) modes and of a few cm(-1) for those involving (m - 2) modes. The relationships between XVCC and the vibrational coupled-cluster theories of Prasad and coworkers and of Christiansen and coworkers as well as the size-extensive vibrational self-consistent-field and many-body perturbation theories are also elucidated.

  5. Higher-order diagrammatic vibrational coupled-cluster theory

    NASA Astrophysics Data System (ADS)

    Faucheaux, Jacob A.; Hirata, So

    2015-10-01

    Diagrammatically size-consistent and basis-set-free vibrational coupled-cluster (XVCC) theory for both zero-point energies and transition frequencies of a molecule, the latter through the equation-of-motion (EOM) formalism, is defined for an nth-order Taylor-series potential energy surface (PES). Quantum-field-theoretical tools (the rules of normal-ordered second quantization and Feynman-Goldstone diagrams) for deriving their working equations are established. The equations of XVCC and EOM-XVCC including up to the mth-order excitation operators are derived and implemented with the aid of computer algebra in the range of 1 ≤ m ≤ 8. Algorithm optimizations known as strength reduction, intermediate reuse, and factorization are carried out before code generation, reducing the cost scaling of the mth-order XVCC and EOM-XVCC in an nth-order Taylor-series PES (m ≥ n) to the optimal value of O(Nm+⌊n/2⌋), where N is the number of modes. The calculated zero-point energies and frequencies of fundamentals, overtones, and combinations as well as Fermi-resonant modes display rapid and nearly monotonic convergence with m towards the exact values for the PES. The theory with the same excitation rank as the truncation order of the Taylor-series PES (m = n) seems to strike the best cost-accuracy balance, achieving the accuracy of a few tenths of cm-1 for transitions involving (m - 3) modes and of a few cm-1 for those involving (m - 2) modes. The relationships between XVCC and the vibrational coupled-cluster theories of Prasad and coworkers and of Christiansen and coworkers as well as the size-extensive vibrational self-consistent-field and many-body perturbation theories are also elucidated.

  6. Higher-order diagrammatic vibrational coupled-cluster theory.

    PubMed

    Faucheaux, Jacob A; Hirata, So

    2015-10-01

    Diagrammatically size-consistent and basis-set-free vibrational coupled-cluster (XVCC) theory for both zero-point energies and transition frequencies of a molecule, the latter through the equation-of-motion (EOM) formalism, is defined for an nth-order Taylor-series potential energy surface (PES). Quantum-field-theoretical tools (the rules of normal-ordered second quantization and Feynman-Goldstone diagrams) for deriving their working equations are established. The equations of XVCC and EOM-XVCC including up to the mth-order excitation operators are derived and implemented with the aid of computer algebra in the range of 1 ≤ m ≤ 8. Algorithm optimizations known as strength reduction, intermediate reuse, and factorization are carried out before code generation, reducing the cost scaling of the mth-order XVCC and EOM-XVCC in an nth-order Taylor-series PES (m ≥ n) to the optimal value of O(N(m+⌊n/2⌋)), where N is the number of modes. The calculated zero-point energies and frequencies of fundamentals, overtones, and combinations as well as Fermi-resonant modes display rapid and nearly monotonic convergence with m towards the exact values for the PES. The theory with the same excitation rank as the truncation order of the Taylor-series PES (m = n) seems to strike the best cost-accuracy balance, achieving the accuracy of a few tenths of cm(-1) for transitions involving (m - 3) modes and of a few cm(-1) for those involving (m - 2) modes. The relationships between XVCC and the vibrational coupled-cluster theories of Prasad and coworkers and of Christiansen and coworkers as well as the size-extensive vibrational self-consistent-field and many-body perturbation theories are also elucidated. PMID:26450290

  7. Matrix elements in the coupled-cluster approach - With application to low-lying states in Li

    NASA Technical Reports Server (NTRS)

    Martensson-Pendrill, Ann-Marie; Ynnerman, Anders

    1990-01-01

    A procedure is suggested for evaluating matrix elements of an operator between wavefunctions in the coupled-cluster form. The use of the exponential ansatz leads to compact exponential expressions also for matrix elements. Algorithms are developed for summing all effects of one-particle clusters and certain chains of two-particle clusters (containing the well-known random-phase approximation as a subset). The treatment of one-particle perturbations in single valence states is investigated in detail. As examples the oscillator strength for the 2s-2p transition in Li as well as the hyperfine structure for the two states are studied and compared to earlier work.

  8. Equation of motion coupled cluster methods for electron attachment and ionization potential in polyacenes

    NASA Astrophysics Data System (ADS)

    Bhaskaran-Nair, Kiran; Kowalski, Karol; Jarrell, Mark; Moreno, Juana; Shelton, William A.

    2015-11-01

    Polyacenes have attracted considerable attention due to their various applications in organic optoelectronic materials. This study focuses on linear polyacenes and their electron affinity (EA) and ionization potential (IP) properties. We have employed our recent implementation of EA/IP equation of motion coupled cluster singles and doubles (EA/IP-EOMCCSD) methods which are accurate, computationally efficient and are capable of treating large systems employing reasonable basis sets size. The EA/IP results obtained for naphthalene, anthracene, tetracene, pentacene, hexacene and heptacene are in a good agreement with experiment. Comparison between quality of excitation energies obtained from IP-EOMCCSD and EE-EOMCCSD formalisms were also studied.

  9. Optimization of the Coupled Cluster Implementation in NWChem on Petascale Parallel Architectures

    SciTech Connect

    Anisimov, Victor; Bauer, Gregory H.; Chadalavada, Kalyana; Olson, Ryan M.; Glenski, Joseph W.; Kramer, William T.; Apra, Edoardo; Kowalski, Karol

    2014-09-04

    Coupled cluster singles and doubles (CCSD) algorithm has been optimized in NWChem software package. This modification alleviated the communication bottleneck and provided from 2- to 5-fold speedup in the CCSD iteration time depending on the problem size and available memory. Sustained 0.60 petaflop/sec performance on CCSD(T) calculation has been obtained on NCSA Blue Waters. This number included all stages of the calculation from initialization till termination, iterative computation of single and double excitations, and perturbative accounting for triple excitations. In the section of perturbative triples alone, the computation maintained 1.18 petaflop/sec performance level. CCSD computations have been performed on Guanine-Cytosine deoxydinucleotide monophosphate (GC-dDMP) to probe the conformational energy difference in DNA single strand in A- and B-conformations. The computation revealed significant discrepancy between CCSD and classical force fields in prediction of relative energy of A- and B-conformations of GC-dDMP.

  10. Coupled Cluster Evaluation of the Stability of Atmospheric Acid-Base Clusters with up to 10 Molecules.

    PubMed

    Myllys, Nanna; Elm, Jonas; Halonen, Roope; Kurtén, Theo; Vehkamäki, Hanna

    2016-02-01

    We investigate the utilization of the domain local pair natural orbital coupled cluster (DLPNO-CCSD(T)) method for calculating binding energies of atmospherical molecular clusters. Applied to small complexes of atmospherical relevance we find that the DLPNO method significantly reduces the scatter in the binding energy, which is commonly present in DFT calculations. For medium sized clusters consisting of sulfuric acid and bases the DLPNO method yields a systematic underestimation of the binding energy compared to canonical coupled cluster results. The errors in the DFT binding energies appear to be more random, while the systematic nature of the DLPNO results allows the establishment of a scaling factor, to better mimic the canonical coupled cluster calculations. Based on the trends identified for the small and medium sized systems, we further extend the application of the DLPNO method to large acid - base clusters consisting of up to 10 molecules, which have previously been out of reach with accurate coupled cluster methods. Using the Atmospheric Cluster Dynamics Code (ACDC) we compare the sulfuric acid dimer formation based on the new DLPNO binding energies with previously published RI-CC2/aug-cc-pV(T+d)Z results. We also compare the simulated sulfuric acid dimer concentration as a function of the base concentration with measurement data from the CLOUD chamber and flow tube experiments. The DLPNO method, even after scaling, underpredicts the dimer concentration significantly. Reasons for this are discussed.

  11. Coupled Cluster Evaluation of the Stability of Atmospheric Acid-Base Clusters with up to 10 Molecules.

    PubMed

    Myllys, Nanna; Elm, Jonas; Halonen, Roope; Kurtén, Theo; Vehkamäki, Hanna

    2016-02-01

    We investigate the utilization of the domain local pair natural orbital coupled cluster (DLPNO-CCSD(T)) method for calculating binding energies of atmospherical molecular clusters. Applied to small complexes of atmospherical relevance we find that the DLPNO method significantly reduces the scatter in the binding energy, which is commonly present in DFT calculations. For medium sized clusters consisting of sulfuric acid and bases the DLPNO method yields a systematic underestimation of the binding energy compared to canonical coupled cluster results. The errors in the DFT binding energies appear to be more random, while the systematic nature of the DLPNO results allows the establishment of a scaling factor, to better mimic the canonical coupled cluster calculations. Based on the trends identified for the small and medium sized systems, we further extend the application of the DLPNO method to large acid - base clusters consisting of up to 10 molecules, which have previously been out of reach with accurate coupled cluster methods. Using the Atmospheric Cluster Dynamics Code (ACDC) we compare the sulfuric acid dimer formation based on the new DLPNO binding energies with previously published RI-CC2/aug-cc-pV(T+d)Z results. We also compare the simulated sulfuric acid dimer concentration as a function of the base concentration with measurement data from the CLOUD chamber and flow tube experiments. The DLPNO method, even after scaling, underpredicts the dimer concentration significantly. Reasons for this are discussed. PMID:26771121

  12. Efficient optical coupling into a single plasmonic nanostructure using a fiber-coupled microspherical cavity

    NASA Astrophysics Data System (ADS)

    Takashima, Hideaki; Kitajima, Kazutaka; Tanaka, Yoshito; Fujiwara, Hideki; Sasaki, Keiji

    2014-02-01

    Toward complete coupling between propagating light (PL) and a single localized-surface-plasmon (LSP) nanostructure, we propose a tapered-fiber-coupled microspherical cavity system combining an Au-coated probe tip. This system possesses the unique characteristic of precise adjustability for the fiber-cavity coupling rate and the cavity-plasmon coupling rate, which is indispensable for achieving the critical coupling conditions. We successfully demonstrate the 93% PL coupling into the LSP antenna with an effective area of a 58 nm circle, exceeding the diffraction limit.

  13. The externally corrected coupled cluster approach with four- and five-body clusters from the CASSCF wave function

    NASA Astrophysics Data System (ADS)

    Xu, Enhua; Li, Shuhua

    2015-03-01

    An externally corrected CCSDt (coupled cluster with singles, doubles, and active triples) approach employing four- and five-body clusters from the complete active space self-consistent field (CASSCF) wave function (denoted as ecCCSDt-CASSCF) is presented. The quadruple and quintuple excitation amplitudes within the active space are extracted from the CASSCF wave function and then fed into the CCSDt-like equations, which can be solved in an iterative way as the standard CCSDt equations. With a size-extensive CASSCF reference function, the ecCCSDt-CASSCF method is size-extensive. When the CASSCF wave function is readily available, the computational cost of the ecCCSDt-CASSCF method scales as the popular CCSD method (if the number of active orbitals is small compared to the total number of orbitals). The ecCCSDt-CASSCF approach has been applied to investigate the potential energy surface for the simultaneous dissociation of two O-H bonds in H2O, the equilibrium distances and spectroscopic constants of 4 diatomic molecules (F2+, O2+, Be2, and NiC), and the reaction barriers for the automerization reaction of cyclobutadiene and the Cl + O3 → ClO + O2 reaction. In most cases, the ecCCSDt-CASSCF approach can provide better results than the CASPT2 (second order perturbation theory with a CASSCF reference function) and CCSDT methods.

  14. Characterizing a nonclassical carbene with coupled cluster methods: cyclobutylidene.

    PubMed

    Wang, Xiao; Agarwal, Jay; Schaefer Iii, Henry F

    2016-09-21

    Carbenes represent a special class of reactive compounds that possess a lone pair of electrons on a carbon atom. Among the myriad examples of carbenes in the literature, cyclobutylidene stands out as a unique nonclassical compound that includes transannular interaction between opposing C1 and C3 carbon atoms within a four-membered ring. On its lowest potential energy surface (X[combining tilde](1)A'), cyclobutylidene quickly rearranges, following three reaction paths: (i) 1,2-H migration; (ii) 1,2-C migration; and, (iii) 1,3-H migration. Herein, this reactivity is examined with high-level coupled-cluster methods [up to CCSDT(Q)]. At this level of theory, combined with extrapolation techniques to obtain energies at the complete basis set (CBS) limit, the long-standing disparity between theoretical and experimental results is resolved. Specifically, cyclobutylidene is predicted to prefer 1,2-C migration rather than 1,2-H migration. Rate constants for the three reaction paths are obtained from canonical variational transition state theory (CVT) and yield reasonable agreement with existing experimental results. Further characterization of cyclobutylidene is also reported: the singlet-triplet gap (ΔES-T) is found to be -9.3 kcal mol(-1) at the CCSDT(Q)/CBS level of theory, and anharmonic vibrational frequencies are determined with second-order vibrational perturbation theory (VPT2). PMID:27539444

  15. Holograms for laser diode: Single mode optical fiber coupling

    NASA Technical Reports Server (NTRS)

    Fuhr, P. L.

    1982-01-01

    The low coupling efficiency of semiconductor laser emissions into a single mode optical fibers place a severe restriction on their use. Associated with these conventional optical coupling techniques are stringent alignment sensitivities. Using holographic elements, the coupling efficiency may be increased and the alignment sensitivity greatly reduced. Both conventional and computer methods used in the generation of the holographic couplers are described and diagrammed. The reconstruction geometries used are shown to be somewhat restrictive but substantially less rigid than their conventional optical counterparts. Single and double hologram techniques are examined concerning their respective ease of fabrication and relative merits.

  16. Toward enabling large-scale open-shell equation-of-motion coupled cluster calculations: triplet states of β-carotene

    SciTech Connect

    Hu, Hanshi; Bhaskaran-Nair, Kiran; Apra, Edoardo; Govind, Niranjan; Kowalski, Karol

    2014-10-02

    In this paper we discuss the application of novel parallel implementation of the coupled cluster (CC) and equation-of-motion coupled cluster methods (EOMCC) in calculations of excitation energies of triplet states in beta-carotene. Calculated excitation energies are compared with experimental data, where available. We also provide a detailed description of the new parallel algorithms for iterative CC and EOMCC models involving single and doubles excitations.

  17. Single to quadruple quantum dots with tunable tunnel couplings

    SciTech Connect

    Takakura, T.; Noiri, A.; Obata, T.; Yoneda, J.; Yoshida, K.; Otsuka, T.; Tarucha, S.

    2014-03-17

    We prepare a gate-defined quadruple quantum dot to study the gate-tunability of single to quadruple quantum dots with finite inter-dot tunnel couplings. The measured charging energies of various double dots suggest that the dot size is governed by the gate geometry. For the triple and quadruple dots, we study the gate-tunable inter-dot tunnel couplings. For the triple dot, we find that the effective tunnel coupling between side dots significantly depends on the alignment of the center dot potential. These results imply that the present quadruple dot has a gate performance relevant for implementing spin-based four-qubits with controllable exchange couplings.

  18. Description of spin-orbit coupling in excited states with two-component methods based on approximate coupled-cluster theory

    NASA Astrophysics Data System (ADS)

    Krause, Katharina; Klopper, Wim

    2015-03-01

    A generalization of the approximated coupled-cluster singles and doubles method and the algebraic diagrammatic construction scheme up to second order to two-component spinors obtained from a relativistic Hartree-Fock calculation is reported. Computational results for zero-field splittings of atoms and monoatomic cations, triplet lifetimes of two organic molecules, and the spin-forbidden part of the UV/Vis absorption spectrum of tris(ethylenediamine)cobalt(III) are presented.

  19. Description of spin–orbit coupling in excited states with two-component methods based on approximate coupled-cluster theory

    SciTech Connect

    Krause, Katharina; Klopper, Wim

    2015-03-14

    A generalization of the approximated coupled-cluster singles and doubles method and the algebraic diagrammatic construction scheme up to second order to two-component spinors obtained from a relativistic Hartree–Fock calculation is reported. Computational results for zero-field splittings of atoms and monoatomic cations, triplet lifetimes of two organic molecules, and the spin-forbidden part of the UV/Vis absorption spectrum of tris(ethylenediamine)cobalt(III) are presented.

  20. Noniterative Multireference Coupled Cluster Methods on Heterogeneous CPU-GPU Systems

    SciTech Connect

    Bhaskaran-Nair, Kiran; Ma, Wenjing; Krishnamoorthy, Sriram; Villa, Oreste; van Dam, Hubertus JJ; Apra, Edoardo; Kowalski, Karol

    2013-04-09

    A novel parallel algorithm for non-iterative multireference coupled cluster (MRCC) theories, which merges recently introduced reference-level parallelism (RLP) [K. Bhaskaran-Nair, J.Brabec, E. Aprà, H.J.J. van Dam, J. Pittner, K. Kowalski, J. Chem. Phys. 137, 094112 (2012)] with the possibility of accelerating numerical calculations using graphics processing unit (GPU) is presented. We discuss the performance of this algorithm on the example of the MRCCSD(T) method (iterative singles and doubles and perturbative triples), where the corrections due to triples are added to the diagonal elements of the MRCCSD (iterative singles and doubles) effective Hamiltonian matrix. The performance of the combined RLP/GPU algorithm is illustrated on the example of the Brillouin-Wigner (BW) and Mukherjee (Mk) state-specific MRCCSD(T) formulations.

  1. Ultraviolet single-frequency coupled optofluidic ring resonator dye laser.

    PubMed

    Tu, Xin; Wu, Xiang; Li, Ming; Liu, Liying; Xu, Lei

    2012-08-27

    Ultraviolet single-frequency lasing is realized in a coupled optofluidic ring resonator (COFRR) dye laser that consists of a thin-walled capillary microfluidic ring resonator and a cylindrical resonator. The whispering gallery modes (WGMs) in each resonator couple to each other and generate single-frequency laser emission. Single-frequency lasing occurs at 386.75 nm with a pump threshold of 5.9 μJ/mm. The side-mode-suppression ratio (SMSR) is about 20 dB. Moreover, the laser emits mainly in two directions, and each of them has a divergence of only 10.5°.

  2. Search for anomalous Wtb couplings in single top quark production.

    PubMed

    Abazov, V M; Abbott, B; Abolins, M; Acharya, B S; Adams, M; Adams, T; Aguilo, E; Ahsan, M; Alexeev, G D; Alkhazov, G; Alton, A; Alverson, G; Alves, G A; Anastasoaie, M; Ancu, L S; Andeen, T; Andrieu, B; Anzelc, M S; Aoki, M; Arnoud, Y; Arov, M; Arthaud, M; Askew, A; Asman, B; Assis Jesus, A C S; Atramentov, O; Avila, C; Badaud, F; Bagby, L; Baldin, B; Bandurin, D V; Banerjee, P; Banerjee, S; Barberis, E; Barfuss, A-F; Bargassa, P; Baringer, P; Barreto, J; Bartlett, J F; Bassler, U; Bauer, D; Beale, S; Bean, A; Begalli, M; Begel, M; Belanger-Champagne, C; Bellantoni, L; Bellavance, A; Benitez, J A; Beri, S B; Bernardi, G; Bernhard, R; Bertram, I; Besançon, M; Beuselinck, R; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Biscarat, C; Blazey, G; Blekman, F; Blessing, S; Bloch, D; Bloom, K; Boehnlein, A; Boline, D; Bolton, T A; Boos, E E; Borissov, G; Bose, T; Brandt, A; Brock, R; Brooijmans, G; Bross, A; Brown, D; Bu, X B; Buchanan, N J; Buchholz, D; Buehler, M; Buescher, V; Bunichev, V; Burdin, S; Burnett, T H; Buszello, C P; Butler, J M; Calfayan, P; Calvet, S; Cammin, J; Carrera, E; Carvalho, W; Casey, B C K; Castilla-Valdez, H; Chakrabarti, S; Chakraborty, D; Chan, K M; Chandra, A; Cheu, E; Chevallier, F; Cho, D K; Choi, S; Choudhary, B; Christofek, L; Christoudias, T; Cihangir, S; Claes, D; Clutter, J; Cooke, M; Cooper, W E; Corcoran, M; Couderc, F; Cousinou, M-C; Crépé-Renaudin, S; Cuplov, V; Cutts, D; Cwiok, M; da Motta, H; Das, A; Davies, G; De, K; de Jong, S J; De La Cruz-Burelo, E; De Oliveira Martins, C; Degenhardt, J D; Déliot, F; Demarteau, M; Demina, R; Denisov, D; Denisov, S P; Desai, S; Diehl, H T; Diesburg, M; Dominguez, A; Dong, H; Dorland, T; Dubey, A; Dudko, L V; Duflot, L; Dugad, S R; Duggan, D; Duperrin, A; Dyer, J; Dyshkant, A; Eads, M; Edmunds, D; Ellison, J; Elvira, V D; Enari, Y; Eno, S; Ermolov, P; Evans, H; Evdokimov, A; Evdokimov, V N; Ferapontov, A V; Ferbel, T; Fiedler, F; Filthaut, F; Fisher, W; Fisk, H E; Fortner, M; Fox, H; Fu, S; Fuess, S; Gadfort, T; Galea, C F; Garcia, C; Garcia-Bellido, A; Gavrilov, V; Gay, P; Geist, W; Gelé, D; Geng, W; Gerber, C E; Gershtein, Y; Gillberg, D; Ginther, G; Gollub, N; Gómez, B; Goussiou, A; Grannis, P D; Greenlee, H; Greenwood, Z D; Gregores, E M; Grenier, G; Gris, Ph; Grivaz, J-F; Grohsjean, A; Grünendahl, S; Grünewald, M W; Guo, F; Guo, J; Gutierrez, G; Gutierrez, P; Haas, A; Hadley, N J; Haefner, P; Hagopian, S; Haley, J; Hall, I; Hall, R E; Han, L; Harder, K; Harel, A; Hauptman, J M; Hauser, R; Hays, J; Hebbeker, T; Hedin, D; Hegeman, J G; Heinson, A P; Heintz, U; Hensel, C; Herner, K; Hesketh, G; Hildreth, M D; Hirosky, R; Hobbs, J D; Hoeneisen, B; Hoeth, H; Hohlfeld, M; Hossain, S; Houben, P; Hu, Y; Hubacek, Z; Hynek, V; Iashvili, I; Illingworth, R; Ito, A S; Jabeen, S; Jaffré, M; Jain, S; Jakobs, K; Jarvis, C; Jesik, R; Johns, K; Johnson, C; Johnson, M; Jonckheere, A; Jonsson, P; Juste, A; Kajfasz, E; Kalk, J M; Karmanov, D; Kasper, P A; Katsanos, I; Kau, D; Kaushik, V; Kehoe, R; Kermiche, S; Khalatyan, N; Khanov, A; Kharchilava, A; Kharzheev, Y M; Khatidze, D; Kim, T J; Kirby, M H; Kirsch, M; Klima, B; Kohli, J M; Konrath, J-P; Kozelov, A V; Kraus, J; Kuhl, T; Kumar, A; Kupco, A; Kurca, T; Kuzmin, V A; Kvita, J; Lacroix, F; Lam, D; Lammers, S; Landsberg, G; Lebrun, P; Lee, W M; Leflat, A; Lellouch, J; Li, J; Li, L; Li, Q Z; Lietti, S M; Lim, J K; Lima, J G R; Lincoln, D; Linnemann, J; Lipaev, V V; Lipton, R; Liu, Y; Liu, Z; Lobodenko, A; Lokajicek, M; Love, P; Lubatti, H J; Luna, R; Lyon, A L; Maciel, A K A; Mackin, D; Madaras, R J; Mättig, P; Magass, C; Magerkurth, A; Mal, P K; Malbouisson, H B; Malik, S; Malyshev, V L; Mao, H S; Maravin, Y; Martin, B; McCarthy, R; Melnitchouk, A; Mendoza, L; Mercadante, P G; Merkin, M; Merritt, K W; Meyer, A; Meyer, J; Millet, T; Mitrevski, J; Mommsen, R K; Mondal, N K; Moore, R W; Moulik, T; Muanza, G S; Mulhearn, M; Mundal, O; Mundim, L; Nagy, E; Naimuddin, M; Narain, M; Naumann, N A; Neal, H A; Negret, J P; Neustroev, P; Nilsen, H; Nogima, H; Novaes, S F; Nunnemann, T; O'Dell, V; O'Neil, D C; Obrant, G; Ochando, C; Onoprienko, D; Oshima, N; Osman, N; Osta, J; Otec, R; Otero y Garzón, G J; Owen, M; Padley, P; Pangilinan, M; Parashar, N; Park, S-J; Park, S K; Parsons, J; Partridge, R; Parua, N; Patwa, A; Pawloski, G; Penning, B; Perfilov, M; Peters, K; Peters, Y; Pétroff, P; Petteni, M; Piegaia, R; Piper, J; Pleier, M-A; Podesta-Lerma, P L M; Podstavkov, V M; Pogorelov, Y; Pol, M-E; Polozov, P; Pope, B G; Popov, A V; Potter, C; Prado da Silva, W L; Prosper, H B; Protopopescu, S; Qian, J; Quadt, A; Quinn, B; Rakitine, A; Rangel, M S; Ranjan, K; Ratoff, P N; Renkel, P; Reucroft, S; Rich, P; Rieger, J; Rijssenbeek, M; Ripp-Baudot, I; Rizatdinova, F; Robinson, S; Rodrigues, R F; Rominsky, M; Royon, C; Rubinov, P; Ruchti, R; Safronov, G; Sajot, G; Sánchez-Hernández, A; Sanders, M P; Sanghi, B; Savage, G; Sawyer, L; Scanlon, T; Schaile, D; Schamberger, R D; Scheglov, Y; Schellman, H; Schliephake, T; Schlobohm, S; Schwanenberger, C; Schwartzman, A; Schwienhorst, R; Sekaric, J; Severini, H; Shabalina, E; Shamim, M; Shary, V; Shchukin, A A; Shivpuri, R K; Siccardi, V; Simak, V; Sirotenko, V; Skubic, P; Slattery, P; Smirnov, D; Snow, G R; Snow, J; Snyder, S; Söldner-Rembold, S; Sonnenschein, L; Sopczak, A; Sosebee, M; Soustruznik, K; Spurlock, B; Stark, J; Steele, J; Stolin, V; Stoyanova, D A; Strandberg, J; Strandberg, S; Strang, M A; Strauss, E; Strauss, M; Ströhmer, R; Strom, D; Stutte, L; Sumowidagdo, S; Svoisky, P; Sznajder, A; Tamburello, P; Tanasijczuk, A; Taylor, W; Tiller, B; Tissandier, F; Titov, M; Tokmenin, V V; Torchiani, I; Tsybychev, D; Tuchming, B; Tully, C; Tuts, P M; Unalan, R; Uvarov, L; Uvarov, S; Uzunyan, S; Vachon, B; van den Berg, P J; Van Kooten, R; van Leeuwen, W M; Varelas, N; Varnes, E W; Vasilyev, I A; Vaupel, M; Verdier, P; Vertogradov, L S; Verzocchi, M; Vilanova, D; Villeneuve-Seguier, F; Vint, P; Vokac, P; Von Toerne, E; Voutilainen, M; Wagner, R; Wahl, H D; Wang, L; Wang, M H L S; Warchol, J; Watts, G; Wayne, M; Weber, G; Weber, M; Welty-Rieger, L; Wenger, A; Wermes, N; Wetstein, M; White, A; Wicke, D; Wilson, G W; Wimpenny, S J; Wobisch, M; Wood, D R; Wyatt, T R; Xie, Y; Yacoob, S; Yamada, R; Yang, W-C; Yasuda, T; Yatsunenko, Y A; Yin, H; Yip, K; Yoo, H D; Youn, S W; Yu, J; Zeitnitz, C; Zelitch, S; Zhao, T; Zhou, B; Zhu, J; Zielinski, M; Zieminska, D; Zieminski, A; Zivkovic, L; Zutshi, V; Zverev, E G

    2008-11-28

    In 0.9 fb(-1) of pp[over] collisions, the D0 Collaboration presented evidence for single top quark production in events with an isolated lepton, missing transverse momentum, and two to four jets. We examine these data to study the Lorentz structure of the Wtb coupling. The standard model predicts a left-handed vector coupling at the Wtb vertex. The most general lowest dimension, CP-conserving Lagrangian admits right-handed vector and left- or right-handed tensor couplings as well. We find that the data prefer the left-handed vector coupling and set upper limits on the anomalous couplings. These are the first direct constraints on a general Wtb interaction and the first direct limits on left- and right-handed tensor couplings. PMID:19113474

  3. Relativistic coupled cluster study of diatomic compounds of Hg, Cn, and Fl.

    PubMed

    Borschevsky, A; Pershina, V; Eliav, E; Kaldor, U

    2014-08-28

    The structure and energetics of eight diatomic heavy-atom molecules are presented. These include the species MAu, M2, and MHg, with M standing for the Hg, Cn (element 112), and Fl (element 114) atoms. The infinite-order relativistic 2-component Hamiltonian, known to closely reproduce 4-component results at lower computational cost, is used as framework. High-accuracy treatment of correlation is achieved by using the coupled cluster scheme with single, double, and perturbative triple excitations in large converged basis sets. The calculated interatomic separation and bond energy of Hg2, the only compound with known experimental data, are in good agreement with measurements. The binding of Fl to Au is stronger than that of Cn, predicting stronger adsorption on gold surfaces. The bond in the M2 species is strongest for Fl2, being of chemical nature; weaker bonds appear in Cn2 and Hg2, which are bound by van der Waals interactions, with the former bound more strongly due to the smaller van der Waals radius. The same set of calculations was also performed using the relativistic density functional theory approach, in order to test the performance of the latter for these weakly bound systems with respect to the more accurate coupled cluster calculations. It was found that for the MAu species the B3LYP functional provides better agreement with the coupled cluster results than the B88/P86 functional. However, for the M2 and the MHg molecules, B3LYP tends to underestimate the binding energies. PMID:25173008

  4. Exploring the Accuracy Limits of Local Pair Natural Orbital Coupled-Cluster Theory.

    PubMed

    Liakos, Dimitrios G; Sparta, Manuel; Kesharwani, Manoj K; Martin, Jan M L; Neese, Frank

    2015-04-14

    The domain based local pair natural orbital coupled cluster method with single-, double-, and perturbative triple excitations (DLPNO–CCSD(T)) is an efficient quantum chemical method that allows for coupled cluster calculations on molecules with hundreds of atoms. Because coupled-cluster theory is the method of choice if high-accuracy is needed, DLPNO–CCSD(T) is very promising for large-scale chemical application. However, the various approximations that have to be introduced in order to reach near linear scaling also introduce limited deviations from the canonical results. In the present work, we investigate how far the accuracy of the DLPNO–CCSD(T) method can be pushed for chemical applications. We also address the question at which additional computational cost improvements, relative to the previously established default scheme, come. To answer these questions, a series of benchmark sets covering a broad range of quantum chemical applications including reaction energies, hydrogen bonds, and other noncovalent interactions, conformer energies, and a prototype organometallic problem were selected. An accuracy of 1 kcal/mol or better can readily be obtained for all data sets using the default truncation scheme, which corresponds to the stated goal of the original implementation. Tightening of the three thresholds that control DLPNO leads to mean absolute errors and standard deviations from the canonical results of less than 0.25 kcal/mol (<1 kJ/mol). The price one has then to pay is an increased computational time by a factor close to 3. The applicability of the method is shown to be independent of the nature of the reaction. On the basis of the careful analysis of the results, three different sets of truncation thresholds (termed “LoosePNO”, “NormalPNO”, and “TightPNO”) have been chosen for “black box” use of DLPNO–CCSD(T). This will allow users of the method to optimally balance performance and accuracy. PMID:26889511

  5. Communication: Spin densities within a unitary group based spin-adapted open-shell coupled-cluster theory: Analytic evaluation of isotropic hyperfine-coupling constants for the combinatoric open-shell coupled-cluster scheme

    SciTech Connect

    Datta, Dipayan Gauss, Jürgen

    2015-07-07

    We report analytical calculations of isotropic hyperfine-coupling constants in radicals using a spin-adapted open-shell coupled-cluster theory, namely, the unitary group based combinatoric open-shell coupled-cluster (COSCC) approach within the singles and doubles approximation. A scheme for the evaluation of the one-particle spin-density matrix required in these calculations is outlined within the spin-free formulation of the COSCC approach. In this scheme, the one-particle spin-density matrix for an open-shell state with spin S and M{sub S} = + S is expressed in terms of the one- and two-particle spin-free (charge) density matrices obtained from the Lagrangian formulation that is used for calculating the analytic first derivatives of the energy. Benchmark calculations are presented for NO, NCO, CH{sub 2}CN, and two conjugated π-radicals, viz., allyl and 1-pyrrolyl in order to demonstrate the performance of the proposed scheme.

  6. Ion crystal transducer for strong coupling between single ions and single photons.

    PubMed

    Lamata, L; Leibrandt, D R; Chuang, I L; Cirac, J I; Lukin, M D; Vuletić, V; Yelin, S F

    2011-07-15

    A new approach for the realization of a quantum interface between single photons and single ions in an ion crystal is proposed and analyzed. In our approach the coupling between a single photon and a single ion is enhanced via the collective degrees of freedom of the ion crystal. Applications including single-photon generation, a memory for a quantum repeater, and a deterministic photon-photon, photon-phonon, or photon-ion entangler are discussed.

  7. Single-molecule atomic force microscopy reveals clustering of the yeast plasma-membrane sensor Wsc1.

    PubMed

    Heinisch, Jürgen J; Dupres, Vincent; Wilk, Sabrina; Jendretzki, Arne; Dufrêne, Yves F

    2010-06-14

    Signalling is a key feature of living cells which frequently involves the local clustering of specific proteins in the plasma membrane. How such protein clustering is achieved within membrane microdomains ("rafts") is an important, yet largely unsolved problem in cell biology. The plasma membrane of yeast cells represents a good model to address this issue, since it features protein domains that are sufficiently large and stable to be observed by fluorescence microscopy. Here, we demonstrate the ability of single-molecule atomic force microscopy to resolve lateral clustering of the cell integrity sensor Wsc1 in living Saccharomyces cerevisiae cells. We first localize individual wild-type sensors on the cell surface, revealing that they form clusters of approximately 200 nm size. Analyses of three different mutants indicate that the cysteine-rich domain of Wsc1 has a crucial, not yet anticipated function in sensor clustering and signalling. Clustering of Wsc1 is strongly enhanced in deionized water or at elevated temperature, suggesting its relevance in proper stress response. Using in vivo GFP-localization, we also find that non-clustering mutant sensors accumulate in the vacuole, indicating that clustering may prevent endocytosis and sensor turnover. This study represents the first in vivo single-molecule demonstration for clustering of a transmembrane protein in S. cerevisiae. Our findings indicate that in yeast, like in higher eukaryotes, signalling is coupled to the localized enrichment of sensors and receptors within membrane patches.

  8. Ab initio Bogoliubov coupled cluster theory for open-shell nuclei

    NASA Astrophysics Data System (ADS)

    Signoracci, A.; Duguet, T.; Hagen, G.; Jansen, G. R.

    2015-06-01

    Background: Ab initio many-body methods have been developed over the past 10 yr to address closed-shell nuclei up to mass A ≈130 on the basis of realistic two- and three-nucleon interactions. A current frontier relates to the extension of those many-body methods to the description of open-shell nuclei. Several routes to address open-shell nuclei are currently under investigation, including ideas that exploit spontaneous symmetry breaking. Purpose: Singly open-shell nuclei can be efficiently described via the sole breaking of U(1) gauge symmetry associated with particle-number conservation as a way to account for their superfluid character. While this route was recently followed within the framework of self-consistent Green's function theory, the goal of the present work is to formulate a similar extension within the framework of coupled cluster theory. Methods: We formulate and apply Bogoliubov coupled cluster (BCC) theory, which consists of representing the exact ground-state wave function of the system as the exponential of a quasiparticle excitation cluster operator acting on a Bogoliubov reference state. Equations for the ground-state energy and the cluster amplitudes are derived at the singles and doubles level (BCCSD) both algebraically and diagrammatically. The formalism includes three-nucleon forces at the normal-ordered two-body level. The first BCC code is implemented in m scheme, which will permit the treatment of doubly open-shell nuclei via the further breaking of SU(2) symmetry associated with angular momentum conservation. Results: Proof-of-principle calculations in an Nmax=6 spherical harmonic oscillator basis for O,1816 and 18Ne in the BCCD approximation are in good agreement with standard coupled cluster results with the same chiral two-nucleon interaction, while 20O and 20Mg display underbinding relative to experiment. The breaking of U(1) symmetry, monitored by computing the variance associated with the particle-number operator, is relatively

  9. Ab initio Bogoliubov coupled cluster theory for open-shell nuclei

    SciTech Connect

    Signoracci, Angelo J.; Duguet, Thomas; Hagen, Gaute; Jansen, G. R.

    2015-06-29

    Background: Ab initio many-body methods have been developed over the past 10 yr to address closed-shell nuclei up to mass A≈130 on the basis of realistic two- and three-nucleon interactions. A current frontier relates to the extension of those many-body methods to the description of open-shell nuclei. Several routes to address open-shell nuclei are currently under investigation, including ideas that exploit spontaneous symmetry breaking. Purpose: Singly open-shell nuclei can be efficiently described via the sole breaking of U(1) gauge symmetry associated with particle-number conservation as a way to account for their superfluid character. While this route was recently followed within the framework of self-consistent Green's function theory, the goal of the present work is to formulate a similar extension within the framework of coupled cluster theory. Methods: We formulate and apply Bogoliubov coupled cluster (BCC) theory, which consists of representing the exact ground-state wave function of the system as the exponential of a quasiparticle excitation cluster operator acting on a Bogoliubov reference state. Equations for the ground-state energy and the cluster amplitudes are derived at the singles and doubles level (BCCSD) both algebraically and diagrammatically. The formalism includes three-nucleon forces at the normal-ordered two-body level. The first BCC code is implemented in m scheme, which will permit the treatment of doubly open-shell nuclei via the further breaking of SU(2) symmetry associated with angular momentum conservation. Results: Proof-of-principle calculations in an Nmax=6 spherical harmonic oscillator basis for 16,18O and 18Ne in the BCCD approximation are in good agreement with standard coupled cluster results with the same chiral two-nucleon interaction, while 20O and 20Mg display underbinding relative to experiment. The breaking of U(1) symmetry, monitored by computing the variance

  10. Ab initio Bogoliubov coupled cluster theory for open-shell nuclei

    DOE PAGES

    Signoracci, Angelo J.; Duguet, Thomas; Hagen, Gaute; Jansen, G. R.

    2015-06-29

    Background: Ab initio many-body methods have been developed over the past 10 yr to address closed-shell nuclei up to mass A≈130 on the basis of realistic two- and three-nucleon interactions. A current frontier relates to the extension of those many-body methods to the description of open-shell nuclei. Several routes to address open-shell nuclei are currently under investigation, including ideas that exploit spontaneous symmetry breaking. Purpose: Singly open-shell nuclei can be efficiently described via the sole breaking of U(1) gauge symmetry associated with particle-number conservation as a way to account for their superfluid character. While this route was recently followed withinmore » the framework of self-consistent Green's function theory, the goal of the present work is to formulate a similar extension within the framework of coupled cluster theory. Methods: We formulate and apply Bogoliubov coupled cluster (BCC) theory, which consists of representing the exact ground-state wave function of the system as the exponential of a quasiparticle excitation cluster operator acting on a Bogoliubov reference state. Equations for the ground-state energy and the cluster amplitudes are derived at the singles and doubles level (BCCSD) both algebraically and diagrammatically. The formalism includes three-nucleon forces at the normal-ordered two-body level. The first BCC code is implemented in m scheme, which will permit the treatment of doubly open-shell nuclei via the further breaking of SU(2) symmetry associated with angular momentum conservation. Results: Proof-of-principle calculations in an Nmax=6 spherical harmonic oscillator basis for 16,18O and 18Ne in the BCCD approximation are in good agreement with standard coupled cluster results with the same chiral two-nucleon interaction, while 20O and 20Mg display underbinding relative to experiment. The breaking of U(1) symmetry, monitored by computing the variance associated with the particle-number operator, is

  11. Production and properties of singly and multiply charged Kr clusters

    SciTech Connect

    Lezius, M.; Scheier, P.; Stamatovic, A.; Mark, T. D.

    1989-09-01

    Kr clusters produced in a supersonic nozzle expansion have been studied by electron impact ionization mass spectrometry. Mass resolved spectra (with /ital n/ up to 180) show two homologous series consisting of Kr/sup +//sub /ital n// and Kr/sup 2+//sub /ital n// ions. The distribution of Kr/sup +//sub /ital n// ions shows distinct magic number effects, the observed abundance anomalies being very similar to the ones observed in Ar and Xe. This confirms the superior stability of closed-shell and -subshell icosahedral structures. Moreover, we have found evidence for the occurrence of Kr/sup 3+//sub /ital n// and Kr/sup 4+//sub /ital n// ions. It was possible to determine appearance sizes of these multiply charged cluster ions (yielding /ital n//sub 2/=69, /ital n//sub 3/=156, and /ital n//sub 4/=264), and to study the electron energy dependence of singly and doubly charged cluster ions (yielding a linear threshold law). These results are discussed in view of various theoretical considerations and previous results where available.

  12. Analytical Energy Gradients for Excited-State Coupled-Cluster Methods

    NASA Astrophysics Data System (ADS)

    Wladyslawski, Mark; Nooijen, Marcel

    The equation-of-motion coupled-cluster (EOM-CC) and similarity transformed equation-of-motion coupled-cluster (STEOM-CC) methods have been firmly established as accurate and routinely applicable extensions of single-reference coupled-cluster theory to describe electronically excited states. An overview of these methods is provided, with emphasis on the many-body similarity transform concept that is the key to a rationalization of their accuracy. The main topic of the paper is the derivation of analytical energy gradients for such non-variational electronic structure approaches, with an ultimate focus on obtaining their detailed algebraic working equations. A general theoretical framework using Lagrange's method of undetermined multipliers is presented, and the method is applied to formulate the EOM-CC and STEOM-CC gradients in abstract operator terms, following the previous work in [P.G. Szalay, Int. J. Quantum Chem. 55 (1995) 151] and [S.R. Gwaltney, R.J. Bartlett, M. Nooijen, J. Chem. Phys. 111 (1999) 58]. Moreover, the systematics of the Lagrange multiplier approach is suitable for automation by computer, enabling the derivation of the detailed derivative equations through a standardized and direct procedure. To this end, we have developed the SMART (Symbolic Manipulation and Regrouping of Tensors) package of automated symbolic algebra routines, written in the Mathematica programming language. The SMART toolkit provides the means to expand, differentiate, and simplify equations by manipulation of the detailed algebraic tensor expressions directly. The Lagrangian multiplier formulation establishes a uniform strategy to perform the automated derivation in a standardized manner: A Lagrange multiplier functional is constructed from the explicit algebraic equations that define the energy in the electronic method; the energy functional is then made fully variational with respect to all of its parameters, and the symbolic differentiations directly yield the explicit

  13. Electrochemical Single-Molecule Transistors with Optimized Gate Coupling.

    PubMed

    Osorio, Henrry M; Catarelli, Samantha; Cea, Pilar; Gluyas, Josef B G; Hartl, František; Higgins, Simon J; Leary, Edmund; Low, Paul J; Martín, Santiago; Nichols, Richard J; Tory, Joanne; Ulstrup, Jens; Vezzoli, Andrea; Milan, David C; Zeng, Qiang

    2015-11-18

    Electrochemical gating at the single molecule level of viologen molecular bridges in ionic liquids is examined. Contrary to previous data recorded in aqueous electrolytes, a clear and sharp peak in the single molecule conductance versus electrochemical potential data is obtained in ionic liquids. These data are rationalized in terms of a two-step electrochemical model for charge transport across the redox bridge. In this model the gate coupling in the ionic liquid is found to be fully effective with a modeled gate coupling parameter, ξ, of unity. This compares to a much lower gate coupling parameter of 0.2 for the equivalent aqueous gating system. This study shows that ionic liquids are far more effective media for gating the conductance of single molecules than either solid-state three-terminal platforms created using nanolithography, or aqueous media.

  14. Electrochemical Single-Molecule Transistors with Optimized Gate Coupling.

    PubMed

    Osorio, Henrry M; Catarelli, Samantha; Cea, Pilar; Gluyas, Josef B G; Hartl, František; Higgins, Simon J; Leary, Edmund; Low, Paul J; Martín, Santiago; Nichols, Richard J; Tory, Joanne; Ulstrup, Jens; Vezzoli, Andrea; Milan, David C; Zeng, Qiang

    2015-11-18

    Electrochemical gating at the single molecule level of viologen molecular bridges in ionic liquids is examined. Contrary to previous data recorded in aqueous electrolytes, a clear and sharp peak in the single molecule conductance versus electrochemical potential data is obtained in ionic liquids. These data are rationalized in terms of a two-step electrochemical model for charge transport across the redox bridge. In this model the gate coupling in the ionic liquid is found to be fully effective with a modeled gate coupling parameter, ξ, of unity. This compares to a much lower gate coupling parameter of 0.2 for the equivalent aqueous gating system. This study shows that ionic liquids are far more effective media for gating the conductance of single molecules than either solid-state three-terminal platforms created using nanolithography, or aqueous media. PMID:26488257

  15. Equation-of-motion coupled-cluster method for doubly ionized states with spin-orbit coupling

    SciTech Connect

    Wang, Zhifan; Hu, Shu; Guo, Jingwei; Wang, Fan

    2015-04-14

    In this work, we report implementation of the equation-of-motion coupled-cluster method for doubly ionized states (EOM-DIP-CC) with spin-orbit coupling (SOC) using a closed-shell reference. Double ionization potentials (DIPs) are calculated in the space spanned by 2h and 3h1p determinants with the EOM-DIP-CC approach at the CC singles and doubles level (CCSD). Time-reversal symmetry together with spatial symmetry is exploited to reduce computational effort. To circumvent the problem of unstable dianion references when diffuse basis functions are included, nuclear charges are scaled. Effect of this stabilization potential on DIPs is estimated based on results from calculations using a small basis set without diffuse basis functions. DIPs and excitation energies of some low-lying states for a series of open-shell atoms and molecules containing heavy elements with two unpaired electrons have been calculated with the EOM-DIP-CCSD approach. Results show that this approach is able to afford a reliable description on SOC splitting. Furthermore, the EOM-DIP-CCSD approach is shown to provide reasonable excitation energies for systems with a dianion reference when diffuse basis functions are not employed.

  16. Communication: Multireference equation of motion coupled cluster: A transform and diagonalize approach to electronic structure

    SciTech Connect

    Nooijen, Marcel; Huntington, Lee M.; Demel, Ondřej; Datta, Dipayan; Kong, Liguo; Shamasundar, K. R.; Lotrich, V.; Neese, Frank

    2014-02-28

    The novel multireference equation-of-motion coupled-cluster (MREOM-CC) approaches provide versatile and accurate access to a large number of electronic states. The methods proceed by a sequence of many-body similarity transformations and a subsequent diagonalization of the transformed Hamiltonian over a compact subspace. The transformed Hamiltonian is a connected entity and preserves spin- and spatial symmetry properties of the original Hamiltonian, but is no longer Hermitean. The final diagonalization spaces are defined in terms of a complete active space (CAS) and limited excitations (1h, 1p, 2h, …) out of the CAS. The methods are invariant to rotations of orbitals within their respective subspaces (inactive, active, external). Applications to first row transition metal atoms (Cr, Mn, and Fe) are presented yielding results for up to 524 electronic states (for Cr) with an rms error compared to experiment of about 0.05 eV. The accuracy of the MREOM family of methods is closely related to its favorable extensivity properties as illustrated by calculations on the O{sub 2}–O{sub 2} dimer. The computational costs of the transformation steps in MREOM are comparable to those of closed-shell Coupled Cluster Singles and Doubles (CCSD) approach.

  17. A sequential transformation approach to the internally contracted multireference coupled cluster method

    NASA Astrophysics Data System (ADS)

    Evangelista, Francesco A.; Hanauer, Matthias; Köhn, Andreas; Gauss, Jürgen

    2012-05-01

    The internally contracted multireference coupled cluster (ic-MRCC) approach is formulated using a new wave function ansatz based on a sequential transformation of the reference function (sqic-MRCC). This alternative wave function simplifies the formulation of computationally viable methods while preserving the accuracy of the ic-MRCC approach. The structure of the sqic-MRCC wave function allows folding the effect of the single excitations into a similarity-transformed Hamiltonian whose particle rank is equal to the one of the Hamiltonian. Consequently, we formulate an approximation to the sqic-MRCC method with singles and doubles (included respectively up to fourfold and twofold commutators, sqic-MRCCSD[2]) that contains all terms present in the corresponding single-reference coupled cluster scheme. Computations of the potential energy curves for the dissociation of BeH2 show that the untruncated sqic-MRCCSD scheme yields results that are almost indistinguishable from the ordinary ic-MRCCSD method. The energy obtained from the computationally less expensive sqic-MRCCSD[2] approximation is found to deviate from the full ic-MRCCSD method by less than 0.2 mEh for BeH2, while, in the case of water, the harmonic vibrational frequencies of ozone, the singlet-triplet splitting of p-benzyne, and the dissociation curve of N2, sqic-MRCCSD[2] faithfully reproduces the results obtained via the ic-MRCCSD scheme truncated to two commutators. A formal proof is given of the equivalence of the ic-MRCC and sqic-MRCC methods with the internally contracted and full configuration interaction approaches.

  18. A state-specific partially internally contracted multireference coupled cluster approach

    NASA Astrophysics Data System (ADS)

    Datta, Dipayan; Kong, Liguo; Nooijen, Marcel

    2011-06-01

    A state-specific partially internally contracted multireference coupled cluster approach is presented for general complete active spaces with arbitrary number of active electrons. The dominant dynamical correlation is included via an exponential parametrization of internally contracted cluster operators (hat{T}) which excite electrons from a multideterminantal reference function. The remaining dynamical correlation and relaxation effects are included via a diagonalization of the transformed Hamiltonian {{hat{overline{H}}=e^{-hat{T}}hat{H}e^{hat{T}}}} in the multireference configuration interaction singles space in an uncontracted fashion. A new set of residual equations for determining the internally contracted cluster amplitudes is proposed. The second quantized matrix elements of {{hat{overline{H}}}}, expressed using the extended normal ordering of Kutzelnigg and Mukherjee, are used as the residual equations without projection onto the excited configurations. These residual equations, referred to as the many-body residuals, do not have any near-singularity and thus, should allow one to solve all the amplitudes without discarding any. There are some relatively minor remaining convergence issues that may arise from an attempt to solve all the amplitudes and an initial analysis is provided in this paper. Applications to the bond-stretching potential energy surfaces for N2, CO, and the low-lying electronic states of C2 indicate clear improvements of the results using the many-body residuals over the conventional projected residual equations.

  19. Clustering in globally coupled oscillators near a Hopf bifurcation: Theory and experiments

    NASA Astrophysics Data System (ADS)

    Kori, Hiroshi; Kuramoto, Yoshiki; Jain, Swati; Kiss, István Z.; Hudson, John L.

    2014-06-01

    A theoretical analysis is presented to show the general occurrence of phase clusters in weakly, globally coupled oscillators close to a Hopf bifurcation. Through a reductive perturbation method, we derive the amplitude equation with a higher-order correction term valid near a Hopf bifurcation point. This amplitude equation allows us to calculate analytically the phase coupling function from given limit-cycle oscillator models. Moreover, using the phase coupling function, the stability of phase clusters can be analyzed. We demonstrate our theory with the Brusselator model. Experiments are carried out to confirm the presence of phase clusters close to Hopf bifurcations with electrochemical oscillators.

  20. Clustering in globally coupled oscillators near a Hopf bifurcation: theory and experiments.

    PubMed

    Kori, Hiroshi; Kuramoto, Yoshiki; Jain, Swati; Kiss, István Z; Hudson, John L

    2014-06-01

    A theoretical analysis is presented to show the general occurrence of phase clusters in weakly, globally coupled oscillators close to a Hopf bifurcation. Through a reductive perturbation method, we derive the amplitude equation with a higher-order correction term valid near a Hopf bifurcation point. This amplitude equation allows us to calculate analytically the phase coupling function from given limit-cycle oscillator models. Moreover, using the phase coupling function, the stability of phase clusters can be analyzed. We demonstrate our theory with the Brusselator model. Experiments are carried out to confirm the presence of phase clusters close to Hopf bifurcations with electrochemical oscillators. PMID:25019850

  1. Clustering in globally coupled oscillators near a Hopf bifurcation: theory and experiments.

    PubMed

    Kori, Hiroshi; Kuramoto, Yoshiki; Jain, Swati; Kiss, István Z; Hudson, John L

    2014-06-01

    A theoretical analysis is presented to show the general occurrence of phase clusters in weakly, globally coupled oscillators close to a Hopf bifurcation. Through a reductive perturbation method, we derive the amplitude equation with a higher-order correction term valid near a Hopf bifurcation point. This amplitude equation allows us to calculate analytically the phase coupling function from given limit-cycle oscillator models. Moreover, using the phase coupling function, the stability of phase clusters can be analyzed. We demonstrate our theory with the Brusselator model. Experiments are carried out to confirm the presence of phase clusters close to Hopf bifurcations with electrochemical oscillators.

  2. Mode coupling and resonance instabilities in quasi-two-dimensional dust clusters in complex plasmas

    NASA Astrophysics Data System (ADS)

    Qiao, Ke; Kong, Jie; Carmona-Reyes, Jorge; Matthews, Lorin S.; Hyde, Truell W.

    2014-09-01

    Small quasi-two-dimensional dust clusters consisting of three to eleven particles are formed in an argon plasma under varying rf power. Their normal modes are investigated through their mode spectra obtained from tracking the particles' thermal motion. Detailed coupling patterns between their horizontal and vertical modes are detected for particle numbers up to 7 and discrete instabilities are found for dust clusters with particle number ⩾9, as predicted in previous theory on ion-flow induced mode coupling in small clusters. The instabilities are proven to be induced by resonance between coupled horizontal and vertical normal modes.

  3. Phase and amplitude dynamics in large systems of coupled oscillators: growth heterogeneity, nonlinear frequency shifts, and cluster states.

    PubMed

    Lee, Wai Shing; Ott, Edward; Antonsen, Thomas M

    2013-09-01

    This paper addresses the behavior of large systems of heterogeneous, globally coupled oscillators each of which is described by the generic Landau-Stuart equation, which incorporates both phase and amplitude dynamics of individual oscillators. One goal of our paper is to investigate the effect of a spread in the amplitude growth parameter of the oscillators and of the effect of a homogeneous nonlinear frequency shift. Both of these effects are of potential relevance to recently reported experiments. Our second goal is to gain further understanding of the macroscopic system dynamics at large coupling strength, and its dependence on the nonlinear frequency shift parameter. It is proven that at large coupling strength, if the nonlinear frequency shift parameter is below a certain value, then there is a unique attractor for which the oscillators all clump at a single amplitude and uniformly rotating phase (we call this a single-cluster "locked state"). Using a combination of analytical and numerical methods, we show that at higher values of the nonlinear frequency shift parameter, the single-cluster locked state attractor continues to exist, but other types of coexisting attractors emerge. These include two-cluster locked states, periodic orbits, chaotic orbits, and quasiperiodic orbits.

  4. Single molecule detection using charge-coupled device array technology

    SciTech Connect

    Denton, M.B.

    1992-07-29

    A technique for the detection of single fluorescent chromophores in a flowing stream is under development. This capability is an integral facet of a rapid DNA sequencing scheme currently being developed by Los Alamos National Laboratory. In previous investigations, the detection sensitivity was limited by the background Raman emission from the water solvent. A detection scheme based on a novel mode of operating a Charge-Coupled Device (CCD) is being developed which should greatly enhance the discrimination between fluorescence from a single molecule and the background Raman scattering from the solvent. Register shifts between rows in the CCD are synchronized with the sample flow velocity so that fluorescence from a single molecule is collected in a single moving charge packet occupying an area approaching that of a single pixel while the background is spread evenly among a large number of pixels. Feasibility calculations indicate that single molecule detection should be achieved with an excellent signal-to-noise ratio.

  5. Noniterative Multireference Coupled Cluster Methods on Heterogeneous CPU-GPU Systems.

    PubMed

    Bhaskaran-Nair, Kiran; Ma, Wenjing; Krishnamoorthy, Sriram; Villa, Oreste; van Dam, Hubertus J J; Aprà, Edoardo; Kowalski, Karol

    2013-04-01

    A novel parallel algorithm for noniterative multireference coupled cluster (MRCC) theories, which merges recently introduced reference-level parallelism (RLP) [Bhaskaran-Nair, K.; Brabec, J.; Aprà, E.; van Dam, H. J. J.; Pittner, J.; Kowalski, K. J. Chem. Phys.2012, 137, 094112] with the possibility of accelerating numerical calculations using graphics processing units (GPUs) is presented. We discuss the performance of this approach applied to the MRCCSD(T) method (iterative singles and doubles and perturbative triples), where the corrections due to triples are added to the diagonal elements of the MRCCSD effective Hamiltonian matrix. The performance of the combined RLP/GPU algorithm is illustrated on the example of the Brillouin-Wigner (BW) and Mukherjee (Mk) state-specific MRCCSD(T) formulations.

  6. Equation of motion coupled cluster methods for electron attachment and ionization potential in polyacenes

    SciTech Connect

    Bhaskaran-Nair, Kiran; Kowalski, Karol; Jarrell, Mark; Moreno, Juana; Shelton, William A.

    2015-11-05

    Polyacenes have attracted considerable attention due to their use in organic based optoelectronic materials. Polyacenes are polycyclic aromatic hydrocarbons composed of fused benzene rings. Key to understanding and design of new functional materials is an understanding of their excited state properties starting with their electron affinity (EA) and ionization potential (IP). We have developed a highly accurate and com- putationally e*fficient EA/IP equation of motion coupled cluster singles and doubles (EA/IP-EOMCCSD) method that is capable of treating large systems and large basis set. In this study we employ the EA/IP-EOMCCSD method to calculate the electron affinity and ionization potential of naphthalene, anthracene, tetracene, pentacene, hex- acene and heptacene. We have compared our results with other previous theoretical studies and experimental data. Our EA/IP results are in very good agreement with experiment and when compared with the other theoretical investigations our results represent the most accurate calculations as compared to experiment.

  7. Connected triple excitations in coupled-cluster calculations of hyperpolarizabilities: Neon

    NASA Technical Reports Server (NTRS)

    Rice, Julia E.; Scuseria, Gustavo E.; Lee, Timothy J.; Taylor, Peter R.; Almloef, Jan

    1992-01-01

    We have calculated the second hyperpolarizability gamma of neon using the CCSD(T) method. The accuracy of the CCSD(T) approach has been established by explicit comparison with the single, double and triple excitation coupled-cluster (CCSDT) method using extended basis sets that are known to be adequate for the description of gamma. Our best estimate for gamma(sub 0) of 110 +/- 3 a.u. is in good agreement with other recent theoretical values and with Shelton's recent experimental estimate of 108 +/- 2 a.u. Comparison of the MP2 and CCSD(T) hyperpolarizability values indicates that MP2 gives a very good description of the electron correlation contribution to gamma(sub 0). We have combined MP2 frequency-dependent corrections with the CCSD(T) gamma(sub 0) to yield values of gamma(-2 omega;omega,omega,0) and gamma(exp K)(-omega;omega,0,0).

  8. Coulomb Blockade Oscillations in Coupled Single-Electron Transistors

    NASA Astrophysics Data System (ADS)

    Shin, Mincheol; Lee, Seongjae; Park, Kyoung Wan

    2000-03-01

    The system we consider in this work is parallel coupled single-electron transistors (SETs) at strong coupling. For weak coupling, the transport characteristics of our coupled SETs are the same as those of the single SET, with the stability diagram exhibiting usual Coulomb diamonds. When the coupling becomes sufficiently strong, however, electron-hole binding and transport become important. In contrast to the previous works carried out in the cotunneling-dominating Coulomb blockade regime [1,2], we study e-h binding in the sequential-tunneling-dominating conducting regime. The major findings in this work are that the Coulomb diamonds in the conducting regime break up into fine internal structures at strong coupling, and that, although the cotunneling processes are much less frequent, they nonetheless play a crucial role. [1] D. V. Averin, A. N. Korotkov, and Yu. V. Nazarov, Phys. Rev. Lett. 66, 2818 (1991). [2] M. Matters, J. J. Versluys, and J. E. Mooij, Phys. Rev. Lett. 78, 2469 (1997).

  9. Waveguide-Coupled Superconducting Nanowire Single-Photon Detectors

    NASA Technical Reports Server (NTRS)

    Beyer, Andrew D.; Briggs, Ryan M.; Marsili, Francesco; Cohen, Justin D.; Meenehan, Sean M.; Painter, Oskar J.; Shaw, Matthew D.

    2015-01-01

    We have demonstrated WSi-based superconducting nanowire single-photon detectors coupled to SiNx waveguides with integrated ring resonators. This photonics platform enables the implementation of robust and efficient photon-counting detectors with fine spectral resolution near 1550 nm.

  10. Ruprecht 106: The first single population globular cluster?

    SciTech Connect

    Villanova, S.; Geisler, D.; Muñoz, C.; Carraro, G.; Moni Bidin, C.

