Science.gov

Sample records for coupled egs4-morse code

  1. Calculations of the giant-dipole-resonance photoneutrons using a coupled EGS4-morse code

    SciTech Connect

    Liu, J.C.; Nelson, W.R.; Kase, K.R.; Mao, X.S.

    1995-10-01

    The production and transport of the photoneutrons from the giant-dipoleresonance reaction have been implemented in a coupled EGS4-MORSE code. The total neutron yield (including both the direct neutron and evaporation neutron components) is calculated by folding the photoneutron yield cross sections with the photon track length distribution in the target. Empirical algorithms based on the measurements have been developed to estimate the fraction and energy of the direct neutron component for each photon. The statistical theory in the EVAP4 code, incorporated as a MORSE subroutine, is used to determine the energies of the evaporation neutrons. These represent major improvements over other calculations that assumed no direct neutrons, a constant fraction of direct neutrons, monoenergetic direct neutron, or a constant nuclear temperature for the evaporation neutrons. It was also assumed that the slow neutrons (< 2.5 MeV) are emitted isotropically and the fast neutrons are emitted anisotropically in the form of 1+Csin{sup 2}{theta}, which have a peak emission at 900. Comparisons between the calculated and the measured photoneutron results (spectra of the direct, evaporation and total neutrons; nuclear temperatures; direct neutron fractions) for materials of lead, tungsten, tantalum and copper have been made. The results show that the empirical algorithms, albeit simple, can produce reasonable results over the interested photon energy range.

  2. Coupling procedure for TRANSURANUS and KTF codes

    SciTech Connect

    Jimenez, J.; Alglave, S.; Avramova, M.

    2012-07-01

    The nuclear industry aims to ensure safe and economic operation of each single fuel rod introduced in the reactor core. This goal is even more challenging nowadays due to the current strategy of going for higher burn-up (fuel cycles of 18 or 24 months) and longer residence time. In order to achieve that goal, fuel modeling is the key to predict the fuel rod behavior and lifetime under thermal and pressure loads, corrosion and irradiation. In this context, fuel performance codes, such as TRANSURANUS, are used to improve the fuel rod design. The modeling capabilities of the above mentioned tools can be significantly improved if they are coupled with a thermal-hydraulic code in order to have a better description of the flow conditions within the rod bundle. For LWR applications, a good representation of the two phase flow within the fuel assembly is necessary in order to have a best estimate calculation of the heat transfer inside the bundle. In this paper we present the coupling methodology of TRANSURANUS with KTF (Karlsruhe Two phase Flow subchannel code) as well as selected results of the coupling proof of principle. (authors)

  3. Interface requirements to couple thermal-hydraulic codes to 3D neutronic codes

    SciTech Connect

    Langenbuch, S.; Austregesilo, H.; Velkov, K.

    1997-07-01

    The present situation of thermalhydraulics codes and 3D neutronics codes is briefly described and general considerations for coupling of these codes are discussed. Two different basic approaches of coupling are identified and their relative advantages and disadvantages are discussed. The implementation of the coupling for 3D neutronics codes in the system ATHLET is presented. Meanwhile, this interface is used for coupling three different 3D neutronics codes.

  4. Wake coupling to full potential rotor analysis code

    NASA Technical Reports Server (NTRS)

    Torres, Francisco J.; Chang, I-Chung; Oh, Byung K.

    1990-01-01

    The wake information from a helicopter forward flight code is coupled with two transonic potential rotor codes. The induced velocities for the near-, mid-, and far-wake geometries are extracted from a nonlinear rigid wake of a standard performance and analysis code. These, together with the corresponding inflow angles, computation points, and azimuth angles, are then incorporated into the transonic potential codes. The coupled codes can then provide an improved prediction of rotor blade loading at transonic speeds.

  5. The CALOR93 code system

    SciTech Connect

    Gabriel, T.A.

    1993-12-31

    The purpose of this paper is to describe a program package, CALOR93, that has been developed to design and analyze different detector systems, in particular, calorimeters which are used in high energy physics experiments to determine the energy of particles. One`s ability to design a calorimeter to perform a certain task can have a strong influence upon the validity of experimental results. The validity of the results obtained with CALOR93 has been verified many times by comparison with experimental data. The codes (HETC93, SPECT93, LIGHT, EGS4, MORSE, and MICAP) are quite generalized and detailed enough so that any experimental calorimeter setup can be studied. Due to this generalization, some software development is necessary because of the wide diversity of calorimeter designs.

  6. Interface requirements to couple thermal hydraulics codes to severe accident codes: ICARE/CATHARE

    SciTech Connect

    Camous, F.; Jacq, F.; Chatelard, P.

    1997-07-01

    In order to describe with the same code the whole sequence of severe LWR accidents, up to the vessel failure, the Institute of Protection and Nuclear Safety has performed a coupling of the severe accident code ICARE2 to the thermalhydraulics code CATHARE2. The resulting code, ICARE/CATHARE, is designed to be as pertinent as possible in all the phases of the accident. This paper is mainly devoted to the description of the ICARE2-CATHARE2 coupling.

  7. Coupling the FIRAC and CFAST computer codes. Final report

    SciTech Connect

    Claybrook, S.W.

    1993-10-01

    This report summarizes the work performed by Numerical Applications, Inc. on LANL subcontract 3876L0013-9Q. The primary objectives of this work were to generalize the fire compartment interface in the IBM PC version of FIRAC and to couple FIRAC with the CFAST computer code. The resulting FIRAC/CFAST computer code would combine the ventilation system and particulate transport modeling capabilities of FIRAC with the fire room modeling capabilities of CFAST. Additional project objectives included debugging FIRAC to correct errors that had been reported by the FIRAC-PC evaluators and evaluating requirements for modifying the FIRAC preprocessor and postprocessor to work with the combined code.

  8. Optimal control of coupled PDE networks with automated code generation

    NASA Astrophysics Data System (ADS)

    Papadopoulos, D.

    2012-09-01

    The purpose of this work is to present a framework for the optimal control of coupled PDE networks. A coupled PDE network is a system of partial differential equations coupled together. Such systems can be represented as a directed graph. A domain specific language (DSL)—an extension of the DOT language—is used for the description of such a coupled PDE network. The adjoint equations and the gradient, required for its optimal control, are computed with the help of a computer algebra system (CAS). Automated code generation techniques have been used for the generation of the PDE systems of both the direct and the adjoint equations. Both the direct and adjoint equations are solved with the standard finite element method. Finally, for the numerical optimization of the system standard optimization techniques are used such as BFGS and Newton conjugate gradient.

  9. 3D neutronic codes coupled with thermal-hydraulic system codes for PWR, and BWR and VVER reactors

    SciTech Connect

    Langenbuch, S.; Velkov, K.; Lizorkin, M.

    1997-07-01

    This paper describes the objectives of code development for coupling 3D neutronics codes with thermal-hydraulic system codes. The present status of coupling ATHLET with three 3D neutronics codes for VVER- and LWR-reactors is presented. After describing the basic features of the 3D neutronic codes BIPR-8 from Kurchatov-Institute, DYN3D from Research Center Rossendorf and QUABOX/CUBBOX from GRS, first applications of coupled codes for different transient and accident scenarios are presented. The need of further investigations is discussed.

  10. Coded waveforms for optimised air-coupled ultrasonic nondestructive evaluation.

    PubMed

    Hutchins, David; Burrascano, Pietro; Davis, Lee; Laureti, Stefano; Ricci, Marco

    2014-09-01

    This paper investigates various types of coded waveforms that could be used for air-coupled ultrasound, using a pulse compression approach to signal processing. These are needed because of the low signal-to-noise ratios that are found in many air-coupled ultrasonic nondestructive evaluation measurements, due to the large acoustic mismatch between air and many solid materials. The various waveforms, including both swept-frequency signals and those with binary modulation, are described, and their performance in the presence of noise is compared. It is shown that the optimum choice of modulation signal depends on the bandwidth available and the type of measurement being made.

  11. Validation of a coupled reactive transport code in porous media

    NASA Astrophysics Data System (ADS)

    Mugler, C.; Montarnal, P.; Dimier, A.

    2003-04-01

    The safety assessment of nuclear waste disposals needs to predict the migration of radionuclides and chemical species through a geological medium. It is therefore necessary to develop and assess qualified and validated tools which integrate both the transport mechanisms through the geological media and the chemical mechanisms governing the mobility of radionuclides. In this problem, both geochemical and hydrodynamic phenomena are tightly linked together. That is the reason why the French Nuclear Energy Agency (CEA) and the French Agency for the Management of Radioactive Wastes (ANDRA) are conjointly developping a coupled reactive transport code that solves simultaneously a geochemical model and a transport model. This code, which is part of the software project ALLIANCES, leans on the libraries of two geochemical codes solving the complex ensemble of reacting chemical species: CHESS and PHREEQC. Geochemical processes considered here include ion exchange, redox reactions, acid-base reactions, surface complexation and mineral dissolution and/or precipitation. Transport is simulated using the mixed-hybrid finite element scheme CAST3M or the finite volume scheme MT3D. All together solve Darcy's law and simulate several hydrological processes such as advection, diffusion and dispersion. The coupling algorithm is an iterative sequential algorithm. Several analytical test cases have been defined and used to validate the reactive transport code. Numerical results can be compared to analytical solutions.

  12. Interface requirements to couple thermal-hydraulic codes to severe accident codes: ATHLET-CD

    SciTech Connect

    Trambauer, K.

    1997-07-01

    The system code ATHLET-CD is being developed by GRS in cooperation with IKE and IPSN. Its field of application comprises the whole spectrum of leaks and large breaks, as well as operational and abnormal transients for LWRs and VVERs. At present the analyses cover the in-vessel thermal-hydraulics, the early phases of core degradation, as well as fission products and aerosol release from the core and their transport in the Reactor Coolant System. The aim of the code development is to extend the simulation of core degradation up to failure of the reactor pressure vessel and to cover all physically reasonable accident sequences for western and eastern LWRs including RMBKs. The ATHLET-CD structure is highly modular in order to include a manifold spectrum of models and to offer an optimum basis for further development. The code consists of four general modules to describe the reactor coolant system thermal-hydraulics, the core degradation, the fission product core release, and fission product and aerosol transport. Each general module consists of some basic modules which correspond to the process to be simulated or to its specific purpose. Besides the code structure based on the physical modelling, the code follows four strictly separated steps during the course of a calculation: (1) input of structure, geometrical data, initial and boundary condition, (2) initialization of derived quantities, (3) steady state calculation or input of restart data, and (4) transient calculation. In this paper, the transient solution method is briefly presented and the coupling methods are discussed. Three aspects have to be considered for the coupling of different modules in one code system. First is the conservation of masses and energy in the different subsystems as there are fluid, structures, and fission products and aerosols. Second is the convergence of the numerical solution and stability of the calculation. The third aspect is related to the code performance, and running time.

  13. Cooperative solutions coupling a geometry engine and adaptive solver codes

    NASA Technical Reports Server (NTRS)

    Dickens, Thomas P.

    1995-01-01

    Follow-on work has progressed in using Aero Grid and Paneling System (AGPS), a geometry and visualization system, as a dynamic real time geometry monitor, manipulator, and interrogator for other codes. In particular, AGPS has been successfully coupled with adaptive flow solvers which iterate, refining the grid in areas of interest, and continuing on to a solution. With the coupling to the geometry engine, the new grids represent the actual geometry much more accurately since they are derived directly from the geometry and do not use refits to the first-cut grids. Additional work has been done with design runs where the geometric shape is modified to achieve a desired result. Various constraints are used to point the solution in a reasonable direction which also more closely satisfies the desired results. Concepts and techniques are presented, as well as examples of sample case studies. Issues such as distributed operation of the cooperative codes versus running all codes locally and pre-calculation for performance are discussed. Future directions are considered which will build on these techniques in light of changing computer environments.

  14. Progress on coupling UEDGE and Monte-Carlo simulation codes

    SciTech Connect

    Rensink, M.E.; Rognlien, T.D.

    1996-08-28

    Our objective is to develop an accurate self-consistent model for plasma and neutral sin the edge of tokamak devices such as DIII-D and ITER. The tow-dimensional fluid model in the UEDGE code has been used successfully for simulating a wide range of experimental plasma conditions. However, when the neutral mean free path exceeds the gradient scale length of the background plasma, the validity of the diffusive and inertial fluid models in UEDGE is questionable. In the long mean free path regime, neutrals can be accurately and efficiently described by a Monte Carlo neutrals model. Coupling of the fluid plasma model in UEDGE with a Monte Carlo neutrals model should improve the accuracy of our edge plasma simulations. The results described here used the EIRENE Monte Carlo neutrals code, but since information is passed to and from the UEDGE plasma code via formatted test files, any similar neutrals code such as DEGAS2 or NIMBUS could, in principle, be used.

  15. Interface requirements for coupling a containment code to a reactor system thermal hydraulic codes

    SciTech Connect

    Baratta, A.J.

    1997-07-01

    To perform a complete analysis of a reactor transient, not only the primary system response but the containment response must also be accounted for. Such transients and accidents as a loss of coolant accident in both pressurized water and boiling water reactors and inadvertent operation of safety relief valves all challenge the containment and may influence flows because of containment feedback. More recently, the advanced reactor designs put forth by General Electric and Westinghouse in the US and by Framatome and Seimens in Europe rely on the containment to act as the ultimate heat sink. Techniques used by analysts and engineers to analyze the interaction of the containment and the primary system were usually iterative in nature. Codes such as RELAP or RETRAN were used to analyze the primary system response and CONTAIN or CONTEMPT the containment response. The analysis was performed by first running the system code and representing the containment as a fixed pressure boundary condition. The flows were usually from the primary system to the containment initially and generally under choked conditions. Once the mass flows and timing are determined from the system codes, these conditions were input into the containment code. The resulting pressures and temperatures were then calculated and the containment performance analyzed. The disadvantage of this approach becomes evident when one performs an analysis of a rapid depressurization or a long term accident sequence in which feedback from the containment can occur. For example, in a BWR main steam line break transient, the containment heats up and becomes a source of energy for the primary system. Recent advances in programming and computer technology are available to provide an alternative approach. The author and other researchers have developed linkage codes capable of transferring data between codes at each time step allowing discrete codes to be coupled together.

  16. A theory manual for multi-physics code coupling in LIME.

    SciTech Connect

    Belcourt, Noel; Bartlett, Roscoe Ainsworth; Pawlowski, Roger Patrick; Schmidt, Rodney Cannon; Hooper, Russell Warren

    2011-03-01

    The Lightweight Integrating Multi-physics Environment (LIME) is a software package for creating multi-physics simulation codes. Its primary application space is when computer codes are currently available to solve different parts of a multi-physics problem and now need to be coupled with other such codes. In this report we define a common domain language for discussing multi-physics coupling and describe the basic theory associated with multiphysics coupling algorithms that are to be supported in LIME. We provide an assessment of coupling techniques for both steady-state and time dependent coupled systems. Example couplings are also demonstrated.

  17. Coupling extended magnetohydrodynamic fluid codes with radiofrequency ray tracing codes for fusion modeling

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas G.; Held, Eric D.

    2015-09-01

    Neoclassical tearing modes are macroscopic (L ∼ 1 m) instabilities in magnetic fusion experiments; if unchecked, these modes degrade plasma performance and may catastrophically destroy plasma confinement by inducing a disruption. Fortunately, the use of properly tuned and directed radiofrequency waves (λ ∼ 1 mm) can eliminate these modes. Numerical modeling of this difficult multiscale problem requires the integration of separate mathematical models for each length and time scale (Jenkins and Kruger, 2012 [21]); the extended MHD model captures macroscopic plasma evolution while the RF model tracks the flow and deposition of injected RF power through the evolving plasma profiles. The scale separation enables use of the eikonal (ray-tracing) approximation to model the RF wave propagation. In this work we demonstrate a technique, based on methods of computational geometry, for mapping the ensuing RF data (associated with discrete ray trajectories) onto the finite-element/pseudospectral grid that is used to model the extended MHD physics. In the new representation, the RF data can then be used to construct source terms in the equations of the extended MHD model, enabling quantitative modeling of RF-induced tearing mode stabilization. Though our specific implementation uses the NIMROD extended MHD (Sovinec et al., 2004 [22]) and GENRAY RF (Smirnov et al., 1994 [23]) codes, the approach presented can be applied more generally to any code coupling requiring the mapping of ray tracing data onto Eulerian grids.

  18. Coupled Receiver/Decoders for Low-Rate Turbo Codes

    NASA Technical Reports Server (NTRS)

    Hamkins, Jon; Divsalar, Dariush

    2005-01-01

    been proposed for receiving weak single- channel phase-modulated radio signals bearing low-rate-turbo-coded binary data. Originally intended for use in receiving telemetry signals from distant spacecraft, the proposed receiver/ decoders may also provide enhanced reception in mobile radiotelephone systems. A radio signal of the type to which the proposal applies comprises a residual carrier signal and a phase-modulated data signal. The residual carrier signal is needed as a phase reference for demodulation as a prerequisite to decoding. Low-rate turbo codes afford high coding gains and thereby enable the extraction of data from arriving radio signals that might otherwise be too weak. In the case of a conventional receiver, if the signal-to-noise ratio (specifically, the symbol energy to one-sided noise power spectral density) of the arriving signal is below approximately 0 dB, then there may not be enough energy per symbol to enable the receiver to recover properly the carrier phase. One could solve the problem at the transmitter by diverting some power from the data signal to the residual carrier. A better solution . a coupled receiver/decoder according to the proposal . could reduce the needed amount of residual carrier power. In all that follows, it is to be understood that all processing would be digital and the incoming signals to be processed would be, more precisely, outputs of analog-to-digital converters that preprocess the residual carrier and data signals at a rate of multiple samples per symbol. The upper part of the figure depicts a conventional receiving system, in which the receiver and decoder are uncoupled, and which is also called a non-data-aided system because output data from the decoder are not used in the receiver to aid in recovering the carrier phase. The receiver tracks the carrier phase from the residual carrier signal and uses the carrier phase to wipe phase noise off the data signal. The receiver typically includes a phase-locked loop

  19. Bit error probability of trellis-coded quadrature amplitude modulation over cross-coupled multidimensional channels

    NASA Astrophysics Data System (ADS)

    Kavehrad, Mohsen; Sundberg, Carl-Erik W.

    1987-04-01

    Average bit error probabilities for M-ary quadrature amplitude modulation (MQAM) systems are evaluated using a truncated union bound to calculate an approximate upper bound on the average bit error probability. Coded BPSK and QSPK are studied in a dual-polarized channel with and without an interference compensator. Trellis-coded MQAM signals are also examined. A new technique, dual-channel polarization hopping, which provides diversity gains when applied to coded cross-coupled channels is proposed. Average bit error probabilities for convolutionally coded QAM schemes in cross-coupled interference channels are derived. It is concluded that trellis-coded QAM schemes give larger coding gains in cross-coupled interference channels than in Gaussian noise and the choice of optimum code for the trellis-coded QAM scheme depends on the expected interference level.

  20. The Application of the PEBBED Code Suite to the PBMR-400 Coupled Code Benchmark - FY 2006 Annual Report

    SciTech Connect

    Not Available

    2006-09-01

    This document describes the recent developments of the PEBBED code suite and its application to the PBMR-400 Coupled Code Benchmark. This report addresses an FY2006 Level 2 milestone under the NGNP Design and Evaluation Methods Work Package. The milestone states "Complete a report describing the results of the application of the integrated PEBBED code package to the PBMR-400 coupled code benchmark". The report describes the current state of the PEBBED code suite, provides an overview of the Benchmark problems to which it was applied, discusses the code developments achieved in the past year, and states some of the results attained. Results of the steady state problems generated by the PEBBED fuel management code compare favorably to the preliminary results generated by codes from other participating institutions and to similar non-Benchmark analyses. Partial transient analysis capability has been achieved through the acquisition of the NEM-THERMIX code from Penn State University. Phase I of the task has been achieved through the development of a self-consistent set of tools for generating cross sections for design and transient analysis and in the successful execution of the steady state benchmark exercises.

  1. An approach for coupled-code multiphysics core simulations from a common input

    DOE PAGES

    Schmidt, Rodney; Belcourt, Kenneth; Hooper, Russell; ...

    2014-12-10

    This study describes an approach for coupled-code multiphysics reactor core simulations that is being developed by the Virtual Environment for Reactor Applications (VERA) project in the Consortium for Advanced Simulation of Light-Water Reactors (CASL). In this approach a user creates a single problem description, called the “VERAIn” common input file, to define and setup the desired coupled-code reactor core simulation. A preprocessing step accepts the VERAIn file and generates a set of fully consistent input files for the different physics codes being coupled. The problem is then solved using a single-executable coupled-code simulation tool applicable to the problem, which ismore » built using VERA infrastructure software tools and the set of physics codes required for the problem of interest. The approach is demonstrated by performing an eigenvalue and power distribution calculation of a typical three-dimensional 17 × 17 assembly with thermal–hydraulic and fuel temperature feedback. All neutronics aspects of the problem (cross-section calculation, neutron transport, power release) are solved using the Insilico code suite and are fully coupled to a thermal–hydraulic analysis calculated by the Cobra-TF (CTF) code. The single-executable coupled-code (Insilico-CTF) simulation tool is created using several VERA tools, including LIME (Lightweight Integrating Multiphysics Environment for coupling codes), DTK (Data Transfer Kit), Trilinos, and TriBITS. Parallel calculations are performed on the Titan supercomputer at Oak Ridge National Laboratory using 1156 cores, and a synopsis of the solution results and code performance is presented. Finally, ongoing development of this approach is also briefly described.« less

  2. An approach for coupled-code multiphysics core simulations from a common input

    SciTech Connect

    Schmidt, Rodney; Belcourt, Kenneth; Hooper, Russell; Pawlowski, Roger P.; Clarno, Kevin T.; Simunovic, Srdjan; Slattery, Stuart R.; Turner, John A.; Palmtag, Scott

    2014-12-10

    This study describes an approach for coupled-code multiphysics reactor core simulations that is being developed by the Virtual Environment for Reactor Applications (VERA) project in the Consortium for Advanced Simulation of Light-Water Reactors (CASL). In this approach a user creates a single problem description, called the “VERAIn” common input file, to define and setup the desired coupled-code reactor core simulation. A preprocessing step accepts the VERAIn file and generates a set of fully consistent input files for the different physics codes being coupled. The problem is then solved using a single-executable coupled-code simulation tool applicable to the problem, which is built using VERA infrastructure software tools and the set of physics codes required for the problem of interest. The approach is demonstrated by performing an eigenvalue and power distribution calculation of a typical three-dimensional 17 × 17 assembly with thermal–hydraulic and fuel temperature feedback. All neutronics aspects of the problem (cross-section calculation, neutron transport, power release) are solved using the Insilico code suite and are fully coupled to a thermal–hydraulic analysis calculated by the Cobra-TF (CTF) code. The single-executable coupled-code (Insilico-CTF) simulation tool is created using several VERA tools, including LIME (Lightweight Integrating Multiphysics Environment for coupling codes), DTK (Data Transfer Kit), Trilinos, and TriBITS. Parallel calculations are performed on the Titan supercomputer at Oak Ridge National Laboratory using 1156 cores, and a synopsis of the solution results and code performance is presented. Finally, ongoing development of this approach is also briefly described.

  3. Development of a coupling code for PWR reactor cavity radiation streaming calculation

    SciTech Connect

    Zheng, Z.; Wu, H.; Cao, L.; Zheng, Y.; Zhang, H.; Wang, M.

    2012-07-01

    PWR reactor cavity radiation streaming is important for the safe of the personnel and equipment, thus calculation has to be performed to evaluate the neutron flux distribution around the reactor. For this calculation, the deterministic codes have difficulties in fine geometrical modeling and need huge computer resource; and the Monte Carlo codes require very long sampling time to obtain results with acceptable precision. Therefore, a coupling method has been developed to eliminate the two problems mentioned above in each code. In this study, we develop a coupling code named DORT2MCNP to link the Sn code DORT and Monte Carlo code MCNP. DORT2MCNP is used to produce a combined surface source containing top, bottom and side surface simultaneously. Because SDEF card is unsuitable for the combined surface source, we modify the SOURCE subroutine of MCNP and compile MCNP for this application. Numerical results demonstrate the correctness of the coupling code DORT2MCNP and show reasonable agreement between the coupling method and the other two codes (DORT and MCNP). (authors)

  4. Assessement of Codes and Standards Applicable to a Hydrogen Production Plant Coupled to a Nuclear Reactor

    SciTech Connect

    M. J. Russell

    2006-06-01

    This is an assessment of codes and standards applicable to a hydrogen production plant to be coupled to a nuclear reactor. The result of the assessment is a list of codes and standards that are expected to be applicable to the plant during its design and construction.

  5. Combined quadrature amplitude modulation and convolutional codes for cross-coupled multidimensional channels

    NASA Astrophysics Data System (ADS)

    Kavehrad, M.; Sundberg, C.-E.; McLane, P. J.

    The performance of cross-coupled, M-ary Quadrature Amplitude Modulation (QAM) systems is determined when bandwidth efficient trellis codes are used to combat interference. Performance with and without compensation for cross-coupled interference is presented. It is found that simple trellis codes can maintain the error probability at an acceptable level for cross-coupling parameters that render uncoded systems unusable. Up to two dimensional trellis codes are considered for four dimensional QAM signals. The average probability of the most likely error events is calculated by using the method of moments. The results are applicable to any digital communication system using multidimensional quadrature amplitude modulation, e.g., voiceband modems and cross-polarized radio systems. In the paper the analysis is restricted to nondispersive cross-coupling models. In most cases the coding gain is larger than in the absence of cross-coupling interference. Specifically, it is found that simple trellis codes have coding gains of more than 5 dB in cross-coupling interference compared to 3 dB for a Gaussian channel. This is obtained for schemes compared at equal bandwidth.

  6. TART97 a coupled neutron-photon 3-D, combinatorial geometry Monte Carlo transport code

    SciTech Connect

    Cullen, D.E.

    1997-11-22

    TART97 is a coupled neutron-photon, 3 Dimensional, combinatorial geometry, time dependent Monte Carlo transport code. This code can on any modern computer. It is a complete system to assist you with input preparation, running Monte Carlo calculations, and analysis of output results. TART97 is also incredibly FAST; if you have used similar codes, you will be amazed at how fast this code is compared to other similar codes. Use of the entire system can save you a great deal of time and energy. TART97 is distributed on CD. This CD contains on- line documentation for all codes included in the system, the codes configured to run on a variety of computers, and many example problems that you can use to familiarize yourself with the system. TART97 completely supersedes all older versions of TART, and it is strongly recommended that users only use the most recent version of TART97 and its data riles.

  7. The validity of ICD codes coupled with imaging procedure codes for identifying acute venous thromboembolism using administrative data.

    PubMed

    Alotaibi, Ghazi S; Wu, Cynthia; Senthilselvan, Ambikaipakan; McMurtry, M Sean

    2015-08-01

    The purpose of this study was to evaluate the accuracy of using a combination of International Classification of Diseases (ICD) diagnostic codes and imaging procedure codes for identifying deep vein thrombosis (DVT) and pulmonary embolism (PE) within administrative databases. Information from the Alberta Health (AH) inpatients and ambulatory care administrative databases in Alberta, Canada was obtained for subjects with a documented imaging study result performed at a large teaching hospital in Alberta to exclude venous thromboembolism (VTE) between 2000 and 2010. In 1361 randomly-selected patients, the proportion of patients correctly classified by AH administrative data, using both ICD diagnostic codes and procedure codes, was determined for DVT and PE using diagnoses documented in patient charts as the gold standard. Of the 1361 patients, 712 had suspected PE and 649 had suspected DVT. The sensitivities for identifying patients with PE or DVT using administrative data were 74.83% (95% confidence interval [CI]: 67.01-81.62) and 75.24% (95% CI: 65.86-83.14), respectively. The specificities for PE or DVT were 91.86% (95% CI: 89.29-93.98) and 95.77% (95% CI: 93.72-97.30), respectively. In conclusion, when coupled with relevant imaging codes, VTE diagnostic codes obtained from administrative data provide a relatively sensitive and very specific method to ascertain acute VTE.

  8. On the Coupling of CDISC Design Method with FPX Rotor Code

    NASA Technical Reports Server (NTRS)

    Hu, Hong; Jones, Henry E. (Technical Monitor)

    2000-01-01

    A rotor section aerodynamics design package is developed by coupling Constrained Direct Iterative Surface Curvature (CDISC) design method with the FPX rotor code. The coupling between the CDISC design and the FPX flow analysis is fully automated. The CDISC design method employs a predictor-corrector procedure iteratively to determine a surface geometry which produces a target pressure distribution, where the target pressure distributions is either pre-defined or automatically generated through flow and geometry constraints. The FPX code is an eXtended Full-Potential rotor Computational Fluid Dynamics (CFD) code, which solves the three-dimensional unsteady full-potential equation in a strong conservative form using an implicit approximate factorization finite-difference scheme with entropy and viscosity corrections. Application of the CDISC design method coupled with the FPX rotor code is made for rotor blades in hovering motions. Several design examples are presented to demonstrate the capability of the new package in rotor section design.

  9. CFD and Neutron codes coupling on a computational platform

    NASA Astrophysics Data System (ADS)

    Cerroni, D.; Da Vià, R.; Manservisi, S.; Menghini, F.; Scardovelli, R.

    2017-01-01

    In this work we investigate the thermal-hydraulics behavior of a PWR nuclear reactor core, evaluating the power generation distribution taking into account the local temperature field. The temperature field, evaluated using a self-developed CFD module, is exchanged with a neutron code, DONJON-DRAGON, which updates the macroscopic cross sections and evaluates the new neutron flux. From the updated neutron flux the new peak factor is evaluated and the new temperature field is computed. The exchange of data between the two codes is obtained thanks to their inclusion into the computational platform SALOME, an open-source tools developed by the collaborative project NURESAFE. The numerical libraries MEDmem, included into the SALOME platform, are used in this work, for the projection of computational fields from one problem to another. The two problems are driven by a common supervisor that can access to the computational fields of both systems, in every time step, the temperature field, is extracted from the CFD problem and set into the neutron problem. After this iteration the new power peak factor is projected back into the CFD problem and the new time step can be computed. Several computational examples, where both neutron and thermal-hydraulics quantities are parametrized, are finally reported in this work.

  10. A new thermal hydraulics code coupled to agent for light water reactor analysis

    NASA Astrophysics Data System (ADS)

    Eklund, Matthew Deric

    A new numerical model for coupling a thermal hydraulics method based on the Drift Flux and Homogeneous Equilibrium Mixture (HEM) models, with a deterministic neutronics code system AGENT (Arbitrary Geometry Neutron Transport), is developed. Named the TH thermal hydraulics code, it is based on the mass continuity, momentum, and energy equations integrated with appropriate relations for liquid and vapor phasic velocities. The modified conservation equations are then evaluated in one-dimensional (1D) steady-state conditions for LWR coolant subchannel in the axial direction. This permits faster computation times without sacrificing significant accuracy, as compared to other three-dimensional (3D) codes such as RELAP5/TRACE. AGENT is a deterministic neutronics code system based on the Method of Characteristics to solve the 2D/3D neutron transport equation in current and future reactor systems. The coupling scheme between the TH and AGENT codes is accomplished by computing the normalized fission rate profile in the LWR fuel elements by AGENT. The normalized fission rate profile is then transferred to the TH thermal hydraulics code for computing the reactor coolant properties. In conjunction with the 1D axial TH code, a separate 1D radial heat transfer model within the TH code is used to determine the average fuel temperature at each node where coolant properties are calculated. These properties then are entered into Scale 6.1, a criticality analysis code, to recalculate fuel pin neutron interaction cross sections based on thermal feedback. With updated fuel neutron interaction cross sections, the fission rate profile is recalculated in AGENT, and the cycle continues until convergence is reached. The TH code and coupled AGENT-TH code are benchmarked against the TRACE reactor analysis software, showing required agreement in evaluating the basic reactor parameters.

  11. BWR transient analysis using neutronic / thermal hydraulic coupled codes including uncertainty quantification

    SciTech Connect

    Hartmann, C.; Sanchez, V.; Tietsch, W.; Stieglitz, R.

    2012-07-01

    The KIT is involved in the development and qualification of best estimate methodologies for BWR transient analysis in cooperation with industrial partners. The goal is to establish the most advanced thermal hydraulic system codes coupled with 3D reactor dynamic codes to be able to perform a more realistic evaluation of the BWR behavior under accidental conditions. For this purpose a computational chain based on the lattice code (SCALE6/GenPMAXS), the coupled neutronic/thermal hydraulic code (TRACE/PARCS) as well as a Monte Carlo based uncertainty and sensitivity package (SUSA) has been established and applied to different kind of transients of a Boiling Water Reactor (BWR). This paper will describe the multidimensional models of the plant elaborated for TRACE and PARCS to perform the investigations mentioned before. For the uncertainty quantification of the coupled code TRACE/PARCS and specifically to take into account the influence of the kinetics parameters in such studies, the PARCS code has been extended to facilitate the change of model parameters in such a way that the SUSA package can be used in connection with TRACE/PARCS for the U and S studies. This approach will be presented in detail. The results obtained for a rod drop transient with TRACE/PARCS using the SUSA-methodology showed clearly the importance of some kinetic parameters on the transient progression demonstrating that the coupling of a best-estimate coupled codes with uncertainty and sensitivity tools is very promising and of great importance for the safety assessment of nuclear reactors. (authors)

  12. Osiris: A Modern, High-Performance, Coupled, Multi-Physics Code For Nuclear Reactor Core Analysis

    SciTech Connect

    Procassini, R J; Chand, K K; Clouse, C J; Ferencz, R M; Grandy, J M; Henshaw, W D; Kramer, K J; Parsons, I D

    2007-02-26

    To meet the simulation needs of the GNEP program, LLNL is leveraging a suite of high-performance codes to be used in the development of a multi-physics tool for modeling nuclear reactor cores. The Osiris code project, which began last summer, is employing modern computational science techniques in the development of the individual physics modules and the coupling framework. Initial development is focused on coupling thermal-hydraulics and neutral-particle transport, while later phases of the project will add thermal-structural mechanics and isotope depletion. Osiris will be applicable to the design of existing and future reactor systems through the use of first-principles, coupled physics models with fine-scale spatial resolution in three dimensions and fine-scale particle-energy resolution. Our intent is to replace an existing set of legacy, serial codes which require significant approximations and assumptions, with an integrated, coupled code that permits the design of a reactor core using a first-principles physics approach on a wide range of computing platforms, including the world's most powerful parallel computers. A key research activity of this effort deals with the efficient and scalable coupling of physics modules which utilize rather disparate mesh topologies. Our approach allows each code module to use a mesh topology and resolution that is optimal for the physics being solved, and employs a mesh-mapping and data-transfer module to effect the coupling. Additional research is planned in the area of scalable, parallel thermal-hydraulics, high-spatial-accuracy depletion and coupled-physics simulation using Monte Carlo transport.

  13. Coupled neutronic and thermal-hydraulic code benchmark activities at the International Nuclear Safety Center.

    SciTech Connect

    Podlazov, L. N.

    1998-07-29

    Two realistic benchmark problems are defined and used to assess the performance of coupled thermal-hydraulic and neutronic codes used in simulating dynamic processes in VVER-1000 and RBMK reactor systems. One of the problems simulates a design basis accident involving the ejection of three control and protection system rods from a VVER-1000 reactor. The other is based on a postulated rod withdrawal from an operating RBMK reactor. Preliminary results calculated by various codes are compared. While these results show significant differences, the intercomparisons performed so far provide a basis for further evaluation of code limitations and modeling assumptions.

  14. Incorporation of coupled nonequilibrium chemistry into a two-dimensional nozzle code (SEAGULL)

    NASA Technical Reports Server (NTRS)

    Ratliff, A. W.