    2013-12-01

    All old Galactic globular clusters (GCs) studied in detail to date host at least two generations of stars, where the second is formed from gas polluted by processed material produced by massive stars of the first. This process can happen if the initial mass of the cluster exceeds a threshold above which ejecta are retained and a second generation is formed. A determination of this mass threshold is mandatory in order to understand how GCs form. We analyzed nine red giant branch stars belonging to the cluster Ruprecht 106. Targets were observed with the UVES@VLT2 spectrograph. Spectra cover a wide range and allowed us to measure abundances for light (O, Na, Mg, Al), α (Si, Ca, Ti), iron-peak (Sc, V, Cr, Mn, Fe, Co, Ni, Cu, Zn), and neutron-capture (Y, Zr, Ba, La, Ce, Pr, Nd, Sm, Eu, Dy, Pb) elements. Based on these abundances, we show that Ruprecht 106 is the first convincing example of a single-population GC (i.e., a true simple stellar population), although the sample is relatively small. This result is supported also by an independent photometric test and by the horizontal branch morphology and the dynamical state. It is old (∼12 Gyr) and, at odds with other GCs, has no α-enhancement. The material it formed from was contaminated by both s- and r-process elements. The abundance pattern points toward an extragalactic origin. Its present-day mass (M = 10{sup 4.83} M {sub ☉}) can be assumed as a strong lower limit for the initial mass threshold below which no second generation is formed. Clearly, its initial mass must have been significantly greater, but we have no current constraints on the amount of mass loss during its evolution.

  11. Single-qubit lasing in the strong-coupling regime

    SciTech Connect

    Andre, Stephan; Schoen, Gerd; Jin, Pei-Qing; Cole, Jared H.; Brosco, Valentina; Romito, Alessandro; Shnirman, Alexander

    2010-11-15

    Motivated by recent ''circuit QED'' experiments we study the lasing transition and spectral properties of single-qubit lasers. In the strong coupling, low-temperature regime, quantum fluctuations dominate over thermal noise and strongly influence the linewidth of the laser. When the qubit and the resonator are detuned, amplitude and phase fluctuations of the radiation field are coupled and the phase diffusion model, commonly used to describe conventional lasers, fails. We predict pronounced effects near the lasing transition, with an enhanced linewidth and nonexponential decay of the correlation functions. We cover a wide range of parameters by using two complementary approaches, one based on the Liouville equation in a Fock-state basis, covering arbitrarily strong coupling but limited to low photon numbers, the other based on the coherent-state representation, covering large photon numbers but restricted to weak or intermediate coupling.

  12. Noise-induced synchronization, desynchronization, and clustering in globally coupled nonidentical oscillators.

    PubMed

    Lai, Yi Ming; Porter, Mason A

    2013-07-01

    We study ensembles of globally coupled, nonidentical phase oscillators subject to correlated noise, and we identify several important factors that cause noise and coupling to synchronize or desynchronize a system. By introducing noise in various ways, we find an estimate for the onset of synchrony of a system in terms of the coupling strength, noise strength, and width of the frequency distribution of its natural oscillations. We also demonstrate that noise alone can be sufficient to synchronize nonidentical oscillators. However, this synchrony depends on the first Fourier mode of a phase-sensitivity function, through which we introduce common noise into the system. We show that higher Fourier modes can cause desynchronization due to clustering effects, and that this can reinforce clustering caused by different forms of coupling. Finally, we discuss the effects of noise on an ensemble in which antiferromagnetic coupling causes oscillators to form two clusters in the absence of noise.

  13. Dynamic mechanisms of generation of oscillatory cluster patterns in a globally coupled chemical system

    NASA Astrophysics Data System (ADS)

    Rotstein, Horacio G.; Wu, Hui

    2012-09-01

    We use simulations and dynamical systems tools to investigate the mechanisms of generation of phase-locked and localized oscillatory cluster patterns in a globally coupled Oregonator model where the activator receives global feedback from the inhibitor, mimicking experimental results observed in the photosensitive Belousov-Zhabotinsky reaction. A homogeneous two-cluster system (two clusters with equal cluster size) displays antiphase patterns. Heterogenous two-cluster systems (two clusters with different sizes) display both phase-locked and localized patterns depending on the parameter values. In a localized pattern the oscillation amplitude of the largest cluster is roughly an order of magnitude smaller than the oscillation amplitude of the smaller cluster, reflecting the effect of self-inhibition exerted by the global feedback term. The transition from phase-locked to localized cluster patterns occurs as the intensity of global feedback increases. Three qualitatively different basic mechanisms, described previously for a globally coupled FitzHugh-Nagumo model, are involved in the generation of the observed patterns. The swing-and-release mechanism is related to the canard phenomenon (canard explosion of limit cycles) in relaxation oscillators. The hold-and-release and hold-and-escape mechanisms are related to the release and escape mechanisms in synaptically connected neural models. The methods we use can be extended to the investigation of oscillatory chemical reactions with other types of non-local coupling.

  14. Dynamic mechanisms of generation of oscillatory cluster patterns in a globally coupled chemical system.

    PubMed

    Rotstein, Horacio G; Wu, Hui

    2012-09-14

    We use simulations and dynamical systems tools to investigate the mechanisms of generation of phase-locked and localized oscillatory cluster patterns in a globally coupled Oregonator model where the activator receives global feedback from the inhibitor, mimicking experimental results observed in the photosensitive Belousov-Zhabotinsky reaction. A homogeneous two-cluster system (two clusters with equal cluster size) displays antiphase patterns. Heterogenous two-cluster systems (two clusters with different sizes) display both phase-locked and localized patterns depending on the parameter values. In a localized pattern the oscillation amplitude of the largest cluster is roughly an order of magnitude smaller than the oscillation amplitude of the smaller cluster, reflecting the effect of self-inhibition exerted by the global feedback term. The transition from phase-locked to localized cluster patterns occurs as the intensity of global feedback increases. Three qualitatively different basic mechanisms, described previously for a globally coupled FitzHugh-Nagumo model, are involved in the generation of the observed patterns. The swing-and-release mechanism is related to the canard phenomenon (canard explosion of limit cycles) in relaxation oscillators. The hold-and-release and hold-and-escape mechanisms are related to the release and escape mechanisms in synaptically connected neural models. The methods we use can be extended to the investigation of oscillatory chemical reactions with other types of non-local coupling. PMID:22979891

  15. Similarity transformed coupled cluster response (ST-CCR) theory--a time-dependent similarity transformed equation-of-motion coupled cluster (STEOM-CC) approach.

    PubMed

    Landau, Arie

    2013-07-01

    This paper presents a new method for calculating spectroscopic properties in the framework of response theory utilizing a sequence of similarity transformations (STs). The STs are preformed using the coupled cluster (CC) and Fock-space coupled cluster operators. The linear and quadratic response functions of the new similarity transformed CC response (ST-CCR) method are derived. The poles of the linear response yield excitation-energy (EE) expressions identical to the ones in the similarity transformed equation-of-motion coupled cluster (STEOM-CC) approach. ST-CCR and STEOM-CC complement each other, in analogy to the complementarity of CC response (CCR) and equation-of-motion coupled cluster (EOM-CC). ST-CCR/STEOM-CC and CCR/EOM-CC yield size-extensive and size-intensive EEs, respectively. Other electronic-properties, e.g., transition dipole strengths, are also size-extensive within ST-CCR, in contrast to STEOM-CC. Moreover, analysis suggests that in comparison with CCR, the ST-CCR expressions may be confined to a smaller subspace, however, the precise scope of the truncation can only be determined numerically. In addition, reformulation of the time-independent STEOM-CC using the same parameterization as in ST-CCR, as well as an efficient truncation scheme, is presented. The shown convergence of the time-dependent and time-independent expressions displays the completeness of the presented formalism.

  16. Clustering and phase synchronization in populations of coupled phase oscillators

    NASA Astrophysics Data System (ADS)

    Cascallares, Guadalupe; Gleiser, Pablo M.

    2015-10-01

    In many species daily rhythms are endogenously generated by groups of coupled neurons that play the role of a circadian pacemaker. The adaptation of the circadian clock to environmental and seasonal changes has been proposed to be regulated by a dual oscillator system. In order to gain insight into this model, we analyzed the synchronization properties of two fully coupled groups of Kuramoto oscillators. Each group has an internal coupling parameter and the interaction between the two groups can be controlled by two parameters allowing for symmetric or non-symmetric coupling. We show that even for such a simple model counterintuitive behaviours take place, such as a global decrease in synchrony when the coupling between the groups is increased. Through a detailed analysis of the local synchronization processes we explain this behaviour.

  17. Coupling a single electron to a Bose-Einstein condensate.

    PubMed

    Balewski, Jonathan B; Krupp, Alexander T; Gaj, Anita; Peter, David; Büchler, Hans Peter; Löw, Robert; Hofferberth, Sebastian; Pfau, Tilman

    2013-10-31

    The coupling of electrons to matter lies at the heart of our understanding of material properties such as electrical conductivity. Electron-phonon coupling can lead to the formation of a Cooper pair out of two repelling electrons, which forms the basis for Bardeen-Cooper-Schrieffer superconductivity. Here we study the interaction of a single localized electron with a Bose-Einstein condensate and show that the electron can excite phonons and eventually trigger a collective oscillation of the whole condensate. We find that the coupling is surprisingly strong compared to that of ionic impurities, owing to the more favourable mass ratio. The electron is held in place by a single charged ionic core, forming a Rydberg bound state. This Rydberg electron is described by a wavefunction extending to a size of up to eight micrometres, comparable to the dimensions of the condensate. In such a state, corresponding to a principal quantum number of n = 202, the Rydberg electron is interacting with several tens of thousands of condensed atoms contained within its orbit. We observe surprisingly long lifetimes and finite size effects caused by the electron exploring the outer regions of the condensate. We anticipate future experiments on electron orbital imaging, the investigation of phonon-mediated coupling of single electrons, and applications in quantum optics.

  18. Cluster synchronization of starlike networks with normalized Laplacian coupling: master stability function approach

    NASA Astrophysics Data System (ADS)

    Kuptsov, Pavel V.; Kuptsova, Anna V.

    2016-04-01

    A generalized model of star-like network is suggested that takes into account non-additive coupling and nonlinear transformation of coupling variables. For this model a method of analysis of synchronized cluster stability is developed. Using this method three star-like networks based on Ikeda, predator-prey and Hénon maps are studied.

  19. Typical trajectories of coupled degrade-and-fire oscillators: from dispersed populations to massive clustering.

    PubMed

    Fernandez, Bastien; Tsimring, Lev S

    2014-06-01

    We consider the dynamics of a piecewise affine system of degrade-and-fire oscillators with global repressive interaction, inspired by experiments on synchronization in colonies of bacteria-embedded genetic circuits. Due to global coupling, if any two oscillators happen to be in the same state at some time, they remain in sync at all subsequent times; thus clusters of synchronized oscillators cannot shrink as a result of the dynamics. Assuming that the system is initiated from random initial configurations of fully dispersed populations (no clusters), we estimate asymptotic cluster sizes as a function of the coupling strength. A sharp transition is proved to exist that separates a weak coupling regime of unclustered populations from a strong coupling phase where clusters of extensive size are formed. Each phenomena occurs with full probability in the thermodynamics limit. Moreover, the maximum number of asymptotic clusters is known to diverge linearly in this limit. In contrast, we show that with positive probability, the number of asymptotic clusters remains bounded, provided that the coupling strength is sufficiently large.

  20. Communication: A Jastrow factor coupled cluster theory for weak and strong electron correlation

    SciTech Connect

    Neuscamman, Eric

    2013-11-14

    We present a Jastrow-factor-inspired variant of coupled cluster theory that accurately describes both weak and strong electron correlation. Compatibility with quantum Monte Carlo allows for variational energy evaluations and an antisymmetric geminal power reference, two features not present in traditional coupled cluster that facilitate a nearly exact description of the strong electron correlations in minimal-basis N{sub 2} bond breaking. In double-ζ treatments of the HF and H{sub 2}O bond dissociations, where both weak and strong correlations are important, this polynomial cost method proves more accurate than either traditional coupled cluster or complete active space perturbation theory. These preliminary successes suggest a deep connection between the ways in which cluster operators and Jastrow factors encode correlation.

  1. Pinning cluster synchronization in an array of coupled neural networks under event-based mechanism.

    PubMed

    Li, Lulu; Ho, Daniel W C; Cao, Jinde; Lu, Jianquan

    2016-04-01

    Cluster synchronization is a typical collective behavior in coupled dynamical systems, where the synchronization occurs within one group, while there is no synchronization among different groups. In this paper, under event-based mechanism, pinning cluster synchronization in an array of coupled neural networks is studied. A new event-triggered sampled-data transmission strategy, where only local and event-triggering states are utilized to update the broadcasting state of each agent, is proposed to realize cluster synchronization of the coupled neural networks. Furthermore, a self-triggered pinning cluster synchronization algorithm is proposed, and a set of iterative procedures is given to compute the event-triggered time instants. Hence, this will reduce the computational load significantly. Finally, an example is given to demonstrate the effectiveness of the theoretical results.

  2. Spin-orbit couplings within the equation-of-motion coupled-cluster framework: Theory, implementation, and benchmark calculations.

    PubMed

    Epifanovsky, Evgeny; Klein, Kerstin; Stopkowicz, Stella; Gauss, Jürgen; Krylov, Anna I

    2015-08-14

    We present a formalism and an implementation for calculating spin-orbit couplings (SOCs) within the EOM-CCSD (equation-of-motion coupled-cluster with single and double substitutions) approach. The following variants of EOM-CCSD are considered: EOM-CCSD for excitation energies (EOM-EE-CCSD), EOM-CCSD with spin-flip (EOM-SF-CCSD), EOM-CCSD for ionization potentials (EOM-IP-CCSD) and electron attachment (EOM-EA-CCSD). We employ a perturbative approach in which the SOCs are computed as matrix elements of the respective part of the Breit-Pauli Hamiltonian using zeroth-order non-relativistic wave functions. We follow the expectation-value approach rather than the response-theory formulation for property calculations. Both the full two-electron treatment and the mean-field approximation (a partial account of the two-electron contributions) have been implemented and benchmarked using several small molecules containing elements up to the fourth row of the periodic table. The benchmark results show the excellent performance of the perturbative treatment and the mean-field approximation. When used with an appropriate basis set, the errors with respect to experiment are below 5% for the considered examples. The findings regarding basis-set requirements are in agreement with previous studies. The impact of different correlation treatment in zeroth-order wave functions is analyzed. Overall, the EOM-IP-CCSD, EOM-EA-CCSD, EOM-EE-CCSD, and EOM-SF-CCSD wave functions yield SOCs that agree well with each other (and with the experimental values when available). Using an EOM-CCSD approach that provides a more balanced description of the target states yields more accurate results. PMID:26277122

  3. Spin-orbit couplings within the equation-of-motion coupled-cluster framework: Theory, implementation, and benchmark calculations

    SciTech Connect

    Epifanovsky, Evgeny; Klein, Kerstin; Gauss, Jürgen; Stopkowicz, Stella; Krylov, Anna I.

    2015-08-14

    We present a formalism and an implementation for calculating spin-orbit couplings (SOCs) within the EOM-CCSD (equation-of-motion coupled-cluster with single and double substitutions) approach. The following variants of EOM-CCSD are considered: EOM-CCSD for excitation energies (EOM-EE-CCSD), EOM-CCSD with spin-flip (EOM-SF-CCSD), EOM-CCSD for ionization potentials (EOM-IP-CCSD) and electron attachment (EOM-EA-CCSD). We employ a perturbative approach in which the SOCs are computed as matrix elements of the respective part of the Breit-Pauli Hamiltonian using zeroth-order non-relativistic wave functions. We follow the expectation-value approach rather than the response-theory formulation for property calculations. Both the full two-electron treatment and the mean-field approximation (a partial account of the two-electron contributions) have been implemented and benchmarked using several small molecules containing elements up to the fourth row of the periodic table. The benchmark results show the excellent performance of the perturbative treatment and the mean-field approximation. When used with an appropriate basis set, the errors with respect to experiment are below 5% for the considered examples. The findings regarding basis-set requirements are in agreement with previous studies. The impact of different correlation treatment in zeroth-order wave functions is analyzed. Overall, the EOM-IP-CCSD, EOM-EA-CCSD, EOM-EE-CCSD, and EOM-SF-CCSD wave functions yield SOCs that agree well with each other (and with the experimental values when available). Using an EOM-CCSD approach that provides a more balanced description of the target states yields more accurate results.

  4. Spin-orbit couplings within the equation-of-motion coupled-cluster framework: Theory, implementation, and benchmark calculations

    NASA Astrophysics Data System (ADS)

    Epifanovsky, Evgeny; Klein, Kerstin; Stopkowicz, Stella; Gauss, Jürgen; Krylov, Anna I.

    2015-08-01

    We present a formalism and an implementation for calculating spin-orbit couplings (SOCs) within the EOM-CCSD (equation-of-motion coupled-cluster with single and double substitutions) approach. The following variants of EOM-CCSD are considered: EOM-CCSD for excitation energies (EOM-EE-CCSD), EOM-CCSD with spin-flip (EOM-SF-CCSD), EOM-CCSD for ionization potentials (EOM-IP-CCSD) and electron attachment (EOM-EA-CCSD). We employ a perturbative approach in which the SOCs are computed as matrix elements of the respective part of the Breit-Pauli Hamiltonian using zeroth-order non-relativistic wave functions. We follow the expectation-value approach rather than the response-theory formulation for property calculations. Both the full two-electron treatment and the mean-field approximation (a partial account of the two-electron contributions) have been implemented and benchmarked using several small molecules containing elements up to the fourth row of the periodic table. The benchmark results show the excellent performance of the perturbative treatment and the mean-field approximation. When used with an appropriate basis set, the errors with respect to experiment are below 5% for the considered examples. The findings regarding basis-set requirements are in agreement with previous studies. The impact of different correlation treatment in zeroth-order wave functions is analyzed. Overall, the EOM-IP-CCSD, EOM-EA-CCSD, EOM-EE-CCSD, and EOM-SF-CCSD wave functions yield SOCs that agree well with each other (and with the experimental values when available). Using an EOM-CCSD approach that provides a more balanced description of the target states yields more accurate results.

  5. Development of the Multicomponent Coupled-Cluster Theory for Investigation of Multiexcitonic Interactions.

    PubMed

    Ellis, Benjamin H; Aggarwal, Somil; Chakraborty, Arindam

    2016-01-12

    Multicomponent systems are defined as chemical systems that require a quantum mechanical description of two or more different types of particles. Non-Born-Oppenheimer electron-nuclear interactions in molecules, electron-hole interactions in electronically excited nanoparticles, and electron-positron interactions are examples of physical systems that require a multicomponent quantum mechanical formalism. The central challenge in the theoretical treatment of multicomponent systems is capturing the many-body correlation effects that exist not only between particles of identical types (electron-electron) but also between particles of different types (electron-nuclear and electron-hole). In this work, the development and implementation of multicomponent coupled-cluster (mcCC) theory for treating particle-particle correlation in multicomponent systems are presented. This method provides a balanced treatment of many-particle correlation effects in a general multicomponent system while maintaining a size-consistent and size-extensive formalism. The coupled-cluster ansatz presented here is an extension of the electronic structure CCSD formulation for multicomponent systems and is defined as |ΨmcCC⟩ = eT1I+T2I+T1II+T2II+T11I,II+T12I,II+T21I,II+T22I,II|0I0II⟩. The cluster amplitudes in the mcCC wave function were obtained by projecting the mcCC Schrödinger equation onto a direct product space of singly and doubly excited states of type I and II particles and then solving the resulting mcCC equations iteratively. These equations were derived using an automated application of the generalized Wick’s theorem and were implemented using a computer-assisted source code generation approach. The applicability of the mcCC method was demonstrated by calculating ground state energies of multicomponent Hooke's atom and positronium hydride systems as well as by calculating exciton and biexciton binding energies in multiexcitonic systems. For each case, the mcCC results were

  6. Excited states with internally contracted multireference coupled-cluster linear response theory

    NASA Astrophysics Data System (ADS)

    Samanta, Pradipta Kumar; Mukherjee, Debashis; Hanauer, Matthias; Köhn, Andreas

    2014-04-01

    In this paper, the linear response (LR) theory for the variant of internally contracted multireference coupled cluster (ic-MRCC) theory described by Hanauer and Köhn [J. Chem. Phys. 134, 204211 (2011)] has been formulated and implemented for the computation of the excitation energies relative to a ground state of pronounced multireference character. We find that straightforward application of the linear-response formalism to the time-averaged ic-MRCC Lagrangian leads to unphysical second-order poles. However, the coupling matrix elements that cause this behavior are shown to be negligible whenever the internally contracted approximation as such is justified. Hence, for the numerical implementation of the method, we adopt a Tamm-Dancoff-type approximation and neglect these couplings. This approximation is also consistent with an equation-of-motion based derivation, which neglects these couplings right from the start. We have implemented the linear-response approach in the ic-MRCC singles-and-doubles framework and applied our method to calculate excitation energies for a number of molecules ranging from CH2 to p-benzyne and conjugated polyenes (up to octatetraene). The computed excitation energies are found to be very accurate, even for the notoriously difficult case of doubly excited states. The ic-MRCC-LR theory is also applicable to systems with open-shell ground-state wavefunctions and is by construction not biased towards a particular reference determinant. We have also compared the linear-response approach to the computation of energy differences by direct state-specific ic-MRCC calculations. We finally compare to Mk-MRCC-LR theory for which spurious roots have been reported [T.-C. Jagau and J. Gauss, J. Chem. Phys. 137, 044116 (2012)], being due to the use of sufficiency conditions to solve the Mk-MRCC equations. No such problem is present in ic-MRCC-LR theory.

  7. Modal Coupling of Single Photon Emitters Within Nanofiber Waveguides

    PubMed Central

    2016-01-01

    Nanoscale generation of individual photons in confined geometries is an exciting research field aiming at exploiting localized electromagnetic fields for light manipulation. One of the outstanding challenges of photonic systems combining emitters with nanostructured media is the selective channelling of photons emitted by embedded sources into specific optical modes and their transport at distant locations in integrated systems. Here, we show that soft-matter nanofibers, electrospun with embedded emitters, combine subwavelength field localization and large broadband near-field coupling with low propagation losses. By momentum spectroscopy, we quantify the modal coupling efficiency identifying the regime of single-mode coupling. These nanofibers do not rely on resonant interactions, making them ideal for room-temperature operation, and offer a scalable platform for future quantum information technology. PMID:27203403

  8. Non-Gaussianities of single field inflation with nonminimal coupling

    SciTech Connect

    Qiu, Taotao; Yang, Kwei-Chou

    2011-04-15

    We investigate the non-Gaussianities of inflation driven by a single scalar field coupling nonminimally to the Einstein Gravity. We assume that the form of the scalar field is very general with an arbitrary sound speed. For convenience, we take the subclass that the nonminimal coupling term is linear to the Ricci scalar R. We define a parameter {mu}{identical_to}{epsilon}{sub h}/{epsilon}{sub {theta}}, where {epsilon}{sub h} and {epsilon}{sub {theta}} are two kinds of slow-roll parameters, and obtain the dependence of the shape of the 3-point correlation function on {mu}. We also show the estimator F{sub NL} in the equilateral limit. Finally, based on numerical calculations, we present the non-Gaussianities of nonminimal coupling chaotic inflation as an explicit example.

  9. Coupled resonator filter with single-layer acoustic coupler.

    PubMed

    Jamneala, Tiberiu; Small, Martha; Ruby, Rich; Larson, John D

    2008-10-01

    We discuss the operation of novel coupled-resonator filters with single-layer acoustic couplers. Our analysis employs the physical Mason model for acoustic resonators. Their simpler fabrication process is counterbalanced by the high acoustic attenuation of suitable coupler materials. At high levels of attenuation, both the phase and the acoustic impedance must be treated as complex quantities to accurately predict the filter insertion loss. We demonstrate that the typically poor near-band rejection of coupled resonator filters can be improved at the die level by connecting a small capacitance between the input and output of the filter to produce a pair of tunable transmission minima. We make use of these theoretical findings to fabricate coupled resonators filters operating at 2.45 GHz. PMID:18986880

  10. Quantum tunneling of two coupled single-molecular magnets

    NASA Astrophysics Data System (ADS)

    Hu, Jianming; Chen, Zhide; Shen, Shunqing

    2003-03-01

    Jian-Ming Hu, Zhi-De Chen and Shun-Qing Shen Department of Physics, The University of Hong Kong Pokfulam Road, Hong Kong December 02, 2002 Very recently a supramolecular dimer of two single-molecule magnets (SMM) was reported to be synthesized successfully. Two single-molecule magnets are coupled antiferromagnetically to form a supramolecule dimer. We study the coupling effect and tunneling process by the numerical exact diagonalization method. The sweeping rate effect in the derivatives of hysteresis loops has been quantitatively investigated using the modified Landau-Zener model. In addiction we find that exchange coupling between the two SMMs provides a biased field to expel the tunneling between SMMs to two new resonant points via an intermediate state, and direct tunneling is prohibited. The model parameters are calculated for the dimer based on the tunneling process. The outcome indicates that the coupling effect will not change the parameters of each SMM too much at all. This work is supported by a CRCG grant of The University of Hong Kong.

  11. Variational formulation of perturbative explicitly-correlated coupled-cluster methods.

    PubMed

    Torheyden, Martin; Valeev, Edward F

    2008-06-21

    We present a variational formulation of the recently-proposed CCSD(2)(R12) method [Valeev, Phys. Chem. Chem. Phys., 2008, 10, 106]. The centerpiece of this approach is the CCSD(2)(R12) Lagrangian obtained via Löwdin partitioning of the coupled-cluster singles and doubles (CCSD) Hamiltonian. Extremization of the Lagrangian yields the second-order basis set incompleteness correction for the CCSD energy. We also developed a simpler Hylleraas-type functional that only depends on one set of geminal amplitudes by applying screening approximations. This functional is used to develop a diagonal orbital-invariant version of the method in which the geminal amplitudes are fixed at the values determined by the first-order cusp conditions. Extension of the variational method to include perturbatively the effect of connected triples produces the method that approximates the complete basis-set limit of the standard CCSD plus perturbative triples [CCSD(T)] method. For a set of 20 small closed-shell molecules, the method recovered at least 94.5/97.3% of the CBS CCSD(T) correlation energy with the aug-cc-pVDZ/aug-cc-pVTZ orbital basis set. For 12 isogyric reactions involving these molecules, combining the aug-cc-pVTZ correlation energies with the aug-cc-pVQZ Hartree-Fock energies produces the electronic reaction energies with a mean absolute deviation of 1.4 kJ mol(-1) from the experimental values. The method has the same number of optimized parameters as the corresponding CCSD(T) model, does not require any modification of the coupled-cluster computer program, and only needs a small triple-zeta basis to match the precision of the considerably more expensive standard quintuple-zeta CCSD(T) computation.

  12. Coupled cluster calculations of optical rotatory dispersion of (S)-methyloxirane

    NASA Astrophysics Data System (ADS)

    Tam, Mary C.; Russ, Nicholas J.; Crawford, T. Daniel

    2004-08-01

    Coupled cluster (CC) and density-functional theory (DFT) calculations of optical rotation, [α]λ, have been carried out for the difficult case of (S)-methyloxirane for comparison to recently published gas-phase cavity ringdown polarimetry data. Both theoretical methods are exquisitely sensitive to the choice of one-electron basis set, and diffuse functions have a particularly large impact on the computed values of [α]λ. Furthermore, both methods show a surprising sensitivity to the choice of optimized geometry, with [α]355 values varying by as much as 15 deg dm-1 (g/mL)-1 among molecular structures that differ only negligibly. Although at first glance the DFT/B3LYP values of [α]355 appear to be superior to those from CC theory, the success of DFT in this case appears to stem from a significant underestimation of the lowest (Rydberg) excitation energy in methyloxirane, resulting in a shift of the first-order pole in [α]λ (the Cotton effect) towards the experimentally chosen incident radiation lines. This leads to a fortuitous positive shift in the value of [α]355 towards the experimental result. The coupled cluster singles and doubles model, on the other hand, correctly predicts the position of the absorption pole (to within 0.05 eV of the experimental result), but fails to describe correctly the shape/curvature of the ORD region λ=355, resulting in an incorrect prediction of both the magnitude and the sign of the optical rotation.

  13. High electronic couplings of single mesitylene molecular junctions

    PubMed Central

    Komoto, Yuki; Nishino, Tomoaki; Kiguchi, Manabu

    2015-01-01

    Summary We report on an experimental analysis of the charge transport properties of single mesitylene (1,3,5-trimethylbenzene) molecular junctions. The electronic conductance and the current–voltage characteristics of mesitylene molecules wired into Au electrodes were measured by a scanning tunnelling microscopy-based break-junction method at room temperature in a liquid environment. We found the molecular junctions exhibited two distinct conductance states with high conductance values of ca. 10−1 G 0 and of more than 10−3 G 0 (G 0 = 2e 2/h) in the electronic conductance measurements. We further performed a statistical analysis of the current–voltage characteristics of the molecular junctions in the two states. Within a single channel resonant tunnelling model, we obtained electronic couplings in the molecular junctions by fitting the current–voltage characteristics to the single channel model. The origin of the high conductance was attributed to experimentally obtained large electronic couplings of the direct π-bonded molecular junctions (ca. 0.15 eV). Based on analysis of the stretch length of the molecular junctions and the large electronic couplings obtained from the I–V analysis, we proposed two structural models, in which (i) mesitylene binds to the Au electrode perpendicular to the charge transport direction and (ii) mesitylene has tilted from the perpendicular orientation. PMID:26732978

  14. Coupled-cluster representation of Green function employing modified spectral resolutions of similarity transformed Hamiltonians

    SciTech Connect

    Kowalski, K. Bhaskaran-Nair, K.; Shelton, W. A.

    2014-09-07

    In this paper we discuss a new formalism for producing an analytic coupled-cluster (CC) Green's function for an N-electron system by shifting the poles of similarity transformed Hamiltonians represented in N − 1 and N + 1 electron Hilbert spaces. Simple criteria are derived for the states in N − 1 and N + 1 electron spaces that are then corrected in the spectral resolution of the corresponding matrix representations of the similarity transformed Hamiltonian. The accurate description of excited state processes within a Green's function formalism would be of significant importance to a number of scientific communities ranging from physics and chemistry to engineering and the biological sciences. This is because the Green's function methodology provides a direct path for not only calculating properties whose underlying origins come from coupled many-body interactions but also provides a straightforward path for calculating electron transport, response, and correlation functions that allows for a direct link with experiment. As a special case of this general formulation, we discuss the application of this technique for Green's function defined by the CC with singles and doubles representation of the ground-state wave function.

  15. Speeding up equation of motion coupled cluster theory with the chain of spheres approximation

    NASA Astrophysics Data System (ADS)

    Dutta, Achintya Kumar; Neese, Frank; Izsák, Róbert

    2016-01-01

    In the present paper, the chain of spheres exchange (COSX) approximation is applied to the highest scaling terms in the equation of motion (EOM) coupled cluster equations with single and double excitations, in particular, the terms involving integrals with four virtual labels. It is found that even the acceleration of this single term yields significant computational gains without compromising the desired accuracy of the method. For an excitation energy calculation on a cluster of five water molecules using 585 basis functions, the four virtual term is 9.4 times faster using COSX with a loose grid than using the canonical implementation, which yields a 2.6 fold acceleration for the whole of the EOM calculation. For electron attachment calculations, the four virtual term is 15 times and the total EOM calculation is 10 times faster than the canonical calculation for the same system. The accuracy of the new method was tested using Thiel's test set for excited states using the same settings and the maximum absolute deviation over the whole test set was found to be 12.945 cm-1 (59 μHartree) for excitation energies and 6.799 cm-1 (31 μHartree) for electron attachments. Using MP2 amplitudes for the ground state in combination with the parallel evaluation of the full EOM equations in the manner discussed in this paper enabled us to perform calculations for large systems. Electron affinity values for the two lowest states of a Zn protoporphyrine model compound (224 correlated electrons and 1120 basis functions) were obtained in 3 days 19 h using 4 cores of a Xeon E5-2670 processor allocating 10 GB memory per core. Calculating the lowest two excitation energies for trans-retinal (114 correlated electrons and 539 basis functions) took 1 day 21 h using eight cores of the same processor and identical memory allocation per core.

  16. Speeding up equation of motion coupled cluster theory with the chain of spheres approximation.

    PubMed

    Dutta, Achintya Kumar; Neese, Frank; Izsák, Róbert

    2016-01-21

    In the present paper, the chain of spheres exchange (COSX) approximation is applied to the highest scaling terms in the equation of motion (EOM) coupled cluster equations with single and double excitations, in particular, the terms involving integrals with four virtual labels. It is found that even the acceleration of this single term yields significant computational gains without compromising the desired accuracy of the method. For an excitation energy calculation on a cluster of five water molecules using 585 basis functions, the four virtual term is 9.4 times faster using COSX with a loose grid than using the canonical implementation, which yields a 2.6 fold acceleration for the whole of the EOM calculation. For electron attachment calculations, the four virtual term is 15 times and the total EOM calculation is 10 times faster than the canonical calculation for the same system. The accuracy of the new method was tested using Thiel's test set for excited states using the same settings and the maximum absolute deviation over the whole test set was found to be 12.945 cm(-1) (59 μHartree) for excitation energies and 6.799 cm(-1) (31 μHartree) for electron attachments. Using MP2 amplitudes for the ground state in combination with the parallel evaluation of the full EOM equations in the manner discussed in this paper enabled us to perform calculations for large systems. Electron affinity values for the two lowest states of a Zn protoporphyrine model compound (224 correlated electrons and 1120 basis functions) were obtained in 3 days 19 h using 4 cores of a Xeon E5-2670 processor allocating 10 GB memory per core. Calculating the lowest two excitation energies for trans-retinal (114 correlated electrons and 539 basis functions) took 1 day 21 h using eight cores of the same processor and identical memory allocation per core.

  17. Parallelization of the Wolff single-cluster algorithm.

    PubMed

    Kaupuzs, J; Rimsāns, J; Melnik, R V N

    2010-02-01

    A parallel [open multiprocessing (OpenMP)] implementation of the Wolff single-cluster algorithm has been developed and tested for the three-dimensional (3D) Ising model. The developed procedure is generalizable to other lattice spin models and its effectiveness depends on the specific application at hand. The applicability of the developed methodology is discussed in the context of the applications, where a sophisticated shuffling scheme is used to generate pseudorandom numbers of high quality, and an iterative method is applied to find the critical temperature of the 3D Ising model with a great accuracy. For the lattice with linear size L=1024, we have reached the speedup about 1.79 times on two processors and about 2.67 times on four processors, as compared to the serial code. According to our estimation, the speedup about three times on four processors is reachable for the O(n) models with n> or =2. Furthermore, the application of the developed OpenMP code allows us to simulate larger lattices due to greater operative (shared) memory available.

  18. Parallelization of the Wolff single-cluster algorithm

    NASA Astrophysics Data System (ADS)

    Kaupužs, J.; Rimšāns, J.; Melnik, R. V. N.

    2010-02-01

    A parallel [open multiprocessing (OpenMP)] implementation of the Wolff single-cluster algorithm has been developed and tested for the three-dimensional (3D) Ising model. The developed procedure is generalizable to other lattice spin models and its effectiveness depends on the specific application at hand. The applicability of the developed methodology is discussed in the context of the applications, where a sophisticated shuffling scheme is used to generate pseudorandom numbers of high quality, and an iterative method is applied to find the critical temperature of the 3D Ising model with a great accuracy. For the lattice with linear size L=1024 , we have reached the speedup about 1.79 times on two processors and about 2.67 times on four processors, as compared to the serial code. According to our estimation, the speedup about three times on four processors is reachable for the O(n) models with n≥2 . Furthermore, the application of the developed OpenMP code allows us to simulate larger lattices due to greater operative (shared) memory available.

  19. Single Nucleotide Polymorphism Clustering in Systemic Autoimmune Diseases

    PubMed Central

    Charlon, Thomas; Bossini-Castillo, Lara; Carmona, F. David; Di Cara, Alessandro; Wojcik, Jérôme; Voloshynovskiy, Sviatoslav

    2016-01-01

    Systemic Autoimmune Diseases, a group of chronic inflammatory conditions, have variable symptoms and difficult diagnosis. In order to reclassify them based on genetic markers rather than clinical criteria, we performed clustering of Single Nucleotide Polymorphisms. However naive approaches tend to group patients primarily by their geographic origin. To reduce this “ancestry signal”, we developed SNPClust, a method to select large sources of ancestry-independent genetic variations from all variations detected by Principal Component Analysis. Applied to a Systemic Lupus Erythematosus case control dataset, SNPClust successfully reduced the ancestry signal. Results were compared with association studies between the cases and controls without or with reference population stratification correction methods. SNPClust amplified the disease discriminating signal and the ratio of significant associations outside the HLA locus was greater compared to population stratification correction methods. SNPClust will enable the use of ancestry-independent genetic information in the reclassification of Systemic Autoimmune Diseases. SNPClust is available as an R package and demonstrated on the public Human Genome Diversity Project dataset at https://github.com/ThomasChln/snpclust. PMID:27490238

  20. Single Nucleotide Polymorphism Clustering in Systemic Autoimmune Diseases.

    PubMed

    Charlon, Thomas; Martínez-Bueno, Manuel; Bossini-Castillo, Lara; Carmona, F David; Di Cara, Alessandro; Wojcik, Jérôme; Voloshynovskiy, Sviatoslav; Martín, Javier; Alarcón-Riquelme, Marta E

    2016-01-01

    Systemic Autoimmune Diseases, a group of chronic inflammatory conditions, have variable symptoms and difficult diagnosis. In order to reclassify them based on genetic markers rather than clinical criteria, we performed clustering of Single Nucleotide Polymorphisms. However naive approaches tend to group patients primarily by their geographic origin. To reduce this "ancestry signal", we developed SNPClust, a method to select large sources of ancestry-independent genetic variations from all variations detected by Principal Component Analysis. Applied to a Systemic Lupus Erythematosus case control dataset, SNPClust successfully reduced the ancestry signal. Results were compared with association studies between the cases and controls without or with reference population stratification correction methods. SNPClust amplified the disease discriminating signal and the ratio of significant associations outside the HLA locus was greater compared to population stratification correction methods. SNPClust will enable the use of ancestry-independent genetic information in the reclassification of Systemic Autoimmune Diseases. SNPClust is available as an R package and demonstrated on the public Human Genome Diversity Project dataset at https://github.com/ThomasChln/snpclust. PMID:27490238

  1. Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center

    SciTech Connect

    Liebermeister, Lars Petersen, Fabian; Münchow, Asmus v.; Burchardt, Daniel; Hermelbracht, Juliane; Tashima, Toshiyuki; Schell, Andreas W.; Benson, Oliver; Meinhardt, Thomas; Krueger, Anke; Stiebeiner, Ariane; Rauschenbeutel, Arno; Weinfurter, Harald; Weber, Markus

    2014-01-20

    A diamond nano-crystal hosting a single nitrogen vacancy (NV) center is optically selected with a confocal scanning microscope and positioned deterministically onto the subwavelength-diameter waist of a tapered optical fiber (TOF) with the help of an atomic force microscope. Based on this nano-manipulation technique, we experimentally demonstrate the evanescent coupling of single fluorescence photons emitted by a single NV-center to the guided mode of the TOF. By comparing photon count rates of the fiber-guided and the free-space modes and with the help of numerical finite-difference time domain simulations, we determine a lower and upper bound for the coupling efficiency of (9.5 ± 0.6)% and (10.4 ± 0.7)%, respectively. Our results are a promising starting point for future integration of single photon sources into photonic quantum networks and applications in quantum information science.

  2. Two- and four-component relativistic generalized-active-space coupled cluster method: implementation and application to BiH.

    PubMed

    Sørensen, Lasse K; Olsen, Jeppe; Fleig, Timo

    2011-06-01

    A string-based coupled-cluster method of general excitation rank and with optimal scaling which accounts for special relativity within the four-component framework is presented. The method opens the way for the treatment of multi-reference problems through an active-space inspired single-reference based state-selective expansion of the model space. The evaluation of the coupled-cluster vector function is implemented by considering contractions of elementary second-quantized operators without setting up the amplitude equations explicitly. The capabilities of the new method are demonstrated in application to the electronic ground state of the bismuth monohydride molecule. In these calculations simulated multi-reference expansions with both doubles and triples excitations into the external space as well as the regular coupled-cluster hierarchy up to full quadruples excitations are compared. The importance of atomic outer core-correlation for obtaining accurate results is shown. Comparison to the non-relativistic framework is performed throughout to illustrate the additional work of the transition to the four-component relativistic framework both in implementation and application. Furthermore, an evaluation of the highest order scaling for general-order expansions is presented. PMID:21663339

  3. Two- and four-component relativistic generalized-active-space coupled cluster method: implementation and application to BiH.

    PubMed

    Sørensen, Lasse K; Olsen, Jeppe; Fleig, Timo

    2011-06-01

    A string-based coupled-cluster method of general excitation rank and with optimal scaling which accounts for special relativity within the four-component framework is presented. The method opens the way for the treatment of multi-reference problems through an active-space inspired single-reference based state-selective expansion of the model space. The evaluation of the coupled-cluster vector function is implemented by considering contractions of elementary second-quantized operators without setting up the amplitude equations explicitly. The capabilities of the new method are demonstrated in application to the electronic ground state of the bismuth monohydride molecule. In these calculations simulated multi-reference expansions with both doubles and triples excitations into the external space as well as the regular coupled-cluster hierarchy up to full quadruples excitations are compared. The importance of atomic outer core-correlation for obtaining accurate results is shown. Comparison to the non-relativistic framework is performed throughout to illustrate the additional work of the transition to the four-component relativistic framework both in implementation and application. Furthermore, an evaluation of the highest order scaling for general-order expansions is presented.

  4. Tunable magnetoresistance in an asymmetrically coupled single-molecule junction.

    PubMed

    Warner, Ben; El Hallak, Fadi; Prüser, Henning; Sharp, John; Persson, Mats; Fisher, Andrew J; Hirjibehedin, Cyrus F

    2015-03-01

    Phenomena that are highly sensitive to magnetic fields can be exploited in sensors and non-volatile memories. The scaling of such phenomena down to the single-molecule level may enable novel spintronic devices. Here, we report magnetoresistance in a single-molecule junction arising from negative differential resistance that shifts in a magnetic field at a rate two orders of magnitude larger than Zeeman shifts. This sensitivity to the magnetic field produces two voltage-tunable forms of magnetoresistance, which can be selected via the applied bias. The negative differential resistance is caused by transient charging of an iron phthalocyanine (FePc) molecule on a single layer of copper nitride (Cu2N) on a Cu(001) surface, and occurs at voltages corresponding to the alignment of sharp resonances in the filled and empty molecular states with the Cu(001) Fermi energy. An asymmetric voltage-divider effect enhances the apparent voltage shift of the negative differential resistance with magnetic field, which inherently is on the scale of the Zeeman energy. These results illustrate the impact that asymmetric coupling to metallic electrodes can have on transport through molecules, and highlight how this coupling can be used to develop molecular spintronic applications. PMID:25622229

  5. Tunable magnetoresistance in an asymmetrically coupled single-molecule junction

    NASA Astrophysics Data System (ADS)

    Warner, Ben; El Hallak, Fadi; Prüser, Henning; Sharp, John; Persson, Mats; Fisher, Andrew J.; Hirjibehedin, Cyrus F.

    2015-03-01

    Phenomena that are highly sensitive to magnetic fields can be exploited in sensors and non-volatile memories. The scaling of such phenomena down to the single-molecule level may enable novel spintronic devices. Here, we report magnetoresistance in a single-molecule junction arising from negative differential resistance that shifts in a magnetic field at a rate two orders of magnitude larger than Zeeman shifts. This sensitivity to the magnetic field produces two voltage-tunable forms of magnetoresistance, which can be selected via the applied bias. The negative differential resistance is caused by transient charging of an iron phthalocyanine (FePc) molecule on a single layer of copper nitride (Cu2N) on a Cu(001) surface, and occurs at voltages corresponding to the alignment of sharp resonances in the filled and empty molecular states with the Cu(001) Fermi energy. An asymmetric voltage-divider effect enhances the apparent voltage shift of the negative differential resistance with magnetic field, which inherently is on the scale of the Zeeman energy. These results illustrate the impact that asymmetric coupling to metallic electrodes can have on transport through molecules, and highlight how this coupling can be used to develop molecular spintronic applications.

  6. Coupling single quantum dots to plasmonic nanocones: optical properties.

    PubMed

    Meixner, Alfred J; Jäger, Regina; Jäger, Sebastian; Bräuer, Annika; Scherzinger, Kerstin; Fulmes, Julia; Krockhaus, Sven zur Oven; Gollmer, Dominik A; Kern, Dieter P; Fleischer, Monika

    2015-01-01

    Coupling a single quantum emitter, such as a fluorescent molecule or a quantum dot (QD), to a plasmonic nanostructure is an important issue in nano-optics and nano-spectroscopy, relevant for a wide range of applications, including tip-enhanced near-field optical microscopy, plasmon enhanced molecular sensing and spectroscopy, and nanophotonic amplifiers or nanolasers, to mention only a few. While the field enhancement of a sharp nanoantenna increasing the excitation rate of a very closely positioned single molecule or QD has been well investigated, the detailed physical mechanisms involved in the emission of a photon from such a system are, by far, less investigated. In one of our ongoing research projects, we try to address these issues by constructing and spectroscopically analysing geometrically simple hybrid heterostructures consisting of sharp gold cones with single quantum dots attached to the very tip apex. An important goal of this work is to tune the longitudinal plasmon resonance by adjusting the cones' geometry to the emission maximum of the core-shell CdSe/ZnS QDs at nominally 650 nm. Luminescence spectra of the bare cones, pure QDs and hybrid systems were distinguished successfully. In the next steps we will further investigate, experimentally and theoretically, the optical properties of the coupled systems in more detail, such as the fluorescence spectra, blinking statistics, and the current results on the fluorescence lifetimes, and compare them with uncoupled QDs to obtain a clearer picture of the radiative and non-radiative processes.

  7. Single and coupled quantum wells: SiGe

    NASA Astrophysics Data System (ADS)

    Usami, N.; Shiraki, Y.

    This document is part of subvolume C3 'Optical Properties' of volume 34 'Semiconductor quantum structures' of Landolt-Börnstein, Group III, Condensed Matter, on the optical properties of quantum structures based on group IV semiconductors. It discusses single and coupled quantum wells based on SiGe. Topics include the photoluminescence from SiGe/Si quantum wells (spectral features, dependence on excitation power and temperature), effects of quantum confinement, post-growth annealing, electric fields and external stress, the Fermi-edge singularity, time-resolved photoluminescence, growth mode transition, type-II strained Si quantum wells, coupled quantum wells, electroluminescence, interband absorption and intraband absorption, second-harmonic generation, and phonon modes.

  8. Analysis of Single and Coupled Dielectric Rib Waveguides and Discontinuities

    NASA Astrophysics Data System (ADS)

    Husain, M. N.

    Available from UMI in association with The British Library. This thesis considers the theoretical analysis of the rib waveguide, a waveguiding structure most favoured for integrated optics and in millimetre waves. The work begins by considering the application of the Transverse Resonance Diffraction method (TRD) to the rib waveguide in the pure LSE/LSM polarizations. In solving the TRD problem, a variational method of order one, i.e. that assumes at the transverse step discontinuity a single function 'trial field', which takes into explicit account the singularities at the dielectric corners, is used. The formulation leads to a scalar dispersion equation and a simple transverse equivalent network. Theoretical results for discrete bound mode propagation constant are compared with the vector finite element method. The agreement is found to be excellent and, hence, LSE/LSM provide an accurate approximation. The investigation is completed by considering a full hybrid rigorous analysis of the structure. The analysis of a single guide is extended to cover multiple coupled waveguides. The approach adopted to analyse this structure is to represent the uniform section of the coupled structure by its equivalent two-port network. In this way, the problem of multiple coupled guides is turned into a cascade of equivalent networks, which can be tackled by simple network method. The theory is applied to analyse directional couplers, three guide couplers, non symmetrical coupled waveguides and waveguide arrays. In order to complete the characterization of the modal spectrum of the rib waveguide, the continuum portion of the spectrum is derived. The approach adopted uses an eigenfunction in a manner analogous to the bound mode description of the guided fields. Finally, with knowledge of the complete spectrum, the problem of abruptly terminated rib waveguide and discontinuities between two rib waveguides are addressed. To avoid excessive computational effort a number of

  9. Persistent Memory in Single Node Delay-Coupled Reservoir Computing

    PubMed Central

    Pipa, Gordon; Toutounji, Hazem

    2016-01-01

    Delays are ubiquitous in biological systems, ranging from genetic regulatory networks and synaptic conductances, to predator/pray population interactions. The evidence is mounting, not only to the presence of delays as physical constraints in signal propagation speed, but also to their functional role in providing dynamical diversity to the systems that comprise them. The latter observation in biological systems inspired the recent development of a computational architecture that harnesses this dynamical diversity, by delay-coupling a single nonlinear element to itself. This architecture is a particular realization of Reservoir Computing, where stimuli are injected into the system in time rather than in space as is the case with classical recurrent neural network realizations. This architecture also exhibits an internal memory which fades in time, an important prerequisite to the functioning of any reservoir computing device. However, fading memory is also a limitation to any computation that requires persistent storage. In order to overcome this limitation, the current work introduces an extended version to the single node Delay-Coupled Reservoir, that is based on trained linear feedback. We show by numerical simulations that adding task-specific linear feedback to the single node Delay-Coupled Reservoir extends the class of solvable tasks to those that require nonfading memory. We demonstrate, through several case studies, the ability of the extended system to carry out complex nonlinear computations that depend on past information, whereas the computational power of the system with fading memory alone quickly deteriorates. Our findings provide the theoretical basis for future physical realizations of a biologically-inspired ultrafast computing device with extended functionality. PMID:27783690

  10. Laser to single-mode-fiber coupling: A laboratory guide

    NASA Technical Reports Server (NTRS)

    Ladany, I.

    1992-01-01

    All the information necessary to achieve reasonably efficient coupling of semiconductor lasers to single mode fibers is collected from the literature, reworked when necessary, and presented in a mostly tabular form. Formulas for determining the laser waist radius and the fiber mode radius are given. Imaging relations connecting these values with the object and image distances are given for three types of lenses: ball, hemisphere, and Gradient Index (GRIN). Sources for these lenses are indicated, and a brief discussion is given about ways of reducing feedback effects.

  11. Strong coupling between single-electron tunneling and nanomechanical motion.

    PubMed

    Steele, G A; Hüttel, A K; Witkamp, B; Poot, M; Meerwaldt, H B; Kouwenhoven, L P; van der Zant, H S J

    2009-08-28

    Nanoscale resonators that oscillate at high frequencies are useful in many measurement applications. We studied a high-quality mechanical resonator made from a suspended carbon nanotube driven into motion by applying a periodic radio frequency potential using a nearby antenna. Single-electron charge fluctuations created periodic modulations of the mechanical resonance frequency. A quality factor exceeding 10(5) allows the detection of a shift in resonance frequency caused by the addition of a single-electron charge on the nanotube. Additional evidence for the strong coupling of mechanical motion and electron tunneling is provided by an energy transfer to the electrons causing mechanical damping and unusual nonlinear behavior. We also discovered that a direct current through the nanotube spontaneously drives the mechanical resonator, exerting a force that is coherent with the high-frequency resonant mechanical motion. PMID:19628816

  12. Strong Coupling Between Single-Electron Tunneling and Nanomechanical Motion

    NASA Astrophysics Data System (ADS)

    Steele, G. A.; Hüttel, A. K.; Witkamp, B.; Poot, M.; Meerwaldt, H. B.; Kouwenhoven, L. P.; van der Zant, H. S. J.

    2009-08-01

    Nanoscale resonators that oscillate at high frequencies are useful in many measurement applications. We studied a high-quality mechanical resonator made from a suspended carbon nanotube driven into motion by applying a periodic radio frequency potential using a nearby antenna. Single-electron charge fluctuations created periodic modulations of the mechanical resonance frequency. A quality factor exceeding 105 allows the detection of a shift in resonance frequency caused by the addition of a single-electron charge on the nanotube. Additional evidence for the strong coupling of mechanical motion and electron tunneling is provided by an energy transfer to the electrons causing mechanical damping and unusual nonlinear behavior. We also discovered that a direct current through the nanotube spontaneously drives the mechanical resonator, exerting a force that is coherent with the high-frequency resonant mechanical motion.

  13. Strong coupling between single-electron tunneling and nanomechanical motion.

    PubMed

    Steele, G A; Hüttel, A K; Witkamp, B; Poot, M; Meerwaldt, H B; Kouwenhoven, L P; van der Zant, H S J

    2009-08-28

    Nanoscale resonators that oscillate at high frequencies are useful in many measurement applications. We studied a high-quality mechanical resonator made from a suspended carbon nanotube driven into motion by applying a periodic radio frequency potential using a nearby antenna. Single-electron charge fluctuations created periodic modulations of the mechanical resonance frequency. A quality factor exceeding 10(5) allows the detection of a shift in resonance frequency caused by the addition of a single-electron charge on the nanotube. Additional evidence for the strong coupling of mechanical motion and electron tunneling is provided by an energy transfer to the electrons causing mechanical damping and unusual nonlinear behavior. We also discovered that a direct current through the nanotube spontaneously drives the mechanical resonator, exerting a force that is coherent with the high-frequency resonant mechanical motion.

  14. Current rectification in a single molecule diode: the role of electrode coupling.

    PubMed

    Sherif, Siya; Rubio-Bollinger, Gabino; Pinilla-Cienfuegos, Elena; Coronado, Eugenio; Cuevas, Juan Carlos; Agraït, Nicolás

    2015-07-24

    We demonstrate large rectification ratios (> 100) in single-molecule junctions based on a metal-oxide cluster (polyoxometalate), using a scanning tunneling microscope (STM) both at ambient conditions and at low temperature. These rectification ratios are the largest ever observed in a single-molecule junction, and in addition these junctions sustain current densities larger than 10(5) A cm(-2). By following the variation of the I-V characteristics with tip-molecule separation we demonstrate unambiguously that rectification is due to asymmetric coupling to the electrodes of a molecule with an asymmetric level structure. This mechanism can be implemented in other type of molecular junctions using both organic and inorganic molecules and provides a simple strategy for the rational design of molecular diodes.

  15. Vibronic coupling in molecular crystals: A Franck-Condon Herzberg-Teller model of H-aggregate fluorescence based on quantum chemical cluster calculations

    SciTech Connect

    Wykes, M. Parambil, R.; Gierschner, J.; Beljonne, D.

    2015-09-21

    Here, we present a general approach to treating vibronic coupling in molecular crystals based on atomistic simulations of large clusters. Such clusters comprise model aggregates treated at the quantum chemical level embedded within a realistic environment treated at the molecular mechanics level. As we calculate ground and excited state equilibrium geometries and vibrational modes of model aggregates, our approach is able to capture effects arising from coupling to intermolecular degrees of freedom, absent from existing models relying on geometries and normal modes of single molecules. Using the geometries and vibrational modes of clusters, we are able to simulate the fluorescence spectra of aggregates for which the lowest excited state bears negligible oscillator strength (as is the case, e.g., ideal H-aggregates) by including both Franck-Condon (FC) and Herzberg-Teller (HT) vibronic transitions. The latter terms allow the adiabatic excited state of the cluster to couple with vibrations in a perturbative fashion via derivatives of the transition dipole moment along nuclear coordinates. While vibronic coupling simulations employing FC and HT terms are well established for single-molecules, to our knowledge this is the first time they are applied to molecular aggregates. Here, we apply this approach to the simulation of the low-temperature fluorescence spectrum of para-distyrylbenzene single-crystal H-aggregates and draw comparisons with coarse-grained Frenkel-Holstein approaches previously extensively applied to such systems.

  16. Is near-``spectroscopic accuracy'' possible for heavy atoms and coupled cluster theory? An investigation of the first ionization potentials of the atoms Ga-Kr

    NASA Astrophysics Data System (ADS)

    DeYonker, Nathan J.; Peterson, Kirk A.

    2013-04-01

    Recent developments in ab initio coupled cluster (CC) theory and correlation consistent basis sets have ushered in an era of unprecedented accuracy when studying the spectroscopy and thermodynamics of molecules containing main group elements. These same developments have recently seen application to heavier inorganic or transition metal-containing species. The present work benchmarks conventional single reference coupled cluster theory (up to full configuration interaction for valence electron correlation and coupled cluster with up to full pentuple excitations (CCSDTQP) for core-valence correlation) and explicitly correlated coupled cluster methods [CC with single, double, and perturbative triple substitutions (CCSD(T)-F12)] for the atomic ionization potentials of the six 4p elements (Ga-Kr), a property with experimental error bars no greater than a few cm-1. When second-order spin orbit coupling effects are included, a composite methodology based on CCSD(T) calculations yielded a mean signed error of just -0.039 kcal mol-1 and a mean unsigned error of 0.043 kcal mol-1. Inclusion of post-CCSD(T) correlation corrections reduced both of these values to -0.008 kcal mol-1 and 0.025 kcal mol-1, respectively, with the latter corresponding to an average error of just 9 cm-1. The maximum signed error in the latter scheme was just -0.043 kcal mol-1 (15 cm-1).

  17. Explicitly intruder-free valence-universal multireference coupled cluster theory as applied to ionization spectroscopy

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Sudip; Mitra, Asish; Sinha, Dhiman

    2006-12-01

    Although it is quite promising to compute the spectroscopic energies [say, ionization potential (IP)] via the traditional valence-universal multireference coupled cluster (VUMRCC) method based on the description of the complete model space being seriously plagued by the perennial intruder state problem, the eigenvalue independent partitioning (EIP) based VUMRCC (coined as EIP-MRCC) method is quite effective to predict the spectroscopic energies in an intruder-free manner. Hence, the EIP-MRCC method is suitable for generating both the principal IPs and the satellite IPs of the inner-valence region. An EIP strategy converts the nonlinear VUMRCC equations for M(m,n) dimensional model space of m hole and n particle to a non-Hermitian eigenproblem of larger dimension whose M(m,n) roots are only physically meaningful. To increase the quality of the computed energy differences in the sense of chemical accuracy and to locate the correct position of it in the spectrum, the inclusion of higher-body cluster operators on top of all the standard singles-doubles is not the only pivotal issue, the effect of the size of the basis set is also equally important. This paper illustrates these issues by calculating the principal and satellite IPs of HF and HCl molecules using various basis sets (viz., Dunning's cc-pVDZ, cc-pVTZ, and cc-pVQZ) via EIP-MRCC method with full inclusion of triples (abbreviated as EIP-MRCCSDT). The results seem quite encouraging in comparison with the experimental values. The controversial Π2 satellite at 28.67eV of HCl of Svensson et al. [J. Chem. Phys. 89, 7193 (1988)] is also reported.

  18. Is It Possible To Obtain Coupled Cluster Quality Energies at near Density Functional Theory Cost? Domain-Based Local Pair Natural Orbital Coupled Cluster vs Modern Density Functional Theory.

    PubMed

    Liakos, Dimitrios G; Neese, Frank

    2015-09-01

    The recently developed domain-based local pair natural orbital coupled cluster theory with single, double, and perturbative triple excitations (DLPNO-CCSD(T)) delivers results that are closely approaching those of the parent canonical coupled cluster method at a small fraction of the computational cost. A recent extended benchmark study established that, depending on the three main truncation thresholds, it is possible to approach the canonical CCSD(T) results within 1 kJ (default setting, TightPNO), 1 kcal/mol (default setting, NormalPNO), and 2-3 kcal (default setting, LoosePNO). Although thresholds for calculations with TightPNO are 2-4 times slower than those based on NormalPNO thresholds, they are still many orders of magnitude faster than canonical CCSD(T) calculations, even for small and medium sized molecules where there is little locality. The computational effort for the coupled cluster step scales nearly linearly with system size. Since, in many instances, the coupled cluster step in DLPNO-CCSD(T) is cheaper or at least not much more expensive than the preceding Hartree-Fock calculation, it is useful to compare the method against modern density functional theory (DFT), which requires an effort comparable to that of Hartree-Fock theory (at least if Hartree-Fock exchange is part of the functional definition). Double hybrid density functionals (DHDF's) even require a MP2-like step. The purpose of this article is to evaluate the cost vs accuracy ratio of DLPNO-CCSD(T) against modern DFT (including the PBE, B3LYP, M06-2X, B2PLYP, and B2GP-PLYP functionals and, where applicable, their van der Waals corrected counterparts). To eliminate any possible bias in favor of DLPNO-CCSD(T), we have chosen established benchmark sets that were specifically proposed for evaluating DFT functionals. It is demonstrated that DLPNO-CCSD(T) with any of the three default thresholds is more accurate than any of the DFT functionals. Furthermore, using the aug-cc-pVTZ basis set and

  19. Homeostatic plasticity for single node delay-coupled reservoir computing.

    PubMed

    Toutounji, Hazem; Schumacher, Johannes; Pipa, Gordon

    2015-06-01

    Supplementing a differential equation with delays results in an infinite-dimensional dynamical system. This property provides the basis for a reservoir computing architecture, where the recurrent neural network is replaced by a single nonlinear node, delay-coupled to itself. Instead of the spatial topology of a network, subunits in the delay-coupled reservoir are multiplexed in time along one delay span of the system. The computational power of the reservoir is contingent on this temporal multiplexing. Here, we learn optimal temporal multiplexing by means of a biologically inspired homeostatic plasticity mechanism. Plasticity acts locally and changes the distances between the subunits along the delay, depending on how responsive these subunits are to the input. After analytically deriving the learning mechanism, we illustrate its role in improving the reservoir's computational power. To this end, we investigate, first, the increase of the reservoir's memory capacity. Second, we predict a NARMA-10 time series, showing that plasticity reduces the normalized root-mean-square error by more than 20%. Third, we discuss plasticity's influence on the reservoir's input-information capacity, the coupling strength between subunits, and the distribution of the readout coefficients.

  20. Three coupled qubits in a single superconducting quantum circuit

    NASA Astrophysics Data System (ADS)

    Chand, Madhavi; Kundu, Suman; Nehra, N.; Raj, Cosmic; Roy, Tanay; Ranadive, A.; Patankar, Meghan P.; Vijay, R.

    We propose a new design for a 3-qubit system in the 3D circuit QED architecture. Our design exploits the geometrical symmetry of a single superconducting circuit with three degrees of freedom to generate three coupled qubits. However, only one of these is strongly coupled to the environment while the other two are protected from the Purcell effect. Nevertheless, all three qubits can be measured using the standard dispersive technique. We will present preliminary data on this circuit showing evidence of three distinct qubits that retain the essential properties of a 3D transmon, namely insensitivity to charge noise, sufficient anharmonicity and good coherence times. We will also characterize the coupling of the three qubits to each other, to the environment and to a neighboring transmon qubit. Finally, we will compare our design to previous multi-qubit circuits and discuss possible applications in quantum computing and quantum simulations. Funding: Department of Atomic Energy, Govt. of India; Department of Science and Technology, Govt. of India.

  1. A new approach to approximate equation-of-motion coupled cluster with triple excitations

    NASA Astrophysics Data System (ADS)

    Matthews, Devin A.; Stanton, John F.

    2016-09-01

    Accurate methods for excited, ionized, and electron-attached states are critical to the study of many chemical species such as reactive intermediates, radicals, and ionized systems. The equation-of-motion coupled cluster singles, doubles, and triples (EOM-CCSDT) family of methods is very accurate (roughly similar in accuracy as for CCSDT calculations of the ground state), but the computational cost scales iteratively as the eighth power of the system size. Many approximations already exist, although most either correct only the excited state or require an iterative 𝒪(n7) procedure which can also be prohibitively expensive. In this paper, new methods, termed EOM-CCSD(T)(a) and EOM-CCSD(T)(a)*, are proposed which correct both the ground and excited states based on a shared effective Hamiltonian, and the latter of which includes only non-iterative corrections to both the CCSD and EOM-CCSD energies. These methods are found to significantly improve the description of excited and ionized potential energy surfaces, equilibrium geometries, and harmonic frequencies; the accuracy is very close to that of full EOM-CCSDT.

  2. Symmetry breaking in O4(+): An application of the Brueckner coupled-cluster method

    NASA Technical Reports Server (NTRS)

    Barnes, Leslie A.; Lindh, Roland

    1994-01-01

    A recent calculation of the antisymmetric stretch frequency for the rectangular structure of quartet O4(+) using the singles and doubles quadratic configuration interaction method with a perturbational estimate of connected triple excitations (QCISD(T)) method gave a value of 3710 cm(exp -1). This anomalous frequency is shown to be a consequence of symmetry breaking effects, which occur even though the QCISD(T) solution derived from a delocalized SCF reference function lies energetically well below the two localized (symmetry-broken) solutions at the equilibrium geometry. The symmetry breaking is almost eliminated at the CCSD level of theory, but the small remaining symmetry breaking effects are magnified at the CCSD(T) level of theory so that the antisymmetric stretch frequency is still significantly in error. The use of the Brueckner coupled cluster method, however, leads to a symmetrical solution which is free of symmetry breaking effects, with an antisymmetric stretch frequency of 1322 cm(exp -1), in good agreement with our earlier calculations using the complete active space self consistent field/complete active space state interaction (CASSCF/CASSI) method.

  3. Parallel implementation of multireference coupled-cluster theories based on the reference-level parallelism

    SciTech Connect

    Brabec, Jiri; Pittner, Jiri; van Dam, Hubertus JJ; Apra, Edoardo; Kowalski, Karol

    2012-02-01

    A novel algorithm for implementing general type of multireference coupled-cluster (MRCC) theory based on the Jeziorski-Monkhorst exponential Ansatz [B. Jeziorski, H.J. Monkhorst, Phys. Rev. A 24, 1668 (1981)] is introduced. The proposed algorithm utilizes processor groups to calculate the equations for the MRCC amplitudes. In the basic formulation each processor group constructs the equations related to a specific subset of references. By flexible choice of processor groups and subset of reference-specific sufficiency conditions designated to a given group one can assure optimum utilization of available computing resources. The performance of this algorithm is illustrated on the examples of the Brillouin-Wigner and Mukherjee MRCC methods with singles and doubles (BW-MRCCSD and Mk-MRCCSD). A significant improvement in scalability and in reduction of time to solution is reported with respect to recently reported parallel implementation of the BW-MRCCSD formalism [J.Brabec, H.J.J. van Dam, K. Kowalski, J. Pittner, Chem. Phys. Lett. 514, 347 (2011)].

  4. Multireference linearized coupled cluster theory for strongly correlated systems using matrix product states

    SciTech Connect

    Sharma, Sandeep; Alavi, Ali

    2015-09-14

    We propose a multireference linearized coupled cluster theory using matrix product states (MPSs-LCC) which provides remarkably accurate ground-state energies, at a computational cost that has the same scaling as multireference configuration interaction singles and doubles, for a wide variety of electronic Hamiltonians. These range from first-row dimers at equilibrium and stretched geometries to highly multireference systems such as the chromium dimer and lattice models such as periodic two-dimensional 1-band and 3-band Hubbard models. The MPS-LCC theory shows a speed up of several orders of magnitude over the usual Density Matrix Renormalization Group (DMRG) algorithm while delivering energies in excellent agreement with converged DMRG calculations. Also, in all the benchmark calculations presented here, MPS-LCC outperformed the commonly used multi-reference quantum chemistry methods in some cases giving energies in excess of an order of magnitude more accurate. As a size-extensive method that can treat large active spaces, MPS-LCC opens up the use of multireference quantum chemical techniques in strongly correlated ab initio Hamiltonians, including two- and three-dimensional solids.

  5. Electronic structure of organic diradicals: Evaluation of the performance of coupled-cluster methods

    NASA Astrophysics Data System (ADS)

    Li, Xiangzhu; Paldus, Josef

    2008-11-01

    The performance of (i) the reduced multireference (RMR) coupled-cluster (CC) method with singles and doubles (RMR CCSD) that employs a modest-size MR CISD wave function as an external source for the most important (primary) triples and quadruples in order to account for the nondynamic correlation effects in the presence of quasidegeneracy, (ii) the RMR CCSD(T) method that adds a perturbative correction for the remaining (secondary) triples to the RMR CCSD energy, and (iii) the recently developed partially linearized MR CCSD method, which determines primary triples and quadruples using a subset of linear CC equations projected onto the corresponding higher-than-doubly excited configurations, are tested by considering the singlet-triplet splitting for several diradicals, ranging from a prototypical methylene radical to trimethylenemethane, and benzyne and pyridynium cation isomers. Both RHF and multiconfigurational self-consistent field molecular orbitals are employed. The equilibrium geometries for the lowest-lying singlet and triplet states are determined using both the density functional theory (DFT) and various CC approaches, and a comparison with both the experiment and other theoretical results, wherever available, is made. The RMR CCSD(T) results provide the most satisfactory description in all cases. The dependence of the MR diradical character on a spatial separation of radical centers, as well as the artifactual DFT geometry in the case of benzyne and pyridynium meta-isomers, is also pointed out.

  6. Perturbative treatment of triple excitations in internally contracted multireference coupled cluster theory

    NASA Astrophysics Data System (ADS)

    Hanauer, Matthias; Köhn, Andreas

    2012-05-01

    Internally contracted multireference coupled cluster (ic-MRCC) methods with perturbative treatment of triple excitations are formulated based on Dyall's definition of a zeroth-order Hamiltonian. The iterative models ic-MRCCSDT-1, ic-MRCC3, and their variants ic-MRCCSD(T), ic-MRCC(3) which determine the energy correction from triples by a non-iterative step are consistent in the single-reference limit with CCSDT-1a, CC3, CCSD(T), and CC(3), respectively. Numerical tests on the potential energy surfaces of BeH2, H2O, and N2 as well as on the structure and harmonic vibrational frequencies of the ozone molecule show that these methods account very well for higher order correlation effects. The ic-MRCCSD(T) method is further applied to the geometry optimization and harmonic frequencies of the symmetric vibrational modes of the binuclear transition metal oxide Ni2O2, to the singlet-triplet splittings of o-, m-, and p-benzyne and to a ring-opening reaction of an azirine compound with the molecular formula C6H7NO. The size of the active spaces used in this study ranges from CAS(2,2) to CAS(8,8). Comparisons of results based on differently sized active spaces indicate that the ic-MRCCSD(T) method provides a highly accurate and efficient treatment of both static and dynamic electron correlation in connection with minimal active spaces.

  7. Multireference linearized coupled cluster theory for strongly correlated systems using matrix product states.

    PubMed

    Sharma, Sandeep; Alavi, Ali

    2015-09-14

    We propose a multireference linearized coupled cluster theory using matrix product states (MPSs-LCC) which provides remarkably accurate ground-state energies, at a computational cost that has the same scaling as multireference configuration interaction singles and doubles, for a wide variety of electronic Hamiltonians. These range from first-row dimers at equilibrium and stretched geometries to highly multireference systems such as the chromium dimer and lattice models such as periodic two-dimensional 1-band and 3-band Hubbard models. The MPS-LCC theory shows a speed up of several orders of magnitude over the usual Density Matrix Renormalization Group (DMRG) algorithm while delivering energies in excellent agreement with converged DMRG calculations. Also, in all the benchmark calculations presented here, MPS-LCC outperformed the commonly used multi-reference quantum chemistry methods in some cases giving energies in excess of an order of magnitude more accurate. As a size-extensive method that can treat large active spaces, MPS-LCC opens up the use of multireference quantum chemical techniques in strongly correlated ab initio Hamiltonians, including two- and three-dimensional solids. PMID:26374008

  8. Optical Rotation from Coupled Cluster and Density Functional Theory: The Role of Basis Set Convergence.

    PubMed

    Haghdani, Shokouh; Åstrand, Per-Olof; Koch, Henrik

    2016-02-01

    We have calculated the electronic optical rotation of seven molecules using coupled cluster singles-doubles (CCSD) and the second-order approximation (CC2) employing the aug-cc-pVXZ (X = D, T, or Q) basis sets. We have also compared to time-dependent density functional theory (TDDFT) by utilizing two functionals B3LYP and CAM-B3LYP and the same basis sets. Using relative and absolute error schemes, our calculations demonstrate that the CAM-B3LYP functional predicts optical rotation with the minimum deviations compared to CCSD at λ = 355 and 589.3 nm. Furthermore, our results illustrate that the aug-cc-pVDZ basis set provides the optical rotation in good agreement with the larger basis sets for molecules not possessing small-angle optical rotation at λ = 589.3 nm. We have also performed several two-point inverse power extrapolations for the basis set convergence, i.e., OR(∞) + AX(-n), using the CC2 model at λ = 355 and 589.3 nm. Our results reveal that a two-point inverse power extrapolation with the aug-cc-pVTZ and aug-cc-pVQZ basis sets at n = 5 provides optical rotation deviations similar to those of aug-cc-pV5Z with respect to the basis limit.

  9. Perturbative approximation to hybrid equation of motion coupled cluster/effective fragment potential method

    SciTech Connect

    Ghosh, Debashree

    2014-03-07

    Hybrid quantum mechanics/molecular mechanics (QM/MM) methods provide an attractive way to closely retain the accuracy of the QM method with the favorable computational scaling of the MM method. Therefore, it is not surprising that QM/MM methods are being increasingly used for large chemical/biological systems. Hybrid equation of motion coupled cluster singles doubles/effective fragment potential (EOM-CCSD/EFP) methods have been developed over the last few years to understand the effect of solvents and other condensed phases on the electronic spectra of chromophores. However, the computational cost of this approach is still dominated by the steep scaling of the EOM-CCSD method. In this work, we propose and implement perturbative approximations to the EOM-CCSD method in this hybrid scheme to reduce the cost of EOM-CCSD/EFP. The timings and accuracy of this hybrid approach is tested for calculation of ionization energies, excitation energies, and electron affinities of microsolvated nucleic acid bases (thymine and cytosine), phenol, and phenolate.

  10. Multireference linearized coupled cluster theory for strongly correlated systems using matrix product states.

    PubMed

    Sharma, Sandeep; Alavi, Ali

    2015-09-14

    We propose a multireference linearized coupled cluster theory using matrix product states (MPSs-LCC) which provides remarkably accurate ground-state energies, at a computational cost that has the same scaling as multireference configuration interaction singles and doubles, for a wide variety of electronic Hamiltonians. These range from first-row dimers at equilibrium and stretched geometries to highly multireference systems such as the chromium dimer and lattice models such as periodic two-dimensional 1-band and 3-band Hubbard models. The MPS-LCC theory shows a speed up of several orders of magnitude over the usual Density Matrix Renormalization Group (DMRG) algorithm while delivering energies in excellent agreement with converged DMRG calculations. Also, in all the benchmark calculations presented here, MPS-LCC outperformed the commonly used multi-reference quantum chemistry methods in some cases giving energies in excess of an order of magnitude more accurate. As a size-extensive method that can treat large active spaces, MPS-LCC opens up the use of multireference quantum chemical techniques in strongly correlated ab initio Hamiltonians, including two- and three-dimensional solids.

  11. Iterative universal state selective correction for the Brillouin-Wigner multireference coupled-cluster theory.

    PubMed

    Banik, Subrata; Ravichandran, Lalitha; Brabec, Jiří; Hubač, Ivan; Kowalski, Karol; Pittner, Jiří

    2015-03-21

    As a further development of the previously introduced a posteriori Universal State-Selective (USS) corrections [K. Kowalski, J. Chem. Phys. 134, 194107 (2011); J. Brabec et al., ibid. 136, 124102 (2012)], we suggest an iterative form of the USS correction by means of correcting effective Hamiltonian matrix elements. We also formulate USS corrections via the left Bloch equations. The convergence of the USS corrections with excitation level towards the full configuration interaction (FCI) limit is also investigated. Various forms of the USS and simplified diagonal USS corrections at the singles and doubles and perturbative triple levels are numerically assessed on several model systems and on the ozone and tetramethyleneethane molecules. It is shown that the iterative USS correction can successfully replace the previously developed a posteriori Brillouin-Wigner coupled cluster size-extensivity correction, while it is not sensitive to intruder states and performs well also in other cases when the a posteriori one fails, like, e.g., for the asymmetric vibration mode of ozone. PMID:25796230

  12. Perturbative approximation to hybrid equation of motion coupled cluster/effective fragment potential method.

    PubMed

    Ghosh, Debashree

    2014-03-01

    Hybrid quantum mechanics/molecular mechanics (QM/MM) methods provide an attractive way to closely retain the accuracy of the QM method with the favorable computational scaling of the MM method. Therefore, it is not surprising that QM/MM methods are being increasingly used for large chemical/biological systems. Hybrid equation of motion coupled cluster singles doubles/effective fragment potential (EOM-CCSD/EFP) methods have been developed over the last few years to understand the effect of solvents and other condensed phases on the electronic spectra of chromophores. However, the computational cost of this approach is still dominated by the steep scaling of the EOM-CCSD method. In this work, we propose and implement perturbative approximations to the EOM-CCSD method in this hybrid scheme to reduce the cost of EOM-CCSD/EFP. The timings and accuracy of this hybrid approach is tested for calculation of ionization energies, excitation energies, and electron affinities of microsolvated nucleic acid bases (thymine and cytosine), phenol, and phenolate. PMID:24606347

  13. Recent Advances in Open-Shell Perturbation Theory and Coupled-Cluster Theory

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    Comparisons of various recently developed open-shell RHF perturbation theories will be presented. Among the aspects considered are spin-contamination, computational cost, and quality of numerical results. In addition, a new approach to avoid the disk storage and I/O bottlenecks in large scale coupled-cluster calculations will be discussed.

  14. Protonation and Proton-Coupled Electron Transfer at S-Ligated [4Fe-4S] Clusters

    PubMed Central

    Morris, Wesley D.; Darcy, Julia W.; Mayer, James M.

    2015-01-01

    Biological [Fe-S] clusters are increasingly recognized to undergo proton-coupled electron transfer (PCET), but the site of protonation, mechanism, and role for PCET remains largely unknown. Here we explore this reactivity with synthetic model clusters. Protonation of the arylthiolate-ligated [4Fe-4S] cluster [Fe4S4(SAr)4]2- (1, SAr = S-2,4-6-(iPr)3C6H2) leads to thiol dissociation, reversibly forming [Fe4S4(SAr)3L]1- (2) + ArSH (L = solvent, and/or conjugate base). Solutions of 2 + ArSH react with the nitroxyl radical TEMPO to give [Fe4S4(SAr)4]1- (1ox) and TEMPOH. This reaction involves PCET coupled to thiolate association and may proceed via the unobserved protonated cluster [Fe4S4(SAr)3(HSAr)]1-(1-H). Similar reactions with this and related clusters proceed comparably. An understanding of the PCET thermochemistry of this cluster system has been developed, encompassing three different redox levels and two protonation states. PMID:25965413

  15. Protonation and Proton-Coupled Electron Transfer at S-Ligated [4Fe-4S] Clusters.

    PubMed

    Saouma, Caroline T; Morris, Wesley D; Darcy, Julia W; Mayer, James M

    2015-06-15

    Biological [Fe-S] clusters are increasingly recognized to undergo proton-coupled electron transfer (PCET), but the site of protonation, mechanism, and role for PCET remains largely unknown. Here we explore this reactivity with synthetic model clusters. Protonation of the arylthiolate-ligated [4Fe-4S] cluster [Fe4 S4 (SAr)4 ](2-) (1, SAr=S-2,4-6-(iPr)3 C6 H2 ) leads to thiol dissociation, reversibly forming [Fe4 S4 (SAr)3 L](1-) (2) and ArSH (L=solvent, and/or conjugate base). Solutions of 2+ArSH react with the nitroxyl radical TEMPO to give [Fe4 S4 (SAr)4 ](1-) (1ox ) and TEMPOH. This reaction involves PCET coupled to thiolate association and may proceed via the unobserved protonated cluster [Fe4 S4 (SAr)3 (HSAr)](1-) (1-H). Similar reactions with this and related clusters proceed comparably. An understanding of the PCET thermochemistry of this cluster system has been developed, encompassing three different redox levels and two protonation states. PMID:25965413

  16. A coupled cluster study of the spectroscopic properties and electric dipole moment functions of nitrous sulfide

    NASA Astrophysics Data System (ADS)

    Pak, Youngshang; Woods, R. Claude; Peterson, Kirk A.

    1996-05-01

    Three-dimensional near-equilibrium potential energy surfaces and dipole moment functions have been calculated for the ground state of nitrous sulfide (NNS), using a large basis set and the coupled cluster method with single and double substitutions, augmented by a perturbative estimate of triple excitations [CCSD(T)]. The CCSD(T) equilibrium bond lengths with a correlation consistent polarized valence quadruple zeta (cc-pVQZ) basis set are re(NN)=1.1284 Å and Re(NS)=1.5904 Å, which have been corrected to 1.126 and 1.581 Å, respectively, based on the results of the corresponding calculations on the NN and NS diatomics. Rotational-vibrational energy levels and the corresponding infrared intensities for NNS have been determined using variational methods with the CCSD(T)/cc-pVQZ potential energy and dipole moment functions. The calculated band origins (cm-1) ν1, ν2, and ν3 and their intensities (km/mol) at the CCSD(T)/cc-pVQZ level are 740.7/38.6, 463.1/0.01, and 2061.4/385.8, respectively. A complete set of second-order spectroscopic constants have been obtained from the ab initio potential energy surface using both the standard perturbation theory formulas and the variationally determined rovibrational energies. Comparison of the theoretical vibration-rotation interaction constants (αi) with those obtained from the published high resolution Fourier transform infrared (FTIR) spectra clearly demonstrate that the rotational quantum number (J) assignments must be revised in all the observed hot bands. A new set of spectroscopic constants for NNS, derived from a reanalysis of the published FTIR frequencies, is presented. These are in excellent agreement with our CCSD(T) predictions. Values of the quadrupole coupling constants at each nucleus are predicted using multireference configuration interaction (MRCI) with the same cc-pVQZ basis.

  17. Experimental observation of chimera and cluster states in a minimal globally coupled network

    NASA Astrophysics Data System (ADS)

    Hart, Joseph D.; Bansal, Kanika; Murphy, Thomas E.; Roy, Rajarshi

    2016-09-01

    A "chimera state" is a dynamical pattern that occurs in a network of coupled identical oscillators when the symmetry of the oscillator population is broken into synchronous and asynchronous parts. We report the experimental observation of chimera and cluster states in a network of four globally coupled chaotic opto-electronic oscillators. This is the minimal network that can support chimera states, and our study provides new insight into the fundamental mechanisms underlying their formation. We use a unified approach to determine the stability of all the observed partially synchronous patterns, highlighting the close relationship between chimera and cluster states as belonging to the broader phenomenon of partial synchronization. Our approach is general in terms of network size and connectivity. We also find that chimera states often appear in regions of multistability between global, cluster, and desynchronized states.

  18. Subharmonic phase clusters in the complex Ginzburg-Landau equation with nonlinear global coupling.

    PubMed

    García-Morales, Vladimir; Orlov, Alexander; Krischer, Katharina

    2010-12-01

    A wide variety of subharmonic n -phase cluster patterns was observed in experiments with spatially extended chemical and electrochemical oscillators. These patterns cannot be captured with a phase model. We demonstrate that the introduction of a nonlinear global coupling (NGC) in the complex Ginzburg-Landau equation has subharmonic cluster pattern solutions in wide parameter ranges. The NGC introduces a conservation law for the oscillatory state of the homogeneous mode, which describes the strong oscillations of the mean field in the experiments. We show that the NGC causes a pronounced 2:1 self-resonance on any spatial inhomogeneity, leading to two-phase subharmonic clustering, as well as additional higher resonances. Nonequilibrium Ising-Bloch transitions occur as the coupling strength is varied.

  19. Spin-Orbit Coupling Effects in AumPtn Clusters (m + n = 4).

    PubMed

    Moreno, Norberto; Ferraro, Franklin; Flórez, Elizabeth; Hadad, C Z; Restrepo, Albeiro

    2016-03-17

    A study of AumPtn(m + n = 4) clusters with and without spin-orbit (SO) coupling using scalar relativistic (SR) and two component methods with the ZORA Hamiltonian was carried out. We employed the PW91 functional in conjunction with the all-electron TZ2P basis set. This paper offers a detailed analysis of the SO effects on the cluster geometries, on the LUMO-HOMO gap, on the charge distribution, and on the relative energies for each relativistic method. In general, SO coupling led to an energetic rearrangement of the species, to changes in geometries and structural preferences, to changes in the structural identity of the global minimum for the Au3Pt, AuPt3 and Pt4 cases, and to a reduction of relative energies among the clusters, an effect that appears stronger as the amount of Pt increases.

  20. Distributed adaptive pinning control for cluster synchronization of nonlinearly coupled Lur'e networks

    NASA Astrophysics Data System (ADS)

    Tang, Ze; Park, Ju H.; Lee, Tae H.

    2016-10-01

    This paper is devoted to the cluster synchronization issue of nonlinearly coupled Lur'e networks under the distributed adaptive pinning control strategy. The time-varying delayed networks consisted of identical and nonidentical Lur'e systems are discussed respectively by applying the edge-based pinning control scheme. In each cluster, the edges belonging to the spanning tree are pinned. In view of the nonlinearly couplings of the networks, for the first time, an efficient distributed nonlinearly adaptive update law based on the local information of the dynamical behaviors of node is proposed. Sufficient criteria for the achievement of cluster synchronization are derived based on S-procedure, Kronecker product and Lyapunov stability theory. Additionally, some illustrative examples are provided to demonstrate the effectiveness of the theoretical results.

  1. Galaxy cluster constraints on the coupling to photons of low-mass scalars

    NASA Astrophysics Data System (ADS)

    Brax, Philippe; Brun, Pierre; Wouters, Denis

    2015-10-01

    We consider a broad class of interactions between radiation and a light scalar field, including both conformal and disformal couplings. Such a scalar field potentially acts on cosmological scales as dark energy and could also appear in modified gravity theories. We study the consequences of these couplings on the mixing between the scalar field and photons in galaxy clusters in the presence of a magnetic field. In particular we focus on the resulting turbulence-induced irregularities in the x-ray and UV bands. We find new bounds on the photon-to-scalar couplings, both conformal and disformal, which complement laboratory experiments and other astrophysical constraints.

  2. Explicitly correlated coupled-cluster theory using cusp conditions. II. Treatment of connected triple excitations

    NASA Astrophysics Data System (ADS)

    Köhn, Andreas

    2010-11-01

    The coupled-cluster singles and doubles method augmented with single Slater-type correlation factors (CCSD-F12) determined by the cusp conditions (also denoted as SP ansatz) yields results close to the basis set limit with only small overhead compared to conventional CCSD. Quantitative calculations on many-electron systems, however, require to include the effect of connected triple excitations at least. In this contribution, the recently proposed [A. Köhn, J. Chem. Phys. 130, 131101 (2009)] extended SP ansatz and its application to the noniterative triples correction CCSD(T) is reviewed. The approach allows to include explicit correlation into connected triple excitations without introducing additional unknown parameters. The explicit expressions are presented and analyzed, and possible simplifications to arrive at a computationally efficient scheme are suggested. Numerical tests based on an implementation obtained by an automated approach are presented. Using a partial wave expansion for the neon atom, we can show that the proposed ansatz indeed leads to the expected (Lmax+1)-7 convergence of the noniterative triples correction, where Lmax is the maximum angular momentum in the orbital expansion. Further results are reported for a test set of 29 molecules, employing Peterson's F12-optimized basis sets. We find that the customary approach of using the conventional noniterative triples correction on top of a CCSD-F12 calculation leads to significant basis set errors. This, however, is not always directly visible for total CCSD(T) energies due to fortuitous error compensation. The new approach offers a thoroughly explicitly correlated CCSD(T)-F12 method with improved basis set convergence of the triples contributions to both total and relative energies.

  3. Benchmarking the completely renormalised equation-of-motion coupled-cluster approaches for vertical excitation energies

    SciTech Connect

    Piecuch, Piotr; Hansen, Jared A.; Ajala, Adeayo O.

    2015-09-15

    When vertical energies are excited for a comprehensive test set of about 150 singlet excited states of 28 medium-sized organic molecules computed using two variants of the completely renormalised (CR) equation-of-motion (EOM) coupled-cluster (CC) method with singles, doubles, and non-iterative triples, abbreviated as δ-CR-EOMCCSD(T), and the analogous two variants of the newer, left-eigenstate δ-CR-EOMCC(2,3) approach are benchmarked against the previously published CASPT2, CC3, and EOMCCSDT-3 results, as well as the suggested theoretical best estimate (TBE) values. The δ-CR-EOMCC approaches are also used to identify and characterise about 50 additional excited states, including several states having substantial two-electron excitation components, which have not been found in the previous work and which can be used in future benchmark studies. We demonstrated that the non-iterative triples corrections to the EOMCCSD excitation energies defining the relatively inexpensive, single-reference, black-box δ-CR-EOMCC approaches provide significant improvements in the EOMCCSD data, while closely matching the results of the iterative and considerably more expensive CC3 and EOMCCSDT-3 calculations and their CASPT2 and TBE counterparts. It is also shown that the δ-CR-EOMCC methods, especially δ-CR-EOMCC(2,3), are capable of bringing the results of the CC3 and EOMCCSDT-3 calculations to a closer agreement with the CASPT2 and TBE data, demonstrating the utility of the cost-effective δ-CR-EOMCC methods in applications involving molecular electronic spectra. Finally, we show that there may exist a relationship between the magnitude of the triples corrections defining δ-CR-EOMCC approaches and the reduced excitation level diagnostic resulting from EOMCCSD.

  4. Benchmarking the completely renormalised equation-of-motion coupled-cluster approaches for vertical excitation energies

    DOE PAGES

    Piecuch, Piotr; Hansen, Jared A.; Ajala, Adeayo O.

    2015-09-15

    When vertical energies are excited for a comprehensive test set of about 150 singlet excited states of 28 medium-sized organic molecules computed using two variants of the completely renormalised (CR) equation-of-motion (EOM) coupled-cluster (CC) method with singles, doubles, and non-iterative triples, abbreviated as δ-CR-EOMCCSD(T), and the analogous two variants of the newer, left-eigenstate δ-CR-EOMCC(2,3) approach are benchmarked against the previously published CASPT2, CC3, and EOMCCSDT-3 results, as well as the suggested theoretical best estimate (TBE) values. The δ-CR-EOMCC approaches are also used to identify and characterise about 50 additional excited states, including several states having substantial two-electron excitation components, whichmore » have not been found in the previous work and which can be used in future benchmark studies. We demonstrated that the non-iterative triples corrections to the EOMCCSD excitation energies defining the relatively inexpensive, single-reference, black-box δ-CR-EOMCC approaches provide significant improvements in the EOMCCSD data, while closely matching the results of the iterative and considerably more expensive CC3 and EOMCCSDT-3 calculations and their CASPT2 and TBE counterparts. It is also shown that the δ-CR-EOMCC methods, especially δ-CR-EOMCC(2,3), are capable of bringing the results of the CC3 and EOMCCSDT-3 calculations to a closer agreement with the CASPT2 and TBE data, demonstrating the utility of the cost-effective δ-CR-EOMCC methods in applications involving molecular electronic spectra. Finally, we show that there may exist a relationship between the magnitude of the triples corrections defining δ-CR-EOMCC approaches and the reduced excitation level diagnostic resulting from EOMCCSD.« less

  5. A view on coupled cluster perturbation theory using a bivariational Lagrangian formulation.

    PubMed

    Kristensen, Kasper; Eriksen, Janus J; Matthews, Devin A; Olsen, Jeppe; Jørgensen, Poul

    2016-02-14

    We consider two distinct coupled cluster (CC) perturbation series that both expand the difference between the energies of the CCSD (CC with single and double excitations) and CCSDT (CC with single, double, and triple excitations) models in orders of the Møller-Plesset fluctuation potential. We initially introduce the E-CCSD(T-n) series, in which the CCSD amplitude equations are satisfied at the expansion point, and compare it to the recently developed CCSD(T-n) series [J. J. Eriksen et al., J. Chem. Phys. 140, 064108 (2014)], in which not only the CCSD amplitude, but also the CCSD multiplier equations are satisfied at the expansion point. The computational scaling is similar for the two series, and both are term-wise size extensive with a formal convergence towards the CCSDT target energy. However, the two series are different, and the CCSD(T-n) series is found to exhibit a more rapid convergence up through the series, which we trace back to the fact that more information at the expansion point is utilized than for the E-CCSD(T-n) series. The present analysis can be generalized to any perturbation expansion representing the difference between a parent CC model and a higher-level target CC model. In general, we demonstrate that, whenever the parent parameters depend upon the perturbation operator, a perturbation expansion of the CC energy (where only parent amplitudes are used) differs from a perturbation expansion of the CC Lagrangian (where both parent amplitudes and parent multipliers are used). For the latter case, the bivariational Lagrangian formulation becomes more than a convenient mathematical tool, since it facilitates a different and faster convergent perturbation series than the simpler energy-based expansion.

  6. The Effect of Approximating Some Molecular Integrals in Coupled-Cluster Calculations: Fundamental Frequencies and Rovibrational Spectroscopic Constants of Cyclopropenylidene

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Dateo, Christopher E.

    2005-01-01

    The singles and doubles coupled-cluster method that includes a perturbational estimate of connected triple excitations, denoted CCSD(T), has been used, in conjunction with approximate integral techniques, to compute highly accurate rovibrational spectroscopic constants of cyclopropenylidene, C3H2. The approximate integral technique was proposed in 1994 by Rendell and Lee in order to avoid disk storage and input/output bottlenecks, and today it will also significantly aid in the development of algorithms for distributed memory, massively parallel computer architectures. It is shown in this study that use of approximate integrals does not impact the accuracy of CCSD(T) calculations. In addition, the most accurate spectroscopic data yet for C3H2 is presented based on a CCSD(T)/cc-pVQZ quartic force field that is modified to include the effects of core-valence electron correlation. Cyclopropenylidene is of great astronomical and astrobiological interest because it is the smallest aromatic ringed compound to be positively identified in the interstellar medium, and is thus involved in the prebiotic processing of carbon and hydrogen. The singles and doubles coupled-cluster method that includes a perturbational estimate of

  7. A Ferromagnetic Salicylaldoximate/Azide Mn(II)2Mn(III)6 Cluster with an S = 17 Ground State and a Single-Molecule-Magnet Response.

    PubMed

    Vicente, R; El Fallah, M S; Casanovas, B; Font-Bardia, M; Escuer, A

    2016-06-20

    One new Mn(II)2Mn(III)6 cluster exhibiting an S = 17 spin ground state and single-molecule-magnet properties has been designed linking Mn(III)3-salicylaldoximate triangles and tetracoordinated Mn(II) cations by means of end-on azido bridges. The ferromagnetic coupling has been rationalized as a function of their structural parameters.

  8. A Ferromagnetic Salicylaldoximate/Azide Mn(II)2Mn(III)6 Cluster with an S = 17 Ground State and a Single-Molecule-Magnet Response.

    PubMed

    Vicente, R; El Fallah, M S; Casanovas, B; Font-Bardia, M; Escuer, A

    2016-06-20

    One new Mn(II)2Mn(III)6 cluster exhibiting an S = 17 spin ground state and single-molecule-magnet properties has been designed linking Mn(III)3-salicylaldoximate triangles and tetracoordinated Mn(II) cations by means of end-on azido bridges. The ferromagnetic coupling has been rationalized as a function of their structural parameters. PMID:27227379

  9. Signal transduction across cellular membranes can be mediated by coupling of the clustering of anchored proteins in both leaflets

    NASA Astrophysics Data System (ADS)

    Yue, Tongtao; Zhang, Xianren

    2012-01-01

    One key question in signal transduction is how the signal is relayed from the outer leaflet of a cellular membrane to the inner leaflet. Using a simulation model, a mechanism for the mediation of signal transduction is proposed here in which the coupling between membrane proteins in different leaflets can be achieved by the clustering of anchored proteins, without recruiting transmembrane proteins. Depending on the hydrophobic length of the anchored proteins, three coupling patterns, including face-to-face clustering, interdigitated clustering, and weak-coupled clustering, are observed in this work. This observation provides a possible explanation of how a particular downstream signaling pathway is selected.

  10. Mobile clusters of single board computers: an option for providing resources to student projects and researchers.

    PubMed

    Baun, Christian

    2016-01-01

    Clusters usually consist of servers, workstations or personal computers as nodes. But especially for academic purposes like student projects or scientific projects, the cost for purchase and operation can be a challenge. Single board computers cannot compete with the performance or energy-efficiency of higher-value systems, but they are an option to build inexpensive cluster systems. Because of the compact design and modest energy consumption, it is possible to build clusters of single board computers in a way that they are mobile and can be easily transported by the users. This paper describes the construction of such a cluster, useful applications and the performance of the single nodes. Furthermore, the clusters' performance and energy-efficiency is analyzed by executing the High Performance Linpack benchmark with a different number of nodes and different proportion of the systems total main memory utilized. PMID:27064532

  11. Mobile clusters of single board computers: an option for providing resources to student projects and researchers.

    PubMed

    Baun, Christian

    2016-01-01

    Clusters usually consist of servers, workstations or personal computers as nodes. But especially for academic purposes like student projects or scientific projects, the cost for purchase and operation can be a challenge. Single board computers cannot compete with the performance or energy-efficiency of higher-value systems, but they are an option to build inexpensive cluster systems. Because of the compact design and modest energy consumption, it is possible to build clusters of single board computers in a way that they are mobile and can be easily transported by the users. This paper describes the construction of such a cluster, useful applications and the performance of the single nodes. Furthermore, the clusters' performance and energy-efficiency is analyzed by executing the High Performance Linpack benchmark with a different number of nodes and different proportion of the systems total main memory utilized.

  12. High speed single charge coupled device Cranz-Schardin camera

    NASA Astrophysics Data System (ADS)

    Deblock, Y.; Ducloux, O.; Derbesse, L.; Merlen, A.; Pernod, P.

    2007-03-01

    This article describes an ultrahigh speed visualization system based on a miniaturization of the Cranz-Schardin principle. It uses a set of high power light emitting diodes (LEDs) (Golden Dragon) as the light source and a highly sensitive charge coupled device (CCD) camera for reception. Each LED is fired in sequence and images the refraction index variation between two relay lenses, on a partial region of a CCD image sensor. The originality of this system consists in achieving several images on a single CCD during a frame time. The number of images is 4. The time interval between successive firings determines the speed of the imaging system. This time lies from 100nsto10μs. The light pulse duration lies from 100nsto10μs. The principle and the optical and electronic parts of such a system are described. As an example, some images of acoustic waves propagating in water are presented.

  13. Carbon X-ray absorption spectra of fluoroethenes and acetone: A study at the coupled cluster, density functional, and static-exchange levels of theory

    SciTech Connect

    Fransson, Thomas; Norman, Patrick; Coriani, Sonia; Christiansen, Ove

    2013-03-28

    Near carbon K-edge X-ray absorption fine structure spectra of a series of fluorine-substituted ethenes and acetone have been studied using coupled cluster and density functional theory (DFT) polarization propagator methods, as well as the static-exchange (STEX) approach. With the complex polarization propagator (CPP) implemented in coupled cluster theory, relaxation effects following the excitation of core electrons are accounted for in terms of electron correlation, enabling a systematic convergence of these effects with respect to electron excitations in the cluster operator. Coupled cluster results have been used as benchmarks for the assessment of propagator methods in DFT as well as the state-specific static-exchange approach. Calculations on ethene and 1,1-difluoroethene illustrate the possibility of using nonrelativistic coupled cluster singles and doubles (CCSD) with additional effects of electron correlation and relativity added as scalar shifts in energetics. It has been demonstrated that CPP spectra obtained with coupled cluster singles and approximate doubles (CC2), CCSD, and DFT (with a Coulomb attenuated exchange-correlation functional) yield excellent predictions of chemical shifts for vinylfluoride, 1,1-difluoroethene, trifluoroethene, as well as good spectral features for acetone in the case of CCSD and DFT. Following this, CPP-DFT is considered to be a viable option for the calculation of X-ray absorption spectra of larger {pi}-conjugated systems, and CC2 is deemed applicable for chemical shifts but not for studies of fine structure features. The CCSD method as well as the more approximate CC2 method are shown to yield spectral features relating to {pi}*-resonances in good agreement with experiment, not only for the aforementioned molecules but also for ethene, cis-1,2-difluoroethene, and tetrafluoroethene. The STEX approach is shown to underestimate {pi}*-peak separations due to spectral compressions, a characteristic which is inherent to this

  14. Carbon X-ray absorption spectra of fluoroethenes and acetone: a study at the coupled cluster, density functional, and static-exchange levels of theory.

    PubMed

    Fransson, Thomas; Coriani, Sonia; Christiansen, Ove; Norman, Patrick

    2013-03-28

    Near carbon K-edge X-ray absorption fine structure spectra of a series of fluorine-substituted ethenes and acetone have been studied using coupled cluster and density functional theory (DFT) polarization propagator methods, as well as the static-exchange (STEX) approach. With the complex polarization propagator (CPP) implemented in coupled cluster theory, relaxation effects following the excitation of core electrons are accounted for in terms of electron correlation, enabling a systematic convergence of these effects with respect to electron excitations in the cluster operator. Coupled cluster results have been used as benchmarks for the assessment of propagator methods in DFT as well as the state-specific static-exchange approach. Calculations on ethene and 1,1-difluoroethene illustrate the possibility of using nonrelativistic coupled cluster singles and doubles (CCSD) with additional effects of electron correlation and relativity added as scalar shifts in energetics. It has been demonstrated that CPP spectra obtained with coupled cluster singles and approximate doubles (CC2), CCSD, and DFT (with a Coulomb attenuated exchange-correlation functional) yield excellent predictions of chemical shifts for vinylfluoride, 1,1-difluoroethene, trifluoroethene, as well as good spectral features for acetone in the case of CCSD and DFT. Following this, CPP-DFT is considered to be a viable option for the calculation of X-ray absorption spectra of larger π-conjugated systems, and CC2 is deemed applicable for chemical shifts but not for studies of fine structure features. The CCSD method as well as the more approximate CC2 method are shown to yield spectral features relating to π∗-resonances in good agreement with experiment, not only for the aforementioned molecules but also for ethene, cis-1,2-difluoroethene, and tetrafluoroethene. The STEX approach is shown to underestimate π∗-peak separations due to spectral compressions, a characteristic which is inherent to this

  15. A Comparison of Single Sample and Bootstrap Methods to Assess Mediation in Cluster Randomized Trials

    ERIC Educational Resources Information Center

    Pituch, Keenan A.; Stapleton, Laura M.; Kang, Joo Youn

    2006-01-01

    A Monte Carlo study examined the statistical performance of single sample and bootstrap methods that can be used to test and form confidence interval estimates of indirect effects in two cluster randomized experimental designs. The designs were similar in that they featured random assignment of clusters to one of two treatment conditions and…

  16. Antenna-coupled Photoemission from Single Quantum Emitters

    NASA Astrophysics Data System (ADS)

    Bharadwaj, Palash

    Optical antennas are analogs of their radiowave and microwave counterparts, and can be defined as devices that serve to efficiently convert free-propagating optical radiation to localized energy, and vice-versa. Colloidal metal nanoparticles with their strong plasmonic optical response offer a convenient realization of optical antennas. Such nanoparticle antennas serve to spatially enhance and localize fields, and modify the excitation rate and the radiative decay rate when placed close to single emitters (molecules, quantum dots, etc.). In addition, they can also cause undesirable losses, leading to an increase in the non-radiative decay rates of these emitters. This interplay of rates can lead to a strong modification of the emission characteristics over the intrinsic behavior. We study photoemission from single emitters coupled to antennas of different geometries made from colloidal metal nanoparticles. We demonstrate enhancements of fluorescence from single quantum emitters by a factor 10 to 100, with the highest enhancements resulting for molecules with very low intrinsic quantum yields. Such enhancements afford an improvement in resolution for fluorescence imaging down to lambda/40. We also investigate changes to fluorescence blinking of a colloidal quantum dots (QD) coupled to an antenna, as a function of antenna-QD distance. We find that power-law blinking is preserved unaltered even as the antenna drastically modifies the excitonic decay rate in the QD, and reduces the blinking probability. This resilience of the power-law to change provides evidence that blinking statistics are not swayed by environment-induced variations in kinetics, and offers clues towards identifying the as-yet unknown mechanism behind universal fluorescence intermittency. Finally, in analogy with traditional electromagnetic antennas, we excite proto-typical optical antennas using electrons (current) instead of photons (fields). We excite localized plasmons using low energy tunneling

  17. General active space commutator-based coupled cluster theory of general excitation rank for electronically excited states: Implementation and application to ScH

    SciTech Connect

    Hubert, Mickaël; Loras, Jessica; Fleig, Timo; Olsen, Jeppe

    2013-11-21

    We present a new implementation of general excitation rank coupled cluster theory for electronically excited states based on the single-reference multi-reference formalism. The method may include active-space selected and/or general higher excitations by means of the general active space concept. It may employ molecular integrals over the four-component Lévy-Leblond Hamiltonian or the relativistic spin-orbit-free four-component Hamiltonian of Dyall. In an initial application to ground- and excited states of the scandium monohydride molecule we report spectroscopic constants using basis sets of up to quadruple-zeta quality and up to full iterative triple excitations in the cluster operators. Effects due to spin-orbit interaction are evaluated using two-component multi-reference configuration interaction for assessing the accuracy of the coupled cluster results.

  18. Sizeable Kane-Mele-like spin orbit coupling in graphene decorated with iridium clusters

    NASA Astrophysics Data System (ADS)

    Qin, Yuyuan; Wang, Siqi; Wang, Rui; Bu, Haijun; Wang, Xuefeng; Wang, Xinran; Song, Fengqi; Wang, Baigeng; Wang, Guanghou

    2016-05-01

    The spin-orbit coupling strength of graphene can be enhanced by depositing iridium nanoclusters. Weak localization is intensely suppressed near zero fields after the cluster deposition, rather than changing to weak anti-localization. Fitting the magnetoresistance gives the spin relaxation time, which increases by two orders with the application of a back gate. The spin relaxation time is found to be proportional to the electronic elastic scattering time, demonstrating the Elliot-Yafet spin relaxation mechanism. A sizeable Kane-Mele-like coupling strength of over 5.5 meV is determined by extrapolating the temperature dependence to zero.

  19. Coupled-cluster theory for atoms and molecules in strong magnetic fields

    SciTech Connect

    Stopkowicz, Stella Lange, Kai K.; Tellgren, Erik I.; Helgaker, Trygve; Gauss, Jürgen

    2015-08-21

    An implementation of coupled-cluster (CC) theory to treat atoms and molecules in finite magnetic fields is presented. The main challenges for the implementation stem from the magnetic-field dependence in the Hamiltonian, or, more precisely, the appearance of the angular momentum operator, due to which the wave function becomes complex and which introduces a gauge-origin dependence. For this reason, an implementation of a complex CC code is required together with the use of gauge-including atomic orbitals to ensure gauge-origin independence. Results of coupled-cluster singles–doubles–perturbative-triples (CCSD(T)) calculations are presented for atoms and molecules with a focus on the dependence of correlation and binding energies on the magnetic field.

  20. NOx Catalyzed Pathway of Stratospheric Ozone Depletion: A Coupled Cluster Investigation.

    PubMed

    Dutta, Achintya Kumar; Vaval, Nayana; Pal, Sourav

    2012-06-12

    We report a theoretical investigation on the NOx catalyzed pathways of stratospheric ozone depletion using highly accurate coupled cluster methods. These catalytic reactions represent a great challenge to state-of-the-art ab initio methods, while their mechanisms remain unclear to both experimentalists and theoreticians. In this work, we have used the so-called "gold standard of quantum chemistry," the CCSD(T) method, to identify the saddle points on NOx-based reaction pathways of ozone hole formation. Energies of the saddle points are calculated using the multireference variants of coupled cluster methods. The calculated activation energies and rate constants show good agreement with available experimental results. Tropospheric precursors to stratospheric NOx radicals have been identified, and their potential importance in stratospheric chemistry has been discussed. Our calculations resolve previous conflicts between ab initio and experimental results for a trans nitro peroxide intermediate, in the NOx catalyzed pathway of ozone depletion. PMID:26593823

  1. Generation of strongly coupled Xe cluster nanoplasmas by low intensive soft x-ray laser irradiation

    SciTech Connect

    Namba, S.; Hasegawa, N.; Kishimoto, M.; Nishikino, M.; Kawachi, T.

    2012-07-11

    A seeding gas jet including Xe clusters was irradiated with a laser-driven plasma soft x-ray laser pulse ({lambda}=13.9 nm, {approx}7 ps, {<=}5 Multiplication-Sign 10{sup 9} W/cm{sup 2}), where the laser photon energy is high enough to ionize 4d core electrons. In order to clarify how the innershell ionization followed by the Auger electron emission is affected under the intense laser irradiation, the electron energy distribution was measured. Photoelectron spectra showed that the peak position attributed to 4d hole shifted to lower energy and the spectral width was broadened with increasing cluster size. Moreover, the energy distribution exhibited that a strongly coupled cluster nanoplasma with several eV was generated.

  2. Communication: Coupled-cluster interpretation of the photoelectron spectrum of Au{sub 3}{sup −}

    SciTech Connect

    Bauman, Nicholas P.; Piecuch, Piotr; Hansen, Jared A.; Ehara, Masahiro

    2014-09-14

    We use the scalar relativistic ionized equation-of-motion coupled-cluster approaches, correlating valence and semi-core electrons and including up to 3-hole-2-particle terms in the ionizing operator, to investigate the photoelectron spectrum of Au{sub 3}{sup −}. We provide an accurate assignment of peaks and shoulders in the experimental photoelectron spectrum of Au{sub 3}{sup −} for the first time.

  3. Analytically continued Fock space multi-reference coupled-cluster theory: Application to the shape resonance

    NASA Astrophysics Data System (ADS)

    Pal, Sourav; Sajeev, Y.; Vaval, Nayana

    2006-10-01

    The Fock space multi-reference coupled-cluster (FSMRCC) method is used for the study of the shape resonance energy and width in an electron-atom/molecule collision. The procedure is based upon combining a complex absorbing potential (CAP) with FSMRCC theory. Accurate resonance parameters are obtained by solving a small non-Hermitian eigen-value problem. We study the shape resonances in e --C 2H 4 and e --Mg.

  4. Manipulating coupling between a single semiconductor quantum dot and single gold nanoparticle

    NASA Astrophysics Data System (ADS)

    Shafiei, Farbod; Ratchford, Daniel; Kim, Suenne; Li, Xiaoqin; Gray, Stephen

    2011-03-01

    We report the manipulation of coupling in a simple model system, a single semiconductor quantum dot (QD) near a single metallic nanoparticle, and study the resulting changes in QD photoluminescence (PL) dynamics. We used atomic force microscopy nanomanipulation to controllably push a Au NP proximal to a CdSe/ZnS QD. We observed gradual and reversible changes in the QD PL lifetime and blinking dynamics. In some cases, the total lifetime reduced from 30 ns to well below 1 ns. This decrease is accompanied by the disappearance of blinking behavior as the nonradiative energy transfer from QD to the Au NP becomes the dominant decay channel. In comparison to previous studies, our experiments report changes in the PL dynamics of the same QD, therefore, eliminating the ambiguity of variable properties of individual QDs. Support: NSF, ONR, Welch Foundation, AFOSR, and the Alfred P. Sloan Foundation.

  5. Particle-particle and quasiparticle random phase approximations: Connections to coupled cluster theory

    NASA Astrophysics Data System (ADS)

    Scuseria, Gustavo E.; Henderson, Thomas M.; Bulik, Ireneusz W.

    2013-09-01

    We establish a formal connection between the particle-particle (pp) random phase approximation (RPA) and the ladder channel of the coupled cluster doubles (CCD) equations. The relationship between RPA and CCD is best understood within a Bogoliubov quasiparticle (qp) RPA formalism. This work is a follow-up to our previous formal proof on the connection between particle-hole (ph) RPA and ring-CCD. Whereas RPA is a quasibosonic approximation, CC theory is a "correct bosonization" in the sense that the wavefunction and Hilbert space are exactly fermionic, yet the amplitude equations can be interpreted as adding different quasibosonic RPA channels together. Coupled cluster theory achieves this goal by interacting the ph (ring) and pp (ladder) diagrams via a third channel that we here call "crossed-ring" whose presence allows for full fermionic antisymmetry. Additionally, coupled cluster incorporates what we call "mosaic" terms which can be absorbed into defining a new effective one-body Hamiltonian. The inclusion of these mosaic terms seems to be quite important. The pp-RPA and qp-RPA equations are textbook material in nuclear structure physics but are largely unknown in quantum chemistry, where particle number fluctuations and Bogoliubov determinants are rarely used. We believe that the ideas and connections discussed in this paper may help design improved ways of incorporating RPA correlation into density functionals based on a CC perspective.

  6. Multisublevel Magnetoquantum Conductance in Single and Coupled Double Quantum Wires

    SciTech Connect

    Lyo, Sungkwun Ken; Huang, Danhong

    2001-09-15

    We study the ballistic and diffusive magnetoquantum transport using a typical quantum point contact geometry for single and tunnel-coupled double wires that are wide (less than or similar to1 mum) in one perpendicular direction with densely populated sublevels and extremely confined in the other perpendicular (i.e., growth) direction. A general analytic solution to the Boltzmann equation is presented for multisublevel elastic scattering at low temperatures. The solution is employed to study interesting magnetic-field dependent behavior of the conductance such as a large enhancement and quantum oscillations of the conductance for various structures and field orientations. These phenomena originate from the following field-induced properties: magnetic confinement, displacement of the initial- and final-state wave functions for scattering, variation of the Fermi velocities, mass enhancement, depopulation of the sublevels and anticrossing (in double quantum wires). The magnetoconductance is strikingly different in long diffusive (or rough. dirty) wires from the quantized conductance in short ballistic (or clean) wires. Numerical results obtained for the rectangular confinement potentials in the growth direction are satisfactorily interpreted in terms of the analytic solutions based on harmonic confinement potentials. Some of the predicted features of the field-dependent diffusive and quantized conductances are consistent with recent data from GaAs/AlxGa1-xAs double quantum wires.

  7. Direct Photonic-Plasmonic Coupling and Routing in Single Nanowires

    SciTech Connect

    Yan, Rouxue; Pausauskie, Peter; Huang, Jiaxing; Yang, Piedong

    2009-10-20

    Metallic nanoscale structures are capable of supporting surface plasmon polaritons (SPPs), propagating collective electron oscillations with tight spatial confinement at the metal surface. SPPs represent one of the most promising structures to beat the diffraction limit imposed by conventional dielectric optics. Ag nano wires have drawn increasing research attention due to 2D sub-100 nm mode confinement and lower losses as compared with fabricated metal structures. However, rational and versatile integration of Ag nanowires with other active and passive optical components, as well as Ag nanowire based optical routing networks, has yet to be achieved. Here, we demonstrate that SPPs can be excited simply by contacting a silver nanowire with a SnO2 nanoribbon that serves both as an unpolarized light source and a dielectric waveguide. The efficient coupling makes it possible to measure the propagation-distance-dependent waveguide spectra and frequency-dependent propagation length on a single Ag nanowire. Furthermore, we have demonstrated prototypical photonic-plasmonic routing devices, which are essential for incorporating low-loss Ag nanowire waveguides as practical components into high-capacity photonic circuits.

  8. General transformation of α cluster model wave function to jj-coupling shell model in various 4N nuclei

    NASA Astrophysics Data System (ADS)

    Itagaki, N.; Matsuno, H.; Suhara, T.

    2016-09-01

    The antisymmetrized quasi-cluster model (AQCM) is a method to describe transitions from the α cluster wave functions to jj-coupling shell model wave functions. In this model, the cluster-shell transition is characterized by only two parameters: R representing the distance between α clusters and Λ describing the breaking of α clusters. The contribution of the spin-orbit interaction, very important in the jj-coupling shell model, can be taken into account starting with the α cluster model wave function. In this article we show the generality of AQCM by extending the application to heavier regions: various 4N nuclei from 4He to 100Sn. The characteristic magic numbers of the jj-coupling shell model, 28 and 50, are described starting with the α cluster model. The competition of two different configurations is discussed in 20Ne (16O + one quasi-cluster and 12C + two quasi-clusters) and 28Si (pentagon shape of five quasi-clusters and 12C + 16O). Also, we compare the energy curves for the α + 40Ca cluster configuration calculated with and without the α breaking effect in 44Ti.

  9. Coupled motion of Xe clusters and quantum vortices in He nanodroplets

    NASA Astrophysics Data System (ADS)

    Jones, Curtis F.; Bernando, Charles; Tanyag, Rico Mayro P.; Bacellar, Camila; Ferguson, Ken R.; Gomez, Luis F.; Anielski, Denis; Belkacem, Ali; Boll, Rebecca; Bozek, John; Carron, Sebastian; Cryan, James; Englert, Lars; Epp, Sascha W.; Erk, Benjamin; Foucar, Lutz; Hartmann, Robert; Neumark, Daniel M.; Rolles, Daniel; Rudenko, Artem; Siefermann, Katrin R.; Weise, Fabian; Rudek, Benedikt; Sturm, Felix P.; Ullrich, Joachim; Bostedt, Christoph; Gessner, Oliver; Vilesov, Andrey F.

    2016-05-01

    Single He nanodroplets doped with Xe atoms are studied via ultrafast coherent x-ray diffraction imaging. The diffraction images show that rotating He nanodroplets about 200 nm in diameter contain a small number of symmetrically arranged quantum vortices decorated with Xe clusters. Unexpected large distances of the vortices from the droplet center (≈0.7 -0.8 droplet radii) are explained by a significant contribution of the Xe dopants to the total angular momentum of the droplets and a stabilization of widely spaced vortex configurations by the trapped Xe clusters.

  10. Backthrust Earthquake Clusters Over Intermittently Coupled Portion of the Sunda Megathrust

    NASA Astrophysics Data System (ADS)

    Grijalva, K. A.; Banerjee, P.; Sieh, K. E.; Burgmann, R.; Natawidjaja, D. H.

    2010-12-01

    Three great ruptures during the past six years have produced great earthquakes along almost the entire Sunda megathrust from 14°N to 4°S, leaving only the Siberut segment without a modern great rupture. Previous studies have inverted for the distribution of coupling on the Sunda megathrust based on both GPS and coral growth pattern data. These past studies have compared coupling rates using data from both before and after the 2004 Sumatra-Andaman earthquake. The main difference in the coupling distribution between these two time periods is an apparent increase in the amount of coupling on the Siberut segment of the megathrust between 1°S to 2.5°S. The 1000-km-long Mentawai fault runs parallel to the Sunda megathrust from about 0.5°S to 7°S. Recently acquired high-resolution seismic reflection and bathymetric data have shown convincingly that the Mentawai fault is principally a trenchward-dipping reverse fault system. Beginning in April 2005, the portion of the Mentawai backthrust system between Siberut and Sipora has had an unprecedented level of recorded seismicity and is now confirmed to be an active fault system. This backthrust seismicity is primarily focused in two cluster sequences, the first starting a week after the 2005 Nias earthquake, and the second in August 2009. We analyze these two clusters using geodetic data from the Sumatran GPS Array and earthquake focal mechanisms. Mw 6.7 earthquakes dominated the 2005 and 2009 clusters and the GPS data reveal deformation patterns consistent with slip on the backthrust system. A GPS site on the southern coast of Siberut recorded the maximum surface displacements for the two clusters, with 10 cm and 6 cm of northeastward-directed displacement and 3 cm and 1 cm of subsidence for the 2005 and 2009 clusters, respectively. We speculate that the renewed backthrust activity and increased level of coupling on the megathrust are evidence of a highly stressed crust with potential for another large, destructive

  11. In Situ Characterization of Bak Clusters Responsible for Cell Death Using Single Molecule Localization Microscopy

    PubMed Central

    Nasu, Yusuke; Benke, Alexander; Arakawa, Satoko; Yoshida, Go J.; Kawamura, Genki; Manley, Suliana; Shimizu, Shigeomi; Ozawa, Takeaki

    2016-01-01

    Apoptosis plays a pivotal role in development and tissue homeostasis in multicellular organisms. Clustering of Bak proteins on the mitochondrial outer membrane is responsible for the induction of apoptosis by evoking a release of pro-apoptotic proteins from mitochondria into cytosol. However, how the protein cluster permeabilizes the mitochondrial membrane remains unclear because elucidation of the cluster characteristics such as size and protein density has been hampered by the diffraction-limited resolution of light microscopy. Here, we describe an approach to quantitatively characterize Bak clusters in situ based on single molecule localization. We showed that Bak proteins form densely packed clusters at the nanoscale on mitochondria during apoptosis. Quantitative analysis based on the localization of each Bak protein revealed that the density of Bak protein is uniform among clusters although the cluster size is highly heterogeneous. Our approach provides unprecedented information on the size and protein density of Bak clusters possibly critical for the permeabilization and is applicable for the analysis of different cluster formations. PMID:27293178

  12. Adsorption of a single gold or silver atom on vanadium oxide clusters.

    PubMed

    Ding, Xun-Lei; Wang, Dan; Li, Rui-Jie; Liao, Heng-Lu; Zhang, Yan; Zhang, Hua-Yong

    2016-04-14

    The bonding properties between a single atom and its support have a close relationship with the stability and reactivity of single-atom catalysts. As a model system, the structural and electronic properties of bimetallic oxide clusters MV3Oy(q) (M = Au or Ag, q = 0, ±1, and y = 6-8) are systematically studied using density functional theory. The single noble metal atom Au or Ag tends to be adsorbed on the periphery of the V oxide clusters. Au prefers V sites for oxygen-poor clusters and O sites for oxygen-rich clusters, while Ag prefers O sites for most cases. According to natural population analysis, Au may possess positive or negative charges in the bimetallic oxide clusters, while Ag usually possesses positive charges. The bonding between Au and V has relatively high covalent character according to the bond order analysis. This work may provide some clues for understanding the bonding properties of single noble metal atoms on the support in practical single-atom catalysts, and serve as a starting point for further theoretical studies on the reaction mechanisms of related catalytic systems.

  13. Second-order exchange-induction energy of intermolecular interactions from coupled cluster density matrices and their cumulants.

    PubMed

    Korona, Tatiana

    2008-11-21

    A new formulation of the second-order exchange-induction energy of symmetry-adapted perturbation theory is presented. In the proposed formalism the exchange-induction energy is expressed through one- and two-particle reduced density matrices of monomers, which are of zeroth and first order with respect to the effective electrostatic potential of another monomer. The resulting expression is further modified by using the partition of two-particle density matrices into the antisymmetrized product of one-particle density matrices and the remaining cumulant part. The proposed formalism has been applied to the case of closed-shell monomers and for density matrices obtained from the expectation-value expression with coupled cluster singles and doubles wave functions. The performance of the new approach has been demonstrated on several benchmark van der Waals systems, including dimers of argon, water, and ethyne.

  14. Second-order variational coupled-cluster linear-response method: A Hermitian time-dependent theory

    SciTech Connect

    Kats, Daniel; Usvyat, Denis; Schuetz, Martin

    2011-06-15

    The formalism is presented for the linear response of a time-dependent (TD) variational coupled cluster (VCC), truncated according to Moeller-Plesset perturbation theory, i.e., a TD-VCC[n] linear response, where n denotes the order of the corresponding quasienergy with respect to the fluctuation potential. The resulting eigenvalue problem determining the excitation energies is Hermitian and of the simple Tamm-Dancoff form. The VCC excitation energies are equivalent to those of the configuration-interaction singles (CIS) model, while the Casida equation for the TD-Hartree-Fock approach is an approximation to it. The TD-VCC response, the lowest-order method including electron correlation, is discussed in detail and the relations to other second-order methods, such as the CC2 linear response and the algebraic diagrammatic construction at second order [ADC(2)] are explored.

  15. Coupled-Cluster Theory Employing Approximate Integrals: An Approach to Avoid the Input/Output and Storage Bottlenecks

    NASA Technical Reports Server (NTRS)

    Rendell, Alistair P.; Lee, Timothy J.