    1979-01-01

    A two-dimensional multiple shock nozzle code (SEAGULL) was extended to include the effects of finite rate chemistry. The basic code that treats multiple shocks and contact surfaces was fully coupled with a generalized finite rate chemistry and vibrational energy exchange package. The modified code retains all of the original SEAGULL features plus the capability to treat chemical and vibrational nonequilibrium reactions. Any chemical and/or vibrational energy exchange mechanism can be handled as long as thermodynamic data and rate constants are available for all participating species.

  15. Code Development in Coupled PARCS/RELAP5 for Supercritical Water Reactor

    DOE PAGES

    Hu, Po; Wilson, Paul

    2014-01-01

    The new capability is added to the existing coupled code package PARCS/RELAP5, in order to analyze SCWR design under supercritical pressure with the separated water coolant and moderator channels. This expansion is carried out on both codes. In PARCS, modification is focused on extending the water property tables to supercritical pressure, modifying the variable mapping input file and related code module for processing thermal-hydraulic information from separated coolant/moderator channels, and modifying neutronics feedback module to deal with the separated coolant/moderator channels. In RELAP5, modification is focused on incorporating more accurate water properties near SCWR operation/transient pressure and temperature in themore » code. Confirming tests of the modifications is presented and the major analyzing results from the extended codes package are summarized.« less

  16. Development of a dynamic coupled hydro-geomechanical code and its application to induced seismicity

    NASA Astrophysics Data System (ADS)

    Miah, Md Mamun

    This research describes the importance of a hydro-geomechanical coupling in the geologic sub-surface environment from fluid injection at geothermal plants, large-scale geological CO2 sequestration for climate mitigation, enhanced oil recovery, and hydraulic fracturing during wells construction in the oil and gas industries. A sequential computational code is developed to capture the multiphysics interaction behavior by linking a flow simulation code TOUGH2 and a geomechanics modeling code PyLith. Numerical formulation of each code is discussed to demonstrate their modeling capabilities. The computational framework involves sequential coupling, and solution of two sub-problems- fluid flow through fractured and porous media and reservoir geomechanics. For each time step of flow calculation, pressure field is passed to the geomechanics code to compute effective stress field and fault slips. A simplified permeability model is implemented in the code that accounts for the permeability of porous and saturated rocks subject to confining stresses. The accuracy of the TOUGH-PyLith coupled simulator is tested by simulating Terzaghi's 1D consolidation problem. The modeling capability of coupled poroelasticity is validated by benchmarking it against Mandel's problem. The code is used to simulate both quasi-static and dynamic earthquake nucleation and slip distribution on a fault from the combined effect of far field tectonic loading and fluid injection by using an appropriate fault constitutive friction model. Results from the quasi-static induced earthquake simulations show a delayed response in earthquake nucleation. This is attributed to the increased total stress in the domain and not accounting for pressure on the fault. However, this issue is resolved in the final chapter in simulating a single event earthquake dynamic rupture. Simulation results show that fluid pressure has a positive effect on slip nucleation and subsequent crack propagation. This is confirmed by

  17. Application of P4 Polyphase codes pulse compression method to air-coupled ultrasonic testing systems.

    PubMed

    Li, Honggang; Zhou, Zhenggan

    2017-07-01

    Air-coupled ultrasonic testing systems are usually restricted by low signal-to-noise ratios (SNR). The use of pulse compression techniques based on P4 Polyphase codes can improve the ultrasound SNR. This type of codes can generate higher Peak Side Lobe (PSL) ratio and lower noise of compressed signal. This paper proposes the use of P4 Polyphase sequences to code ultrasound with a NDT system based on air-coupled piezoelectric transducer. Furthermore, the principle of selecting parameters of P4 Polyphase sequence for obtaining optimal pulse compression effect is also studied. Successful results are presented in molded composite material. A hybrid signal processing method for improvement in SNR up to 12.11dB and in time domain resolution about 35% are achieved when compared with conventional pulse compression technique. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. An introduction to LIME 1.0 and its use in coupling codes for multiphysics simulations.

    SciTech Connect

    Belcourt, Noel; Pawlowski, Roger Patrick; Schmidt, Rodney Cannon; Hooper, Russell Warren

    2011-11-01

    LIME is a small software package for creating multiphysics simulation codes. The name was formed as an acronym denoting 'Lightweight Integrating Multiphysics Environment for coupling codes.' LIME is intended to be especially useful when separate computer codes (which may be written in any standard computer language) already exist to solve different parts of a multiphysics problem. LIME provides the key high-level software (written in C++), a well defined approach (with example templates), and interface requirements to enable the assembly of multiple physics codes into a single coupled-multiphysics simulation code. In this report we introduce important software design characteristics of LIME, describe key components of a typical multiphysics application that might be created using LIME, and provide basic examples of its use - including the customized software that must be written by a user. We also describe the types of modifications that may be needed to individual physics codes in order for them to be incorporated into a LIME-based multiphysics application.

  19. A mono-dimensional nuclear fuel performance analysis code, PUMA, development from a coupled approach

    SciTech Connect

    Cheon, J. S.; Lee, B. O.; Lee, C. B.; Yacout, A. M.

    2013-07-01

    Multidimensional-multi-physical phenomena in nuclear fuels are treated as a set of mono-dimensional-coupled problems which encompass heat, displacement, fuel constituent redistribution, and fission gas release. Rather than uncoupling these coupled equations as in conventional fuel performance analysis codes, efforts are put into to obtain fully coupled solutions by relying on the recent advances of numerical analysis. Through this approach, a new SFR metal fuel performance analysis code, called PUMA (Performance of Uranium Metal fuel rod Analysis code) is under development. Although coupling between temperature and fuel constituent was made easily, the coupling between the mechanical equilibrium equation and a set of stiff kinetics equations for fission gas release is accomplished by introducing one-level Newton scheme through backward differentiation formula. Displacement equations from 1D finite element formulation of the mechanical equilibrium equation are solved simultaneously with stress equation, creep equation, swelling equation, and FGR equations. Calculations was made successfully such that the swelling and the hydrostatic pressure are interrelated each other. (authors)

  20. An Integrated RELAP5-3D and Multiphase CFD Code System Utilizing a Semi Implicit Coupling Technique

    SciTech Connect

    D.L. Aumiller; E.T. Tomlinson; W.L. Weaver

    2001-06-21

    An integrated code system consisting of RELAP5-3D and a multiphase CFD program has been created through the use of a generic semi-implicit coupling algorithm. Unlike previous CFD coupling work, this coupling scheme is numerically stable provided the material Courant limit is not violated in RELAP5-3D or at the coupling locations. The basis for the coupling scheme and details regarding the unique features associated with the application of this technique to a four-field CFD program are presented. Finally, the results of a verification problem are presented. The coupled code system is shown to yield accurate and numerically stable results.

  1. User Guide for the R5EXEC Coupling Interface in the RELAP5-3D Code

    SciTech Connect

    Forsmann, J. Hope; Weaver, Walter L.

    2015-04-01

    This report describes the R5EXEC coupling interface in the RELAP5-3D computer code from the users perspective. The information in the report is intended for users who want to couple RELAP5-3D to other thermal-hydraulic, neutron kinetics, or control system simulation codes.

  2. ITS Version 6 : the integrated TIGER series of coupled electron/photon Monte Carlo transport codes.

    SciTech Connect

    Franke, Brian Claude; Kensek, Ronald Patrick; Laub, Thomas William

    2008-04-01

    ITS is a powerful and user-friendly software package permitting state-of-the-art Monte Carlo solution of lineartime-independent coupled electron/photon radiation transport problems, with or without the presence of macroscopic electric and magnetic fields of arbitrary spatial dependence. Our goal has been to simultaneously maximize operational simplicity and physical accuracy. Through a set of preprocessor directives, the user selects one of the many ITS codes. The ease with which the makefile system is applied combines with an input scheme based on order-independent descriptive keywords that makes maximum use of defaults and internal error checking to provide experimentalists and theorists alike with a method for the routine but rigorous solution of sophisticated radiation transport problems. Physical rigor is provided by employing accurate cross sections, sampling distributions, and physical models for describing the production and transport of the electron/photon cascade from 1.0 GeV down to 1.0 keV. The availability of source code permits the more sophisticated user to tailor the codes to specific applications and to extend the capabilities of the codes to more complex applications. Version 6, the latest version of ITS, contains (1) improvements to the ITS 5.0 codes, and (2) conversion to Fortran 90. The general user friendliness of the software has been enhanced through memory allocation to reduce the need for users to modify and recompile the code.

  3. Cynod: A Neutronics Code for Pebble Bed Modular Reactor Coupled Transient Analysis

    SciTech Connect

    Hikaru Hiruta; Abderrafi M. Ougouag; Hans D. Gougar; Javier Ortensi

    2008-09-01

    The Pebble Bed Reactor (PBR) is one of the two concepts currently considered for development into the Next Generation Nuclear Plant (NGNP). This interest is due, in particular, to the concept’s inherent safety characteristics. In order to verify and confirm the design safety characteristics of the PBR computational tools must be developed that treat the range of phenomena that are expected to be important for this type of reactors. This paper presents a recently developed 2D R-Z cylindrical nodal kinetics code and shows some of its capabilities by applying it to a set of known and relevant benchmarks. The new code has been coupled to the thermal hydraulics code THERMIX/KONVEK[1] for application to the simulation of very fast transients in PBRs. The new code, CYNOD, has been written starting with a fixed source solver extracted from the nodal cylindrical geometry solver contained within the PEBBED code. The fixed source solver was then incorporated into a kinetic solver.. The new code inherits the spatial solver characteristics of the nodal solver within PEBBED. Thus, the time-dependent neutron diffusion equation expressed analytically in each node of the R-Z cylindrical geometry sub-domain (or node) is transformed into one-dimensional equations by means of the usual transverse integration procedure. The one-dimensional diffusion equations in each of the directions are then solved using the analytic Green’s function method. The resulting equations for the entire domain are then re-cast in the form of the Direct Coarse Mesh Finite Difference (D-CMFD) for convenience of solution. The implicit Euler method is used for the time variable discretization. In order to correctly treat the cusping effect for nodes that contain a partially inserted control rod a method is used that takes advantage of the Green’s function solution available in the intrinsic method. In this corrected treatment, the nodes are re-homogenized using axial flux shapes reconstructed based on the

  4. Large Wind Turbine Rotor Design using an Aero-Elastic / Free-Wake Panel Coupling Code

    NASA Astrophysics Data System (ADS)

    Sessarego, Matias; Ramos-García, Néstor; Shen, Wen Zhong; Nørkær Sørensen, Jens

    2016-09-01

    Despite the advances in computing resources in the recent years, the majority of large wind-turbine rotor design problems still rely on aero-elastic codes that use blade element momentum (BEM) approaches to model the rotor aerodynamics. The present work describes an approach to wind-turbine rotor design by incorporating a higher-fidelity free-wake panel aero-elastic coupling code called MIRAS-FLEX. The optimization procedure includes a series of design load cases and a simple structural design code. Due to the heavy MIRAS-FLEX computations, a surrogate-modeling approach is applied to mitigate the overall computational cost of the optimization. Improvements in cost of energy, annual energy production, maximum flap-wise root bending moment, and blade mass were obtained for the NREL 5MW baseline wind turbine.

  5. Use of SUSA in Uncertainty and Sensitivity Analysis for INL VHTR Coupled Codes

    SciTech Connect

    Gerhard Strydom

    2010-06-01

    The need for a defendable and systematic Uncertainty and Sensitivity approach that conforms to the Code Scaling, Applicability, and Uncertainty (CSAU) process, and that could be used for a wide variety of software codes, was defined in 2008.The GRS (Gesellschaft für Anlagen und Reaktorsicherheit) company of Germany has developed one type of CSAU approach that is particularly well suited for legacy coupled core analysis codes, and a trial version of their commercial software product SUSA (Software for Uncertainty and Sensitivity Analyses) was acquired on May 12, 2010. This interim milestone report provides an overview of the current status of the implementation and testing of SUSA at the INL VHTR Project Office.

  6. Edge kinetic-MHD code coupling and monitoring with Kepler workflow

    NASA Astrophysics Data System (ADS)

    Cummings, Julian; Klasky, Scott; Barreto, Roselyne; Podhorszki, Norbert; Park, Gunyoung; Chang, C. S.; Sugiyama, Linda; Snyder, Phil

    2007-11-01

    Simulations of edge pressure pedestal buildup and ELM crash in a typical DIII-D H-mode discharge are performed using Kepler, an open-source scientific workflow system that manages complex applications. A Kepler workflow conducts an edge plasma simulation that loosely couples the kinetic code XGC0 with an ideal MHD linear stability analysis code ELITE and a two-fluid MHD initial value code M3D. XGC0 simulation data are processed by the workflow into simple graphs that may be selectively displayed via the Dashboard, a monitoring tool that allows real-time data tracking within a standard Web browser. Kepler runs ELITE to assess plasma profiles from XGC0 for linear ELM instability. If unstable, Kepler launches M3D to simulate the nonlinear ELM crash. Periodic outputs of plasma fluid quantities are automatically imaged and may be displayed on the Dashboard. Finally, Kepler archives all simulation output, processed images, and provenance tracking data. Preparation, execution, and monitoring of this coupled-code simulation using the Kepler scientific workflow system are described.

  7. Mixing models for the two-way-coupling of CFD codes and zero-dimensional multi-zone codes to model HCCI combustion

    SciTech Connect

    Barths, H.; Felsch, C.; Peters, N.

    2009-01-15

    The objective of this work is the development of a consistent mixing model for the two-way-coupling of a CFD code and a multi-zone code based on multiple zero-dimensional reactors. The two-way-coupling allows for a computationally efficient modeling of HCCI combustion. The physical domain in the CFD code is subdivided into multiple zones based on three phase variables (fuel mixture fraction, dilution, and total enthalpy). Those phase variables are sufficient for the description of the thermodynamic state of each zone, assuming that each zone is at the same pressure. Each zone in the CFD code is represented by a corresponding zone in the zero-dimensional code. The zero-dimensional code solves the chemistry for each zone, and the heat release is fed back into the CFD code. The difficulty in facing this kind of methodology is to keep the thermodynamic state of each zone consistent between the CFD code and the zero-dimensional code after the initialization of the zones in the multi-zone code has taken place. The thermodynamic state of each zone (and thereby the phase variables) will change in time due to mixing and source terms (e.g., vaporization of fuel, wall heat transfer). The focus of this work lies on a consistent description of the mixing between the zones in phase space in the zero-dimensional code, based on the solution of the CFD code. Two mixing models with different degrees of accuracy, complexity, and numerical effort are described. The most elaborate mixing model (and an appropriate treatment of the source terms) keeps the thermodynamic state of the zones in the CFD code and the zero-dimensional code identical. The models are applied to a test case of HCCI combustion in an engine. (author)

  8. Mixing models for the two-way-coupling of CFD codes and zero-dimensional multi-zone codes to model HCCI combustion

    SciTech Connect

    Barths, H.; Felsch, C.; Peters, N.

    2008-11-15

    The objective of this work is the development of a consistent mixing model for the two-way-coupling of a CFD code and a multi-zone code based on multiple zero-dimensional reactors. The two-way-coupling allows for a computationally efficient modeling of HCCI combustion. The physical domain in the CFD code is subdivided into multiple zones based on three phase variables (fuel mixture fraction, dilution, and total enthalpy). Those phase variables are sufficient for the description of the thermodynamic state of each zone, assuming that each zone is at the same pressure. Each zone in the CFD code is represented by a corresponding zone in the zero-dimensional code. The zero-dimensional code solves the chemistry for each zone, and the heat release is fed back into the CFD code. The difficulty in facing this kind of methodology is to keep the thermodynamic state of each zone consistent between the CFD code and the zero-dimensional code after the initialization of the zones in the multi-zone code has taken place. The thermodynamic state of each zone (and thereby the phase variables) will change in time due to mixing and source terms (e.g., vaporization of fuel, wall heat transfer). The focus of this work lies on a consistent description of the mixing between the zones in phase space in the zero-dimensional code, based on the solution of the CFD code. Two mixing models with different degrees of accuracy, complexity, and numerical effort are described. The most elaborate mixing model (and an appropriate treatment of the source terms) keeps the thermodynamic state of the zones in the CFD code and the zero-dimensional code identical. The models are applied to a test case of HCCI combustion in an engine. (author)

  9. Studies of coupled cavity LINAC (CCL) accelerating structures with 3-D codes

    SciTech Connect

    Spalek, G.

    2000-08-01

    The cw CCL being designed for the Accelerator Production of Tritium (APT) project accelerates protons from 96 MeV to 211 MeV. It consists of 99 segments each containing up to seven accelerating cavities. Segments are coupled by intersegment coupling cavities and grouped into supermodules. The design method needs to address not only basic cavity sizing for a given coupling and pi/2 mode frequency, but also the effects of high power densities on the cavity frequency, mechanical stresses, and the structure's stop band during operation. On the APT project, 3-D RF (Ansoft Corp.'s HFSS) and coupled RF/structural (Ansys Inc.'s ANSYS) codes are being used. to develop tools to address the above issues and guide cooling channel design. The code's predictions are being checked against available low power Aluminum models. Stop band behavior under power will be checked once the tools are extended to CCDTL structures that have been tested at high power. A summary of calculations made to date and agreement with measured results will be presented.

  10. Integrated TIGER Series of Coupled Electron/Photon Monte Carlo Transport Codes System.

    SciTech Connect

    VALDEZ, GREG D.

    2012-11-30

    Version: 00 Distribution is restricted to US Government Agencies and Their Contractors Only. The Integrated Tiger Series (ITS) is a powerful and user-friendly software package permitting state-of-the-art Monte Carlo solution of linear time-independent coupled electron/photon radiation transport problems, with or without the presence of macroscopic electric and magnetic fields of arbitrary spatial dependence. The goal has been to simultaneously maximize operational simplicity and physical accuracy. Through a set of preprocessor directives, the user selects one of the many ITS codes. The ease with which the makefile system is applied combines with an input scheme based on order-independent descriptive keywords that makes maximum use of defaults and internal error checking to provide experimentalists and theorists alike with a method for the routine but rigorous solution of sophisticated radiation transport problems. Physical rigor is provided by employing accurate cross sections, sampling distributions, and physical models for describing the production and transport of the electron/photon cascade from 1.0 GeV down to 1.0 keV. The availability of source code permits the more sophisticated user to tailor the codes to specific applications and to extend the capabilities of the codes to more complex applications. Version 6, the latest version of ITS, contains (1) improvements to the ITS 5.0 codes, and (2) conversion to Fortran 95. The general user friendliness of the software has been enhanced through memory allocation to reduce the need for users to modify and recompile the code.

  11. Radiation Coupling with the FUN3D Unstructured-Grid CFD Code

    NASA Technical Reports Server (NTRS)

    Wood, William A.

    2012-01-01

    The HARA radiation code is fully-coupled to the FUN3D unstructured-grid CFD code for the purpose of simulating high-energy hypersonic flows. The radiation energy source terms and surface heat transfer, under the tangent slab approximation, are included within the fluid dynamic ow solver. The Fire II flight test, at the Mach-31 1643-second trajectory point, is used as a demonstration case. Comparisons are made with an existing structured-grid capability, the LAURA/HARA coupling. The radiative surface heat transfer rates from the present approach match the benchmark values within 6%. Although radiation coupling is the focus of the present work, convective surface heat transfer rates are also reported, and are seen to vary depending upon the choice of mesh connectivity and FUN3D ux reconstruction algorithm. On a tetrahedral-element mesh the convective heating matches the benchmark at the stagnation point, but under-predicts by 15% on the Fire II shoulder. Conversely, on a mixed-element mesh the convective heating over-predicts at the stagnation point by 20%, but matches the benchmark away from the stagnation region.

  12. Coupling Hydrodynamic and Wave Propagation Codes for Modeling of Seismic Waves recorded at the SPE Test.

    NASA Astrophysics Data System (ADS)

    Larmat, C. S.; Rougier, E.; Delorey, A.; Steedman, D. W.; Bradley, C. R.

    2016-12-01

    The goal of the Source Physics Experiment (SPE) is to bring empirical and theoretical advances to the problem of detection and identification of underground nuclear explosions. For this, the SPE program includes a strong modeling effort based on first principles calculations with the challenge to capture both the source and near-source processes and those taking place later in time as seismic waves propagate within complex 3D geologic environments. In this paper, we report on results of modeling that uses hydrodynamic simulation codes (Abaqus and CASH) coupled with a 3D full waveform propagation code, SPECFEM3D. For modeling the near source region, we employ a fully-coupled Euler-Lagrange (CEL) modeling capability with a new continuum-based visco-plastic fracture model for simulation of damage processes, called AZ_Frac. These capabilities produce high-fidelity models of various factors believed to be key in the generation of seismic waves: the explosion dynamics, a weak grout-filled borehole, the surrounding jointed rock, and damage creation and deformations happening around the source and the free surface. SPECFEM3D, based on the Spectral Element Method (SEM) is a direct numerical method for full wave modeling with mathematical accuracy. The coupling interface consists of a series of grid points of the SEM mesh situated inside of the hydrodynamic code's domain. Displacement time series at these points are computed using output data from CASH or Abaqus (by interpolation if needed) and fed into the time marching scheme of SPECFEM3D. We will present validation tests with the Sharpe's model and comparisons of waveforms modeled with Rg waves (2-8Hz) that were recorded up to 2 km for SPE. We especially show effects of the local topography, velocity structure and spallation. Our models predict smaller amplitudes of Rg waves for the first five SPE shots compared to pure elastic models such as Denny &Johnson (1991).

  13. An analysis of lower hybrid grill coupling using an efficient full wave code

    NASA Astrophysics Data System (ADS)

    Preinhaelter, Josef; Urban, Jakub; Vahala, Linda; Vahala, George

    2012-08-01

    Lower hybrid (LH) waves are very important for heating and current drive in tokamaks. Phased arrays of rectangular waveguides, generally called grills, are typically used as launchers. We develop a code which solves, in the 3D geometry of the grill structure, the problem of efficient coupling: the power density spectrum of the emitted waves, the power reflection coefficient, the power lost by the waves launched in the inaccessible region and the directivity of the waves transmitted into the accessible region. The code is also able to determine the 3D electric field in front of the grill. An efficient adaptive full wave solver is used to determine the wave propagation in a 1D plasma slab geometry. To evaluate the very large number of 2D k-space infinite integrals for the coupling elements, we have developed a method based on high order Gaussian quadratures combined with 2D B-splines in the accessible region for the plasma related part of the integrands. This method is well suited to handle large structures and many modes because the computational time is only weakly dependent on the size of the problem. An iterative evaluation of the integrands in the inaccessible region is adopted to handle the presently overlooked near singular behaviour of the integrands as well as the spectral power density associated with the eigenmodes. The role of collisions is clarified in this context. The code is applied to several COMPASS grills operating either at 1.3 GHz or at 3.7 GHz. First we thouroughly analyse the original 1.3 GHz, 8-waveguide conventional grill at various waveguide phasing. Then, the coupling of two grill designs for 3.7 GHz is solved. The suitability of all the grills is discussed, showing compatible grill and plasma parameter ranges.

  14. Pedestal Fueling Simulations with a Coupled Kinetic-kinetic Plasma-neutral Transport Code

    SciTech Connect

    D.P. Stotler, C.S. Chang, S.H. Ku, J. Lang and G.Y. Park

    2012-08-29

    A Monte Carlo neutral transport routine, based on DEGAS2, has been coupled to the guiding center ion-electron-neutral neoclassical PIC code XGC0 to provide a realistic treatment of neutral atoms and molecules in the tokamak edge plasma. The DEGAS2 routine allows detailed atomic physics and plasma-material interaction processes to be incorporated into these simulations. The spatial pro le of the neutral particle source used in the DEGAS2 routine is determined from the uxes of XGC0 ions to the material surfaces. The kinetic-kinetic plasma-neutral transport capability is demonstrated with example pedestal fueling simulations.

  15. Energy Conservation Tests of a Coupled Kinetic-kinetic Plasma-neutral Transport Code

    SciTech Connect

    Stotler, D. P.; Chang, C. S.; Ku, S. H.; Lang, J.; Park, G.

    2012-08-29

    A Monte Carlo neutral transport routine, based on DEGAS2, has been coupled to the guiding center ion-electron-neutral neoclassical PIC code XGC0 to provide a realistic treatment of neutral atoms and molecules in the tokamak edge plasma. The DEGAS2 routine allows detailed atomic physics and plasma-material interaction processes to be incorporated into these simulations. The spatial pro le of the neutral particle source used in the DEGAS2 routine is determined from the uxes of XGC0 ions to the material surfaces. The kinetic-kinetic plasma-neutral transport capability is demonstrated with example pedestal fueling simulations.

  16. Parameterization of nuclear cross-sections for coupled neutronic- thermalhydraulic codes

    SciTech Connect

    Miro, R.; Verdu, G.; Barrachina, T.; Rosello, O.

    2006-07-01

    The present work consists of developing an in-house methodology, called SIMTAB, to characterize, in a simplified way, the reactor core of LWR Nuclear Power Plants. Specifically, a cross-sections and kinetic parameters set are obtained as a function of the prompt and control variables. So that, the core can be modeled using a limited number of neutronic regions, in such a way that the reactor kinetic behavior is properly characterized. This simplification of the reactor core permits, from an operative point of view, the use of few cross sections data sets in coupled 3D neutronic-thermalhydraulic codes. (authors)

  17. Surface code architecture for donors and dots in silicon with imprecise and nonuniform qubit couplings

    NASA Astrophysics Data System (ADS)

    Pica, G.; Lovett, B. W.; Bhatt, R. N.; Schenkel, T.; Lyon, S. A.

    2016-01-01

    A scaled quantum computer with donor spins in silicon would benefit from a viable semiconductor framework and a strong inherent decoupling of the qubits from the noisy environment. Coupling neighboring spins via the natural exchange interaction according to current designs requires gate control structures with extremely small length scales. We present a silicon architecture where bismuth donors with long coherence times are coupled to electrons that can shuttle between adjacent quantum dots, thus relaxing the pitch requirements and allowing space between donors for classical control devices. An adiabatic SWAP operation within each donor/dot pair solves the scalability issues intrinsic to exchange-based two-qubit gates, as it does not rely on subnanometer precision in donor placement and is robust against noise in the control fields. We use this SWAP together with well established global microwave Rabi pulses and parallel electron shuttling to construct a surface code that needs minimal, feasible local control.

  18. Surface code architecture for donors and dots in silicon with imprecise and nonuniform qubit couplings

    SciTech Connect

    Pica, G.; Lovett, B. W.; Bhatt, R. N.; Schenkel, T.; Lyon, S. A.

    2016-01-14

    A scaled quantum computer with donor spins in silicon would benefit from a viable semiconductor framework and a strong inherent decoupling of the qubits from the noisy environment. Coupling neighboring spins via the natural exchange interaction according to current designs requires gate control structures with extremely small length scales. In this work, we present a silicon architecture where bismuth donors with long coherence times are coupled to electrons that can shuttle between adjacent quantum dots, thus relaxing the pitch requirements and allowing space between donors for classical control devices. An adiabatic SWAP operation within each donor/dot pair solves the scalability issues intrinsic to exchange-based two-qubit gates, as it does not rely on subnanometer precision in donor placement and is robust against noise in the control fields. In conclusion, we use this SWAP together with well established global microwave Rabi pulses and parallel electron shuttling to construct a surface code that needs minimal, feasible local control.

  19. MAC/GMC Code Enhanced for Coupled Electromagnetothermoelastic Analysis of Smart Composites

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Arnold, Steven M.; Aboudi, Jacob

    2002-01-01

    Intelligent materials are those that exhibit coupling between their electromagnetic response and their thermomechanical response. This coupling allows smart materials to react mechanically (e.g., an induced displacement) to applied electrical or magnetic fields (for instance). These materials find many important applications in sensors, actuators, and transducers. Recently interest has arisen in the development of smart composites that are formed via the combination of two or more phases, one or more of which is a smart material. To design with and utilize smart composites, designers need theories that predict the coupled smart behavior of these materials from the electromagnetothermoelastic properties of the individual phases. The micromechanics model known as the generalized method of cells (GMC) has recently been extended to provide this important capability. This coupled electromagnetothermoelastic theory has recently been incorporated within NASA Glenn Research Center's Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC). This software package is user friendly and has many additional features that render it useful as a design and analysis tool for composite materials in general, and with its new capabilities, for smart composites as well.

  20. Higher-order harmonics coupling in different free-electron laser codes

    NASA Astrophysics Data System (ADS)

    Giannessi, L.; Freund, H. P.; Musumeci, P.; Reiche, S.

    2008-08-01

    The capability for simulation of the dynamics of a free-electron laser including the higher-order harmonics in linear undulators exists in several existing codes as MEDUSA [H.P. Freund, S.G. Biedron, and S.V. Milton, IEEE J. Quantum Electron. 27 (2000) 243; H.P. Freund, Phys. Rev. ST-AB 8 (2005) 110701] and PERSEO [L. Giannessi, Overview of Perseo, a system for simulating FEL dynamics in Mathcad, < http://www.jacow.org>, in: Proceedings of FEL 2006 Conference, BESSY, Berlin, Germany, 2006, p. 91], and has been recently implemented in GENESIS 1.3 [See < http://www.perseo.enea.it>]. MEDUSA and GENESIS also include the dynamics of even harmonics induced by the coupling through the betatron motion. In addition MEDUSA, which is based on a non-wiggler averaged model, is capable of simulating the generation of even harmonics in the transversally cold beam regime, i.e. when the even harmonic coupling arises from non-linear effects associated with longitudinal particle dynamics and not to a finite beam emittance. In this paper a comparison between the predictions of the codes in different conditions is given.

  1. An Analysis of Lower Hybrid Grill Coupling Using an Efficient Full Wave Code

    NASA Astrophysics Data System (ADS)

    Preinhaelter, Josef; Urban, Jakub; Vahala, Linda; Vahala, George

    2012-03-01

    Lower hybrid (LH) waves are very important for heating and current drive in tokamaks. A code is developed for 3D grills and the problem of efficient coupling: the power density spectrum, the power reflection coefficient, the power lost by the waves launched in the inaccessible region and the directivity of the waves. An efficient adaptive full wave solver is used to determine the wave propagation in a 1D plasma slab geometry. The very large number of 2D k-space infinite integrals for the coupling elements are solved using high order Gaussian quadratures combined with 2D B-splines in the accessible region. The code can handle large structures and many modes because the computational time is only weakly dependent on the size of the problem. An iterative evaluation of the integrands in the inaccessible region solves the currently overlooked near singular behavior of the integrands as well as the spectral power density associated with the eigenmodes. The role of collisions is clarified. We determine the 3D electric field in front of the grill and consider several COMPASS grills operating either at 1.3 GHz or 3.7 GHz with various waveguide phasing.

  2. A Coupling Methodology for Mesoscale-informed Nuclear Fuel Performance Codes

    SciTech Connect

    Michael Tonks; Derek Gaston; Cody Permann; Paul Millett; Glen Hansen; Dieter Wolf

    2010-10-01

    This study proposes an approach for capturing the effect of microstructural evolution on reactor fuel performance by coupling a mesoscale irradiated microstructure model with a finite element fuel performance code. To achieve this, the macroscale system is solved in a parallel, fully coupled, fully-implicit manner using the preconditioned Jacobian-free Newton Krylov (JFNK) method. Within the JFNK solution algorithm, microstructure-influenced material parameters are calculated by the mesoscale model and passed back to the macroscale calculation. Due to the stochastic nature of the mesoscale model, a dynamic fitting technique is implemented to smooth roughness in the calculated material parameters. The proposed methodology is demonstrated on a simple model of a reactor fuel pellet. In the model, INL’s BISON fuel performance code calculates the steady-state temperature profile in a fuel pellet and the microstructure-influenced thermal conductivity is determined with a phase field model of irradiated microstructures. This simple multiscale model demonstrates good nonlinear convergence and near ideal parallel scalability. By capturing the formation of large mesoscale voids in the pellet interior, the multiscale model predicted the irradiation-induced reduction in the thermal conductivity commonly observed in reactors.

  3. Filtering authentic sepsis arising in the ICU using administrative codes coupled to a SIRS screening protocol.

    PubMed

    Sudduth, Christopher L; Overton, Elizabeth C; Lyu, Peter F; Rimawi, Ramzy H; Buchman, Timothy G

    2017-06-01

    Using administrative codes and minimal physiologic and laboratory data, we sought a high-specificity identification strategy for patients whose sepsis initially appeared during their ICU stay. We studied all patients discharged from an academic hospital between September 1, 2013 and October 31, 2014. Administrative codes and minimal physiologic and laboratory criteria were used to identify patients at high risk of developing the onset of sepsis in the ICU. Two clinicians then independently reviewed the patient record to verify that the screened-in patients appeared to become septic during their ICU admission. Clinical chart review verified sepsis in 437/466 ICU stays (93.8%). Of these 437 encounters, only 151 (34.6%) were admitted to the ICU with neither SIRS nor evidence of infection and therefore appeared to become septic during their ICU stay. Selected administrative codes coupled to SIRS criteria and applied to patients admitted to ICU can yield up to 94% authentic sepsis patients. However, only 1/3 of patients thus identified appeared to become septic during their ICU stay. Studies that depend on high-intensity monitoring for description of the time course of sepsis require clinician review and verification that sepsis initially appeared during the monitoring period. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Phase-amplitude coupling supports phase coding in human ECoG

    PubMed Central

    Watrous, Andrew J; Deuker, Lorena; Fell, Juergen; Axmacher, Nikolai

    2015-01-01

    Prior studies have shown that high-frequency activity (HFA) is modulated by the phase of low-frequency activity. This phenomenon of phase-amplitude coupling (PAC) is often interpreted as reflecting phase coding of neural representations, although evidence for this link is still lacking in humans. Here, we show that PAC indeed supports phase-dependent stimulus representations for categories. Six patients with medication-resistant epilepsy viewed images of faces, tools, houses, and scenes during simultaneous acquisition of intracranial recordings. Analyzing 167 electrodes, we observed PAC at 43% of electrodes. Further inspection of PAC revealed that category specific HFA modulations occurred at different phases and frequencies of the underlying low-frequency rhythm, permitting decoding of categorical information using the phase at which HFA events occurred. These results provide evidence for categorical phase-coded neural representations and are the first to show that PAC coincides with phase-dependent coding in the human brain. DOI: http://dx.doi.org/10.7554/eLife.07886.001 PMID:26308582

  5. Methodology of Internal Assessment of Uncertainty and Extension to Neutron Kinetics/Thermal-Hydraulics Coupled Codes

    SciTech Connect

    Petruzzi, A.; D'Auria, F.; Giannotti, W.; Ivanov, K.

    2005-02-15

    The best-estimate calculation results from complex system codes are affected by approximations that are unpredictable without the use of computational tools that account for the various sources of uncertainty.The code with (the capability of) internal assessment of uncertainty (CIAU) has been previously proposed by the University of Pisa to realize the integration between a qualified system code and an uncertainty methodology and to supply proper uncertainty bands each time a nuclear power plant (NPP) transient scenario is calculated. The derivation of the methodology and the results achieved by the use of CIAU are discussed to demonstrate the main features and capabilities of the method.In a joint effort between the University of Pisa and The Pennsylvania State University, the CIAU method has been recently extended to evaluate the uncertainty of coupled three-dimensional neutronics/thermal-hydraulics calculations. The result is CIAU-TN. The feasibility of the approach has been demonstrated, and sample results related to the turbine trip transient in the Peach Bottom NPP are shown. Notwithstanding that the full implementation and use of the procedure requires a database of errors not available at the moment, the results give an idea of the errors expected from the present computational tools.

  6. TART 2000: A Coupled Neutron-Photon, 3-D, Combinatorial Geometry, Time Dependent, Monte Carlo Transport Code

    SciTech Connect

    Cullen, D.E

    2000-11-22

    TART2000 is a coupled neutron-photon, 3 Dimensional, combinatorial geometry, time dependent Monte Carlo radiation transport code. This code can run on any modern computer. It is a complete system to assist you with input Preparation, running Monte Carlo calculations, and analysis of output results. TART2000 is also incredibly FAST; if you have used similar codes, you will be amazed at how fast this code is compared to other similar codes. Use of the entire system can save you a great deal of time and energy. TART2000 is distributed on CD. This CD contains on-line documentation for all codes included in the system, the codes configured to run on a variety of computers, and many example problems that you can use to familiarize yourself with the system. TART2000 completely supersedes all older versions of TART, and it is strongly recommended that users only use the most recent version of TART2000 and its data files.