    1994-01-01

    By representing orbital products in an expansion basis, certain classes of two-electron integrals are approximated for use in CCSD(T) calculations (singles and doubles coupled-cluster plus a perturbational estimate of the effects of connected triple excitations). This leads to a very large reduction in disk storage and input/output requirements, with usually only a modest increase in computational effort. The new procedure will allow very large CCSD(T) calculations to be undertaken, limited only by available processor time. Using the molecular basis as the expansion basis, explicit numerical comparisons of equilibrium geometries, harmonic frequencies, and energy differences indicate that the error due to the use of approximate integrals is less than the error associated with truncation of the molecular basis set.

  16. Revisiting the bound on axion-photon coupling from globular clusters.

    PubMed

    Ayala, Adrian; Domínguez, Inma; Giannotti, Maurizio; Mirizzi, Alessandro; Straniero, Oscar

    2014-11-01

    We derive a strong bound on the axion-photon coupling g(aγ) from the analysis of a sample of 39 Galactic Globular Clusters. As recognized long ago, the R parameter, i.e., the number ratio of stars in horizontal over red giant branch of old stellar clusters, would be reduced by the axion production from photon conversions occurring in stellar cores. In this regard, we have compared the measured R with state-of-the-art stellar models obtained under different assumptions for g(aγ). We show that the estimated value of g(aγ) substantially depends on the adopted He mass fraction Y, an effect often neglected in previous investigations. Taking as a benchmark for our study the most recent determinations of the He abundance in H ii regions with O/H in the same range of the Galactic Globular Clusters, we obtain an upper bound g(aγ)<0.66×10(-10)  GeV(-1) at 95% confidence level. This result significantly improves the constraints from previous analyses and is currently the strongest limit on the axion-photon coupling in a wide mass range. PMID:25415896

  17. Hydrodynamical simulations of coupled and uncoupled quintessence models - II. Galaxy clusters

    NASA Astrophysics Data System (ADS)

    Carlesi, Edoardo; Knebe, Alexander; Lewis, Geraint F.; Yepes, Gustavo

    2014-04-01

    We study the z = 0 properties of clusters (and large groups) of galaxies within the context of interacting and non-interacting quintessence cosmological models, using a series of adiabatic SPH simulations. Initially, we examine the average properties of groups and clusters, quantifying their differences in ΛCold Dark Matter (ΛCDM), uncoupled Dark Energy (uDE) and coupled Dark Energy (cDE) cosmologies. In particular, we focus upon radial profiles of the gas density, temperature and pressure, and we also investigate how the standard hydrodynamic equilibrium hypothesis holds in quintessence cosmologies. While we are able to confirm previous results about the distribution of baryons, we also find that the main discrepancy (with differences up to 20 per cent) can be seen in cluster pressure profiles. We then switch attention to individual structures, mapping each halo in quintessence cosmology to its ΛCDM counterpart. We are able to identify a series of small correlations between the coupling in the dark sector and halo spin, triaxiality and virialization ratio. When looking at spin and virialization of dark matter haloes, we find a weak (5 per cent) but systematic deviation in fifth force scenarios from ΛCDM.

  18. Single-particle selection and alignment with heavy atom cluster-antibody conjugates.

    PubMed

    Jensen, G J; Kornberg, R D

    1998-08-01

    A method is proposed for selecting and aligning images of single biological particles to obtain high-resolution structural information by cryoelectron microscopy. The particles will be labeled with multiple heavy atom clusters to permit the precise determination of particle locations and relative orientations even when imaged close to focus with a low electron dose, conditions optimal for recording high-resolution detail. Heavy atom clusters should also allow selection of images free from many kinds of defects, including specimen movement and particle inhomogeneity. Heavy atom clusters may be introduced in a general way by the construction of "adaptor" molecules based on single-chain Fv antibody fragments, consisting of a constant framework region engineered for optimal cluster binding and a variable antigen binding region selected for a specific target. The success of the method depends on the mobility of the heavy atom cluster on the particle, on the precision to which clusters can be located in an image, and on the sufficiency of cluster projections alone to orient and select particles for averaging. The necessary computational algorithms were developed and implemented in simulations that address the feasibility of the method.

  19. Communities of solutions in single solution clusters of a random K -satisfiability formula

    NASA Astrophysics Data System (ADS)

    Zhou, Haijun; Ma, Hui

    2009-12-01

    The solution space of a K -satisfiability (K-SAT) formula is a collection of solution clusters, each of which contains all the solutions that are mutually reachable through a sequence of single-spin flips. Knowledge of the statistical property of solution clusters is valuable for a complete understanding of the solution space structure and the computational complexity of the random K-SAT problem. This paper explores single solution clusters of random 3- and 4-SAT formulas through unbiased and biased random-walk processes and the replica-symmetric cavity method of statistical physics. We find that the giant connected component of the solution space has already formed many different communities when the constraint density of the formula is still lower than the solution space clustering transition point. Solutions of the same community are more similar with each other and more densely connected with each other than with the other solutions. The entropy density of a solution community is calculated using belief propagation and is found to be different for different communities of the same cluster. When the constraint density is beyond the clustering transition point, the same behavior is observed for the solution clusters reached by several stochastic search algorithms. Taking together, the results of this work suggest a refined picture on the evolution of the solution space structure of the random K-SAT problem; they may also be helpful for designing heuristic algorithms.

  20. Communities of solutions in single solution clusters of a random K-satisfiability formula.

    PubMed

    Zhou, Haijun; Ma, Hui

    2009-12-01

    The solution space of a K-satisfiability (K-SAT) formula is a collection of solution clusters, each of which contains all the solutions that are mutually reachable through a sequence of single-spin flips. Knowledge of the statistical property of solution clusters is valuable for a complete understanding of the solution space structure and the computational complexity of the random K-SAT problem. This paper explores single solution clusters of random 3- and 4-SAT formulas through unbiased and biased random-walk processes and the replica-symmetric cavity method of statistical physics. We find that the giant connected component of the solution space has already formed many different communities when the constraint density of the formula is still lower than the solution space clustering transition point. Solutions of the same community are more similar with each other and more densely connected with each other than with the other solutions. The entropy density of a solution community is calculated using belief propagation and is found to be different for different communities of the same cluster. When the constraint density is beyond the clustering transition point, the same behavior is observed for the solution clusters reached by several stochastic search algorithms. Taking together, the results of this work suggest a refined picture on the evolution of the solution space structure of the random K-SAT problem; they may also be helpful for designing heuristic algorithms. PMID:20365232

  1. A Comparison of Three Approaches to the Reduced-Scaling Coupled Cluster Treatment of Non-Resonant Molecular Response Properties.

    PubMed

    McAlexander, Harley R; Crawford, T Daniel

    2016-01-12

    We have investigated the performance of the reduced-scaling coupled cluster method based on projected atomic orbitals (PAOs), pair natural orbitals (PNOs), and orbital specific virtuals (OSVs) for the prediction of linear response properties. These methods introduce different degrees of controllable sparsity in the ground-state and perturbed coupled cluster wave functions, leading to localization errors in properties such as dynamic polarizabilities and specific optical rotations. Using a series of chiral test compounds, we find that the inherent costs associated with computing response properties are significantly greater than those for determining the ground-state energy. As the dimensionality of the molecular system increases-from (pseudo)linear structures, such as fluoroalkanes, to cagelike structures, such as β-pinene-the crossover point between canonical-orbital and localized-orbital algorithms increases substantially. Furthermore, both the OSV and PNO methods provide greater reduction in cost (as measured by the size of the double-excitation space) than do PAOs, and PNOs provide the greatest level of sparsity for the systems examined here. Single-excitation truncation induces much larger errors than corresponding doubles truncation due to the fact that the first-order contribution to the one-electron perturbed wave function appears in the singles amplitudes. Both the PNO and OSV methods perform reasonably well for frequency-dependent polarizabilities provided appropriate thresholds are used for the occupation-number and weak-pair cutoffs on which each method depends. Specific rotations, however, are very sensitive to wave function truncation, to the extent that aggressive thresholds can yield the incorrect sign of the rotation, due to the delicate balance of positive and negative wave function contributions to the mixed electric-/magnetic-field response. PMID:26626230

  2. NanoCluster Beacons Enable Detection of a Single N⁶-Methyladenine.

    PubMed

    Chen, Yu-An; Obliosca, Judy M; Liu, Yen-Liang; Liu, Cong; Gwozdz, Mary L; Yeh, Hsin-Chih

    2015-08-26

    While N(6)-methyladenine (m(6)A) is a common modification in prokaryotic and lower eukaryotic genomes and has many biological functions, there is no simple and cost-effective way to identify a single N(6)-methyladenine in a nucleic acid target. Here we introduce a robust, simple, enzyme-free and hybridization-based method using a new silver cluster probe, termed methyladenine-specific NanoCluster Beacon (maNCB), which can detect single m(6)A in DNA targets based on the fluorescence emission spectra of silver clusters. Not only can maNCB identify m(6)A at the single-base level but it also can quantify the extent of adenine methylation in heterogeneous samples. Our method is superior to high-resolution melting analysis as we can pinpoint the location of m(6)A in the target.

  3. Manipulating coupling between a single semiconductor quantum dot and single gold nanoparticle.

    PubMed

    Ratchford, Daniel; Shafiei, Farbod; Kim, Suenne; Gray, Stephen K; Li, Xiaoqin

    2011-03-01

    Using atomic force microscopy nanomanipulation, we position a single Au nanoparticle near a CdSe/ZnS quantum dot to construct a hybrid nanostructure with variable geometry. The coupling between the two particles is varied in a systematic and reversible manner. The photoluminescence lifetime and blinking of the same quantum dot are measured before and after assembly of the structure. In some hybrid structures, the total lifetime is reduced from about 30 ns to well below 1 ns. This dramatic change in lifetime is accompanied by the disappearance of blinking as the nonradiative energy transfer from the CdSe/ZnS quantum dot to the Au nanoparticle becomes the dominant decay channel. Both total lifetime and photoluminescence intensity changes are well described by simple analytical calculations.

  4. Relaxed active space: Fixing tailored-CC with high order coupled cluster. II

    SciTech Connect

    Melnichuk, Ann Bartlett, Rodney J.

    2014-02-14

    Due to the steep increase in computational cost with the inclusion of higher-connected cluster operators in coupled-cluster applications, it is usually not practical to use such methods for larger systems or basis sets without an active space partitioning. This study generates an active space subject to unambiguous statistical criteria to define a space whose size permits treatment at the CCSDT level. The automated scheme makes it unnecessary for the user to judge whether a chosen active space is sufficient to correctly solve the problem. Two demanding applications are presented: twisted ethylene and the transition states for the bicyclo[1,1,0]butane isomerization. As bi-radicals both systems require at least a CCSDT level of theory for quantitative results, for the geometries and energies.

  5. Geometry-dependent lifetime of Interatomic coulombic decay using equation-of-motion coupled cluster method

    SciTech Connect

    Ghosh, Aryya; Vaval, Nayana

    2014-12-21

    Electronically excited atom or molecule in an environment can relax via transferring its excess energy to the neighboring atoms or molecules. The process is called Interatomic or Intermolecular coulombic decay (ICD). The ICD is a fast decay process in environment. Generally, the ICD mechanism predominates in weakly bound clusters. In this paper, we have applied the complex absorbing potential approach/equation-of-motion coupled cluster (CAP/EOMCCSD) method which is a combination of CAP and EOMCC approach to study the lifetime of ICD at various geometries of the molecules. We have applied this method to calculate the lifetime of ICD in Ne-X; X = Ne, Mg, Ar, systems. We compare our results with other theoretical and experimental results available in literature.

  6. Spin-orbit coupling and electron correlation at various coupled-cluster levels for closed-shell diatomic molecules.

    PubMed

    Wang, Zhifan; Wang, Fan

    2013-11-01

    In this work, equilibrium bond lengths and harmonic frequencies of some closed-shell diatomic heavy-element compounds are calculated at a series of coupled-cluster (CC) levels including CCS, CC2, CCSD and CCSD(T) with spin-orbit coupling (SOC) included in post-Hartree-Fock (HF) step. The purpose of this work is to demonstrate the performance of CC2 for heavy element compounds and to investigate the separability between SOC and electron correlation at different correlation levels. According to our calculations, CC2 results agree well with MP2 results for these molecules except for SnO, Sb2, PbO and Bi2 and the bond lengths of SnO and PbO with CC2 are overestimated by about 0.25 Å compared to when using other approaches. Furthermore, SOC effects on electron correlation are significant for Bi2 and At2 at CCSD(T) level, while this is the case only for Bi2 at CCSD level. For 5th-row element compounds, SOC effects on bond lengths and harmonic frequencies at different levels agree well with each other except for Sb2. On the other hand, SOC effects at CCSD level are in good agreement with those at CCSD(T) level for the investigated 6th-row element compounds except for At2, whereas SOC effects at low correlation levels will be different from those at CCSD(T) level to some extent.

  7. Single scale cluster expansions with applications to many Boson and unbounded spin systems

    NASA Astrophysics Data System (ADS)

    Lohmann, Martin

    2015-06-01

    We develop a cluster expansion to show exponential decay of correlations for quite general single scale spin systems, as they arise in lattice quantum field theory and discretized functional integral representations for observables of quantum statistical mechanics. We apply our results to the small field approximation to the coherent state correlation functions of the grand canonical Bose gas at negative chemical potential, constructed by Balaban et al. [Ann. Henri Poincaré 11, 151-350 (2010c)], and to N component unbounded spin systems with repulsive two body interaction and massive, possibly complex, covariance. Our cluster expansion is derived by a single application of the Brydges-Kennedy-Abdesselam-Rivasseau interpolation formula.

  8. Single scale cluster expansions with applications to many Boson and unbounded spin systems

    SciTech Connect

    Lohmann, Martin

    2015-06-15

    We develop a cluster expansion to show exponential decay of correlations for quite general single scale spin systems, as they arise in lattice quantum field theory and discretized functional integral representations for observables of quantum statistical mechanics. We apply our results to the small field approximation to the coherent state correlation functions of the grand canonical Bose gas at negative chemical potential, constructed by Balaban et al. [Ann. Henri Poincaré 11, 151–350 (2010c)], and to N component unbounded spin systems with repulsive two body interaction and massive, possibly complex, covariance. Our cluster expansion is derived by a single application of the Brydges-Kennedy-Abdesselam-Rivasseau interpolation formula.

  9. Single-Electron Transmetalation: An Enabling Technology for Secondary Alkylboron Cross-Coupling

    PubMed Central

    Primer, David N.; Karakaya, Idris; Tellis, John C.; Molander, Gary A.

    2015-01-01

    Single-electron-mediated alkyl transfer affords a novel mechanism for transmetalation, enabling cross-coupling under mild conditions. Here, general conditions are reported for cross-coupling of secondary alkyltrifluoroborates with an array of aryl bromides mediated by an Ir photoredox catalyst and a Ni cross-coupling catalyst. PMID:25650892

  10. Coupled metric learning for single-shot versus single-shot person reidentification

    NASA Astrophysics Data System (ADS)

    Li, Wei; Wu, Yang; Mukunoki, Masayuki; Minoh, Michihiko

    2013-02-01

    Person reidentification tackles the problem of building a correspondence between different images of the same person captured by distributed cameras. To date, attempts to solve this problem have focused on either feature representation or learning methods. Usually, the greater the number of the samples for each person, the better the reidentification performance is. However, in the real world, we may not be able to acquire enough samples to give acceptable performance. Here, we focus on the so-called "single-shot versus single-shot" problem: matching one image of a person to another. Because of the extremely small sample class size, there is limited scope to statistically weaken the empirical risk for hand-crafted feature representation. Therefore, we resort to metric learning methods, such as the ranking-specialized metric learning to rank (MLR) and the classification-based maximally collapsing metric learning (MCML). Taking advantage of the complementarity between them, we propose a novel "coupled metric learning" approach. This searches for the optimal linear projection for the original feature space using MCML before minimizing the ranking loss via MLR. Experiments on widely used benchmark datasets show encouraging results.

  11. Coupled cluster calculations of mean excitation energies of the noble gas atoms He, Ne and Ar and of the H2 molecule

    NASA Astrophysics Data System (ADS)

    Sauer, Stephan P. A.; Haq, Inam Ul; Sabin, John R.; Oddershede, Jens; Christiansen, Ove; Coriani, Sonia

    2014-03-01

    Using an asymmetric Lanczos chain algorithm for the calculation of the coupled cluster linear response functions at the coupled cluster singles and doubles (CCSD) and coupled cluster singles and approximate iterative doubles (CC2) levels of approximation, we have calculated the mean excitation energies of the noble gases He, Ne and Ar, and of the hydrogen molecule (H2). Convergence with respect to the one-electron basis set was investigated in detail for families of correlation-consistent basis sets including both augmentation and core-valence functions. We find that the electron correlation effects at the CCSD level change the mean excitation energies obtained at the uncorrelated Hartree-Fock level by about 1%. For the two-electron systems He and H2, our CCSD results (for a Lanczos chain length equal to the full excitation space), I0 = 42.28 eV (helium) and I0 = 19.62 eV (H2), correspond to full configuration interaction results and are therefore the exact, non-relativistic theoretical values for the mean excitation energy of these two systems within the Bethe theory for the chosen basis set and, in the case of H2, at the experimental equilibrium geometry.

  12. A coupled cluster study of the structures, spectroscopic properties, and isomerization path of NCS - and CNS -

    NASA Astrophysics Data System (ADS)

    Pak, Youngshang; Woods, R. Claude; Peterson, Kirk A.

    1995-12-01

    Three-dimensional near-equilibrium potential energy surfaces and dipole moment functions have been calculated for the X 1Σ+ ground states of NCS- and CNS-, using the coupled cluster method with single and double substitutions augmented by a perturbative estimate of triple excitations [CCSD(T)] with a set of 154 contracted Gaussian-type orbitals. The corresponding equilibrium bond lengths at their linear geometries are re(NC)=1.1788 Å and re(CS)=1.6737 Å for NCS-, and re(CN)=1.1805 Å and re(NS)=1.6874 Å for CNS-. The predicted equilibrium rotational constants Be of NCS- and CNS- are 5918.2 and 6282.7 MHz, respectively. The former agrees very well with the known experimental value (5919.0 MHz). Full three-dimensional variational calculations have also been carried out using the CCSD(T) potential energy and dipole moment functions to determine the rovibrational energy levels and dipole moment matrix elements for both NCS- and CNS-. The corresponding fundamental band origins (cm-1) ν1, ν2, and ν3 and their absolute intensities (km/mol) at the CCSD(T) level are 2060.9/306.1, 451.5/2.2, and 707.5/12.8, respectively, for NCS- and 2011.4/6.6, 343.7/2.3, and 624.9/0.2 for CNS-. The calculated ν1 (CN stretching) value for NCS- is in very good agreement with the experimental result, 2065.9 cm-1. The calculated dipole moments of NCS- and CNS- in their ground vibrational states are 1.427 and 1.347 D, respectively. The transition state geometry (saddle point) for the isomerization of NCS-→CNS- is predicted at the CCSD(T) level to be r(NC)=1.2044 Å, R(CS)=1.9411 Å and θ(∠NCS)=86.8°. Its calculated energy is 62.6 and 26.5 kcal/mol above the minima of NCS- and CNS-, respectively, including zero-point energy corrections. The structure of the NCS radical was also optimized at the same level of theory, yielding ion to neutral bond length shifts in excellent agreement with those derived from recent photoelectron spectroscopy experiments.

  13. Coupled-cluster theory computation of the nuclear electric dipole polarizability

    NASA Astrophysics Data System (ADS)

    Bacca, Sonia; Miorelli, Mirko; Barnea, Nir; Hagen, Gaute; Orlandini, Giuseppina; Papenbrock, Thomas

    2016-03-01

    The electric dipole polarizability αD is strongly correlated with the size of atomic nuclei. It informs us about the neutron equation of state and links atomic nuclei to neutron stars. In recent years, scattering experiments have been used to determine the dipole polarizability in 208Pb, 120Sn and 68Ni. Combining the Lorentz integral transform with the coupled-cluster method allows us to perform ab initio computations of αD for medium mass nuclei. In Ref. we predicted the polarizability for 48Ca and presently we are investigating heavier systems such as 68Ni and 90Zn.

  14. Coupled-cluster theory of a gas of strongly-interacting electrons in the dilute limit

    SciTech Connect

    Mihaila, Bodgan; Cardenas, Andres L

    2008-01-01

    We study the ground-state properties of a dilute gas of strongly-interacting fermions in the framework of the coupled-cluster expansion (CCE). We demonstrate that properties such as universality, opening of a gap in the excitation spectrum and applicability of s-wave approximations appear naturally in the CCE approach. In the zero-density limit, we show that the ground-state energy density depends on only one parameter which in turn may depend at most on the spatial dimensionality of the system.

  15. Coupled-cluster interpretation of the photoelectron spectrum of Ag3 (.).

    PubMed

    Bauman, Nicholas P; Hansen, Jared A; Piecuch, Piotr

    2016-08-28

    We use the scalar relativistic ionized equation-of-motion coupled-cluster (IP-EOMCC) approaches to investigate the photoelectron spectrum of Ag3 (-), examining the effects of basis set, number of correlated electrons, level of applied theory including up to 3-hole-2-particle terms, and geometry relaxation. By employing an IP-EOMCC-based extrapolation scheme, we are able to provide an accurate interpretation and complete assignment of peaks and other key features in the experimentally observed spectra, including electron binding energies as high as about 6.5 eV. PMID:27586921

  16. Calculation of hyperfine coupling constant by symmetry adapted cluster expansion configuration interaction theory. II. Anisotropic constants

    NASA Astrophysics Data System (ADS)

    Momose, Takamasa; Yamaguchi, Makoto; Shida, Tadamasa

    1990-11-01

    Following the previous work on the isotropic hyperfine coupling constants (HFCCs) of polyatomic radicals the symmetry adapted cluster expansion-configuration interaction (SAC-CI) theory is applied to calculate anisotropic HFCCs also. The results are compared with available experimental data from diatomic to polyatomic radicals such as the vinoxy. For radicals consisting of only the first row atoms Dunning's double zeta (DZ) basis set is shown to be adequate, but for those containing the second row atoms inclusion of polarization functions is required. Compared with the isotropic HFCC the calculation of the anisotropic HFCC is less formidable. However, ignorance of electron correlation causes serious disagreements with experimental data.

  17. Coupled-cluster interpretation of the photoelectron spectrum of Ag3 (.).

    PubMed

    Bauman, Nicholas P; Hansen, Jared A; Piecuch, Piotr

    2016-08-28

    We use the scalar relativistic ionized equation-of-motion coupled-cluster (IP-EOMCC) approaches to investigate the photoelectron spectrum of Ag3 (-), examining the effects of basis set, number of correlated electrons, level of applied theory including up to 3-hole-2-particle terms, and geometry relaxation. By employing an IP-EOMCC-based extrapolation scheme, we are able to provide an accurate interpretation and complete assignment of peaks and other key features in the experimentally observed spectra, including electron binding energies as high as about 6.5 eV.

  18. Communication: Relativistic Fock-space coupled cluster study of small building blocks of larger uranium complexes

    SciTech Connect

    Tecmer, Paweł Visscher, Lucas; Severo Pereira Gomes, André; Knecht, Stefan

    2014-07-28

    We present a study of the electronic structure of the [UO{sub 2}]{sup +}, [UO{sub 2}]{sup 2} {sup +}, [UO{sub 2}]{sup 3} {sup +}, NUO, [NUO]{sup +}, [NUO]{sup 2} {sup +}, [NUN]{sup −}, NUN, and [NUN]{sup +} molecules with the intermediate Hamiltonian Fock-space coupled cluster method. The accuracy of mean-field approaches based on the eXact-2-Component Hamiltonian to incorporate spin–orbit coupling and Gaunt interactions are compared to results obtained with the Dirac–Coulomb Hamiltonian. Furthermore, we assess the reliability of calculations employing approximate density functionals in describing electronic spectra and quantities useful in rationalizing Uranium (VI) species reactivity (hardness, electronegativity, and electrophilicity)

  19. Formulation and implementation of a unitary group adapted state universal multi-reference coupled cluster (UGA-SUMRCC) theory: Excited and ionized state energies

    NASA Astrophysics Data System (ADS)

    Sen, Sangita; Shee, Avijit; Mukherjee, Debashis

    2012-08-01

    The traditional state universal multi-reference coupled cluster (SUMRCC) theory uses the Jeziorski-Monkhorst (JM) based Ansatz of the wave operator: Ω = ∑μΩμ|ϕμ⟩⟨ϕμ|, where Ωμ = exp (Tμ) is the cluster representation of the component of Ω inducing virtual excitations from the model function ϕμ. In the first formulations, ϕμs were chosen to be single determinants and Tμs were defined in terms of spinorbitals. This leads to spin-contamination for the non-singlet cases. In this paper, we propose and implement an explicitly spin-free realization of the SUMRCC theory. This method uses spin-free unitary generators in defining the cluster operators, {Tμ}, which even at singles-doubles truncation, generates non-commuting cluster operators. We propose the use of normal-ordered exponential parameterization for Ω:∑μ{exp (Tμ)}|ϕμ⟩⟨ϕμ|, where {} denotes the normal ordering with respect to a common closed shell vacuum which makes the "direct term" of the SUMRCC equations terminate at the quartic power. We choose our model functions {ϕμ} as unitary group adapted (UGA) Gel'fand states which is why we call our theory UGA-SUMRCC. In the spirit of the original SUMRCC, we choose exactly the right number of linearly independent cluster operators in {Tμ} such that no redundancies in the virtual functions lbrace χ _μ ^lrbrace are involved. Using example applications for electron detached/attached and h-p excited states relative to a closed shell ground state we discuss how to choose the most compact and non-redundant cluster operators. Although there exists a more elaborate spin-adapted JM-like ansatz of Datta and Mukherjee (known as combinatoric open-shell CC (COS-CC), its working equations are more complex. Results are compared with those from COS-CC, equation of motion coupled cluster methods, restricted open-shell Hartree-Fock coupled cluster, and full configuration interaction. We observe that our results are more accurate with respect to

  20. Comparison of the quadratic configuration interaction and coupled cluster approaches to electron correlation including the effect of triple excitations

    NASA Technical Reports Server (NTRS)

    Taylor, Peter R.; Lee, Timothy J.; Rendell, Alistair P.

    1990-01-01

    The recently proposed quadratic configuration interaction (QCI) method is compared with the more rigorous coupled cluster (CC) approach for a variety of chemical systems. Some of these systems are well represented by a single-determinant reference function and others are not. The finite order singles and doubles correlation energy, the perturbational triples correlation energy, and a recently devised diagnostic for estimating the importance of multireference effects are considered. The spectroscopic constants of CuH, the equilibrium structure of cis-(NO)2 and the binding energies of Be3, Be4, Mg3, and Mg4 were calculated using both approaches. The diagnostic for estimating multireference character clearly demonstrates that the QCI method becomes less satisfactory than the CC approach as non-dynamical correlation becomes more important, in agreement with a perturbational analysis of the two methods and the numerical estimates of the triple excitation energies they yield. The results for CuH show that the differences between the two methods become more apparent as the chemical systems under investigation becomes more multireference in nature and the QCI results consequently become less reliable. Nonetheless, when the system of interest is dominated by a single reference determinant both QCI and CC give very similar results.

  1. The effects of unsteady aerodynamics on single and clustered parachute systems

    SciTech Connect

    Waye, D.E.; Johnson, D.W.

    1989-01-01

    A study was performed to evaluate the performance of equivalent drag area single parachute systems and cluster parachute systems during the early inflation and initial deceleration phase. Analytical work showed that the cluster system could exhibit better performance during this unsteady aerodynamic phase due to a significant decrease in the apparent mass of air influenced by the parachutes. Two test programs have been performed in support of these assumptions. The first compared systems with parachute drag areas of approximately 750 ft/sup 2/ and a payload of 2400 lbs. The cluster system exhibited increased performance and less susceptibility to parachute collapse due to wake recontact. The second series compared systems with parachute drag areas of approximately 260 ft/sup 2/ with a payload of 800 lbs. The advantages of the cluster system were less apparent but performance was moderately improved. 4 refs., 7 figs.

  2. Sub-10 nm nano-gap device for single-cluster transport measurements

    SciTech Connect

    Rousseau, J. Morel, R.; Vila, L.; Brenac, A.; Marty, A.; Notin, L.; Beigné, C.

    2014-02-17

    We present a versatile procedure for the fabrication of single electron transistor (SET) devices with nanometer-sized clusters and embedded back gate electrode. The process uses sputtering gas-aggregation for the growth of clusters and e-beam lithography with double angle shadow-edge deposition to obtain electrodes separated by nano-gaps with width below 10 nm. The nano-gap width is easily controlled only by geometrical factors such as deposited thin film thickness and evaporation angles. The usefulness of this technique is demonstrated by measuring the SET behavior of a device with a 4 nm cobalt cluster embedded in alumina, where the Coulomb blockade and incremental cluster charging can be readily identified without resorting to the differential conductivity.

  3. Efficient single-mode photon-coupling device utilizing a nanofiber tip.

    PubMed

    Chonan, Sho; Kato, Shinya; Aoki, Takao

    2014-04-24

    Single-photon sources are important elements in quantum optics and quantum information science. It is crucial that such sources be able to couple photons emitted from a single quantum emitter to a single propagating mode, preferably to the guided mode of a single-mode optical fiber, with high efficiency. Various photonic devices have been successfully demonstrated to efficiently couple photons from an emitter to a single mode of a cavity or a waveguide. However, efficient coupling of these devices to optical fibers is sometimes challenging. Here we show that up to 38% of photons from an emitter can be directly coupled to a single-mode optical fiber by utilizing the flat tip of a silica nanofiber. With the aid of a metallic mirror, the efficiency can be increased to 76%. The use of a silicon waveguide further increases the efficiency to 87%. This simple device can be applied to various quantum emitters.

  4. Efficient Single-Mode Photon-Coupling Device Utilizing a Nanofiber Tip

    PubMed Central

    Chonan, Sho; Kato, Shinya; Aoki, Takao

    2014-01-01

    Single-photon sources are important elements in quantum optics and quantum information science. It is crucial that such sources be able to couple photons emitted from a single quantum emitter to a single propagating mode, preferably to the guided mode of a single-mode optical fiber, with high efficiency. Various photonic devices have been successfully demonstrated to efficiently couple photons from an emitter to a single mode of a cavity or a waveguide. However, efficient coupling of these devices to optical fibers is sometimes challenging. Here we show that up to 38% of photons from an emitter can be directly coupled to a single-mode optical fiber by utilizing the flat tip of a silica nanofiber. With the aid of a metallic mirror, the efficiency can be increased to 76%. The use of a silicon waveguide further increases the efficiency to 87%. This simple device can be applied to various quantum emitters. PMID:24759303

  5. Oscillations and multistability in two semiconductor ring lasers coupled by a single waveguide

    NASA Astrophysics Data System (ADS)

    Coomans, W.; Van der Sande, G.; Gelens, L.

    2013-09-01

    We theoretically study the dynamical behavior of semiconductor ring lasers coupled by a single bus waveguide, both when weakly coupled and when strongly coupled. We provide a detailed analysis of the multistable landscape in the coupled system, analyze the stability of all solutions, and relate the internal dynamics in the individual lasers to the field effectively measured at the output of the waveguide. We show that coupling phases close to π/2 generally promote instabilities. Finally, our analysis enables us to discuss the advantages and disadvantages for optical memory operation of coupled semiconductor ring lasers versus solitary ones.

  6. Cluster VS. Single-Spin ALGORITHMS—WHICH are More Efficient?

    NASA Astrophysics Data System (ADS)

    Ito, N.; Kohring, G. A.

    A comparison between single-cluster and single-spin algorithms is made for the Ising model in 2 and 3 dimensions. We compare the amount of computer time needed to achieve a given level of statistical accuracy, rather than the speed in terms of site updates per second or the dynamical critical exponents. Our main result is that the cluster algorithms become more efficient when the system size, Ld, exceeds, L~70-300 for d=2 and l~80-200 for d=3. The exact value of the crossover is dependent upon the computer being used. The lower end of the crossover range is typical of workstations while the higher end is typical of vector computers. Hence, even for workstations, the system sizes needed for efficient use of the cluster algorithm is relatively large.

  7. A systematic approach to vertically excited states of ethylene using configuration interaction and coupled cluster techniques

    SciTech Connect

    Feller, David Peterson, Kirk A.; Davidson, Ernest R.

    2014-09-14

    A systematic sequence of configuration interaction and coupled cluster calculations were used to describe selected low-lying singlet and triplet vertically excited states of ethylene with the goal of approaching the all electron, full configuration interaction/complete basis set limit. Included among these is the notoriously difficult, mixed valence/Rydberg {sup 1}B{sub 1u} V state. Techniques included complete active space and iterative natural orbital configuration interaction with large reference spaces which led to variational spaces of 1.8 × 10{sup 9} parameters. Care was taken to avoid unintentionally biasing the results due to the widely recognized sensitivity of the V state to the details of the calculation. The lowest vertical and adiabatic ionization potentials to the {sup 2}B{sub 3u} and {sup 2}B{sub 3} states were also determined. In addition, the heat of formation of twisted ethylene {sup 3}A{sub 1} was obtained from large basis set coupled cluster theory calculations including corrections for core/valence, scalar relativistic and higher order correlation recovery.

  8. Correlated R-matrix theory of electron scattering: A coupled-cluster approach

    NASA Astrophysics Data System (ADS)

    Sur, Chiranjib; Pradhan, Anil; Sadayappan, P.

    2007-06-01

    Study of electron scattering from heavy atoms/ions not only demands high speed computing machines but also improved theoretical descriptions of the relativistic and correlation effects for the target atoms/ions as well. We will give an outline of the coupled-cluster R-matrix (CCRM) theory to incorporate the effect of electron correlation through coupled-cluster theory (CCT), the size extensive and one of the most accurate many body theories which is equivalant to an all-order many-body perturbation theory (MBPT). General theoretical formulation of CCRM and the computational implementation using the high level Mathematica style language compiler known as Tensor Contraction Engine (TCE) will be presented. Electronic structure calculations using CCT involve large collections of tensor contractions (generalized matrix multiplications). TCE searches for an optimal implementation of these tensor contraction expressions and generates high performance FORTRAN code for CCT. We will also comment on the interfacing of TCE generated code with the Breit-Pauli R-matrix code to make a next generation CCRM software package. This theoretical formulation and the new sets of codes can be used to study electron scattering / photoionization in heavy atomic systems where relativistic and electron correlation effects are very important.

  9. New Theoretical Developments in Exploring Electronically Excited States: Including Localized Configuration Interaction Singles and Application to Large Helium Clusters

    NASA Astrophysics Data System (ADS)

    Closser, Kristina Danielle

    superpositions of atomic states with surface states appearing close to the atomic excitation energies and interior states being blue shifted by up to ≈2 eV. The dynamics resulting from excitation of He_7 were subsequently explored using ab initio molecular dynamics (AIMD). These simulations were performed with classical adiabatic dynamics coupled to a new state-following algorithm on CIS potential energy surfaces. Most clusters were found to completely dissociate and resulted in a single excited atomic state (90%), however, some trajectories formed bound, He*2 (3%), and a few yielded excited trimers (<0.5%). Comparisons were made with available experimental information on much larger clusters. Various applications of this state following algorithm are also presented. In addition to AIMD, these include excited-state geometry optimization and minimal energy path finding via the growing string method. When using state following we demonstrate that more physical results can be obtained with AIMD calculations. Also, the optimized geometries of three excited states of cytosine, two of which were not found without state following, and the minimal energy path between the lowest two singlet excited states of protonated formaldimine are offered as example applications. Finally, to address large clusters, a local variation of CIS was developed. This method exploits the properties of absolutely localized molecular orbitals (ALMOs) to limit the total number of excitations to scaling only linearly with cluster size, which results in formal scaling with the third power of the system size. The derivation of the equations and design of the algorithm are discussed in detail, and computational timings as well as a pilot application to the size dependence of the helium cluster spectrum are presented.

  10. An adaptive strategy for single- and multi-cluster gene assignment.

    PubMed

    Garg, Sanjeev; Hansen, Marc F; Rowe, David W; Achenie, Luke E K

    2003-01-01

    Strict assignment of genes to one class, dimensionality reduction, a priori specification of the number of classes, the need for a training set, nonunique solution, and complex learning mechanisms are some of the inadequacies of current clustering algorithms. Existing algorithms cluster genes on the basis of high positive correlations between their expression patterns. However, genes with strong negative correlations can also have similar functions and are most likely to have a role in the same pathways. To address some of these issues, we propose the adaptive centroid algorithm (ACA), which employs an analysis of variance (ANOVA)-based performance criterion. The ACA also uses Euclidian distances, the center-of-mass principle for heterogeneously distributed mass elements, and the given data set to give unique solutions. The proposed approach involves three stages. In the first stage a two-way ANOVA of the gene expression matrix is performed. The two factors in the ANOVA are gene expression and experimental condition. The residual mean squared error (MSE) from the ANOVA is used as a performance criterion in the ACA. Finally, correlated clusters are found based on the Pearson correlation coefficients. To validate the proposed approach, a two-way ANOVA is again performed on the discovered clusters. The results from this last step indicate that MSEs of the clusters are significantly lower compared to that of the fibroblast-serum gene expression matrix. The ACA is employed in this study for single- as well as multi-cluster gene assignments.

  11. Coupled-cluster with active space selected higher amplitudes: performance of seminatural orbitals for ground and excited state calculations.

    PubMed

    Köhn, Andreas; Olsen, Jeppe

    2006-11-01

    The active space approach for coupled-cluster models is generalized using the general active space concept and implemented in a string-based general coupled-cluster code. Particular attention is devoted to the choice of orbitals on which the subspace division is based. Seminatural orbitals are proposed for that purpose. These orbitals are obtained by diagonalizing only the hole-hole and particle-particle block of the one-electron density of a lower-order method. The seminatural orbitals are shown to be a good replacement for complete active space self-consistent field orbitals and avoid the ambiguities with respect to the reference determinant introduced by the latter orbitals. The seminatural orbitals also perform well in excited state calculations, including excited states with strong double excitation contributions, which usually are difficult to describe with standard coupled-cluster methods. A set of vertical excitation energies is obtained and benchmarked against full configuration interaction calculations, and alternative hierarchies of active space coupled-cluster models are proposed. As a simple application the spectroscopic constants of the C(2) B (1)Delta(g) and B(') (1)Sigma(g) (+) states are calculated using active space coupled-cluster methods and basis sets up to quadruple-zeta quality in connection with extrapolation and additivity schemes. PMID:17100432

  12. Coupled-cluster with active space selected higher amplitudes: Performance of seminatural orbitals for ground and excited state calculations

    NASA Astrophysics Data System (ADS)

    Köhn, Andreas; Olsen, Jeppe

    2006-11-01

    The active space approach for coupled-cluster models is generalized using the general active space concept and implemented in a string-based general coupled-cluster code. Particular attention is devoted to the choice of orbitals on which the subspace division is based. Seminatural orbitals are proposed for that purpose. These orbitals are obtained by diagonalizing only the hole-hole and particle-particle block of the one-electron density of a lower-order method. The seminatural orbitals are shown to be a good replacement for complete active space self-consistent field orbitals and avoid the ambiguities with respect to the reference determinant introduced by the latter orbitals. The seminatural orbitals also perform well in excited state calculations, including excited states with strong double excitation contributions, which usually are difficult to describe with standard coupled-cluster methods. A set of vertical excitation energies is obtained and benchmarked against full configuration interaction calculations, and alternative hierarchies of active space coupled-cluster models are proposed. As a simple application the spectroscopic constants of the C2 BΔg1 and B'Σg+1 states are calculated using active space coupled-cluster methods and basis sets up to quadruple-zeta quality in connection with extrapolation and additivity schemes.

  13. Characterization of a Single Genomic Locus Encoding the Clustered Protocadherin Receptor Diversity in Xenopus tropicalis

    PubMed Central

    Etlioglu, Hakki E.; Sun, Wei; Huang, Zengjin; Chen, Wei; Schmucker, Dietmar

    2016-01-01

    Clustered protocadherins (cPcdhs) constitute the largest subgroup of the cadherin superfamily, and in mammals are grouped into clusters of α-, β-, and γ-types. Tens of tandemly arranged paralogous Pcdh genes of the Pcdh clusters generate a substantial diversity of receptor isoforms. cPcdhs are known to have important roles in neuronal development, and genetic alterations of cPcdhs have been found to be associated with several neurological diseases. Here, we present a first characterization of cPcdhs in Xenopus tropicalis. We determined and annotated all cPcdh isoforms, revealing that they are present in a single chromosomal locus. We validated a total of 96 isoforms, which we show are organized in three distinct clusters. The X. tropicalis cPcdh locus is composed of one α- and two distinct γ-Pcdh clusters (pcdh-γ1 and pcdh-γ2). Bioinformatics analyses assisted by genomic BAC clone sequencing showed that the X. tropicalis α- and γ-Pcdhs are conserved at the cluster level, but, unlike mammals, X. tropicalis does not contain a β-Pcdh cluster. In contrast, the number of γ-Pcdh isoforms has expanded, possibly due to lineage-specific gene duplications. Interestingly, the number of X. tropicalis α-Pcdhs is identical between X. tropicalis and mouse. Moreover, we find highly conserved as well as novel promoter elements potentially involved in regulating the cluster-specific expression of cPcdh isoforms. This study provides important information for the understanding of the evolutionary history of cPcdh genes and future mechanistic studies. It provides an annotated X. tropicalis cPcdh genomic map and a first molecular characterization essential for functional and comparative studies. PMID:27261006

  14. Cyclic single-molecule magnets: from the odd-numbered heptanuclear to a dimer of heptanuclear dysprosium clusters.

    PubMed

    Tian, Haiquan; Bao, Song-Song; Zheng, Li-Min

    2016-02-01

    A heptanuclear and a dimer of heptanuclear dysprosium clusters (Dy7 and Dy14) have been successfully synthesized by ingenious coalescence of the single and double pyrazinyl hydrazone as well as phosphonate ligands. The complexes feature the largest odd-numbered cyclic lanthanide clusters reported thus far. Both exhibit single molecule magnet behaviors at low temperature. PMID:26728975

  15. Cyclic single-molecule magnets: from the odd-numbered heptanuclear to a dimer of heptanuclear dysprosium clusters.

    PubMed

    Tian, Haiquan; Bao, Song-Song; Zheng, Li-Min

    2016-02-01

    A heptanuclear and a dimer of heptanuclear dysprosium clusters (Dy7 and Dy14) have been successfully synthesized by ingenious coalescence of the single and double pyrazinyl hydrazone as well as phosphonate ligands. The complexes feature the largest odd-numbered cyclic lanthanide clusters reported thus far. Both exhibit single molecule magnet behaviors at low temperature.

  16. Characterization of a single gene cluster responsible for methylpendolmycin and pendolmycin biosynthesis in the deep sea bacterium Marinactinospora thermotolerans.

    PubMed

    Ma, Junying; Zuo, Dianguang; Song, Yongxiang; Wang, Bo; Huang, Hongbo; Yao, Yueliang; Li, Wenjun; Zhang, Si; Zhang, Changsheng; Ju, Jianhua

    2012-03-01

    The nine-membered indolactam antibiotics belong to a small group of antibiotics showing broad biological activities. However, the in vivo genetic engineering of compounds of this type has not been performed. Here we report the identification of a single gene cluster responsible for the biosynthesis of methylpendolmycin and pendolmycin, two members of this family of antibiotics, from the deep sea bacterium Marinactinospora thermotolerans SCSIO 00652. Bioinformatics analysis and gene inactivation, coupled with metabolite characterization, reveal that MpnB, a nonribosomal peptide synthetase, MpnC, a cytochrome P450, and MpnD, a prenyltransferase, are sufficient to catalyze the biosynthesis of the two antibiotics from L-Ile (or L-Val), L-Trp, and methionine. MpnD is the first identified enzyme that transfers a C5 prenyl unit in a reverse manner to the C-7 position of a Trp-derived natural product.

  17. Massively parallel implementations of coupled-cluster methods for electron spin resonance spectra. I. Isotropic hyperfine coupling tensors in large radicals

    SciTech Connect

    Verma, Prakash; Morales, Jorge A.; Perera, Ajith

    2013-11-07

    Coupled cluster (CC) methods provide highly accurate predictions of molecular properties, but their high computational cost has precluded their routine application to large systems. Fortunately, recent computational developments in the ACES III program by the Bartlett group [the OED/ERD atomic integral package, the super instruction processor, and the super instruction architecture language] permit overcoming that limitation by providing a framework for massively parallel CC implementations. In that scheme, we are further extending those parallel CC efforts to systematically predict the three main electron spin resonance (ESR) tensors (A-, g-, and D-tensors) to be reported in a series of papers. In this paper inaugurating that series, we report our new ACES III parallel capabilities that calculate isotropic hyperfine coupling constants in 38 neutral, cationic, and anionic radicals that include the {sup 11}B, {sup 17}O, {sup 9}Be, {sup 19}F, {sup 1}H, {sup 13}C, {sup 35}Cl, {sup 33}S,{sup 14}N, {sup 31}P, and {sup 67}Zn nuclei. Present parallel calculations are conducted at the Hartree-Fock (HF), second-order many-body perturbation theory [MBPT(2)], CC singles and doubles (CCSD), and CCSD with perturbative triples [CCSD(T)] levels using Roos augmented double- and triple-zeta atomic natural orbitals basis sets. HF results consistently overestimate isotropic hyperfine coupling constants. However, inclusion of electron correlation effects in the simplest way via MBPT(2) provides significant improvements in the predictions, but not without occasional failures. In contrast, CCSD results are consistently in very good agreement with experimental results. Inclusion of perturbative triples to CCSD via CCSD(T) leads to small improvements in the predictions, which might not compensate for the extra computational effort at a non-iterative N{sup 7}-scaling in CCSD(T). The importance of these accurate computations of isotropic hyperfine coupling constants to elucidate

  18. Massively parallel implementations of coupled-cluster methods for electron spin resonance spectra. I. Isotropic hyperfine coupling tensors in large radicals.

    PubMed

    Verma, Prakash; Perera, Ajith; Morales, Jorge A

    2013-11-01

    Coupled cluster (CC) methods provide highly accurate predictions of molecular properties, but their high computational cost has precluded their routine application to large systems. Fortunately, recent computational developments in the ACES III program by the Bartlett group [the OED∕ERD atomic integral package, the super instruction processor, and the super instruction architecture language] permit overcoming that limitation by providing a framework for massively parallel CC implementations. In that scheme, we are further extending those parallel CC efforts to systematically predict the three main electron spin resonance (ESR) tensors (A-, g-, and D-tensors) to be reported in a series of papers. In this paper inaugurating that series, we report our new ACES III parallel capabilities that calculate isotropic hyperfine coupling constants in 38 neutral, cationic, and anionic radicals that include the (11)B, (17)O, (9)Be, (19)F, (1)H, (13)C, (35)Cl, (33)S,(14)N, (31)P, and (67)Zn nuclei. Present parallel calculations are conducted at the Hartree-Fock (HF), second-order many-body perturbation theory [MBPT(2)], CC singles and doubles (CCSD), and CCSD with perturbative triples [CCSD(T)] levels using Roos augmented double- and triple-zeta atomic natural orbitals basis sets. HF results consistently overestimate isotropic hyperfine coupling constants. However, inclusion of electron correlation effects in the simplest way via MBPT(2) provides significant improvements in the predictions, but not without occasional failures. In contrast, CCSD results are consistently in very good agreement with experimental results. Inclusion of perturbative triples to CCSD via CCSD(T) leads to small improvements in the predictions, which might not compensate for the extra computational effort at a non-iterative N(7)-scaling in CCSD(T). The importance of these accurate computations of isotropic hyperfine coupling constants to elucidate experimental ESR spectra, to interpret spin

  19. Massively parallel implementations of coupled-cluster methods for electron spin resonance spectra. I. Isotropic hyperfine coupling tensors in large radicals

    NASA Astrophysics Data System (ADS)

    Verma, Prakash; Perera, Ajith; Morales, Jorge A.

    2013-11-01

    Coupled cluster (CC) methods provide highly accurate predictions of molecular properties, but their high computational cost has precluded their routine application to large systems. Fortunately, recent computational developments in the ACES III program by the Bartlett group [the OED/ERD atomic integral package, the super instruction processor, and the super instruction architecture language] permit overcoming that limitation by providing a framework for massively parallel CC implementations. In that scheme, we are further extending those parallel CC efforts to systematically predict the three main electron spin resonance (ESR) tensors (A-, g-, and D-tensors) to be reported in a series of papers. In this paper inaugurating that series, we report our new ACES III parallel capabilities that calculate isotropic hyperfine coupling constants in 38 neutral, cationic, and anionic radicals that include the 11B, 17O, 9Be, 19F, 1H, 13C, 35Cl, 33S,14N, 31P, and 67Zn nuclei. Present parallel calculations are conducted at the Hartree-Fock (HF), second-order many-body perturbation theory [MBPT(2)], CC singles and doubles (CCSD), and CCSD with perturbative triples [CCSD(T)] levels using Roos augmented double- and triple-zeta atomic natural orbitals basis sets. HF results consistently overestimate isotropic hyperfine coupling constants. However, inclusion of electron correlation effects in the simplest way via MBPT(2) provides significant improvements in the predictions, but not without occasional failures. In contrast, CCSD results are consistently in very good agreement with experimental results. Inclusion of perturbative triples to CCSD via CCSD(T) leads to small improvements in the predictions, which might not compensate for the extra computational effort at a non-iterative N7-scaling in CCSD(T). The importance of these accurate computations of isotropic hyperfine coupling constants to elucidate experimental ESR spectra, to interpret spin-density distributions, and to

  20. bcl::Cluster : A method for clustering biological molecules coupled with visualization in the Pymol Molecular Graphics System

    PubMed Central

    Alexander, Nathan; Woetzel, Nils; Meiler, Jens

    2016-01-01

    Clustering algorithms are used as data analysis tools in a wide variety of applications in Biology. Clustering has become especially important in protein structure prediction and virtual high throughput screening methods. In protein structure prediction, clustering is used to structure the conformational space of thousands of protein models. In virtual high throughput screening, databases with millions of drug-like molecules are organized by structural similarity, e.g. common scaffolds. The tree-like dendrogram structure obtained from hierarchical clustering can provide a qualitative overview of the results, which is important for focusing detailed analysis. However, in practice it is difficult to relate specific components of the dendrogram directly back to the objects of which it is comprised and to display all desired information within the two dimensions of the dendrogram. The current work presents a hierarchical agglomerative clustering method termed bcl::Cluster. bcl::Cluster utilizes the Pymol Molecular Graphics System to graphically depict dendrograms in three dimensions. This allows simultaneous display of relevant biological molecules as well as additional information about the clusters and the members comprising them.

  1. Synergy between pair coupled cluster doubles and pair density functional theory

    SciTech Connect

    Garza, Alejandro J.; Bulik, Ireneusz W.; Henderson, Thomas M.; Scuseria, Gustavo E.

    2015-01-28

    Pair coupled cluster doubles (pCCD) has been recently studied as a method capable of accounting for static correlation with low polynomial cost. We present three combinations of pCCD with Kohn–Sham functionals of the density and on-top pair density (the probability of finding two electrons on top of each other) to add dynamic correlation to pCCD without double counting. With a negligible increase in computational cost, these pCCD+DFT blends greatly improve upon pCCD in the description of typical problems where static and dynamic correlations are both important. We argue that—as a black-box method with low scaling, size-extensivity, size-consistency, and a simple quasidiagonal two-particle density matrix—pCCD is an excellent match for pair density functionals in this type of fusion of multireference wavefunctions with DFT.

  2. Actinide chemistry using singlet-paired coupled cluster and its combinations with density functionals

    NASA Astrophysics Data System (ADS)

    Garza, Alejandro J.; Sousa Alencar, Ana G.; Scuseria, Gustavo E.

    2015-12-01

    Singlet-paired coupled cluster doubles (CCD0) is a simplification of CCD that relinquishes a fraction of dynamic correlation in order to be able to describe static correlation. Combinations of CCD0 with density functionals that recover specifically the dynamic correlation missing in the former have also been developed recently. Here, we assess the accuracy of CCD0 and CCD0+DFT (and variants of these using Brueckner orbitals) as compared to well-established quantum chemical methods for describing ground-state properties of singlet actinide molecules. The f0 actinyl series (UO22+, NpO23+, PuO24+), the isoelectronic NUN, and thorium (ThO, ThO2+) and nobelium (NoO, NoO2) oxides are studied.

  3. Actinide chemistry using singlet-paired coupled cluster and its combinations with density functionals.

    PubMed

    Garza, Alejandro J; Sousa Alencar, Ana G; Scuseria, Gustavo E

    2015-12-28

    Singlet-paired coupled cluster doubles (CCD0) is a simplification of CCD that relinquishes a fraction of dynamic correlation in order to be able to describe static correlation. Combinations of CCD0 with density functionals that recover specifically the dynamic correlation missing in the former have also been developed recently. Here, we assess the accuracy of CCD0 and CCD0+DFT (and variants of these using Brueckner orbitals) as compared to well-established quantum chemical methods for describing ground-state properties of singlet actinide molecules. The f(0) actinyl series (UO2(2+), NpO2(3+), PuO2(4+)), the isoelectronic NUN, and thorium (ThO, ThO(2+)) and nobelium (NoO, NoO2) oxides are studied.

  4. Elastic Proton Scattering of Medium Mass Nuclei from Coupled-Cluster Theory

    SciTech Connect

    Hagen, G.; MichelN.,

    2012-01-01

    Using coupled-cluster theory and interactions from chiral effective field theory, we compute overlap functions for transfer and scattering of low-energy protons on the target nucleus 40Ca. Effects of three-nucleon forces are included phenomenologically as in-medium two-nucleon interactions. Using known asymptotic forms for one-nucleon overlap functions we derive a simple and intuitive way of computing scattering observables such as elastic scattering phase shifts and cross sections. As a first application and proof of principle, we compute phase shifts and differential interaction cross sections at energies of 9.6 and 12.44 MeV and compare with experimental data. Our computed diffraction minima are in fair agreement with experimental results, while we tend to overestimate the cross sections at large scattering angles.

  5. Heat transport in confined strongly coupled two-dimensional dust clusters

    SciTech Connect

    Kudelis, Giedrius; Thomsen, Hauke; Bonitz, Michael

    2013-07-15

    Dusty plasmas are a model system for studying strong correlation. The dust grains’ size of a few micro-meters and their characteristic oscillation frequency of a few hertz allow for an investigation of many-particle effects on an “atomic” level. In this article, we model the heat transport through an axially confined 2D dust cluster from the center to the outside. The system behaves particularly interesting since heat is not only conducted within the dust component but also transferred to the neutral gas. Fitting the analytical solution to the radial temperature profiles obtained in molecular dynamics simulations allows to determine the heat conductivity k. The heat conductivity is found to be constant over a wide range of coupling strengths even including the phase transition from solid to liquid here, as it was also found in extended systems by Nosenko et al.[Phys. Rev. Lett. 100, 025003 (2008)].

  6. Actinide chemistry using singlet-paired coupled cluster and its combinations with density functionals.

    PubMed

    Garza, Alejandro J; Sousa Alencar, Ana G; Scuseria, Gustavo E

    2015-12-28

    Singlet-paired coupled cluster doubles (CCD0) is a simplification of CCD that relinquishes a fraction of dynamic correlation in order to be able to describe static correlation. Combinations of CCD0 with density functionals that recover specifically the dynamic correlation missing in the former have also been developed recently. Here, we assess the accuracy of CCD0 and CCD0+DFT (and variants of these using Brueckner orbitals) as compared to well-established quantum chemical methods for describing ground-state properties of singlet actinide molecules. The f(0) actinyl series (UO2(2+), NpO2(3+), PuO2(4+)), the isoelectronic NUN, and thorium (ThO, ThO(2+)) and nobelium (NoO, NoO2) oxides are studied. PMID:26723650

  7. Equation-of-motion coupled cluster method for high spin double electron attachment calculations

    SciTech Connect

    Musiał, Monika Lupa, Łukasz; Kucharski, Stanisław A.

    2014-03-21

    The new formulation of the equation-of-motion (EOM) coupled cluster (CC) approach applicable to the calculations of the double electron attachment (DEA) states for the high spin components is proposed. The new EOM equations are derived for the high spin triplet and quintet states. In both cases the new equations are easier to solve but the substantial simplification is observed in the case of quintets. Out of 21 diagrammatic terms contributing to the standard DEA-EOM-CCSDT equations for the R{sub 2} and R{sub 3} amplitudes only four terms survive contributing to the R{sub 3} part. The implemented method has been applied to the calculations of the excited states (singlets, triplets, and quintets) energies of the carbon and silicon atoms and potential energy curves for selected states of the Na{sub 2} (triplets) and B{sub 2} (quintets) molecules.

  8. Incorporating a completely renormalized coupled cluster approach into a composite method for thermodynamic properties and reaction paths

    SciTech Connect

    Nedd, Sean; DeYonker, Nathan; Wilson, Angela; Piecuch, Piotr; Gordon, Mark

    2012-04-12

    The correlation consistent composite approach (ccCA), using the S4 complete basis set two-point extrapolation scheme (ccCA-S4), has been modified to incorporate the left-eigenstate completely renormalized coupled cluster method, including singles, doubles, and non-iterative triples (CR-CC(2,3)) as the highest level component. The new ccCA-CC(2,3) method predicts thermodynamic properties with an accuracy that is similar to that of the original ccCA-S4 method. At the same time, the inclusion of the single-reference CR-CC(2,3) approach provides a ccCA scheme that can correctly treat reaction pathways that contain certain classes of multi-reference species such as diradicals, which would normally need to be treated by more computationally demanding multi-reference methods. The new ccCA-CC(2,3) method produces a mean absolute deviation of 1.7 kcal/mol for predicted heats of formation at 298 K, based on calibration with the G2/97 set of 148 molecules, which is comparable to that of 1.0 kcal/mol obtained using the ccCA-S4 method, while significantly improving the performance of the ccCA-S4 approach in calculations involving more demanding radical and diradical species. Both the ccCA-CC(2,3) and ccCA-S4 composite methods are used to characterize the conrotatory and disrotatory isomerization pathways of bicyclo[1.1.0]butane to trans-1,3-butadiene, for which conventional coupled cluster methods, such as the CCSD(T) approach used in the ccCA-S4 model and, in consequence, the ccCA-S4 method itself might fail by incorrectly placing the disrotatory pathway below the conrotatory one. The ccCA-CC(2,3) scheme provides correct pathway ordering while providing an accurate description of the activation and reaction energies characterizing the lowest-energy conrotatory pathway. The ccCA-CC(2,3) method is thus a viable method for the analyses of reaction mechanisms that have significant multi-reference character, and presents a generally less computationally intensive alternative to

  9. Characterization of the Iron-Sulfur Clusters in Xanthine Dehydrogenase Using Electron Paramagnetic Resonance Spectroscopy and Magnetic Coupling Interactions

    SciTech Connect

    Scott, J. Robert

    2004-02-04

    Xanthine dehydrogenase is a metalloenzyme that is present in numerous eukaryotic and prokaryotic organisms. It contains molybdenum, two different iron-sulfur clusters, and flavin. While the structures of both iron-sulfur clusters were known, it was unclear as to which structure was in which location. Electron paramagnetic resonance spectroscopy probes the paramagnetic qualities of molecules or ions. With this technology we wished to understand which EPR spectrum was associated with which iron-sulfur cluster by looking at magnetic coupling between the paramagnetic Mo(V) oxidation state and the reduced iron-sulfur clusters. We then assigned the clusters to their corresponding locations. The spin-spin interactions observed between Mo(V) and Fe-S I in xanthine dehydrogenase at low temperature show that Fe-S I is the closer site in contrast to Fe-S II.

  10. A coupled cluster and Møller-Plesset perturbation theory study of the pressure induced phase transition in the LiH crystal

    SciTech Connect

    Grüneis, Andreas

    2015-09-14

    We employ Hartree–Fock, second-order Møller-Plesset perturbation, coupled cluster singles and doubles (CCSD) as well as CCSD plus perturbative triples (CCSD(T)) theory to study the pressure induced transition from the rocksalt to the cesium chloride crystal structure in LiH. We show that the calculated transition pressure converges rapidly in this series of increasingly accurate many-electron wave function based theories. Using CCSD(T) theory, we predict a transition pressure for the structural phase transition in the LiH crystal of 340 GPa. Furthermore, we investigate the potential energy surface for this transition in the parameter space of the Buerger path.

  11. Structure of Low-Lying Excited States of Guanine in DNA and Solution: Combined Molecular Mechanics and High-Level Coupled Cluster Studies

    DOE PAGES

    Kowalski, Karol; Valiev, Marat

    2007-01-01

    High-level ab-initio equation-of-motion coupled-cluster methods with singles, doubles, and noniterative triples are used, in conjunction with the combined quantum mechanical molecular mechanics approach, to investigate the structure of low-lying excited states of the guanine base in DNA and solvated environments. Our results indicate that while the excitation energy of the first excited state is barely changed compared to its gas-phase counterpart, the excitation energy of the second excited state is blue-shifted by 0.24 eV.

  12. Emergent properties of nuclei from ab initio coupled-cluster calculations

    NASA Astrophysics Data System (ADS)

    Hagen, G.; Hjorth-Jensen, M.; Jansen, G. R.; Papenbrock, T.

    2016-06-01

    Emergent properties such as nuclear saturation and deformation, and the effects on shell structure due to the proximity of the scattering continuum and particle decay channels are fascinating phenomena in atomic nuclei. In recent years, ab initio approaches to nuclei have taken the first steps towards tackling the computational challenge of describing these phenomena from Hamiltonians with microscopic degrees of freedom. This endeavor is now possible due to ideas from effective field theories, novel optimization strategies for nuclear interactions, ab initio methods exhibiting a soft scaling with mass number, and ever-increasing computational power. This paper reviews some of the recent accomplishments. We also present new results. The recently optimized chiral interaction NNLO{}{{sat}} is shown to provide an accurate description of both charge radii and binding energies in selected light- and medium-mass nuclei up to 56Ni. We derive an efficient scheme for including continuum effects in coupled-cluster computations of nuclei based on chiral nucleon-nucleon and three-nucleon forces, and present new results for unbound states in the neutron-rich isotopes of oxygen and calcium. The coupling to the continuum impacts the energies of the {J}π =1/{2}-,3/{2}-,7/{2}-,3/{2}+ states in {}{17,23,25}O, and—contrary to naive shell-model expectations—the level ordering of the {J}π =3/{2}+,5/{2}+,9/{2}+ states in {}{53,55,61}Ca. ).

  13. Growth of single-layer boron nitride dome-shaped nanostructures catalysed by iron clusters.

    PubMed

    Torre, A La; Åhlgren, E H; Fay, M W; Ben Romdhane, F; Skowron, S T; Parmenter, C; Davies, A J; Jouhannaud, J; Pourroy, G; Khlobystov, A N; Brown, P D; Besley, E; Banhart, F

    2016-08-11

    We report on the growth and formation of single-layer boron nitride dome-shaped nanostructures mediated by small iron clusters located on flakes of hexagonal boron nitride. The nanostructures were synthesized in situ at high temperature inside a transmission electron microscope while the e-beam was blanked. The formation process, typically originating at defective step-edges on the boron nitride support, was investigated using a combination of transmission electron microscopy, electron energy loss spectroscopy and computational modelling. Computational modelling showed that the domes exhibit a nanotube-like structure with flat circular caps and that their stability was comparable to that of a single boron nitride layer. PMID:27486917

  14. Single photon transport in two waveguides chirally coupled by a quantum emitter.

    PubMed

    Cheng, Mu-Tian; Ma, Xiao-San; Zhang, Jia-Yan; Wang, Bing

    2016-08-22

    We investigate single photon transport in two waveguides coupled to a two-level quantum emitter (QE). With the deduced analytical scattering amplitudes, we show that under condition of the chiral coupling between the QE and the photon in the two waveguides, the QE can play the role of ideal quantum router to redirect a single photon incident from one waveguide into the other waveguide with a probability of 100% in the ideal condition. The influences of cross coupling between two waveguides and dissipations on the routing are also shown. PMID:27557274

  15. Assisted reproduction in a cohort of same-sex male couples and single men.

    PubMed

    Grover, Stephanie A; Shmorgun, Ziva; Moskovtsev, Sergey I; Baratz, Ari; Librach, Clifford L

    2013-08-01

    To date, there is limited published data on same-sex male couples and single men using assisted reproduction treatment to build their families. The objective of this retrospective study was to better understand treatment considerations and outcomes for this population when using assisted reproduction treatment. A total of 37 same-sex male couples and eight single men (seven homosexual and one heterosexual) who attended the CReATe Fertility Centre for assisted reproduction services were studied. There was a 21-fold increase in the number of same-sex male couples and single men undergoing assisted reproduction treatment since 2003. The mean age was 46years (24-58). Twenty-eight couples (76%) chose to use spermatozoa from both partners to fertilize their donated oocytes. Most men (32 same-sex male couples and seven single men; 87%) obtained oocytes from an anonymous donor, whereas five couples and one single man (13%) had a known donor. Anonymous donors who were open to be contacted by the child after the age of 18 were selected by 67% of patients. Of all 25 deliveries, eight (32%) were sets of twins. All of the twins were half genetic siblings. PMID:23768615

  16. Enhanced light coupling in sub-wavelength single-mode silicon on insulator waveguides.

    PubMed

    Pang, C; Gesuele, F; Bruyant, A; Blaize, S; Lérondel, G; Royer, P

    2009-04-27

    We report on NIR efficient end-coupling in single-mode silicon on insulator waveguides. Efficient coupling has been achieved using Polymer-Tipped Optical Fibers (PTOF) of adaptable radius of curvature (ROC). When compared with commercial micro lenses, systematic studies as a function of PTOF ROC, lead for subwavelength PTOF to a coupling factor enhancement as high as 2.5. This experimental behavior is clearly corroborated by radial FDTD simulations and an absolute coupling efficiency of about 50% is also estimated.

  17. Ultrastrong exciton-photon coupling in single and coupled organic microcavities

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Bramante, Rosemary; Valle, Brent; Singer, Kenneth; Khattab, Tawfik; Williams, Jarrod; Twieg, Robert

    2015-03-01

    We have demonstrated ultrastrong light-matter coupling in organic planar microcavities composed of a neat glassy organic dye film between two metallic (aluminum) mirrors in a half-cavity configuration. Such cavities are characterized by Q factors around 10. Tuning the thickness of the organic layer enables the observation of the ultrastrong coupling regime. Via reflectivity measurements, we observe a very large Rabi splitting around 1.227 eV between upper and lower polariton branches at room temperature, and we detect polariton emission from the lower polariton branch via photoluminescence measurements. The large splitting is due to the large oscillator strength of the neat dye glass, and to the match of the low-Q cavity spectral width to the broad absorption width of the dye film material. We also study the interaction between excitonic states of neat glassy organic dye and cavity modes within coupled microcavity structures. The high-reflectivity mirrors are formed from distributed Bragg reflectors (DBR), which are multilayer films fabricated using the coextrusion process, containing alternating layers of high (SAN25, n =1.57) and low (Dyneon THV 220G, n =1.37) refractive index dielectric polymers. Nonlinear optical measurements will be discussed. This research was supported by the National Science Foundation Center for Layered Polymer Systems (CLiPS) under Grant Number DMR-0423914.

  18. Diffusion of Single layer Clusters: Langevin Analysis and Monte Carlo Simulations^*

    NASA Astrophysics Data System (ADS)

    Khare, S. V.

    1996-03-01

    In recent observations of Brownian motion of islands of adsorbed atoms and of vacancies with mean radius R, the cluster diffusion constant Dc is found to vary as R-1 and R-2 in studies by Wen et al. ( J. M. Wen, S. -L. Chang, J. W. Burnett, J. W. Evans and P. A. Thiel, Phys. Rev. Lett. 73), 2591 (1994). and Morgenstern et al. (K. Morgenstern, G. Rosenfeld, B. Poelsema, and G. Comsa, Phys. Rev. Lett. 74), 2058 (1995)., repectively. From an analytical continuum description of the cluster's step-like boundary, we find a single Langevin equation for the motion of the cluster boundary. From this we determine the cluster diffusion constant and the fluctuations of the shape around an assumed equilibrium circular shape. In three limiting cases this leads to the scaling of the diffusion constant with the radius as Dc ~ R^-α and the scaling of a shape fluctuations correlation function with the elapsed time as t^1/(1+α ). These three cases correspond to the three microscopic surface mass-transport mechanisms of straight steps, namely: evaporation condensation (EC) giving α=1, terrace diffusion (TD) implying α=2 and periphery diffusion (PD) yielding α = 3. We thereby provide a unified treatment of the dynamics of steps and of clusters ( S. V. Khare, N. C. Bartelt, and T. L. Einstein, Phys. Rev. Lett. 75), 2148 (1995); in preparation.. To check how well the continuum results apply to real systems with finite lattice constants, we perform Monte Carlo simulations of simple lattice gas models for these three cases. We also relate the the experimentally measured diffusion coefficients of the clusters to atomic diffusion parameters. ^* This work was done in collaboration with N. C. Bartelt and T. L. Einstein and was supported in part by NSF DMR-MRG 91-03031.

  19. Multireference general-model-space state-universal and state-specific coupled-cluster approaches to excited states

    NASA Astrophysics Data System (ADS)

    Li, Xiangzhu; Paldus, Josef

    2010-11-01

    The concept of C-conditions, originally introduced in the framework of the multireference (MR), general-model-space (GMS), state-universal (SU), coupled-cluster (CC) approach with singles and doubles (GMS-SU-CCSD) to account for the internal amplitudes that vanish in the case of a complete model space, is applied to a state-selective or state-specific Mukherjee MR-CC method (MkCCSD). In contrast to the existing applications, the emphasis is on the description of excited states, particularly those belonging to the same symmetry species. The applicability of the C-conditions in all MR-SU-CC approaches is emphasized. Convergence problems encountered in the MkCCSD method when handling higher-lying states are pointed out. The performance of the GMS-SU-CCSD and MkCCSD methods is illustrated by considering low-lying vertical excitation energies of the ethylene molecule and para-benzyne diradical. A comparison with the equation-of-motion CCSD results, as well as with the available experimental data and recent multireference configuration interaction theoretical results, is also provided.

  20. An accurate potential energy surface for the F + H2 → HF + H reaction by the coupled-cluster method

    NASA Astrophysics Data System (ADS)

    Chen, Jun; Sun, Zhigang; Zhang, Dong H.

    2015-01-01

    A three dimensional potential energy surface for the F + H2 → HF + H reaction has been computed by the spin unrestricted coupled cluster method with singles, doubles, triples, and perturbative quadruples [UCCSDT(2)Q] using the augmented correlation-consistent polarised valence quadruple zeta basis set for the fluorine atom and the correlation-consistent polarised valence quadruple zeta basis set for the hydrogen atom. All the calculations are based on the restricted open-shell Hartree-Fock orbitals, together with the frozen core approximations, and the UCCSD(T)/complete basis set (CBS) correction term was included. The global potential energy surface was calculated by fitting the sampled ab initio points without any scaling factor for the correlation energy part using a neutral network function method. Extensive dynamics calculations have been carried out on the potential energy surface. The reaction rate constants, integral cross sections, product rotational states distribution, and forward and backward scattering as a function of collision energy of the F + HD → HF + D, F + HD → DF + H, and F + H2 reaction, were calculated by the time-independent quantum dynamics scattering theory using the new surface. The satisfactory agreement with the reported experimental observations previously demonstrates the accuracy of the new potential energy surface.

  1. Relativistic equation-of-motion coupled-cluster method using open-shell reference wavefunction: Application to ionization potential.

    PubMed

    Pathak, Himadri; Sasmal, Sudip; Nayak, Malaya K; Vaval, Nayana; Pal, Sourav

    2016-08-21

    The open-shell reference relativistic equation-of-motion coupled-cluster method within its four-component description is successfully implemented with the consideration of single- and double- excitation approximations using the Dirac-Coulomb Hamiltonian. At the first attempt, the implemented method is employed to calculate ionization potential value of heavy atomic (Ag, Cs, Au, Fr, and Lr) and molecular (HgH and PbF) systems, where the effect of relativity does really matter to obtain highly accurate results. Not only the relativistic effect but also the effect of electron correlation is crucial in these heavy atomic and molecular systems. To justify the fact, we have taken two further approximations in the four-component relativistic equation-of-motion framework to quantify how the effect of electron correlation plays a role in the calculated values at different levels of theory. All these calculated results are compared with the available experimental data as well as with other theoretically calculated values to judge the extent of accuracy obtained in our calculations. PMID:27544090

  2. An accurate potential energy surface for the F + H2 → HF + H reaction by the coupled-cluster method.

    PubMed

    Chen, Jun; Sun, Zhigang; Zhang, Dong H

    2015-01-14

    A three dimensional potential energy surface for the F + H2 → HF + H reaction has been computed by the spin unrestricted coupled cluster method with singles, doubles, triples, and perturbative quadruples [UCCSDT(2)Q] using the augmented correlation-consistent polarised valence quadruple zeta basis set for the fluorine atom and the correlation-consistent polarised valence quadruple zeta basis set for the hydrogen atom. All the calculations are based on the restricted open-shell Hartree-Fock orbitals, together with the frozen core approximations, and the UCCSD(T)/complete basis set (CBS) correction term was included. The global potential energy surface was calculated by fitting the sampled ab initio points without any scaling factor for the correlation energy part using a neutral network function method. Extensive dynamics calculations have been carried out on the potential energy surface. The reaction rate constants, integral cross sections, product rotational states distribution, and forward and backward scattering as a function of collision energy of the F + HD → HF + D, F + HD → DF + H, and F + H2 reaction, were calculated by the time-independent quantum dynamics scattering theory using the new surface. The satisfactory agreement with the reported experimental observations previously demonstrates the accuracy of the new potential energy surface.

  3. Single-Quantum Coherence Filter for Strongly Coupled Spin Systems for Localized 1H NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Trabesinger, Andreas H.; Mueller, D. Christoph; Boesiger, Peter

    2000-08-01

    A pulse sequence for localized in vivo1H NMR spectroscopy is presented, which selectively filters single-quantum coherence built up by strongly coupled spin systems. Uncoupled and weakly coupled spin systems do not contribute to the signal output. Analytical calculations using a product operator description of the strongly coupled AB spin system as well as in vitro tests demonstrate that the proposed filter produces a signal output for a strongly coupled AB spin system, whereas the resonances of a weakly coupled AX spin system and of uncoupled spins are widely suppressed. As a potential application, the detection of the strongly coupled AA‧BB‧ spin system of taurine at 1.5 T is discussed.

  4. Using Clustered Climate Regimes to Analyze and Compare Predictions from Fully Coupled General Circulation Models

    SciTech Connect

    Hoffman, Forrest M; Hargrove, William Walter; Erickson III, David J; Oglesby, Robert J

    2005-01-01

    Changes in Earth's climate in response to atmospheric greenhouse gas buildup impact the health of terrestrial ecosystems and the hydrologic cycle. The environmental conditions influential to plant and animal life are often mapped as ecoregions, which are land areas having similar combinations of environmental characteristics. This idea is extended to establish regions of similarity with respect to climatic characteristics that evolve through time using a quantitative statistical clustering technique called Multivariate Spatio-Temporal Clustering (MSTC). MSTC was applied to the monthly time series output from a fully coupled general circulation model (GCM) called the Parallel Climate Model (PCM). Results from an ensemble of five 99-yr Business-As-Usual (BAU) transient simulations from 2000 to 2098 were analyzed. MSTC establishes an exhaustive set of recurring climate regimes that form a 'skeleton' through the 'observations' (model output) throughout the occupied portion of the climate phase space formed by the characteristics being considered. MSTC facilitates direct comparison of ensemble members and ensemble and temporal averages since the derived climate regimes provide a basis for comparison. Moreover, by mapping all land cells to discrete climate states, the dynamic behavior of any part of the system can be studied by its time-varying sequence of climate state occupancy. MSTC is a powerful tool for model developers and environmental decision makers who wish to understand long, complex time series predictions of models. Strong predicted interannual trends were revealed in this analysis, including an increase in global desertification; a decrease in the cold, dry high-latitude conditions typical of North American and Asian winters; and significant warming in Antarctica and western Greenland.

  5. Electron correlation in the interacting quantum atoms partition via coupled-cluster lagrangian densities.

    PubMed

    Holguín-Gallego, Fernando José; Chávez-Calvillo, Rodrigo; García-Revilla, Marco; Francisco, Evelio; Pendás, Ángel Martín; Rocha-Rinza, Tomás

    2016-07-15

    The electronic energy partition established by the Interacting Quantum Atoms (IQA) approach is an important method of wavefunction analyses which has yielded valuable insights about different phenomena in physical chemistry. Most of the IQA applications have relied upon approximations, which do not include either dynamical correlation (DC) such as Hartree-Fock (HF) or external DC like CASSCF theory. Recently, DC was included in the IQA method by means of HF/Coupled-Cluster (CC) transition densities (Chávez-Calvillo et al., Comput. Theory Chem. 2015, 1053, 90). Despite the potential utility of this approach, it has a few drawbacks, for example, it is not consistent with the calculation of CC properties different from the total electronic energy. To improve this situation, we have implemented the IQA energy partition based on CC Lagrangian one- and two-electron orbital density matrices. The development presented in this article is tested and illustrated with the H2 , LiH, H2 O, H2 S, N2 , and CO molecules for which the IQA results obtained under the consideration of (i) the CC Lagrangian, (ii) HF/CC transition densities, and (iii) HF are critically analyzed and compared. Additionally, the effect of the DC in the different components of the electronic energy in the formation of the T-shaped (H2 )2 van der Waals cluster and the bimolecular nucleophilic substitution between F(-) and CH3 F is examined. We anticipate that the approach put forward in this article will provide new understandings on subjects in physical chemistry wherein DC plays a crucial role like molecular interactions along with chemical bonding and reactivity. © 2016 Wiley Periodicals, Inc. PMID:27237084

  6. Electron correlation in the interacting quantum atoms partition via coupled-cluster lagrangian densities.

    PubMed

    Holguín-Gallego, Fernando José; Chávez-Calvillo, Rodrigo; García-Revilla, Marco; Francisco, Evelio; Pendás, Ángel Martín; Rocha-Rinza, Tomás

    2016-07-15

    The electronic energy partition established by the Interacting Quantum Atoms (IQA) approach is an important method of wavefunction analyses which has yielded valuable insights about different phenomena in physical chemistry. Most of the IQA applications have relied upon approximations, which do not include either dynamical correlation (DC) such as Hartree-Fock (HF) or external DC like CASSCF theory. Recently, DC was included in the IQA method by means of HF/Coupled-Cluster (CC) transition densities (Chávez-Calvillo et al., Comput. Theory Chem. 2015, 1053, 90). Despite the potential utility of this approach, it has a few drawbacks, for example, it is not consistent with the calculation of CC properties different from the total electronic energy. To improve this situation, we have implemented the IQA energy partition based on CC Lagrangian one- and two-electron orbital density matrices. The development presented in this article is tested and illustrated with the H2 , LiH, H2 O, H2 S, N2 , and CO molecules for which the IQA results obtained under the consideration of (i) the CC Lagrangian, (ii) HF/CC transition densities, and (iii) HF are critically analyzed and compared. Additionally, the effect of the DC in the different components of the electronic energy in the formation of the T-shaped (H2 )2 van der Waals cluster and the bimolecular nucleophilic substitution between F(-) and CH3 F is examined. We anticipate that the approach put forward in this article will provide new understandings on subjects in physical chemistry wherein DC plays a crucial role like molecular interactions along with chemical bonding and reactivity. © 2016 Wiley Periodicals, Inc.

  7. Application of a convergent, composite coupled cluster approach to bound state, adiabatic electron affinities in atoms and small molecules

    NASA Astrophysics Data System (ADS)

    Feller, David

    2016-01-01

    Benchmark quality adiabatic electron affinities for a collection of atoms and small molecules were obtained with the Feller-Peterson-Dixon composite coupled cluster theory method. Prior applications of this method demonstrated its ability to accurately predict atomization energies/heats of formation for more than 170 molecules. In the current work, the 1-particle expansion involved very large correlation consistent basis sets, ranging up to aug-cc-pV9Z (aug-cc-pV10Z for H and H2), with the goal of minimizing the residual basis set truncation error that must otherwise be approximated with extrapolation formulas. The n-particle expansion begins with coupled cluster calculations through iterative single and double excitations plus a quasiperturbative treatment of "connected" triple excitations (CCSD(T)) pushed to the complete basis set limit followed by CCSDT, CCSDTQ, or CCSDTQ5 corrections. Due to the small size of the systems examined here, it was possible in many cases to extend the n-particle expansion to the full configuration interaction wave function limit. Additional, smaller corrections associated with core/valence correlation, scalar relativity, anharmonic zero point vibrational energies, and non-adiabatic effects were also included. The overall root mean square (RMS) deviation was 0.005 eV (0.12 kcal/mol). This level of agreement was comparable to what was found with molecular heats of formation. A 95% confidence level corresponds to roughly twice the RMS value or 0.01 eV. While the atomic electron affinities are known experimentally to high accuracy, the molecular values are less certain. This contributes to the difficulty of gauging the accuracy of the theoretical results. A limited number of electron affinities were determined with the explicitly correlated CCSD(T)-F12b method. After extending the VnZ-F12 orbital basis sets with additional diffuse functions, the F12b method was found to accurately reproduce the best F/F- value obtained with standard

  8. Application of a convergent, composite coupled cluster approach to bound state, adiabatic electron affinities in atoms and small molecules.

    PubMed

    Feller, David

    2016-01-01

    Benchmark quality adiabatic electron affinities for a collection of atoms and small molecules were obtained with the Feller-Peterson-Dixon composite coupled cluster theory method. Prior applications of this method demonstrated its ability to accurately predict atomization energies/heats of formation for more than 170 molecules. In the current work, the 1-particle expansion involved very large correlation consistent basis sets, ranging up to aug-cc-pV9Z (aug-cc-pV10Z for H and H2), with the goal of minimizing the residual basis set truncation error that must otherwise be approximated with extrapolation formulas. The n-particle expansion begins with coupled cluster calculations through iterative single and double excitations plus a quasiperturbative treatment of "connected" triple excitations (CCSD(T)) pushed to the complete basis set limit followed by CCSDT, CCSDTQ, or CCSDTQ5 corrections. Due to the small size of the systems examined here, it was possible in many cases to extend the n-particle expansion to the full configuration interaction wave function limit. Additional, smaller corrections associated with core/valence correlation, scalar relativity, anharmonic zero point vibrational energies, and non-adiabatic effects were also included. The overall root mean square (RMS) deviation was 0.005 eV (0.12 kcal/mol). This level of agreement was comparable to what was found with molecular heats of formation. A 95% confidence level corresponds to roughly twice the RMS value or 0.01 eV. While the atomic electron affinities are known experimentally to high accuracy, the molecular values are less certain. This contributes to the difficulty of gauging the accuracy of the theoretical results. A limited number of electron affinities were determined with the explicitly correlated CCSD(T)-F12b method. After extending the VnZ-F12 orbital basis sets with additional diffuse functions, the F12b method was found to accurately reproduce the best F/F(-) value obtained with standard

  9. Application of a convergent, composite coupled cluster approach to bound state, adiabatic electron affinities in atoms and small molecules.

    PubMed

    Feller, David

    2016-01-01

    Benchmark quality adiabatic electron affinities for a collection of atoms and small molecules were obtained with the Feller-Peterson-Dixon composite coupled cluster theory method. Prior applications of this method demonstrated its ability to accurately predict atomization energies/heats of formation for more than 170 molecules. In the current work, the 1-particle expansion involved very large correlation consistent basis sets, ranging up to aug-cc-pV9Z (aug-cc-pV10Z for H and H2), with the goal of minimizing the residual basis set truncation error that must otherwise be approximated with extrapolation formulas. The n-particle expansion begins with coupled cluster calculations through iterative single and double excitations plus a quasiperturbative treatment of "connected" triple excitations (CCSD(T)) pushed to the complete basis set limit followed by CCSDT, CCSDTQ, or CCSDTQ5 corrections. Due to the small size of the systems examined here, it was possible in many cases to extend the n-particle expansion to the full configuration interaction wave function limit. Additional, smaller corrections associated with core/valence correlation, scalar relativity, anharmonic zero point vibrational energies, and non-adiabatic effects were also included. The overall root mean square (RMS) deviation was 0.005 eV (0.12 kcal/mol). This level of agreement was comparable to what was found with molecular heats of formation. A 95% confidence level corresponds to roughly twice the RMS value or 0.01 eV. While the atomic electron affinities are known experimentally to high accuracy, the molecular values are less certain. This contributes to the difficulty of gauging the accuracy of the theoretical results. A limited number of electron affinities were determined with the explicitly correlated CCSD(T)-F12b method. After extending the VnZ-F12 orbital basis sets with additional diffuse functions, the F12b method was found to accurately reproduce the best F/F(-) value obtained with standard

  10. Higher-Order Equation-of-Motion Coupled-Cluster Methods for Ionization Processes

    SciTech Connect

    Kamiya, Muneaki; Hirata, So

    2006-08-21

    Compact algebraic equations defining the equation-of-motion coupled-cluster (EOM-CC) methods for ionization potentials (IP-EOM-CC) have been derived and computer implemented by virtue of a symbolic algebra system largely automating these processes. Models with connected cluster excitation operators truncated after double, triple, or quadruple level and with linear ionization operators truncated after two-hole-one-particle (2h1p), three-hole-two-particle (3h2p), or four-hole-three-particle (4h3p) level (abbreviated as IP-EOM-CCSD, CCSDT, and CCSDTQ, respectively) have been realized into parallel algorithms taking advantage of spin, spatial, and permutation symmetries with optimal size dependence of the computational costs. They are based on spin-orbital formalisms and can describe both {alpha} and {beta} and ionizations from open-shell (doublet, triplet, etc.) reference states into ionized states with various spin magnetic quantum numbers. The application of these methods to Koopmans and satellite ionizations of N{sub 2} and CO (with the ambiguity due to finite basis sets eliminated by extrapolation) has shown that IP-EOM-CCSD frequently accounts for orbital relaxation inadequately and displays errors exceeding a couple of eV. However, these errors can be systematically reduced to tenths or even hundredths of an eV by IP-EOM-CCSDT or CCSDTQ. Comparison of spectroscopic parameters of the FH{sup +} and NH{sup +} radicals between IP-EOM-CC and experiments has also underscored the importance of higher-order IP-EOM-CC treatments. For instance, the harmonic frequencies of the {tilde A} {sup 2}{Sigma}{sup -} state of NH{sup +}+ are predicted to be 1285, 1723, and 1705 cm{sup -1} by IP-EOM-CCSD, CCSDT, and CCSDTQ, respectively, as compared to the observed value of 1707 cm{sup -1}. The small adiabatic energy separation (observed 0.04 eV) between the {tilde X} {sup 2}II and {tilde a} {sup 4}{sigma}{sup -} states of NH{sup +} also requires IP-EOM-CCSDTQ for a quantitative

  11. Vibrationally Averaged Long-Range Molecule-Molecule Dispersion Coefficients from Coupled-Cluster Calculations

    NASA Astrophysics Data System (ADS)

    Schmidt, Matthew; Nooijen, Marcel

    2011-06-01

    Recent years have seen increasing interest in the structure and dynamics of molecular clusters formed when a chromophore molecule such as CO_2, OCS or N_2O is solvated by number of He atoms and/or para-H_2 molecules. A key experimental probe of their behaviour is the shift of a chromophore's vibrational transition frequency which occurs when the solvent species are attached to it. Such shifts are driven by the changes in the solvent-chromophore interaction potential upon vibrational excitation of the probe molecule. While `conventional' supermolecule calculations can often provide realistic predictions of such changes in the potential well and repulsive wall region, they become increasingly unreliable for describing the weak interactions at long range where most of the solvent species in a large cluster are located. It is therefore important to have accurate relative-orientation and monomer-stretching dependent long-range C_6, C_8 and C10 dispersion coefficients to incorporate into the models for the interaction potential and for its dependence on the chromophore's vibrational state. This paper describes how those coefficients can be obtained from calculated monomer dipole, quadrupole, and octupole polarizabilities for imaginary frequencies, and by making use of the Casimir-Polder relation and angular momentum coupling to extract orientation-dependent quantities. The calculations are performed using a modified version of the ACES2 program system which allows the calculation of dipole, quadrupole and octupole polarizabilities at the EOM-CCSD level, and of static multipole moments using CCSD(T) calculations and adequate basis sets. For each relevant level of the chromophore, vibrational averaging is performed by calculating the imaginary frequency polarizabilities at judiciously chosen geometries and performing a numerical integration using the free-molecule vibrational wavefunction. Subsequent work will involve merging this long-range part of the potential with a

  12. Inversed Vernier effect based single-mode laser emission in coupled microdisks

    PubMed Central

    Li, Meng; Zhang, Nan; Wang, Kaiyang; Li, Jiankai; Xiao, Shumin; Song, Qinghai

    2015-01-01

    Recently, on-chip single-mode laser emissions in coupled microdisks have attracted considerable research attention due to their wide applications. While most of single-mode lasers in coupled microdisks or microrings have been qualitatively explained by either Vernier effect or inversed Vernier effect, none of them have been experimentally confirmed. Here, we studied the mechanism of single-mode laser operation in coupled microdisks. We found that the mode numbers had been significantly reduced to nearly single-mode within a large pumping power range from threshold to gain saturation. The detail laser spectra showed that the largest gain and the first lasing peak were mainly generated by one disk and the laser intensity was proportional to the wavelength detuning of two set of modes. The corresponding theoretical analysis showed that the experimental observations were dominated by internal coupling within one cavity, which was similar to the recently explored inversed Vernier effect in two coupled microrings. We believe our finding will be important for understanding the previous experimental findings and the development of on-chip single-mode laser. PMID:26330218

  13. Accounting for Limited Detection Efficiency and Localization Precision in Cluster Analysis in Single Molecule Localization Microscopy

    PubMed Central

    Shivanandan, Arun; Unnikrishnan, Jayakrishnan; Radenovic, Aleksandra

    2015-01-01

    Single Molecule Localization Microscopy techniques like PhotoActivated Localization Microscopy, with their sub-diffraction limit spatial resolution, have been popularly used to characterize the spatial organization of membrane proteins, by means of quantitative cluster analysis. However, such quantitative studies remain challenged by the techniques’ inherent sources of errors such as a limited detection efficiency of less than 60%, due to incomplete photo-conversion, and a limited localization precision in the range of 10 – 30nm, varying across the detected molecules, mainly depending on the number of photons collected from each. We provide analytical methods to estimate the effect of these errors in cluster analysis and to correct for them. These methods, based on the Ripley’s L(r) – r or Pair Correlation Function popularly used by the community, can facilitate potentially breakthrough results in quantitative biology by providing a more accurate and precise quantification of protein spatial organization. PMID:25794150

  14. Emergent properties of nuclei from ab initio coupled-cluster calculations

    DOE PAGES

    Hagen, G.; Hjorth-Jensen, M.; Jansen, G. R.; Papenbrock, T.

    2016-05-17

    Emergent properties such as nuclear saturation and deformation, and the effects on shell structure due to the proximity of the scattering continuum and particle decay channels are fascinating phenomena in atomic nuclei. In recent years, ab initio approaches to nuclei have taken the first steps towards tackling the computational challenge of describing these phenomena from Hamiltonians with microscopic degrees of freedom. Our endeavor is now possible due to ideas from effective field theories, novel optimization strategies for nuclear interactions, ab initio methods exhibiting a soft scaling with mass number, and ever-increasing computational power. We review some of the recent accomplishments. We also present new results. The recently optimized chiral interaction NNLOmore » $${}_{{\\rm{sat}}}$$ is shown to provide an accurate description of both charge radii and binding energies in selected light- and medium-mass nuclei up to 56Ni. We derive an efficient scheme for including continuum effects in coupled-cluster computations of nuclei based on chiral nucleon–nucleon and three-nucleon forces, and present new results for unbound states in the neutron-rich isotopes of oxygen and calcium. Finally, the coupling to the continuum impacts the energies of the $${J}^{\\pi }=1/{2}^{-},3/{2}^{-},7/{2}^{-},3/{2}^{+}$$ states in $${}^{\\mathrm{17,23,25}}$$O, and—contrary to naive shell-model expectations—the level ordering of the $${J}^{\\pi }=3/{2}^{+},5/{2}^{+},9/{2}^{+}$$ states in $${}^{\\mathrm{53,55,61}}$$Ca.« less

  15. Basis set limit electronic excitation energies, ionization potentials, and electron affinities for the 3d transition metal atoms: Coupled cluster and multireference methods

    NASA Astrophysics Data System (ADS)

    Balabanov, Nikolai B.; Peterson, Kirk A.

    2006-08-01

    Recently developed correlation consistent basis sets for the first row transition metal elements Sc-Zn have been utilized to determine complete basis set (CBS) scalar relativistic electron affinities, ionization potentials, and 4s23dn -2-4s1dn -1 electronic excitation energies with single reference coupled cluster methods [CCSD(T), CCSDT, and CCSDTQ] and multireference configuration interaction with three reference spaces: 3d4s, 3d4s4p, and 3d4s4p3d'. The theoretical values calculated with the highest order coupled cluster techniques at the CBS limit, including extrapolations to full configuration interaction, are well within 1kcal/mol of the corresponding experimental data. For the early transition metal elements (Sc-Mn) the internally contracted multireference averaged coupled pair functional method yielded excellent agreement with experiment; however, the atomic properties for the late transition metals (Mn-Zn) proved to be much more difficult to describe with this level of theory, even with the largest reference function of the present work.

  16. Tensor decomposition techniques in the solution of vibrational coupled cluster response theory eigenvalue equations

    NASA Astrophysics Data System (ADS)

    Godtliebsen, Ian H.; Hansen, Mads Bøttger; Christiansen, Ove

    2015-01-01

    We show how the eigenvalue equations of vibrational coupled cluster response theory can be solved using a subspace projection method with Davidson update, where basis vectors are stacked tensors decomposed into canonical (CP, Candecomp/Parafac) form. In each update step, new vectors are first orthogonalized to old vectors, followed by a tensor decomposition to a prescribed threshold TCP. The algorithm can provide excitation energies and eigenvectors of similar accuracy as a full vector approach and with only a very modest increase in the number of vectors required for convergence. The algorithm is illustrated with sample calculations for formaldehyde, 1,2,5-thiadiazole, and water. Analysis of the formaldehyde and thiadiazole calculations illustrate a number of interesting features of the algorithm. For example, the tensor decomposition threshold is optimally put to rather loose values, such as TCP = 10-2. With such thresholds for the tensor decompositions, the original eigenvalue equations can still be solved accurately. It is thus possible to directly calculate vibrational wave functions in tensor decomposed format.

  17. Lanczos-driven coupled-cluster damped linear response theory for molecules in polarizable environments

    NASA Astrophysics Data System (ADS)

    List, Nanna Holmgaard; Coriani, Sonia; Kongsted, Jacob; Christiansen, Ove

    2014-12-01

    We present an extension of a previously reported implementation of a Lanczos-driven coupled-cluster (CC) damped linear response approach to molecules in condensed phases, where the effects of a surrounding environment are incorporated by means of the polarizable embedding formalism. We are specifically motivated by a twofold aim: (i) computation of core excitations in realistic surroundings and (ii) examination of the effect of the differential response of the environment upon excitation solely related to the CC multipliers (herein denoted the J matrix) in computations of excitation energies and transition moments of polarizable-embedded molecules. Numerical calculations demonstrate that the differential polarization of the environment due to the first-order CC multipliers provides only minor contributions to the solvatochromic shift for all transitions considered. We thus complement previous works by confirming numerically the validity of the routinely invoked neglect of the J matrix contribution as well as motivating future use of the approximation that offers a reduction of the dimensionality of the eigenvalue problem. Preliminary applications to K-edge absorption of liquid water and aqueous acrolein are presented and highlight the importance of the environment that gives rise to transition-specific shifts.

  18. The isomerization barrier in cyanocyclobutadienes: an ab initio multireference average quadratic coupled cluster study.

    PubMed

    Eckert-Maksić, Mirjana; Lischka, Hans; Maksić, Zvonimir B; Vazdar, Mario

    2009-07-23

    The energy profiles of the isomerization of mono, di-, and tetracyano-substituted cyclobutadienes (CBDs) are computed at the multireference average quadratic coupled cluster/complete active space self-consistent field level of theory. It was found that the energy barrier heights for the automerization reaction are 2.6 (tetracyano-CBD), 5.1 (1,3-dicyano-CBD), and 6.4 (cyano-CBD) kcal mol(-1), implying that they are lowered relative to that in the parent CBD (6.4 kcal mol(-1)), the monosubstituted derivative being an exception. Since the free CBD shuttles between two equivalent structures even at low temperature of 10 K, it follows that bond-stretch isomerism does not take place in cyanocyclobutadienes. Instead, these compounds exhibit rapid fluxional interconversion at room temperature between two bond-stretch isomers by the double bond flipping mechanism. The reason behind the decrease in the barrier heights is identified as a slightly enhanced resonance effect at the saddle points separating two (equivalent) bond-stretch isomers, compared to that in the equilibrium structures, predominantly due to the diradical character of the former. It is also shown that the energy gap between the singlet ground state saddle point structure and the first triplet equilibrium geometry decreases upon multiple substitution by the cyano groups. The splitting of the S and T energy is small being within the range of 6.5-8.2 kcal mol(-1).

  19. Relativistic state-specific multireference coupled cluster theory description for bond-breaking energy surfaces

    NASA Astrophysics Data System (ADS)

    Ghosh, Anirban; Chaudhuri, Rajat K.; Chattopadhyay, Sudip

    2016-09-01

    A four-component (4c) relativistic state specific multireference coupled cluster (4c-SSMRCC) method has been developed and applied to compute the ground state spectroscopic constants of Ag2, Cu2, Au2, and I2. The reference functions used in these calculations are obtained using computationally inexpensive improved virtual orbital-complete active space configuration interaction scheme. Rigorous size-extensivity and insensitivity towards the intruder state problem make our method an interesting choice for the calculation of the dissociation energy surface. To the best of our knowledge, this study is the first implementation of the SSMRCC within the relativistic framework. The overall agreement of our results, employing the smallest model space, with both theoretical and experimental reference values indicates that the 4c-SSMRCC method can be fruitfully used to describe electronic structures and associated properties of systems containing heavy elements. We observe a relativistic bond stabilization for the coinage metal dimers while the I-I bond is weakened by the relativistic effects.

  20. Development and applications of a unitary group adapted state specific multi-reference coupled cluster theory with internally contracted treatment of inactive double excitations.

    PubMed

    Sinha, Debalina; Maitra, Rahul; Mukherjee, Debashis

    2012-09-01

    Any multi-reference coupled cluster (MRCC) development based on the Jeziorski-Monkhorst (JM) multi-exponential ansatz for the wave-operator Ω suffers from spin-contamination problem for non-singlet states. We have very recently proposed a spin-free unitary group adapted (UGA) analogue of the JM ansatz, where the cluster operators are defined in terms of spin-free unitary generators and a normal ordered, rather than ordinary, exponential parametrization of Ω is used. A consequence of the latter choice is the emergence of the "direct term" of the MRCC equations that terminates at exactly the quartic power of the cluster amplitudes. Our UGA-MRCC ansatz has been utilized to generate both the spin-free state specific (SS) and the state universal MRCC formalisms. It is well-known that the SSMRCC theory requires suitable sufficiency conditions to resolve the redundancy of the cluster amplitudes. In this paper, we propose an alternative variant of the UGA-SSMRCC theory, where the sufficiency conditions are used for all cluster operators containing active orbitals and the single excitations with inactive orbitals, while the inactive double excitations are assumed to be independent of the model functions they act upon. The working equations for the inactive double excitations are thus derived in an internally contracted (IC) manner in the sense that the matrix elements entering the MRCC equations involve excitations from an entire combination of the model functions. We call this theory as UGA-ICID-MRCC, where ICID is the acronym for "Internally Contracted treatment of Inactive Double excitations." Since the number of such excitations are the most numerous, choosing them to be independent of the model functions will lead to very significant reduction in the number of cluster amplitudes for large active spaces, and is worth exploring. Moreover, unlike for the excitations involving active orbitals, where there is inadequate coupling between the model and the virtual functions

  1. Development and applications of a unitary group adapted state specific multi-reference coupled cluster theory with internally contracted treatment of inactive double excitations

    NASA Astrophysics Data System (ADS)

    Sinha, Debalina; Maitra, Rahul; Mukherjee, Debashis

    2012-09-01

    Any multi-reference coupled cluster (MRCC) development based on the Jeziorski-Monkhorst (JM) multi-exponential ansatz for the wave-operator Ω suffers from spin-contamination problem for non-singlet states. We have very recently proposed a spin-free unitary group adapted (UGA) analogue of the JM ansatz, where the cluster operators are defined in terms of spin-free unitary generators and a normal ordered, rather than ordinary, exponential parametrization of Ω is used. A consequence of the latter choice is the emergence of the "direct term" of the MRCC equations that terminates at exactly the quartic power of the cluster amplitudes. Our UGA-MRCC ansatz has been utilized to generate both the spin-free state specific (SS) and the state universal MRCC formalisms. It is well-known that the SSMRCC theory requires suitable sufficiency conditions to resolve the redundancy of the cluster amplitudes. In this paper, we propose an alternative variant of the UGA-SSMRCC theory, where the sufficiency conditions are used for all cluster operators containing active orbitals and the single excitations with inactive orbitals, while the inactive double excitations are assumed to be independent of the model functions they act upon. The working equations for the inactive double excitations are thus derived in an internally contracted (IC) manner in the sense that the matrix elements entering the MRCC equations involve excitations from an entire combination of the model functions. We call this theory as UGA-ICID-MRCC, where ICID is the acronym for "Internally Contracted treatment of Inactive Double excitations." Since the number of such excitations are the most numerous, choosing them to be independent of the model functions will lead to very significant reduction in the number of cluster amplitudes for large active spaces, and is worth exploring. Moreover, unlike for the excitations involving active orbitals, where there is inadequate coupling between the model and the virtual functions

  2. Multimodal optical studies of single and clustered colloidal quantum dots for the long-term optical property evaluation of quantum dot-based molecular imaging phantoms

    PubMed Central

    Kang, HyeongGon; Clarke, Matthew L.; Lacerda, Silvia H. De Paoli; Karim, Alamgir; Pease, Leonard F.; Hwang, Jeeseong

    2012-01-01

    Understanding the optical properties of clustered quantum dots (QDs) is essential to the design of QD-based optical phantoms for molecular imaging. Single and clustered core/shell colloidal QDs of dimers, trimers, and tetramers are self-assembled, separated, and preferentially collected using electrospray differential mobility analysis (ES-DMA) with electrostatic deposition. Multimodal optical characterization and analysis of their dynamical photoluminescence (PL) properties enables the long-term evaluation of the physicochemical and optical properties of QDs in a single or a clustered state. A multimodal time-correlated spectroscopic confocal microscope capable of simultaneously measuring the time evolution of PL intensity fluctuation, PL lifetime, and emission spectra reveals the long-term dynamic optical properties of interacting QDs in individual dimeric clusters of QDs. This new method will benefit research into the quantitative interpretation of fluorescence intensity and lifetime results in QD-based molecular imaging techniques. The process of photooxidation leads to coupling of the QDs in a dimer, leading to unique optical properties when compared to an isolated QD. These results guide the design and evaluation of QD-based phantom materials for the validation of the PL measurements for quantitative molecular imaging of biological samples labeled with QD probes. PMID:22741078

  3. Strong coupling between adenine nucleobases in DNA single strands revealed by circular dichroism using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Kadhane, Umesh; Holm, Anne I. S.; Hoffmann, Søren Vrønning; Nielsen, Steen Brøndsted

    2008-02-01

    Circular dichroism (CD) experiments on DNA single strands (dAn) at the ASTRID synchrotron radiation facility reveal that eight adenine (A) bases electronically couple upon 190nm excitation. After n=8 , the CD signal increases linearly with n with a slope equal to the sum of the coupling terms. Nearest neighbor interactions account for only 24% of the CD signal whereas electronic communication is limited to nearest neighbors for two other exciton bands observed at 218 and 251nm (i.e., dimer excited states). Electronic coupling between bases in DNA is important for nonradiative deexcitation of electronically excited states since the hazardous energy is spread over a larger spatial region.

  4. Nondestructive photon detection using a single rare-earth ion coupled to a photonic cavity

    NASA Astrophysics Data System (ADS)

    O'Brien, Chris; Zhong, Tian; Faraon, Andrei; Simon, Christoph

    2016-10-01

    We study the possibility of using single rare-earth ions coupled to a photonic cavity with high cooperativity for performing nondestructive measurements of photons, which would be useful for global quantum networks and photonic quantum computing. We calculate the achievable fidelity as a function of the parameters of the rare-earth ion and photonic cavity, which include the ion's optical and spin dephasing rates, the cavity linewidth, the single-photon coupling to the cavity, and the detection efficiency. We suggest a promising experimental realization using current state-of-the-art technology in Nd:YVO4.

  5. Surface acoustic wave regulated single photon emission from a coupled quantum dot-nanocavity system

    NASA Astrophysics Data System (ADS)

    Weiß, M.; Kapfinger, S.; Reichert, T.; Finley, J. J.; Wixforth, A.; Kaniber, M.; Krenner, H. J.

    2016-07-01

    A coupled quantum dot-nanocavity system in the weak coupling regime of cavity-quantumelectrodynamics is dynamically tuned in and out of resonance by the coherent elastic field of a fSAW ≃ 800 MHz surface acoustic wave. When the system is brought to resonance by the sound wave, light-matter interaction is strongly increased by the Purcell effect. This leads to a precisely timed single photon emission as confirmed by the second order photon correlation function, g(2). All relevant frequencies of our experiment are faithfully identified in the Fourier transform of g(2), demonstrating high fidelity regulation of the stream of single photons emitted by the system.

  6. Transverse single-mode edge-emitting lasers based on coupled waveguides.

    PubMed

    Gordeev, Nikita Yu; Payusov, Alexey S; Shernyakov, Yuri M; Mintairov, Sergey A; Kalyuzhnyy, Nikolay A; Kulagina, Marina M; Maximov, Mikhail V

    2015-05-01

    We report on the transverse single-mode emission from InGaAs/GaAs quantum well edge-emitting lasers with broadened waveguide. The lasers are based on coupled large optical cavity (CLOC) structures where high-order vertical modes of the broad active waveguide are suppressed due to their resonant tunneling into a coupled single-mode passive waveguide. The CLOC lasers have shown stable Gaussian-shaped vertical far-field profiles with a reduced divergence of ∼22° FWHM (full width at half-maximum) in CW (continuous-wave) operation.

  7. Application of Coupled-Cluster Methods to the Prediction and Interpretation of the Spectra of Molecules of Interest in Atmospheric Chemistry

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Arnold, James O. (Technical Monitor)

    1994-01-01

    The quality of fundamental vibrational frequencies determined using the CCSD(T) method (singles and doubles coupled-cluster theory plus a perturbational estimate of the effects of connected triple excitations) is shown to be very good, usually predicting band centers to within +/-8/cm. This approach is applied to several molecules of interest in atmospheric chemistry, including HNO, NO2(+), H2CO, and HOCl. The HNO molecule displays a large and unusual anharmonicity in the H-N stretch. For the calculation of ultraviolet (UV) spectra, the linear response CCSD (LRCCSD) approach (which is equivalent to EOM-CCSD) has been shown to yield vertical excitation energies that are accurate to approximately 0.1 eV for singly excited electronic states. This method together with more approximate methods is used to examine the UV spectra of several molecules important in stratospheric chemistry, including HOCl, Cl2O, ClOOCl, ClOOH, and HOOH.

  8. Benchmark calculations on the nuclear quadrupole-coupling parameters for open-shell molecules using non-relativistic and scalar-relativistic coupled-cluster methods

    SciTech Connect

    Cheng, Lan

    2015-08-14

    Quantum-chemical computations of nuclear quadrupole-coupling parameters for 24 open-shell states of small molecules based on non-relativistic and spin-free exact two-component (SFX2C) relativistic equation-of-motion coupled-cluster (EOM-CC) as well as spin-orbital-based restricted open-shell Hartree-Fock coupled-cluster (ROHF-CC) methods are reported. Relativistic effects, the performance of the EOM-CC and ROHF-CC methods for treating electron correlation, as well as basis-set convergence have been carefully analyzed. Consideration of relativistic effects is necessary for accurate calculations on systems containing third-row (K-Kr) and heavier elements, as expected, and the SFX2C approach is shown to be a useful cost-effective option here. Further, it is demonstrated that the EOM-CC methods constitute flexible and accurate alternatives to the ROHF-CC methods in the calculations of nuclear quadrupole-coupling parameters for open-shell states.

  9. Production and properties of singly, doubly, and triply charged N/sub 2/ clusters

    SciTech Connect

    Scheier, P.; Stamatovic, A.; Maerk, T.D.

    1988-04-01

    Clusters of N/sub 2/ molecules formed in a supersonic nozzle expansion have been studied by electron impact ionization mass spectrometry. Mass resolved spectra (with n up to 190) show three homologous series, i.e., consisting of (N/sub 2/)/sup +//sub n/, (N/sub 2/)/sub n/N+, and ((N/sub 2/)/sub n/ N)/sup 2 +/ ions. The distribution of (N/sub 2/)/sup +//sub n/ ions shows distinct magic number effects. Moreover, there is evidence for the existence of (N/sub 2/)/sup 2 +//sub n/ and (N/sub 2/)/sup 3 +//sub n/ ions. The critical appearance sizes of observed multiply charged cluster ions are (N/sub 2/)/sup 2 +//sub 99/, (N/sub 2/)/sub 99/N/sup 2 +/, and (N/sub 2/)/sup 3 +//sub 215/. These results are compared with theoretical predictions. Moreover, a study of the electron energy dependence of singly and doubly charged N/sub 2/ cluster ions close to threshold (appearance energies) gives new insight into the ionization mechanism

  10. Nanopore integrated with Au clusters formed under electron beam irradiation for single molecule analysis

    NASA Astrophysics Data System (ADS)

    Choi, Seong Soo; Park, Myoung Jin; Han, Chul Hee; Kim, Sung In; Yoo, Jung Ho; Park, Kyung Jin; Park, Nam Kyou; Kim, Yong-Sang

    2016-02-01

    Recently the single molecules such as protein and deoxyribonucleic acid (DNA) have been successfully characterized using a solidstate nanopore with an electrical detection technique. However, the optical plasmonic nanopore has yet to be fabricated. The optical detection technique can be better utilized as next generation ultrafast geneome sequencing devices due to the possible utilization of the current optical technique for genome sequencing. In this report, we have investigated the Au nanopore formation under the electron beam irradiation on an Au aperture. The circular-type nanoopening with ~ 5 nm diameter on the diffused membrane is fabricated by using 2 keV electron beam irradiation by using field emission scanning electron microscopy (FESEM). We found the Au cluster on the periphery of the drilled aperture under a 2 keV electron beam irradiation. Immediately right after electron beam irradiation, no Au cluster and no Au crystal lattice structure on the diffused plane are observed. However, after the sample was kept for ~ 6 months under a room environment, the Au clusters are found on the diffused membrane and the Au crystal lattice structures on the diffused membrane are also found using high resolution transmission electron microscopy. These phenomena can be attributed to Ostwald ripening. In addition, the Au nano-hole on the 40 nm thick Au membrane was also drilled by using 200 keV scanning transmission electron microscopy.

  11. Mode coupling in hybrid square-rectangular lasers for single mode operation

    NASA Astrophysics Data System (ADS)

    Ma, Xiu-Wen; Huang, Yong-Zhen; Yang, Yue-De; Xiao, Jin-Long; Weng, Hai-Zhong; Xiao, Zhi-Xiong

    2016-08-01

    Mode coupling between a square microcavity and a Fabry-Pérot (FP) cavity is proposed and demonstrated for realizing single mode lasers. The modulations of the mode Q factor as simulation results are observed and single mode operation is obtained with a side mode suppression ratio of 46 dB and a single mode fiber coupling loss of 3.2 dB for an AlGaInAs/InP hybrid laser as a 300-μm-length and 1.5-μm-wide FP cavity connected to a vertex of a 10-μm-side square microcavity. Furthermore, tunable single mode operation is demonstrated with a continuous wavelength tuning range over 10 nm. The simple hybrid structure may shed light on practical applications of whispering-gallery mode microcavities in large-scale photonic integrated circuits and optical communication and interconnection.

  12. Two semiconductor ring lasers coupled by a single-waveguide for optical memory operation

    NASA Astrophysics Data System (ADS)

    Van der Sande, Guy; Coomans, Werner; Gelens, Lendert

    2014-05-01

    Semiconductor ring lasers are semiconductor lasers where the laser cavity consists of a ring-shaped waveguide. SRLs are highly integrable and scalable, making them ideal candidates for key components in photonic integrated circuits. SRLs can generate light in two counterpropagating directions between which bistability has been demonstrated. Hence, information can be coded into the emission direction. This bistable operation allows SRLs to be used in systems for all-optical switching and as all-optical memories. For the demonstration of fast optical flip-flop operation, Hill et al. [Nature 432, 206 (2004)] fabricated two SRLs coupled by a single waveguide, rather than a solitary SRL. Nevertheless, the literature shows that a single SRL can also function perfectly as an all-optical memory. In our recent paper [W. Coomans et al., Phys. Rev. A 88, 033813, (2013)], we have raised the question whether coupling two SRLs to realize a single optical memory has any advantage over using a solitary SRL, taking into account the obvious disadvantage of a doubled footprint and power consumption. To provide the answer, we have presented in that paper a numerical study of the dynamical behavior of semiconductor ring lasers coupled by a single bus waveguide, both when weakly coupled and when strongly coupled. We have provided a detailed analysis of the multistable landscape in the coupled system, analyzed the stability of all solutions and related the internal dynamics in the individual lasers to the field effectively measured at the output of the waveguide. We have shown which coupling phases generally promote instabilities and therefore need to be avoided in the design. Regarding all-optical memory operation, we have demonstrated that there is no real advantage for bistable memory operation compared to using a solitary SRL. An increased power suppression ratio has been found to be mainly due to the destructive interference of the SRL fields at the low power port. Also

  13. Strong Coupling between a Trapped Single Atom and an All-Fiber Cavity.

    PubMed

    Kato, Shinya; Aoki, Takao

    2015-08-28

    We demonstrate an all-fiber cavity quantum electrodynamics system with a trapped single atom in the strong coupling regime. We use a nanofiber Fabry-Perot cavity, that is, an optical nanofiber sandwiched by two fiber-Bragg-grating mirrors. Measurements of the cavity transmission spectrum with a single atom in a state-insensitive nanofiber trap clearly reveal the vacuum Rabi splitting. PMID:26371652

  14. Sparse maps—A systematic infrastructure for reduced-scaling electronic structure methods. II. Linear scaling domain based pair natural orbital coupled cluster theory

    NASA Astrophysics Data System (ADS)

    Riplinger, Christoph; Pinski, Peter; Becker, Ute; Valeev, Edward F.; Neese, Frank

    2016-01-01

    Domain based local pair natural orbital coupled cluster theory with single-, double-, and perturbative triple excitations (DLPNO-CCSD(T)) is a highly efficient local correlation method. It is known to be accurate and robust and can be used in a black box fashion in order to obtain coupled cluster quality total energies for large molecules with several hundred atoms. While previous implementations showed near linear scaling up to a few hundred atoms, several nonlinear scaling steps limited the applicability of the method for very large systems. In this work, these limitations are overcome and a linear scaling DLPNO-CCSD(T) method for closed shell systems is reported. The new implementation is based on the concept of sparse maps that was introduced in Part I of this series [P. Pinski, C. Riplinger, E. F. Valeev, and F. Neese, J. Chem. Phys. 143, 034108 (2015)]. Using the sparse map infrastructure, all essential computational steps (integral transformation and storage, initial guess, pair natural orbital construction, amplitude iterations, triples correction) are achieved in a linear scaling fashion. In addition, a number of additional algorithmic improvements are reported that lead to significant speedups of the method. The new, linear-scaling DLPNO-CCSD(T) implementation typically is 7 times faster than the previous implementation and consumes 4 times less disk space for large three-dimensional systems. For linear systems, the performance gains and memory savings are substantially larger. Calculations with more than 20 000 basis functions and 1000 atoms are reported in this work. In all cases, the time required for the coupled cluster step is comparable to or lower than for the preceding Hartree-Fock calculation, even if this is carried out with the efficient resolution-of-the-identity and chain-of-spheres approximations. The new implementation even reduces the error in absolute correlation energies by about a factor of two, compared to the already accurate previous

  15. Sparse maps--A systematic infrastructure for reduced-scaling electronic structure methods. II. Linear scaling domain based pair natural orbital coupled cluster theory.

    PubMed

    Riplinger, Christoph; Pinski, Peter; Becker, Ute; Valeev, Edward F; Neese, Frank

    2016-01-14

    Domain based local pair natural orbital coupled cluster theory with single-, double-, and perturbative triple excitations (DLPNO-CCSD(T)) is a highly efficient local correlation method. It is known to be accurate and robust and can be used in a black box fashion in order to obtain coupled cluster quality total energies for large molecules with several hundred atoms. While previous implementations showed near linear scaling up to a few hundred atoms, several nonlinear scaling steps limited the applicability of the method for very large systems. In this work, these limitations are overcome and a linear scaling DLPNO-CCSD(T) method for closed shell systems is reported. The new implementation is based on the concept of sparse maps that was introduced in Part I of this series [P. Pinski, C. Riplinger, E. F. Valeev, and F. Neese, J. Chem. Phys. 143, 034108 (2015)]. Using the sparse map infrastructure, all essential computational steps (integral transformation and storage, initial guess, pair natural orbital construction, amplitude iterations, triples correction) are achieved in a linear scaling fashion. In addition, a number of additional algorithmic improvements are reported that lead to significant speedups of the method. The new, linear-scaling DLPNO-CCSD(T) implementation typically is 7 times faster than the previous implementation and consumes 4 times less disk space for large three-dimensional systems. For linear systems, the performance gains and memory savings are substantially larger. Calculations with more than 20 000 basis functions and 1000 atoms are reported in this work. In all cases, the time required for the coupled cluster step is comparable to or lower than for the preceding Hartree-Fock calculation, even if this is carried out with the efficient resolution-of-the-identity and chain-of-spheres approximations. The new implementation even reduces the error in absolute correlation energies by about a factor of two, compared to the already accurate

  16. Sparse maps--A systematic infrastructure for reduced-scaling electronic structure methods. II. Linear scaling domain based pair natural orbital coupled cluster theory.

    PubMed

    Riplinger, Christoph; Pinski, Peter; Becker, Ute; Valeev, Edward F; Neese, Frank

    2016-01-14

    Domain based local pair natural orbital coupled cluster theory with single-, double-, and perturbative triple excitations (DLPNO-CCSD(T)) is a highly efficient local correlation method. It is known to be accurate and robust and can be used in a black box fashion in order to obtain coupled cluster quality total energies for large molecules with several hundred atoms. While previous implementations showed near linear scaling up to a few hundred atoms, several nonlinear scaling steps limited the applicability of the method for very large systems. In this work, these limitations are overcome and a linear scaling DLPNO-CCSD(T) method for closed shell systems is reported. The new implementation is based on the concept of sparse maps that was introduced in Part I of this series [P. Pinski, C. Riplinger, E. F. Valeev, and F. Neese, J. Chem. Phys. 143, 034108 (2015)]. Using the sparse map infrastructure, all essential computational steps (integral transformation and storage, initial guess, pair natural orbital construction, amplitude iterations, triples correction) are achieved in a linear scaling fashion. In addition, a number of additional algorithmic improvements are reported that lead to significant speedups of the method. The new, linear-scaling DLPNO-CCSD(T) implementation typically is 7 times faster than the previous implementation and consumes 4 times less disk space for large three-dimensional systems. For linear systems, the performance gains and memory savings are substantially larger. Calculations with more than 20 000 basis functions and 1000 atoms are reported in this work. In all cases, the time required for the coupled cluster step is comparable to or lower than for the preceding Hartree-Fock calculation, even if this is carried out with the efficient resolution-of-the-identity and chain-of-spheres approximations. The new implementation even reduces the error in absolute correlation energies by about a factor of two, compared to the already accurate

  17. Accurate dipole polarizabilities for water clusters n=2-12 at the coupled-cluster level of theory and benchmarking of various density functionals.

    SciTech Connect

    Hammond, J.; Govind, N.; Kowalski, K.; Autschbach, J.; Xantheas, S.; PNNL; Univ. of Buffalo

    2009-12-07

    The static dipole polarizabilities of water clusters (2 {le} N {le} 12) are determined at the coupled-cluster level of theory (CCSD). For the dipole polarizability of the water monomer it was determined that the role of the basis set is more important than that of electron correlation and that the basis set augmentation converges with two sets of diffuse functions. The CCSD results are used to benchmark a variety of density functionals while the performance of several families of basis sets (Dunning, Pople, and Sadlej) in producing accurate values for the polarizabilities was also examined. The Sadlej family of basis sets was found to produce accurate results when compared to the ones obtained with the much larger Dunning basis sets. It was furthermore determined that the PBE0 density functional with the aug-cc-pVDZ basis set produces overall remarkably accurate polarizabilities at a moderate computational cost.

  18. Molecular dynamics simulation of Cun clusters scattering from a single-crystal Cu (111) surface: The influence of surface structure

    NASA Astrophysics Data System (ADS)

    Xianwen, Luo; Meng, Wang; Bitao, Hu

    2016-02-01

    By performing a molecular dynamics simulation, fragmentation of Cun clusters scattering from a single-crystal Cu (111) surface is studied. The interactions among copper atoms are modeled by tight-binding potential, and the positions of the copper clusters at each time step are calculated by integrating the Newton equations of motion. The percentage of unfragmented clusters depends on the incident velocities, angles of incidence, and surface structure. The influence of surface structure on the fragment distribution is discussed, and the clusters appear to be more stable under an axial channeling condition. The fragment distribution shifting toward the small fragment range for cluster scattering along a random direction is confirmed, indicating that the cluster undergoes more intensive fragmentation. Project supported by the National Natural Science Foundation of China (Grant No. 11405166).

  19. A Multi-State Single-Molecule Switch Actuated by Rotation of an Encapsulated Cluster within a Fullerene Cage

    SciTech Connect

    Huang, Tian; Zhao, Jin; Feng, Min; Popov, Alexey A.; Yang, Shangfeng; Dunsch, Lothar; Petek, Hrvoje

    2012-11-12

    We demonstrate a single-molecule switch based on tunneling electron-driven rotation of a triangular Sc₃N cluster within an icosahedral C 80 fullerene cage among three pairs of enantiomorphic configura-tions. Scanning tunneling microscopy imaging of switching within single molecules and electronic structure theory identify the conformational isomers and their isomerization pathways. Bias-dependent actionspectra and modeling identify the antisymmetric stretch vibration of Sc 3N cluster to be the gateway for energy transfer from the tunneling electrons to the cluster rotation. Hierarchical switching of conductivity through the internal cluster motion among multiple stationary states while maintaining a constant shape, is advantageous for the integration of endohedral fullerene-based single-molecule memory and logic devices into parallel molecular computing arc.

  20. Three-cluster breakup in deuteron-deuteron collisions: Single-scattering approximation

    NASA Astrophysics Data System (ADS)

    Deltuva, A.; Fonseca, A. C.