  7. TART98 a coupled neutron-photon 3-D, combinatorial geometry time dependent Monte Carlo Transport code

    SciTech Connect

    Cullen, D E

    1998-11-22

    TART98 is a coupled neutron-photon, 3 Dimensional, combinatorial geometry, time dependent Monte Carlo radiation transport code. This code can run on any modern computer. It is a complete system to assist you with input preparation, running Monte Carlo calculations, and analysis of output results. TART98 is also incredibly FAST; if you have used similar codes, you will be amazed at how fast this code is compared to other similar codes. Use of the entire system can save you a great deal of time and energy. TART98 is distributed on CD. This CD contains on-line documentation for all codes included in the system, the codes configured to run on a variety of computers, and many example problems that you can use to familiarize yourself with the system. TART98 completely supersedes all older versions of TART, and it is strongly recommended that users only use the most recent version of TART98 and its data files.

  8. Coupling of Sph and Finite Element Codes for Multi-Layer Orbital Debris Shield Design

    NASA Technical Reports Server (NTRS)

    Fahrenthold, Eric P.

    1997-01-01

    Particle-based hydrodynamics models offer distinct advantages over Eulerian and Lagrangian hydrocodes in particular shock physics applications. Particle models are designed to avoid the mesh distortion and state variable diffusion problems which can hinder the effective use of Lagrangian and Eulerian codes respectively. However conventional particle-in-cell and smooth particle hydrodynamics methods employ particles which are actually moving interpolation points. A new particle-based modeling methodology, termed Hamiltonian particle hydrodynamics, was developed by Fahrenthold and Koo (1997) to provide an alternative, fully Lagrangian, energy-based approach to shock physics simulations. This alternative formulation avoids the tensile and boundary instabilities associated with standard smooth particle hydrodynamics formulations and the diffusive grid- to-particle mapping schemes characteristic of particle-in-cell methods. In the work described herein, the method of Fahrenthold and Koo has been extended, by coupling the aforementioned hydrodynamic particle model to a hexahedral finite element based description of the continuum dynamics. The resulting continuum model retains all of the features (including general contact-impact effects) of Hamiltonian particle hydrodynamics, while in addition accounting for tensile strength, plasticity, and damage effects important in the simulation of hypervelocity impact on orbital debris shielding. A three dimensional, vectorized, and autotasked implementation of the extended particle method described here has been coded for application to orbital debris shielding design. Source code for the pre-processor (PREP), analysis code (EXOS), post-processor (POST), and rezoner (ZONE), have been delivered separately, along with a User's Guide describing installation and application of the software.

  9. Trading Speed and Accuracy by Coding Time: A Coupled-circuit Cortical Model

    PubMed Central

    Standage, Dominic; You, Hongzhi; Wang, Da-Hui; Dorris, Michael C.

    2013-01-01

    Our actions take place in space and time, but despite the role of time in decision theory and the growing acknowledgement that the encoding of time is crucial to behaviour, few studies have considered the interactions between neural codes for objects in space and for elapsed time during perceptual decisions. The speed-accuracy trade-off (SAT) provides a window into spatiotemporal interactions. Our hypothesis is that temporal coding determines the rate at which spatial evidence is integrated, controlling the SAT by gain modulation. Here, we propose that local cortical circuits are inherently suited to the relevant spatial and temporal coding. In simulations of an interval estimation task, we use a generic local-circuit model to encode time by ‘climbing’ activity, seen in cortex during tasks with a timing requirement. The model is a network of simulated pyramidal cells and inhibitory interneurons, connected by conductance synapses. A simple learning rule enables the network to quickly produce new interval estimates, which show signature characteristics of estimates by experimental subjects. Analysis of network dynamics formally characterizes this generic, local-circuit timing mechanism. In simulations of a perceptual decision task, we couple two such networks. Network function is determined only by spatial selectivity and NMDA receptor conductance strength; all other parameters are identical. To trade speed and accuracy, the timing network simply learns longer or shorter intervals, driving the rate of downstream decision processing by spatially non-selective input, an established form of gain modulation. Like the timing network's interval estimates, decision times show signature characteristics of those by experimental subjects. Overall, we propose, demonstrate and analyse a generic mechanism for timing, a generic mechanism for modulation of decision processing by temporal codes, and we make predictions for experimental verification. PMID:23592967

  10. Analysis of the Peach Bottom Turbine Trip 2 Experiment by Coupled RELAP5-PARCS Three-Dimensional Codes

    SciTech Connect

    Bousbia-Salah, Anis; Vedovi, Juswald; D'Auria, Francesco; Ivanov, Kostadin; Galassi, Giorgio

    2004-10-15

    Thanks to continuous progress in computer technology, it is now possible to perform best-estimate simulations of complex scenarios in nuclear power plants. This method is carried out through the coupling of three-dimensional (3-D) neutron modeling of a reactor core into system codes. It is particularly appropriate for transients that involve strong interactions between core neutronics and reactor loop thermal hydraulics. For this purpose, the Peach Bottom boiling water reactor turbine trip test was selected to challenge the capability of such coupled codes. The test is characterized by a power excursion induced by rapid core pressurization and a self-limiting course behavior. In order to perform the closest simulation, the coupled thermal-hydraulic system code RELAP5 and 3-D neutron kinetic code PARCS were used. The obtained results are compared to those available from experimental data. Overall, the coupled code calculations globally predict the most significant observed aspects of the transient, such as the pressure wave amplitude across the core and the power course, with an acceptable agreement. However, sensitivity studies revealed that more-accurate code models should be considered in order to better match the void dynamic and the cross-section variations during transient conditions.

  11. Simulations of the Dynamics of the Coupled Energetic and Relativistic Electrons Using VERB Code

    NASA Astrophysics Data System (ADS)

    Shprits, Y.; Kellerman, A. C.; Drozdov, A.

    2015-12-01

    Modeling and understanding of ring current and radiation belt coupled system has been a grand challenge since the beginning of the space age. In this study we show long term simulations with a 3D VERB code of modeling the radiation belts with boundary conditions derived from observations around geosynchronous orbit. We also present 4D VERB simulations that include convective transport, radial diffusion, pitch angle scattering and local acceleration. VERB simulations show that the lower energy inward transport is dominated by the convection and higher energy transport is dominated by the diffusive radial transport. We also show that at energies of 100s of keV a number of processes work simultaneously including convective transport, radial diffusion, local acceleration, loss to the loss cone and loss to the magnetopause. The results of the simulaiton of March 2013 storm are compared with Van Allen Probes observations.

  12. Simulation of high-energy radiation belt electron fluxes using NARMAX-VERB coupled codes.

    PubMed

    Pakhotin, I P; Drozdov, A Y; Shprits, Y Y; Boynton, R J; Subbotin, D A; Balikhin, M A

    2014-10-01

    This study presents a fusion of data-driven and physics-driven methodologies of energetic electron flux forecasting in the outer radiation belt. Data-driven NARMAX (Nonlinear AutoRegressive Moving Averages with eXogenous inputs) model predictions for geosynchronous orbit fluxes have been used as an outer boundary condition to drive the physics-based Versatile Electron Radiation Belt (VERB) code, to simulate energetic electron fluxes in the outer radiation belt environment. The coupled system has been tested for three extended time periods totalling several weeks of observations. The time periods involved periods of quiet, moderate, and strong geomagnetic activity and captured a range of dynamics typical of the radiation belts. The model has successfully simulated energetic electron fluxes for various magnetospheric conditions. Physical mechanisms that may be responsible for the discrepancies between the model results and observations are discussed.

  13. Simulation of high-energy radiation belt electron fluxes using NARMAX-VERB coupled codes

    PubMed Central

    Pakhotin, I P; Drozdov, A Y; Shprits, Y Y; Boynton, R J; Subbotin, D A; Balikhin, M A

    2014-01-01

    This study presents a fusion of data-driven and physics-driven methodologies of energetic electron flux forecasting in the outer radiation belt. Data-driven NARMAX (Nonlinear AutoRegressive Moving Averages with eXogenous inputs) model predictions for geosynchronous orbit fluxes have been used as an outer boundary condition to drive the physics-based Versatile Electron Radiation Belt (VERB) code, to simulate energetic electron fluxes in the outer radiation belt environment. The coupled system has been tested for three extended time periods totalling several weeks of observations. The time periods involved periods of quiet, moderate, and strong geomagnetic activity and captured a range of dynamics typical of the radiation belts. The model has successfully simulated energetic electron fluxes for various magnetospheric conditions. Physical mechanisms that may be responsible for the discrepancies between the model results and observations are discussed. PMID:26167432

  14. Application of power time-projection on the operator-splitting coupling scheme of the TRACE/S3K coupled code

    SciTech Connect

    Wicaksono, D.; Zerkak, O.; Nikitin, K.; Ferroukhi, H.; Chawla, R.

    2013-07-01

    This paper reports refinement studies on the temporal coupling scheme and time-stepping management of TRACE/S3K, a dynamically coupled code version of the thermal-hydraulics system code TRACE and the 3D core simulator Simulate-3K. The studies were carried out for two test cases, namely a PWR rod ejection accident and the Peach Bottom 2 Turbine Trip Test 2. The solution of the coupled calculation, especially the power peak, proves to be very sensitive to the time-step size with the currently employed conventional operator-splitting. Furthermore, a very small time-step size is necessary to achieve decent accuracy. This degrades the trade-off between accuracy and performance. A simple and computationally cheap implementation of time-projection of power has been shown to be able to improve the convergence of the coupled calculation. This scheme is able to achieve a prescribed accuracy with a larger time-step size. (authors)

  15. Surface code architecture for donors and dots in silicon with imprecise and nonuniform qubit couplings

    DOE PAGES

    Pica, G.; Lovett, B. W.; Bhatt, R. N.; ...

    2016-01-14

    A scaled quantum computer with donor spins in silicon would benefit from a viable semiconductor framework and a strong inherent decoupling of the qubits from the noisy environment. Coupling neighboring spins via the natural exchange interaction according to current designs requires gate control structures with extremely small length scales. In this work, we present a silicon architecture where bismuth donors with long coherence times are coupled to electrons that can shuttle between adjacent quantum dots, thus relaxing the pitch requirements and allowing space between donors for classical control devices. An adiabatic SWAP operation within each donor/dot pair solves the scalabilitymore » issues intrinsic to exchange-based two-qubit gates, as it does not rely on subnanometer precision in donor placement and is robust against noise in the control fields. In conclusion, we use this SWAP together with well established global microwave Rabi pulses and parallel electron shuttling to construct a surface code that needs minimal, feasible local control.« less

  16. Code Coupling via Jacobian-Free Newton-Krylov Algorithms with Application to Magnetized Fluid Plasma and Kinetic Neutral Models

    SciTech Connect

    Joseph, Ilon

    2014-05-27

    Jacobian-free Newton-Krylov (JFNK) algorithms are a potentially powerful class of methods for solving the problem of coupling codes that address dfferent physics models. As communication capability between individual submodules varies, different choices of coupling algorithms are required. The more communication that is available, the more possible it becomes to exploit the simple sparsity pattern of the Jacobian, albeit of a large system. The less communication that is available, the more dense the Jacobian matrices become and new types of preconditioners must be sought to efficiently take large time steps. In general, methods that use constrained or reduced subsystems can offer a compromise in complexity. The specific problem of coupling a fluid plasma code to a kinetic neutrals code is discussed as an example.

  17. An Analysis of Language Code Used by the Cross-Married Couples, Banjarese-Javanese Ethnics: A Case Study in South Kalimantan Province, Indonesia

    ERIC Educational Resources Information Center

    Supiani

    2016-01-01

    This research aims to describe the use of language code applied by the participants and to find out the factors influencing the choice of language codes. This research is qualitative research that describe the use of language code in the cross married couples. The data are taken from the discourses about language code phenomena dealing with the…

  18. Supercomputing with TOUGH2 family codes for coupled multi-physics simulations of geologic carbon sequestration

    NASA Astrophysics Data System (ADS)

    Yamamoto, H.; Nakajima, K.; Zhang, K.; Nanai, S.

    2015-12-01

    Powerful numerical codes that are capable of modeling complex coupled processes of physics and chemistry have been developed for predicting the fate of CO2 in reservoirs as well as its potential impacts on groundwater and subsurface environments. However, they are often computationally demanding for solving highly non-linear models in sufficient spatial and temporal resolutions. Geological heterogeneity and uncertainties further increase the challenges in modeling works. Two-phase flow simulations in heterogeneous media usually require much longer computational time than that in homogeneous media. Uncertainties in reservoir properties may necessitate stochastic simulations with multiple realizations. Recently, massively parallel supercomputers with more than thousands of processors become available in scientific and engineering communities. Such supercomputers may attract attentions from geoscientist and reservoir engineers for solving the large and non-linear models in higher resolutions within a reasonable time. However, for making it a useful tool, it is essential to tackle several practical obstacles to utilize large number of processors effectively for general-purpose reservoir simulators. We have implemented massively-parallel versions of two TOUGH2 family codes (a multi-phase flow simulator TOUGH2 and a chemically reactive transport simulator TOUGHREACT) on two different types (vector- and scalar-type) of supercomputers with a thousand to tens of thousands of processors. After completing implementation and extensive tune-up on the supercomputers, the computational performance was measured for three simulations with multi-million grid models, including a simulation of the dissolution-diffusion-convection process that requires high spatial and temporal resolutions to simulate the growth of small convective fingers of CO2-dissolved water to larger ones in a reservoir scale. The performance measurement confirmed that the both simulators exhibit excellent

  19. Fan Noise Prediction System Development: Source/Radiation Field Coupling and Workstation Conversion for the Acoustic Radiation Code

    NASA Technical Reports Server (NTRS)

    Meyer, H. D.

    1993-01-01

    The Acoustic Radiation Code (ARC) is a finite element program used on the IBM mainframe to predict far-field acoustic radiation from a turbofan engine inlet. In this report, requirements for developers of internal aerodynamic codes regarding use of their program output an input for the ARC are discussed. More specifically, the particular input needed from the Bolt, Beranek and Newman/Pratt and Whitney (turbofan source noise generation) Code (BBN/PWC) is described. In a separate analysis, a method of coupling the source and radiation models, that recognizes waves crossing the interface in both directions, has been derived. A preliminary version of the coupled code has been developed and used for initial evaluation of coupling issues. Results thus far have shown that reflection from the inlet is sufficient to indicate that full coupling of the source and radiation fields is needed for accurate noise predictions ' Also, for this contract, the ARC has been modified for use on the Sun and Silicon Graphics Iris UNIX workstations. Changes and additions involved in this effort are described in an appendix.

  20. A bio-inspired sensor coupled with a bio-bar code and hybridization chain reaction for Hg(2+) assay.

    PubMed

    Xu, Huifeng; Zhu, Xi; Ye, Hongzhi; Yu, Lishuang; Chen, Guonan; Chi, Yuwu; Liu, Xianxiang

    2015-10-18

    In this article, a bio-inspired DNA sensor is developed, which is coupled with a bio-bar code and hybridization chain reaction. This bio-inspired sensor has a high sensitivity toward Hg(2+), and has been used to assay Hg(2+) in the extraction of Bauhinia championi with good satisfaction.

  1. Leap Frog and Time Step Sub-Cycle Scheme for Coupled Neutronics and Thermal-Hydraulic Codes

    SciTech Connect

    Lu, S.

    2002-07-01

    As the result of the advancing TCP/IP based inter-process communication technology, more and more legacy thermal-hydraulic codes have been coupled with neutronics codes to provide best-estimate capabilities for reactivity related reactor transient analysis. Most of the coupling schemes are based on closely coupled serial or parallel approaches. Therefore, the execution of the coupled codes usually requires significant CPU time, when a complicated system is analyzed. Leap Frog scheme has been used to reduce the run time. The extent of the decoupling is usually determined based on a trial and error process for a specific analysis. It is the intent of this paper to develop a set of general criteria, which can be used to invoke the automatic Leap Frog algorithm. The algorithm will not only provide the run time reduction but also preserve the accuracy. The criteria will also serve as the base of an automatic time step sub-cycle scheme when a sudden reactivity change is introduced and the thermal-hydraulic code is marching with a relatively large time step. (authors)

  2. ITS version 5.0 : the integrated TIGER series of coupled electron/photon Monte Carlo transport codes.

    SciTech Connect

    Franke, Brian Claude; Kensek, Ronald Patrick; Laub, Thomas William

    2004-06-01

    ITS is a powerful and user-friendly software package permitting state of the art Monte Carlo solution of linear time-independent couple electron/photon radiation transport problems, with or without the presence of macroscopic electric and magnetic fields of arbitrary spatial dependence. Our goal has been to simultaneously maximize operational simplicity and physical accuracy. Through a set of preprocessor directives, the user selects one of the many ITS codes. The ease with which the makefile system is applied combines with an input scheme based on order-independent descriptive keywords that makes maximum use of defaults and internal error checking to provide experimentalists and theorists alike with a method for the routine but rigorous solution of sophisticated radiation transport problems. Physical rigor is provided by employing accurate cross sections, sampling distributions, and physical models for describing the production and transport of the electron/photon cascade from 1.0 GeV down to 1.0 keV. The availability of source code permits the more sophisticated user to tailor the codes to specific applications and to extend the capabilities of the codes to more complex applications. Version 5.0, the latest version of ITS, contains (1) improvements to the ITS 3.0 continuous-energy codes, (2)multigroup codes with adjoint transport capabilities, and (3) parallel implementations of all ITS codes. Moreover the general user friendliness of the software has been enhanced through increased internal error checking and improved code portability.

  3. Development of a coupled dynamics code with transport theory capability and application to accelerator driven systems transients

    SciTech Connect

    Cahalan, J. E.; Ama, T.; Palmiotti, G.; Taiwo, T. A.; Yang, W. S.

    2000-03-09

    The VARIANT-K and DIF3D-K nodal spatial kinetics computer codes have been coupled to the SAS4A and SASSYS-1 liquid metal reactor accident and systems analysis codes. SAS4A and SASSYS-1 have been extended with the addition of heavy liquid metal (Pb and Pb-Bi) thermophysical properties, heat transfer correlations, and fluid dynamics correlations. The coupling methodology and heavy liquid metal modeling additions are described. The new computer code suite has been applied to analysis of neutron source and thermal-hydraulics transients in a model of an accelerator-driven minor actinide burner design proposed in an OECD/NEA/NSC benchmark specification. Modeling assumptions and input data generation procedures are described. Results of transient analyses are reported, with emphasis on comparison of P1 and P3 variational nodal transport theory results with nodal diffusion theory results, and on significance of spatial kinetics effects.

  4. Coupling External Radiation Transport Code Results to the GADRAS Detector Response Function

    SciTech Connect

    Mitchell, Dean J.; Thoreson, Gregory G.; Horne, Steven M.

    2014-01-01

    Simulating gamma spectra is useful for analyzing special nuclear materials. Gamma spectra are influenced not only by the source and the detector, but also by the external, and potentially complex, scattering environment. The scattering environment can make accurate representations of gamma spectra difficult to obtain. By coupling the Monte Carlo Nuclear Particle (MCNP) code with the Gamma Detector Response and Analysis Software (GADRAS) detector response function, gamma spectrum simulations can be computed with a high degree of fidelity even in the presence of a complex scattering environment. Traditionally, GADRAS represents the external scattering environment with empirically derived scattering parameters. By modeling the external scattering environment in MCNP and using the results as input for the GADRAS detector response function, gamma spectra can be obtained with a high degree of fidelity. This method was verified with experimental data obtained in an environment with a significant amount of scattering material. The experiment used both gamma-emitting sources and moderated and bare neutron-emitting sources. The sources were modeled using GADRAS and MCNP in the presence of the external scattering environment, producing accurate representations of the experimental data.

  5. An overview of the ENEA activities in the field of coupled codes NPP simulation

    SciTech Connect

    Parisi, C.; Negrenti, E.; Sepielli, M.; Del Nevo, A.

    2012-07-01

    In the framework of the nuclear research activities in the fields of safety, training and education, ENEA (the Italian National Agency for New Technologies, Energy and the Sustainable Development) is in charge of defining and pursuing all the necessary steps for the development of a NPP engineering simulator at the 'Casaccia' Research Center near Rome. A summary of the activities in the field of the nuclear power plants simulation by coupled codes is here presented with the long term strategy for the engineering simulator development. Specifically, results from the participation in international benchmarking activities like the OECD/NEA 'Kalinin-3' benchmark and the 'AER-DYN-002' benchmark, together with simulations of relevant events like the Fukushima accident, are here reported. The ultimate goal of such activities performed using state-of-the-art technology is the re-establishment of top level competencies in the NPP simulation field in order to facilitate the development of Enhanced Engineering Simulators and to upgrade competencies for supporting national energy strategy decisions, the nuclear national safety authority, and the R and D activities on NPP designs. (authors)

  6. Accuracy and convergence of coupled finite-volume/Monte Carlo codes for plasma edge simulations of nuclear fusion reactors

    SciTech Connect

    Ghoos, K.; Dekeyser, W.; Samaey, G.; Börner, P.; Baelmans, M.

    2016-10-01

    The plasma and neutral transport in the plasma edge of a nuclear fusion reactor is usually simulated using coupled finite volume (FV)/Monte Carlo (MC) codes. However, under conditions of future reactors like ITER and DEMO, convergence issues become apparent. This paper examines the convergence behaviour and the numerical error contributions with a simplified FV/MC model for three coupling techniques: Correlated Sampling, Random Noise and Robbins Monro. Also, practical procedures to estimate the errors in complex codes are proposed. Moreover, first results with more complex models show that an order of magnitude speedup can be achieved without any loss in accuracy by making use of averaging in the Random Noise coupling technique.

  7. Numerical Modeling of Lunar Accretion Using a New Hydrocode Coupled to an N-Body Code

    NASA Astrophysics Data System (ADS)

    Salmon, J.; Canup, R. M.

    2016-12-01

    We perform numerical simulations of accretion of the Moon from an impact-generated circumterrestrial disk using a newly developed numerical model. This unique code couples 1) a 1-dimensional (in the radial direction) hydrocode (Salmon et al. 2010, Charnoz et al. 2010) to model the evolution of the protolunar disk's material located inside the Roche limit, with 2) the symplectic integrator SyMBA (Duncan et al. 1998) to model the orbital evolution of moonlets located outside the Roche limit and their mutual interactions as they collide to grow the Moon. This model represents an improvement over prior work that assumed a uniform surface density Roche-interior disk (Salmon and Canup 2012). Compared to the prior model, we evolve the surface density of the Roche-interior disk by: 1) computing the local viscous torque throughout the disk, and 2) applying the resonant torque due to interactions with outer bodies at the actual position of the resonance in the disk. This allows us to model the disk's radial structure, which allows us to better track the transport of mass and angular momentum in the disk and more accurately compute how disk material is delivered through the Roche limit. This will affect the efficiency of incorporation of disk's material onto the growing Moon, and thus constrains the disk's properties (initial mass and surface density profile) required to form a lunar-size satellite. We will present results from a suite of simulations in which we vary the total mass of the disk, the fraction of the mass located inside and outside the Roche limit, and the disk's surface density profile. We track the dynamics of the Moon's accretion from the disk (e.g. its mass as a function of time, accretion timescales, post-accretion orbital parameters of the Moon), and discuss implications and constraints for the Giant Impact scenario.

  8. Testing and Modeling of a 3-MW Wind Turbine Using Fully Coupled Simulation Codes (Poster)

    SciTech Connect

    LaCava, W.; Guo, Y.; Van Dam, J.; Bergua, R.; Casanovas, C.; Cugat, C.

    2012-06-01

    This poster describes the NREL/Alstom Wind testing and model verification of the Alstom 3-MW wind turbine located at NREL's National Wind Technology Center. NREL,in collaboration with ALSTOM Wind, is studying a 3-MW wind turbine installed at the National Wind Technology Center(NWTC). The project analyzes the turbine design using a state-of-the-art simulation code validated with detailed test data. This poster describes the testing and the model validation effort, and provides conclusions about the performance of the unique drive train configuration used in this wind turbine. The 3-MW machine has been operating at the NWTC since March 2011, and drive train measurements will be collected through the spring of 2012. The NWTC testing site has particularly turbulent wind patterns that allow for the measurement of large transient loads and the resulting turbine response. This poster describes the 3-MW turbine test project, the instrumentation installed, and the load cases captured. The design of a reliable wind turbine drive train increasingly relies on the use of advanced simulation to predict structural responses in a varying wind field. This poster presents a fully coupled, aero-elastic and dynamic model of the wind turbine. It also shows the methodology used to validate the model, including the use of measured tower modes, model-to-model comparisons of the power curve, and mainshaft bending predictions for various load cases. The drivetrain is designed to only transmit torque to the gearbox, eliminating non-torque moments that are known to cause gear misalignment. Preliminary results show that the drivetrain is able to divert bending loads in extreme loading cases, and that a significantly smaller bending moment is induced on the mainshaft compared to a three-point mounting design.

  9. Development of a finite element code to solve thermo-hydro-mechanical coupling and simulate induced seismicity.

    NASA Astrophysics Data System (ADS)

    María Gómez Castro, Berta; De Simone, Silvia; Rossi, Riccardo; Larese De Tetto, Antonia; Carrera Ramírez, Jesús

    2015-04-01

    Coupled thermo-hydro-mechanical modeling is essential for CO2 storage because of (1) large amounts of CO2 will be injected, which will cause large pressure buildups and might compromise the mechanical stability of the caprock seal, (2) the most efficient technique to inject CO2 is the cold injection, which induces thermal stress changes in the reservoir and seal. These stress variations can cause mechanical failure in the caprock and can also trigger induced earthquakes. To properly assess these effects, numerical models that take into account the short and long-term thermo-hydro-mechanical coupling are an important tool. For this purpose, there is a growing need of codes that couple these processes efficiently and accurately. This work involves the development of an open-source, finite element code written in C ++ for correctly modeling the effects of thermo-hydro-mechanical coupling in the field of CO2 storage and in others fields related to these processes (geothermal energy systems, fracking, nuclear waste disposal, etc.), and capable to simulate induced seismicity. In order to be able to simulate earthquakes, a new lower dimensional interface element will be implemented in the code to represent preexisting fractures, where pressure continuity will be imposed across the fractures.

  10. A novel DNA sequence similarity calculation based on simplified pulse-coupled neural network and Huffman coding

    NASA Astrophysics Data System (ADS)

    Jin, Xin; Nie, Rencan; Zhou, Dongming; Yao, Shaowen; Chen, Yanyan; Yu, Jiefu; Wang, Quan

    2016-11-01

    A novel method for the calculation of DNA sequence similarity is proposed based on simplified pulse-coupled neural network (S-PCNN) and Huffman coding. In this study, we propose a coding method based on Huffman coding, where the triplet code was used as a code bit to transform DNA sequence into numerical sequence. The proposed method uses the firing characters of S-PCNN neurons in DNA sequence to extract features. Besides, the proposed method can deal with different lengths of DNA sequences. First, according to the characteristics of S-PCNN and the DNA primary sequence, the latter is encoded using Huffman coding method, and then using the former, the oscillation time sequence (OTS) of the encoded DNA sequence is extracted. Simultaneously, relevant features are obtained, and finally the similarities or dissimilarities of the DNA sequences are determined by Euclidean distance. In order to verify the accuracy of this method, different data sets were used for testing. The experimental results show that the proposed method is effective.

  11. Analyses of the MSLB benchmark V1000CT-2 by the coupled system code ATHLET-BIPR8KN

    SciTech Connect

    Nikonov, S. P.; Langenbuch, S.; Lizorkin, M. P.; Velkov, K.

    2006-07-01

    Within the activities of OECD/NEA is being initiated the second phase of the VVER-1000 Coolant Transient Benchmark (V1000CT-2). It considers the best estimate analyses of a Main Steam Line Break (MSLB) of a VVER-1000 NPP with two exercises. The analyses have been performed with the coupled system code ATHLET-BIPR8KN which enables to perform realistic simulation of three-dimensional neutron kinetics and thermal-hydraulic processes in VVER NPP. Results are presented and analysed for the two proposed scenarios. These results are supplemented by sensitivity studies varying the number of the thermo-hydraulic channels (THC) in the core and by comparisons with point kinetics calculations. This work is of considerable importance for the validation of the coupled system code ATHLET-BIPR8KN in case of asymmetric core inlet conditions. (authors)

  12. User's guide for the computer code COLTS for calculating the coupled laminar and turbulent flow over a Jovian entry probe

    NASA Technical Reports Server (NTRS)

    Kumar, A.; Graeves, R. A.

    1980-01-01

    A user's guide for a computer code 'COLTS' (Coupled Laminar and Turbulent Solutions) is provided which calculates the laminar and turbulent hypersonic flows with radiation and coupled ablation injection past a Jovian entry probe. Time-dependent viscous-shock-layer equations are used to describe the flow field. These equations are solved by an explicit, two-step, time-asymptotic finite-difference method. Eddy viscosity in the turbulent flow is approximated by a two-layer model. In all, 19 chemical species are used to describe the injection of carbon-phenolic ablator in the hydrogen-helium gas mixture. The equilibrium composition of the mixture is determined by a free-energy minimization technique. A detailed frequency dependence of the absorption coefficient for various species is considered to obtain the radiative flux. The code is written for a CDC-CYBER-203 computer and is capable of providing solutions for ablated probe shapes also.

  13. Electromagnetic pulse (EMP) coupling codes for use with the vulnerability/lethality (VIL) taxonomy. Final report, June-October 1984

    SciTech Connect

    Mar, M.H.

    1995-07-01

    Based on the vulnerability Lethality (V/L) taxonomy developed by the Ballistic Vulnerability Lethality Division (BVLD) of the Survivability Lethality Analysis Directorate (SLAD), a nuclear electromagnetic pulse (EMP) coupling V/L analysis taxonomy has been developed. A nuclear EMP threat to a military system can be divided into two levels: (1) coupling to a system level through a cable, antenna, or aperture; and (2) the component level. This report will focus on the initial condition, which includes threat definition and target description, as well as the mapping process from the initial condition to damaged components state. EMP coupling analysis at a system level is used to accomplish this. This report introduces the nature of EMP threat, interaction between the threat and target, and how the output of EMP coupling analysis at a system level becomes the input to the component level analysis. Many different tools (EMP coupling codes) will be discussed for the mapping process, which correponds to the physics of phenomenology. This EMP coupling V/L taxonomy and the models identified in this report will provide the tools necessary to conduct basic V/L analysis of EMP coupling.

  14. European Pressurized water Reactor (EPR) SAR ATWS Accident Analyses by using 3D Code Internal Coupling Method

    SciTech Connect

    Gagner, Renata; Lafitte, Helene; Dormeau, Pascal; Stoudt, Roger H.

    2004-07-01

    Anticipated Transients Without Scram (ATWS) accident analyses make part of the Safety Analysis Report of the European Pressurized water Reactor (EPR), covering Risk Reduction Category A (Core Melt Prevention) events. This paper deals with three of the most penalizing RRC-A sequences of ATWS caused by mechanical blockage of the control/shutdown rods, regarding their consequences on the Reactor Coolant System (RCS) and core integrity. A new 3D code internal coupling calculation method has been introduced. (authors)

  15. Coupling MCNP-DSP and LAHET Monte Carlo Codes for Designing Subcriticality Monitors for Accelerator-Driven Systems

    SciTech Connect

    Valentine, T.E.; Rugama, Y. Munoz-Cobos, J.; Perez, R.

    2000-10-23

    The design of reactivity monitoring systems for accelerator-driven systems must be investigated to ensure that such systems remain subcritical during operation. The Monte Carlo codes LAHET and MCNP-DSP were combined together to facilitate the design of reactivity monitoring systems. The coupling of LAHET and MCNP-DSP provides a tool that can be used to simulate a variety of subcritical measurements such as the pulsed neutron, Rossi-{alpha}, or noise analysis measurements.

  16. Multiscale Coupling of Monte Carlo Binary-Collision-Approximation Codes with Particle-in-Cells for Plasma-Material Interaction

    NASA Astrophysics Data System (ADS)

    Curreli, Davide; Lindquist, Kyle; Ruzic, David N.

    2013-10-01

    Techniques based on Monte Carlo Binary Collision Approximation (BCA) are widely used for the evaluation of particle interactions with matter, but rarely coupled with a consistent kinetic plasma solver like a Particle-in-Cell. The TRIM code [Eckstein; Biersack and Haggmark, 1980] and its version including dynamic-composition TRIDYN [Moller and Eckstein, 1984] are two popular implementations of BCA, where single-particle projectiles interact with a target of amorphous material according to the classical Carbon-Krypton interaction potential. The effect of surface roughness can be included as well, thanks to the Fractal-TRIM method [Ruzic and Chiu, 1989]. In the present study we couple BCA codes with Particles-in-Cells. The Lagrangian treatment of particle motion usually implemented in PiC codes suggests a natural coupling of PiC's with BCA's, even if a number of caveats has to be taken into account, related to the discrete nature of computational particles, to the difference between the two approaches and most important to the multiple spatial and temporal scales involved. The break down of BCA at low energies (unless the projectiles are channeling through an oriented crystal layer [Hobler and Betz, 2001]) has been supplemented by Yamamura's semi-empirical relations.

  17. TPCI: the PLUTO-CLOUDY Interface . A versatile coupled photoionization hydrodynamics code

    NASA Astrophysics Data System (ADS)

    Salz, M.; Banerjee, R.; Mignone, A.; Schneider, P. C.; Czesla, S.; Schmitt, J. H. M. M.

    2015-04-01

    We present an interface between the (magneto-) hydrodynamics code PLUTO and the plasma simulation and spectral synthesis code CLOUDY. By combining these codes, we constructed a new photoionization hydrodynamics solver: the PLUTO-CLOUDY Interface (TPCI), which is well suited to simulate photoevaporative flows under strong irradiation. The code includes the electromagnetic spectrum from X-rays to the radio range and solves the photoionization and chemical network of the 30 lightest elements. TPCI follows an iterative numerical scheme: first, the equilibrium state of the medium is solved for a given radiation field by CLOUDY, resulting in a net radiative heating or cooling. In the second step, the latter influences the (magneto-) hydrodynamic evolution calculated by PLUTO. Here, we validated the one-dimensional version of the code on the basis of four test problems: photoevaporation of a cool hydrogen cloud, cooling of coronal plasma, formation of a Strömgren sphere, and the evaporating atmosphere of a hot Jupiter. This combination of an equilibrium photoionization solver with a general MHD code provides an advanced simulation tool applicable to a variety of astrophysical problems. A copy of the code is available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/576/A21

  18. Three Mile Island Unit 1 Main Steam Line Break Three-Dimensional Neutronics/Thermal-Hydraulics Analysis: Application of Different Coupled Codes

    SciTech Connect

    D'Auria, Francesco; Moreno, Jose Luis Gago; Galassi, Giorgio Maria; Grgic, Davor; Spadoni, Antonino

    2003-05-15

    A comprehensive analysis of the double ended main steam line break (MSLB) accident assumed to occur in the Babcock and Wilcox Three Mile Island Unit 1 (TMI-1) has been carried out at the Dipartimento di Ingegneria Meccanica, Nucleare e della Produzione of the University of Pisa, Italy, in cooperation with the University of Zagreb, Croatia. The overall activity has been completed within the framework of the participation in the Organization for Economic Cooperation and Development-Committee on the Safety of Nuclear Installations-Nuclear Science Committee pressurized water reactor MSLB benchmark.Thermal-hydraulic system codes (various versions of Relap5), three-dimensional (3-D) neutronics codes (Parcs, Quabbox, and Nestle), and one subchannel code (Cobra) have been adopted for the analysis. Results from the following codes (or code versions) are assumed as reference:1. Relap5/mod3.2.2, beta version, coupled with the 3-D neutron kinetics Parcs code parallel virtual machine (PVM) coupling2. Relap5/mod3.2.2, gamma version, coupled with the 3-D neutron kinetics Quabbox code (direct coupling)3. Relap5/3D code coupled with the 3-D neutron kinetics Nestle code.The influence of PVM and of direct coupling is also discussed.Boundary and initial conditions of the system, including those relevant to the fuel status, have been supplied by Pennsylvania State University in cooperation with GPU Nuclear Corporation (the utility, owner of TMI) and the U.S. Nuclear Regulatory Commission. The comparison among the results obtained by adopting the same thermal-hydraulic nodalization and the coupled code version is discussed in this paper.The capability of the control rods to recover the accident has been demonstrated in all the cases as well as the capability of all the codes to predict the time evolution of the assigned transient. However, one stuck control rod caused some 'recriticality' or 'return to power' whose magnitude is largely affected by boundary and initial conditions.