    2016-04-01

    We present results for the three-cluster breakup in deuteron-deuteron collisions at 130 and 270 MeV deuteron beam energy. The breakup amplitude is calculated using the first term in the Neumann series expansion of the corresponding exact four-nucleon equations. In analogy with nucleon-deuteron breakup where an equivalent approximation is compared with exact calculations, we expect this single-scattering approximation to provide a rough estimation of three-body breakup observables in quasifree configurations. We predict the nucleon-deuteron and deuteron-deuteron three-cluster breakup cross sections to be of a comparable size and thereby question the reliability of the recent experimental data [A. Ramazani-Moghaddam-Arani, Ph.D. thesis, University of Groningen, 2009; A. Ramazani-Moghaddam-Arani et al., EPJ Web Conf. 3, 04012 (2010), 10.1051/epjconf/20100304012], which are smaller by about three orders of magnitude. We also show that an equivalent single-scattering approximation provides a reasonable description of deuteron-deuteron elastic scattering at forward-scattering angles.

  1. Single molecule detection using charge-coupled device array technology. Technical progress report

    SciTech Connect

    Denton, M.B.

    1992-07-29

    A technique for the detection of single fluorescent chromophores in a flowing stream is under development. This capability is an integral facet of a rapid DNA sequencing scheme currently being developed by Los Alamos National Laboratory. In previous investigations, the detection sensitivity was limited by the background Raman emission from the water solvent. A detection scheme based on a novel mode of operating a Charge-Coupled Device (CCD) is being developed which should greatly enhance the discrimination between fluorescence from a single molecule and the background Raman scattering from the solvent. Register shifts between rows in the CCD are synchronized with the sample flow velocity so that fluorescence from a single molecule is collected in a single moving charge packet occupying an area approaching that of a single pixel while the background is spread evenly among a large number of pixels. Feasibility calculations indicate that single molecule detection should be achieved with an excellent signal-to-noise ratio.

  2. Single-molecule strong coupling at room temperature in plasmonic nanocavities

    NASA Astrophysics Data System (ADS)

    Chikkaraddy, Rohit; de Nijs, Bart; Benz, Felix; Barrow, Steven J.; Scherman, Oren A.; Rosta, Edina; Demetriadou, Angela; Fox, Peter; Hess, Ortwin; Baumberg, Jeremy J.

    2016-07-01

    Photon emitters placed in an optical cavity experience an environment that changes how they are coupled to the surrounding light field. In the weak-coupling regime, the extraction of light from the emitter is enhanced. But more profound effects emerge when single-emitter strong coupling occurs: mixed states are produced that are part light, part matter, forming building blocks for quantum information systems and for ultralow-power switches and lasers. Such cavity quantum electrodynamics has until now been the preserve of low temperatures and complicated fabrication methods, compromising its use. Here, by scaling the cavity volume to less than 40 cubic nanometres and using host–guest chemistry to align one to ten protectively isolated methylene-blue molecules, we reach the strong-coupling regime at room temperature and in ambient conditions. Dispersion curves from more than 50 such plasmonic nanocavities display characteristic light–matter mixing, with Rabi frequencies of 300 millielectronvolts for ten methylene-blue molecules, decreasing to 90 millielectronvolts for single molecules—matching quantitative models. Statistical analysis of vibrational spectroscopy time series and dark-field scattering spectra provides evidence of single-molecule strong coupling. This dressing of molecules with light can modify photochemistry, opening up the exploration of complex natural processes such as photosynthesis and the possibility of manipulating chemical bonds.

  3. Single-molecule strong coupling at room temperature in plasmonic nanocavities.

    PubMed

    Chikkaraddy, Rohit; de Nijs, Bart; Benz, Felix; Barrow, Steven J; Scherman, Oren A; Rosta, Edina; Demetriadou, Angela; Fox, Peter; Hess, Ortwin; Baumberg, Jeremy J

    2016-07-01

    Photon emitters placed in an optical cavity experience an environment that changes how they are coupled to the surrounding light field. In the weak-coupling regime, the extraction of light from the emitter is enhanced. But more profound effects emerge when single-emitter strong coupling occurs: mixed states are produced that are part light, part matter1, 2, forming building blocks for quantum information systems and for ultralow-power switches and lasers. Such cavity quantum electrodynamics has until now been the preserve of low temperatures and complicated fabrication methods, compromising its use. Here, by scaling the cavity volume to less than 40 cubic nanometres and using host–guest chemistry to align one to ten protectively isolated methylene-blue molecules, we reach the strong-coupling regime at room temperature and in ambient conditions. Dispersion curves from more than 50 such plasmonic nanocavities display characteristic light–matter mixing, with Rabi frequencies of 300 millielectronvolts for ten methylene-blue molecules, decreasing to 90 millielectronvolts for single molecules—matching quantitative models. Statistical analysis of vibrational spectroscopy time series and dark-field scattering spectra provides evidence of single-molecule strong coupling. This dressing of molecules with light can modify photochemistry, opening up the exploration of complex natural processes such as photosynthesis and the possibility of manipulating chemical bonds. PMID:27296227

  4. Single-molecule strong coupling at room temperature in plasmonic nanocavities

    NASA Astrophysics Data System (ADS)

    Chikkaraddy, Rohit; de Nijs, Bart; Benz, Felix; Barrow, Steven J.; Scherman, Oren A.; Rosta, Edina; Demetriadou, Angela; Fox, Peter; Hess, Ortwin; Baumberg, Jeremy J.

    2016-07-01

    Photon emitters placed in an optical cavity experience an environment that changes how they are coupled to the surrounding light field. In the weak-coupling regime, the extraction of light from the emitter is enhanced. But more profound effects emerge when single-emitter strong coupling occurs: mixed states are produced that are part light, part matter, forming building blocks for quantum information systems and for ultralow-power switches and lasers. Such cavity quantum electrodynamics has until now been the preserve of low temperatures and complicated fabrication methods, compromising its use. Here, by scaling the cavity volume to less than 40 cubic nanometres and using host-guest chemistry to align one to ten protectively isolated methylene-blue molecules, we reach the strong-coupling regime at room temperature and in ambient conditions. Dispersion curves from more than 50 such plasmonic nanocavities display characteristic light-matter mixing, with Rabi frequencies of 300 millielectronvolts for ten methylene-blue molecules, decreasing to 90 millielectronvolts for single molecules—matching quantitative models. Statistical analysis of vibrational spectroscopy time series and dark-field scattering spectra provides evidence of single-molecule strong coupling. This dressing of molecules with light can modify photochemistry, opening up the exploration of complex natural processes such as photosynthesis and the possibility of manipulating chemical bonds.

  5. In-situ coupling between kinase activities and protein dynamics within single focal adhesions

    PubMed Central

    Wu, Yiqian; Zhang, Kaiwen; Seong, Jihye; Fan, Jason; Chien, Shu; Wang, Yingxiao; Lu, Shaoying

    2016-01-01

    The dynamic activation of oncogenic kinases and regulation of focal adhesions (FAs) are crucial molecular events modulating cell adhesion in cancer metastasis. However, it remains unclear how these events are temporally coordinated at single FA sites. Therefore, we targeted fluorescence resonance energy transfer (FRET)-based biosensors toward subcellular FAs to report local molecular events during cancer cell adhesion. Employing single FA tracking and cross-correlation analysis, we quantified the dynamic coupling characteristics between biochemical kinase activities and structural FA within single FAs. We show that kinase activations and FA assembly are strongly and sequentially correlated, with the concurrent FA assembly and Src activation leading focal adhesion kinase (FAK) activation by 42.6 ± 12.6 sec. Strikingly, the temporal coupling between kinase activation and individual FA assembly reflects the fate of FAs at later stages. The FAs with a tight coupling tend to grow and mature, while the less coupled FAs likely disassemble. During FA disassembly, however, kinase activations lead the disassembly, with FAK being activated earlier than Src. Therefore, by integrating subcellularly targeted FRET biosensors and computational analysis, our study reveals intricate interplays between Src and FAK in regulating the dynamic life of single FAs in cancer cells. PMID:27383747

  6. In-situ coupling between kinase activities and protein dynamics within single focal adhesions.

    PubMed

    Wu, Yiqian; Zhang, Kaiwen; Seong, Jihye; Fan, Jason; Chien, Shu; Wang, Yingxiao; Lu, Shaoying

    2016-01-01

    The dynamic activation of oncogenic kinases and regulation of focal adhesions (FAs) are crucial molecular events modulating cell adhesion in cancer metastasis. However, it remains unclear how these events are temporally coordinated at single FA sites. Therefore, we targeted fluorescence resonance energy transfer (FRET)-based biosensors toward subcellular FAs to report local molecular events during cancer cell adhesion. Employing single FA tracking and cross-correlation analysis, we quantified the dynamic coupling characteristics between biochemical kinase activities and structural FA within single FAs. We show that kinase activations and FA assembly are strongly and sequentially correlated, with the concurrent FA assembly and Src activation leading focal adhesion kinase (FAK) activation by 42.6 ± 12.6 sec. Strikingly, the temporal coupling between kinase activation and individual FA assembly reflects the fate of FAs at later stages. The FAs with a tight coupling tend to grow and mature, while the less coupled FAs likely disassemble. During FA disassembly, however, kinase activations lead the disassembly, with FAK being activated earlier than Src. Therefore, by integrating subcellularly targeted FRET biosensors and computational analysis, our study reveals intricate interplays between Src and FAK in regulating the dynamic life of single FAs in cancer cells. PMID:27383747

  7. High purcell factor due to coupling of a single emitter to a dielectric slot waveguide.

    PubMed

    Kolchin, Pavel; Pholchai, Nitipat; Mikkelsen, Maiken H; Oh, Jinyong; Ota, Sadao; Islam, M Saif; Yin, Xiaobo; Zhang, Xiang

    2015-01-14

    We demonstrate an all-dielectric quantum electrodynamical nanowire-slab system with a single emitter that concentrates the extremely intense light at the scale of 10 × 75 nm(2). The quantum dot exhibits a record high 31-fold spontaneous decay rate enhancement, its optical saturation and blinking are strongly suppressed, and 80% of emission couples into a waveguide mode.

  8. Phthalimides as exceptionally efficient single electron transfer acceptors in reductive coupling reactions promoted by samarium diiodide.

    PubMed

    Vacas, Tatiana; Alvarez, Eleuterio; Chiara, Jose Luis

    2007-12-20

    Experimental and theoretical evidence shows that phthalimides are highly efficient single electron transfer acceptors in reactions promoted by samarium diiodide, affording ketyl radical anion intermediates, which participate in high-yielding inter- and intramolecular reductive coupling processes with different radicophiles including imides, oxime ethers, nitrones, and Michael acceptors.

  9. Detection of single and clustered microcalcifications in mammograms using fractals models and neural networks.

    PubMed

    Bocchi, L; Coppini, G; Nori, J; Valli, G

    2004-05-01

    Microcalcifications (microCas) are often early signs of breast cancer. However, detecting them is a difficult visual task and recognizing malignant lesions is a complex diagnostic problem. In recent years, several research groups have been working to develop computer-aided diagnosis (CAD) systems for X-ray mammography. In this paper, we propose a method to detect and classify microcalcifications. In order to discover the presence of microCas clusters, particular attention is paid to the analysis of the spatial arrangement of detected lesions. A fractal model has been used to describe the mammographic image, thus, allowing the use of a matched filtering stage to enhance microcalcifications against the background. A region growing algorithm, coupled with a neural classifier, detects existing lesions. Subsequently, a second fractal model is used to analyze their spatial arrangement so that the presence of microcalcification clusters can be detected and classified. Reported results indicate that fractal models provide an adequate framework for medical image processing; consequently high correct classification rates are achieved.

  10. Quantum Stirling heat engine and refrigerator with single and coupled spin systems

    NASA Astrophysics Data System (ADS)

    Huang, Xiao-Li; Niu, Xin-Ya; Xiu, Xiao-Ming; Yi, Xue-Xi

    2014-02-01

    We study the reversible quantum Stirling cycle with a single spin or two coupled spins as the working substance. With the single spin as the working substance, we find that under certain conditions the reversed cycle of a heat engine is NOT a refrigerator, this feature holds true for a Stirling heat engine with an ion trapped in a shallow potential as its working substance. The efficiency of quantum Stirling heat engine can be higher than the efficiency of the Carnot engine, but the performance coefficient of the quantum Stirling refrigerator is always lower than its classical counterpart. With two coupled spins as the working substance, we find that a heat engine can turn to a refrigerator due to the increasing of the coupling constant, this can be explained by the properties of the isothermal line in the magnetic field-entropy plane.

  11. Efficient single photon source based on μ-fibre-coupled tunable microcavity

    PubMed Central

    Lee, Chang-Min; Lim, Hee-Jin; Schneider, Christian; Maier, Sebastian; Höfling, Sven; Kamp, Martin; Lee, Yong-Hee

    2015-01-01

    Efficient and fast on-demand single photon sources have been sought after as critical components of quantum information science. We report an efficient and tunable single photon source based on an InAs quantum dot (QD) embedded in a photonic crystal cavity coupled with a highly curved μ-fibre. Exploiting evanescent coupling between the μ-fibre and the cavity, a high collection efficiency of 23% and Purcell-enhanced spontaneous emissions are observed. In our scheme, the spectral position of a resonance can be tuned by as much as 1.5 nm by adjusting the contact position of the μ-fibre, which increases the spectral coupling probability between the QD and the cavity mode. Taking advantage of the high photon count rate and the tunability, the collection efficiencies and the decay rates are systematically investigated as a function of the QD–cavity detuning. PMID:26391607

  12. Comparing Chemistry to Outcome: The Development of a Chemical Distance Metric, Coupled with Clustering and Hierarchal Visualization Applied to Macromolecular Crystallography

    PubMed Central

    Bruno, Andrew E.; Ruby, Amanda M.; Luft, Joseph R.; Grant, Thomas D.; Seetharaman, Jayaraman; Montelione, Gaetano T.; Hunt, John F.; Snell, Edward H.

    2014-01-01

    Many bioscience fields employ high-throughput methods to screen multiple biochemical conditions. The analysis of these becomes tedious without a degree of automation. Crystallization, a rate limiting step in biological X-ray crystallography, is one of these fields. Screening of multiple potential crystallization conditions (cocktails) is the most effective method of probing a proteins phase diagram and guiding crystallization but the interpretation of results can be time-consuming. To aid this empirical approach a cocktail distance coefficient was developed to quantitatively compare macromolecule crystallization conditions and outcome. These coefficients were evaluated against an existing similarity metric developed for crystallization, the C6 metric, using both virtual crystallization screens and by comparison of two related 1,536-cocktail high-throughput crystallization screens. Hierarchical clustering was employed to visualize one of these screens and the crystallization results from an exopolyphosphatase-related protein from Bacteroides fragilis, (BfR192) overlaid on this clustering. This demonstrated a strong correlation between certain chemically related clusters and crystal lead conditions. While this analysis was not used to guide the initial crystallization optimization, it led to the re-evaluation of unexplained peaks in the electron density map of the protein and to the insertion and correct placement of sodium, potassium and phosphate atoms in the structure. With these in place, the resulting structure of the putative active site demonstrated features consistent with active sites of other phosphatases which are involved in binding the phosphoryl moieties of nucleotide triphosphates. The new distance coefficient, CDcoeff, appears to be robust in this application, and coupled with hierarchical clustering and the overlay of crystallization outcome, reveals information of biological relevance. While tested with a single example the potential applications

  13. Assessment of the accuracy of coupled cluster perturbation theory for open-shell systems. II. Quadruples expansions

    NASA Astrophysics Data System (ADS)

    Eriksen, Janus J.; Matthews, Devin A.; Jørgensen, Poul; Gauss, Jürgen

    2016-05-01

    We extend our assessment of the potential of perturbative coupled cluster (CC) expansions for a test set of open-shell atoms and organic radicals to the description of quadruple excitations. Namely, the second- through sixth-order models of the recently proposed CCSDT(Q-n) quadruples series [J. J. Eriksen et al., J. Chem. Phys. 140, 064108 (2014)] are compared to the prominent CCSDT(Q) and ΛCCSDT(Q) models. From a comparison of the models in terms of their recovery of total CC singles, doubles, triples, and quadruples (CCSDTQ) energies, we find that the performance of the CCSDT(Q-n) models is independent of the reference used (unrestricted or restricted (open-shell) Hartree-Fock), in contrast to the CCSDT(Q) and ΛCCSDT(Q) models, for which the accuracy is strongly dependent on the spin of the molecular ground state. By further comparing the ability of the models to recover relative CCSDTQ total atomization energies, the discrepancy between them is found to be even more pronounced, stressing how a balanced description of both closed- and open-shell species—as found in the CCSDT(Q-n) models—is indeed of paramount importance if any perturbative CC model is to be of chemical relevance for high-accuracy applications. In particular, the third-order CCSDT(Q-3) model is found to offer an encouraging alternative to the existing choices of quadruples models used in modern computational thermochemistry, since the model is still only of moderate cost, albeit markedly more costly than, e.g., the CCSDT(Q) and ΛCCSDT(Q) models.

  14. Assessment of the accuracy of coupled cluster perturbation theory for open-shell systems. II. Quadruples expansions.

    PubMed

    Eriksen, Janus J; Matthews, Devin A; Jørgensen, Poul; Gauss, Jürgen

    2016-05-21

    We extend our assessment of the potential of perturbative coupled cluster (CC) expansions for a test set of open-shell atoms and organic radicals to the description of quadruple excitations. Namely, the second- through sixth-order models of the recently proposed CCSDT(Q-n) quadruples series [J. J. Eriksen et al., J. Chem. Phys. 140, 064108 (2014)] are compared to the prominent CCSDT(Q) and ΛCCSDT(Q) models. From a comparison of the models in terms of their recovery of total CC singles, doubles, triples, and quadruples (CCSDTQ) energies, we find that the performance of the CCSDT(Q-n) models is independent of the reference used (unrestricted or restricted (open-shell) Hartree-Fock), in contrast to the CCSDT(Q) and ΛCCSDT(Q) models, for which the accuracy is strongly dependent on the spin of the molecular ground state. By further comparing the ability of the models to recover relative CCSDTQ total atomization energies, the discrepancy between them is found to be even more pronounced, stressing how a balanced description of both closed- and open-shell species-as found in the CCSDT(Q-n) models-is indeed of paramount importance if any perturbative CC model is to be of chemical relevance for high-accuracy applications. In particular, the third-order CCSDT(Q-3) model is found to offer an encouraging alternative to the existing choices of quadruples models used in modern computational thermochemistry, since the model is still only of moderate cost, albeit markedly more costly than, e.g., the CCSDT(Q) and ΛCCSDT(Q) models. PMID:27208932

  15. Organic Single-Crystal Light-Emitting Transistor Coupling with Optical Feedback Resonators

    PubMed Central

    Bisri, Satria Zulkarnaen; Sawabe, Kosuke; Imakawa, Masaki; Maruyama, Kenichi; Yamao, Takeshi; Hotta, Shu; Iwasa, Yoshihiro; Takenobu, Taishi

    2012-01-01

    Organic light-emitting transistors (OLETs) are of great research interest because they combine the advantage of the active channel of a transistor that can control the luminescence of an in-situ light-emitting diode in the same device. Here we report a novel single-crystal OLET (SCLET) that is coupled with single crystal optical feedback resonators. The combination of single-crystal waveguides with native Fabry-Perot cavities, formed by parallel crystal edges, drastically lowers the threshold energy for spectral narrowing and non-linear intensity enhancement. We apply this structure to SCLETs and demonstrate the first fabrication of a SCLET with the optical feedback resonators. PMID:23248748

  16. Single-mode enhancement in coupled-cavity quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Kuc, M.; Sarzała, R. P.; Czyszanowski, T.; Bugajski, M.

    2016-03-01

    This paper reports on numerical analysis of longitudinal mode discrimination in coupled-cavity AlInAs/InGaAs/InP quantum cascade lasers. Using a three dimensional, self-consistent model of physical phenomena in edge emitting laser we performed exhaustive analysis of geometrical parameters of CC QCL on spectral characteristics. We discuss the enhancement of the single mode operation in multi-section designs concerning variable dimensions of sections and air gaps between sections and provide designing guidelines assuring single-mode operation. We also show impact of independent current tuning of laser sections inducing Stark effect and heating as additional elements enhancing single mode operation.

  17. Single-mode quantum cascade lasers employing a candy-cane shaped monolithic coupled cavity

    NASA Astrophysics Data System (ADS)

    Liu, Peter Q.; Sladek, Kamil; Wang, Xiaojun; Fan, Jen-Yu; Gmachl, Claire F.

    2011-12-01

    We demonstrate single-mode quantum cascade lasers emitting at ˜4.5 μm by employing a monolithic "candy-cane" shaped coupled-cavity consisting of a straight section connecting at one end to a spiral section. The fabrication process is identical to those for simple Fabry-Perot-type ridge lasers. Continuously tunable single-mode emission across ˜8 cm-1 with side mode suppression ratio up to ˜25 dB and a single-mode operating current range of more than 70% above the threshold current is achieved when the lasers are operated in pulsed-mode from 80 K to 155 K.

  18. Novel spot size converter for coupling standard single mode fibers to SOI waveguides

    NASA Astrophysics Data System (ADS)

    Sisto, Marco Michele; Fisette, Bruno; Paultre, Jacques-Edmond; Paquet, Alex; Desroches, Yan

    2016-03-01

    We have designed and numerically simulated a novel spot size converter for coupling standard single mode fibers with 10.4μm mode field diameter to 500nm × 220nm SOI waveguides. Simulations based on the eigenmode expansion method show a coupling loss of 0.4dB at 1550nm for the TE mode at perfect alignment. The alignment tolerance on the plane normal to the fiber axis is evaluated at +/-2.2μm for <=1dB excess loss, which is comparable to the alignment tolerance between two butt-coupled standard single mode fibers. The converter is based on a cross-like arrangement of SiOxNy waveguides immersed in a 12μm-thick SiO2 cladding region deposited on top of the SOI chip. The waveguides are designed to collectively support a single degenerate mode for TE and TM polarizations. This guided mode features a large overlap to the LP01 mode of standard telecom fibers. Along the spot size converter length (450μm), the mode is first gradually confined in a single SiOxNy waveguide by tapering its width. Then, the mode is adiabatically coupled to a SOI waveguide underneath the structure through a SOI inverted taper. The shapes of SiOxNy and SOI tapers are optimized to minimize coupling loss and structure length, and to ensure adiabatic mode evolution along the structure, thus improving the design robustness to fabrication process errors. A tolerance analysis based on conservative microfabrication capabilities suggests that coupling loss penalty from fabrication errors can be maintained below 0.3dB. The proposed spot size converter is fully compliant to industry standard microfabrication processes available at INO.

  19. Symmetry-adapted-cluster configuration-interaction and equation-of-motion coupled-cluster studies of electronically excited states of copper tetrachloride and copper tetrabromide dianions

    NASA Astrophysics Data System (ADS)

    Ehara, Masahiro; Piecuch, Piotr; Lutz, Jesse J.; Gour, Jeffrey R.

    2012-05-01

    The valence excitation spectra of the copper tetrachloride and copper tetrabromide open-shell dianions, CuCl42- and CuBr42-, respectively, are investigated by a variety of symmetry-adapted-cluster configuration-interaction (SAC-CI) and equation-of-motion coupled-cluster (EOMCC) methods. The valence excited states of the CuCl42- and CuBr42- species that correspond to transitions from doubly occupied molecular orbitals (MOs) to a singly occupied MO (SOMO), for which experimental spectra are available, are examined with the ionized (IP) variants of the SAC-CI and EOMCC methods. The higher-energy excited states of CuCl42- and CuBr42- that correspond to transitions from SOMO to unoccupied MOs, which have not been characterized experimentally, are determined using the electron-attached (EA) SAC-CI and EOMCC approaches. An emphasis is placed on the scalar relativistic SAC-CI and EOMCC calculations based on the spin-free part of the second-order Douglass-Kroll-Hess Hamiltonian (DKH2) and on a comparison of the results of the IP and EA SAC-CI and EOMCC calculations with up to 2-hole-1-particle (2h-1p) and 2-particle-1-hole (2p-1h) excitations, referred to as the IP-SAC-CI SD-R and IP-EOMCCSD(2h-1p) methods in the IP case and EA-SAC-CI SD-R and EA-EOMCCSD(2p-1h) approaches in the EA case, with those obtained with the higher-level IP-EOMCC and EA-EOMCC theories with up to 3-hole-2-particle (3h-2p) and 3-particle-2-hole (3p-2h) excitations treated via active orbitals, abbreviated as IP-EOMCCSD(3h-2p) and EA-EOMCCSD(3p-2h), respectively, as well as with the available experimental data. It is demonstrated that all of the employed DKH2-based IP-SAC-CI and IP-EOMCC methods offer a reliable description of the valence excited states of the CuCl42- and CuBr42- complexes that correspond to transitions from doubly occupied MOs to SOMO, accurately reproducing the observed UV-vis absorption spectra in both peak positions and intensities, which enables a rigorous assignment of the

  20. Assessment of the CCSD and CCSD(T) Coupled-Cluster Methods in Calculating Heats of Formation for Zn Complexes

    NASA Astrophysics Data System (ADS)

    Weaver, Michael N.; Yang, Yue; Merz, Kenneth M.

    2009-08-01

    Heats of formation were calculated using coupled-cluster methods for a series of zinc complexes. The calculated values were evaluated against previously conducted computational studies using density functional methods as well as experimental values. Heats of formation for nine neutral ZnXn complexes [X = -Zn, -H, -O, -F2, -S, -Cl, -Cl2, -CH3, (-CH3)2] were determined at the CCSD and CCSD(T) levels using the 6-31G** and TZVP basis sets as well as the LANL2DZ-6-31G** (LACVP**) and LANL2DZ-TZVP hybrid basis sets. The CCSD(T)/6-31G** level of theory was found to predict the heat of formation for the nonalkyl Zn complexes most accurately. The alkyl Zn species were problematic in that none of the methods that were tested accurately predicted the heat of formation for these complexes. In instances where experimental geometric parameters were available, these were most accurately predicted by the CCSD/6-31G** level of theory; going to CCSD(T) did not improve agreement with the experimental values. Coupled-cluster methods did not offer a systemic improvement over DFT calculations for a given functional/basis set combination. With the exceptions of ZnH and ZnF2, there are multiple density functionals that outperform coupled-cluster calculations with the 6-31G** basis set.

  1. Self-aligned deterministic coupling of single quantum emitter to nanofocused plasmonic modes

    PubMed Central

    Gong, Su-Hyun; Kim, Je-Hyung; Ko, Young-Ho; Rodriguez, Christophe; Shin, Jonghwa; Lee, Yong-Hee; Dang, Le Si; Zhang, Xiang; Cho, Yong-Hoon

    2015-01-01

    The quantum plasmonics field has emerged and been growing increasingly, including study of single emitter–light coupling using plasmonic system and scalable quantum plasmonic circuit. This offers opportunity for the quantum control of light with compact device footprint. However, coupling of a single emitter to highly localized plasmonic mode with nanoscale precision remains an important challenge. Today, the spatial overlap between metallic structure and single emitter mostly relies either on chance or on advanced nanopositioning control. Here, we demonstrate deterministic coupling between three-dimensionally nanofocused plasmonic modes and single quantum dots (QDs) without any positioning for single QDs. By depositing a thin silver layer on a site-controlled pyramid QD wafer, three-dimensional plasmonic nanofocusing on each QD at the pyramid apex is geometrically achieved through the silver-coated pyramid facets. Enhancement of the QD spontaneous emission rate as high as 22 ± 16 is measured for all processed QDs emitting over ∼150-meV spectral range. This approach could apply to high fabrication yield on-chip devices for wide application fields, e.g., high-efficiency light-emitting devices and quantum information processing. PMID:25870303

  2. Self-aligned deterministic coupling of single quantum emitter to nanofocused plasmonic modes.

    PubMed

    Gong, Su-Hyun; Kim, Je-Hyung; Ko, Young-Ho; Rodriguez, Christophe; Shin, Jonghwa; Lee, Yong-Hee; Dang, Le Si; Zhang, Xiang; Cho, Yong-Hoon

    2015-04-28

    The quantum plasmonics field has emerged and been growing increasingly, including study of single emitter-light coupling using plasmonic system and scalable quantum plasmonic circuit. This offers opportunity for the quantum control of light with compact device footprint. However, coupling of a single emitter to highly localized plasmonic mode with nanoscale precision remains an important challenge. Today, the spatial overlap between metallic structure and single emitter mostly relies either on chance or on advanced nanopositioning control. Here, we demonstrate deterministic coupling between three-dimensionally nanofocused plasmonic modes and single quantum dots (QDs) without any positioning for single QDs. By depositing a thin silver layer on a site-controlled pyramid QD wafer, three-dimensional plasmonic nanofocusing on each QD at the pyramid apex is geometrically achieved through the silver-coated pyramid facets. Enhancement of the QD spontaneous emission rate as high as 22 ± 16 is measured for all processed QDs emitting over ∼150-meV spectral range. This approach could apply to high fabrication yield on-chip devices for wide application fields, e.g., high-efficiency light-emitting devices and quantum information processing.

  3. A new scheme for perturbative triples correction to (0,1) sector of Fock space multi-reference coupled cluster method: Theory, implementation, and examples

    SciTech Connect

    Dutta, Achintya Kumar E-mail: s.pal@ncl.res.in; Vaval, Nayana; Pal, Sourav E-mail: s.pal@ncl.res.in

    2015-01-28

    We propose a new elegant strategy to implement third order triples correction in the light of many-body perturbation theory to the Fock space multi-reference coupled cluster method for the ionization problem. The computational scaling as well as the storage requirement is of key concerns in any many-body calculations. Our proposed approach scales as N{sup 6} does not require the storage of triples amplitudes and gives superior agreement over all the previous attempts made. This approach is capable of calculating multiple roots in a single calculation in contrast to the inclusion of perturbative triples in the equation of motion variant of the coupled cluster theory, where each root needs to be computed in a state-specific way and requires both the left and right state vectors together. The performance of the newly implemented scheme is tested by applying to methylene, boron nitride (B{sub 2}N) anion, nitrogen, water, carbon monoxide, acetylene, formaldehyde, and thymine monomer, a DNA base.

  4. Experimental demonstration of single-mode fiber coupling over relatively strong turbulence with adaptive optics.

    PubMed

    Chen, Mo; Liu, Chao; Xian, Hao

    2015-10-10

    High-speed free-space optical communication systems using fiber-optic components can greatly improve the stability of the system and simplify the structure. However, propagation through atmospheric turbulence degrades the spatial coherence of the signal beam and limits the single-mode fiber (SMF) coupling efficiency. In this paper, we analyze the influence of the atmospheric turbulence on the SMF coupling efficiency over various turbulences. The results show that the SMF coupling efficiency drops from 81% without phase distortion to 10% when phase root mean square value equals 0.3λ. The simulations of SMF coupling with adaptive optics (AO) indicate that it is inevitable to compensate the high-order aberrations for SMF coupling over relatively strong turbulence. The SMF coupling efficiency experiments, using an AO system with a 137-element deformable mirror and a Hartmann-Shack wavefront sensor, obtain average coupling efficiency increasing from 1.3% in open loop to 46.1% in closed loop under a relatively strong turbulence, D/r0=15.1.

  5. Direct fiber-coupled single photon source based on a photonic crystal waveguide

    SciTech Connect

    Ahn, Byeong-Hyeon Lee, Chang-Min; Lim, Hee-Jin; Schlereth, Thomas W.; Kamp, Martin; Höfling, Sven; Lee, Yong-Hee

    2015-08-24

    A single photon source plays a key role in quantum applications such as quantum computers and quantum communications. Epitaxially grown quantum dots are one of the promising platforms to implement a good single photon source. However, it is challenging to realize an efficient single photon source based on semiconductor materials due to their high refractive index. Here we demonstrate a direct fiber coupled single photon source with high collection efficiency by employing a photonic crystal (PhC) waveguide and a tapered micro-fiber. To confirm the single photon nature, the second-order correlation function g{sup (2)}(τ) is measured with a Hanbury Brown-Twiss setup. The measured g{sup (2)}(0) value is 0.15, and we can estimate 24% direct collection efficiency from a quantum dot to the fiber.

  6. Chances and limits of single-station seismic event clustering by unsupervised pattern recognition

    NASA Astrophysics Data System (ADS)

    Sick, Benjamin; Guggenmos, Matthias; Joswig, Manfred

    2015-06-01

    Automatic classification of local seismic events which are only recorded at single stations poses great challenges because of weak hypocentre constraints. This study investigates how single-station event clusters relate to geographic hypocentre regions and common source processes. Typical applications arise in local seismic networks where reliable ground truth by a dense temporal network precedes or follows a sparse (permanent) installation. The seismic signals for this study comprise a 3-month subset from a field campaign to map subduction below northern Chile (PISCO '94). Due to favourable ground noise conditions in the Atacama desert, the data set contains an abundance of shallow and deeper earthquakes, and many quarry explosions. Often event signatures overlap, posing a challenge to any signal processing scheme. Pattern recognition must work on reduced seismograms to restrict parameter dimensionality. Continuous parameter extraction based on noise-adapted spectrograms was chosen instead of discrete representation by, for example, amplitudes, onset times or spectral ratios to ensure consideration of potentially hidden features. Visualization of the derived feature vectors for human inspection and template matching algorithms was hereby possible. Because event classes shall comprise earthquake regions regardless of magnitude, clustering based on amplitudes is prevented by proper normalization of feature vectors. Principal component analysis is applied to further reduce the number of features used to train a self-organizing map (SOM). The SOM will topologically arrange prototypes of each event class in a 2-D map. Overcoming the restrictions of this black-box approach, the arranged prototypes could be transformed back to spectrograms to allow for visualization and interpretation of event classes. The final step relates prototypes to ground-truth information, confirming the potential of automated, coarse-grain hypocentre clustering based on single

  7. An automatic measure for classifying clusters of suspected spikes into single cells versus multiunits

    PubMed Central

    Tankus, Ariel; Yeshurun, Yehezkel; Fried, Itzhak

    2010-01-01

    While automatic spike sorting has been investigated for decades, little attention has been allotted to consistent evaluation criteria that will automatically determine whether a cluster of spikes represents the activity of a single cell or a multiunit. Consequently, the main tool for evaluation has remained visual inspection by a human. This paper quantifies the visual inspection process. The results are well-defined criteria for evaluation, which are mainly based on visual features of the spike waveform, and an automatic adaptive algorithm that learns the classification by a given human and can apply similar visual characteristics for classification of new data. To evaluate the suggested criteria, we recorded the activity of 1652 units (single cells and multiunits) from the cerebrum of 12 human patients undergoing evaluation for epilepsy surgery requiring implantation of chronic intracranial depth electrodes. The proposed method performed similar to human classifiers and obtained significantly higher accuracy than two existing methods (three variants of each). Evaluation on two synthetic datasets is also provided. The criteria are suggested as a standard for evaluation of the quality of separation that will allow comparison between different studies. The proposed algorithm is suitable for real-time operation and as such may allow brain–computer interfaces to treat single cells differently than multiunits. PMID:19667458

  8. An automatic measure for classifying clusters of suspected spikes into single cells versus multiunits

    NASA Astrophysics Data System (ADS)

    Tankus, Ariel; Yeshurun, Yehezkel; Fried, Itzhak

    2009-10-01

    While automatic spike sorting has been investigated for decades, little attention has been allotted to consistent evaluation criteria that will automatically determine whether a cluster of spikes represents the activity of a single cell or a multiunit. Consequently, the main tool for evaluation has remained visual inspection by a human. This paper quantifies the visual inspection process. The results are well-defined criteria for evaluation, which are mainly based on visual features of the spike waveform, and an automatic adaptive algorithm that learns the classification by a given human and can apply similar visual characteristics for classification of new data. To evaluate the suggested criteria, we recorded the activity of 1652 units (single cells and multiunits) from the cerebrum of 12 human patients undergoing evaluation for epilepsy surgery requiring implantation of chronic intracranial depth electrodes. The proposed method performed similar to human classifiers and obtained significantly higher accuracy than two existing methods (three variants of each). Evaluation on two synthetic datasets is also provided. The criteria are suggested as a standard for evaluation of the quality of separation that will allow comparison between different studies. The proposed algorithm is suitable for real-time operation and as such may allow brain-computer interfaces to treat single cells differently than multiunits.

  9. Spectroscopic changes during a single turnover of biotin synthase: destruction of a [2Fe-2S] cluster accompanies sulfur insertion.

    PubMed

    Ugulava, N B; Sacanell, C J; Jarrett, J T

    2001-07-27

    Biotin synthase catalyzes the insertion of a sulfur atom between the saturated C6 and C9 carbons of dethiobiotin. Catalysis requires AdoMet and flavodoxin and generates 5'-deoxyadenosine and methionine, suggesting that biotin synthase is an AdoMet-dependent radical enzyme. Biotin synthase (BioB) is aerobically purified as a dimer of 38.4 kDa monomers that contains 1-1.5 [2Fe-2S](2+) clusters per monomer and can be reconstituted with exogenous iron, sulfide, and reductants to contain up to two [4Fe-4S] clusters per monomer. The iron-sulfur clusters may play a dual role in biotin synthase: a reduced iron-sulfur cluster is probably involved in radical generation by mediating the reductive cleavage of AdoMet, while recent in vitro labeling studies suggest that an iron-sulfur cluster also serves as the immediate source of sulfur for the biotin thioether ring. Consistent with this dual role for iron-sulfur clusters in biotin synthase, we have found that the protein is stable, containing one [2Fe-2S](2+) cluster and one [4Fe-4S](2+) cluster per monomer. In the present study, we demonstrate that this mixed cluster state is essential for optimal activity. We follow changes in the Fe and S content and UV/visible and EPR spectra of the enzyme during a single turnover and conclude that during catalysis the [4Fe-4S](2+) cluster is preserved while the [2Fe-2S](2+) cluster is destroyed. We propose a mechanism for incorporation of sulfur into dethiobiotin in which a sulfur atom is oxidatively extracted from the [2Fe-2S](2+) cluster. PMID:11444982

  10. Single-photon transport through an atomic chain coupled to a one-dimensional nanophotonic waveguide

    NASA Astrophysics Data System (ADS)

    Liao, Zeyang; Zeng, Xiaodong; Zhu, Shi-Yao; Zubairy, M. Suhail

    2015-08-01

    We study the dynamics of a single-photon pulse traveling through a linear atomic chain coupled to a one-dimensional (1D) single mode photonic waveguide. We derive a time-dependent dynamical theory for this collective many-body system which allows us to study the real time evolution of the photon transport and the atomic excitations. Our analytical result is consistent with previous numerical calculations when there is only one atom. For an atomic chain, the collective interaction between the atoms mediated by the waveguide mode can significantly change the dynamics of the system. The reflectivity of a photon can be tuned by changing the ratio of coupling strength and the photon linewidth or by changing the number of atoms in the chain. The reflectivity of a single-photon pulse with finite bandwidth can even approach 100 % . The spectrum of the reflected and transmitted photon can also be significantly different from the single-atom case. Many interesting physical phenomena can occur in this system such as the photonic band-gap effects, quantum entanglement generation, Fano-like interference, and superradiant effects. For engineering, this system may serve as a single-photon frequency filter, single-photon modulation, and may find important applications in quantum information.

  11. Single Photon Transport through an Atomic Chain Coupled to a One-dimensional Photonic Waveguide

    NASA Astrophysics Data System (ADS)

    Liao, Zeyang; Zeng, Xiaodong; Zubairy, M. Suhail

    2015-03-01

    We study the dynamics of a single photon pulse travels through a linear atomic chain coupled to a one-dimensional (1D) single mode photonic waveguide. We derive a time-dependent dynamical theory for this collective many-body system which allows us to study the real time evolution of the photon transport and the atomic excitations. Our result is consistent with previous calculations when there is only one atom. For an atomic chain, the collective interaction between the atoms mediated by the waveguide mode can significantly change the dynamics of the system. The reflectivity can be tuned by changing the ratio of coupling strength and the photon linewidth or by changing the number of atoms in the chain. The reflectivity of a single photon pulse with finite bandwidth can even approach 100%. The spectrum of the reflected and transmitted photon can also be significantly different from the single atom case. Many interesting physics can occur in this system such as the photonic bandgap effects, quantum entanglement generation, Fano-type interference, superradiant effects and nonlinear frequency conversion. For engineering, this system may be used as a single photon frequency filter, single photon modulation and photon storage.

  12. Merging Active-Space and Renormalized Coupled-Cluster Methods via the CC(P;Q) Formalism, with Benchmark Calculations for Singlet-Triplet Gaps in Biradical Systems.

    PubMed

    Shen, Jun; Piecuch, Piotr

    2012-12-11

    We have recently developed a flexible form of the method of moments of coupled-cluster (CC) equations and the CC(P;Q) hierarchy, which enable one to correct the CC and equation-of-motion CC energies obtained with unconventional truncations in the cluster and excitation operators [Shen, J.; Piecuch, P. Chem. Phys.2012, 401, 180; J. Chem. Phys.2012, 136, 144104]. One of the CC(P;Q) methods is a novel hybrid scheme, abbreviated as CC(t;3), in which the results of CC calculations with singles, doubles, and active-space triples, termed CCSDt, are corrected for the triple excitations missing in CCSDt using the expressions that are reminiscent of the completely renormalized (CR) CC approach known as CR-CC(2,3). We demonstrate that the total electronic energies of the lowest singlet and triplet states, and the singlet-triplet gaps in biradical systems, including methylene, (HFH)(-), and trimethylenemethane, resulting from the CC(t;3) calculations agree with those obtained with the full CC approach with singles, doubles, and triples to within fractions of a millihartree, improving the results of the noniterative triples CCSD(T), CCSD(2)T, and CR-CC(2,3) and hybrid CCSD(T)-h calculations, and competing with the best multireference CC data.

  13. Efficient multi-mode to single-mode coupling in a photonic lantern.

    PubMed

    Noordegraaf, Danny; Skovgaard, Peter M W; Nielsen, Martin D; Bland-Hawthorn, Joss

    2009-02-01

    We demonstrate the fabrication of a high performance multi-mode (MM) to single-mode (SM) splitter or "photonic lantern", first described by Leon-Saval et al. (2005). Our photonic lantern is a solid all-glass version, and we show experimentally that this device can be used to achieve efficient and reversible coupling between a MM fiber and a number of SM fibers, when perfectly matched launch conditions into the MM fiber are ensured. The fabricated photonic lantern has a coupling loss for a MM to SM tapered transition of only 0.32 dB which proves the feasibility of the technology.

  14. Effects of underwater turbulence on laser beam propagation and coupling into single-mode optical fiber.

    PubMed

    Hanson, Frank; Lasher, Mark

    2010-06-01

    We characterize and compare the effects of turbulence on underwater laser propagation with theory. Measurements of the coupling efficiency of the focused beam into a single-mode fiber are reported. A simple tip-tilt control system, based on the position of the image centroid in the focal plane, was shown to maintain good coupling efficiency for a beam radius equal to the transverse coherence length, r(0). These results are relevant to high bandwidth communication technology that requires good spatial mode quality.

  15. Single-parameter spin-pumping in driven metallic rings with spin-orbit coupling

    SciTech Connect

    Ramos, J. P.; Apel, V. M.; Foa Torres, L. E. F.; Orellana, P. A.

    2014-03-28

    We consider the generation of a pure spin-current at zero bias voltage with a single time-dependent potential. To such end we study a device made of a mesoscopic ring connected to electrodes and clarify the interplay between a magnetic flux, spin-orbit coupling, and non-adiabatic driving in the production of a spin and electrical current. By using Floquet theory, we show that the generated spin to charge current ratio can be controlled by tuning the spin-orbit coupling.

  16. Body Composition Indices and Single and Clustered Cardiovascular Disease Risk Factors in Adolescents: Providing Clinical-Based Cut-Points.

    PubMed

    Gracia-Marco, Luis; Moreno, Luis A; Ruiz, Jonatan R; Ortega, Francisco B; de Moraes, Augusto César Ferreira; Gottrand, Frederic; Roccaldo, Romana; Marcos, Ascensión; Gómez-Martínez, Sonia; Dallongeville, Jean; Kafatos, Anthony; Molnar, Denes; Bueno, Gloria; de Henauw, Stefaan; Widhalm, Kurt; Wells, Jonathan C

    2016-01-01

    The aims of the present study in adolescents were 1) to examine how various body composition-screening tests relate to single and clustered cardiovascular disease (CVD) risk factors, 2) to examine how lean mass and body fatness (independently of each other) relate to clustered CVD risk factors, and 3) to calculate specific thresholds for body composition indices associated with an unhealthier clustered CVD risk. We measured 1089 European adolescents (46.7% boys, 12.5-17.49years) in 2006-2007. CVD risk factors included: systolic blood pressure, maximum oxygen uptake, homeostasis model assessment, C-reactive protein (n=748), total cholesterol/high density lipoprotein cholesterol and triglycerides. Body composition indices included: height, body mass index (BMI), lean mass, the sum of four skinfolds, central/peripheral skinfolds, waist circumference (WC), waist-to-height ratio (WHtR) and waist-to-hip ratio (WHR). Most body composition indices are associated with single CVD risk factors. The sum of four skinfolds, WHtR, BMI, WC and lean mass are strong and positively associated with clustered CVD risk. Interestingly, lean mass is positively associated with clustered CVD risk independently of body fatness in girls. Moderate and highly accurate thresholds for the sum of four skinfolds, WHtR, BMI, WC and lean mass are associated with an unhealthier clustered CVD risk (all AUC>0.773). In conclusion, our results support an association between most of the assessed body composition indices and single and clustered CVD risk factors. In addition, lean mass (independent of body fatness) is positively associated with clustered CVD risk in girls, which is a novel finding that helps to understand why an index such as BMI is a good index of CVD risk but a bad index of adiposity. Moderate to highly accurate thresholds for body composition indices associated with a healthier clustered CVD risk were found. Further studies with a longitudinal design are needed to confirm these findings

  17. Single crystal EPR measurements of the Fe8 and Mn_12 molecular magnetic clusters

    NASA Astrophysics Data System (ADS)

    Achey, Randall; Dalal, Naresh; Maccagnano, Sara; Negusse, Ezana; Lussier, Alex; Hill, Stephen

    2001-03-01

    We report high sensitivity, high field/frequency (up to 9 tesla/210 GHz) EPR measurements for oriented single crystals of the Fe8 and Mn_12 molecular magnetic clusters. Extrapolating the frequency dependence of transitions to zero-field allows us to directly, and accurately (to within 0.5%), determine the zero-field splittings, which are in reasonable agreement with other studies. Subsequent analysis of EPR spectra for field parallel and perpendicular to the easy axis enables us to independently deduce g-values and the spin Hamiltonian parameters up to fourth order. Analysis of individual resonances, which we can assign to known transitions, reveals a pronounced MS dependence of the resonance line widths. Furthermore, the line positions exhibit complex (again MS dependent) temperature dependences which cannot be reconciled with the standard spin Hamiltonian.

  18. Age and metallicity effects in single stellar populations: application to M 31 clusters.

    NASA Astrophysics Data System (ADS)

    de Freitas Pacheco, J. A.

    1997-03-01

    We have recently calculated (Borges et al. 1995AJ....110.2408B) integrated metallicity indices for single stellar populations (SSP). Effects of age, metallicity and abundances were taken into account. In particular, the explicit dependence of the indices Mg_2_ and NaD respectively on the ratios [Mg/Fe] and [Na/Fe] was included in the calibration. We report in this work an application of those models to a sample of 12 globular clusters in M 31. A fitting procedure was used to obtain age, metallicity and the [Mg/Fe] ratio for each object, which best reproduce the data. The mean age of the sample is 15+/-2.8Gyr and the mean [Mg/Fe] ratio is 0.35+/-0.10. These values and the derived metallicity spread are comparable to those found in galactic counterparts.

  19. Quantum interference and correlations in single dopants and exchange-coupled dopants in silicon

    NASA Astrophysics Data System (ADS)

    Salfi, Joe

    2015-03-01

    Quantum electronics exploiting the highly coherent states of single dopants in silicon invariably requires interactions between states and interfaces, and inter-dopant coupling by exchange interactions. We have developed a low temperature STM scheme for spatially resolved single-electron transport in a device-like environment, providing the first wave-function measurements of single donors and exchange-coupled acceptors in silicon. For single donors, we directly observed valley quantum interference due to linear superpositions of the valleys, and found that valley degrees of freedom are highly robust to the symmetry-breaking perturbation of nearby (3 nm) surfaces. For exchange-coupled acceptors, we measured the singlet-triplet splitting, and from the spatial tunneling probability, extracted enough information about the 2-body wavefunction amplitudes to determine the entanglement entropy, a measure of the quantum inseparability (quantum correlations) generated by the interactions between indistinguishable particles. Entanglement entropy of the J=3/2 holes was found to increase with increasing dopant distance, as Coulomb interactions overcome tunneling, coherently localizing spin towards a Heitler-London singlet, mimicing S=1/2 particles. In the future these capabilities will be exploited to peer into the inner workings of few-dopant quantum devices and shed new light on multi-dopant correlated states, engineered atom-by-atom. Work done collaboratively with J. A. Mol, R. Rahman, G. Klimeck, M. Y. Simmons, L. C. L. Hollenberg, and S. Rogge. Primary financial support from the ARC.

  20. Polymer taper bridge for silicon waveguide to single mode waveguide coupling

    NASA Astrophysics Data System (ADS)

    Kruse, Kevin; Middlebrook, Christopher T.

    2016-03-01

    Coupling of optical power from high-density silicon waveguides to silica optical fibers for signal routing can incur high losses and often requires complex end-face preparation/processing. Novel coupling device taper structures are proposed for low coupling loss between silicon photonic waveguides and single mode fibers are proposed and devices are fabricated and measured in terms of performance. Theoretical mode conversion models for waveguide tapers are derived for optimal device structure design and performance. Commercially viable vertical and multi-layer taper designs using polymer waveguide materials are proposed as innovative, cost-efficient, and mass-manufacturable optical coupling devices. The coupling efficiency for both designs is determined to evaluate optimal device dimensions and alignment tolerances with both silicon rib waveguides and silicon nanowire waveguides. Propagation loss as a function of waveguide roughness and metallic loss are determined and correlated to waveguide dimensions to obtain total insertion loss for the proposed taper designs. Multi-layer tapers on gold-sputtered substrates are fabricated through photolithography as proof-of-concept devices and evaluated for device loss optimization. Tapered waveguide coupling loss with Si WGs (2.74 dB) was experimentally measured with high correlation to theoretical results.

  1. Relativistic Coupled Cluster (RCC) Computation of the Electric Dipole Moment Enhancement Factor of Francium Due to the Violation of Time Reversal Symmetry

    NASA Astrophysics Data System (ADS)

    Mukherjee, Debashis; Sahoo, B. K.; Nataraj, H. S.; Das, B. P.

    2009-10-01

    A relativistic many-body theory for the electric dipole moment (EDM) of paramagnetic atoms arising from the electric dipole moment of the electron is presented and implemented. The relativistic coupled-cluster method with single and double excitations (RCCSD) using the Dirac-Coulomb Hamiltonian and a weak parity and time reversal violating interaction to the first-order of perturbation has been employed to obtain the EDM enhancement factor for the ground state of the Fr atom due to the intrinsic EDM of the electron. The trends of different correlation effects and the leading contributions from different physical states are discussed. Our results in combination with that of the Fr EDM experiment that is currently in progress possess the potential to probe the validity of the standard model (SM) of elementary particle physics.

  2. Relativistic coupled cluster (RCC) computation of the electric dipole moment enhancement factor of francium due to the violation of time reversal symmetry.

    PubMed

    Mukherjee, Debashis; Sahoo, B K; Nataraj, H S; Das, B P

    2009-11-12

    A relativistic many-body theory for the electric dipole moment (EDM) of paramagnetic atoms arising from the electric dipole moment of the electron is presented and implemented. The relativistic coupled-cluster method with single and double excitations (RCCSD) using the Dirac-Coulomb Hamiltonian and a weak parity and time reversal violating interaction to the first-order of perturbation has been employed to obtain the EDM enhancement factor for the ground state of the Fr atom due to the intrinsic EDM of the electron. The trends of different correlation effects and the leading contributions from different physical states are discussed. Our results in combination with that of the Fr EDM experiment that is currently in progress possess the potential to probe the validity of the standard model (SM) of elementary particle physics. PMID:19795824

  3. Combining active-space coupled-cluster methods with moment energy corrections via the CC(P;Q) methodology, with benchmark calculations for biradical transition states.

    PubMed

    Shen, Jun; Piecuch, Piotr

    2012-04-14

    We have recently suggested the CC(P;Q) methodology that can correct energies obtained in the active-space coupled-cluster (CC) or equation-of-motion (EOM) CC calculations, which recover much of the nondynamical and some dynamical electron correlation effects, for the higher-order, mostly dynamical, correlations missing in the active-space CC/EOMCC considerations. It is shown that one can greatly improve the description of biradical transition states, both in terms of the resulting energy barriers and total energies, by combining the CC approach with singles, doubles, and active-space triples, termed CCSDt, with the CC(P;Q)-style correction due to missing triple excitations defining the CC(t;3) approximation.

  4. Calculation of P,T-odd interaction constant of PbF using Z-vector method in the relativistic coupled-cluster framework.

    PubMed

    Sasmal, Sudip; Pathak, Himadri; Nayak, Malaya K; Vaval, Nayana; Pal, Sourav

    2015-08-28

    The effective electric field experienced by the unpaired electron in the ground state of PbF, which is a potential candidate in the search of electron electric dipole moment due to some special characteristics, is calculated using Z-vector method in the coupled cluster single- and double- excitation approximation with four component Dirac spinor. This is an important quantity to set the upper bound limit of the electron electric dipole moment. Further, we have calculated molecular dipole moment and parallel magnetic hyperfine structure constant (A‖) of (207)Pb in PbF to test the accuracy of the wavefunction obtained in the Z-vector method. The outcome of our calculations clearly suggests that the core electrons have significant contribution to the "atom in compound" properties. PMID:26328830

  5. Coupled processes in single fractures, double fractures and fractured porous media

    SciTech Connect

    Tsang, C.F.

    1986-12-01

    The emplacement of a nuclear waste repository in a fractured porous medium provides a heat source of large dimensions over an extended period of time. It also creates a large cavity in the rock mass, changing significantly the stress field. Such major changes induce various coupled thermohydraulic, hydromechanic and hydrochemical transport processes in the environment around a nuclear waste repository. The present paper gives, first, a general overview of the coupled processes involving thermal, mechanical, hydrological and chemical effects. Then investigations of a number of specific coupled processes are described in the context of fluid flow and transport in a single fracture, two intersecting fractures and a fractured porous medium near a nuclear waste repository. The results are presented and discussed.

  6. Ultra-small single-negative electric metamaterials for electromagnetic coupling reduction of microstrip antenna array.

    PubMed

    Xu, He-Xiu; Wang, Guang-Ming; Qi, Mei-Qing; Zeng, Hui-Yong

    2012-09-24

    We report initially the design, fabrication and measurement of using waveguided electric metamaterials (MTM) in the design of closely-spaced microtrip antenna arrays with mutual coupling reduction. The complementary spiral ring resonators (CSRs) which exhibit single negative resonant permittivity around 3.5GHz are used as the basic electric MTM element. For verification, two CSRs with two and three concentric rings are considered, respectively. By properly arranging these well engineered waveguided MTMs between two H-plane coupled patch antennas, both numerical and measured results indicate that more than 8.4 dB mutual coupling reduction is obtained. The mechanism has been studied from a physical insight. The electric MTM element is electrically small, enabling the resultant antenna array to exhibit a small separation (λo/8 at the operating wavelength) and thus a high directivity. The proposed strategy opens an avenue to new types of antenna with super performances and can be generalized for other electric resonators.

  7. Free-space-coupled superconducting nanowire single-photon detectors for infrared optical communications.

    PubMed

    Bellei, Francesco; Cartwright, Alyssa P; McCaughan, Adam N; Dane, Andrew E; Najafi, Faraz; Zhao, Qingyuan; Berggren, Karl K

    2016-02-22

    This paper describes the construction of a cryostat and an optical system with a free-space coupling efficiency of 56.5% ± 3.4% to a superconducting nanowire single-photon detector (SNSPD) for infrared quantum communication and spectrum analysis. A 1K pot decreases the base temperature to T = 1.7 K from the 2.9 K reached by the cold head cooled by a pulse-tube cryocooler. The minimum spot size coupled to the detector chip was 6.6 ± 0.11 µm starting from a fiber source at wavelength, λ = 1.55 µm. We demonstrated photon counting on a detector with an 8 × 7.3 µm2 area. We measured a dark count rate of 95 ± 3.35 kcps and a system detection efficiency of 1.64% ± 0.13%. We explain the key steps that are required to improve further the coupling efficiency.

  8. Far off-resonant coupling between photonic crystal microcavity and single quantum dot with resonant excitation

    SciTech Connect

    Banihashemi, Mehdi; Ahmadi, Vahid; Nakamura, Tatsuya; Kojima, Takanori; Kojima, Kazunobu; Noda, Susumu

    2013-12-16

    In this paper, we experimentally demonstrate that with sub-nanowatt coherent s-shell excitation of a single InAs quantum dot, off-resonant coupling of 4.1 nm is possible between L3 photonic crystal microcavity and the quantum dot at 50 K. This resonant excitation reduces strongly the effect of surrounding charges to quantum dot, multiexciton complexes and pure dephasing. It seems that this far off-resonant coupling is the result of increased number of acoustical phonons due to high operating temperature of 50 K. The 4.1 nm detuning is the largest amount for this kind of coupling.

  9. A Single-band Cold Mass Support System for the MICE Superconducting Coupling Magnet

    SciTech Connect

    Wu, Hong; Wang, Li; Liu, X.K.; Liu, C.S.; Li, L.K.; Xu, Feng Yu; Jia, Lin X.; Green, Michael A.

    2008-04-02

    The cooling channel of the Muon Ionization Cooling Experiment (MICE) consists of eighteen superconducting solenoid coils, which are magnetically hooked together and contained in seven modules. The operations of a pair of MICE superconducting coupling magnets are affected directly by the other solenoid coils in the MICE channel. In order to meet the stringent requirement for the magnet center and axis azimuthal angle at 4.2 K, a self-centered tension-band cold mass support system with intermediate thermal interruption was applied for the MICE superconducting coupling magnet. The physical center of the magnet does not change as it is cooled down from 300 K to 4.2 K using this support system. This paper analyzed and calculated force loads on the coupling magnet under various operation modes of the MICE cooling channel. The performance parameters of a single-band cold mass support system were calculated also.

  10. A molecular ruler based on plasmon coupling of single gold andsilver nanoparticles

    SciTech Connect

    Sonnichsen, Carsten; Reinhard, Bjorn M.; Liphardt, Jan; Alivisatos, A. Paul

    2005-05-22

    Molecular rulers based on Foerster Resonance Energy Transfer (FRET) that report conformational changes and intramolecular distances of single biomolecules have helped to understand important biological processes. However, these rulers suffer from low and fluctuating signal intensities from single dyes and limited observation time due to photobleaching. The plasmon resonance in noble metal particles has been suggested as an alternative probe to overcome the limitations of organic fluorophores and the coupling of plasmons in nearby particles has been exploited to detect particle aggregation by a distinct color change in bulk experiments. Here we demonstrate that plasmon coupling can be used to monitor distances between single pairs of gold and silver nanoparticles. We use this effect to follow the directed assembly of gold and silver nanoparticle dimers in real time and to study the time dynamics of single DNA hybridization events. These ''plasmon rulers'' allowed us to continuously monitor separations of up to 70 nm for more than 3000 seconds. Single molecule in vitro studies of biological processes previously inaccessible with fluorescence based molecular rulers are enabled with plasmon rulers with extended time and distance range.

  11. Quantum switch for single-photon transport in a coupled superconducting transmission-line-resonator array

    SciTech Connect

    Liao Jieqiao; Sun, C. P.; Huang Jinfeng; Kuang Leman; Liu Yuxi

    2009-07-15

    We propose and study an approach to realize quantum switch for single-photon transport in a coupled superconducting transmission-line-resonator (TLR) array with one controllable hopping interaction. We find that the single photon with arbitrary wave vector can transport in a controllable way in this system. We also study how to realize controllable hopping interaction between two TLRs via a Cooper-pair box (CPB). When the frequency of the CPB is largely detuned from those of the two TLRs, the variables of the CPB can be adiabatically eliminated and thus a controllable interaction between two TLRs can be obtained.

  12. Strong exciton-photon coupling in organic single crystal microcavity with high molecular orientation

    NASA Astrophysics Data System (ADS)

    Goto, Kaname; Yamashita, Kenichi; Yanagi, Hisao; Yamao, Takeshi; Hotta, Shu

    2016-08-01

    Strong exciton-photon coupling has been observed in a highly oriented organic single crystal microcavity. This microcavity consists of a thiophene/phenylene co-oligomer (TPCO) single crystal laminated on a high-reflection distributed Bragg reflector. In the TPCO crystal, molecular transition dipole was strongly polarized along a certain horizontal directions with respect to the main crystal plane. This dipole polarization causes significantly large anisotropies in the exciton transition and optical constants. Especially the anisotropic exciton transition was found to provide the strong enhancement in the coupling with the cavity mode, which was demonstrated by a Rabi splitting energy as large as ˜100 meV even in the "half-vertical cavity surface emitting lasing" microcavity structure.

  13. Coupled finite element simulation and optimization of single- and multi-stage sheet-forming processes

    NASA Astrophysics Data System (ADS)

    Tamasco, Cynthia M.; Rais-Rohani, Masoud; Buijk, Arjaan

    2013-03-01

    This article presents the development and application of a coupled finite element simulation and optimization framework that can be used for design and analysis of sheet-forming processes of varying complexity. The entire forming process from blank gripping and deep drawing to tool release and springback is modelled. The dies, holders, punch and workpiece are modelled with friction, temperature, holder force and punch speed controlled in the process simulation. Both single- and multi-stage sheet-forming processes are investigated. Process simulation is coupled with a nonlinear gradient-based optimization approach for optimizing single or multiple design objectives with imposed sheet-forming response constraints. A MATLAB program is developed and used for data-flow management between process simulation and optimization codes. Thinning, springback, damage and forming limit diagram are used to define failure in the forming process design optimization. Design sensitivity analysis and optimization results of the example problems are presented and discussed.