  19. Modeling a filter press electrolyzer by using two coupled codes within nuclear gen.IV hydrogen production

    SciTech Connect

    Feraud, J.P.; Jomard, F.; Ode, D.; Duhamet, J.; Dehaudt, Ph.; Duterrail Couvat, Y.; Caire, J.P.

    2007-07-01

    Mass production of hydrogen is a major issue for the coming decades particularly to decrease greenhouse gas production. The development of fourth-generation high temperature nuclear reactors has led to renewed interest for hydrogen production. In France, the CEA is investigating new processes using nuclear reactors such as the Westinghouse hybrid cycle. A recent study was devoted to electrical modeling of the hydrogen electrolyzer, which is the key unit of this process. An extensive literature review led to the choice of electrolyte and electrode materials, and the preliminary design of a new cell for production of hydrogen was evaluated. This paper describes an improved model coupling the electrical and thermal phenomena with hydrodynamics in the electrolyzer. The hydrogen electrolyzer chosen here is a filter press design comprising a stack of cathode and anode compartments separated by a membrane. Hydrogen is reduced at the cathode and SO{sub 2} is oxidized at the anode. In a complex reactor of this type the main coupled physical phenomena involved are forced convection of the electrolyte flows, a plume of hydrogen bubbles that modifies the local electrolyte conductivity, and irreversible processes (Joule effect, over-potentials, etc.) that contribute to local overheating. The secondary current distribution was modeled with a commercial FEM code, Flux Expert{sup R}, which was customized with specific finite interfacial elements capable of describing the potential discontinuity associated with the electrochemical over-potential. Since the finite-element method is not capable of properly describing the complex two-phase flows in the cathode compartment, the Fluent{sup R} CFD code was used for thermohydraulic computations. In this way each physical phenomenon was modeled using the best numerical method. The coupling implements an iterative process in which each code computes the physical data it has to transmit to the other one: the two-phase thermohydraulic problem

  20. Adaptive coding of reward prediction errors is gated by striatal coupling

    PubMed Central

    Park, Soyoung Q.; Kahnt, Thorsten; Talmi, Deborah; Rieskamp, Jörg; Dolan, Raymond J.; Heekeren, Hauke R.

    2012-01-01

    To efficiently represent all of the possible rewards in the world, dopaminergic midbrain neurons dynamically adapt their coding range to the momentarily available rewards. Specifically, these neurons increase their activity for an outcome that is better than expected and decrease it for an outcome worse than expected, independent of the absolute reward magnitude. Although this adaptive coding is well documented, it remains unknown how this rescaling is implemented. To investigate the adaptive coding of prediction errors and its underlying rescaling process, we used human functional magnetic resonance imaging (fMRI) in combination with a reward prediction task that involved different reward magnitudes. We demonstrate that reward prediction errors in the human striatum are expressed according to an adaptive coding scheme. Strikingly, we show that adaptive coding is gated by changes in effective connectivity between the striatum and other reward-sensitive regions, namely the midbrain and the medial prefrontal cortex. Our results provide evidence that striatal prediction errors are normalized by a magnitude-dependent alteration in the interregional connectivity within the brain's reward system. PMID:22371590

  1. Parallelization of the MAAP-A code neutronics/thermal hydraulics coupling

    SciTech Connect

    Froehle, P.H.; Wei, T.Y.C.; Weber, D.P.; Henry, R.E.

    1998-12-31

    A major new feature, one-dimensional space-time kinetics, has been added to a developmental version of the MAAP code through the introduction of the DIF3D-K module. This code is referred to as MAAP-A. To reduce the overall job time required, a capability has been provided to run the MAAP-A code in parallel. The parallel version of MAAP-A utilizes two machines running in parallel, with the DIF3D-K module executing on one machine and the rest of the MAAP-A code executing on the other machine. Timing results obtained during the development of the capability indicate that reductions in time of 30--40% are possible. The parallel version can be run on two SPARC 20 (SUN OS 5.5) workstations connected through the ethernet. MPI (Message Passing Interface standard) needs to be implemented on the machines. If necessary the parallel version can also be run on only one machine. The results obtained running in this one-machine mode identically match the results obtained from the serial version of the code.

  2. Analysis of Inlet-Compressor Acoustic Interactions Using Coupled CFD Codes

    NASA Technical Reports Server (NTRS)

    Suresh, A.; Townsend, S. E.; Cole, G. L.; Slater, J. W.; Chima, R.

    1998-01-01

    A problem that arises in the numerical simulation of supersonic inlets is the lack of a suitable boundary condition at the engine face. In this paper, a coupled approach, in which the inlet computation is coupled dynamically to a turbomachinery computation, is proposed as a means to overcome this problem. The specific application chosen for validation of this approach is the collapsing bump experiment performed at the University of Cincinnati. The computed results are found to be in reasonable agreement with experimental results. The coupled simulation results could also be used to aid development of a simplified boundary condition.

  3. A simulation of a capacitively coupled oxygen discharge using the oopd1 particle-in-cell Monte Carlo code

    NASA Astrophysics Data System (ADS)

    Gudmundsson, J. T.; Lieberman, M. A.; Wang, Ying; Verboncoeur, J. P.

    2009-10-01

    The oopd1 particle-in-cell Monte Carlo (PIC-MC) code is used to simulate a capacitively coupled discharge in oxygen. oopd1 is a one-dimensional object-oriented PIC-MC code [1] in which the model system has one spatial dimension and three velocity components. It contains models for planar, cylindrical, and spherical geometries and replaces the XPDx1 series [2], which is not object-oriented. The revised oxygen model includes, in addition to electrons, the oxygen molecule in ground state, the oxygen atom in ground state, the negative ion O^-, and the positive ions O^+ and O2^+. The cross sections for the collisions among the oxygen species have been significantly revised from earlier work using the xpdp1 code [3]. Here we explore the electron energy distribution function (EEDF), the ion energy distribution function (IEDF) and the density profiles for various pressures and driving frequencies. In particular we investigate the influence of the O^+ ion on the IEDF, we explore the influence of multiple driving frequencies, and we do comparisons to the previous xpdx1 codes. [1] J. P. Verboncoeur, A. B. Langdon, and N. T. Gladd, Comp. Phys. Comm. 87 (1995) 199 [2] J. P. Verboncoeur, M. V. Alves, V. Vahedi, and C. K. Birdsall, J. Comp. Physics 104 (1993) 321 [2] V. Vahedi and M. Surendra, Comp. Phys. Comm. 87 (1995) 179

  4. Stimulation at Desert Peak -modeling with the coupled THM code FEHM

    DOE Data Explorer

    kelkar, sharad

    2013-04-30

    Numerical modeling of the 2011 shear stimulation at the Desert Peak well 27-15. This submission contains the FEHM executable code for a 64-bit PC Windows-7 machine, and the input and output files for the results presented in the included paper from ARMA-213 meeting.

  5. Application of ATHLET/DYN3D coupled codes system for fast liquid metal cooled reactor steady state simulation

    NASA Astrophysics Data System (ADS)

    Ivanov, V.; Samokhin, A.; Danicheva, I.; Khrennikov, N.; Bouscuet, J.; Velkov, K.; Pasichnyk, I.

    2017-01-01

    In this paper the approaches used for developing of the BN-800 reactor test model and for validation of coupled neutron-physic and thermohydraulic calculations are described. Coupled codes ATHLET 3.0 (code for thermohydraulic calculations of reactor transients) and DYN3D (3-dimensional code of neutron kinetics) are used for calculations. The main calculation results of reactor steady state condition are provided. 3-D model used for neutron calculations was developed for start reactor BN-800 load. The homogeneous approach is used for description of reactor assemblies. Along with main simplifications, the main reactor BN-800 core zones are described (LEZ, MEZ, HEZ, MOX, blankets). The 3D neutron physics calculations were provided with 28-group library, which is based on estimated nuclear data ENDF/B-7.0. Neutron SCALE code was used for preparation of group constants. Nodalization hydraulic model has boundary conditions by coolant mass-flow rate for core inlet part, by pressure and enthalpy for core outlet part, which can be chosen depending on reactor state. Core inlet and outlet temperatures were chosen according to reactor nominal state. The coolant mass flow rate profiling through the core is based on reactor power distribution. The test thermohydraulic calculations made with using of developed model showed acceptable results in coolant mass flow rate distribution through the reactor core and in axial temperature and pressure distribution. The developed model will be upgraded in future for different transient analysis in metal-cooled fast reactors of BN type including reactivity transients (control rods withdrawal, stop of the main circulation pump, etc.).

  6. Multi-dimensional finite element code for the analysis of coupled fluid energy, and solute transport (CFEST)

    SciTech Connect

    Gupta, S.K.; Kincaid, C.T.; Meyer, P.R.; Newbill, C.A.; Cole, C.R.

    1982-08-01

    The Seasonal Thermal Energy Storage Program is being conducted for the Department of Energy by Pacific Northwest Laboratory. A major thrust of this program has been the study of natural aquifers as hosts for thermal energy storage and retrieval. Numerical simulation of the nonisothermal response of the host media is fundamental to the evaluation of proposed experimental designs and field test results. This report represents the primary documentation for the coupled fluid, energy and solute transport (CFEST) code. Sections of this document are devoted to the conservation equations and their numerical analogues, the input data requirements, and the verification studies completed to date.

  7. Coupled enhancer and coding sequence evolution of a homeobox gene shaped leaf diversity

    PubMed Central

    Vuolo, Francesco; Mentink, Remco A.; Hajheidari, Mohsen; Bailey, C. Donovan; Filatov, Dmitry A.; Tsiantis, Miltos

    2016-01-01

    Here we investigate mechanisms underlying the diversification of biological forms using crucifer leaf shape as an example. We show that evolution of an enhancer element in the homeobox gene REDUCED COMPLEXITY (RCO) altered leaf shape by changing gene expression from the distal leaf blade to its base. A single amino acid substitution evolved together with this regulatory change, which reduced RCO protein stability, preventing pleiotropic effects caused by its altered gene expression. We detected hallmarks of positive selection in these evolved regulatory and coding sequence variants and showed that modulating RCO activity can improve plant physiological performance. Therefore, interplay between enhancer and coding sequence evolution created a potentially adaptive path for morphological evolution. PMID:27852629

  8. Finite element modeling of magnetic compression using coupled electromagnetic-structural codes

    SciTech Connect

    Hainsworth, G.; Leonard, P.J.; Rodger, D.; Leyden, C.

    1996-05-01

    A link between the electromagnetic code, MEGA, and the structural code, DYNA3D has been developed. Although the primary use of this is for modelling of Railgun components, it has recently been applied to a small experimental Coilgun at Bath. The performance of Coilguns is very dependent on projectile material conductivity, and so high purity aluminium was investigated. However, due to its low strength, it is crushed significantly by magnetic compression in the gun. Although impractical as a real projectile material, this provides useful benchmark experimental data on high strain rate plastic deformation caused by magnetic forces. This setup is equivalent to a large scale version of the classic jumping ring experiment, where the ring jumps with an acceleration of 40 kG.

  9. Model Development and Verification of the CRIPTE Code for Electromagnetic Coupling

    DTIC Science & Technology

    2005-10-01

    Fig. IIIC-2 (a) TLM equivalent for a shunt node and (b) Topological node representing the TLM mesh node. This shows the slow-wave property of the 2-D...inherent high-pass filtering properties . Incrementing the aperture size also results in the cutoff frequency to shift lower, allowing more penetration...approached. In addition, the delay of the wave from the EMT code reflects the property of the slow-wave 42 Model Development and Verification of the CRIPTE

  10. A Computer Code for Fully-Coupled Rocket Nozzle Flows (FULLNOZ)

    DTIC Science & Technology

    1975-04-01

    m w! ,,. TABLE OF CONTEN"IS Page LIST OF SYMBOLS 3 I. INTRODUCTION 9 II. GOVERNING EQUATIONS 13 A. Differential Equations 13 I. Gas Phase 13 3... differential and finite-difference equa- tions used in the code. Also included are the auxiliary equations for calculat- ing thermodynamic and chemical...kinetic properties of the system, gas/ particle drag and heat transfer coefficients and turbulent boundary layer properties. A. Differential Equations 1

  11. ICECO-CEL: a coupled Eulerian-Lagrangian code for analyzing primary system response in fast reactors

    SciTech Connect

    Wang, C.Y.

    1981-02-01

    This report describes a coupled Eulerian-Lagrangian code, ICECO-CEL, for analyzing the response of the primary system during hypothetical core disruptive accidents. The implicit Eulerian method is used to calculate the fluid motion so that large fluid distortion, two-dimensional sliding interface, flow around corners, flow through coolant passageways, and out-flow boundary conditions can be treated. The explicit Lagrangian formulation is employed to compute the response of the containment vessel and other elastic-plastic solids inside the reactor containment. Large displacements, as well as geometrical and material nonlinearities are considered in the analysis. Marker particles are utilized to define the free surface or the material interface and to visualize the fluid motion. The basic equations and numerical techniques used in the Eulerian hydrodynamics and Lagrangian structural dynamics are described. Treatment of the above-core hydrodynamics, sodium spillage, fluid cavitation, free-surface boundary conditions and heat transfer are also presented. Examples are given to illustrate the capabilities of the computer code. Comparisons of the code predictions with available experimental data are also made.

  12. Self-consistent coupling of DSMC method and SOLPS code for modeling tokamak particle exhaust

    NASA Astrophysics Data System (ADS)

    Bonelli, F.; Varoutis, S.; Coster, D.; Day, C.; Zanino, R.; Contributors, JET

    2017-06-01

    In this work, an investigation of the neutral gas flow in the JET sub-divertor area is presented, with respect to the interaction between the plasma side and the pumping side. The edge plasma side is simulated with the SOLPS code, while the sub-divertor area is modeled by means of the direct simulation Monte Carlo (DSMC) method, which in the last few years has proved well able to describe rarefied, collisional flows in tokamak sub-divertor structures. Four different plasma scenarios have been selected, and for each of them a user-defined, iterative procedure between SOLPS and DSMC has been established, using the neutral flux as the key communication term between the two codes. The goal is to understand and quantify the mutual influence between the two regions in a self-consistent manner, that is to say, how the particle exhaust pumping system controls the upstream plasma conditions. Parametric studies of the flow conditions in the sub-divertor, including additional flow outlets and variations of the cryopump capture coefficient, have been performed as well, in order to understand their overall impact on the flow field. The DSMC analyses resulted in the calculation of both the macroscopic quantities—i.e. temperature, number density and pressure—and the recirculation fluxes towards the plasma chamber. The consistent values for the recirculation rates were found to be smaller than those according to the initial standard assumption made by SOLPS.

  13. Safety Related Investigations of the VVER-1000 Reactor Type by the Coupled Code System TRACE/PARCS

    NASA Astrophysics Data System (ADS)

    Jaeger, Wadim; Espinoza, Victor Hugo Sánchez; Lischke, Wolfgang

    This study was performed at the Institute of Reactor Safety at the Forschungszentrum Karlsruhe. It is embedded in the ongoing investigations of the international code assessment and maintenance program (CAMP) for qualification and validation of system codes like TRACE(1) and PARCS(2). The chosen reactor type used to validate these two codes was the Russian designed VVER-1000 because the OECD/NEA VVER-1000 Coolant Transient Benchmark Phase 2(3) includes detailed information of the Bulgarian nuclear power plant (NPP) Kozloduy unit 6. The post-test investigations of a coolant mixing experiment have shown that the predicted parameters (coolant temperature, pressure drop, etc.) are in good agreement with the measured data. The coolant mixing pattern, especially in the downcomer, has been also reproduced quiet well by TRACE. The coupled code system TRACE/PARCS which was applied on a postulated main steam line break (MSLB) provided good results compared to reference values and the ones of other participants of the benchmark. The results show that the developed three-dimensional nodalization of the reactor pressure vessel (RPV) is appropriate to describe the coolant mixing phenomena in the downcomer and the lower plenum of a VVER-1000 reactor. This phenomenon is a key issue for investigations of MSLB transient where the thermal hydraulics and the core neutronics are strongly linked. The simulation of the RPV and core behavior for postulated transients using the validated 3D TRACE RPV model, taking into account boundary conditions at vessel in- and outlet, indicates that the results are physically sound and in good agreement to other participant's results.

  14. Warthog: A MOOSE-Based Application for the Direct Code Coupling of BISON and PROTEUS

    SciTech Connect

    McCaskey, Alexander J.; Slattery, Stuart; Billings, Jay Jay

    2015-09-01

    The Nuclear Energy Advanced Modeling and Simulation (NEAMS) program from the Department of Energy's Office of Nuclear Energy provides a robust toolkit for the modeling and simulation of current and future advanced nuclear reactor designs. This toolkit provides these technologies organized across product lines: two divisions targeted at fuels and end-to-end reactor modeling, and a third for integration, coupling, and high-level workflow management. The Fuels Product Line and the Reactor Product line provide advanced computational technologies that serve each respective field well, however, their current lack of integration presents a major impediment to future improvements of simulation solution fidelity. There is a desire for the capability to mix and match tools across Product Lines in an effort to utilize the best from both to improve NEAMS modeling and simulation technologies. This report details a new effort to provide this Product Line interoperability through the development of a new application called Warthog. This application couples the BISON Fuel Performance application from the Fuels Product Line and the PROTEUS Core Neutronics application from the Reactors Product Line in an effort to utilize the best from all parts of the NEAMS toolkit and improve overall solution fidelity of nuclear fuel simulations. To achieve this, Warthog leverages as much prior work from the NEAMS program as possible, and in doing so, enables interoperability between the disparate MOOSE and SHARP frameworks, and the libMesh and MOAB mesh data formats. This report describes this work in full. We begin with a detailed look at the individual NEAMS framework technologies used and developed in the various Product Lines, and the current status of their interoperability. We then introduce the Warthog application: its overall architecture and the ways it leverages the best existing tools from across the NEAMS toolkit to enable BISON-PROTEUS integration. Furthermore, we show how Warthog

  15. Coupling an ICRF core spectral solver to an edge FEM code

    NASA Astrophysics Data System (ADS)

    Wright, J. C.; Shiraiwa, S.

    2015-12-01

    The finite element method (FEM) and the spectral approaches to simulation of ion cyclotron (IC) waves in toroidal plasmas each have strengths and weaknesses. For example, the spectral approach (eg TORIC) has a natural algebraic representation of the parallel wavenumber and hence the wave dispersion but does not easily represent complex geometries outside the last closed flux surface, whereas the FEM approach (eg LHEAF) naturally represents arbitrary geometries but does not easily represent thermal corrections to the plasma dispersion. The two domains: thermal core with flux surfaces and cold edge plasma with open field lines may be combined in such as way that each approach is used where it works naturally. Among the possible ways of doing this, we demonstrate the method of mode matching. This method provides an easy way of combining the two linear systems without significant modifications to the separate codes. We will present proof of principal cases and initial applications to minority heating.

  16. Coupling an ICRF core spectral solver to an edge FEM code

    NASA Astrophysics Data System (ADS)

    Wright, John; Shirwaiwa, Syunichi; RF SciDAC Team

    2015-11-01

    The finite element method (FEM) and the spectral approaches to simulation of ion cyclotron (IC) waves in toroidal plasmas each have strengths and weaknesses. For example, the spectral approach (eg TORIC) has a natural algebraic representation of the parallel wavenumber and hence the wave dispersion but does not easily represent complex geometries outside the last closed flux surface, whereas the FEM approach (eg LHEAF) naturally represents arbitrary geometries but does not easily represent thermal corrections to the plasma dispersion. The two domains: thermal core with flux surfaces and cold edge plasma with open field lines may be combined in such as way that each approach is used where it works naturally. Among the possible ways of doing this, we demonstrate the method of mode matching. This method provides an easy way of combining the two linear systems without significant modifications to the separate codes. We will present proof of principal cases and initial applications to minority heating.

  17. ICANT, a code for the self-consistent computation of ICRH antenna coupling

    SciTech Connect

    Pecoul, S.; Heuraux, S.; Koch, R.; Leclert, G.

    1996-02-01

    The code deals with 3D antenna structures (finite length antennae) that are used to launch electromagnetic waves into tokamak plasmas. The antenna radiation problem is solved using a finite boundary element technique combined with a spectral solution of the interior problem. The slab approximation is used, and periodicity in {ital y} and {ital z} directions is introduced to account for toroidal geometry. We present results for various types of antennae radiating in vacuum: antenna with a finite Faraday screen and ideal Faraday screen, antenna with side limiters and phased antenna arrays. The results (radiated power, current profile) obtained are very close to analytical solutions when available. {copyright} {ital 1996 American Institute of Physics.}

  18. Application of Gamma code coupled with turbomachinery models for high temperature gas-cooled reactors

    SciTech Connect

    Chang Oh

    2008-02-01

    The very high-temperature gas-cooled reactor (VHTR) is envisioned as a single- or dual-purpose reactor for electricity and hydrogen generation. The concept has average coolant temperatures above 9000C and operational fuel temperatures above 12500C. The concept provides the potential for increased energy conversion efficiency and for high-temperature process heat application in addition to power generation. While all the High Temperature Gas Cooled Reactor (HTGR) concepts have sufficiently high temperature to support process heat applications, such as coal gasification, desalination or cogenerative processes, the VHTR’s higher temperatures allow broader applications, including thermochemical hydrogen production. However, the very high temperatures of this reactor concept can be detrimental to safety if a loss-ofcoolant accident (LOCA) occurs. Following the loss of coolant through the break and coolant depressurization, air will enter the core through the break by molecular diffusion and ultimately by natural convection, leading to oxidation of the in-core graphite structure and fuel. The oxidation will accelerate heatup of the reactor core and the release of a toxic gas, CO, and fission products. Thus, without any effective countermeasures, a pipe break may lead to significant fuel damage and fission product release. Prior to the start of this Korean/United States collaboration, no computer codes were available that had been sufficiently developed and validated to reliably simulate a LOCA in the VHTR. Therefore, we have worked for the past three years on developing and validating advanced computational methods for simulating LOCAs in a VHTR. GAMMA code is being developed to implement turbomachinery models in the power conversion unit (PCU) and ultimately models associated with the hydrogen plant. Some preliminary results will be described in this paper.

  19. The FLUKA Monte Carlo code coupled with the NIRS approach for clinical dose calculations in carbon ion therapy

    NASA Astrophysics Data System (ADS)

    Magro, G.; Dahle, T. J.; Molinelli, S.; Ciocca, M.; Fossati, P.; Ferrari, A.; Inaniwa, T.; Matsufuji, N.; Ytre-Hauge, K. S.; Mairani, A.

    2017-05-01

    Particle therapy facilities often require Monte Carlo (MC) simulations to overcome intrinsic limitations of analytical treatment planning systems (TPS) related to the description of the mixed radiation field and beam interaction with tissue inhomogeneities. Some of these uncertainties may affect the computation of effective dose distributions; therefore, particle therapy dedicated MC codes should provide both absorbed and biological doses. Two biophysical models are currently applied clinically in particle therapy: the local effect model (LEM) and the microdosimetric kinetic model (MKM). In this paper, we describe the coupling of the NIRS (National Institute for Radiological Sciences, Japan) clinical dose to the FLUKA MC code. We moved from the implementation of the model itself to its application in clinical cases, according to the NIRS approach, where a scaling factor is introduced to rescale the (carbon-equivalent) biological dose to a clinical dose level. A high level of agreement was found with published data by exploring a range of values for the MKM input parameters, while some differences were registered in forward recalculations of NIRS patient plans, mainly attributable to differences with the analytical TPS dose engine (taken as reference) in describing the mixed radiation field (lateral spread and fragmentation). We presented a tool which is being used at the Italian National Center for Oncological Hadrontherapy to support the comparison study between the NIRS clinical dose level and the LEM dose specification.

  20. Application of wavelet filtering and Barker-coded pulse compression hybrid method to air-coupled ultrasonic testing

    NASA Astrophysics Data System (ADS)

    Zhou, Zhenggan; Ma, Baoquan; Jiang, Jingtao; Yu, Guang; Liu, Kui; Zhang, Dongmei; Liu, Weiping

    2014-10-01

    Air-coupled ultrasonic testing (ACUT) technique has been viewed as a viable solution in defect detection of advanced composites used in aerospace and aviation industries. However, the giant mismatch of acoustic impedance in air-solid interface makes the transmission efficiency of ultrasound low, and leads to poor signal-to-noise (SNR) ratio of received signal. The utilisation of signal-processing techniques in non-destructive testing is highly appreciated. This paper presents a wavelet filtering and phase-coded pulse compression hybrid method to improve the SNR and output power of received signal. The wavelet transform is utilised to filter insignificant components from noisy ultrasonic signal, and pulse compression process is used to improve the power of correlated signal based on cross-correction algorithm. For the purpose of reasonable parameter selection, different families of wavelets (Daubechies, Symlet and Coiflet) and decomposition level in discrete wavelet transform are analysed, different Barker codes (5-13 bits) are also analysed to acquire higher main-to-side lobe ratio. The performance of the hybrid method was verified in a honeycomb composite sample. Experimental results demonstrated that the proposed method is very efficient in improving the SNR and signal strength. The applicability of the proposed method seems to be a very promising tool to evaluate the integrity of high ultrasound attenuation composite materials using the ACUT.

  1. A system for environmental model coupling and code reuse: The Great Rivers Project

    NASA Astrophysics Data System (ADS)

    Eckman, B.; Rice, J.; Treinish, L.; Barford, C.

    2008-12-01

    As part of the Great Rivers Project, IBM is collaborating with The Nature Conservancy and the Center for Sustainability and the Global Environment (SAGE) at the University of Wisconsin, Madison to build a Modeling Framework and Decision Support System (DSS) designed to help policy makers and a variety of stakeholders (farmers, fish & wildlife managers, hydropower operators, et al.) to assess, come to consensus, and act on land use decisions representing effective compromises between human use and ecosystem preservation/restoration. Initially focused on Brazil's Paraguay-Parana, China's Yangtze, and the Mississippi Basin in the US, the DSS integrates data and models from a wide variety of environmental sectors, including water balance, water quality, carbon balance, crop production, hydropower, and biodiversity. In this presentation we focus on the modeling framework aspect of this project. In our approach to these and other environmental modeling projects, we see a flexible, extensible modeling framework infrastructure for defining and running multi-step analytic simulations as critical. In this framework, we divide monolithic models into atomic components with clearly defined semantics encoded via rich metadata representation. Once models and their semantics and composition rules have been registered with the system by their authors or other experts, non-expert users may construct simulations as workflows of these atomic model components. A model composition engine enforces rules/constraints for composing model components into simulations, to avoid the creation of Frankenmodels, models that execute but produce scientifically invalid results. A common software environment and common representations of data and models are required, as well as an adapter strategy for code written in e.g., Fortran or python, that still enables efficient simulation runs, including parallelization. Since each new simulation, as a new composition of model components, requires calibration

  2. Validation of the U.S. NRC coupled code system TRITON/TRACE/PARCS with the special power excursion reactor test III (SPERT III)

    SciTech Connect

    Wang, R. C.; Xu, Y.; Downar, T.; Hudson, N.

    2012-07-01

    The Special Power Excursion Reactor Test III (SPERT III) was a series of reactivity insertion experiments conducted in the 1950's. This paper describes the validation of the U.S. NRC Coupled Code system TRITON/PARCS/TRACE to simulate reactivity insertion accidents (RIA) by using several of the SPERT III tests. The work here used the SPERT III E-core configuration tests in which the RIA was initiated by ejecting a control rod. The resulting super-prompt reactivity excursion and negative reactivity feedback produced the familiar bell shaped power increase and decrease. The energy deposition during such a power peak has important safety consequences and provides validation basis for core coupled multi-physics codes. The transients of five separate tests are used to benchmark the PARCS/TRACE coupled code. The models were thoroughly validated using the original experiment documentation. (authors)

  3. Galileogenesis: A new cosmophenomenological zip code for reheating through R-parity violating coupling

    NASA Astrophysics Data System (ADS)

    Choudhury, Sayantan; Dasgupta, Arnab

    2014-05-01

    In this paper we introduce an idea of leptogenesis scenario in higher derivative gravity induced DBI Galileon framework aka Galileogenesis in presence of one-loop R-parity violating couplings in the background of a low energy effective supergravity setup derived from higher dimensional string theory framework. We have studied extensively the detailed feature of reheating constraints and the cosmophenomenological consequences of thermal gravitino dark matter in light of PLANCK and PDG data. Finally, we have also established a direct cosmophenomenological connection among dark matter relic abundance, reheating temperature and tensor-to-scalar ratio in the context of DBI Galileon inflation. Higher order correction terms in the gravity sector are introduced in the effective action as a perturbative correction to the Einstein-Hilbert counterpart coming from the computation of Conformal Field Theory disk amplitude at the two loop level [34-36]. The matter sector encounters the effect of N=1, D=4 supergravity motivated DBI Galileon interaction which is embedded in the D3 brane. Additionally, we have considered the effect of R-parity violating interactions [37-40] in the matter sector which provide a convenient framework for quantifying quark and lepton-flavor violating effects. The low energy UV protective effective action for the proposed cosmophenomenological model is described by [31,32]: S=∫d4x √{-g}[K(Φ,X)-G(Φ,X)□Φ+B1R+(B2RRαβγδ-4B3RRαβ+B4R2)+B5] where the model dependent characteristic functions K(Φ,X) and G(Φ,X) are the implicit functions of Galileon and its kinetic counterpart is X=-1/2 >g∂μΦ∂νΦ. Additionally, Bi∀i are the self-coupling constants of graviton degrees of freedom appearing via dimensional reduction from higher dimensional string theory. Specifically B5 be the effective four dimensional cosmological constant. In general, B2≠B3≠B4 which implies that the quadratic curvature terms originated from two loop correction to the

  4. Analysis of the OECD/NRC BWR Turbine Trip Transient Benchmark with the Coupled Thermal-Hydraulics and Neutronics Code TRAC-M/PARCS

    SciTech Connect

    Lee, Deokjung; Downar, Thomas J.; Ulses, Anthony; Akdeniz, Bedirhan; Ivanov, Kostadin N.

    2004-10-15

    An analysis of the Peach Bottom Unit 2 Turbine Trip 2 (TT2) experiment has been performed using the U.S. Nuclear Regulatory Commission coupled thermal-hydraulics and neutronics code TRAC-M/PARCS. The objective of the analysis was to assess the performance of TRAC-M/PARCS on a BWR transient with significance in two-phase flow and spatial variations of the neutron flux. TRAC-M/PARCS results are found to be in good agreement with measured plant data for both steady-state and transient phases of the benchmark. Additional analyses of four fictitious extreme scenarios are performed to provide a basis for code-to-code comparisons and comprehensive testing of the thermal-hydraulics/neutronics coupling. The obtained results of sensitivity studies on the effect of direct moderator heating on transient simulation indicate the importance of this modeling aspect.

  5. Action-perception coupling in pianists: learned mappings or spatial musical association of response codes (SMARC) effect?

    PubMed

    Stewart, Lauren; Verdonschot, Rinus G; Nasralla, Patrick; Lanipekun, Jennifer

    2013-01-01

    The principle of common coding suggests that a joint representation is formed when actions are repeatedly paired with a specific perceptual event. Musicians are occupationally specialized with regard to the coupling between actions and their auditory effects. In the present study, we employed a novel paradigm to demonstrate automatic action-effect associations in pianists. Pianists and nonmusicians pressed keys according to aurally presented number sequences. Numbers were presented at pitches that were neutral, congruent, or incongruent with respect to pitches that would normally be produced by such actions. Response time differences were seen between congruent and incongruent sequences in pianists alone. A second experiment was conducted to determine whether these effects could be attributed to the existence of previously documented spatial/pitch compatibility effects. In a "stretched" version of the task, the pitch distance over which the numbers were presented was enlarged to a range that could not be produced by the hand span used in Experiment 1. The finding of a larger response time difference between congruent and incongruent trials in the original, standard, version compared with the stretched version, in pianists, but not in nonmusicians, indicates that the effects obtained are, at least partially, attributable to learned action effects.

  6. Statistical Safety Evaluation of BWR Turbine Trip Scenario Using Coupled Neutron Kinetics and Thermal Hydraulics Analysis Code SKETCH-INS/TRACE5.0

    NASA Astrophysics Data System (ADS)

    Ichikawa, Ryoko; Masuhara, Yasuhiro; Kasahara, Fumio

    The Best Estimate Plus Uncertainty (BEPU) method has been prepared for the regulatory cross-check analysis at Japan Nuclear Energy Safety Organization (JNES) on base of the three-dimensional neutron-kinetics/thermal- hydraulics coupled code SKETCH-INS/TRACE5.0. In the preparation, TRACE5.0 is verified against the large-scale thermal-hydraulic tests carried out with NUPEC facility. These tests were focused on the pressure drop of steam-liquid two phase flow and void fraction distribution. From the comparison of the experimental data with other codes (RELAP5/MOD3.3 and TRAC-BF1), TRACE5.0 was judged better than other codes. It was confirmed that TRACE5.0 has high reliability for thermal hydraulics behavior and are used as a best-estimate code for the statistical safety evaluation. Next, the coupled code SKETCH-INS/TRACE5.0 was applied to turbine trip tests performed at the Peach Bottom-2 BWR4 Plant. The turbine trip event shows the rapid power peak due to the voids collapse with the pressure increase. The analyzed peak value of core power is better simulated than the previous version SKETCH-INS/TRAC-BF1. And the statistical safety evaluation using SKETCH-INS/TRACE5.0 was applied to the loss of load transient for examining the influence of the choice of sampling method.

  7. Benchmarking of numerical codes against analytical solutions for multidimensional multicomponent diffusive transport coupled with precipitation-dissolution reactions and porosity changes

    NASA Astrophysics Data System (ADS)

    Hayek, M.; Kosakowski, G.; Jakob, A.; Churakov, S.

    2012-04-01

    Numerical computer codes dealing with precipitation-dissolution reactions and porosity changes in multidimensional reactive transport problems are important tools in geoscience. Recent typical applications are related to CO2 sequestration, shallow and deep geothermal energy, remediation of contaminated sites or the safe underground storage of chemotoxic and radioactive waste. Although the agreement between codes using the same models and similar numerical algorithms is satisfactory, it is known that the numerical methods used in solving the transport equation, as well as different coupling schemes between transport and chemistry, may lead to systematic discrepancies. Moreover, due to their inability to describe subgrid pore space changes correctly, the numerical approaches predict discretization-dependent values of porosity changes and clogging times. In this context, analytical solutions become an essential tool to verify numerical simulations. We present a benchmark study where we compare a two-dimensional analytical solution for diffusive transport of two solutes coupled with a precipitation-dissolution reaction causing porosity changes with numerical solutions obtained with the COMSOL Multiphysics code and with the reactive transport code OpenGeoSys-GEMS. The analytical solution describes the spatio-temporal evolution of solutes and solid concentrations and porosity. We show that both numerical codes reproduce the analytical solution very well, although distinct differences in accuracy can be traced back to specific numerical implementations.

  8. GEYSER/TONUS: A coupled multi-D lumped parameter code for reactor thermal hydraulics analysis in case of severe accidents

    SciTech Connect

    Petit, M.; Durin, M.; Gauvain, J.

    1995-09-01

    In many countries, the safety requirements for future light water reactors include accounting for severe accidents in the design process. As far as the containment is concerned, the design must now include mitigation features to limit the pressure and temperature inside the building. Hydrogen concentration is also a major issue for severe accidents. In this context, new needs appear for the modeling of the thermal hydraulics inside the containment. It requires the description of complex phenomena such as condensation, stratification, transport of gases and aerosols, heat transfers. Moreover, the effect of mitigation systems will increase the heterogeneities in the building, and most of those phenomena can be coupled, as for example hydrogen stratification and condensation. To model such a complex situation, the use of multi-dimensional computer codes seems to be necessary in case of large volumes. The aim of the GEYSER/TONUS computer code is to fulfill this need. This code is currently under development at CEA in Saclay. It will allow the coupling of parts of the containment described in a lumped parameter manner, together with meshed parts. Emphasis is put on the numerical methods used to solve the transient problem, as the objective is to be able to treat complete scenarios. Physical models of classical lumped parameters codes will adapted for the spatially described zones. The code is developed in the environment of the CASTEM 2000/TRIO EF system which allows, thanks to its modular conception, to construct sophisticated applications based upon it.

  9. Coupled 2-dimensional cascade theory for noise an d unsteady aerodynamics of blade row interaction in turbofans. Volume 2: Documentation for computer code CUP2D

    NASA Technical Reports Server (NTRS)

    Hanson, Donald B.

    1994-01-01

    A two dimensional linear aeroacoustic theory for rotor/stator interaction with unsteady coupling was derived and explored in Volume 1 of this report. Computer program CUP2D has been written in FORTRAN embodying the theoretical equations. This volume (Volume 2) describes the structure of the code, installation and running, preparation of the input file, and interpretation of the output. A sample case is provided with printouts of the input and output. The source code is included with comments linking it closely to the theoretical equations in Volume 1.

  10. COUPLING

    DOEpatents

    Frisch, E.; Johnson, C.G.

    1962-05-15

    A detachable coupling arrangement is described which provides for varying the length of the handle of a tool used in relatively narrow channels. The arrangement consists of mating the key and keyhole formations in the cooperating handle sections. (AEC)

  11. Simulation of Weld Mechanical Behavior to Include Welding Induced Residual Stress and Distortion: Coupling of SYSWELD and Abaqus Codes

    DTIC Science & Technology

    2015-11-01

    induced residual stresses and distortions from weld simulations in the SYSWELD software code in structural Finite Element Analysis ( FEA ) simulations...performed in the Abaqus FEA code is presented. The translation of these results is accomplished using a newly developed Python script. Full details of...Local Weld Model in Structural FEA ....................................................15 CONCLUSIONS

  12. ITS version 5.0 :the integrated TIGER series of coupled electron/Photon monte carlo transport codes with CAD geometry.

    SciTech Connect

    Franke, Brian Claude; Kensek, Ronald Patrick; Laub, Thomas William

    2005-09-01

    ITS is a powerful and user-friendly software package permitting state-of-the-art Monte Carlo solution of linear time-independent coupled electron/photon radiation transport problems, with or without the presence of macroscopic electric and magnetic fields of arbitrary spatial dependence. Our goal has been to simultaneously maximize operational simplicity and physical accuracy. Through a set of preprocessor directives, the user selects one of the many ITS codes. The ease with which the makefile system is applied combines with an input scheme based on order-independent descriptive keywords that makes maximum use of defaults and internal error checking to provide experimentalists and theorists alike with a method for the routine but rigorous solution of sophisticated radiation transport problems. Physical rigor is provided by employing accurate cross sections, sampling distributions, and physical models for describing the production and transport of the electron/photon cascade from 1.0 GeV down to 1.0 keV. The availability of source code permits the more sophisticated user to tailor the codes to specific applications and to extend the capabilities of the codes to more complex applications. Version 5.0, the latest version of ITS, contains (1) improvements to the ITS 3.0 continuous-energy codes, (2) multigroup codes with adjoint transport capabilities, (3) parallel implementations of all ITS codes, (4) a general purpose geometry engine for linking with CAD or other geometry formats, and (5) the Cholla facet geometry library. Moreover, the general user friendliness of the software has been enhanced through increased internal error checking and improved code portability.

  13. PRELIMINARY COUPLING OF THE MONTE CARLO CODE OPENMC AND THE MULTIPHYSICS OBJECT-ORIENTED SIMULATION ENVIRONMENT (MOOSE) FOR ANALYZING DOPPLER FEEDBACK IN MONTE CARLO SIMULATIONS

    SciTech Connect

    Matthew Ellis; Derek Gaston; Benoit Forget; Kord Smith

    2011-07-01

    In recent years the use of Monte Carlo methods for modeling reactors has become feasible due to the increasing availability of massively parallel computer systems. One of the primary challenges yet to be fully resolved, however, is the efficient and accurate inclusion of multiphysics feedback in Monte Carlo simulations. The research in this paper presents a preliminary coupling of the open source Monte Carlo code OpenMC with the open source Multiphysics Object-Oriented Simulation Environment (MOOSE). The coupling of OpenMC and MOOSE will be used to investigate efficient and accurate numerical methods needed to include multiphysics feedback in Monte Carlo codes. An investigation into the sensitivity of Doppler feedback to fuel temperature approximations using a two dimensional 17x17 PWR fuel assembly is presented in this paper. The results show a functioning multiphysics coupling between OpenMC and MOOSE. The coupling utilizes Functional Expansion Tallies to accurately and efficiently transfer pin power distributions tallied in OpenMC to unstructured finite element meshes used in MOOSE. The two dimensional PWR fuel assembly case also demonstrates that for a simplified model the pin-by-pin doppler feedback can be adequately replicated by scaling a representative pin based on pin relative powers.

  14. CHIC - Coupling Habitability, Interior and Crust: A new Code for Modeling the Thermal Evolution of Planets and Moons

    NASA Astrophysics Data System (ADS)

    Noack, Lena; Rivoldini, Attilio; Van Hoolst, Tim

    2015-04-01

    We present a new numerical code (CHIC) for the simulation of the thermal evolution of terrestrial planets. The code consists of both a 1d parameterised model to evaluate the temperature profile in the planet's interior and a 2d/3d convection model for the silicate mantle - the latter uses either a Cartesian box, a 2d cylindrical sphere or a 2d spherical annulus. The code is modular and can be easily extended (for example to include an atmosphere module). In the convection model next to the energy equation the conservation equations of mass and momentum are solved, as well. We apply either a Boussinesq approximation or an extended Boussinesq approximation for mantle convection; compressible treatment is planned for the future. The code provides information on the temperature field in the mantle, convective velocities and convective stresses. Simulations can be run under steady-state or thermal evolution conditions. The CHIC code handles surface volcanism, crustal development, and different regimes of surface mobilization like plate tectonics. It is therefore well suited for studying scenarios related to the habitability of terrestrial planets. The code provides a user updatable library of thermodynamic properties of iron and common mantle silicates as well as associated equations of state that allow to compute material properties at high pressure and temperature. Furthermore, the interior structure of a planet for given composition and mass can be determined, yielding the core and planet radius that can then be automatically used for the thermal evolution simulation. CHIC does also accommodate a module for computing a simple parameterised thermal evolution model of a planet's core that includes the formation of an inner core. This module can be combined with either the 1d parameterised thermal evolution model or the 2d/3d mantle convection model. The code has been benchmarked with different convection codes, and compared to published interior-structure models and 1d

  15. Coupling Legacy and Contemporary Deterministic Codes to Goldsim for Probabilistic Assessments of Potential Low-Level Waste Repository Sites

    NASA Astrophysics Data System (ADS)

    Mattie, P. D.; Knowlton, R. G.; Arnold, B. W.; Tien, N.; Kuo, M.

    2006-12-01

    Sandia National Laboratories (Sandia), a U.S. Department of Energy National Laboratory, has over 30 years experience in radioactive waste disposal and is providing assistance internationally in a number of areas relevant to the safety assessment of radioactive waste disposal systems. International technology transfer efforts are often hampered by small budgets, time schedule constraints, and a lack of experienced personnel in countries with small radioactive waste disposal programs. In an effort to surmount these difficulties, Sandia has developed a system that utilizes a combination of commercially available codes and existing legacy codes for probabilistic safety assessment modeling that facilitates the technology transfer and maximizes limited available funding. Numerous codes developed and endorsed by the United States Nuclear Regulatory Commission and codes developed and maintained by United States Department of Energy are generally available to foreign countries after addressing import/export control and copyright requirements. From a programmatic view, it is easier to utilize existing codes than to develop new codes. From an economic perspective, it is not possible for most countries with small radioactive waste disposal programs to maintain complex software, which meets the rigors of both domestic regulatory requirements and international peer review. Therefore, re-vitalization of deterministic legacy codes, as well as an adaptation of contemporary deterministic codes, provides a creditable and solid computational platform for constructing probabilistic safety assessment models. External model linkage capabilities in Goldsim and the techniques applied to facilitate this process will be presented using example applications, including Breach, Leach, and Transport-Multiple Species (BLT-MS), a U.S. NRC sponsored code simulating release and transport of contaminants from a subsurface low-level waste disposal facility used in a cooperative technology transfer

  16. Wave Data Processing and Analysis, Part 2: Codes for Coupling GenCade and CMS-Wave

    DTIC Science & Technology

    2013-09-01

    coastal modeling system , Report 2: CMS -Wave. ERDC/CHL-TR-11-10. Vicksburg, MS: US Army Engineer Research and Development Center. Connell, K. J. and...Coupling GenCade and CMS -Wave by Rusty Permenter, Kenneth J. Connell, and Zeki Demirbilek PURPOSE: This Coastal and Hydraulics Engineering...to GenCade. This is the second CHETN in a two‐part series detailing the process of coupling CMS ‐Wave with GenCade. This CHETN focuses on

  17. Development of Tritium Permeation Analysis Code and Tritium Transport in a High Temperature Gas-Cooled Reactor Coupled with Hydrogen Production System

    SciTech Connect

    Chang H. Oh; Eung S. Kim; Mike Patterson

    2010-06-01

    Abstract – A tritium permeation analyses code (TPAC) was developed by Idaho National Laboratory for the purpose of analyzing tritium distributions in very high temperature reactor (VHTR) systems, including integrated hydrogen production systems. A MATLAB SIMULINK software package was used in developing the code. The TPAC is based on the mass balance equations of tritium-containing species and various forms of hydrogen coupled with a variety of tritium sources, sinks, and permeation models. In the TPAC, ternary fission and neutron reactions with 6Li, 7Li 10B, and 3He were taken into considerations as tritium sources. Purification and leakage models were implemented as main tritium sinks. Permeation of tritium and H2 through pipes, vessels, and heat exchangers were considered as main tritium transport paths. In addition, electroyzer and isotope exchange models were developed for analyzing hydrogen production systems, including high temperature electrolysis and sulfur-iodine processes.

  18. Peach Bottom 2 Turbine Trip Simulation Using TRAC-BF1/COS3D, a Best-Estimate Coupled 3-D Core and Thermal-Hydraulic Code System

    SciTech Connect

    Ui, Atsushi; Miyaji, Takamasa

    2004-10-15

    The best-estimate coupled three-dimensional (3-D) core and thermal-hydraulic code system TRAC-BF1/COS3D has been developed. COS3D, based on a modified one-group neutronic model, is a 3-D core simulator used for licensing analyses and core management of commercial boiling water reactor (BWR) plants in Japan. TRAC-BF1 is a plant simulator based on a two-fluid model. TRAC-BF1/COS3D is a coupled system of both codes, which are connected using a parallel computing tool. This code system was applied to the OECD/NRC BWR Turbine Trip Benchmark. Since the two-group cross-section tables are provided by the benchmark team, COS3D was modified to apply to this specification. Three best-estimate scenarios and four hypothetical scenarios were calculated using this code system. In the best-estimate scenario, the predicted core power with TRAC-BF1/COS3D is slightly underestimated compared with the measured data. The reason seems to be a slight difference in the core boundary conditions, that is, pressure changes and the core inlet flow distribution, because the peak in this analysis is sensitive to them. However, the results of this benchmark analysis show that TRAC-BF1/COS3D gives good precision for the prediction of the actual BWR transient behavior on the whole. Furthermore, the results with the modified one-group model and the two-group model were compared to verify the application of the modified one-group model to this benchmark. This comparison shows that the results of the modified one-group model are appropriate and sufficiently precise.

  19. The Transient 3-D Transport Coupled Code TORT-TD/ATTICA3D for High-Fidelity Pebble-Bed HTGR Analyses

    NASA Astrophysics Data System (ADS)

    Seubert, Armin; Sureda, Antonio; Lapins, Janis; Bader, Johannes; Laurien, Eckart

    2012-01-01

    This article describes the 3D discrete ordinates-based coupled code system TORT-TD/ATTICA3D that aims at steady state and transient analyses of pebble-bed high-temperature gas cooled reactors. In view of increasing computing power, the application of time-dependent neutron transport methods becomes feasible for best estimate evaluations of safety margins. The calculation capabilities of TORT-TD/ATTICA3D are presented along with the coupling approach, with focus on the time-dependent neutron transport features of TORT-TD. Results obtained for the OECD/NEA/NSC PBMR-400 benchmark demonstrate the transient capabilities of TORT-TD/ATTICA3D.

  20. Simulation of Weld Mechanical Behavior to Include Welding-Induced Residual Stress and Distortion: Coupling of SYSWELD and Abaqus Codes

    DTIC Science & Technology

    2015-11-01

    performed in the Abaqus FEA code is presented. The translation of these results is accomplished using a newly developed Python script. Full details of...Screen shots of the Visual Viewer function showing a) drop-down menus to save an ASCII contour ( text -based file) and b) different properties available to...contour ( text -based file). To save stress data, STRESSES_ELE_XX (or YY, ZZ, XZ, YZ, or XY), as highlighted by the dotted red box, are required

  1. Simulation of decay heat removal by natural convection in a pool type fast reactor model-ramona-with coupled 1D/2D thermal hydraulic code system

    SciTech Connect

    Kasinathan, N.; Rajakumar, A.; Vaidyanathan, G.; Chetal, S.C.

    1995-09-01

    Post shutdown decay heat removal is an important safety requirement in any nuclear system. In order to improve the reliability of this function, Liquid metal (sodium) cooled fast breeder reactors (LMFBR) are equipped with redundant hot pool dipped immersion coolers connected to natural draught air cooled heat exchangers through intermediate sodium circuits. During decay heat removal, flow through the core, immersion cooler primary side and in the intermediate sodium circuits are also through natural convection. In order to establish the viability and validate computer codes used in making predictions, a 1:20 scale experimental model called RAMONA with water as coolant has been built and experimental simulation of decay heat removal situation has been performed at KfK Karlsruhe. Results of two such experiments have been compiled and published as benchmarks. This paper brings out the results of the numerical simulation of one of the benchmark case through a 1D/2D coupled code system, DHDYN-1D/THYC-2D and the salient features of the comparisons. Brief description of the formulations of the codes are also included.

  2. The Hypothesis that the Genetic Code Originated in Coupled Synthesis of Proteins and the Evolutionary Predecessors of Nucleic Acids in Primitive Cells.

    PubMed

    Francis, Brian R

    2015-02-11

    Although analysis of the genetic code has allowed explanations for its evolution to be proposed, little evidence exists in biochemistry and molecular biology to offer an explanation for the origin of the genetic code. In particular, two features of biology make the origin of the genetic code difficult to understand. First, nucleic acids are highly complicated polymers requiring numerous enzymes for biosynthesis. Secondly, proteins have a simple backbone with a set of 20 different amino acid side chains synthesized by a highly complicated ribosomal process in which mRNA sequences are read in triplets. Apparently, both nucleic acid and protein syntheses have extensive evolutionary histories. Supporting these processes is a complex metabolism and at the hub of metabolism are the carboxylic acid cycles. This paper advances the hypothesis that the earliest predecessor of the nucleic acids was a β-linked polyester made from malic acid, a highly conserved metabolite in the carboxylic acid cycles. In the β-linked polyester, the side chains are carboxylic acid groups capable of forming interstrand double hydrogen bonds. Evolution of the nucleic acids involved changes to the backbone and side chain of poly(β-d-malic acid). Conversion of the side chain carboxylic acid into a carboxamide or a longer side chain bearing a carboxamide group, allowed information polymers to form amide pairs between polyester chains. Aminoacylation of the hydroxyl groups of malic acid and its derivatives with simple amino acids such as glycine and alanine allowed coupling of polyester synthesis and protein synthesis. Use of polypeptides containing glycine and l-alanine for activation of two different monomers with either glycine or l-alanine allowed simple coded autocatalytic synthesis of polyesters and polypeptides and established the first genetic code. A primitive cell capable of supporting electron transport, thioester synthesis, reduction reactions, and synthesis of polyesters and

  3. The Hypothesis that the Genetic Code Originated in Coupled Synthesis of Proteins and the Evolutionary Predecessors of Nucleic Acids in Primitive Cells

    PubMed Central

    Francis, Brian R.

    2015-01-01

    Although analysis of the genetic code has allowed explanations for its evolution to be proposed, little evidence exists in biochemistry and molecular biology to offer an explanation for the origin of the genetic code. In particular, two features of biology make the origin of the genetic code difficult to understand. First, nucleic acids are highly complicated polymers requiring numerous enzymes for biosynthesis. Secondly, proteins have a simple backbone with a set of 20 different amino acid side chains synthesized by a highly complicated ribosomal process in which mRNA sequences are read in triplets. Apparently, both nucleic acid and protein syntheses have extensive evolutionary histories. Supporting these processes is a complex metabolism and at the hub of metabolism are the carboxylic acid cycles. This paper advances the hypothesis that the earliest predecessor of the nucleic acids was a β-linked polyester made from malic acid, a highly conserved metabolite in the carboxylic acid cycles. In the β-linked polyester, the side chains are carboxylic acid groups capable of forming interstrand double hydrogen bonds. Evolution of the nucleic acids involved changes to the backbone and side chain of poly(β-d-malic acid). Conversion of the side chain carboxylic acid into a carboxamide or a longer side chain bearing a carboxamide group, allowed information polymers to form amide pairs between polyester chains. Aminoacylation of the hydroxyl groups of malic acid and its derivatives with simple amino acids such as glycine and alanine allowed coupling of polyester synthesis and protein synthesis. Use of polypeptides containing glycine and l-alanine for activation of two different monomers with either glycine or l-alanine allowed simple coded autocatalytic synthesis of polyesters and polypeptides and established the first genetic code. A primitive cell capable of supporting electron transport, thioester synthesis, reduction reactions, and synthesis of polyesters and

  4. Multiple-code benchmark simulation study of coupled THMC processesin the excavation disturbed zone associated with geological nuclear wasterepositories

    SciTech Connect

    Rutqvist, J.; Feng, X-T.; Hudson, J.; Jing, L.; Kobayashi, A.; Koyama, T.; Pan, P-Z.; Lee, H-S.; Rinne, M.; Sonnenthal, E.; Yamamoto, Y.

    2006-05-10

    An international, multiple-code benchmark test (BMT) studyis being conducted within the international DECOVALEX project to analysecoupled thermal, hydrological, mechanical and chemical (THMC) processesin the excavation disturbed zone (EDZ) around emplacement drifts of anuclear waste repository. This BMT focuses on mechanical responses andlong-term chemo-mechanical effects that may lead to changes in mechanicaland hydrological properties in the EDZ. This includes time-de-pendentprocesses such as creep, and subcritical crack, or healing of fracturesthat might cause "weakening" or "hardening" of the rock over the longterm. Five research teams are studying this BMT using a wide range ofmodel approaches, including boundary element, finite element, and finitedifference, particle mechanics, and elasto-plastic cellular automatamethods. This paper describes the definition of the problem andpreliminary simulation results for the initial model inception part, inwhich time dependent effects are not yet included.

  5. Isotope Coded Protein Labeling Coupled Immunoprecipitation (ICPL-IP): A Novel Approach for Quantitative Protein Complex Analysis From Native Tissue*

    PubMed Central

    Vogt, Andreas; Fuerholzner, Bettina; Kinkl, Norbert; Boldt, Karsten; Ueffing, Marius

    2013-01-01

    High confidence definition of protein interactions is an important objective toward the understanding of biological systems. Isotope labeling in combination with affinity-based isolation of protein complexes has increased in accuracy and reproducibility, yet, larger organisms—including humans—are hardly accessible to metabolic labeling and thus, a major limitation has been its restriction to small animals, cell lines, and yeast. As composition as well as the stoichiometry of protein complexes can significantly differ in primary tissues, there is a great demand for methods capable to combine the selectivity of affinity-based isolation as well as the accuracy and reproducibility of isotope-based labeling with its application toward analysis of protein interactions from intact tissue. Toward this goal, we combined isotope coded protein labeling (ICPL)1 with immunoprecipitation (IP) and quantitative mass spectrometry (MS). ICPL-IP allows sensitive and accurate analysis of protein interactions from primary tissue. We applied ICPL-IP to immuno-isolate protein complexes from bovine retinal tissue. Protein complexes of immunoprecipitated β-tubulin, a highly abundant protein with known interactors as well as the lowly expressed small GTPase RhoA were analyzed. The results of both analyses demonstrate sensitive and selective identification of known as well as new protein interactions by our method. PMID:23268931

  6. Isotope coded protein labeling coupled immunoprecipitation (ICPL-IP): a novel approach for quantitative protein complex analysis from native tissue.

    PubMed

    Vogt, Andreas; Fuerholzner, Bettina; Kinkl, Norbert; Boldt, Karsten; Ueffing, Marius

    2013-05-01

    High confidence definition of protein interactions is an important objective toward the understanding of biological systems. Isotope labeling in combination with affinity-based isolation of protein complexes has increased in accuracy and reproducibility, yet, larger organisms--including humans--are hardly accessible to metabolic labeling and thus, a major limitation has been its restriction to small animals, cell lines, and yeast. As composition as well as the stoichiometry of protein complexes can significantly differ in primary tissues, there is a great demand for methods capable to combine the selectivity of affinity-based isolation as well as the accuracy and reproducibility of isotope-based labeling with its application toward analysis of protein interactions from intact tissue. Toward this goal, we combined isotope coded protein labeling (ICPL)(1) with immunoprecipitation (IP) and quantitative mass spectrometry (MS). ICPL-IP allows sensitive and accurate analysis of protein interactions from primary tissue. We applied ICPL-IP to immuno-isolate protein complexes from bovine retinal tissue. Protein complexes of immunoprecipitated β-tubulin, a highly abundant protein with known interactors as well as the lowly expressed small GTPase RhoA were analyzed. The results of both analyses demonstrate sensitive and selective identification of known as well as new protein interactions by our method.

  7. Estimation of relative biological effectiveness for boron neutron capture therapy using the PHITS code coupled with a microdosimetric kinetic model.

    PubMed

    Horiguchi, Hironori; Sato, Tatsuhiko; Kumada, Hiroaki; Yamamoto, Tetsuya; Sakae, Takeji

    2015-03-01

    The absorbed doses deposited by boron neutron capture therapy (BNCT) can be categorized into four components: α and (7)Li particles from the (10)B(n, α)(7)Li reaction, 0.54-MeV protons from the (14)N(n, p)(14)C reaction, the recoiled protons from the (1)H(n, n) (1)H reaction, and photons from the neutron beam and (1)H(n, γ)(2)H reaction. For evaluating the irradiation effect in tumors and the surrounding normal tissues in BNCT, it is of great importance to estimate the relative biological effectiveness (RBE) for each dose component in the same framework. We have, therefore, established a new method for estimating the RBE of all BNCT dose components on the basis of the microdosimetric kinetic model. This method employs the probability density of lineal energy, y, in a subcellular structure as the index for expressing RBE, which can be calculated using the microdosimetric function implemented in the particle transport simulation code (PHITS). The accuracy of this method was tested by comparing the calculated RBE values with corresponding measured data in a water phantom irradiated with an epithermal neutron beam. The calculation technique developed in this study will be useful for biological dose estimation in treatment planning for BNCT.

  8. Estimation of relative biological effectiveness for boron neutron capture therapy using the PHITS code coupled with a microdosimetric kinetic model

    PubMed Central

    Horiguchi, Hironori; Sato, Tatsuhiko; Kumada, Hiroaki; Yamamoto, Tetsuya; Sakae, Takeji

    2015-01-01

    The absorbed doses deposited by boron neutron capture therapy (BNCT) can be categorized into four components: α and 7Li particles from the 10B(n, α)7Li reaction, 0.54-MeV protons from the 14N(n, p)14C reaction, the recoiled protons from the 1H(n, n) 1H reaction, and photons from the neutron beam and 1H(n, γ)2H reaction. For evaluating the irradiation effect in tumors and the surrounding normal tissues in BNCT, it is of great importance to estimate the relative biological effectiveness (RBE) for each dose component in the same framework. We have, therefore, established a new method for estimating the RBE of all BNCT dose components on the basis of the microdosimetric kinetic model. This method employs the probability density of lineal energy, y, in a subcellular structure as the index for expressing RBE, which can be calculated using the microdosimetric function implemented in the particle transport simulation code (PHITS). The accuracy of this method was tested by comparing the calculated RBE values with corresponding measured data in a water phantom irradiated with an epithermal neutron beam. The calculation technique developed in this study will be useful for biological dose estimation in treatment planning for BNCT. PMID:25428243

  9. Multiple-Code BenchMaek Simulation Stidy of Coupled THMC Processes IN the EXCAVATION DISTURBED ZONE Associated with Geological Nuclear Waste Repositories

    SciTech Connect

    J. Rutqvist; X. Feng; J. Hudson; L. Jing; A. Kobayashi; T. Koyama; P.Pan; H. Lee; M. Rinne; E. Sonnenthal; Y. Yamamoto

    2006-05-08

    An international, multiple-code benchmark test (BMT) study is being conducted within the international DECOVALEX project to analyze coupled thermal, hydrological, mechanical and chemical (THMC) processes in the excavation disturbed zone (EDZ) around emplacement drifts of a nuclear waste repository. This BMT focuses on mechanical responses and long-term chemo-mechanical effects that may lead to changes in mechanical and hydrological properties in the EDZ. This includes time-dependent processes such as creep, and subcritical crack, or healing of fractures that might cause ''weakening'' or ''hardening'' of the rock over the long term. Five research teams are studying this BMT using a wide range of model approaches, including boundary element, finite element, and finite difference, particle mechanics, and elasto-plastic cellular automata methods. This paper describes the definition of the problem and preliminary simulation results for the initial model inception part, in which time dependent effects are not yet included.

  10. Analysis of a rod withdrawal in a PWR core with the neutronic- thermalhydraulic coupled code RELAP/PARCS and RELAP/VALKIN

    SciTech Connect

    Miro, R.; Maggini, F.; Barrachina, T.; Verdu, G.; Gomez, A.; Ortego, A.; Murillo, J. C.

    2006-07-01

    The Reactor Ejection Accident (REA) belongs to the Reactor Initiated Accidents (RIA) category of accidents and it is part of the licensing basis accident analyses required for pressure water reactors (PWR). The REA at hot zero power (HZP) is characterized by a single rod ejection from a core position with a very low power level. The evolution consists basically of a continuous reactivity insertion. The main feature limiting the consequences of the accident in a PWR is the Doppler Effect. To check the performance of the coupled code RELAP5/PARCS2.5 and RELAP5/VALKIN a REA in Trillo NPP is simulated. These analyses will allow knowing more accurately the PWR real plant phenomenology in the RIA most limiting conditions. (authors)

  11. Development of a new code to solve hydro-mechanical coupling, shear failure and tensile failure due to hydraulic fracturing operations.

    NASA Astrophysics Data System (ADS)

    María Gómez Castro, Berta; De Simone, Silvia; Carrera, Jesús

    2016-04-01

    Nowadays, there are still some unsolved relevant questions which must be faced if we want to proceed to the hydraulic fracturing in a safe way. How much will the fracture propagate? This is one of the most important questions that have to be solved in order to avoid the formation of pathways leading to aquifer targets and atmospheric release. Will the fracture failure provoke a microseismic event? Probably this is the biggest fear that people have in fracking. The aim of this work (developed as a part of the EU - FracRisk project) is to understand the hydro-mechanical coupling that controls the shear of existing fractures and their propagation during a hydraulic fracturing operation, in order to identify the key parameters that dominate these processes and answer the mentioned questions. This investigation focuses on the development of a new C++ code which simulates hydro-mechanical coupling, shear movement and propagation of a fracture. The framework employed, called Kratos, uses the Finite Element Method and the fractures are represented with an interface element which is zero thickness. This means that both sides of the element lie together in the initial configuration (it seems a 1D element in a 2D domain, and a 2D element in a 3D domain) and separate as the adjacent matrix elements deform. Since we are working in hard, fragile rocks, we can assume an elastic matrix and impose irreversible displacements in fractures when rock failure occurs. The formulation used to simulate shear and tensile failures is based on the analytical solution proposed by Okada, 1992 and it is part of an iterative process. In conclusion, the objective of this work is to employ the new code developed to analyze the main uncertainties related with the hydro-mechanical behavior of fractures derived from the hydraulic fracturing operations.

  12. Calculation of the dielectric constant ɛ and first nonlinear susceptibility χ(2) of crystalline potassium dihydrogen phosphate by the coupled perturbed Hartree-Fock and coupled perturbed Kohn-Sham schemes as implemented in the CRYSTAL code

    NASA Astrophysics Data System (ADS)

    Lacivita, Valentina; Rérat, Michel; Kirtman, Bernard; Ferrero, Mauro; Orlando, Roberto; Dovesi, Roberto

    2009-11-01

    The high-frequency dielectric ɛ and the first nonlinear electric susceptibility χ(2) tensors of crystalline potassium dihydrogen phosphate (KH2PO4) are calculated by using the coupled perturbed Hartree-Fock and Kohn-Sham methods as implemented in the CRYSTAL code. The effect of basis sets of increasing size on ɛ and χ(2) is explored. Five different levels of theory, namely, local-density approximation, generalized gradient approximation (PBE), hybrids (B3LYP and PBE0), and HF are compared using the experimental and theoretical structures corresponding not only to the tetragonal geometry I4d2 at room temperature but also to the orthorhombic phase Fdd2 at low temperature. Comparison between the two phases and their optical behavior is made. The calculated results for the tetragonal phase are in good agreement with the experimental data.

  13. Extension of the supercritical carbon dioxide brayton cycle to low reactor power operation: investigations using the coupled anl plant dynamics code-SAS4A/SASSYS-1 liquid metal reactor code system.

    SciTech Connect

    Moisseytsev, A.; Sienicki, J. J.

    2012-05-10

    Significant progress has been made on the development of a control strategy for the supercritical carbon dioxide (S-CO{sub 2}) Brayton cycle enabling removal of power from an autonomous load following Sodium-Cooled Fast Reactor (SFR) down to decay heat levels such that the S-CO{sub 2} cycle can be used to cool the reactor until decay heat can be removed by the normal shutdown heat removal system or a passive decay heat removal system such as Direct Reactor Auxiliary Cooling System (DRACS) loops with DRACS in-vessel heat exchangers. This capability of the new control strategy eliminates the need for use of a separate shutdown heat removal system which might also use supercritical CO{sub 2}. It has been found that this capability can be achieved by introducing a new control mechanism involving shaft speed control for the common shaft joining the turbine and two compressors following reduction of the load demand from the electrical grid to zero. Following disconnection of the generator from the electrical grid, heat is removed from the intermediate sodium circuit through the sodium-to-CO{sub 2} heat exchanger, the turbine solely drives the two compressors, and heat is rejected from the cycle through the CO{sub 2}-to-water cooler. To investigate the effectiveness of shaft speed control, calculations are carried out using the coupled Plant Dynamics Code-SAS4A/SASSYS-1 code for a linear load reduction transient for a 1000 MWt metallic-fueled SFR with autonomous load following. No deliberate motion of control rods or adjustment of sodium pump speeds is assumed to take place. It is assumed that the S-CO{sub 2} turbomachinery shaft speed linearly decreases from 100 to 20% nominal following reduction of grid load to zero. The reactor power is calculated to autonomously decrease down to 3% nominal providing a lengthy window in time for the switchover to the normal shutdown heat removal system or for a passive decay heat removal system to become effective. However, the

  14. Development and Implementation of Photonuclear Cross-Section Data for Mutually Coupled Neutron-Photon Transport Calculations in the Monte Carlo N-Particle (MCNP) Radiation Transport Code

    SciTech Connect

    White, Morgan C.

    2000-07-01

    The fundamental motivation for the research presented in this dissertation was the need to development a more accurate prediction method for characterization of mixed radiation fields around medical electron accelerators (MEAs). Specifically, a model is developed for simulation of neutron and other particle production from photonuclear reactions and incorporated in the Monte Carlo N-Particle (MCNP) radiation transport code. This extension of the capability within the MCNP code provides for the more accurate assessment of the mixed radiation fields. The Nuclear Theory and Applications group of the Los Alamos National Laboratory has recently provided first-of-a-kind evaluated photonuclear data for a select group of isotopes. These data provide the reaction probabilities as functions of incident photon energy with angular and energy distribution information for all reaction products. The availability of these data is the cornerstone of the new methodology for state-of-the-art mutually coupled photon-neutron transport simulations. The dissertation includes details of the model development and implementation necessary to use the new photonuclear data within MCNP simulations. A new data format has been developed to include tabular photonuclear data. Data are processed from the Evaluated Nuclear Data Format (ENDF) to the new class ''u'' A Compact ENDF (ACE) format using a standalone processing code. MCNP modifications have been completed to enable Monte Carlo sampling of photonuclear reactions. Note that both neutron and gamma production are included in the present model. The new capability has been subjected to extensive verification and validation (V&V) testing. Verification testing has established the expected basic functionality. Two validation projects were undertaken. First, comparisons were made to benchmark data from literature. These calculations demonstrate the accuracy of the new data and transport routines to better than 25 percent. Second, the ability to

  15. Compressible Astrophysics Simulation Code

    SciTech Connect

    Howell, L.; Singer, M.

    2007-07-18

    This is an astrophysics simulation code involving a radiation diffusion module developed at LLNL coupled to compressible hydrodynamics and adaptive mesh infrastructure developed at LBNL. One intended application is to neutrino diffusion in core collapse supernovae.

  16. MSTor version 2013: A new version of the computer code for the multi-structural torsional anharmonicity, now with a coupled torsional potential

    NASA Astrophysics Data System (ADS)

    Zheng, Jingjing; Meana-Pañeda, Rubén; Truhlar, Donald G.

    2013-08-01

    We present an improved version of the MSTor program package, which calculates partition functions and thermodynamic functions of complex molecules involving multiple torsions; the method is based on either a coupled torsional potential or an uncoupled torsional potential. The program can also carry out calculations in the multiple-structure local harmonic approximation. The program package also includes seven utility codes that can be used as stand-alone programs to calculate reduced moment of inertia matrices by the method of Kilpatrick and Pitzer, to generate conformational structures, to calculate, either analytically or by Monte Carlo sampling, volumes for torsional subdomains defined by Voronoi tessellation of the conformational subspace, to generate template input files for the MSTor calculation and Voronoi calculation, and to calculate one-dimensional torsional partition functions using the torsional eigenvalue summation method. Restrictions: There is no limit on the number of torsions that can be included in either the Voronoi calculation or the full MS-T calculation. In practice, the range of problems that can be addressed with the present method consists of all multitorsional problems for which one can afford to calculate all the conformational structures and their frequencies. Unusual features: The method can be applied to transition states as well as stable molecules. The program package also includes the hull program for the calculation of Voronoi volumes, the symmetry program for determining point group symmetry of a molecule, and seven utility codes that can be used as stand-alone programs to calculate reduced moment-of-inertia matrices by the method of Kilpatrick and Pitzer, to generate conformational structures, to calculate, either analytically or by Monte Carlo sampling, volumes of the torsional subdomains defined by Voronoi tessellation of the conformational subspace, to generate template input files, and to calculate one-dimensional torsional

  17. DRC2: A code with specialized applications for coupling localized Monte Carlo adjoint calculations with fluences from two-dimensional R-Z discrete ordinates air-over-ground calculations

    SciTech Connect

    Slater, C.O.