  14. Double and single pion photoproduction within a dynamical coupled-channels model

    SciTech Connect

    Kamano, H.; Julia-Diaz, B.; Lee, T.-S. H.; Matsuyama, A.; Sato, T.

    2009-12-15

    Within a dynamical coupled-channels model that has already been fixed by analyzing the data of the {pi}N{yields}{pi}N and {gamma}N{yields}{pi}N reactions, we present the predicted double pion photoproduction cross sections up to the second resonance region, W<1.7 GeV. The roles played by the different mechanisms within our model in determining both the single and double pion photoproduction reactions are analyzed, focusing on the effects attributable to the direct {gamma}N{yields}{pi}{pi}N mechanism, the interplay between the resonant and nonresonant amplitudes, and the coupled-channels effects. The model parameters that can be determined most effectively in the combined studies of both the single and double pion photoproduction data are identified for future studies.

  15. Double and single pion photoproduction within a dynamical coupled-channels model

    SciTech Connect

    Hiroyuki Kamano; Julia-Diaz, Bruno; Lee, T. -S. H.; Matsuyama, Akihiko; Sato, Toru

    2009-12-16

    Within a dynamical coupled-channels model which has already been fixed from analyzing the data of the πN → πN and γN → πN reactions, we present the predicted double pion photoproduction cross sections up to the second resonance region, W < 1.7 GeV. The roles played by the different mechanisms within our model in determining both the single and double pion photoproduction reactions are analyzed, focusing on the effects due to the direct γN → ππN mechanism, the interplay between the resonant and non-resonant amplitudes, and the coupled-channels effects. As a result, the model parameters which can be determined most effectively in the combined studies of both the single and double pion photoproduction data are identified for future studies.

  16. Double and single pion photoproduction within a dynamical coupled-channels model

    DOE PAGES

    Hiroyuki Kamano; Julia-Diaz, Bruno; Lee, T. -S. H.; Matsuyama, Akihiko; Sato, Toru

    2009-12-16

    Within a dynamical coupled-channels model which has already been fixed from analyzing the data of the πN → πN and γN → πN reactions, we present the predicted double pion photoproduction cross sections up to the second resonance region, W < 1.7 GeV. The roles played by the different mechanisms within our model in determining both the single and double pion photoproduction reactions are analyzed, focusing on the effects due to the direct γN → ππN mechanism, the interplay between the resonant and non-resonant amplitudes, and the coupled-channels effects. As a result, the model parameters which can be determined mostmore » effectively in the combined studies of both the single and double pion photoproduction data are identified for future studies.« less

  17. Charge noise, spin-orbit coupling, and dephasing of single-spin qubits

    SciTech Connect

    Bermeister, Adam; Keith, Daniel; Culcer, Dimitrie

    2014-11-10

    Quantum dot quantum computing architectures rely on systems in which inversion symmetry is broken, and spin-orbit coupling is present, causing even single-spin qubits to be susceptible to charge noise. We derive an effective Hamiltonian for the combined action of noise and spin-orbit coupling on a single-spin qubit, identify the mechanisms behind dephasing, and estimate the free induction decay dephasing times T{sub 2}{sup *} for common materials such as Si and GaAs. Dephasing is driven by noise matrix elements that cause relative fluctuations between orbital levels, which are dominated by screened whole charge defects and unscreened dipole defects in the substrate. Dephasing times T{sub 2}{sup *} differ markedly between materials and can be enhanced by increasing gate fields, choosing materials with weak spin-orbit, making dots narrower, or using accumulation dots.

  18. Dynamical transitions in large systems of mean field-coupled Landau-Stuart oscillators: Extensive chaos and cluster states

    NASA Astrophysics Data System (ADS)

    Ku, Wai Lim; Girvan, Michelle; Ott, Edward

    2015-12-01

    In this paper, we study dynamical systems in which a large number N of identical Landau-Stuart oscillators are globally coupled via a mean-field. Previously, it has been observed that this type of system can exhibit a variety of different dynamical behaviors. These behaviors include time periodic cluster states in which each oscillator is in one of a small number of groups for which all oscillators in each group have the same state which is different from group to group, as well as a behavior in which all oscillators have different states and the macroscopic dynamics of the mean field is chaotic. We argue that this second type of behavior is "extensive" in the sense that the chaotic attractor in the full phase space of the system has a fractal dimension that scales linearly with N and that the number of positive Lyapunov exponents of the attractor also scales linearly with N. An important focus of this paper is the transition between cluster states and extensive chaos as the system is subjected to slow adiabatic parameter change. We observe discontinuous transitions between the cluster states (which correspond to low dimensional dynamics) and the extensively chaotic states. Furthermore, examining the cluster state, as the system approaches the discontinuous transition to extensive chaos, we find that the oscillator population distribution between the clusters continually evolves so that the cluster state is always marginally stable. This behavior is used to reveal the mechanism of the discontinuous transition. We also apply the Kaplan-Yorke formula to study the fractal structure of the extensively chaotic attractors.

  19. Dynamical transitions in large systems of mean field-coupled Landau-Stuart oscillators: Extensive chaos and cluster states

    SciTech Connect

    Ku, Wai Lim; Girvan, Michelle; Ott, Edward

    2015-12-15

    In this paper, we study dynamical systems in which a large number N of identical Landau-Stuart oscillators are globally coupled via a mean-field. Previously, it has been observed that this type of system can exhibit a variety of different dynamical behaviors. These behaviors include time periodic cluster states in which each oscillator is in one of a small number of groups for which all oscillators in each group have the same state which is different from group to group, as well as a behavior in which all oscillators have different states and the macroscopic dynamics of the mean field is chaotic. We argue that this second type of behavior is “extensive” in the sense that the chaotic attractor in the full phase space of the system has a fractal dimension that scales linearly with N and that the number of positive Lyapunov exponents of the attractor also scales linearly with N. An important focus of this paper is the transition between cluster states and extensive chaos as the system is subjected to slow adiabatic parameter change. We observe discontinuous transitions between the cluster states (which correspond to low dimensional dynamics) and the extensively chaotic states. Furthermore, examining the cluster state, as the system approaches the discontinuous transition to extensive chaos, we find that the oscillator population distribution between the clusters continually evolves so that the cluster state is always marginally stable. This behavior is used to reveal the mechanism of the discontinuous transition. We also apply the Kaplan-Yorke formula to study the fractal structure of the extensively chaotic attractors.

  20. Dynamical transitions in large systems of mean field-coupled Landau-Stuart oscillators: Extensive chaos and cluster states.

    PubMed

    Ku, Wai Lim; Girvan, Michelle; Ott, Edward

    2015-12-01

    In this paper, we study dynamical systems in which a large number N of identical Landau-Stuart oscillators are globally coupled via a mean-field. Previously, it has been observed that this type of system can exhibit a variety of different dynamical behaviors. These behaviors include time periodic cluster states in which each oscillator is in one of a small number of groups for which all oscillators in each group have the same state which is different from group to group, as well as a behavior in which all oscillators have different states and the macroscopic dynamics of the mean field is chaotic. We argue that this second type of behavior is "extensive" in the sense that the chaotic attractor in the full phase space of the system has a fractal dimension that scales linearly with N and that the number of positive Lyapunov exponents of the attractor also scales linearly with N. An important focus of this paper is the transition between cluster states and extensive chaos as the system is subjected to slow adiabatic parameter change. We observe discontinuous transitions between the cluster states (which correspond to low dimensional dynamics) and the extensively chaotic states. Furthermore, examining the cluster state, as the system approaches the discontinuous transition to extensive chaos, we find that the oscillator population distribution between the clusters continually evolves so that the cluster state is always marginally stable. This behavior is used to reveal the mechanism of the discontinuous transition. We also apply the Kaplan-Yorke formula to study the fractal structure of the extensively chaotic attractors.

  1. Coupled-cavity terahertz quantum cascade lasers for single mode operation

    NASA Astrophysics Data System (ADS)

    Li, H.; Manceau, J. M.; Andronico, A.; Jagtap, V.; Sirtori, C.; Li, L. H.; Linfield, E. H.; Davies, A. G.; Barbieri, S.

    2014-06-01

    We demonstrate the operation of coupled-cavity terahertz frequency quantum-cascade lasers composed of two sub-cavities separated by an air gap realized by optical lithography and dry etching. This geometry allows stable, single mode operation with typical side mode suppression ratios in the 30-40 dB range. We employ a transfer matrix method to model the mode selection mechanism. The obtained results are in good agreement with the measurements and allow prediction of the operating frequency.

  2. A novel method to estimate the impact parameter on a drift cell by using the information of single ionization clusters

    NASA Astrophysics Data System (ADS)

    Signorelli, G.; D`Onofrio, A.; Venturini, M.

    2016-07-01

    Measuring the time of each ionization cluster in drift chambers has been proposed to improve the single hit resolution, especially for very low mass tracking systems. Ad hoc formulae have been developed to combine the information from the single clusters. We show that the problem falls in a wide category of problems that can be solved with an algorithm called Maximum Possible Spacing (MPS) which has been demonstrated to find the optimal estimator. We show that the MPS approach is applicable and gives the expected results. Its application in a real tracking device, namely the MEG II cylindrical drift chamber, is discussed.

  3. Online Coupling of Flow-Field Flow Fractionation and Single Particle Inductively Coupled Plasma-Mass Spectrometry: Characterization of Nanoparticle Surface Coating Thickness and Aggregation State

    EPA Science Inventory

    Surface coating thickness and aggregation state have strong influence on the environmental fate, transport, and toxicity of engineered nanomaterials. In this study, flow-field flow fractionation coupled on-line with single particle inductively coupled plasma-mass spectrometry i...

  4. Functional organization of a single nif cluster in the mesophilic archaeon Methanosarcina mazei strain Gö1.

    PubMed

    Ehlers, Claudia; Veit, Katharina; Gottschalk, Gerhard; Schmitz, Ruth A

    2002-09-01

    The mesophilic methanogenic archaeon Methanosarcina mazei strain Gö1 is able to utilize molecular nitrogen (N2) as its sole nitrogen source. We have identified and characterized a single nitrogen fixation (nif) gene cluster in M. mazei Gö1 with an approximate length of 9 kbp. Sequence analysis revealed seven genes with sequence similarities to nifH, nifI1, nifI2, nifD, nifK, nifE and nifN, similar to other diazotrophic methanogens and certain bacteria such as Clostridium acetobutylicum, with the two glnB-like genes (nifI1 and nifI2) located between nifH and nifD. Phylogenetic analysis of deduced amino acid sequences for the nitrogenase structural genes of M. mazei Gö1 showed that they are most closely related to Methanosarcina barkeri nif2 genes, and also closely resemble those for the corresponding nif products of the gram-positive bacterium C. acetobutylicum. Northern blot analysis and reverse transcription PCR analysis demonstrated that the M. mazei nif genes constitute an operon transcribed only under nitrogen starvation as a single 8 kb transcript. Sequence analysis revealed a palindromic sequence at the transcriptional start site in front of the M. mazei nifH gene, which may have a function in transcriptional regulation of the nif operon.

  5. Functional organization of a single nif cluster in the mesophilic archaeon Methanosarcina mazei strain Gö1

    PubMed Central

    Ehlers, Claudia; Veit, Katharina; Gottschalk, Gerhard; Schmitz, Ruth A.

    2002-01-01

    The mesophilic methanogenic archaeon Methanosarcina mazei strain Gö1 is able to utilize molecular nitrogen (N2) as its sole nitrogen source. We have identified and characterized a single nitrogen fixation (nif) gene cluster in M. mazei Gö1 with an approximate length of 9 kbp. Sequence analysis revealed seven genes with sequence similarities to nifH, nifI1, nifI2, nifD, nifK, nifE and nifN, similar to other diazotrophic methanogens and certain bacteria such as Clostridium acetobutylicum, with the two glnB-like genes (nifI1 and nifI2) located between nifH and nifD. Phylogenetic analysis of deduced amino acid sequences for the nitrogenase structural genes of M. mazei Gö1 showed that they are most closely related to Methanosarcina barkeri nif2 genes, and also closely resemble those for the corresponding nif products of the gram-positive bacterium C. acetobutylicum. Northern blot analysis and reverse transcription PCR analysis demonstrated that the M. mazei nif genes constitute an operon transcribed only under nitrogen starvation as a single 8 kb transcript. Sequence analysis revealed a palindromic sequence at the transcriptional start site in front of the M. mazei nifH gene, which may have a function in transcriptional regulation of the nif operon. PMID:15803652

  6. Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides

    PubMed Central

    Fang, Hui; Battaglia, Corsin; Carraro, Carlo; Nemsak, Slavomir; Ozdol, Burak; Kang, Jeong Seuk; Bechtel, Hans A.; Desai, Sujay B.; Kronast, Florian; Unal, Ahmet A.; Conti, Giuseppina; Conlon, Catherine; Palsson, Gunnar K.; Martin, Michael C.; Minor, Andrew M.; Fadley, Charles S.; Yablonovitch, Eli; Maboudian, Roya; Javey, Ali

    2014-01-01

    Semiconductor heterostructures are the fundamental platform for many important device applications such as lasers, light-emitting diodes, solar cells, and high-electron-mobility transistors. Analogous to traditional heterostructures, layered transition metal dichalcogenide heterostructures can be designed and built by assembling individual single layers into functional multilayer structures, but in principle with atomically sharp interfaces, no interdiffusion of atoms, digitally controlled layered components, and no lattice parameter constraints. Nonetheless, the optoelectronic behavior of this new type of van der Waals (vdW) semiconductor heterostructure is unknown at the single-layer limit. Specifically, it is experimentally unknown whether the optical transitions will be spatially direct or indirect in such hetero-bilayers. Here, we investigate artificial semiconductor heterostructures built from single-layer WSe2 and MoS2. We observe a large Stokes-like shift of ∼100 meV between the photoluminescence peak and the lowest absorption peak that is consistent with a type II band alignment having spatially direct absorption but spatially indirect emission. Notably, the photoluminescence intensity of this spatially indirect transition is strong, suggesting strong interlayer coupling of charge carriers. This coupling at the hetero-interface can be readily tuned by inserting dielectric layers into the vdW gap, consisting of hexagonal BN. Consequently, the generic nature of this interlayer coupling provides a new degree of freedom in band engineering and is expected to yield a new family of semiconductor heterostructures having tunable optoelectronic properties with customized composite layers. PMID:24733906

  7. Fiber Grating Coupled Light Source Capable of Tunable, Single Frequency Operation

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A. (Inventor); Duerksen, Gary L. (Inventor)

    2001-01-01

    Fiber Bragg grating coupled light sources can achieve tunable single-frequency (single axial and lateral spatial mode) operation by correcting for a quadratic phase variation in the lateral dimension using an aperture stop. The output of a quasi-monochromatic light source such as a Fabry Perot laser diode is astigmatic. As a consequence of the astigmatism, coupling geometries that accommodate the transverse numerical aperture of the laser are defocused in the lateral dimension, even for apsherical optics. The mismatch produces the quadratic phase variation in the feedback along the lateral axis at the facet of the laser that excites lateral modes of higher order than the TM(sub 00). Because the instability entails excitation of higher order lateral submodes, single frequency operation also is accomplished by using fiber Bragg gratings whose bandwidth is narrower than the submode spacing. This technique is particularly pertinent to the use of lensed fiber gratings in lieu of discrete coupling optics. Stable device operation requires overall phase match between the fed-back signal and the laser output. The fiber Bragg grating acts as a phase-preserving mirror when the Bragg condition is met precisely. The phase-match condition is maintained throughout the fiber tuning range by matching the Fabry-Perot axial mode wavelength to the passband center wavelength of the Bragg grating.

  8. Reappraisal of nuclear quadrupole moments of atomic halogens via relativistic coupled cluster linear response theory for the ionization process.

    PubMed

    Chaudhuri, Rajat K; Chattopadhyay, Sudip; Mahapatra, Uttam Sinha

    2013-11-27

    The coupled cluster based linear response theory (CCLRT) with four-component relativistic spinors is employed to compute the electric field gradients (EFG) of (35)Cl, (79)Br, and (127)I nuclei. The EFGs resulting from these calculations are combined with experimental nuclear quadrupole coupling constants (NQCC) to determine the nuclear quadrupole moments (NQM), Q of the halide nuclei. Our estimated NQMs [(35)Cl = -81.12 mb, (79)Br = 307.98 mb, and (127)I = -688.22 mb] agree well with the new atomic values [(35)Cl = -81.1(1.2), (79)Br = 302(5), and (127)I = -680(10) mb] obtained via Fock space multireference coupled cluster method with the Dirac-Coulomb-Breit Hamiltonian. Although our estimated Q((79)Br) value deviates from the accepted reference value of 313(3) mb, it agrees well with the recently recommended value, Q((79)Br) = 308.7(20) mb. Good agreement with current reference data indicates the accuracy of the proposed value for these halogen nuclei and lends credence to the results obtained via CCLRT approach. The electron affinities yielded by this method with no extra cost are also in good agreement with experimental values, which bolster our belief that the NQMs values for halogen nuclei derived here are reliable.

  9. Molecular dynamics simulation of melting and crystallization processes of polyethylene clusters confined in armchair single-walled carbon nanotubes.

    PubMed

    Zhou, Zhou; Wang, Jinjian; Zhu, Xiaolei; Lu, Xiaohua; Guan, Wenwen; Yang, Yuchen

    2015-01-01

    The confined interaction is important to understand the melting and crystallization of polymers within single-wall carbon tube (SWNT). However, it is difficult for us to observe this interaction. In the current work, the structures and behaviors of melting and crystallization for polyethylene (PE) clusters confined in armchair single-walled carbon nanotubes ((n,n)-SWNTs) are investigated and examined based on molecular dynamics (MD) simulations. The nonbonded energies, structures, Lindemman indices, radial density distributions, and diffusion coefficients are used to demonstrate the features of melting phase transition for PE clusters confined in (n,n)-SWNTs. The chain end-to-end distance (R(n)) and chain end-to-end distribution are used to examine the flexibility of the PE chain confined in SWNT. The global orientational order parameter (P2) is employed to reveal the order degree of whole PE polymer. The effect of polymerization degree on melting temperature and the influence of SWNT chirality on structure of PE cluster are examined and discussed. Results demonstrate that within the confined environment of SWNT, PE clusters adopt novel co-axial crystalline layer structure, in which parallel chains of each layer are approximately vertical to tube axis. The disordered-ordered transformation of PE chains in each layer is an important structural feature for crystallization of confined PE clusters. SWNTs have a considerable effect on the structures and stabilities of the confined PE clusters.

  10. Reconfigurable task-dependent functional coupling modes cluster around a core functional architecture

    PubMed Central

    Krienen, Fenna M.; Yeo, B. T. Thomas; Buckner, Randy L.

    2014-01-01

    Functional coupling across distributed brain regions varies across task contexts, yet there are stable features. To better understand the range and central tendencies of network configurations, coupling patterns were explored using functional MRI (fMRI) across 14 distinct continuously performed task states ranging from passive fixation to increasingly demanding classification tasks. Mean global correlation profiles across the cortex ranged from 0.69 to 0.82 between task states. Network configurations from both passive fixation and classification tasks similarly predicted task coactivation patterns estimated from meta-analysis of the literature. Thus, even across markedly different task states, central tendencies dominate the coupling configurations. Beyond these shared components, distinct task states displayed significant differences in coupling patterns in response to their varied demands. One possibility is that anatomical connectivity provides constraints that act as attractors pulling network configurations towards a limited number of robust states. Reconfigurable coupling modes emerge as significant modifications to a core functional architecture. PMID:25180304

  11. Chimera and phase-cluster states in populations of coupled chemical oscillators

    NASA Astrophysics Data System (ADS)

    Tinsley, Mark R.; Nkomo, Simbarashe; Showalter, Kenneth

    2012-09-01

    Populations of coupled oscillators may exhibit two coexisting subpopulations, one with synchronized oscillations and the other with unsynchronized oscillations, even though all of the oscillators are coupled to each other in an equivalent manner. This phenomenon, discovered about ten years ago in theoretical studies, was then further characterized and named the chimera state after the Greek mythological creature made up of different animals. The highly counterintuitive coexistence of coherent and incoherent oscillations in populations of identical oscillators, each with an equivalent coupling structure, inspired great interest and a flurry of theoretical activity. Here we report on experimental studies of chimera states and their relation to other synchronization states in populations of coupled chemical oscillators. Our experiments with coupled Belousov-Zhabotinsky oscillators and corresponding simulations reveal chimera behaviour that differs significantly from the behaviour found in theoretical studies of phase-oscillator models.

  12. High-Tc/high-coupling relaxed PZT-based single crystal thin films

    NASA Astrophysics Data System (ADS)

    Wasa, K.; Matsushima, T.; Adachi, H.; Matsunaga, T.; Yanagitani, T.; Yamamoto, T.

    2015-03-01

    Pb(Zr,Ti)O3 (PZT)-based ferroelectric ceramics exhibit high piezoelectricity, however, their Curie temperature (Tc) values are not so high, i.e., Tc < 400 °C. PZT-based piezoelectric thin films with higher Tc would be beneficial for improved micro actuators, sensors, memories, and piezoelectric micro-electro mechanical systems. In-plane biaxial strained PZT thin films in a laminated composite structure are known to exhibit enhanced Tc; however, the thickness of PZT-based thin films is limited to below a critical thickness typically <50 nm. The Tc of relaxed PZT-based thin films with thicknesses greater than the critical thickness is the same as bulk Tc. However, a sort of relaxed PZT-based single-crystal thin films exhibit extraordinary high Tc, Tc = ˜600 °C. In addition, the films show extremely low dielectric constant, ɛ/ɛo ˜ 100 with high coupling factor, kt ˜ 0.7, and large remnant polarization, Pr ˜ 100 μC/cm2. These exotic properties would result from the single-domain/single-crystal structure. The enhanced Tc is possibly caused by the highly stable interface between the PZT-based thin films and substrates. Their ferroelectric performances are beyond those of conventional PZT. The high-Tc/high-coupling performances are demonstrated, and the possible mechanisms of the high Tc behavior in relaxed PZT-based single-crystal thin films are discussed.

  13. Coupling, controlling, and processing non-transversal photons with a single atom

    NASA Astrophysics Data System (ADS)

    Rauschenbeutel, Arno

    2014-05-01

    I will report on recent experimental investigations of the interaction between single rubidium atoms and light that is confined by continuous total internal reflection in a whispering-gallery-mode (WGM) bottle microresonator. These resonators offer the advantage of very long photon lifetimes in conjunction with near lossless in- and out-coupling of light via tapered fiber couplers. We discovered that the non-transversal polarization of WGMs fundamentally alters the physics of light-matter interaction. Taking advantage of this effect, we recently demonstrated switching of signals between two distinct optical fibers controlled by a single atom. Owing to the excellent optical properties of our bottle microresonator, the scheme yields high switching fidelities and low losses. Furthermore, we exploited the strong birefringence of the bottle microresonator and implemented a single-atom-controlled polarization flip of the light that is guided through the coupling fiber. And finally, we made use of the strong nonlinear response of the atom-resonator system and experimentally realized an optical Kerr nonlinearity at the level of single photon. Analyzing the transmitted light, we observe a nonlinear phase shift of π between the cases of one and of two photons passing the resonator. This phase shift leads to entanglement between previously independent fiber-guided photons, which we verify by performing a full quantum state tomography of the transmitted two-photon state.

  14. Nuclear-driven electron spin rotations in a coupled silicon quantum dot and single donor system

    NASA Astrophysics Data System (ADS)

    Harvey-Collard, Patrick; Jacobson, Noah Tobias; Rudolph, Martin; Ten Eyck, Gregory A.; Wendt, Joel R.; Pluym, Tammy; Lilly, Michael P.; Pioro-Ladrière, Michel; Carroll, Malcolm S.

    Single donors in silicon are very good qubits. However, a central challenge is to couple them to one another. To achieve this, many proposals rely on using a nearby quantum dot (QD) to mediate an interaction. In this work, we demonstrate the coherent coupling of electron spins between a single 31P donor and an enriched 28Si metal-oxide-semiconductor few-electron QD. We show that the electron-nuclear spin interaction can drive coherent rotations between singlet and triplet electron spin states. Moreover, we are able to tune electrically the exchange interaction between the QD and donor electrons. The combination of single-nucleus-driven rotations and voltage-tunable exchange provides all elements for future all-electrical control of a spin qubit, and requires only a single dot and no additional magnetic field gradients. This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  15. Single step electrochemical synthesis of hydrophilic/hydrophobic Ag5 and Ag6 blue luminescent clusters.

    PubMed

    Santiago González, Beatriz; Blanco, M C; López-Quintela, M Arturo

    2012-12-21

    Well-defined Ag(5) and Ag(6) dodecanethiol/tetrabutyl ammonium-protected clusters were prepared by a one-pot electrochemical method. Ag clusters show bright and photostable emissions. The presence of a dual capping renders the silver clusters soluble in both organic and aqueous solvents.

  16. Complexes of an argon atom with the linear anions HCC - and HC 4-: results of coupled cluster calculations

    NASA Astrophysics Data System (ADS)

    Botschwina, P.; Oswald, R.

    2003-08-01

    Large-scale coupled cluster calculations have been carried out for the complexes of an argon atom with the linear anions HCC - and HC 4-. In both cases, almost T-shaped structures are energetically favoured. Their equilibrium dissociation energies ( De) are predicted to be 501(5) and 507(5) cm -1, respectively. In contrast to the isoelectronic neutral systems Ar + HCN and Ar + HC 3N, no energy minima are found for the 'hydrogen-bonded' configurations. While the complex Ar ⋯ HCC - is rather flexible, Ar ⋯ HC 4- appears to be fairly rigid, quite similar to isoelectronic Ar ⋯ HC 3N or Ar ⋯ HC 4H.

  17. Communication: Two-component ring-coupled-cluster computation of the correlation energy in the random-phase approximation

    SciTech Connect

    Krause, Katharina; Klopper, Wim

    2013-11-21

    Within the framework of density-functional theory, the correlation energy is computed in the random-phase approximation (RPA) using spinors obtained from a two-component relativistic Kohn–Sham calculation accounting for spin–orbit interactions. Ring-coupled-cluster equations are solved to obtain the two-component RPA correlation energy. Results are presented for the hydrides of the halogens Br, I, and At as well as of the coinage metals Cu, Ag, and Au, based on two-component relativistic exact-decoupling Kohn–Sham calculations.

  18. Communication: Two-component ring-coupled-cluster computation of the correlation energy in the random-phase approximation

    NASA Astrophysics Data System (ADS)

    Krause, Katharina; Klopper, Wim

    2013-11-01

    Within the framework of density-functional theory, the correlation energy is computed in the random-phase approximation (RPA) using spinors obtained from a two-component relativistic Kohn-Sham calculation accounting for spin-orbit interactions. Ring-coupled-cluster equations are solved to obtain the two-component RPA correlation energy. Results are presented for the hydrides of the halogens Br, I, and At as well as of the coinage metals Cu, Ag, and Au, based on two-component relativistic exact-decoupling Kohn-Sham calculations.

  19. Communication: two-component ring-coupled-cluster computation of the correlation energy in the random-phase approximation.

    PubMed

    Krause, Katharina; Klopper, Wim

    2013-11-21

    Within the framework of density-functional theory, the correlation energy is computed in the random-phase approximation (RPA) using spinors obtained from a two-component relativistic Kohn-Sham calculation accounting for spin-orbit interactions. Ring-coupled-cluster equations are solved to obtain the two-component RPA correlation energy. Results are presented for the hydrides of the halogens Br, I, and At as well as of the coinage metals Cu, Ag, and Au, based on two-component relativistic exact-decoupling Kohn-Sham calculations. PMID:24320308

  20. Comparative studies on field-induced stretching behavior of single-walled and multiwalled carbon nanotube clusters.

    PubMed

    Tie, Weiwei; Bhattacharyya, Surjya Sarathi; Park, Hye Ryung; Lee, Joong Hee; Lee, Sang Won; Lee, Tae Hoon; Lee, Young Hee; Lee, Seung Hee

    2014-07-01

    We demonstrate distinct entanglement of single-walled carbon nanotube (SWCNT) and multiwalled carbon nanotube (MWCNT) clusters in nematic liquid crystal medium using scanning electron microscopy technique and the entanglement influence on electric field-induced stretching phenomena of the said clusters in the same medium under optical microscopy investigation. The observed stretching threshold field for MWCNT clusters is found to be higher than the SWCNT counterpart caused by the interplay between attractive field-induced dipolar interaction of intercarbon nanotube (CNT) bundles and the distinct degree of entanglement of neighboring CNT bundles. Subsequently observed different tensile elasticity modulus results for different CNT kinds also confirm different CNT bundle entanglement and attractive dipolar interaction between adjacent CNT bundles in CNT clusters are responsible for distinct stretching threshold field behavior.

  1. New strategy to construct single-ion magnets: a unique Dy@Zn₆ cluster exhibiting slow magnetic relaxation.

    PubMed

    Xiong, Gang; Qin, Xiang-Yang; Shi, Peng-Fei; Hou, Yin-Ling; Cui, Jian-Zhong; Zhao, Bin

    2014-04-25

    Two unique heptanuclear clusters Ln@Zn6 (Ln = Dy (1), Er (2)) were structurally and magnetically characterized. Each Dy(3+)/Er(3+) is located in a nona-coordinate D(3h) coordination environment, and is encapsulated in a diamagnetic Zn6 cage. Compound 1 exhibits single-ion magnetic behavior, and is the first example of a single-ion magnet (SIM) constructed through embedding one magnetic anisotropic metal ion into a diamagnetic cage.

  2. Distinct Phosphorylation Clusters Determine the Signaling Outcome of Free Fatty Acid Receptor 4/G Protein-Coupled Receptor 120.

    PubMed

    Prihandoko, Rudi; Alvarez-Curto, Elisa; Hudson, Brian D; Butcher, Adrian J; Ulven, Trond; Miller, Ashley M; Tobin, Andrew B; Milligan, Graeme

    2016-05-01

    It is established that long-chain free fatty acids includingω-3 fatty acids mediate an array of biologic responses through members of the free fatty acid (FFA) receptor family, which includes FFA4. However, the signaling mechanisms and modes of regulation of this receptor class remain unclear. Here, we employed mass spectrometry to determine that phosphorylation of mouse (m)FFAR4 occurs at five serine and threonine residues clustered in two separable regions of the C-terminal tail, designated cluster 1 (Thr(347), Thr(349), and Ser(350)) and cluster 2 (Ser(357)and Ser(361)). Mutation of these phosphoacceptor sites to alanine completely prevented phosphorylation of mFFA4 but did not limit receptor coupling to extracellular signal regulated protein kinase 1 and 2 (ERK1/2) activation. Rather, an inhibitor of Gq/11proteins completely prevented receptor signaling to ERK1/2. By contrast, the recruitment of arrestin 3, receptor internalization, and activation of Akt were regulated by mFFA4 phosphorylation. The analysis of mFFA4 phosphorylation-dependent signaling was extended further by selective mutations of the phosphoacceptor sites. Mutations within cluster 2 did not affect agonist activation of Akt but instead significantly compromised receptor internalization and arrestin 3 recruitment. Distinctly, mutation of the phosphoacceptor sites within cluster 1 had no effect on receptor internalization and had a less extensive effect on arrestin 3 recruitment but significantly uncoupled the receptor from Akt activation. These unique observations define differential effects on signaling mediated by phosphorylation at distinct locations. This hallmark feature supports the possibility that the signaling outcome of mFFA4 activation can be determined by the pattern of phosphorylation (phosphorylation barcode) at the C terminus of the receptor.

  3. Structure and electronic properties of GaN tubelike clusters and single-walled GaN nanotubes

    NASA Astrophysics Data System (ADS)

    Liu, Liren; Zou, Yanbo; Zhu, Hengjiang

    2015-06-01

    Extensive studies of the geometric structures, stabilities and electronic properties of gallium nitride (GaN)n tubelike clusters and single-walled GaN nanotubes (GaNNTs) were carried out using density-functional theory (DFT) calculations. A family of stable tubelike structures with Ga-N alternating arrangement was observed when n≥8 and their structural units (four-membered rings (4MRs) and six-membered rings (6MRs)) obey the general developing formula. The size-dependent properties of the frontier molecular orbital surfaces explain why the long and stable tubelike clusters can be obtained successfully. They also illustrate the reason why GaNNTs can be synthesized experimentally. Our results also reveal that the single-walled GaNNTs, which as semiconductors with a large bandgap, can be prepared by using the proper assembly of tubelike clusters.

  4. Ultrafast Room-Temperature Single Photon Emission from Quantum Dots Coupled to Plasmonic Nanocavities.

    PubMed

    Hoang, Thang B; Akselrod, Gleb M; Mikkelsen, Maiken H

    2016-01-13

    Efficient and bright single photon sources at room temperature are critical components for quantum information systems such as quantum key distribution, quantum state teleportation, and quantum computation. However, the intrinsic radiative lifetime of quantum emitters is typically ∼10 ns, which severely limits the maximum single photon emission rate and thus entanglement rates. Here, we demonstrate the regime of ultrafast spontaneous emission (∼10 ps) from a single quantum emitter coupled to a plasmonic nanocavity at room temperature. The nanocavity integrated with a single colloidal semiconductor quantum dot produces a 540-fold decrease in the emission lifetime and a simultaneous 1900-fold increase in the total emission intensity. At the same time, the nanocavity acts as a highly efficient optical antenna directing the emission into a single lobe normal to the surface. This plasmonic platform is a versatile geometry into which a variety of other quantum emitters, such as crystal color centers, can be integrated for directional, room-temperature single photon emission rates exceeding 80 GHz. PMID:26606001

  5. Ultrafast Room-Temperature Single Photon Emission from Quantum Dots Coupled to Plasmonic Nanocavities.

    PubMed

    Hoang, Thang B; Akselrod, Gleb M; Mikkelsen, Maiken H

    2016-01-13

    Efficient and bright single photon sources at room temperature are critical components for quantum information systems such as quantum key distribution, quantum state teleportation, and quantum computation. However, the intrinsic radiative lifetime of quantum emitters is typically ∼10 ns, which severely limits the maximum single photon emission rate and thus entanglement rates. Here, we demonstrate the regime of ultrafast spontaneous emission (∼10 ps) from a single quantum emitter coupled to a plasmonic nanocavity at room temperature. The nanocavity integrated with a single colloidal semiconductor quantum dot produces a 540-fold decrease in the emission lifetime and a simultaneous 1900-fold increase in the total emission intensity. At the same time, the nanocavity acts as a highly efficient optical antenna directing the emission into a single lobe normal to the surface. This plasmonic platform is a versatile geometry into which a variety of other quantum emitters, such as crystal color centers, can be integrated for directional, room-temperature single photon emission rates exceeding 80 GHz.

  6. UAP56 Couples piRNA Clusters to the Perinuclear Transposon Silencing Machinery

    PubMed Central

    Zhang, Fan; Wang, Jie; Xu, Jia; Zhang, Zhao; Koppetsch, Birgit S.; Schultz, Nadine; Vreven, Thom; Meignin, Carine; Davis, Ilan; Zamore, Phillip D.; Weng, Zhiping; Theurkauf, William E.

    2012-01-01

    Summary piRNAs silence transposons during germline development. In Drosophila, transcripts from heterochromatic clusters are processed into primary piRNAs in the perinuclear nuage. The nuclear DEAD box protein UAP56 has been previously implicated in mRNA splicing and export, while the DEAD box protein Vasa has an established role in piRNA production and localizes to nuage with the piRNA binding PIWI proteins Ago3 and Aub. We show that UAP56 co-localizes with the cluster-associated HP1 variant Rhino, that nuage granules containing Vasa localize directly across the nuclear envelope from cluster foci containing UAP56 and Rhino, and that cluster transcripts immunoprecipitate with both Vasa and UAP56. Significantly, a charge-substitution mutation that alters a conserved surface residue in UAP56 disrupts co-localization with Rhino, germline piRNA production, transposon silencing, and perinuclear localization of Vasa. We therefore propose that UAP56 and Vasa function in a piRNA-processing compartment that spans the nuclear envelope. PMID:23141543

  7. Cage Structure Formation of Singly Doped Aluminum Cluster Cations Al n TM + ( TM = Ti, V, Cr)

    NASA Astrophysics Data System (ADS)

    Lang, Sandra M.; Claes, Pieterjan; Neukermans, Sven; Janssens, Ewald

    2011-09-01

    Structural information on free transition metal doped aluminum clusters, Al n TM + ( TM = Ti, V, Cr), was obtained by studying their ability for argon physisorption. Systematic size ( n = 5 - 35) and temperature ( T = 145 - 300 K) dependent investigations reveal that bare Al n + clusters are inert toward argon, while Al n TM + clusters attach one argon atom up to a critical cluster size. This size is interpreted as the geometrical transition from surface-located dopant atoms to endohedrally doped aluminum clusters with the transition metal atom residing in an aluminum cage. The critical size, n crit , is found to be surprisingly large, namely n crit = 16 and n crit = 19 - 21 for TM = V, Cr, and TM = Ti, respectively. Experimental cluster-argon bond dissociation energies have been derived as function of cluster size from equilibrium mass spectra and are in the 0.1-0.3 eV range.

  8. Digital DC-Reconstruction of AC-Coupled Electrophysiological Signals with a Single Inverting Filter

    PubMed Central

    Schmid, Ramun; Leber, Remo; Schmid, Hans-Jakob; Generali, Gianluca

    2016-01-01

    Since the introduction of digital electrocardiographs, high-pass filters have been necessary for successful analog-to-digital conversion with a reasonable amplitude resolution. On the other hand, such high-pass filters may distort the diagnostically significant ST-segment of the ECG, which can result in a misleading diagnosis. We present an inverting filter that successfully undoes the effects of a 0.05 Hz single pole high-pass filter. The inverting filter has been tested on more than 1600 clinical ECGs with one-minute durations and produces a negligible mean RMS-error of 3.1*10−8 LSB. Alternative, less strong inverting filters have also been tested, as have different applications of the filters with respect to rounding of the signals after filtering. A design scheme for the alternative inverting filters has been suggested, based on the maximum strength of the filter. With the use of the suggested filters, it is possible to recover the original DC-coupled ECGs from AC-coupled ECGs, at least when a 0.05 Hz first order digital single pole high-pass filter is used for the AC-coupling. PMID:26938769

  9. Digital DC-Reconstruction of AC-Coupled Electrophysiological Signals with a Single Inverting Filter.

    PubMed

    Abächerli, Roger; Isaksen, Jonas; Schmid, Ramun; Leber, Remo; Schmid, Hans-Jakob; Generali, Gianluca

    2016-01-01

    Since the introduction of digital electrocardiographs, high-pass filters have been necessary for successful analog-to-digital conversion with a reasonable amplitude resolution. On the other hand, such high-pass filters may distort the diagnostically significant ST-segment of the ECG, which can result in a misleading diagnosis. We present an inverting filter that successfully undoes the effects of a 0.05 Hz single pole high-pass filter. The inverting filter has been tested on more than 1600 clinical ECGs with one-minute durations and produces a negligible mean RMS-error of 3.1*10(-8) LSB. Alternative, less strong inverting filters have also been tested, as have different applications of the filters with respect to rounding of the signals after filtering. A design scheme for the alternative inverting filters has been suggested, based on the maximum strength of the filter. With the use of the suggested filters, it is possible to recover the original DC-coupled ECGs from AC-coupled ECGs, at least when a 0.05 Hz first order digital single pole high-pass filter is used for the AC-coupling. PMID:26938769

  10. Electrical coupling in ensembles of nonexcitable cells: modeling the spatial map of single cell potentials.

    PubMed

    Cervera, Javier; Manzanares, Jose Antonio; Mafe, Salvador

    2015-02-19

    We analyze the coupling of model nonexcitable (non-neural) cells assuming that the cell membrane potential is the basic individual property. We obtain this potential on the basis of the inward and outward rectifying voltage-gated channels characteristic of cell membranes. We concentrate on the electrical coupling of a cell ensemble rather than on the biochemical and mechanical characteristics of the individual cells, obtain the map of single cell potentials using simple assumptions, and suggest procedures to collectively modify this spatial map. The response of the cell ensemble to an external perturbation and the consequences of cell isolation, heterogeneity, and ensemble size are also analyzed. The results suggest that simple coupling mechanisms can be significant for the biophysical chemistry of model biomolecular ensembles. In particular, the spatiotemporal map of single cell potentials should be relevant for the uptake and distribution of charged nanoparticles over model cell ensembles and the collective properties of droplet networks incorporating protein ion channels inserted in lipid bilayers. PMID:25622192

  11. Digital DC-Reconstruction of AC-Coupled Electrophysiological Signals with a Single Inverting Filter.

    PubMed

    Abächerli, Roger; Isaksen, Jonas; Schmid, Ramun; Leber, Remo; Schmid, Hans-Jakob; Generali, Gianluca

    2016-01-01

    Since the introduction of digital electrocardiographs, high-pass filters have been necessary for successful analog-to-digital conversion with a reasonable amplitude resolution. On the other hand, such high-pass filters may distort the diagnostically significant ST-segment of the ECG, which can result in a misleading diagnosis. We present an inverting filter that successfully undoes the effects of a 0.05 Hz single pole high-pass filter. The inverting filter has been tested on more than 1600 clinical ECGs with one-minute durations and produces a negligible mean RMS-error of 3.1*10(-8) LSB. Alternative, less strong inverting filters have also been tested, as have different applications of the filters with respect to rounding of the signals after filtering. A design scheme for the alternative inverting filters has been suggested, based on the maximum strength of the filter. With the use of the suggested filters, it is possible to recover the original DC-coupled ECGs from AC-coupled ECGs, at least when a 0.05 Hz first order digital single pole high-pass filter is used for the AC-coupling.

  12. Electrical coupling in ensembles of nonexcitable cells: modeling the spatial map of single cell potentials.

    PubMed

    Cervera, Javier; Manzanares, Jose Antonio; Mafe, Salvador

    2015-02-19

    We analyze the coupling of model nonexcitable (non-neural) cells assuming that the cell membrane potential is the basic individual property. We obtain this potential on the basis of the inward and outward rectifying voltage-gated channels characteristic of cell membranes. We concentrate on the electrical coupling of a cell ensemble rather than on the biochemical and mechanical characteristics of the individual cells, obtain the map of single cell potentials using simple assumptions, and suggest procedures to collectively modify this spatial map. The response of the cell ensemble to an external perturbation and the consequences of cell isolation, heterogeneity, and ensemble size are also analyzed. The results suggest that simple coupling mechanisms can be significant for the biophysical chemistry of model biomolecular ensembles. In particular, the spatiotemporal map of single cell potentials should be relevant for the uptake and distribution of charged nanoparticles over model cell ensembles and the collective properties of droplet networks incorporating protein ion channels inserted in lipid bilayers.

  13. Quantum Yield of Single Surface Plasmons Generated by a Quantum Dot Coupled with a Silver Nanowire.

    PubMed

    Li, Qiang; Wei, Hong; Xu, Hongxing

    2015-12-01

    The interactions between surface plasmons (SPs) in metal nanostructures and excitons in quantum emitters (QEs) lead to many interesting phenomena and potential applications that are strongly dependent on the quantum yield of SPs. The difficulty in distinguishing all the possible exciton recombination channels hinders the experimental determination of SP quantum yield. Here, we experimentally measured for the first time the quantum yield of single SPs generated by the exciton-plasmon coupling in a system composed of a single quantum dot and a silver nanowire (NW). By utilizing the SP guiding property of the NW, the decay rates of all the exciton recombination channels, i.e., direct free space radiation channel, SP generation channel, and nonradiative damping channel, are quantitatively obtained. It is determined that the optimum emitter-NW coupling distance for the largest SP quantum yield is about 10 nm, resulting from the different distance-dependent decay rates of the three channels. These results are important for manipulating the coupling between plasmonic nanostructures and QEs and developing on-chip quantum plasmonic devices for potential nanophotonic and quantum information applications.

  14. Properties Data for Adhesion and Surface Chemistry of Aluminum: Sapphire-Aluminum, Single-Crystal Couple

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Pohlchuck, Bobby; Whitle, Neville C.; Hector, Louis G., Jr.; Adams, Jim

    1998-01-01

    An investigation was conducted to examine the adhesion and surface chemistry of single-crystal aluminum in contact with single-crystal sapphire (alumina). Pull-off force (adhesion) measurements were conducted under loads of 0. I to I mN in a vacuum of 10(exp -1) to 10(exp -9) Pa (approx. 10(exp -10) to 10(exp -11) torr) at room temperature. An Auger electron spectroscopy analyzer incorporated directly into an adhesion-measuring vacuum system was primarily used to define the chemical nature of the surfaces before and after adhesion measurements. The surfaces were cleaned by argon ion sputtering. With a clean aluminum-clean -sapphire couple the mean value and standard deviation of pull-off forces required to separate the surfaces were 3015 and 298 micro-N, respectively. With a contaminated aluminum-clean sapphire couple these values were 231 and 241 micro-N. The presence of a contaminant film on the aluminum surface reduced adhesion by a factor of 13. Therefore, surfaces cleanliness, particularly aluminum cleanliness, played an important role in the adhesion of the aluminum-sapphire couples. Pressures on the order of 10(exp -8) to 10(exp -9) Pa (approx. 10(exp -10) to 10(exp -11) torr) maintained a clean aluminum surface for only a short time (less then 1 hr) but maintained a clean sapphire surface, once it was achieved, for a much longer time.

  15. DISCOVERY OF A POSSIBLY SINGLE BLUE SUPERGIANT STAR IN THE INTRA-CLUSTER REGION OF VIRGO CLUSTER OF GALAXIES

    SciTech Connect

    Ohyama, Youichi; Hota, Ananda

    2013-04-20

    IC 3418 is a dwarf irregular galaxy falling into the Virgo cluster, and a 17 kpc long trail is seen behind the galaxy, which is considered to have formed due to ram pressure stripping. The trail contains compact knots and diffuse blobs of ultraviolet and blue optical emission and, thus, it is a clear site of recent star formation but in an unusual environment, surrounded by a million degree intra-cluster medium. We report on our optical spectroscopy of a compact source in the trail, SDSS J122952.66+112227.8, and show that the optical spectrum is dominated by emission from a massive blue supergiant star. If confirmed, our report would mark the farthest star with spectroscopic observation. We interpret that a massive O-type star formed in situ in the trail has evolved recently out of the main sequence into this blue supergiant phase, and now lacks any detectable spectral sign of its associated H II region. We argue that turbulence within the ram pressure striped gaseous trail may play a dominant role for the star formation within such trails.

  16. Tunable, continuous-wave single-resonant optical parametric oscillator with output coupling for resonant wave

    NASA Astrophysics Data System (ADS)

    Xiong-Hua, Zheng; Bao-Fu, Zhang; Zhong-Xing, Jiao; Biao, Wang

    2016-01-01

    We present a continuous-wave singly-resonant optical parametric oscillator with 1.5% output coupling of the resonant signal wave, based on an angle-polished MgO-doped periodically poled lithium niobate (MgO:PPLN), pumped by a commercial Nd:YVO4 laser at 1064 nm. The output-coupled optical parametric oscillator delivers a maximum total output power of 4.19 W with 42.8% extraction efficiency, across a tuning range of 1717 nm in the near- and mid-infrared region. This indicates improvements of 1.87 W in output power, 19.1% in extraction efficiency and 213 nm in tuning range extension in comparison with the optical parametric oscillator with no output coupling, while at the expense of increasing the oscillation threshold by a factor of ˜ 2. Moreover, it is confirmed that the finite output coupling also contributes to the reduction of the thermal effects in crystal. Project supported by the National Natural Science Foundation of China (Grant Nos. 61308056, 11204044, 11232015, and 11072271), the Research Fund for the Doctoral Program of Higher Education of China (Grant Nos. 20120171110005 and 20130171130003), the Fundamental Research Funds for the Central Universities of China (Grant No. 14lgpy07), and the Opening Project of Science and Technology on Reliability Physics and Application Technology of Electronic Component Laboratory, China (Grant No. ZHD201203).

  17. Fiber coupled single photon receivers based on superconducting detectors for quantum communications and quantum cryptography

    NASA Astrophysics Data System (ADS)

    Smirnov, K. V.; Vachtomin, Yu. B.; Ozhegov, R. V.; Pentin, I. V.; Slivinskaya, E. V.; Korneev, A. A.; Goltsman, G. N.

    2008-11-01

    At present superconducting detectors become increasingly attractive for various practical applications. In this paper we present results on the depelopment of fiber coupled receiver systems for the registration of IR single photons, optimized for telecommunication and quantum-cryptography. These receiver systems were developed on the basis of superconducting single photon detectors (SSPD) of VIS and IR wavelength ranges. The core of the SSPD is a narrow (~100 nm) and long (~0,5 mm) strip in the form of a meander which is patterned from a 4-nm-thick NbN film (TC=10-11 K, jC=~5-7•106 A/cm2); the sensitive area dimensions are 10×10 μm2. The main problem to be solved while the receiver system development was optical coupling of a single-mode fiber (9 microns in diameter) with the SSPD sensitive area. Characteristics of the developed system at the optical input are as follows: quantum efficiency >10 % (at 1.3 μm), >4 % (at 1.55 μm) dark counts rate <=1 s-1; duration of voltage pulse <=5 ns; jitter <=40 ps. The receiver systems have either one or two identical channels (for the case of carrying out correlation measurements) and are made as an insert in a helium storage Dewar.

  18. A comparison of density functional theory and coupled cluster methods for the calculation of electric dipole polarizability gradients of methane

    NASA Astrophysics Data System (ADS)

    Paidarová, Ivana; Sauer, Stephan P. A.

    2012-12-01

    We have compared the performance of density functional theory (DFT) using five different exchange-correlation functionals with four coupled cluster theory based wave function methods in the calculation of geometrical derivatives of the polarizability tensor of methane. The polarizability gradients of hydrocarbons are important ingredients in the simulation of their electron energy loss spectra and reliable but cost-effective methods for obtaining the gradients need to be found. In the present work we present results of a systematic investigation on methane as a prototype molecule with special focus on DFT methods. The KT3, B3LYP, CAM-B3LYP, B97-2 and PBE0 DFT exchange-correlation functionals and the highly correlated wave function methods SOPPA(CCSD), CCSD-LR, CCSD and CCSD(T) were employed in combination with a series of eleven basis sets. Comparison of the DFT results with CCSD(T)/daug-cc-pVQZ reference values reveals that none of the investigated DFT approaches reaches the accuracy of correlated wave function based methods and that the best DFT results are obtained with the PBE0 exchange-correlation functional and Sadlej's polarized valence triple zeta basis set. The SOPPA(CCSD) method, on the other hand, produces results in close agreement with the more expensive pure coupled cluster methods.

  19. Spin-Restriction in Explicitly Correlated Coupled Cluster Theory: The Z-Averaged CCSD(2)R12 Approach.

    PubMed

    Wilke, Jeremiah J; Schaefer, Henry F

    2011-08-01

    R12 methods have now been established to improve both the efficiency and accuracy of wave function-based theories. While closed-shell and spin-orbital methodologies for coupled cluster theory are well-studied, R12 corrections based on an open-shell, spin-restricted formalism have not been well developed. We present an efficient spin-restricted R12 method based on the symmetric exchange or Z-averaged approach that reduces the number of variational parameters. The current formalism reduces spin contamination relative to unrestricted methods but remains rigorously size consistent in contrast to other spin-adapted formulations. The theory is derived entirely in spin-orbital quantities, but Z-averaged symmetries are exploited to minimize the computational work in the residual equations. R12 corrections are formulated in a perturbative manner and are therefore obtained with little extra cost relative to the standard coupled cluster problem. R12 results with only a triple-ζ basis are competitive with conventional aug-cc-pV5Z and aug-cc-pV6Z results, demonstrating the utility of the method in thermochemical problems for high-spin open-shell systems.

  20. Single-polaron properties for double-well electron-phonon coupling

    NASA Astrophysics Data System (ADS)

    Adolphs, Clemens; Berciu, Mona

    2014-03-01

    We introduce a new model to describe electron-phonon coupling in systems such as one-dimensional intercalated chains or two-dimensional CuO2 planes, where symmetry dictates that the linear coupling term vanishes. We show that, under certain conditions, an additional charge carrier dynamically changes the local lattice potential from a harmonic well into a double well. We use the Momentum Average approximation to study the properties of this model in the single-polaron limit. A detailed analysis reveals that despite some qualitative similarities to the linear Holstein model, a renormalized Holstein model cannot account for all of the physics of the double-well model. We thank NSERC and QMI for financial support.

  1. Strong coupling and stimulated emission in single parabolic quantum well microcavity for terahertz cascade

    SciTech Connect

    Tzimis, A.; Savvidis, P. G.; Trifonov, A. V.; Ignatiev, I. V.; Christmann, G.; Tsintzos, S. I.; Hatzopoulos, Z.; Kavokin, A. V.

    2015-09-07

    We report observation of strong light-matter coupling in an AlGaAs microcavity (MC) with an embedded single parabolic quantum well. The parabolic potential is achieved by varying aluminum concentration along the growth direction providing equally spaced energy levels, as confirmed by Brewster angle reflectivity from a reference sample without MC. It acts as an active region of the structure which potentially allows cascaded emission of terahertz (THz) light. Spectrally and time resolved pump-probe spectroscopy reveals characteristic quantum beats whose frequencies range from 0.9 to 4.5 THz, corresponding to energy separation between relevant excitonic levels. The structure exhibits strong stimulated nonlinear emission with simultaneous transition to weak coupling regime. The present study highlights the potential of such devices for creating cascaded relaxation of bosons, which could be utilized for THz emission.

  2. Four-electron deoxygenative reductive coupling of carbon monoxide at a single metal site.

    PubMed

    Buss, Joshua A; Agapie, Theodor

    2016-01-01

    Carbon dioxide is the ultimate source of the fossil fuels that are both central to modern life and problematic: their use increases atmospheric levels of greenhouse gases, and their availability is geopolitically constrained. Using carbon dioxide as a feedstock to produce synthetic fuels might, in principle, alleviate these concerns. Although many homogeneous and heterogeneous catalysts convert carbon dioxide to carbon monoxide, further deoxygenative coupling of carbon monoxide to generate useful multicarbon products is challenging. Molybdenum and vanadium nitrogenases are capable of converting carbon monoxide into hydrocarbons under mild conditions, using discrete electron and proton sources. Electrocatalytic reduction of carbon monoxide on copper catalysts also uses a combination of electrons and protons, while the industrial Fischer-Tropsch process uses dihydrogen as a combined source of electrons and electrophiles for carbon monoxide coupling at high temperatures and pressures. However, these enzymatic and heterogeneous systems are difficult to probe mechanistically. Molecular catalysts have been studied extensively to investigate the elementary steps by which carbon monoxide is deoxygenated and coupled, but a single metal site that can efficiently induce the required scission of carbon-oxygen bonds and generate carbon-carbon bonds has not yet been documented. Here we describe a molybdenum compound, supported by a terphenyl-diphosphine ligand, that activates and cleaves the strong carbon-oxygen bond of carbon monoxide, enacts carbon-carbon coupling, and spontaneously dissociates the resulting fragment. This complex four-electron transformation is enabled by the terphenyl-diphosphine ligand, which acts as an electron reservoir and exhibits the coordinative flexibility needed to stabilize the different intermediates involved in the overall reaction sequence. We anticipate that these design elements might help in the development of efficient catalysts for

  3. Four-electron deoxygenative reductive coupling of carbon monoxide at a single metal site

    NASA Astrophysics Data System (ADS)

    Buss, Joshua A.; Agapie, Theodor

    2016-01-01

    Carbon dioxide is the ultimate source of the fossil fuels that are both central to modern life and problematic: their use increases atmospheric levels of greenhouse gases, and their availability is geopolitically constrained. Using carbon dioxide as a feedstock to produce synthetic fuels might, in principle, alleviate these concerns. Although many homogeneous and heterogeneous catalysts convert carbon dioxide to carbon monoxide, further deoxygenative coupling of carbon monoxide to generate useful multicarbon products is challenging. Molybdenum and vanadium nitrogenases are capable of converting carbon monoxide into hydrocarbons under mild conditions, using discrete electron and proton sources. Electrocatalytic reduction of carbon monoxide on copper catalysts also uses a combination of electrons and protons, while the industrial Fischer-Tropsch process uses dihydrogen as a combined source of electrons and electrophiles for carbon monoxide coupling at high temperatures and pressures. However, these enzymatic and heterogeneous systems are difficult to probe mechanistically. Molecular catalysts have been studied extensively to investigate the elementary steps by which carbon monoxide is deoxygenated and coupled, but a single metal site that can efficiently induce the required scission of carbon-oxygen bonds and generate carbon-carbon bonds has not yet been documented. Here we describe a molybdenum compound, supported by a terphenyl-diphosphine ligand, that activates and cleaves the strong carbon-oxygen bond of carbon monoxide, enacts carbon-carbon coupling, and spontaneously dissociates the resulting fragment. This complex four-electron transformation is enabled by the terphenyl-diphosphine ligand, which acts as an electron reservoir and exhibits the coordinative flexibility needed to stabilize the different intermediates involved in the overall reaction sequence. We anticipate that these design elements might help in the development of efficient catalysts for

  4. Four-electron deoxygenative reductive coupling of carbon monoxide at a single metal site.

    PubMed

    Buss, Joshua A; Agapie, Theodor

    2016-01-01

    Carbon dioxide is the ultimate source of the fossil fuels that are both central to modern life and problematic: their use increases atmospheric levels of greenhouse gases, and their availability is geopolitically constrained. Using carbon dioxide as a feedstock to produce synthetic fuels might, in principle, alleviate these concerns. Although many homogeneous and heterogeneous catalysts convert carbon dioxide to carbon monoxide, further deoxygenative coupling of carbon monoxide to generate useful multicarbon products is challenging. Molybdenum and vanadium nitrogenases are capable of converting carbon monoxide into hydrocarbons under mild conditions, using discrete electron and proton sources. Electrocatalytic reduction of carbon monoxide on copper catalysts also uses a combination of electrons and protons, while the industrial Fischer-Tropsch process uses dihydrogen as a combined source of electrons and electrophiles for carbon monoxide coupling at high temperatures and pressures. However, these enzymatic and heterogeneous systems are difficult to probe mechanistically. Molecular catalysts have been studied extensively to investigate the elementary steps by which carbon monoxide is deoxygenated and coupled, but a single metal site that can efficiently induce the required scission of carbon-oxygen bonds and generate carbon-carbon bonds has not yet been documented. Here we describe a molybdenum compound, supported by a terphenyl-diphosphine ligand, that activates and cleaves the strong carbon-oxygen bond of carbon monoxide, enacts carbon-carbon coupling, and spontaneously dissociates the resulting fragment. This complex four-electron transformation is enabled by the terphenyl-diphosphine ligand, which acts as an electron reservoir and exhibits the coordinative flexibility needed to stabilize the different intermediates involved in the overall reaction sequence. We anticipate that these design elements might help in the development of efficient catalysts for

  5. Coupled cluster investigation on the thermochemistry of dimethyl sulphide, dimethyl disulphide and their dissociation products: the problem of the enthalpy of formation of atomic sulphur

    NASA Astrophysics Data System (ADS)

    Denis, Pablo A.

    2014-04-01

    By means of coupled cluster theory and correlation consistent basis sets we investigated the thermochemistry of dimethyl sulphide (DMS), dimethyl disulphide (DMDS) and four closely related sulphur-containing molecules: CH3SS, CH3S, CH3SH and CH3CH2SH. For the four closed-shell molecules studied, their enthalpies of formation (EOFs) were derived using bomb calorimetry. We found that the deviation of the EOF with respect to experiment was 0.96, 0.65, 1.24 and 1.29 kcal/mol, for CH3SH, CH3CH2SH, DMS and DMDS, respectively, when ΔHf,0 = 65.6 kcal/mol was utilised (JANAF value). However, if the recently proposed ΔHf,0 = 66.2 kcal/mol was used to estimate EOF, the errors dropped to 0.36, 0.05, 0.64 and 0.09 kcal/mol, respectively. In contrast, for the CH3SS radical, a better agreement with experiment was obtained if the 65.6 kcal/mol value was used. To compare with experiment avoiding the problem of the ΔHf,0 (S), we determined the CH3-S and CH3-SS bond dissociation energies (BDEs) in CH3S and CH3SS. At the coupled cluster with singles doubles and perturbative triples correction level of theory, these values are 48.0 and 71.4 kcal/mol, respectively. The latter BDEs are 1.5 and 1.2 kcal/mol larger than the experimental values. The agreement can be considered to be acceptable if we take into consideration that these two radicals present important challenges when determining their EOFs. It is our hope that this work stimulates new studies which help elucidate the problem of the EOF of atomic sulphur.

  6. The early phases of galaxy clusters formation in IR: coupling hydrodynamical simulations with GRASIL-3D

    NASA Astrophysics Data System (ADS)

    Granato, Gian Luigi; Ragone-Figueroa, Cinthia; Domínguez-Tenreiro, Rosa; Obreja, Aura; Borgani, Stefano; De Lucia, Gabriella; Murante, Giuseppe

    2015-06-01

    We compute and study the infrared and sub-mm properties of high-redshift (z ≳ 1) simulated clusters and protoclusters. The results of a large set of hydrodynamical zoom-in simulations including active galactic nuclei (AGN) feedback, have been treated with the recently developed radiative transfer code GRASIL-3D, which accounts for the effect of dust reprocessing in an arbitrary geometry. Here, we have slightly generalized the code to adapt it to the present purpose. Then we have post-processed boxes of physical size 2 Mpc encompassing each of the 24 most massive clusters identified at z = 0, at several redshifts between 0.5 and 3, producing IR and sub-mm mock images of these regions and spectral energy distributions (SEDs) of the radiation coming out from them. While this field is in its infancy from the observational point of view, rapid development is expected in the near future thanks to observations performed in the far-IR and sub-mm bands. Notably, we find that in this spectral regime our prediction are little affected by the assumption required by this post-processing, and the emission is mostly powered by star formation (SF) rather than accretion on to super massive black hole (SMBH). The comparison with the little observational information currently available, highlights that the simulated cluster regions never attain the impressive star formation rates suggested by these observations. This problem becomes more intriguing taking into account that the brightest cluster galaxies (BCGs) in the same simulations turn out to be too massive. It seems that the interplay between the feedback schemes and the star formation model should be revised, possibly incorporating a positive feedback mode.