    1992-01-01

    The DRC2 code, which couples MASH or MASHX adjoint leakages with DORT 2-D discrete ordinates forward directional fluences, is described. The forward fluences are allowed to vary both axially and radially over the coupling surface, as opposed to the strictly axial variation allowed by the predecessor DRC code. Input instructions are presented along with descriptions and results from several sample problems. Results from the sample problems are used to compare DRC2 with DRC, DRC2 with DORT, and DRC2 with itself for the case of x-y dependence versus no x-y dependence of the forward fluence. The test problems demonstrate that for small systems DRC and DRC2 give essentially the same results. Some significant differences are noted for larger systems. Additionally, DRC2 results with no x-y dependence of the forward directional fluences are practically the same as those calculated by DRC.

  18. Clinical coding. Code breakers.

    PubMed

    Mathieson, Steve

    2005-02-24

    --The advent of payment by results has seen the role of the clinical coder pushed to the fore in England. --Examinations for a clinical coding qualification began in 1999. In 2004, approximately 200 people took the qualification. --Trusts are attracting people to the role by offering training from scratch or through modern apprenticeships.

  19. FAA Smoke Transport Code

    SciTech Connect

    Domino, Stefan; Luketa-Hanlin, Anay; Gallegos, Carlos

    2006-10-27

    FAA Smoke Transport Code, a physics-based Computational Fluid Dynamics tool, which couples heat, mass, and momentum transfer, has been developed to provide information on smoke transport in cargo compartments with various geometries and flight conditions. The software package contains a graphical user interface for specification of geometry and boundary conditions, analysis module for solving the governing equations, and a post-processing tool. The current code was produced by making substantial improvements and additions to a code obtained from a university. The original code was able to compute steady, uniform, isothermal turbulent pressurization. In addition, a preprocessor and postprocessor were added to arrive at the current software package.

  20. Mapping Local Codes to Read Codes.

    PubMed

    Bonney, Wilfred; Galloway, James; Hall, Christopher; Ghattas, Mikhail; Tramma, Leandro; Nind, Thomas; Donnelly, Louise; Jefferson, Emily; Doney, Alexander

    2017-01-01

    Background & Objectives: Legacy laboratory test codes make it difficult to use clinical datasets for meaningful translational research, where populations are followed for disease risk and outcomes over many years. The Health Informatics Centre (HIC) at the University of Dundee hosts continuous biochemistry data from the clinical laboratories in Tayside and Fife dating back as far as 1987. However, the HIC-managed biochemistry dataset is coupled with incoherent sample types and unstandardised legacy local test codes, which increases the complexity of using the dataset for reasonable population health outcomes. The objective of this study was to map the legacy local test codes to the Scottish 5-byte Version 2 Read Codes using biochemistry data extracted from the repository of the Scottish Care Information (SCI) Store.

  1. The New 1999 National Electrical Code Coupled with New Standards Clarify Requirements for Installations of Photovoltaic Systems in the U.S.

    SciTech Connect

    Bower, W.

    1999-01-08

    The National Electrical Code@ (NEC@) focuses primarily on electrical system installation requirements in the U.S. The NEC addresses both fire and personnel safety. This paper will describe recent efforts of the PV industry in the U.S. and the resulting requirements in the 1999 National Electrical Code-- Article 690 --Solar Photovoltaic Systems. The Article 690 requirements spell out the PV-unique requirements for safe installations of PV systems in the U.S.A. This paper provides an overview of the most significant changes that appear in Article 690 of the 1999 edition of the NEC. The related and coordinated efforts of the other standards- making groups will also be briefly reviewed.

  2. Ethical coding.

    PubMed

    Resnik, Barry I

    2009-01-01

    It is ethical, legal, and proper for a dermatologist to maximize income through proper coding of patient encounters and procedures. The overzealous physician can misinterpret reimbursement requirements or receive bad advice from other physicians and cross the line from aggressive coding to coding fraud. Several of the more common problem areas are discussed.

  3. Uplink Coding

    NASA Technical Reports Server (NTRS)

    Pollara, Fabrizio; Hamkins, Jon; Dolinar, Sam; Andrews, Ken; Divsalar, Dariush

    2006-01-01

    This viewgraph presentation reviews uplink coding. The purpose and goals of the briefing are (1) Show a plan for using uplink coding and describe benefits (2) Define possible solutions and their applicability to different types of uplink, including emergency uplink (3) Concur with our conclusions so we can embark on a plan to use proposed uplink system (4) Identify the need for the development of appropriate technology and infusion in the DSN (5) Gain advocacy to implement uplink coding in flight projects Action Item EMB04-1-14 -- Show a plan for using uplink coding, including showing where it is useful or not (include discussion of emergency uplink coding).

  4. Coupled calculation of the radiological release and the thermal-hydraulic behavior of a 3-loop PWR after a SGTR by means of the code RELAP5

    SciTech Connect

    Van Hove, W.; Van Laeken, K.; Bartsoen, L.

    1995-09-01

    To enable a more realistic and accurate calculation of the radiological consequences of a SGTR, a fission product transport model was developed. As the radiological releases strongly depend on the thermal-hydraulic transient, the model was included in the RELAP5 input decks of the Belgian NPPs. This enables the coupled calculation of the thermal-hydraulic transient and the radiological release. The fission product transport model tracks the concentration of the fission products in the primary circuit, in each of the SGs as well as in the condenser. This leads to a system of 6 coupled, first order ordinary differential equations with time dependent coefficients. Flashing, scrubbing, atomisation and dry out of the break flow are accounted for. Coupling with the thermal-hydraulic calculation and correct modelling of the break position enables an accurate calculation of the mixture level above the break. Pre- and post-accident spiking in the primary circuit are introduced. The transport times in the FW-system and the SG blowdown system are also taken into account, as is the decontaminating effect of the primary make-up system and of the SG blowdown system. Physical input parameters such as the partition coefficients, half life times and spiking coefficients are explicitly introduced so that the same model can be used for iodine, caesium and noble gases.

  5. A fully coupled three-dimensional THM analysis of the FEBEX in situ test with the ROCMAS Code: Prediction of THM behavior in a bentonite barrier

    SciTech Connect

    Rutqvist, J.; Tsang, C-F.

    2003-09-01

    This paper presents a fully coupled thermal-hydrological-mechanical analysis of FEBEX--a large underground heater test conducted in a bentonite and fractured rock system. System responses predicted by the numerical analysis--including temperature, moisture content, and bentonite-swelling stress--were compared to field measurements at sensors located in the bentonite. An overall good agreement between predicted and measured system responses shows that coupled thermal-hydrological-mechanical processes in a bentonite barrier are well represented by the numerical model. The most challenging aspect of this particular analysis was modeling of the bentonite's mechanical behavior, which at FEBEX turned out to be affected by gaps between prefabricated bentonite blocks. At FEBEX, the swelling pressure did not develop until a few months into the experiment when moisture swelling of bentonite blocks had closed the gaps completely. Moreover, the wetting of the bentonite took place uniformly from the rock and was not impacted by the permeability difference between the Lamprophyres dykes and surrounding rock.

  6. Sharing code.

    PubMed

    Kubilius, Jonas

    2014-01-01

    Sharing code is becoming increasingly important in the wake of Open Science. In this review I describe and compare two popular code-sharing utilities, GitHub and Open Science Framework (OSF). GitHub is a mature, industry-standard tool but lacks focus towards researchers. In comparison, OSF offers a one-stop solution for researchers but a lot of functionality is still under development. I conclude by listing alternative lesser-known tools for code and materials sharing.

  7. Superluminal Labview Code

    SciTech Connect

    Wheat, Robert; Marksteiner, Quinn; Quenzer, Jonathan; Higginson, Ian

    2012-03-26

    This labview code is used to set the phase and amplitudes on the 72 antenna of the superluminal machine, and to map out the radiation patter from the superluminal antenna.Each antenna radiates a modulated signal consisting of two separate frequencies, in the range of 2 GHz to 2.8 GHz. The phases and amplitudes from each antenna are controlled by a pair of AD8349 vector modulators (VMs). These VMs set the phase and amplitude of a high frequency signal using a set of four DC inputs, which are controlled by Linear Technologies LTC1990 digital to analog converters (DACs). The labview code controls these DACs through an 8051 microcontroller.This code also monitors the phases and amplitudes of the 72 channels. Near each antenna, there is a coupler that channels a portion of the power into a binary network. Through a labview controlled switching array, any of the 72 coupled signals can be channeled in to the Tektronix TDS 7404 digital oscilloscope. Then the labview code takes an FFT of the signal, and compares it to the FFT of a reference signal in the oscilloscope to determine the magnitude and phase of each sideband of the signal. The code compensates for phase and amplitude errors introduced by differences in cable lengths.The labview code sets each of the 72 elements to a user determined phase and amplitude. For each element, the code runs an iterative procedure, where it adjusts the DACs until the correct phases and amplitudes have been reached.

  8. Multiple component codes based generalized LDPC codes for high-speed optical transport.

    PubMed

    Djordjevic, Ivan B; Wang, Ting

    2014-07-14

    A class of generalized low-density parity-check (GLDPC) codes suitable for optical communications is proposed, which consists of multiple local codes. It is shown that Hamming, BCH, and Reed-Muller codes can be used as local codes, and that the maximum a posteriori probability (MAP) decoding of these local codes by Ashikhmin-Lytsin algorithm is feasible in terms of complexity and performance. We demonstrate that record coding gains can be obtained from properly designed GLDPC codes, derived from multiple component codes. We then show that several recently proposed classes of LDPC codes such as convolutional and spatially-coupled codes can be described using the concept of GLDPC coding, which indicates that the GLDPC coding can be used as a unified platform for advanced FEC enabling ultra-high speed optical transport. The proposed class of GLDPC codes is also suitable for code-rate adaption, to adjust the error correction strength depending on the optical channel conditions.

  9. DNA codes

    SciTech Connect

    Torney, D. C.

    2001-01-01

    We have begun to characterize a variety of codes, motivated by potential implementation as (quaternary) DNA n-sequences, with letters denoted A, C The first codes we studied are the most reminiscent of conventional group codes. For these codes, Hamming similarity was generalized so that the score for matched letters takes more than one value, depending upon which letters are matched [2]. These codes consist of n-sequences satisfying an upper bound on the similarities, summed over the letter positions, of distinct codewords. We chose similarity 2 for matches of letters A and T and 3 for matches of the letters C and G, providing a rough approximation to double-strand bond energies in DNA. An inherent novelty of DNA codes is 'reverse complementation'. The latter may be defined, as follows, not only for alphabets of size four, but, more generally, for any even-size alphabet. All that is required is a matching of the letters of the alphabet: a partition into pairs. Then, the reverse complement of a codeword is obtained by reversing the order of its letters and replacing each letter by its match. For DNA, the matching is AT/CG because these are the Watson-Crick bonding pairs. Reversal arises because two DNA sequences form a double strand with opposite relative orientations. Thus, as will be described in detail, because in vitro decoding involves the formation of double-stranded DNA from two codewords, it is reasonable to assume - for universal applicability - that the reverse complement of any codeword is also a codeword. In particular, self-reverse complementary codewords are expressly forbidden in reverse-complement codes. Thus, an appropriate distance between all pairs of codewords must, when large, effectively prohibit binding between the respective codewords: to form a double strand. Only reverse-complement pairs of codewords should be able to bind. For most applications, a DNA code is to be bi-partitioned, such that the reverse-complementary pairs are separated

  10. Coupling a Reactive Transport Code with a Global Land Surface Model for Mechanistic Biogeochemistry Representation: 1. Addressing the Challenge of Nonnegativity

    DOE PAGES

    Tang, Guoping; Yuan, Fengming; Bisht, Gautam; ...

    2016-01-01

    Reactive transport codes (e.g., PFLOTRAN) are increasingly used to improve the representation of biogeochemical processes in terrestrial ecosystem models (e.g., the Community Land Model, CLM). As CLM and PFLOTRAN use explicit and implicit time stepping, implementation of CLM biogeochemical reactions in PFLOTRAN can result in negative concentration, which is not physical and can cause numerical instability and errors. The objective of this work is to address the nonnegativity challenge to obtain accurate, efficient, and robust solutions. We illustrate the implementation of a reaction network with the CLM-CN decomposition, nitrification, denitrification, and plant nitrogen uptake reactions and test the implementation atmore » arctic, temperate, and tropical sites. We examine use of scaling back the update during each iteration (SU), log transformation (LT), and downregulating the reaction rate to account for reactant availability limitation to enforce nonnegativity. Both SU and LT guarantee nonnegativity but with implications. When a very small scaling factor occurs due to either consumption or numerical overshoot, and the iterations are deemed converged because of too small an update, SU can introduce excessive numerical error. LT involves multiplication of the Jacobian matrix by the concentration vector, which increases the condition number, decreases the time step size, and increases the computational cost. Neither SU nor SE prevents zero concentration. When the concentration is close to machine precision or 0, a small positive update stops all reactions for SU, and LT can fail due to a singular Jacobian matrix. The consumption rate has to be downregulated such that the solution to the mathematical representation is positive. A first-order rate downregulates consumption and is nonnegative, and adding a residual concentration makes it positive. For zero-order rate or when the reaction rate is not a function of a reactant, representing the availability limitation

  11. Sharing code

    PubMed Central

    Kubilius, Jonas

    2014-01-01

    Sharing code is becoming increasingly important in the wake of Open Science. In this review I describe and compare two popular code-sharing utilities, GitHub and Open Science Framework (OSF). GitHub is a mature, industry-standard tool but lacks focus towards researchers. In comparison, OSF offers a one-stop solution for researchers but a lot of functionality is still under development. I conclude by listing alternative lesser-known tools for code and materials sharing. PMID:25165519

  12. The RealGas and RealGasH2O Options of the TOUGH+ Code for the Simulation of Coupled Fluid and Heat Flow in Tight/Shale Gas Systems

    SciTech Connect

    Moridis, George; Freeman, Craig

    2013-09-30

    We developed two new EOS additions to the TOUGH+ family of codes, the RealGasH2O and RealGas . The RealGasH2O EOS option describes the non-isothermal two-phase flow of water and a real gas mixture in gas reservoirs, with a particular focus in ultra-tight (such as tight-sand and shale gas) reservoirs. The gas mixture is treated as either a single-pseudo-component having a fixed composition, or as a multicomponent system composed of up to 9 individual real gases. The RealGas option has the same general capabilities, but does not include water, thus describing a single-phase, dry-gas system. In addition to the standard capabilities of all members of the TOUGH+ family of codes (fully-implicit, compositional simulators using both structured and unstructured grids), the capabilities of the two codes include: coupled flow and thermal effects in porous and/or fractured media, real gas behavior, inertial (Klinkenberg) effects, full micro-flow treatment, Darcy and non-Darcy flow through the matrix and fractures of fractured media, single- and multi-component gas sorption onto the grains of the porous media following several isotherm options, discrete and fracture representation, complex matrix-fracture relationships, and porosity-permeability dependence on pressure changes. The two options allow the study of flow and transport of fluids and heat over a wide range of time frames and spatial scales not only in gas reservoirs, but also in problems of geologic storage of greenhouse gas mixtures, and of geothermal reservoirs with multi-component condensable (H2O and CH4) and non-condensable gas mixtures. The codes are verified against available analytical and semi-analytical solutions. Their capabilities are demonstrated in a series of problems of increasing complexity, ranging from isothermal flow in simpler 1D and 2D conventional gas reservoirs, to non-isothermal gas flow in 3D fractured shale gas reservoirs involving 4 types of fractures, micro-flow, non-Darcy flow and gas

  13. The RealGas and RealGasH2O options of the TOUGH+ code for the simulation of coupled fluid and heat flow in tight/shale gas systems

    NASA Astrophysics Data System (ADS)

    Moridis, George J.; Freeman, Craig M.

    2014-04-01

    We developed two new EOS additions to the TOUGH+ family of codes, the RealGasH2O and RealGas. The RealGasH2O EOS option describes the non-isothermal two-phase flow of water and a real gas mixture in gas reservoirs, with a particular focus in ultra-tight (such as tight-sand and shale gas) reservoirs. The gas mixture is treated as either a single-pseudo-component having a fixed composition, or as a multicomponent system composed of up to 9 individual real gases. The RealGas option has the same general capabilities, but does not include water, thus describing a single-phase, dry-gas system. In addition to the standard capabilities of all members of the TOUGH+ family of codes (fully-implicit, compositional simulators using both structured and unstructured grids), the capabilities of the two codes include coupled flow and thermal effects in porous and/or fractured media, real gas behavior, inertial (Klinkenberg) effects, full micro-flow treatment, Darcy and non-Darcy flow through the matrix and fractures of fractured media, single- and multi-component gas sorption onto the grains of the porous media following several isotherm options, discrete and fracture representation, complex matrix-fracture relationships, and porosity-permeability dependence on pressure changes. The two options allow the study of flow and transport of fluids and heat over a wide range of time frames and spatial scales not only in gas reservoirs, but also in problems of geologic storage of greenhouse gas mixtures, and of geothermal reservoirs with multi-component condensable (H2O and CH4) and non-condensable gas mixtures. The codes are verified against available analytical and semi-analytical solutions. Their capabilities are demonstrated in a series of problems of increasing complexity, ranging from isothermal flow in simpler 1D and 2D conventional gas reservoirs, to non-isothermal gas flow in 3D fractured shale gas reservoirs involving 4 types of fractures, micro-flow, non-Darcy flow and gas

  14. The Phantom SPH code

    NASA Astrophysics Data System (ADS)

    Price, Daniel; Wurster, James; Nixon, Chris

    2016-05-01

    I will present the capabilities of the Phantom SPH code for global simulations of dust and gas in protoplanetary discs. I will present our new algorithms for simulating both small and large grains in discs, as well as our progress towards simulating evolving grain populations and coupling with radiation. Finally, I will discuss our recent applications to HL Tau and the physics of dust gap opening.

  15. Seals Code Development Workshop

    NASA Technical Reports Server (NTRS)

    Hendricks, Robert C. (Compiler); Liang, Anita D. (Compiler)

    1996-01-01

    Seals Workshop of 1995 industrial code (INDSEAL) release include ICYL, GCYLT, IFACE, GFACE, SPIRALG, SPIRALI, DYSEAL, and KTK. The scientific code (SCISEAL) release includes conjugate heat transfer and multidomain with rotordynamic capability. Several seals and bearings codes (e.g., HYDROFLEX, HYDROTRAN, HYDROB3D, FLOWCON1, FLOWCON2) are presented and results compared. Current computational and experimental emphasis includes multiple connected cavity flows with goals of reducing parasitic losses and gas ingestion. Labyrinth seals continue to play a significant role in sealing with face, honeycomb, and new sealing concepts under investigation for advanced engine concepts in view of strict environmental constraints. The clean sheet approach to engine design is advocated with program directions and anticipated percentage SFC reductions cited. Future activities center on engine applications with coupled seal/power/secondary flow streams.

  16. SAC: Sheffield Advanced Code

    NASA Astrophysics Data System (ADS)

    Griffiths, Mike; Fedun, Viktor; Mumford, Stuart; Gent, Frederick

    2013-06-01

    The Sheffield Advanced Code (SAC) is a fully non-linear MHD code designed for simulations of linear and non-linear wave propagation in gravitationally strongly stratified magnetized plasma. It was developed primarily for the forward modelling of helioseismological processes and for the coupling processes in the solar interior, photosphere, and corona; it is built on the well-known VAC platform that allows robust simulation of the macroscopic processes in gravitationally stratified (non-)magnetized plasmas. The code has no limitations of simulation length in time imposed by complications originating from the upper boundary, nor does it require implementation of special procedures to treat the upper boundaries. SAC inherited its modular structure from VAC, thereby allowing modification to easily add new physics.

  17. Speech coding

    SciTech Connect

    Ravishankar, C., Hughes Network Systems, Germantown, MD

    1998-05-08

    Speech is the predominant means of communication between human beings and since the invention of the telephone by Alexander Graham Bell in 1876, speech services have remained to be the core service in almost all telecommunication systems. Original analog methods of telephony had the disadvantage of speech signal getting corrupted by noise, cross-talk and distortion Long haul transmissions which use repeaters to compensate for the loss in signal strength on transmission links also increase the associated noise and distortion. On the other hand digital transmission is relatively immune to noise, cross-talk and distortion primarily because of the capability to faithfully regenerate digital signal at each repeater purely based on a binary decision. Hence end-to-end performance of the digital link essentially becomes independent of the length and operating frequency bands of the link Hence from a transmission point of view digital transmission has been the preferred approach due to its higher immunity to noise. The need to carry digital speech became extremely important from a service provision point of view as well. Modem requirements have introduced the need for robust, flexible and secure services that can carry a multitude of signal types (such as voice, data and video) without a fundamental change in infrastructure. Such a requirement could not have been easily met without the advent of digital transmission systems, thereby requiring speech to be coded digitally. The term Speech Coding is often referred to techniques that represent or code speech signals either directly as a waveform or as a set of parameters by analyzing the speech signal. In either case, the codes are transmitted to the distant end where speech is reconstructed or synthesized using the received set of codes. A more generic term that is applicable to these techniques that is often interchangeably used with speech coding is the term voice coding. This term is more generic in the sense that the

  18. Nature's Code

    NASA Astrophysics Data System (ADS)

    Hill, Vanessa J.; Rowlands, Peter

    2008-10-01

    We propose that the mathematical structures related to the `universal rewrite system' define a universal process applicable to Nature, which we may describe as `Nature's code'. We draw attention here to such concepts as 4 basic units, 64- and 20-unit structures, symmetry-breaking and 5-fold symmetry, chirality, double 3-dimensionality, the double helix, the Van der Waals force and the harmonic oscillator mechanism, and our explanation of how they necessarily lead to self-aggregation, complexity and emergence in higher-order systems. Biological concepts, such as translation, transcription, replication, the genetic code and the grouping of amino acids appear to be driven by fundamental processes of this kind, and it would seem that the Platonic solids, pentagonal symmetry and Fibonacci numbers have significant roles in organizing `Nature's code'.

  19. Show Code.

    PubMed

    Shalev, Daniel

    2017-01-01

    "Let's get one thing straight: there is no such thing as a show code," my attending asserted, pausing for effect. "You either try to resuscitate, or you don't. None of this halfway junk." He spoke so loudly that the two off-service consultants huddled at computers at the end of the unit looked up… We did four rounds of compressions and pushed epinephrine twice. It was not a long code. We did good, strong compressions and coded this man in earnest until the end. Toward the final round, though, as I stepped up to do compressions, my attending looked at me in a deep way. It was a look in between willing me as some object under his command and revealing to me everything that lay within his brash, confident surface but could not be spoken. © 2017 The Hastings Center.

  20. Assess the key physics that underpins high-hydro coupling-efficiency in NDCX-II experiments and high-gain heavy ion direct drive target designs using proven hydro codes like HYDRA

    SciTech Connect

    Barnard, J. J.; Hay, M. J.; Logan, B. G.; Ng, S. F.; Perkins, L. J.; Veitzer, S.; Yu, S. S.

    2010-07-01

    The simulations provided in this milestone have solidified the theoretical underpinning of direct drive targets and also the ability to design experiments on NDCX II that will enhance our understanding of ion-beam hydrodynamic coupling, and thus be relevant to IFE. For the case of the IFE targets, we have studied hydro and implosion efficiency using HYDRA in ID, a starting point towards the goal of polar direct drive in geometry compatible with liquid wall chambers. Recent analysis of direct drive fusion energy targets using heavy ion beams has found high coupling efficiency of ion beam energy into implosion energy. However, to obtain optimal coupling, the ion energy must increase during the pulse in order to penetrate the outflowing ablated material, and deposit the energy close enough to the fuel so that the fuel achieves sufficient implosion velocity. We have computationally explored ID (radial) time dependent models of ion driven direct drive capsule implosions using the Arbitrary Lagrangian-Eulerian (ALE) code HYDRA, to help validate the theoretical analysis done so far, particularly exploring the effects of varying the ion energy and ion current over the course of the pulse. On NDCX II, experiments have been proposed to explore issues of ion penetration of the outflowing plasma over the course of the ion pulse. One possibility is to create a first pulse of ions that heats a planar target, and produces an outflow of material. A second pulse, {approx}10 ns after the first, of higher ion energy (and hence larger projected range) will interact with this outflow before reaching and further heating the target. We have investigated whether the change in range can be tailored to match the evolution of the ablation front. We have carried out simulations using the one-dimensional hydrodynamic code DISH and HYDRA to set parameters for this class of experiments. DISH was upgraded with an ion deposition algorithm, and we have carried out ID (planar) simulations. HYDRA was

  1. QR Codes

    ERIC Educational Resources Information Center

    Lai, Hsin-Chih; Chang, Chun-Yen; Li, Wen-Shiane; Fan, Yu-Lin; Wu, Ying-Tien

    2013-01-01

    This study presents an m-learning method that incorporates Integrated Quick Response (QR) codes. This learning method not only achieves the objectives of outdoor education, but it also increases applications of Cognitive Theory of Multimedia Learning (CTML) (Mayer, 2001) in m-learning for practical use in a diverse range of outdoor locations. When…

  2. QR Codes

    ERIC Educational Resources Information Center

    Lai, Hsin-Chih; Chang, Chun-Yen; Li, Wen-Shiane; Fan, Yu-Lin; Wu, Ying-Tien

    2013-01-01

    This study presents an m-learning method that incorporates Integrated Quick Response (QR) codes. This learning method not only achieves the objectives of outdoor education, but it also increases applications of Cognitive Theory of Multimedia Learning (CTML) (Mayer, 2001) in m-learning for practical use in a diverse range of outdoor locations. When…

  3. Uplink Coding

    NASA Technical Reports Server (NTRS)

    Andrews, Ken; Divsalar, Dariush; Dolinar, Sam; Moision, Bruce; Hamkins, Jon; Pollara, Fabrizio

    2007-01-01

    This slide presentation reviews the objectives, meeting goals and overall NASA goals for the NASA Data Standards Working Group. The presentation includes information on the technical progress surrounding the objective, short LDPC codes, and the general results on the Pu-Pw tradeoff.

  4. Tandem Mirror Reactor Systems Code (Version I)

    SciTech Connect

    Reid, R.L.; Finn, P.A.; Gohar, M.Y.; Barrett, R.J.; Gorker, G.E.; Spampinaton, P.T.; Bulmer, R.H.; Dorn, D.W.; Perkins, L.J.; Ghose, S.

    1985-09-01

    A computer code was developed to model a Tandem Mirror Reactor. Ths is the first Tandem Mirror Reactor model to couple, in detail, the highly linked physics, magnetics, and neutronic analysis into a single code. This report describes the code architecture, provides a summary description of the modules comprising the code, and includes an example execution of the Tandem Mirror Reactor Systems Code. Results from this code for two sensitivity studies are also included. These studies are: (1) to determine the impact of center cell plasma radius, length, and ion temperature on reactor cost and performance at constant fusion power; and (2) to determine the impact of reactor power level on cost.

  5. CTI Correction Code

    NASA Astrophysics Data System (ADS)

    Massey, Richard; Stoughton, Chris; Leauthaud, Alexie; Rhodes, Jason; Koekemoer, Anton; Ellis, Richard; Shaghoulian, Edgar

    2013-07-01

    Charge Transfer Inefficiency (CTI) due to radiation damage above the Earth's atmosphere creates spurious trailing in images from Charge-Coupled Device (CCD) imaging detectors. Radiation damage also creates unrelated warm pixels, which can be used to measure CTI. This code provides pixel-based correction for CTI and has proven effective in Hubble Space Telescope Advanced Camera for Surveys raw images, successfully reducing the CTI trails by a factor of ~30 everywhere in the CCD and at all flux levels. The core is written in java for speed, and a front-end user interface is provided in IDL. The code operates on raw data by returning individual electrons to pixels from which they were unintentionally dragged during readout. Correction takes about 25 minutes per ACS exposure, but is trivially parallelisable to multiple processors.

  6. Error-correction coding

    NASA Technical Reports Server (NTRS)

    Hinds, Erold W. (Principal Investigator)

    1996-01-01

    This report describes the progress made towards the completion of a specific task on error-correcting coding. The proposed research consisted of investigating the use of modulation block codes as the inner code of a concatenated coding system in order to improve the overall space link communications performance. The study proposed to identify and analyze candidate codes that will complement the performance of the overall coding system which uses the interleaved RS (255,223) code as the outer code.

  7. Defragged Binary I Ching Genetic Code Chromosomes Compared to Nirenberg’s and Transformed into Rotating 2D Circles and Squares and into a 3D 100% Symmetrical Tetrahedron Coupled to a Functional One to Discern Start From Non-Start Methionines through a Stella Octangula

    PubMed Central

    Castro-Chavez, Fernando

    2012-01-01

    Background Three binary representations of the genetic code according to the ancient I Ching of Fu-Xi will be presented, depending on their defragging capabilities by pairing based on three biochemical properties of the nucleic acids: H-bonds, Purine/Pyrimidine rings, and the Keto-enol/Amino-imino tautomerism, yielding the last pair a 32/32 single-strand self-annealed genetic code and I Ching tables. Methods Our working tool is the ancient binary I Ching's resulting genetic code chromosomes defragged by vertical and by horizontal pairing, reverse engineered into non-binaries of 2D rotating 4×4×4 circles and 8×8 squares and into one 3D 100% symmetrical 16×4 tetrahedron coupled to a functional tetrahedron with apical signaling and central hydrophobicity (codon formula: 4[1(1)+1(3)+1(4)+4(2)]; 5:5, 6:6 in man) forming a stella octangula, and compared to Nirenberg's 16×4 codon table (1965) pairing the first two nucleotides of the 64 codons in axis y. Results One horizontal and one vertical defragging had the start Met at the center. Two, both horizontal and vertical pairings produced two pairs of 2×8×4 genetic code chromosomes naturally arranged (M and I), rearranged by semi-introversion of central purines or pyrimidines (M' and I') and by clustering hydrophobic amino acids; their quasi-identity was disrupted by amino acids with odd codons (Met and Tyr pairing to Ile and TGA Stop); in all instances, the 64-grid 90° rotational ability was restored. Conclusions We defragged three I Ching representations of the genetic code while emphasizing Nirenberg's historical finding. The synthetic genetic code chromosomes obtained reflect the protective strategy of enzymes with a similar function, having both humans and mammals a biased G-C dominance of three H-bonds in the third nucleotide of their most used codons per amino acid, as seen in one chromosome of the i, M and M' genetic codes, while a two H-bond A-T dominance was found in their complementary chromosome, as seen

  8. Defragged Binary I Ching Genetic Code Chromosomes Compared to Nirenberg's and Transformed into Rotating 2D Circles and Squares and into a 3D 100% Symmetrical Tetrahedron Coupled to a Functional One to Discern Start From Non-Start Methionines through a Stella Octangula.

    PubMed

    Castro-Chavez, Fernando

    2012-01-01

    BACKGROUND: Three binary representations of the genetic code according to the ancient I Ching of Fu-Xi will be presented, depending on their defragging capabilities by pairing based on three biochemical properties of the nucleic acids: H-bonds, Purine/Pyrimidine rings, and the Keto-enol/Amino-imino tautomerism, yielding the last pair a 32/32 single-strand self-annealed genetic code and I Ching tables. METHODS: Our working tool is the ancient binary I Ching's resulting genetic code chromosomes defragged by vertical and by horizontal pairing, reverse engineered into non-binaries of 2D rotating 4×4×4 circles and 8×8 squares and into one 3D 100% symmetrical 16×4 tetrahedron coupled to a functional tetrahedron with apical signaling and central hydrophobicity (codon formula: 4[1(1)+1(3)+1(4)+4(2)]; 5:5, 6:6 in man) forming a stella octangula, and compared to Nirenberg's 16×4 codon table (1965) pairing the first two nucleotides of the 64 codons in axis y. RESULTS: One horizontal and one vertical defragging had the start Met at the center. Two, both horizontal and vertical pairings produced two pairs of 2×8×4 genetic code chromosomes naturally arranged (M and I), rearranged by semi-introversion of central purines or pyrimidines (M' and I') and by clustering hydrophobic amino acids; their quasi-identity was disrupted by amino acids with odd codons (Met and Tyr pairing to Ile and TGA Stop); in all instances, the 64-grid 90° rotational ability was restored. CONCLUSIONS: We defragged three I Ching representations of the genetic code while emphasizing Nirenberg's historical finding. The synthetic genetic code chromosomes obtained reflect the protective strategy of enzymes with a similar function, having both humans and mammals a biased G-C dominance of three H-bonds in the third nucleotide of their most used codons per amino acid, as seen in one chromosome of the i, M and M' genetic codes, while a two H-bond A-T dominance was found in their complementary chromosome, as

  9. Homological stabilizer codes

    SciTech Connect

    Anderson, Jonas T.

    2013-03-15

    In this paper we define homological stabilizer codes on qubits which encompass codes such as Kitaev's toric code and the topological color codes. These codes are defined solely by the graphs they reside on. This feature allows us to use properties of topological graph theory to determine the graphs which are suitable as homological stabilizer codes. We then show that all toric codes are equivalent to homological stabilizer codes on 4-valent graphs. We show that the topological color codes and toric codes correspond to two distinct classes of graphs. We define the notion of label set equivalencies and show that under a small set of constraints the only homological stabilizer codes without local logical operators are equivalent to Kitaev's toric code or to the topological color codes. - Highlights: Black-Right-Pointing-Pointer We show that Kitaev's toric codes are equivalent to homological stabilizer codes on 4-valent graphs. Black-Right-Pointing-Pointer We show that toric codes and color codes correspond to homological stabilizer codes on distinct graphs. Black-Right-Pointing-Pointer We find and classify all 2D homological stabilizer codes. Black-Right-Pointing-Pointer We find optimal codes among the homological stabilizer codes.

  10. Multidimensional Fuel Performance Code: BISON

    SciTech Connect

    2014-09-03

    BISON is a finite element based nuclear fuel performance code applicable to a variety of fuel forms including light water reactor fuel rods, TRISO fuel particles, and metallic rod and plate fuel (Refs. [a, b, c]). It solves the fully-coupled equations of thermomechanics and species diffusion and includes important fuel physics such as fission gas release and material property degradation with burnup. BISON is based on the MOOSE framework (Ref. [d]) and can therefore efficiently solve problems on 1-, 2- or 3-D meshes using standard workstations or large high performance computers. BISON is also coupled to a MOOSE-based mesoscale phase field material property simulation capability (Refs. [e, f]). As described here, BISON includes the code library named FOX, which was developed concurrent with BISON. FOX contains material and behavioral models that are specific to oxide fuels.

  11. Model Children's Code.

    ERIC Educational Resources Information Center

    New Mexico Univ., Albuquerque. American Indian Law Center.

    The Model Children's Code was developed to provide a legally correct model code that American Indian tribes can use to enact children's codes that fulfill their legal, cultural and economic needs. Code sections cover the court system, jurisdiction, juvenile offender procedures, minor-in-need-of-care, and termination. Almost every Code section is…

  12. Coding of Neuroinfectious Diseases.

    PubMed

    Barkley, Gregory L

    2015-12-01

    Accurate coding is an important function of neurologic practice. This contribution to Continuum is part of an ongoing series that presents helpful coding information along with examples related to the issue topic. Tips for diagnosis coding, Evaluation and Management coding, procedure coding, or a combination are presented, depending on which is most applicable to the subject area of the issue.

  13. Diagnostic Coding for Epilepsy.

    PubMed

    Williams, Korwyn; Nuwer, Marc R; Buchhalter, Jeffrey R

    2016-02-01

    Accurate coding is an important function of neurologic practice. This contribution to Continuum is part of an ongoing series that presents helpful coding information along with examples related to the issue topic. Tips for diagnosis coding, Evaluation and Management coding, procedure coding, or a combination are presented, depending on which is most applicable to the subject area of the issue.

  14. RAMONA-4B code for BWR systems analysis

    SciTech Connect

    Cheng, H.S.; Rohatgi, U.S.

    1996-12-31

    The RAMONA-4B code is a coupled thermal-hydraulic, 3D kinetics code for plant transient analyses of a complete Boiling Water Reactor (BWR) system including Reactor Pressure Vessel (RPV), Balance of Plant (BOP) and containment. The complete system representation enables an integrated and coupled systems analysis of a BWR without recourse to prescribed boundary conditions.

  15. Phylogeny of genetic codes and punctuation codes within genetic codes.

    PubMed

    Seligmann, Hervé

    2015-03-01

    Punctuation codons (starts, stops) delimit genes, reflect translation apparatus properties. Most codon reassignments involve punctuation. Here two complementary approaches classify natural genetic codes: (A) properties of amino acids assigned to codons (classical phylogeny), coding stops as X (A1, antitermination/suppressor tRNAs insert unknown residues), or as gaps (A2, no translation, classical stop); and (B) considering only punctuation status (start, stop and other codons coded as -1, 0 and 1 (B1); 0, -1 and 1 (B2, reflects ribosomal translational dynamics); and 1, -1, and 0 (B3, starts/stops as opposites)). All methods separate most mitochondrial codes from most nuclear codes; Gracilibacteria consistently cluster with metazoan mitochondria; mitochondria co-hosted with chloroplasts cluster with nuclear codes. Method A1 clusters the euplotid nuclear code with metazoan mitochondria; A2 separates euplotids from mitochondria. Firmicute bacteria Mycoplasma/Spiroplasma and Protozoan (and lower metazoan) mitochondria share codon-amino acid assignments. A1 clusters them with mitochondria, they cluster with the standard genetic code under A2: constraints on amino acid ambiguity versus punctuation-signaling produced the mitochondrial versus bacterial versions of this genetic code. Punctuation analysis B2 converges best with classical phylogenetic analyses, stressing the need for a unified theory of genetic code punctuation accounting for ribosomal constraints.

  16. Roadmap to Majorana surface codes

    NASA Astrophysics Data System (ADS)

    Plugge, S.; Landau, L. A.; Sela, E.; Altland, A.; Flensberg, K.; Egger, R.

    2016-11-01

    Surface codes offer a very promising avenue towards fault-tolerant quantum computation. We argue that two-dimensional interacting networks of Majorana bound states in topological superconductor/semiconductor heterostructures hold several key advantages in that direction, concerning both the hardware realization and the actual operation of the code. We here discuss how topologically protected logical qubits in this Majorana surface code architecture can be defined, initialized, manipulated, and read out. All physical ingredients needed to implement these operations are routinely used in topologically trivial quantum devices. By means of quantum interference terms in linear conductance measurements, single-electron pumping protocols, and gate-tunable tunnel barriers, the full set of quantum gates required for universal quantum computation can be achieved. In particular, we show that designated multistep pumping sequences via tunnel-coupled quantum dots realize high-fidelity ancilla states for phase gates.

  17. The Integrated TIGER Series Codes

    SciTech Connect

    Kensek, Ronald P.; Franke, Brian C.; Laub, Thomas W.

    2006-01-15

    ITS is a powerful and user-friendly software package permitting state-of-the-art Monte Carlo solution of linear time-independent coupled electron/photon radiation transport problems, with or without the presence of macroscopic electric and magnetic fields of arbitrary spatial dependence. Our goal has been to simultaneously maximize operational simplicity and physical accuracy. Through a set of preprocessor directives, the user selects one of the many ITS codes. The ease with which the makefile system is applied combines with an input scheme based on order-independent descriptive keywords that makes maximum use of defaults and intemal error checking to provide experimentalists and theorists alike with a method for the routine but rigorous solution of sophisticated radiation transport problems. Physical rigor is provided by employing accurate cross sections, sampling distributions, and physical models for describing the production and transport of the electron/photon cascade from 1.0 GeV down to 1.0 keV. The availability of source code permits the more sophisticated user to tailor the codes to specific applications and to extend the capabilities of the codes to more complex applications. Version 5.0, the latest version of ITS, contains (1) improvements to the ITS 3.0 continuous-energy codes, (2) multigroup codes with adjoint transport capabilities, (3) parallel implementations of all ITS codes, (4) a general purpose geometry engine for linking with CAD or other geometry formats, and (5) the Cholla facet geometry library. Moreover, the general user friendliness of the software has been enhanced through increased internal error checking and improved code portability.

  18. To Code or Not To Code?

    ERIC Educational Resources Information Center

    Parkinson, Brian; Sandhu, Parveen; Lacorte, Manel; Gourlay, Lesley

    1998-01-01

    This article considers arguments for and against the use of coding systems in classroom-based language research and touches on some relevant considerations from ethnographic and conversational analysis approaches. The four authors each explain and elaborate on their practical decision to code or not to code events or utterances at a specific point…

  19. Bare Code Reader

    NASA Astrophysics Data System (ADS)

    Clair, Jean J.

    1980-05-01

    The Bare code system will be used, in every market and supermarket. The code, which is normalised in US and Europe (code EAN) gives informations on price, storage, nature and allows in real time the gestion of theshop.

  20. Generalized concatenated quantum codes

    SciTech Connect

    Grassl, Markus; Shor, Peter; Smith, Graeme; Smolin, John; Zeng Bei

    2009-05-15

    We discuss the concept of generalized concatenated quantum codes. This generalized concatenation method provides a systematical way for constructing good quantum codes, both stabilizer codes and nonadditive codes. Using this method, we construct families of single-error-correcting nonadditive quantum codes, in both binary and nonbinary cases, which not only outperform any stabilizer codes for finite block length but also asymptotically meet the quantum Hamming bound for large block length.

  1. Energy coding in biological neural networks

    PubMed Central

    Zhang, Zhikang

    2007-01-01

    According to the experimental result of signal transmission and neuronal energetic demands being tightly coupled to information coding in the cerebral cortex, we present a brand new scientific theory that offers an unique mechanism for brain information processing. We demonstrate that the neural coding produced by the activity of the brain is well described by our theory of energy coding. Due to the energy coding model’s ability to reveal mechanisms of brain information processing based upon known biophysical properties, we can not only reproduce various experimental results of neuro-electrophysiology, but also quantitatively explain the recent experimental results from neuroscientists at Yale University by means of the principle of energy coding. Due to the theory of energy coding to bridge the gap between functional connections within a biological neural network and energetic consumption, we estimate that the theory has very important consequences for quantitative research of cognitive function. PMID:19003513

  2. Mechanism on brain information processing: Energy coding

    NASA Astrophysics Data System (ADS)

    Wang, Rubin; Zhang, Zhikang; Jiao, Xianfa

    2006-09-01

    According to the experimental result of signal transmission and neuronal energetic demands being tightly coupled to information coding in the cerebral cortex, the authors present a brand new scientific theory that offers a unique mechanism for brain information processing. They demonstrate that the neural coding produced by the activity of the brain is well described by the theory of energy coding. Due to the energy coding model's ability to reveal mechanisms of brain information processing based upon known biophysical properties, they cannot only reproduce various experimental results of neuroelectrophysiology but also quantitatively explain the recent experimental results from neuroscientists at Yale University by means of the principle of energy coding. Due to the theory of energy coding to bridge the gap between functional connections within a biological neural network and energetic consumption, they estimate that the theory has very important consequences for quantitative research of cognitive function.

  3. Energy coding in biological neural networks.

    PubMed

    Wang, Rubin; Zhang, Zhikang

    2007-09-01

    According to the experimental result of signal transmission and neuronal energetic demands being tightly coupled to information coding in the cerebral cortex, we present a brand new scientific theory that offers an unique mechanism for brain information processing. We demonstrate that the neural coding produced by the activity of the brain is well described by our theory of energy coding. Due to the energy coding model's ability to reveal mechanisms of brain information processing based upon known biophysical properties, we can not only reproduce various experimental results of neuro-electrophysiology, but also quantitatively explain the recent experimental results from neuroscientists at Yale University by means of the principle of energy coding. Due to the theory of energy coding to bridge the gap between functional connections within a biological neural network and energetic consumption, we estimate that the theory has very important consequences for quantitative research of cognitive function.

  4. Accumulate repeat accumulate codes

    NASA Technical Reports Server (NTRS)

    Abbasfar, Aliazam; Divsalar, Dariush; Yao, Kung

    2004-01-01

    In this paper we propose an innovative channel coding scheme called 'Accumulate Repeat Accumulate codes' (ARA). This class of codes can be viewed as serial turbo-like codes, or as a subclass of Low Density Parity Check (LDPC) codes, thus belief propagation can be used for iterative decoding of ARA codes on a graph. The structure of encoder for this class can be viewed as precoded Repeat Accumulate (RA) code or as precoded Irregular Repeat Accumulate (IRA) code, where simply an accumulator is chosen as a precoder. Thus ARA codes have simple, and very fast encoder structure when they representing LDPC codes. Based on density evolution for LDPC codes through some examples for ARA codes, we show that for maximum variable node degree 5 a minimum bit SNR as low as 0.08 dB from channel capacity for rate 1/2 can be achieved as the block size goes to infinity. Thus based on fixed low maximum variable node degree, its threshold outperforms not only the RA and IRA codes but also the best known LDPC codes with the dame maximum node degree. Furthermore by puncturing the accumulators any desired high rate codes close to code rate 1 can be obtained with thresholds that stay close to the channel capacity thresholds uniformly. Iterative decoding simulation results are provided. The ARA codes also have projected graph or protograph representation that allows for high speed decoder implementation.

  5. Coset Codes Viewed as Terminated Convolutional Codes

    NASA Technical Reports Server (NTRS)

    Fossorier, Marc P. C.; Lin, Shu

    1996-01-01

    In this paper, coset codes are considered as terminated convolutional codes. Based on this approach, three new general results are presented. First, it is shown that the iterative squaring construction can equivalently be defined from a convolutional code whose trellis terminates. This convolutional code determines a simple encoder for the coset code considered, and the state and branch labelings of the associated trellis diagram become straightforward. Also, from the generator matrix of the code in its convolutional code form, much information about the trade-off between the state connectivity and complexity at each section, and the parallel structure of the trellis, is directly available. Based on this generator matrix, it is shown that the parallel branches in the trellis diagram of the convolutional code represent the same coset code C(sub 1), of smaller dimension and shorter length. Utilizing this fact, a two-stage optimum trellis decoding method is devised. The first stage decodes C(sub 1), while the second stage decodes the associated convolutional code, using the branch metrics delivered by stage 1. Finally, a bidirectional decoding of each received block starting at both ends is presented. If about the same number of computations is required, this approach remains very attractive from a practical point of view as it roughly doubles the decoding speed. This fact is particularly interesting whenever the second half of the trellis is the mirror image of the first half, since the same decoder can be implemented for both parts.

  6. Concatenated Coding Using Trellis-Coded Modulation

    NASA Technical Reports Server (NTRS)

    Thompson, Michael W.

    1997-01-01

    In the late seventies and early eighties a technique known as Trellis Coded Modulation (TCM) was developed for providing spectrally efficient error correction coding. Instead of adding redundant information in the form of parity bits, redundancy is added at the modulation stage thereby increasing bandwidth efficiency. A digital communications system can be designed to use bandwidth-efficient multilevel/phase modulation such as Amplitude Shift Keying (ASK), Phase Shift Keying (PSK), Differential Phase Shift Keying (DPSK) or Quadrature Amplitude Modulation (QAM). Performance gain can be achieved by increasing the number of signals over the corresponding uncoded system to compensate for the redundancy introduced by the code. A considerable amount of research and development has been devoted toward developing good TCM codes for severely bandlimited applications. More recently, the use of TCM for satellite and deep space communications applications has received increased attention. This report describes the general approach of using a concatenated coding scheme that features TCM and RS coding. Results have indicated that substantial (6-10 dB) performance gains can be achieved with this approach with comparatively little bandwidth expansion. Since all of the bandwidth expansion is due to the RS code we see that TCM based concatenated coding results in roughly 10-50% bandwidth expansion compared to 70-150% expansion for similar concatenated scheme which use convolution code. We stress that combined coding and modulation optimization is important for achieving performance gains while maintaining spectral efficiency.

  7. Comparison of three-dimensional nonequilibrium PNS codes

    NASA Technical Reports Server (NTRS)

    Buelow, Philip E.; Ievalts, John O.; Tannehill, John C.

    1990-01-01

    A comparison study has been conducted using four recently developed parabolized Navier-Stokes (PNS) codes which have the capability of predicting finite-rate, chemically reacting flows over three-dimensional bodies. These are the (1) UPS code, (2) the STUFF code, (3) the TONIC code, and (4) the VRA-PNS code. All of the codes use the same seven-species, single-temperature air chemistry model, but otherwise they are unique, with different capabilities and characteristics. The differences include upwinding vs central differencing, strongly-coupled vs weakly-coupled chemistry, shock capturing vs shock fitting, finite volume vs finite difference, and full PNS vs thin-layer PNS equations. Three test cases were utilized to compare the codes. The comparisons presented indicate a good agreement among the codes tested.

  8. CELFE/NASTRAN Code for the Analysis of Structures Subjected to High Velocity Impact

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.

    1978-01-01

    CELFE (Coupled Eulerian Lagrangian Finite Element)/NASTRAN Code three-dimensional finite element code has the capability for analyzing of structures subjected to high velocity impact. The local response is predicted by CELFE and, for large problems, the far-field impact response is predicted by NASTRAN. The coupling of the CELFE code with NASTRAN (CELFE/NASTRAN code) and the application of the code to selected three-dimensional high velocity impact problems are described.

  9. Discussion on LDPC Codes and Uplink Coding

    NASA Technical Reports Server (NTRS)

    Andrews, Ken; Divsalar, Dariush; Dolinar, Sam; Moision, Bruce; Hamkins, Jon; Pollara, Fabrizio

    2007-01-01

    This slide presentation reviews the progress that the workgroup on Low-Density Parity-Check (LDPC) for space link coding. The workgroup is tasked with developing and recommending new error correcting codes for near-Earth, Lunar, and deep space applications. Included in the presentation is a summary of the technical progress of the workgroup. Charts that show the LDPC decoder sensitivity to symbol scaling errors are reviewed, as well as a chart showing the performance of several frame synchronizer algorithms compared to that of some good codes and LDPC decoder tests at ESTL. Also reviewed is a study on Coding, Modulation, and Link Protocol (CMLP), and the recommended codes. A design for the Pseudo-Randomizer with LDPC Decoder and CRC is also reviewed. A chart that summarizes the three proposed coding systems is also presented.

  10. Discussion on LDPC Codes and Uplink Coding

    NASA Technical Reports Server (NTRS)

    Andrews, Ken; Divsalar, Dariush; Dolinar, Sam; Moision, Bruce; Hamkins, Jon; Pollara, Fabrizio

    2007-01-01

    This slide presentation reviews the progress that the workgroup on Low-Density Parity-Check (LDPC) for space link coding. The workgroup is tasked with developing and recommending new error correcting codes for near-Earth, Lunar, and deep space applications. Included in the presentation is a summary of the technical progress of the workgroup. Charts that show the LDPC decoder sensitivity to symbol scaling errors are reviewed, as well as a chart showing the performance of several frame synchronizer algorithms compared to that of some good codes and LDPC decoder tests at ESTL. Also reviewed is a study on Coding, Modulation, and Link Protocol (CMLP), and the recommended codes. A design for the Pseudo-Randomizer with LDPC Decoder and CRC is also reviewed. A chart that summarizes the three proposed coding systems is also presented.

  11. Bar Codes for Libraries.

    ERIC Educational Resources Information Center

    Rahn, Erwin

    1984-01-01

    Discusses the evolution of standards for bar codes (series of printed lines and spaces that represent numbers, symbols, and/or letters of alphabet) and describes the two types most frequently adopted by libraries--Code-A-Bar and CODE 39. Format of the codes is illustrated. Six references and definitions of terminology are appended. (EJS)

  12. Manually operated coded switch

    DOEpatents

    Barnette, Jon H.

    1978-01-01

    The disclosure relates to a manually operated recodable coded switch in which a code may be inserted, tried and used to actuate a lever controlling an external device. After attempting a code, the switch's code wheels must be returned to their zero positions before another try is made.

  13. AMPX-77: A modular code system for generating coupled multigroup neutron-gamma cross-section libraries from ENDF/B-IV and/or ENDF/B-V

    SciTech Connect

    Greene, N.M.; Ford, W.E. III; Petrie, L.M.; Arwood, J.W.

    1992-10-01

    AMPX-77 is a modular system of computer programs that pertain to nuclear analyses, with a primary emphasis on tasks associated with the production and use of multigroup cross sections. AH basic cross-section data are to be input in the formats used by the Evaluated Nuclear Data Files (ENDF/B), and output can be obtained in a variety of formats, including its own internal and very general formats, along with a variety of other useful formats used by major transport, diffusion theory, and Monte Carlo codes. Processing is provided for both neutron and gamma-my data. The present release contains codes all written in the FORTRAN-77 dialect of FORTRAN and wig process ENDF/B-V and earlier evaluations, though major modules are being upgraded in order to process ENDF/B-VI and will be released when a complete collection of usable routines is available.

  14. The RealGas and RealGasH2O options of the TOUGH+ code for the simulation of coupled fluid and heat flow in tight/shale gas systems

    EPA Science Inventory

    We developed two new EOS additions to the TOUGH+ family of codes, the RealGasH2O and RealGas. The RealGasH2O EOS option describes the non-isothermal two-phase flow of water and a real gas mixture in gas reservoirs, with a particular focus in ultra-tight (such as tight-sand and sh...

  15. The RealGas and RealGasH2O options of the TOUGH+ code for the simulation of coupled fluid and heat flow in tight/shale gas systems

    EPA Science Inventory

    We developed two new EOS additions to the TOUGH+ family of codes, the RealGasH2O and RealGas. The RealGasH2O EOS option describes the non-isothermal two-phase flow of water and a real gas mixture in gas reservoirs, with a particular focus in ultra-tight (such as tight-sand and sh...

  16. QR Codes 101

    ERIC Educational Resources Information Center

    Crompton, Helen; LaFrance, Jason; van 't Hooft, Mark

    2012-01-01

    A QR (quick-response) code is a two-dimensional scannable code, similar in function to a traditional bar code that one might find on a product at the supermarket. The main difference between the two is that, while a traditional bar code can hold a maximum of only 20 digits, a QR code can hold up to 7,089 characters, so it can contain much more…

  17. ARA type protograph codes

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush (Inventor); Abbasfar, Aliazam (Inventor); Jones, Christopher R. (Inventor); Dolinar, Samuel J. (Inventor); Thorpe, Jeremy C. (Inventor); Andrews, Kenneth S. (Inventor); Yao, Kung (Inventor)

    2008-01-01

    An apparatus and method for encoding low-density parity check codes. Together with a repeater, an interleaver and an accumulator, the apparatus comprises a precoder, thus forming accumulate-repeat-accumulate (ARA codes). Protographs representing various types of ARA codes, including AR3A, AR4A and ARJA codes, are described. High performance is obtained when compared to the performance of current repeat-accumulate (RA) or irregular-repeat-accumulate (IRA) codes.

  18. Hybrid concatenated codes and iterative decoding

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush (Inventor); Pollara, Fabrizio (Inventor)

    2000-01-01

    Several improved turbo code apparatuses and methods. The invention encompasses several classes: (1) A data source is applied to two or more encoders with an interleaver between the source and each of the second and subsequent encoders. Each encoder outputs a code element which may be transmitted or stored. A parallel decoder provides the ability to decode the code elements to derive the original source information d without use of a received data signal corresponding to d. The output may be coupled to a multilevel trellis-coded modulator (TCM). (2) A data source d is applied to two or more encoders with an interleaver between the source and each of the second and subsequent encoders. Each of the encoders outputs a code element. In addition, the original data source d is output from the encoder. All of the output elements are coupled to a TCM. (3) At least two data sources are applied to two or more encoders with an interleaver between each source and each of the second and subsequent encoders. The output may be coupled to a TCM. (4) At least two data sources are applied to two or more encoders with at least two interleavers between each source and each of the second and subsequent encoders. (5) At least one data source is applied to one or more serially linked encoders through at least one interleaver. The output may be coupled to a TCM. The invention includes a novel way of terminating a turbo coder.

  19. Tanden Mirror Reactor Systems Code (TMRSC)

    SciTech Connect

    Reid, R.L.; Rothe, K.E.; Barrett, R.J.

    1985-01-01

    This paper describes a computer code developed to model a tandem mirror reactor. This is the first tandem mirror reactor model to couple the highly linked physics, magnetics, and neutronic analysis into a single code. Results from this code for two sensitivity studies are included in this paper. These studies are designed (1) to determine the impact of center cell plasma radius, length, and ion temperature on reactor cost and performance at constant fusion power and (2) to determine the impact of reactor power level on cost.

  20. Efficient entropy coding for scalable video coding

    NASA Astrophysics Data System (ADS)

    Choi, Woong Il; Yang, Jungyoup; Jeon, Byeungwoo

    2005-10-01

    The standardization for the scalable extension of H.264 has called for additional functionality based on H.264 standard to support the combined spatio-temporal and SNR scalability. For the entropy coding of H.264 scalable extension, Context-based Adaptive Binary Arithmetic Coding (CABAC) scheme is considered so far. In this paper, we present a new context modeling scheme by using inter layer correlation between the syntax elements. As a result, it improves coding efficiency of entropy coding in H.264 scalable extension. In simulation results of applying the proposed scheme to encoding the syntax element mb_type, it is shown that improvement in coding efficiency of the proposed method is up to 16% in terms of bit saving due to estimation of more adequate probability model.

  1. Subsystem codes with spatially local generators

    SciTech Connect

    Bravyi, Sergey

    2011-01-15

    We study subsystem codes whose gauge group has local generators in two-dimensional (2D) geometry. It is shown that there exists a family of such codes defined on lattices of size LxL with the number of logical qubits k and the minimum distance d both proportional to L. The gauge group of these codes involves only two-qubit generators of type XX and ZZ coupling nearest-neighbor qubits (and some auxiliary one-qubit generators). Our proof is not constructive as it relies on a certain version of the Gilbert-Varshamov bound for classical codes. Along the way, we introduce and study properties of generalized Bacon-Shor codes that might be of independent interest. Secondly, we prove that any 2D subsystem [n,k,d] code with spatially local generators obeys upper bounds kd=O(n) and d{sup 2}=O(n). The analogous upper bound proved recently for 2D stabilizer codes is kd{sup 2}=O(n). Our results thus demonstrate that subsystem codes can be more powerful than stabilizer codes under the spatial locality constraint.

  2. Subsystem codes with spatially local generators

    NASA Astrophysics Data System (ADS)

    Bravyi, Sergey

    2011-01-01

    We study subsystem codes whose gauge group has local generators in two-dimensional (2D) geometry. It is shown that there exists a family of such codes defined on lattices of size L×L with the number of logical qubits k and the minimum distance d both proportional to L. The gauge group of these codes involves only two-qubit generators of type XX and ZZ coupling nearest-neighbor qubits (and some auxiliary one-qubit generators). Our proof is not constructive as it relies on a certain version of the Gilbert-Varshamov bound for classical codes. Along the way, we introduce and study properties of generalized Bacon-Shor codes that might be of independent interest. Secondly, we prove that any 2D subsystem [n,k,d] code with spatially local generators obeys upper bounds kd=O(n) and d2=O(n). The analogous upper bound proved recently for 2D stabilizer codes is kd2=O(n). Our results thus demonstrate that subsystem codes can be more powerful than stabilizer codes under the spatial locality constraint.

  3. Adaptive Evolution Coupled with Retrotransposon Exaptation Allowed for the Generation of a Human-Protein-Specific Coding Gene That Promotes Cancer Cell Proliferation and Metastasis in Both Haematological Malignancies and Solid Tumours: The Extraordinary Case of MYEOV Gene

    PubMed Central

    Papamichos, Spyros I.; Margaritis, Dimitrios; Kotsianidis, Ioannis

    2015-01-01

    The incidence of cancer in human is high as compared to chimpanzee. However previous analysis has documented that numerous human cancer-related genes are highly conserved in chimpanzee. Till date whether human genome includes species-specific cancer-related genes that could potentially contribute to a higher cancer susceptibility remains obscure. This study focuses on MYEOV, an oncogene encoding for two protein isoforms, reported as causally involved in promoting cancer cell proliferation and metastasis in both haematological malignancies and solid tumours. First we document, via stringent in silico analysis, that MYEOV arose de novo in Catarrhini. We show that MYEOV short-isoform start codon was evolutionarily acquired after Catarrhini/Platyrrhini divergence. Throughout the course of Catarrhini evolution MYEOV acquired a gradually elongated translatable open reading frame (ORF), a gradually shortened translation-regulatory upstream ORF, and alternatively spliced mRNA variants. A point mutation introduced in human allowed for the acquisition of MYEOV long-isoform start codon. Second, we demonstrate the precious impact of exonized transposable elements on the creation of MYEOV gene structure. Third, we highlight that the initial part of MYEOV long-isoform coding DNA sequence was under positive selection pressure during Catarrhini evolution. MYEOV represents a Primate Orphan Gene that acquired, via ORF expansion, a human-protein-specific coding potential. PMID:26568894

  4. What is Code Biology?

    PubMed

    Barbieri, Marcello

    2017-10-06

    Various independent discoveries have shown that many organic codes exist in living systems, and this implies that they came into being during the history of life and contributed to that history. The genetic code appeared in a population of primitive systems that has been referred to as the common ancestor, and it has been proposed that three distinct signal processing codes gave origin to the three primary kingdoms of Archaea, Bacteria and Eukarya. After the genetic code and the signal processing codes, on the other hand, only the ancestors of the eukaryotes continued to explore the coding space and gave origin to splicing codes, histone code, tubulin code, compartment codes and many others. A first theoretical consequence of this historical fact is the idea that the Eukarya became increasingly more complex because they maintained the potential to bring new organic codes into existence. A second theoretical consequence comes from the fact that the evolution of the individual rules of a code can take an extremely long time, but the origin of a new organic code corresponds to the appearance of a complete set of rules and from a geological point of view this amounts to a sudden event. The great discontinuities of the history of life, in other words, can be explained as the result of the appearance of new codes. A third theoretical consequence comes from the fact that the organic codes have been highly conserved in evolution, which shows that they are the great invariants of life, the sole entities that have gone intact through billions of years while everything else has changed. This tells us that the organic codes are fundamental components of life and their study - the new research field of Code Biology - is destined to become an increasingly relevant part of the life sciences. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Future trends in image coding

    NASA Astrophysics Data System (ADS)

    Habibi, Ali

    1993-01-01

    The objective of this article is to present a discussion on the future of image data compression in the next two decades. It is virtually impossible to predict with any degree of certainty the breakthroughs in theory and developments, the milestones in advancement of technology and the success of the upcoming commercial products in the market place which will be the main factors in establishing the future stage to image coding. What we propose to do, instead, is look back at the progress in image coding during the last two decades and assess the state of the art in image coding today. Then, by observing the trends in developments of theory, software, and hardware coupled with the future needs for use and dissemination of imagery data and the constraints on the bandwidth and capacity of various networks, predict the future state of image coding. What seems to be certain today is the growing need for bandwidth compression. The television is using a technology which is half a century old and is ready to be replaced by high definition television with an extremely high digital bandwidth. Smart telephones coupled with personal computers and TV monitors accommodating both printed and video data will be common in homes and businesses within the next decade. Efficient and compact digital processing modules using developing technologies will make bandwidth compressed imagery the cheap and preferred alternative in satellite and on-board applications. In view of the above needs, we expect increased activities in development of theory, software, special purpose chips and hardware for image bandwidth compression in the next two decades. The following sections summarize the future trends in these areas.

  6. SLINGSHOT - a Coilgun Design Code

    SciTech Connect

    MARDER, BARRY M.

    2001-09-01

    The Sandia coilgun [1,2,3,4,5] is an inductive electromagnetic launcher. It consists of a sequence of powered, multi-turn coils surrounding a flyway of circular cross-section through which a conducting armature passes. When the armature is properly positioned with respect to a coil, a charged capacitor is switched into the coil circuit. The rising coil currents induce a current in the armature, producing a repulsive accelerating force. The basic numerical tool for modeling the coilgun is the SLINGSHOT code, an expanded, user-friendly successor to WARP-10 [6]. SLINGSHOT computes the currents in the coils and armature, finds the forces produced by those currents, and moves the armature through the array of coils. In this approach, the cylindrically symmetric coils and armature are subdivided into concentric hoops with rectangular cross-section, in each of which the current is assumed to be uniform. The ensemble of hoops are treated as coupled circuits. The specific heats and resistivities of the hoops are found as functions of temperature and used to determine the resistive heating. The code calculates the resistances and inductances for all hoops, and the mutual inductances for all hoop pairs. Using these, it computes the hoop currents from their circuit equations, finds the forces from the products of these currents and the mutual inductance gradient, and moves the armature. Treating the problem as a set of coupled circuits is a fast and accurate approach compared to solving the field equations. Its use, however, is restricted to problems in which the symmetry dictates the current paths. This paper is divided into three parts. The first presents a demonstration of the code. The second describes the input and output. The third part describes the physical models and numerical methods used in the code. It is assumed that the reader is familiar with coilguns.

  7. DIANE multiparticle transport code

    NASA Astrophysics Data System (ADS)

    Caillaud, M.; Lemaire, S.; Ménard, S.; Rathouit, P.; Ribes, J. C.; Riz, D.

    2014-06-01

    DIANE is the general Monte Carlo code developed at CEA-DAM. DIANE is a 3D multiparticle multigroup code. DIANE includes automated biasing techniques and is optimized for massive parallel calculations.

  8. QR Code Mania!

    ERIC Educational Resources Information Center

    Shumack, Kellie A.; Reilly, Erin; Chamberlain, Nik

    2013-01-01

    space, has error-correction capacity, and can be read from any direction. These codes are used in manufacturing, shipping, and marketing, as well as in education. QR codes can be created to produce…

  9. Honesty and Honor Codes.

    ERIC Educational Resources Information Center

    McCabe, Donald; Trevino, Linda Klebe

    2002-01-01

    Explores the rise in student cheating and evidence that students cheat less often at schools with an honor code. Discusses effective use of such codes and creation of a peer culture that condemns dishonesty. (EV)

  10. Cellulases and coding sequences

    SciTech Connect

    Li, Xin-Liang; Ljungdahl, Lars G.; Chen, Huizhong

    2001-01-01

    The present invention provides three fungal cellulases, their coding sequences, recombinant DNA molecules comprising the cellulase coding sequences, recombinant host cells and methods for producing same. The present cellulases are from Orpinomyces PC-2.

  11. Cellulases and coding sequences

    DOEpatents

    Li, Xin-Liang; Ljungdahl, Lars G.; Chen, Huizhong

    2001-02-20

    The present invention provides three fungal cellulases, their coding sequences, recombinant DNA molecules comprising the cellulase coding sequences, recombinant host cells and methods for producing same. The present cellulases are from Orpinomyces PC-2.

  12. QR Code Mania!

    ERIC Educational Resources Information Center

    Shumack, Kellie A.; Reilly, Erin; Chamberlain, Nik

    2013-01-01

    space, has error-correction capacity, and can be read from any direction. These codes are used in manufacturing, shipping, and marketing, as well as in education. QR codes can be created to produce…

  13. Practices in Code Discoverability

    NASA Astrophysics Data System (ADS)

    Teuben, P.; Allen, A.; Nemiroff, R. J.; Shamir, L.

    2012-09-01

    Much of scientific progress now hinges on the reliability, falsifiability and reproducibility of computer source codes. Astrophysics in particular is a discipline that today leads other sciences in making useful scientific components freely available online, including data, abstracts, preprints, and fully published papers, yet even today many astrophysics source codes remain hidden from public view. We review the importance and history of source codes in astrophysics and previous efforts to develop ways in which information about astrophysics codes can be shared. We also discuss why some scientist coders resist sharing or publishing their codes, the reasons for and importance of overcoming this resistance, and alert the community to a reworking of one of the first attempts for sharing codes, the Astrophysics Source Code Library (ASCL). We discuss the implementation of the ASCL in an accompanying poster paper. We suggest that code could be given a similar level of referencing as data gets in repositories such as ADS.

  14. STEEP32 computer code

    NASA Technical Reports Server (NTRS)

    Goerke, W. S.

    1972-01-01

    A manual is presented as an aid in using the STEEP32 code. The code is the EXEC 8 version of the STEEP code (STEEP is an acronym for shock two-dimensional Eulerian elastic plastic). The major steps in a STEEP32 run are illustrated in a sample problem. There is a detailed discussion of the internal organization of the code, including a description of each subroutine.

  15. Three dimensional global hybrid particle code simulations

    NASA Astrophysics Data System (ADS)

    Brecht, S. H.

    This talk will address the development and use of the hybrid particle code approach to space simulations. For the most part there have been two types of codes used to address issues concerning plasma physics, MHD codes and kinetic particle codes. The MHD codes approach the problem of plasma dynamics from the point of view of a fluid, usually a single fluid. The kinetic codes address the problem of plasma dynamics by addressing the motion of individual particles (ions and electrons). The latter of the two codes is the most accurate numerical simulation approach available for the simulation of plasma dynamics. However, it has some limitation. The primary ones are that the spatial scale must include the Debye length in a plasma and the time step must resolve electron cyclotron or higher frequencies. The MHD approach basically solves the fluid equations with the addition of the magnetic field in the equations. The code has the advantage of being able to use large cells and large time steps. However, it does this at a significant cost in physics. It is still the tool of choice for many space simulations because some of the problems do meet the assumptions made in producing the equations and because the MHD code is just easier to use. In last 20 years or so another tool has been developed. It sets between the fully kinetic codes and the MHD codes. The ions are still treated as individual particles, but the electrons are treated as a fluid. This assumption coupled with the assumption of quasineutrality allows the hybrid particle code to address relatively large scale systems (Mars for example) while retaining some of the kinetic behavior of the plasma. This paper will review the history of the hybrid codes. It will review the equations solved and contrast these equations to the MHD equations. Particular attention will be paid to the assumptions made to produce either of these types of code. This is very important when considering the simulation of a planet such as Mars or

  16. Universal Noiseless Coding Subroutines

    NASA Technical Reports Server (NTRS)

    Schlutsmeyer, A. P.; Rice, R. F.

    1986-01-01

    Software package consists of FORTRAN subroutines that perform universal noiseless coding and decoding of integer and binary data strings. Purpose of this type of coding to achieve data compression in sense that coded data represents original data perfectly (noiselessly) while taking fewer bits to do so. Routines universal because they apply to virtually any "real-world" data source.

  17. Universal Noiseless Coding Subroutines

    NASA Technical Reports Server (NTRS)

    Schlutsmeyer, A. P.; Rice, R. F.

    1986-01-01

    Software package consists of FORTRAN subroutines that perform universal noiseless coding and decoding of integer and binary data strings. Purpose of this type of coding to achieve data compression in sense that coded data represents original data perfectly (noiselessly) while taking fewer bits to do so. Routines universal because they apply to virtually any "real-world" data source.

  18. Morse Code Activity Packet.

    ERIC Educational Resources Information Center

    Clinton, Janeen S.

    This activity packet offers simple directions for setting up a Morse Code system appropriate to interfacing with any of several personal computer systems. Worksheets are also included to facilitate teaching Morse Code to persons with visual or other disabilities including blindness, as it is argued that the code is best learned auditorily. (PB)

  19. EMF wire code research

    SciTech Connect

    Jones, T.

    1993-11-01

    This paper examines the results of previous wire code research to determines the relationship with childhood cancer, wire codes and electromagnetic fields. The paper suggests that, in the original Savitz study, biases toward producing a false positive association between high wire codes and childhood cancer were created by the selection procedure.