  7. Ideal dipole approximation fails to predict electronic coupling between semiconducting single wall carbon nanotubes

    SciTech Connect

    Tretiak, Sergei

    2008-01-01

    Single-walled carbon nanotubes (SWNTs) are highly conjugated carbon tubes that are a few nanometers in diameter and can be up to millimeters in length. The excited electronic states of semiconductor-type SWNTs are quasi-1D excitons. It is known that these spatially-extended electronic excitations can migrate among SWNTs that are bundled together, thus quenching the fluorescence owing to the presence of metallic SWNTs. Recent advances in purification and isolation have enabled studies of electronic energy transfer (EET) between SWNTs and molecular chromophores. Here we examine the electronic coupling among SWNTs in order to understand EET involving SWNTs. There are two main difficulties that need to be addressed when studying SWNT EET. The first is to obtain the electronic coupling matrix element that promotes EET. The most common method to calculate the electronic coupling between two molecules is the point dipole approximation (PDA) method, where the electronic coupling is described as the Coulombic interaction between transition dipole moments of D and A. In this approximation, each molecule is represented by a single dipole located at the center of mass for each molecule. It is well known that the PDA method fails at small separations in molecular systems. Owing to the size of SWNTs compared to typical donor-acceptor separations, it is likely that the PDA method will fail. Even when using the PDA method, however, it is difficult to obtain the dipole strength of the transition because the radiative lifetime is obscured by thermal population of dark states in the exciton band. The second difficulty is that there are a few closely spaced states associated with the lowest bright exciton transition (E{sub 11}), and each of these states might act as energy donors or acceptors. Here we will focus on the first of these challenges: the evaluation of electronic couplings between SWNTs, overcoming the limitations of the PDA method. In the last decade, sophisticated quantum

  8. Self-referenced characterization of space-time couplings in near-single-cycle laser pulses.

    PubMed

    Witting, T; Austin, D R; Barillot, T; Greening, D; Matia-Hernando, P; Walke, D; Marangos, J P; Tisch, J W G

    2016-05-15

    We report on the characterization of space-time couplings in high-energy sub-2-cycle 770 nm laser pulses using a self-referencing single-frame method. Using spatially encoded arrangement filter-based spectral phase interferometry for direct electric field reconstruction, we characterize few-cycle pulses with a wavefront rotation of 2.8×1011  rev/s (1.38 mrad per half-cycle) and pulses with pulse front tilts ranging from -0.33  fs/μm to -3.03  fs/μm in the focus. PMID:27177008

  9. Identification of metal-cage coupling in a single metallofullerene by inelastic electron tunneling spectroscopy

    NASA Astrophysics Data System (ADS)

    Jiang, J.; Gao, B.; Hu, Z. P.; Lu, Wei; Wu, Z. Y.; Yang, J. L.; Luo, Y.

    2010-06-01

    We report hybrid density functional theory calculations for inelastic electron tunneling spectroscopy (IETS) of a single metallofullerene Gd@C82. It is found that the metal atom inside the carbon cage can have significant impact on the IETS spectral profiles of the system, by modulating both the vibration and electron density. It is demonstrated that the IETS signals are very sensitive to the changes in the metal position and charge states, so that provide a unique tool for identifying the metal-cage coupling in metallofullerenes.

  10. Operational condition of direct single-mode-fiber coupled FSO terminal under strong atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Arimoto, Yoshinori

    2011-03-01

    This paper discusses the operational condition for direct single-mode-fiber-coupling FSO terminals under the various adverse weather conditions, such as strong atmospheric turbulences and rain falls. A good correlation between the scintillation index of the intensities of beacon receiving power and the signal fading depth has been observed, which allows us to predict the signal link quality based on the beacon scintillation index provided by the classical scintillation theory and concludes that the scintillation index for the beacon beam should be less than 0.1. This paper also reports the effect of performance enhancements provided by the new adaptive controller for the stable and robust terminal operation.

  11. Coupled-cavity terahertz quantum cascade lasers for single mode operation

    SciTech Connect

    Li, H. Manceau, J. M.; Andronico, A.; Jagtap, V.; Sirtori, C.; Barbieri, S.; Li, L. H.; Linfield, E. H.; Davies, A. G.

    2014-06-16

    We demonstrate the operation of coupled-cavity terahertz frequency quantum-cascade lasers composed of two sub-cavities separated by an air gap realized by optical lithography and dry etching. This geometry allows stable, single mode operation with typical side mode suppression ratios in the 30–40 dB range. We employ a transfer matrix method to model the mode selection mechanism. The obtained results are in good agreement with the measurements and allow prediction of the operating frequency.

  12. Self-referenced characterization of space-time couplings in near-single-cycle laser pulses.

    PubMed

    Witting, T; Austin, D R; Barillot, T; Greening, D; Matia-Hernando, P; Walke, D; Marangos, J P; Tisch, J W G

    2016-05-15

    We report on the characterization of space-time couplings in high-energy sub-2-cycle 770 nm laser pulses using a self-referencing single-frame method. Using spatially encoded arrangement filter-based spectral phase interferometry for direct electric field reconstruction, we characterize few-cycle pulses with a wavefront rotation of 2.8×1011  rev/s (1.38 mrad per half-cycle) and pulses with pulse front tilts ranging from -0.33  fs/μm to -3.03  fs/μm in the focus.

  13. Convergent close-coupling calculations of helium single ionization by antiproton impact

    SciTech Connect

    Abdurakhmanov, I. B.; Kadyrov, A. S.; Fursa, D. V.; Bray, I.; Stelbovics, A. T.

    2011-12-15

    We apply the fully quantum-mechanical convergent close-coupling method to the calculation of antiproton scattering on the ground state of helium. The helium target is treated as a three-body Coulomb system using frozen-core and multiconfiguration approximations. The electron-electron correlation of the target is fully treated in both cases. Though both calculations yield generally good agreement with experiment for the total ionization cross sections, the multiconfiguration results are substantially higher at the lower energies than the frozen-core ones. Calculated longitudinal ejected electron and recoil-ion momentum distributions for the single ionization of helium are in good agreement with the experiment.

  14. Analytic first derivatives for a spin-adapted open-shell coupled cluster theory: Evaluation of first-order electrical properties

    SciTech Connect

    Datta, Dipayan Gauss, Jürgen

    2014-09-14

    An analytic scheme is presented for the evaluation of first derivatives of the energy for a unitary group based spin-adapted coupled cluster (CC) theory, namely, the combinatoric open-shell CC (COSCC) approach within the singles and doubles approximation. The widely used Lagrange multiplier approach is employed for the derivation of an analytical expression for the first derivative of the energy, which in combination with the well-established density-matrix formulation, is used for the computation of first-order electrical properties. Derivations of the spin-adapted lambda equations for determining the Lagrange multipliers and the expressions for the spin-free effective density matrices for the COSCC approach are presented. Orbital-relaxation effects due to the electric-field perturbation are treated via the Z-vector technique. We present calculations of the dipole moments for a number of doublet radicals in their ground states using restricted open-shell Hartree-Fock (ROHF) and quasi-restricted HF (QRHF) orbitals in order to demonstrate the applicability of our analytic scheme for computing energy derivatives. We also report calculations of the chlorine electric-field gradients and nuclear quadrupole-coupling constants for the CCl, CH{sub 2}Cl, ClO{sub 2}, and SiCl radicals.

  15. Work life and mental well-being: single and coupled employed mothers in Southern Europe and Scandinavia.

    PubMed

    Bull, Torill

    2009-09-01

    Many European mothers, single and coupled, combine work outside the home and family life. The effects of this on their mental well-being may vary depending on the level of support available from the State's welfare system, since welfare may buffer working mothers from some of the stress that can arise from trying to manage significant responsibilities on the job and at home. Welfare may be especially important for single working mothers, for whom the burden of multiple roles may be even heavier. The present study assessed levels and predictors of well-being of single and coupled employed mothers in Greece, Portugal and Spain, where welfare support is relatively limited. Results were compared to a parallel study with data from Denmark, Norway and Sweden, where welfare support is relatively comprehensive. Coupled mothers in Scandinavia had significantly lower financial hardship, longer education, higher life satisfaction, more enriching jobs, practical support, financial support and social participation than coupled mothers in the Southern European sample. On the other hand, the Scandinavian coupled mothers had higher levels of work family conflict than coupled mothers in Southern Europe. Single mothers in Scandinavia, compared to single mothers in Southern Europe, had significantly longer education, higher life satisfaction and positive affect, more enriching jobs, confidant support, practical support, financial support and social participation. Level of job stress was the same for all mother groups. All groups differed significantly from each other in level of financial hardship, with Scandinavian coupled mothers being best off, followed by Scandinavian single mothers, Southern European coupled mothers, and Southern European single mothers. The regional differences suggest that single motherhood per se need not be a risk factor for poorer well-being, and that welfare policies may have a protective effect for the mental well-being of single mothers. PMID:19773296

  16. Single-Molecule-Magnet Behavior in a [2 × 2] Grid Dy(III)4 Cluster and a Dysprosium-Doped Y(III)4 Cluster.

    PubMed

    Guo, Peng-Hu; Liu, Jiang; Wu, Zi-Hao; Yan, Hua; Chen, Yan-Cong; Jia, Jian-Hua; Tong, Ming-Liang

    2015-08-17

    Thanks to the MeCN hydrolysis in situ reaction, a [2 × 2] square grid Dy(III)4 cluster based on a polypyridyl triazolate ligand, [Dy4(OH)2(bpt)4(NO3)4(OAc)2] (1), was separated successfully and characterized through single-crystal X-ray diffraction and SQUID magnetometry. The frequency-dependent signals in the out-of-phase component of the susceptibility associated with slow relaxation of the magnetization confirmed that complex 1 displays single-molecule magnet (SMM) behavior. Two distinct slow magnetic relaxation processes, with effective energy barriers Ueff1 = 93 cm(-1) for fast relaxation and Ueff2 = 143 cm(-1) for slow relaxation observed under a zero direct-current field, are mainly attributed to the origin of single-ion behavior, which can be further acknowledged by the magnetic investigation of a dysprosium-doped yttrium cluster. Besides, it should be noted that complex 1 represents so far the highest energy barrier among the pure Dy(III)4 SMMs. PMID:26247713

  17. Single-Molecule-Magnet Behavior in a [2 × 2] Grid Dy(III)4 Cluster and a Dysprosium-Doped Y(III)4 Cluster.

    PubMed

    Guo, Peng-Hu; Liu, Jiang; Wu, Zi-Hao; Yan, Hua; Chen, Yan-Cong; Jia, Jian-Hua; Tong, Ming-Liang

    2015-08-17

    Thanks to the MeCN hydrolysis in situ reaction, a [2 × 2] square grid Dy(III)4 cluster based on a polypyridyl triazolate ligand, [Dy4(OH)2(bpt)4(NO3)4(OAc)2] (1), was separated successfully and characterized through single-crystal X-ray diffraction and SQUID magnetometry. The frequency-dependent signals in the out-of-phase component of the susceptibility associated with slow relaxation of the magnetization confirmed that complex 1 displays single-molecule magnet (SMM) behavior. Two distinct slow magnetic relaxation processes, with effective energy barriers Ueff1 = 93 cm(-1) for fast relaxation and Ueff2 = 143 cm(-1) for slow relaxation observed under a zero direct-current field, are mainly attributed to the origin of single-ion behavior, which can be further acknowledged by the magnetic investigation of a dysprosium-doped yttrium cluster. Besides, it should be noted that complex 1 represents so far the highest energy barrier among the pure Dy(III)4 SMMs.

  18. Interferometric coupling of the Keck telescopes with single-mode fibers.

    PubMed

    Perrin, G; Woillez, J; Lai, O; Guérin, J; Kotani, T; Wizinowich, P L; Le Mignant, D; Hrynevych, M; Gathright, J; Léna, P; Chaffee, F; Vergnole, S; Delage, L; Reynaud, F; Adamson, A J; Berthod, C; Brient, B; Collin, C; Crétenet, J; Dauny, F; Deléglise, C; Fédou, P; Goeltzenlichter, T; Guyon, O; Hulin, R; Marlot, C; Marteaud, M; Melse, B-T; Nishikawa, J; Reess, J-M; Ridgway, S T; Rigaut, F; Roth, K; Tokunaga, A T; Ziegler, D

    2006-01-13

    Here we report successful interferometric coupling of two large telescopes with single-mode fibers. Interference fringes were obtained in the 2- to 2.3-micrometer wavelength range on the star 107 Herculis by using the two Keck 10-meter telescopes, each feeding their common interferometric focus with 300 meters of single-mode fibers. This experiment demonstrates the potential of fibers for future kilometric arrays of telescopes and is the first step toward the 'OHANA (Optical Hawaiian Array for Nanoradian Astronomy) interferometer at the Mauna Kea observatory in Hawaii. It opens the way to sensitive optical imagers with resolutions below 1 milli-arc second. Our experimental setup can be directly extended to large telescopes separated by many hundreds of meters. PMID:16410516

  19. The earth-coupled heat pump: Utilizing innovative technology in single family rehabilitation strategies

    SciTech Connect

    Not Available

    1989-11-01

    The study examines the feasibility of incorporating the use of earth-coupled heat pump technology in single-family housing rehabilitation projects, based on energy conservation attributes and financial considerations. Following evaluation of a theoretical model which indicated that installations of the heat pumps were feasible, the heat pumps were tested under actual conditions in five single family housing units which were part of the Urban Homesteading Program, and were matched with comparable units which did not receive special treatment. Energy consumption information was collected for all units for twelve months. Variables were identified, and the data was analyzed for individual housing units and compared with the results predicted by the theoretical model to determine the practicality of incorporating such technology in large scale rehabilitation projects. 14 refs., 14 figs., 3 tabs.

  20. Electromechanical properties of high coupling single crystals under large electric drive and uniaxial compression.

    PubMed

    Amin, Ahmed

    2005-10-01

    This work investigates the 33-mode electromechanical response of relaxor-ferroelectric lead magnesium niobate-lead titanate (PMN-PT) single crystals when driven with large fields approximately 0.4 MV/m under a combined direct current (DC) field and mechanical bias similar to those used in the design of sound projectors. It demonstrates that the remarkable small signal length extensional coupling (k33 > 0.90) and other electromechanical properties of morphotropic PMN-PT single crystals prevail under large drive. The observed k33 roll-off at 42 MPa compressive stress is analyzed in terms of the recent structural data and the high-order Devonshire theory of possible ferroelectric-ferroelectric transition trajectories.

  1. QMRA for Drinking Water: 2. The Effect of Pathogen Clustering in Single-Hit Dose-Response Models.

    PubMed

    Nilsen, Vegard; Wyller, John

    2016-01-01

    Spatial and/or temporal clustering of pathogens will invalidate the commonly used assumption of Poisson-distributed pathogen counts (doses) in quantitative microbial risk assessment. In this work, the theoretically predicted effect of spatial clustering in conventional "single-hit" dose-response models is investigated by employing the stuttering Poisson distribution, a very general family of count distributions that naturally models pathogen clustering and contains the Poisson and negative binomial distributions as special cases. The analysis is facilitated by formulating the dose-response models in terms of probability generating functions. It is shown formally that the theoretical single-hit risk obtained with a stuttering Poisson distribution is lower than that obtained with a Poisson distribution, assuming identical mean doses. A similar result holds for mixed Poisson distributions. Numerical examples indicate that the theoretical single-hit risk is fairly insensitive to moderate clustering, though the effect tends to be more pronounced for low mean doses. Furthermore, using Jensen's inequality, an upper bound on risk is derived that tends to better approximate the exact theoretical single-hit risk for highly overdispersed dose distributions. The bound holds with any dose distribution (characterized by its mean and zero inflation index) and any conditional dose-response model that is concave in the dose variable. Its application is exemplified with published data from Norovirus feeding trials, for which some of the administered doses were prepared from an inoculum of aggregated viruses. The potential implications of clustering for dose-response assessment as well as practical risk characterization are discussed. PMID:26812258

  2. Optical nonlinearities near single photon level with a quantum dot coupled to a photonic crystal cavity

    NASA Astrophysics Data System (ADS)

    Sridharan, Deepak

    Over the last decade, exponential increase of information bandwidth over the internet and other communication media has increased the total power consumed by the devices associated with information exchange. With ever increasing number of users, and packing of a higher number of devices onto a chip, there is a great need for reduction in not only the power consumption of the devices but also the costs associated with information transfer. Currently, the benchmark in the energy consumption per logic operation is at femtojoule level and is set by the CMOS industry. However, optical devices based on single photon emitters coupled to a microcavity have the potential to reduce the optical power dissipation down to attojoule levels wherein only few 10s of photons are consumed for a logic operation. This work presents our theoretical and experimental efforts towards realization of all optical device based on the enhanced nonlinearities of a single photon emitter in a photonic crystal cavity. We show that a single quantum dot coupled to a photonic crystal cavity can be used to route an incoming optical beam with optical power dissipation of 14 attojoules, corresponding to only 65 photons. This value is well below the operational level for current CMOS devices indicating the potential for chip based optical transistors for reduction in energy consumption. The single photon emitters that we use to create the nonlinearity are the quantum dots, which are semiconductor nanostructures that exhibit a discrete energy spectrum. The interaction of the quantum dot, with light confined inside a photonic crystal cavity, results in strong atom-photon interactions which can be used for ultra-low power all optical switching. The strong interactions between a quantum dot and photonic crystal cavity can be further utilized to realize quantum computation schemes on a chip. I also describe techniques for integrating this transistor into an optical circuit, and discuss methods for post

  3. Towards the coupling of single photons from dye molecules to a photonic waveguide

    NASA Astrophysics Data System (ADS)

    Polisseni, Claudio; Kho, Kiang Wei; Major, Kyle; Grandi, Samuele; Boisser, Sebastien; Hwang, Jaesuk; Clark, Alex; Hinds, Edward

    Single photons are very attractive for quantum information processing given their long coherence time and their ability to carry information in many degrees of freedom. A current challenge is the efficient generation of single photons in a photonic chip in order to scale up the complexity of quantum operations. We have proposed that a dibenzoterrylene (DBT) molecule inside an anthracene (AC) crystal could couple lifetime-limited indistinguishable single photons into a photonic waveguide if deposited in its vicinity. In this talk I describe the recent progress towards the realization of this proposal. A new method has been developed for evaporating AC and DBT to produce crystals that are wide and thin. The crystals are typically several microns across and have remarkably uniform thickness, which we control between 20 and 150 nm. The crystal growth is carried out in a glove bag in order to exclude oxygen, which improves the photostability of the DBT molecules by orders of magnitude. We image the fluorescence of single DBT molecules using confocal microscopy and analyse the polarization of this light to determine the alignment of the molecules. I will report on our efforts to control the alignement of the molecules by aligning the host matrix with the substrate.

  4. An on-chip coupled resonator optical waveguide single-photon buffer

    PubMed Central

    Takesue, Hiroki; Matsuda, Nobuyuki; Kuramochi, Eiichi; Munro, William J.; Notomi, Masaya

    2013-01-01

    Integrated quantum optical circuits are now seen as one of the most promising approaches with which to realize single-photon quantum information processing. Many of the core elements for such circuits have been realized, including sources, gates and detectors. However, a significant missing function necessary for photonic quantum information processing on-chip is a buffer, where single photons are stored for a short period of time to facilitate circuit synchronization. Here we report an on-chip single-photon buffer based on coupled resonator optical waveguides (CROW) consisting of 400 high-Q photonic crystal line-defect nanocavities. By using the CROW, a pulsed single photon is successfully buffered for 150 ps with 50-ps tunability while maintaining its non-classical properties. Furthermore, we show that our buffer preserves entanglement by storing and retrieving one photon from a time-bin entangled state. This is a significant step towards an all-optical integrated quantum information processor. PMID:24217422

  5. Self-interstitial clusters in radiation damage accumulation: coupled molecular dynamics and metadynamics simulations

    NASA Astrophysics Data System (ADS)

    Monasterio, Paul R.; Yip, Sidney; Yildiz, Bilge

    2013-04-01

    Self-interstitial interactions causing volume expansion in bcc Fe are studied through an idealized microstructure evolution model in which only self-interstial atoms (SIAs) are inserted. Using a combination of non-equilibrium molecular dynamics simulations and a metadynamics algorithm, meta-stable SIA clusters are observed to nucleate and grow into dislocation loops or localized amorphous phases, both contributing to swelling behavior persisting well beyond the atomistic time scale. A non-monotonic local density variation with dose rate is found and attributed to competing evolutions of different defective structures.

  6. Near-infrared exciton-polaritons in strongly coupled single-walled carbon nanotube microcavities

    NASA Astrophysics Data System (ADS)

    Graf, Arko; Tropf, Laura; Zakharko, Yuriy; Zaumseil, Jana; Gather, Malte C.

    2016-10-01

    Exciton-polaritons form upon strong coupling between electronic excitations of a material and photonic states of a surrounding microcavity. In organic semiconductors the special nature of excited states leads to particularly strong coupling and facilitates condensation of exciton-polaritons at room temperature, which may lead to electrically pumped organic polariton lasers. However, charge carrier mobility and photo-stability in currently used materials is limited and exciton-polariton emission so far has been restricted to visible wavelengths. Here, we demonstrate strong light-matter coupling in the near infrared using single-walled carbon nanotubes (SWCNTs) in a polymer matrix and a planar metal-clad cavity. By exploiting the exceptional oscillator strength and sharp excitonic transition of (6,5) SWCNTs, we achieve large Rabi splitting (>110 meV), efficient polariton relaxation and narrow band emission (<15 meV). Given their high charge carrier mobility and excellent photostability, SWCNTs represent a promising new avenue towards practical exciton-polariton devices operating at telecommunication wavelengths.

  7. A multi-substrate single-file model for ion-coupled transporters.

    PubMed Central

    Su, A; Mager, S; Mayo, S L; Lester, H A

    1996-01-01

    Ion-coupled transporters are simulated by a model that differs from contemporary alternating-access schemes. Beginning with concepts derived from multi-ion pores, the model assumes that substrates (both inorganic ions and small organic molecules) hop a) between the solutions and binding sites and b) between binding sites within a single-file pore. No two substrates can simultaneously occupy the same site. Rate constants for hopping can be increased both a) when substrates in two sites attract each other into a vacant site between them and b) when substrates in adjacent sites repel each other. Hopping rate constants for charged substrates are also modified by the membrane field. For a three-site model, simulated annealing yields parameters to fit steady-state measurements of flux coupling, transport-associated currents, and charge movements for the GABA transporter GAT1. The model then accounts for some GAT1 kinetic data as well. The model also yields parameters that describe the available data for the rat 5-HT transporter and for the rabbit Na(+)-glucose transporter. The simulations show that coupled fluxes and other aspects of ion transport can be explained by a model that includes local substrate-substrate interactions but no explicit global conformational changes. Images FIGURE 1 FIGURE 2 FIGURE 9 PMID:8789093

  8. Near-infrared exciton-polaritons in strongly coupled single-walled carbon nanotube microcavities

    PubMed Central

    Graf, Arko; Tropf, Laura; Zakharko, Yuriy; Zaumseil, Jana; Gather, Malte C.

    2016-01-01

    Exciton-polaritons form upon strong coupling between electronic excitations of a material and photonic states of a surrounding microcavity. In organic semiconductors the special nature of excited states leads to particularly strong coupling and facilitates condensation of exciton-polaritons at room temperature, which may lead to electrically pumped organic polariton lasers. However, charge carrier mobility and photo-stability in currently used materials is limited and exciton-polariton emission so far has been restricted to visible wavelengths. Here, we demonstrate strong light-matter coupling in the near infrared using single-walled carbon nanotubes (SWCNTs) in a polymer matrix and a planar metal-clad cavity. By exploiting the exceptional oscillator strength and sharp excitonic transition of (6,5) SWCNTs, we achieve large Rabi splitting (>110 meV), efficient polariton relaxation and narrow band emission (<15 meV). Given their high charge carrier mobility and excellent photostability, SWCNTs represent a promising new avenue towards practical exciton-polariton devices operating at telecommunication wavelengths. PMID:27721454

  9. Robust synchronization of coupled circadian and cell cycle oscillators in single mammalian cells.

    PubMed

    Bieler, Jonathan; Cannavo, Rosamaria; Gustafson, Kyle; Gobet, Cedric; Gatfield, David; Naef, Felix

    2014-07-15

    Circadian cycles and cell cycles are two fundamental periodic processes with a period in the range of 1 day. Consequently, coupling between such cycles can lead to synchronization. Here, we estimated the mutual interactions between the two oscillators by time-lapse imaging of single mammalian NIH3T3 fibroblasts during several days. The analysis of thousands of circadian cycles in dividing cells clearly indicated that both oscillators tick in a 1:1 mode-locked state, with cell divisions occurring tightly 5 h before the peak in circadian Rev-Erbα-YFP reporter expression. In principle, such synchrony may be caused by either unidirectional or bidirectional coupling. While gating of cell division by the circadian cycle has been most studied, our data combined with stochastic modeling unambiguously show that the reverse coupling is predominant in NIH3T3 cells. Moreover, temperature, genetic, and pharmacological perturbations showed that the two interacting cellular oscillators adopt a synchronized state that is highly robust over a wide range of parameters. These findings have implications for circadian function in proliferative tissues, including epidermis, immune cells, and cancer.

  10. Ultra-small single-negative electric metamaterials for electromagnetic coupling reduction of microstrip antenna array.

    PubMed

    Xu, He-Xiu; Wang, Guang-Ming; Qi, Mei-Qing; Zeng, Hui-Yong

    2012-09-24

    We report initially the design, fabrication and measurement of using waveguided electric metamaterials (MTM) in the design of closely-spaced microtrip antenna arrays with mutual coupling reduction. The complementary spiral ring resonators (CSRs) which exhibit single negative resonant permittivity around 3.5GHz are used as the basic electric MTM element. For verification, two CSRs with two and three concentric rings are considered, respectively. By properly arranging these well engineered waveguided MTMs between two H-plane coupled patch antennas, both numerical and measured results indicate that more than 8.4 dB mutual coupling reduction is obtained. The mechanism has been studied from a physical insight. The electric MTM element is electrically small, enabling the resultant antenna array to exhibit a small separation (λo/8 at the operating wavelength) and thus a high directivity. The proposed strategy opens an avenue to new types of antenna with super performances and can be generalized for other electric resonators. PMID:23037347

  11. Clusters of interacting single domain Co nanomagnets for multistate perpendicular magnetic media applications

    NASA Astrophysics Data System (ADS)

    Xiao, Qijun; Yang, Tianyu; Ursache, Andrei; Tuominen, Mark T.

    2008-04-01

    In this work we develop prototype elements for multistate (beyond binary) perpendicular data storage using interacting nanomagnet clusters. This experimental work confirms earlier theoretical work that predicted multiple discrete values of stable remanent magnetization for such clusters. The fabrication scheme is based on ultrahigh resolution electron beam lithography performed on a thin suspended silicon nitride membrane to reduce the secondary backscattered electrons from the substrate. A Co nanomagnet cluster array is deposited into the nanotemplate via pulse-reverse electrodeposition to create nanomagnets with the favored uniaxial perpendicular anisotropy. Magnetic force microscopy (MFM) measurements show the perpendicular magnetization of individual Co nanomagnets and the combined multiconfiguration behavior of a nanomagnet cluster. In concept, the discrete values of net remanent magnetization of the cluster, which represent distinct information states, can be "programmed" by a uniform applied field.

  12. Strain coupling of a mechanical resonator to a single quantum emitter in diamond

    NASA Astrophysics Data System (ADS)

    Lee, Kenneth; Lee, Donghun; Ovartchaiyapong, Preeti; Jayich, Ania

    Hybrid quantum devices are central to the advancement of several emerging quantum technologies, including quantum information science and quantum-assisted sensing. Here, we present a hybrid quantum device in which strain fields associated with resonant vibrations of a diamond cantilever dynamically modulate the energy and polarization dependence of the optical transitions of a single nitrogen-vacancy defect center in diamond. With mechanical driving, we observe optomechanical couplings exceeding 10 GHz. Through resonant excitation spectroscopy, we quantitatively characterize the intrinsic strain environment of a single defect, and use this optomechanical coupling to tune the zero-phonon line of the defect. Through stroboscopic measurements, we show that we are able to match the frequency and polarization dependence of the optical zero-phonon lines of two separate NV centers. The experiments demonstrated here mark an important step toward realizing a monolithic hybrid quantum device capable of realizing and probing the dynamics of non-classical states of mechanical resonators, spin-systems, and photons. This work was supported with grants from the AFOSR, NSF and DARPA.

  13. Coupling single giant nanocrystal quantum dots to the fundamental mode of patch nanoantennas through fringe field

    DOE PAGES

    Wang, Feng; Karan, Niladri S.; Minh Nguyen, Hue; Ghosh, Yagnaseni; Hollingsworth, Jennifer A.; Htoon, Han

    2015-09-23

    Through single dot spectroscopy and numerical simulation studies, we demonstrate that the fundamental mode of gold patch nanoantennas have fringe-field resonance capable of enhancing the nano-emitters coupled around the edge of the patch antenna. This fringe-field coupling is used to enhance the radiative rates of core/thick-shell nanocrystal quantum dots (g-NQDs) that cannot be embedded into the ultra-thin dielectric gap of patch nanoantennas due to their large sizes. We attain 14 and 3 times enhancements in single exciton radiative decay rate and bi-exciton emission efficiencies of g-NQDs respectively, with no detectable metal quenching. Our numerical studies confirmed our experimental results andmore » further reveal that patch nanoantennas can provide strong emission enhancement for dipoles lying not only in radial direction of the circular patches but also in the direction normal to the antennas surface. Finally, this provides a distinct advantage over the parallel gap-bar antennas that can provide enhancement only for the dipoles oriented across the gap.« less

  14. Conductance through single biphenyl molecules: symmetric and asymmetric coupling to electrodes.

    PubMed

    Kanthasamy, Karthiga; Pfnür, Herbert

    2015-01-01

    The contacts and the chemical bonds formed between metallic electrodes and molecules determine to a large extent the conductive properties of single molecular junctions, which represent the smallest possible active elements in an electronic circuit. We therefore investigated in a comparative study, using the break junction technique (MCBJ), the conductive properties of [1,1'-biphenyl]-4,4'-dithiol (M1) and of 4'-mercapto-[1,1'-biphenyl]-4-carbonitrile (M2) between gold electrodes. As a function of electrode separation, characterized by the conductance close to 0 V, we found several plateaus of relative stability, with those close to 0.01G0 being the most pronounced. The overall conductance of symmetric and asymmetric molecules were surprisingly similar, only the range of stability was smaller for M2. While M1 yielded symmetric I-V-curves, only small asymmetries were detected for M2. These are also reflected in the comparable values for coupling parameters using the single level resonance model. The high conductance for the asymmetric molecule is interpreted as a result of coherent coupling of electronic states through the whole molecule, so that the outcome cannot be predicted just by adding conductive properties of individual molecular groups. PMID:26425419

  15. Coupling Single Giant Nanocrystal Quantum Dots to the Fundamental Mode of Patch Nanoantennas through Fringe Field

    PubMed Central

    Wang, Feng; Karan, Niladri S.; Minh Nguyen, Hue; Ghosh, Yagnaseni; Hollingsworth, Jennifer A.; Htoon, Han

    2015-01-01

    Through single dot spectroscopy and numerical simulation studies, we demonstrate that the fundamental mode of gold patch nanoantennas have fringe-field resonance capable of enhancing the nano-emitters coupled around the edge of the patch antenna. This fringe-field coupling is used to enhance the radiative rates of core/thick-shell nanocrystal quantum dots (g-NQDs) that cannot be embedded into the ultra-thin dielectric gap of patch nanoantennas due to their large sizes. We attain 14 and 3 times enhancements in single exciton radiative decay rate and bi-exciton emission efficiencies of g-NQDs respectively, with no detectable metal quenching. Our numerical studies confirmed our experimental results and further reveal that patch nanoantennas can provide strong emission enhancement for dipoles lying not only in radial direction of the circular patches but also in the direction normal to the antennas surface. This provides a distinct advantage over the parallel gap-bar antennas that can provide enhancement only for the dipoles oriented across the gap. PMID:26394763

  16. Coupling single giant nanocrystal quantum dots to the fundamental mode of patch nanoantennas through fringe field

    SciTech Connect

    Wang, Feng; Karan, Niladri S.; Minh Nguyen, Hue; Ghosh, Yagnaseni; Hollingsworth, Jennifer A.; Htoon, Han

    2015-09-23

    Through single dot spectroscopy and numerical simulation studies, we demonstrate that the fundamental mode of gold patch nanoantennas have fringe-field resonance capable of enhancing the nano-emitters coupled around the edge of the patch antenna. This fringe-field coupling is used to enhance the radiative rates of core/thick-shell nanocrystal quantum dots (g-NQDs) that cannot be embedded into the ultra-thin dielectric gap of patch nanoantennas due to their large sizes. We attain 14 and 3 times enhancements in single exciton radiative decay rate and bi-exciton emission efficiencies of g-NQDs respectively, with no detectable metal quenching. Our numerical studies confirmed our experimental results and further reveal that patch nanoantennas can provide strong emission enhancement for dipoles lying not only in radial direction of the circular patches but also in the direction normal to the antennas surface. Finally, this provides a distinct advantage over the parallel gap-bar antennas that can provide enhancement only for the dipoles oriented across the gap.

  17. Planar-to-Tubular Structural Transition in Boron Clusters: B20 as the Embryo of Single-Walled Boron Nanotubes

    SciTech Connect

    Boggavarapu, Kiran; Bulusu, Satya; Zhai, Hua JIN.; Yoo, Soohaeng; Zeng, Xiao Cheng; Wang, Lai S.

    2005-01-25

    Experimental and computational simulations revealed that boron clusters, which favor planar (2D) structures up to 18 atoms, prefer three-dimensional (3D) structures beginning at 20 atoms. Using global optimization methods, we found that the B20 neutral cluster has a double-ring tubular structure with a diameter of 5.2 ?. In the B20- anion, the tubular structure is shown to be isoenergetic to 2D structures, which were observed and confirmed by photoelectron spectroscopy. The 2D to 3D structural transition observed at B20, reminiscent to the ring-to-fullerene transition at C20 in carbon clusters, suggests it may be considered as the embryo of the thinnest single-walled boron nanotubes.

  18. First-principles investigation of the dissociation and coupling of methane on small copper clusters: Interplay of collision dynamics and geometric and electronic effects

    NASA Astrophysics Data System (ADS)

    Varghese, Jithin J.; Mushrif, Samir H.

    2015-05-01

    Small metal clusters exhibit unique size and morphology dependent catalytic activity. The search for alternate minimum energy pathways and catalysts to transform methane to more useful chemicals and carbon nanomaterials led us to investigate collision induced dissociation of methane on small Cu clusters. We report here for the first time, the free energy barriers for the collision induced activation, dissociation, and coupling of methane on small Cu clusters (Cun where n = 2-12) using ab initio molecular dynamics and metadynamics simulations. The collision induced activation of the stretching and bending vibrations of methane significantly reduces the free energy barrier for its dissociation. Increase in the cluster size reduces the barrier for dissociation of methane due to the corresponding increase in delocalisation of electron density within the cluster, as demonstrated using the electron localisation function topology analysis. This enables higher probability of favourable alignment of the C-H stretching vibration of methane towards regions of high electron density within the cluster and makes higher number of sites available for the chemisorption of CH3 and H upon dissociation. These characteristics contribute in lowering the barrier for dissociation of methane. Distortion and reorganisation of cluster geometry due to high temperature collision dynamics disturb electron delocalisation within them and increase the barrier for dissociation. Coupling reactions of CHx (x = 1-3) species and recombination of H with CHx have free energy barriers significantly lower than complete dehydrogenation of methane to carbon. Thus, competition favours the former reactions at high hydrogen saturation on the clusters.

  19. First-principles investigation of the dissociation and coupling of methane on small copper clusters: Interplay of collision dynamics and geometric and electronic effects.

    PubMed

    Varghese, Jithin J; Mushrif, Samir H

    2015-05-14

    Small metal clusters exhibit unique size and morphology dependent catalytic activity. The search for alternate minimum energy pathways and catalysts to transform methane to more useful chemicals and carbon nanomaterials led us to investigate collision induced dissociation of methane on small Cu clusters. We report here for the first time, the free energy barriers for the collision induced activation, dissociation, and coupling of methane on small Cu clusters (Cun where n = 2-12) using ab initio molecular dynamics and metadynamics simulations. The collision induced activation of the stretching and bending vibrations of methane significantly reduces the free energy barrier for its dissociation. Increase in the cluster size reduces the barrier for dissociation of methane due to the corresponding increase in delocalisation of electron density within the cluster, as demonstrated using the electron localisation function topology analysis. This enables higher probability of favourable alignment of the C-H stretching vibration of methane towards regions of high electron density within the cluster and makes higher number of sites available for the chemisorption of CH3 and H upon dissociation. These characteristics contribute in lowering the barrier for dissociation of methane. Distortion and reorganisation of cluster geometry due to high temperature collision dynamics disturb electron delocalisation within them and increase the barrier for dissociation. Coupling reactions of CHx (x = 1-3) species and recombination of H with CHx have free energy barriers significantly lower than complete dehydrogenation of methane to carbon. Thus, competition favours the former reactions at high hydrogen saturation on the clusters. PMID:25978892

  20. Single stars in the Hyades open cluster. Fiducial sequence for testing stellar and atmospheric models

    NASA Astrophysics Data System (ADS)

    Kopytova, Taisiya G.; Brandner, Wolfgang; Tognelli, Emanuele; Prada Moroni, Pier Giorgio; Da Rio, Nicola; Röser, Siegfried; Schilbach, Elena

    2016-01-01

    Context. Age and mass determinations for isolated stellar objects remain model-dependent. While stellar interior and atmospheric theoretical models are rapidly evolving, we need a powerful tool to test them. Open clusters are good candidates for this role. Aims: We aim to create a fiducial sequence of stellar objects for testing stellar and atmospheric models. Methods: We complement previous studies on the Hyades multiplicity by Lucky Imaging observations with the AstraLux Norte camera. This allows us to exclude possible binary and multiple systems with companions outside a 2-7 AU separation and to create a single-star sequence for the Hyades. The sequence encompasses 250 main-sequence stars ranging from A5V to M6V. Using the Tool for Astrophysical Data Analysis (TA-DA), we create various theoretical isochrones applying different combinations of interior and atmospheric models. We compare the isochrones with the observed Hyades single-star sequence on J vs. J-Ks, J vs. J-H, and Ks vs. H-Ks color-magnitude diagrams. As a reference we also compute absolute fluxes and magnitudes for all stars from X-ray to mid-infrared based on photometric measurements available in the literature(ROSAT X-ray, GALEX UV, APASS gri, 2MASS JHKs, and WISE W1 to W4). Results: We find that combinations of both PISA and DARTMOUTH stellar interior models with BT-Settl 2010 atmospheric models describe the observed sequence well. We use PISA in combination with BT-Settl 2010 models to derive theoretical predictions for physical parameters (Teff, mass, log g) of 250 single stars in the Hyades. The full sequence covers the mass range of 0.13-2.30 M⊙, and effective temperatures between 3060 K and 8200 K. Conclusions: Within the measurement uncertainties, the current generation of models agree well with the single-star sequence. The primary limitations are the uncertainties in the measurement of the distances to individual Hyades members, and uncertainties in the photometry. Gaia parallaxes

  1. Quadratic coupling between a classical nanomechanical oscillator and a single spin

    NASA Astrophysics Data System (ADS)

    Dhingra, Shonali

    Though the motions of macroscopic objects must ultimately be governed by quantum mechanics, the distinctive features of quantum mechanics can be hidden or washed out by thermal excitations and coupling to the environment. For the work of this thesis, we tried to develop a hybrid system consisting a classical and a quantum component, which can be used to probe the quantum nature of both these components. This hybrid system quadratically coupled a nanomechanical oscillator (NMO) with a single spin in presence of a uniform external magnetic field. The NMO was fabricated out of single-layer graphene, grown using Chemical Vapor Deposition (CVD) and patterned using various lithography and etching techniques. The NMO was driven electrically and detected optically. The NMO's resonant frequencies, and their stabilities were studied. The spin originated from a nitrogen vacancy (NV) center in a diamond nanocrystal which is positioned on the NMO. In presence of an external magnetic field, we show that the NV centers are excellen theta2 sensors. Their sensitivity is shown to increase much faster than linearly with the external magnetic field and diverges as the external field approaches an internally-defined limit. Both these components of the hybrid system get coupled by physical placement of NVcontaining diamond nanocrystals on top of NMO undergoing torsional mode of oscillation, in presence of an external magnetic field. The capability of the NV centers to detect the quadratic behavior of the oscillation angle of the NMO with excellent sensitivity, ensures quantum non-demolition (QND) measurement of both components of the hybrid system. This enables a bridge between the quantum and classical worlds for a simple readout of the NV center spin and observation of the discrete states of the NMO. This system could become the building block for a wide range of quantum nanomechanical devices.

  2. Couples, Pairs, and Clusters: Mechanisms and Implications of Centromere Associations in Meiosis

    PubMed Central

    Obeso, David; Pezza, Roberto J; Dawson, Dean

    2013-01-01

    Observations from a wide range of organisms show the centromeres form associations of pairs or small groups at different stages of meiotic prophase. Little is known about the functions or mechanisms of these associations, but in many cases synaptonemal complex elements seem to play a fundamental role. Two main associations are observed: homology-independent associations very early in the meiotic program – sometimes referred to as centromere coupling, and a later association of homologous centromeres, referred to as centromere pairing or tethering. The later centromere pairing initiates during synaptonemal complex assembly, then persists after the dissolution of the synaptonemal complex. While the function of the homology-independent centromere coupling remains a mystery, centromere pairing appears to have a direct impact on the chromosome segregation fidelity of achiasmatic chromosomes. Recent work in yeast, Drosophila, and mice suggest centromere pairing is a previously unappreciated, general meiotic feature that may promote meiotic segregation fidelity of the exchange and non-exchange chromosomes. PMID:24126501

  3. Controlled generation of single photons in a coupled atom-cavity system at a fast repetition-rate.

    PubMed

    Kang, Sungsam; Lim, Sooin; Hwang, Myounggyu; Kim, Wookrae; Kim, Jung-Ryul; An, Kyungwon

    2011-01-31

    We have demonstrated high-speed controlled generation of single photons in a coupled atom-cavity system. A single 85Rb atom, pumped with a nanosecond-pulse laser, generates a single photon into the cavity mode, and the photon is then emitted out the cavity rapidly. By employing cavity parameters for a moderate coupling regime, the single-photon emission process was optimized for both high efficiency and fast bit rates up to 10 MHz. The temporal single-photon wave packet was studied by means of the photon-arrival-time distribution relative to the pump pulse and the efficiency of the single-photon generation was investigated as the pump power. The single-photon nature of the emission was confirmed by the second-order correlation of emitted photons.

  4. Single-Trial Classification of Bistable Perception by Integrating Empirical Mode Decomposition, Clustering, and Support Vector Machine

    NASA Astrophysics Data System (ADS)

    Wang, Zhisong; Maier, Alexander; Logothetis, Nikos K.; Liang, Hualou

    2008-12-01

    We propose an empirical mode decomposition (EMD-) based method to extract features from the multichannel recordings of local field potential (LFP), collected from the middle temporal (MT) visual cortex in a macaque monkey, for decoding its bistable structure-from-motion (SFM) perception. The feature extraction approach consists of three stages. First, we employ EMD to decompose nonstationary single-trial time series into narrowband components called intrinsic mode functions (IMFs) with time scales dependent on the data. Second, we adopt unsupervised K-means clustering to group the IMFs and residues into several clusters across all trials and channels. Third, we use the supervised common spatial patterns (CSP) approach to design spatial filters for the clustered spatiotemporal signals. We exploit the support vector machine (SVM) classifier on the extracted features to decode the reported perception on a single-trial basis. We demonstrate that the CSP feature of the cluster in the gamma frequency band outperforms the features in other frequency bands and leads to the best decoding performance. We also show that the EMD-based feature extraction can be useful for evoked potential estimation. Our proposed feature extraction approach may have potential for many applications involving nonstationary multivariable time series such as brain-computer interfaces (BCI).

  5. Determination of Ruscogenin in Ophiopogonis Radix by High-performance Liquid Chromatography-evaporative Light Scattering Detector Coupled with Hierarchical Clustering Analysis

    PubMed Central

    Liu, Chun-Hua; Li, Ming; Feng, Ya-Qian; Hu, Yuan-Jia; Yu, Bo-Yang; Qi, Jin

    2016-01-01

    Background: Ophiopogonis Radix is a famous traditional Chinese medicine. It is necessary to establish a suitable quality control methods of Ophiopogonis Radix. Objective: To investigate the quality control methods of Ophiopogonis Radix by high-performance liquid chromatography (HPLC) coupled with evaporative light scattering detector (ELSD). Materials and Methods: A rapid and simple method, HPLC coupled with ELSD, was applied to determinate ruscogenin in 35 batches of Ophiopogenis Radix samples. Orthogonal tests and single factor explorations were used to optimize the extraction condition of ruscogenin. The content of ruscogenin in different origin was further analyzed by hierarchical clustering analysis (HCA). Results: The ruscogenin was successfully determined by HPLC-ELSD with a two-phase solvent system composed of methanol-water (88:12) at a flow rate 1.0 ml/min, column temperature maintained at 25°C, detector draft tube temperature at 42.2°C, nebulizer gas flow rate at 1.4 L/min, and the gain at 8. The result showed the good linearity of ruscogenin in the range of 40.20–804.00 μg/ml (R2 = 0.9996). Average of recovery was 101.3% (relative standard deviation = 1.59%). A significant difference of ruscogenin content was shown among 35 batches of Ophiopogenis Radix from different origin, varied from 0.0035% to 0.0240%. HCA based on the content of ruscogenin indicated that Ophiopogonis Radix in different origin was mainly divided into two clusters. Conclusion: This simple, rapid, low-cost, and reliable HPLC-ELSD method could be suitable for measurement of ruscogenin content rations and quality control of Ophiopogonis Radix. SUMMARY Ophiopogonis Radix is an important Traditional Chinese Medicine (TCM) to treat and prevent cardiovascular diseases and acute or chronic inflammation for thousands of years. Steroidal saponins were known as the dominant active components for their significant cardiovascular activity, and the most steroid sapogenin of them is

  6. Spectral functions of the uniform electron gas via coupled-cluster theory and comparison to the G W and related approximations

    NASA Astrophysics Data System (ADS)

    McClain, James; Lischner, Johannes; Watson, Thomas; Matthews, Devin A.; Ronca, Enrico; Louie, Steven G.; Berkelbach, Timothy C.; Chan, Garnet Kin-Lic

    2016-06-01

    We use ab initio coupled-cluster theory to compute the spectral function of the uniform electron gas at a Wigner-Seitz radius of rs=4 . The coupled-cluster approximations we employ go significantly beyond the diagrammatic content of state-of-the-art G W theory. We compare our calculations extensively to G W and G W -plus-cumulant theory, illustrating the strengths and weaknesses of these methods in capturing the quasiparticle and satellite features of the electron gas. Our accurate calculations further allow us to address the long-standing debate over the occupied bandwidth of metallic sodium. Our findings indicate that the future application of coupled-cluster theory to condensed phase material spectra is highly promising.

  7. A reinvestigation of singlet benzyne thermochemistry predicted by CASPT2, coupled-cluster and density functional calculations

    NASA Astrophysics Data System (ADS)

    Cramer, Christopher J.; Nash, John J.; Squires, Robert R.

    1997-10-01

    Recent CASPT2 calculations of the heats of formation of the isomeric benzynes by R. Lindh and M. Schütz[Chem. Phys. Lett. 258 (1996) 409] are re-examined. The unrealistically low value reported for p-benzene (132.7 kcal/mol) is shown to be an artifact of the use of incorrect CASSCF and CASPT2 energies for p-benzene, as well as a flawed isodesmic reaction analysis. Use of correct energies and an appropriate isodesmic reaction leads to excellent agreement between the calculated and measured heats of formation for p-benzene. The performance of coupled-cluster methods and density functional theory in predicting benzyne thermochemistry and singlet-triplet splittings is also evaluated.

  8. Non-orthogonal spin-adaptation of coupled cluster methods: A new implementation of methods including quadruple excitations

    SciTech Connect

    Matthews, Devin A.; Stanton, John F.

    2015-02-14

    The theory of non-orthogonal spin-adaptation for closed-shell molecular systems is applied to coupled cluster methods with quadruple excitations (CCSDTQ). Calculations at this level of detail are of critical importance in describing the properties of molecular systems to an accuracy which can meet or exceed modern experimental techniques. Such calculations are of significant (and growing) importance in such fields as thermodynamics, kinetics, and atomic and molecular spectroscopies. With respect to the implementation of CCSDTQ and related methods, we show that there are significant advantages to non-orthogonal spin-adaption with respect to simplification and factorization of the working equations and to creating an efficient implementation. The resulting algorithm is implemented in the CFOUR program suite for CCSDT, CCSDTQ, and various approximate methods (CCSD(T), CC3, CCSDT-n, and CCSDT(Q))

  9. Coupled cluster study of spectroscopic constants of ground states of heavy rare gas dimers with spin-orbit interaction

    NASA Astrophysics Data System (ADS)

    Tu, Zhe-Yan; Wang, Wen-Liang; Li, Ren-Zhong; Xia, Cai-Juan; Li, Lian-Bi

    2016-07-01

    The CCSD(T) approach based on two-component relativistic effective core potential with spin-orbit interaction just included in coupled cluster iteration is adopted to study the spectroscopic constants of ground states of Kr2, Xe2 and Rn2 dimers. The spectroscopic constants have significant basis set dependence. Extrapolation to the complete basis set limit provides the most accurate values. The spin-orbit interaction hardly affects the spectroscopic constants of Kr2 and Xe2. However, the equilibrium bond length is shortened about 0.013 Å and the dissociation energy is augmented about 18 cm-1 by the spin-orbit interaction for Rn2 in the complete basis set limit.

  10. Coupled cluster evaluation of the frequency dispersion of the first and second hyperpolarizabilities of water, methanol, and dimethyl ether

    NASA Astrophysics Data System (ADS)

    Beaujean, Pierre; Champagne, Benoît

    2016-07-01

    The static and dynamic first (β‖) and second (γ‖) hyperpolarizabilities of water, methanol, and dimethyl ether have been evaluated within the response function approach using a hierarchy of coupled cluster levels of approximation and doubly augmented correlation consistent atomic basis sets. For the three compounds, the electronic β‖ and γ‖ values calculated at the CCSD and CC3 levels are in good agreement with gas phase electric field-induced second harmonic generation (EFISHG) measurements. In addition, for dimethyl ether, the frequency dispersion of both properties follows closely recent experimental values [V. W. Couling and D. P. Shelton, J. Chem. Phys. 143, 224307 (2015)] demonstrating the reliability of these methods and levels of approximation. This also suggests that the vibrational contributions to the EFISHG responses of these molecules are small.

  11. Spectroscopic analysis of diphosphatriazolate anion (P2N3-) by coupled-cluster methods as a step toward N5-

    NASA Astrophysics Data System (ADS)

    Jin, Yifan; Perera, Ajith; Bartlett, Rodney J.

    2015-11-01

    The long sought N5- is a step from the recently synthesized aromatic pentagonal diphosphatriazolate anion (P2N3-). As accurate spectroscopic properties of N5- are only known from theoretical calculations, this manuscript demonstrates the accuracy of the computed P2N3- spectra (IR, Raman, and NMR) obtained from coupled-cluster methods [CCSD or CCSD(T)] compared to experiment, eliminating any ambiguities of the prior density functional theory (DFT) results. Excited and ionized state calculations from EOM-CCSD(T) and IP-EOM-CCSD offer predictions of those additional properties. Differences between P2N3- and N5- arise primarily due to the positive electron affinities of P2, which cause very different potential energy surfaces.

  12. Equation of motion coupled cluster methods for electron attachment and ionization potential in fullerenes C60 and C70.

    PubMed

    Bhaskaran-Nair, Kiran; Kowalski, Karol; Moreno, Juana; Jarrell, Mark; Shelton, William A

    2014-08-21

    In both molecular and periodic solid-state systems there is a need for the accurate determination of the ionization potential and the electron affinity for systems ranging from light harvesting polymers and photocatalytic compounds to semiconductors. The development of a Green's function approach based on the coupled cluster (CC) formalism would be a valuable tool for addressing many properties involving many-body interactions along with their associated correlation functions. As a first step in this direction, we have developed an accurate and parallel efficient approach based on the equation of motion-CC technique. To demonstrate the high degree of accuracy and numerical efficiency of our approach we calculate the ionization potential and electron affinity for C60 and C70. Accurate predictions for these molecules are well beyond traditional molecular scale studies. We compare our results with experiments and both quantum Monte Carlo and GW calculations. PMID:25149783

  13. Optimization of electrooptic and pieozoelectric coupling effects in tetragonal relaxor-PT ferroelectric single crystals

    PubMed Central

    Sun, Enwei; Sang, Shijing; Yuan, Zhongyuan; Qi, Xudong; Zhang, Rui; Cao, Wenwu

    2015-01-01

    The electrooptic and piezoelectric coupling effects in tetragonal relaxor-based ferroelectric 0.62Pb(Mg1/3Nb2/3)O3-0.38PbTiO3 (PMN-0.38PT) and 0.88Pb(Zn1/3Nb2/3)O3-0.12PbTiO3 (PZN-0.12PT) single-domain crystals have been analyzed by the coordinate transformation. The orientation dependence of the electrooptic and half-wave voltage was calculated based on the full sets of refractive indices, electrooptic and piezoelectric coefficients. The optimum orientation cuts for achieving the best electrooptic coefficient and half-wave voltage were found. The lowset half-wave voltage is only 76 V for the PMN-0.38PT single-domain crystal. Compared to commonly used electrooptic crystal LiNbO3, tetragonal relaxor-PT ferroelectric single-domain crystals are much superior for optical modulation applications because of their much higher linear electrooptic coefficients and substantially lower half-wave voltages when the piezoelectric strain influence is considered. PMID:25954059

  14. Conformational Dynamics of Single G Protein-Coupled Receptors in Solution

    PubMed Central

    Bockenhauer, Samuel; Fürstenberg, Alexandre; Yao, Xiao Jie; Kobilka, Brian K.; Moerner, W. E.

    2011-01-01

    G Protein-Coupled Receptors (GPCRs) comprise a large family of seven-helix transmembrane proteins which regulate cellular signaling by sensing light, ligands, and binding proteins. The GPCR activation process, however, is not a simple on-off switch; current models suggest a complex conformational landscape in which the active, signaling state includes multiple conformations with similar downstream activity. The present study probes the conformational dynamics of single β2-Adrenergic Receptors (β2ARs) in the solution phase by Anti-Brownian ELectrokinetic (ABEL) trapping. The ABEL trap uses fast electrokinetic feedback in a microfluidic configuration to allow direct observation of a single fluorescently-labeled β2AR for hundreds of milliseconds to seconds. By choosing a reporter dye and labeling site sensitive to ligand binding, we observe a diversity of discrete fluorescence intensity and lifetime levels in single β2ARs, indicating a varying radiative lifetime and a range of discrete conformational states with dwell times of hundreds of milliseconds. We find that binding of agonist increases the dwell times of these states, and furthermore, we observe millisecond fluctuations within states. The intensity autocorrelations of these faster fluctuations are well-described by stretched exponential functions with stretching exponent β ~ 0.5, suggesting protein dynamics over a range of timescales. PMID:21928818

  15. Modeling the interaction between two dimensional strongly coupled confined dust clusters

    SciTech Connect

    Djebli, M.; Issaad, M.; Rouaiguia, L.

    2010-03-15

    Numerical simulations based on the Monte Carlo method are conducted to investigate ground-state configurations and phase transitions of strongly coupled dust particles. The interaction between negatively charged dust particles is modeled by three different potentials, namely, Coulomb, Yukawa, and logarithmic. The effect of random charge fluctuation is taken into account for a dominant charging process by particles collection and in the presence of two dimensional parabolic confinement potential. Structural arrangement and phase transition are found to be dependent on the potential interaction and the charge fluctuation. The changes in the melting temperature, when the charge fluctuation is taken into account, are particularly noticeable for systems with particles interacting through logarithmic potential.

  16. A Non-antisymmetric Tensor Contraction Engine for the Automated Implementation of Spin-Adapted Coupled Cluster Approaches.

    PubMed

    Datta, Dipayan; Gauss, Jürgen

    2013-06-11

    We present a symbolic manipulation algorithm for the efficient automated implementation of rigorously spin-free coupled cluster (CC) theories based on a unitary group parametrization. Due to the lack of antisymmetry of the unitary group generators under index permutations, all quantities involved in the equations are expressed in terms of non-antisymmetric tensors. Given two tensors, all possible contractions are first generated by applying Wick's theorem. Each term is then put down in the form of a non-antisymmetric Goldstone diagram by assigning its contraction topology. The subsequent simplification of the equations by summing up equivalent terms and their factorization by identifying common intermediates is performed via comparison of these contraction topologies. The definition of the contraction topology is completely general for non-antisymmetric Goldstone diagrams, which enables our algorithm to deal with noncommuting excitations in the cluster operator that arises in the unitary group based CC formulation for open-shell systems. The resulting equations are implemented in a new code, in which tensor contractions are performed by successive application of matrix-matrix multiplications. Implementation of the unitary group adapted CC equations for closed-shell systems and for the simplest open-shell case, i.e., doublets, is discussed, and representative calculations are presented in order to assess the efficiency of the generated codes.

  17. Two-dimensional systems with competing interactions: dynamic properties of single particles and of clusters

    NASA Astrophysics Data System (ADS)

    Schwanzer, Dieter F.; Coslovich, Daniele; Kahl, Gerhard

    2016-10-01

    Systems with short-range attractive and long-range repulsive interactions are able to form mesophases at sufficiently low temperatures. In two dimensions, such mesophases emerge as clusters, stripes or bubbles. Using extensive Monte Carlo simulations we investigate the static and the dynamic properties of such a cluster-forming system over a broad temperature range and for different densities. Via the static properties we analyse how ordering into close packed configurations sets in both at the level of the particles as well as at the level of the clusters. The dynamic properties provide information on how, at low temperature, the motion of individual particles is influenced by the dynamic slowing down of the clusters. Finally, we discuss the different diffusion mechanisms at play at low and intermediate densities.

  18. Two-dimensional systems with competing interactions: dynamic properties of single particles and of clusters.

    PubMed

    Schwanzer, Dieter F; Coslovich, Daniele; Kahl, Gerhard

    2016-10-19

    Systems with short-range attractive and long-range repulsive interactions are able to form mesophases at sufficiently low temperatures. In two dimensions, such mesophases emerge as clusters, stripes or bubbles. Using extensive Monte Carlo simulations we investigate the static and the dynamic properties of such a cluster-forming system over a broad temperature range and for different densities. Via the static properties we analyse how ordering into close packed configurations sets in both at the level of the particles as well as at the level of the clusters. The dynamic properties provide information on how, at low temperature, the motion of individual particles is influenced by the dynamic slowing down of the clusters. Finally, we discuss the different diffusion mechanisms at play at low and intermediate densities. PMID:27546155

  19. Clustering of Trauma and Associations with Single and Co-Occurring Depression and Panic Attack over Twenty Years

    PubMed Central

    McCutcheon, Vivia V.; Heath, Andrew C.; Nelson, Elliot C.; Bucholz, Kathleen. K.; Madden, Pamela A. F.; Martin, Nicholas G.

    2010-01-01

    Individuals who experience one type of trauma often experience other types, yet few studies have examined the clustering of trauma. This study examines the clustering of traumatic events and associations of trauma with risk for single and co-occurring major depressive disorder (MDD) and panic attack for 20 years after first trauma. Lifetime histories of MDD, panic attack, and traumatic events were obtained from participants in an Australian twin sample. Latent class analysis was used to derive trauma classes based on each respondent’s trauma history. Associations of the resulting classes and of parental alcohol problems and familial effects with risk for a first onset of single and co-occurring MDD and panic attack were examined from the year of first trauma to 20 years later. Traumatic events clustered into three distinct classes characterized by endorsement of little or no trauma, primarily nonassaultive, and primarily assaultive events. Individuals in the assaultive class were characterized by a younger age at first trauma, a greater number of traumatic events, and high rates of parental alcohol problems. Members of the assaultive trauma class had the strongest and most enduring risk for single and co-occurring lifetime MDD and panic attack. Assaultive trauma outweighed associations of familial effects and nonassaultive trauma with risk for 10 years following first trauma. PMID:20158307

  20. Narrow-band single photon emission at room temperature based on a single nitrogen-vacancy center coupled to an all-fiber-cavity

    SciTech Connect

    Albrecht, Roland; Bommer, Alexander; Becher, Christoph; Pauly, Christoph; Mücklich, Frank; Schell, Andreas W.; Engel, Philip; Benson, Oliver; Schröder, Tim; Reichel, Jakob

    2014-08-18

    We report the realization of a device based on a single Nitrogen-Vacancy (NV) center in diamond coupled to a fiber-cavity for use as single photon source (SPS). The device consists of two concave mirrors each directly fabricated on the facets of two optical fibers and a preselected nanodiamond containing a single NV center deposited onto one of these mirrors. Both, cavity in- and out-put are directly fiber-coupled, and the emission wavelength is easily tunable by variation of the separation of the two mirrors with a piezo-electric crystal. By coupling to the cavity, we achieve an increase of the spectral photon rate density by two orders of magnitude compared to free-space emission of the NV center. With this work, we establish a simple all-fiber based SPS with promising prospects for the integration into photonic quantum networks.