  20. Software Certification - Coding, Code, and Coders

    NASA Technical Reports Server (NTRS)

    Havelund, Klaus; Holzmann, Gerard J.

    2011-01-01

    We describe a certification approach for software development that has been adopted at our organization. JPL develops robotic spacecraft for the exploration of the solar system. The flight software that controls these spacecraft is considered to be mission critical. We argue that the goal of a software certification process cannot be the development of "perfect" software, i.e., software that can be formally proven to be correct under all imaginable and unimaginable circumstances. More realistically, the goal is to guarantee a software development process that is conducted by knowledgeable engineers, who follow generally accepted procedures to control known risks, while meeting agreed upon standards of workmanship. We target three specific issues that must be addressed in such a certification procedure: the coding process, the code that is developed, and the skills of the coders. The coding process is driven by standards (e.g., a coding standard) and tools. The code is mechanically checked against the standard with the help of state-of-the-art static source code analyzers. The coders, finally, are certified in on-site training courses that include formal exams.

  1. Software Certification - Coding, Code, and Coders

    NASA Technical Reports Server (NTRS)

    Havelund, Klaus; Holzmann, Gerard J.

    2011-01-01

    We describe a certification approach for software development that has been adopted at our organization. JPL develops robotic spacecraft for the exploration of the solar system. The flight software that controls these spacecraft is considered to be mission critical. We argue that the goal of a software certification process cannot be the development of "perfect" software, i.e., software that can be formally proven to be correct under all imaginable and unimaginable circumstances. More realistically, the goal is to guarantee a software development process that is conducted by knowledgeable engineers, who follow generally accepted procedures to control known risks, while meeting agreed upon standards of workmanship. We target three specific issues that must be addressed in such a certification procedure: the coding process, the code that is developed, and the skills of the coders. The coding process is driven by standards (e.g., a coding standard) and tools. The code is mechanically checked against the standard with the help of state-of-the-art static source code analyzers. The coders, finally, are certified in on-site training courses that include formal exams.

  2. Free electron laser physical process code (FELPPC)

    SciTech Connect

    Thode, L.E.; Chan, K.C.D.; Schmitt, M.J.

    1995-02-01

    Even at the conceptual level, the strong coupling between subsystem elements complicates the understanding and design of a free electron laser (FEL). Given the requirements for high-performance FELS, the coupling between subsystems must be included to obtain a realistic picture of the potential operational capability. The concept of an Integrated Numerical Experiment (INEX) was implemented to accurately calculate the coupling between the FEL subsystems. During the late 1980`s, the INEX approach was successfully applied to a large number of accelerator and FEL experiments. Unfortunately, because of significant manpower and computational requirements, the integrated approach is difficult to apply to trade-off and initial design studies. However, the INEX codes provided a base from which realistic accelerator, wiggler, optics, and control models could be developed. The Free Electron Laser Physical Process Code (FELPPC) includes models developed from the INEX codes, provides coupling between the subsystem models, and incorporates application models relevant to a specific study. In other words, FELPPC solves the complete physical process model using realistic physics and technology constraints. FELPPC can calculate complex FEL configurations including multiple accelerator and wiggler combinations. When compared with the INEX codes, the subsystem models have been found to be quite accurate over many orders-of-magnitude. As a result, FELPPC has been used for the initial design studies of a large number of FEL applications: high-average-power ground, space, plane, and ship based FELS; beacon and illuminator FELS; medical and compact FELS; and XUV FELS.

  3. Beta testing of MTI seal codes

    NASA Technical Reports Server (NTRS)

    Scharrer, Joseph

    1994-01-01

    An evaluation of MTI seal codes is made by comparing cylindrical air and water seals. Results are presented in viewgraph format and show that: ICYL and GCYL geometry variations are desirable; load and direct stiffness calculations are good; damping and cross-coupled stiffness predictions are poor; added mass coefficients should be calculated; and variation in inlet tangential velocity is critical to design.

  4. Coding for Electronic Mail

    NASA Technical Reports Server (NTRS)

    Rice, R. F.; Lee, J. J.

    1986-01-01

    Scheme for coding facsimile messages promises to reduce data transmission requirements to one-tenth current level. Coding scheme paves way for true electronic mail in which handwritten, typed, or printed messages or diagrams sent virtually instantaneously - between buildings or between continents. Scheme, called Universal System for Efficient Electronic Mail (USEEM), uses unsupervised character recognition and adaptive noiseless coding of text. Image quality of resulting delivered messages improved over messages transmitted by conventional coding. Coding scheme compatible with direct-entry electronic mail as well as facsimile reproduction. Text transmitted in this scheme automatically translated to word-processor form.

  5. XSOR codes users manual

    SciTech Connect

    Jow, Hong-Nian; Murfin, W.B.; Johnson, J.D.

    1993-11-01

    This report describes the source term estimation codes, XSORs. The codes are written for three pressurized water reactors (Surry, Sequoyah, and Zion) and two boiling water reactors (Peach Bottom and Grand Gulf). The ensemble of codes has been named ``XSOR``. The purpose of XSOR codes is to estimate the source terms which would be released to the atmosphere in severe accidents. A source term includes the release fractions of several radionuclide groups, the timing and duration of releases, the rates of energy release, and the elevation of releases. The codes have been developed by Sandia National Laboratories for the US Nuclear Regulatory Commission (NRC) in support of the NUREG-1150 program. The XSOR codes are fast running parametric codes and are used as surrogates for detailed mechanistic codes. The XSOR codes also provide the capability to explore the phenomena and their uncertainty which are not currently modeled by the mechanistic codes. The uncertainty distributions of input parameters may be used by an. XSOR code to estimate the uncertainty of source terms.

  6. DLLExternalCode

    SciTech Connect

    Greg Flach, Frank Smith

    2014-05-14

    DLLExternalCode is the a general dynamic-link library (DLL) interface for linking GoldSim (www.goldsim.com) with external codes. The overall concept is to use GoldSim as top level modeling software with interfaces to external codes for specific calculations. The DLLExternalCode DLL that performs the linking function is designed to take a list of code inputs from GoldSim, create an input file for the external application, run the external code, and return a list of outputs, read from files created by the external application, back to GoldSim. Instructions for creating the input file, running the external code, and reading the output are contained in an instructions file that is read and interpreted by the DLL.

  7. Defeating the coding monsters.

    PubMed

    Colt, Ross

    2007-02-01

    Accuracy in coding is rapidly becoming a required skill for military health care providers. Clinic staffing, equipment purchase decisions, and even reimbursement will soon be based on the coding data that we provide. Learning the complicated myriad of rules to code accurately can seem overwhelming. However, the majority of clinic visits in a typical outpatient clinic generally fall into two major evaluation and management codes, 99213 and 99214. If health care providers can learn the rules required to code a 99214 visit, then this will provide a 90% solution that can enable them to accurately code the majority of their clinic visits. This article demonstrates a step-by-step method to code a 99214 visit, by viewing each of the three requirements as a monster to be defeated.

  8. Reconstruction in 3D of the fast wave fields in ITER, DIII-D, C-Mod and NSTX, including the coupling of full-wave and particle codes to resolve finite orbit effects

    SciTech Connect

    Green, David L; Jaeger, Erwin Frederick; Berry, Lee A; Choi, M.

    2009-01-01

    The rf-SciDAC collaboration is developing computer simulations to predict the damping of radio frequency (rf) waves in fusion plasmas. Here we extend self-consistent quasi-linear calculations of ion cyclotron resonant heating to include the finite drift of ions from magnetic flux surfaces and rf induced spatial transport. The all-orders spectral wave solver AORSA is iteratively coupled with a particle based update of the plasma distribution function using a quasi-linear diffusion tersor representative of the (k) over right arrow spectrum. Initial results are presented for a high power minority heating scenario on the Alcator C-Mod tokamak and a high harmonic beam heating scenario on DIII-D. Finite orbit effects are shown to give a less peaked perpendicular energy profile and rf induced transport.

  9. Cracking the bioelectric code

    PubMed Central

    Tseng, AiSun; Levin, Michael

    2013-01-01

    Patterns of resting potential in non-excitable cells of living tissue are now known to be instructive signals for pattern formation during embryogenesis, regeneration and cancer suppression. The development of molecular-level techniques for tracking ion flows and functionally manipulating the activity of ion channels and pumps has begun to reveal the mechanisms by which voltage gradients regulate cell behaviors and the assembly of complex large-scale structures. A recent paper demonstrated that a specific voltage range is necessary for demarcation of eye fields in the frog embryo. Remarkably, artificially setting other somatic cells to the eye-specific voltage range resulted in formation of eyes in aberrant locations, including tissues that are not in the normal anterior ectoderm lineage: eyes could be formed in the gut, on the tail, or in the lateral plate mesoderm. These data challenge the existing models of eye fate restriction and tissue competence maps, and suggest the presence of a bioelectric code—a mapping of physiological properties to anatomical outcomes. This Addendum summarizes the current state of knowledge in developmental bioelectricity, proposes three possible interpretations of the bioelectric code that functionally maps physiological states to anatomical outcomes, and highlights the biggest open questions in this field. We also suggest a speculative hypothesis at the intersection of cognitive science and developmental biology: that bioelectrical signaling among non-excitable cells coupled by gap junctions simulates neural network-like dynamics, and underlies the information processing functions required by complex pattern formation in vivo. Understanding and learning to control the information stored in physiological networks will have transformative implications for developmental biology, regenerative medicine and synthetic bioengineering. PMID:23802040

  10. Computer Code for Nanostructure Simulation

    NASA Technical Reports Server (NTRS)

    Filikhin, Igor; Vlahovic, Branislav

    2009-01-01

    Due to their small size, nanostructures can have stress and thermal gradients that are larger than any macroscopic analogue. These gradients can lead to specific regions that are susceptible to failure via processes such as plastic deformation by dislocation emission, chemical debonding, and interfacial alloying. A program has been developed that rigorously simulates and predicts optoelectronic properties of nanostructures of virtually any geometrical complexity and material composition. It can be used in simulations of energy level structure, wave functions, density of states of spatially configured phonon-coupled electrons, excitons in quantum dots, quantum rings, quantum ring complexes, and more. The code can be used to calculate stress distributions and thermal transport properties for a variety of nanostructures and interfaces, transport and scattering at nanoscale interfaces and surfaces under various stress states, and alloy compositional gradients. The code allows users to perform modeling of charge transport processes through quantum-dot (QD) arrays as functions of inter-dot distance, array order versus disorder, QD orientation, shape, size, and chemical composition for applications in photovoltaics and physical properties of QD-based biochemical sensors. The code can be used to study the hot exciton formation/relation dynamics in arrays of QDs of different shapes and sizes at different temperatures. It also can be used to understand the relation among the deposition parameters and inherent stresses, strain deformation, heat flow, and failure of nanostructures.

  11. Sensitive determination of thiols in wine samples by a stable isotope-coded derivatization reagent d0/d4-acridone-10-ethyl-N-maleimide coupled with high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry analysis.

    PubMed

    Lv, Zhengxian; You, Jinmao; Lu, Shuaimin; Sun, Weidi; Ji, Zhongyin; Sun, Zhiwei; Song, Cuihua; Chen, Guang; Li, Guoliang; Hu, Na; Zhou, Wu; Suo, Yourui

    2017-03-31

    As the key aroma compounds, varietal thiols are the crucial odorants responsible for the flavor of wines. Quantitative analysis of thiols can provide crucial information for the aroma profiles of different wine styles. In this study, a rapid and sensitive method for the simultaneous determination of six thiols in wine using d0/d4-acridone-10-ethyl-N-maleimide (d0/d4-AENM) as stable isotope-coded derivatization reagent (SICD) by high performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS/MS) has been developed. Quantification of thiols was performed by using d4-AENM labeled thiols as the internal standards (IS), followed by stable isotope dilution HPLC-ESI-MS/MS analysis. The AENM derivatization combined with multiple reactions monitoring (MRM) not only allowed trace analysis of thiols due to the extremely high sensitivity, but also efficiently corrected the matrix effects during HPLC-MS/MS and the fluctuation in MS/MS signal intensity due to instrument. The obtained internal standard calibration curves for six thiols were linear over the range of 25-10,000pmol/L (R(2)≥0.9961). Detection limits (LODs) for most of analytes were below 6.3pmol/L. The proposed method was successfully applied for the simultaneous determination of six kinds of thiols in wine samples with precisions ≤3.5% and recoveries ≥78.1%. In conclusion, the developed method is expected to be a promising tool for detection of trace thiols in wine and also in other complex matrix. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Coding as a Trojan Horse for Mathematics Education Reform

    ERIC Educational Resources Information Center

    Gadanidis, George

    2015-01-01

    The history of mathematics educational reform is replete with innovations taken up enthusiastically by early adopters without significant transfer to other classrooms. This paper explores the coupling of coding and mathematics education to create the possibility that coding may serve as a Trojan Horse for mathematics education reform. That is,…

  13. Coding as a Trojan Horse for Mathematics Education Reform

    ERIC Educational Resources Information Center

    Gadanidis, George

    2015-01-01

    The history of mathematics educational reform is replete with innovations taken up enthusiastically by early adopters without significant transfer to other classrooms. This paper explores the coupling of coding and mathematics education to create the possibility that coding may serve as a Trojan Horse for mathematics education reform. That is,…

  14. More box codes

    NASA Technical Reports Server (NTRS)

    Solomon, G.

    1992-01-01

    A new investigation shows that, starting from the BCH (21,15;3) code represented as a 7 x 3 matrix and adding a row and column to add even parity, one obtains an 8 x 4 matrix (32,15;8) code. An additional dimension is obtained by specifying odd parity on the rows and even parity on the columns, i.e., adjoining to the 8 x 4 matrix, the matrix, which is zero except for the fourth column (of all ones). Furthermore, any seven rows and three columns will form the BCH (21,15;3) code. This box code has the same weight structure as the quadratic residue and BCH codes of the same dimensions. Whether there exists an algebraic isomorphism to either code is as yet unknown.

  15. Mechanical code comparator

    DOEpatents

    Peter, Frank J.; Dalton, Larry J.; Plummer, David W.

    2002-01-01

    A new class of mechanical code comparators is described which have broad potential for application in safety, surety, and security applications. These devices can be implemented as micro-scale electromechanical systems that isolate a secure or otherwise controlled device until an access code is entered. This access code is converted into a series of mechanical inputs to the mechanical code comparator, which compares the access code to a pre-input combination, entered previously into the mechanical code comparator by an operator at the system security control point. These devices provide extremely high levels of robust security. Being totally mechanical in operation, an access control system properly based on such devices cannot be circumvented by software attack alone.

  16. Rewriting the Genetic Code.

    PubMed

    Mukai, Takahito; Lajoie, Marc J; Englert, Markus; Söll, Dieter

    2017-09-08

    The genetic code-the language used by cells to translate their genomes into proteins that perform many cellular functions-is highly conserved throughout natural life. Rewriting the genetic code could lead to new biological functions such as expanding protein chemistries with noncanonical amino acids (ncAAs) and genetically isolating synthetic organisms from natural organisms and viruses. It has long been possible to transiently produce proteins bearing ncAAs, but stabilizing an expanded genetic code for sustained function in vivo requires an integrated approach: creating recoded genomes and introducing new translation machinery that function together without compromising viability or clashing with endogenous pathways. In this review, we discuss design considerations and technologies for expanding the genetic code. The knowledge obtained by rewriting the genetic code will deepen our understanding of how genomes are designed and how the canonical genetic code evolved.

  17. Generating code adapted for interlinking legacy scalar code and extended vector code

    DOEpatents

    Gschwind, Michael K

    2013-06-04

    Mechanisms for intermixing code are provided. Source code is received for compilation using an extended Application Binary Interface (ABI) that extends a legacy ABI and uses a different register configuration than the legacy ABI. First compiled code is generated based on the source code, the first compiled code comprising code for accommodating the difference in register configurations used by the extended ABI and the legacy ABI. The first compiled code and second compiled code are intermixed to generate intermixed code, the second compiled code being compiled code that uses the legacy ABI. The intermixed code comprises at least one call instruction that is one of a call from the first compiled code to the second compiled code or a call from the second compiled code to the first compiled code. The code for accommodating the difference in register configurations is associated with the at least one call instruction.

  18. Breaking the Neural Code

    DTIC Science & Technology

    2015-05-21

    SECURITY CLASSIFICATION OF: This seedling proposed to use advanced imaging techniques to break the neuronal code that links the firing of neurons in...Report: Breaking the Neural Code Report Title This seedling proposed to use advanced imaging techniques to break the neuronal code that links the...generating a closed-loop on-line experimental platform. We have completed all proposed tasks of the seedling and successfully completed preliminary

  19. Phonological coding during reading

    PubMed Central

    Leinenger, Mallorie

    2014-01-01

    The exact role that phonological coding (the recoding of written, orthographic information into a sound based code) plays during silent reading has been extensively studied for more than a century. Despite the large body of research surrounding the topic, varying theories as to the time course and function of this recoding still exist. The present review synthesizes this body of research, addressing the topics of time course and function in tandem. The varying theories surrounding the function of phonological coding (e.g., that phonological codes aid lexical access, that phonological codes aid comprehension and bolster short-term memory, or that phonological codes are largely epiphenomenal in skilled readers) are first outlined, and the time courses that each maps onto (e.g., that phonological codes come online early (pre-lexical) or that phonological codes come online late (post-lexical)) are discussed. Next the research relevant to each of these proposed functions is reviewed, discussing the varying methodologies that have been used to investigate phonological coding (e.g., response time methods, reading while eyetracking or recording EEG and MEG, concurrent articulation) and highlighting the advantages and limitations of each with respect to the study of phonological coding. In response to the view that phonological coding is largely epiphenomenal in skilled readers, research on the use of phonological codes in prelingually, profoundly deaf readers is reviewed. Finally, implications for current models of word identification (activation-verification model (Van Order, 1987), dual-route model (e.g., Coltheart, Rastle, Perry, Langdon, & Ziegler, 2001), parallel distributed processing model (Seidenberg & McClelland, 1989)) are discussed. PMID:25150679

  20. Industrial Computer Codes

    NASA Technical Reports Server (NTRS)

    Shapiro, Wilbur

    1996-01-01

    This is an overview of new and updated industrial codes for seal design and testing. GCYLT (gas cylindrical seals -- turbulent), SPIRALI (spiral-groove seals -- incompressible), KTK (knife to knife) Labyrinth Seal Code, and DYSEAL (dynamic seal analysis) are covered. CGYLT uses G-factors for Poiseuille and Couette turbulence coefficients. SPIRALI is updated to include turbulence and inertia, but maintains the narrow groove theory. KTK labyrinth seal code handles straight or stepped seals. And DYSEAL provides dynamics for the seal geometry.

  1. Ptolemy Coding Style

    DTIC Science & Technology

    2014-09-05

    Ptolemy Coding Style Christopher Brooks Edward A. Lee Electrical Engineering and Computer Sciences University of California at Berkeley Technical...COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE Ptolemy Coding Style 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...constraints, so such constraints are not new to the academic community. This document describes the coding style used in Ptolemy II, a package with

  2. Industrial Computer Codes

    NASA Technical Reports Server (NTRS)

    Shapiro, Wilbur

    1996-01-01

    This is an overview of new and updated industrial codes for seal design and testing. GCYLT (gas cylindrical seals -- turbulent), SPIRALI (spiral-groove seals -- incompressible), KTK (knife to knife) Labyrinth Seal Code, and DYSEAL (dynamic seal analysis) are covered. CGYLT uses G-factors for Poiseuille and Couette turbulence coefficients. SPIRALI is updated to include turbulence and inertia, but maintains the narrow groove theory. KTK labyrinth seal code handles straight or stepped seals. And DYSEAL provides dynamics for the seal geometry.

  3. Expert system interaction with existing analysis codes

    SciTech Connect

    Ransom, V.H.; Fink, R.K.; Bertch, W.J.; Callow, R.A.

    1986-01-01

    Coupling expert systems with existing engineering analysis codes is a promising area in the field of artificial intelligence. The added intelligence can provide for easier and less costly use of the code and also reduce the potential for code misuse. This paper will discuss the methods available to allow interaction between an expert system and a large analysis code running on a mainframe. Concluding remarks will identify potential areas of expert system application with specific areas that are being considered in a current research program. The difficulty of interaction between an analysis code and an expert system is due to the incompatibility between the FORTRAN environment used for the analysis code and the AI environment used for the expert system. Three methods, excluding file transfer techniques, are discussed to help overcome this incompatibility. The first method is linking the FORTRAN routines to the LISP environment on the same computer. Various LISP dialects available on mainframes and their interlanguage communication capabilities are discussed. The second method involves network interaction between a LISP machine and a mainframe computer. Comparisons between the linking method and networking are noted. The third method involves the use of an expert system tool that is campatible with a FORTRAN environment. Several available tools are discussed. With the interaction methods identified, several potential application areas are considered. Selection of the specific areas that will be developed for the pilot project and applied to a thermal-hydraulic energy analysis code are noted.

  4. Helix coupling

    DOEpatents

    Ginell, W.S.

    1982-03-17

    A coupling for connecting helix members in series, which consists of a pair of U-shaped elements, one of which is attached to each helix end with the U sections of the elements interlocked. The coupling is particularly beneficial for interconnecting helical Nitinol elements utilized in thermal actuators or engines. Each coupling half is attached to the associated helix at two points, thereby providing axial load while being easily removed from the helix, and reusable.

  5. Helix coupling

    DOEpatents

    Ginell, W.S.

    1989-04-25

    A coupling for connecting helix members in series, which consists of a pair of U-shaped elements, one of which is attached to each helix end with the "U" sections of the elements interlocked. The coupling is particularly beneficial for interconnecting helical Nitinol elements utilized in thermal actuators or engines. Each coupling half is attached to the associated helix at two points, thereby providing axial load while being easily removed from the helix, and reusable.

  6. Helix coupling

    DOEpatents

    Ginell, William S.

    1989-04-25

    A coupling for connecting helix members in series, which consists of a pair of U-shaped elements, one of which is attached to each helix end with the "U" sections of the elements interlocked. The coupling is particularly beneficial for interconnecting helical Nitinol elements utilized in thermal actuators or engines. Each coupling half is attached to the associated helix at two points, thereby providing axial load while being easily removed from the helix, and reusable.

  7. Transonic airfoil codes

    NASA Technical Reports Server (NTRS)

    Garabedian, P. R.

    1979-01-01

    Computer codes for the design and analysis of transonic airfoils are considered. The design code relies on the method of complex characteristics in the hodograph plane to construct shockless airfoil. The analysis code uses artificial viscosity to calculate flows with weak shock waves at off-design conditions. Comparisons with experiments show that an excellent simulation of two dimensional wind tunnel tests is obtained. The codes have been widely adopted by the aircraft industry as a tool for the development of supercritical wing technology.

  8. Tokamak Systems Code

    SciTech Connect

    Reid, R.L.; Barrett, R.J.; Brown, T.G.; Gorker, G.E.; Hooper, R.J.; Kalsi, S.S.; Metzler, D.H.; Peng, Y.K.M.; Roth, K.E.; Spampinato, P.T.

    1985-03-01

    The FEDC Tokamak Systems Code calculates tokamak performance, cost, and configuration as a function of plasma engineering parameters. This version of the code models experimental tokamaks. It does not currently consider tokamak configurations that generate electrical power or incorporate breeding blankets. The code has a modular (or subroutine) structure to allow independent modeling for each major tokamak component or system. A primary benefit of modularization is that a component module may be updated without disturbing the remainder of the systems code as long as the imput to or output from the module remains unchanged.

  9. Topological subsystem codes

    SciTech Connect

    Bombin, H.

    2010-03-15

    We introduce a family of two-dimensional (2D) topological subsystem quantum error-correcting codes. The gauge group is generated by two-local Pauli operators, so that two-local measurements are enough to recover the error syndrome. We study the computational power of code deformation in these codes and show that boundaries cannot be introduced in the usual way. In addition, we give a general mapping connecting suitable classical statistical mechanical models to optimal error correction in subsystem stabilizer codes that suffer from depolarizing noise.

  10. ESPC Coupled Global Prediction System

    DTIC Science & Technology

    2015-09-30

    Reynolds Marine Meteorology Division, Code 7532 Naval Research Laboratory Monterey, CA 93943 phone: (831) 656-4728 fax: (831) 656-4769 email...and James Chen (SAIC). Oceanography and meteorology leads for coupled physical parameterizations for NAVGEM/HYCOM are James Richman (NRLSSC) and

  11. Fast Coding Unit Encoding Mechanism for Low Complexity Video Coding.

    PubMed

    Gao, Yuan; Liu, Pengyu; Wu, Yueying; Jia, Kebin; Gao, Guandong

    2016-01-01

    In high efficiency video coding (HEVC), coding tree contributes to excellent compression performance. However, coding tree brings extremely high computational complexity. Innovative works for improving coding tree to further reduce encoding time are stated in this paper. A novel low complexity coding tree mechanism is proposed for HEVC fast coding unit (CU) encoding. Firstly, this paper makes an in-depth study of the relationship among CU distribution, quantization parameter (QP) and content change (CC). Secondly, a CU coding tree probability model is proposed for modeling and predicting CU distribution. Eventually, a CU coding tree probability update is proposed, aiming to address probabilistic model distortion problems caused by CC. Experimental results show that the proposed low complexity CU coding tree mechanism significantly reduces encoding time by 27% for lossy coding and 42% for visually lossless coding and lossless coding. The proposed low complexity CU coding tree mechanism devotes to improving coding performance under various application conditions.

  12. Fast Coding Unit Encoding Mechanism for Low Complexity Video Coding

    PubMed Central

    Wu, Yueying; Jia, Kebin; Gao, Guandong

    2016-01-01

    In high efficiency video coding (HEVC), coding tree contributes to excellent compression performance. However, coding tree brings extremely high computational complexity. Innovative works for improving coding tree to further reduce encoding time are stated in this paper. A novel low complexity coding tree mechanism is proposed for HEVC fast coding unit (CU) encoding. Firstly, this paper makes an in-depth study of the relationship among CU distribution, quantization parameter (QP) and content change (CC). Secondly, a CU coding tree probability model is proposed for modeling and predicting CU distribution. Eventually, a CU coding tree probability update is proposed, aiming to address probabilistic model distortion problems caused by CC. Experimental results show that the proposed low complexity CU coding tree mechanism significantly reduces encoding time by 27% for lossy coding and 42% for visually lossless coding and lossless coding. The proposed low complexity CU coding tree mechanism devotes to improving coding performance under various application conditions. PMID:26999741

  13. Insurance billing and coding.

    PubMed

    Napier, Rebecca H; Bruelheide, Lori S; Demann, Eric T K; Haug, Richard H

    2008-07-01

    The purpose of this article is to highlight the importance of understanding various numeric and alpha-numeric codes for accurately billing dental and medically related services to private pay or third-party insurance carriers. In the United States, common dental terminology (CDT) codes are most commonly used by dentists to submit claims, whereas current procedural terminology (CPT) and International Classification of Diseases, Ninth Revision, Clinical Modification (ICD.9.CM) codes are more commonly used by physicians to bill for their services. The CPT and ICD.9.CM coding systems complement each other in that CPT codes provide the procedure and service information and ICD.9.CM codes provide the reason or rationale for a particular procedure or service. These codes are more commonly used for "medical necessity" determinations, and general dentists and specialists who routinely perform care, including trauma-related care, biopsies, and dental treatment as a result of or in anticipation of a cancer-related treatment, are likely to use these codes. Claim submissions for care provided can be completed electronically or by means of paper forms.

  14. Coding Acoustic Metasurfaces.

    PubMed

    Xie, Boyang; Tang, Kun; Cheng, Hua; Liu, Zhengyou; Chen, Shuqi; Tian, Jianguo

    2017-02-01

    Coding acoustic metasurfaces can combine simple logical bits to acquire sophisticated functions in wave control. The acoustic logical bits can achieve a phase difference of exactly π and a perfect match of the amplitudes for the transmitted waves. By programming the coding sequences, acoustic metasurfaces with various functions, including creating peculiar antenna patterns and waves focusing, have been demonstrated.

  15. Synthesizing Certified Code

    NASA Technical Reports Server (NTRS)

    Whalen, Michael; Schumann, Johann; Fischer, Bernd

    2002-01-01

    Code certification is a lightweight approach to demonstrate software quality on a formal level. Its basic idea is to require producers to provide formal proofs that their code satisfies certain quality properties. These proofs serve as certificates which can be checked independently. Since code certification uses the same underlying technology as program verification, it also requires many detailed annotations (e.g., loop invariants) to make the proofs possible. However, manually adding theses annotations to the code is time-consuming and error-prone. We address this problem by combining code certification with automatic program synthesis. We propose an approach to generate simultaneously, from a high-level specification, code and all annotations required to certify generated code. Here, we describe a certification extension of AUTOBAYES, a synthesis tool which automatically generates complex data analysis programs from compact specifications. AUTOBAYES contains sufficient high-level domain knowledge to generate detailed annotations. This allows us to use a general-purpose verification condition generator to produce a set of proof obligations in first-order logic. The obligations are then discharged using the automated theorem E-SETHEO. We demonstrate our approach by certifying operator safety for a generated iterative data classification program without manual annotation of the code.

  16. Dress Codes for Teachers?

    ERIC Educational Resources Information Center

    Million, June

    2004-01-01

    In this article, the author discusses an e-mail survey of principals from across the country regarding whether or not their school had a formal staff dress code. The results indicate that most did not have a formal dress code, but agreed that professional dress for teachers was not only necessary, but showed respect for the school and had a…

  17. Pseudonoise code tracking loop

    NASA Technical Reports Server (NTRS)

    Laflame, D. T. (Inventor)

    1980-01-01

    A delay-locked loop is presented for tracking a pseudonoise (PN) reference code in an incoming communication signal. The loop is less sensitive to gain imbalances, which can otherwise introduce timing errors in the PN reference code formed by the loop.

  18. Modified JPEG Huffman coding.

    PubMed

    Lakhani, Gopal

    2003-01-01

    It is a well observed characteristic that when a DCT block is traversed in the zigzag order, the AC coefficients generally decrease in size and the run-length of zero coefficients increase in number. This article presents a minor modification to the Huffman coding of the JPEG baseline compression algorithm to exploit this redundancy. For this purpose, DCT blocks are divided into bands so that each band can be coded using a separate code table. Three implementations are presented, which all move the end-of-block marker up in the middle of DCT block and use it to indicate the band boundaries. Experimental results are presented to compare reduction in the code size obtained by our methods with the JPEG sequential-mode Huffman coding and arithmetic coding methods. The average code reduction to the total image code size of one of our methods is 4%. Our methods can also be used for progressive image transmission and hence, experimental results are also given to compare them with two-, three-, and four-band implementations of the JPEG spectral selection method.

  19. Code of Ethics

    ERIC Educational Resources Information Center

    Division for Early Childhood, Council for Exceptional Children, 2009

    2009-01-01

    The Code of Ethics of the Division for Early Childhood (DEC) of the Council for Exceptional Children is a public statement of principles and practice guidelines supported by the mission of DEC. The foundation of this Code is based on sound ethical reasoning related to professional practice with young children with disabilities and their families…

  20. Dress Codes for Teachers?

    ERIC Educational Resources Information Center

    Million, June

    2004-01-01

    In this article, the author discusses an e-mail survey of principals from across the country regarding whether or not their school had a formal staff dress code. The results indicate that most did not have a formal dress code, but agreed that professional dress for teachers was not only necessary, but showed respect for the school and had a…

  1. Lichenase and coding sequences

    SciTech Connect

    Li, Xin-Liang; Ljungdahl, Lars G.; Chen, Huizhong

    2000-08-15

    The present invention provides a fungal lichenase, i.e., an endo-1,3-1,4-.beta.-D-glucanohydrolase, its coding sequence, recombinant DNA molecules comprising the lichenase coding sequences, recombinant host cells and methods for producing same. The present lichenase is from Orpinomyces PC-2.

  2. Legacy Code Modernization

    NASA Technical Reports Server (NTRS)

    Hribar, Michelle R.; Frumkin, Michael; Jin, Haoqiang; Waheed, Abdul; Yan, Jerry; Saini, Subhash (Technical Monitor)

    1998-01-01

    Over the past decade, high performance computing has evolved rapidly; systems based on commodity microprocessors have been introduced in quick succession from at least seven vendors/families. Porting codes to every new architecture is a difficult problem; in particular, here at NASA, there are many large CFD applications that are very costly to port to new machines by hand. The LCM ("Legacy Code Modernization") Project is the development of an integrated parallelization environment (IPE) which performs the automated mapping of legacy CFD (Fortran) applications to state-of-the-art high performance computers. While most projects to port codes focus on the parallelization of the code, we consider porting to be an iterative process consisting of several steps: 1) code cleanup, 2) serial optimization,3) parallelization, 4) performance monitoring and visualization, 5) intelligent tools for automated tuning using performance prediction and 6) machine specific optimization. The approach for building this parallelization environment is to build the components for each of the steps simultaneously and then integrate them together. The demonstration will exhibit our latest research in building this environment: 1. Parallelizing tools and compiler evaluation. 2. Code cleanup and serial optimization using automated scripts 3. Development of a code generator for performance prediction 4. Automated partitioning 5. Automated insertion of directives. These demonstrations will exhibit the effectiveness of an automated approach for all the steps involved with porting and tuning a legacy code application for a new architecture.

  3. Computerized mega code recording.

    PubMed

    Burt, T W; Bock, H C

    1988-04-01

    A system has been developed to facilitate recording of advanced cardiac life support mega code testing scenarios. By scanning a paper "keyboard" using a bar code wand attached to a portable microcomputer, the person assigned to record the scenario can easily generate an accurate, complete, timed, and typewritten record of the given situations and the obtained responses.

  4. Legacy Code Modernization

    NASA Technical Reports Server (NTRS)

    Hribar, Michelle R.; Frumkin, Michael; Jin, Haoqiang; Waheed, Abdul; Yan, Jerry; Saini, Subhash (Technical Monitor)

    1998-01-01

    Over the past decade, high performance computing has evolved rapidly; systems based on commodity microprocessors have been introduced in quick succession from at least seven vendors/families. Porting codes to every new architecture is a difficult problem; in particular, here at NASA, there are many large CFD applications that are very costly to port to new machines by hand. The LCM ("Legacy Code Modernization") Project is the development of an integrated parallelization environment (IPE) which performs the automated mapping of legacy CFD (Fortran) applications to state-of-the-art high performance computers. While most projects to port codes focus on the parallelization of the code, we consider porting to be an iterative process consisting of several steps: 1) code cleanup, 2) serial optimization,3) parallelization, 4) performance monitoring and visualization, 5) intelligent tools for automated tuning using performance prediction and 6) machine specific optimization. The approach for building this parallelization environment is to build the components for each of the steps simultaneously and then integrate them together. The demonstration will exhibit our latest research in building this environment: 1. Parallelizing tools and compiler evaluation. 2. Code cleanup and serial optimization using automated scripts 3. Development of a code generator for performance prediction 4. Automated partitioning 5. Automated insertion of directives. These demonstrations will exhibit the effectiveness of an automated approach for all the steps involved with porting and tuning a legacy code application for a new architecture.

  5. Implementation of a Blowing Boundary Condition in the LAURA Code

    NASA Technical Reports Server (NTRS)

    Thompson, Richard a.; Gnoffo, Peter A.

    2008-01-01

    Preliminary steps toward modeling a coupled ablation problem using a finite-volume Navier-Stokes code (LAURA) are presented in this paper. Implementation of a surface boundary condition with mass transfer (blowing) is described followed by verification and validation through comparisons with analytic results and experimental data. Application of the code to a carbon-nosetip ablation problem is demonstrated and the results are compared with previously published data. It is concluded that the code and coupled procedure are suitable to support further ablation analyses and studies.

  6. A MULTIPURPOSE COHERENT INSTABILITY SIMULATION CODE

    SciTech Connect

    BLASKIEWICZ,M.

    2007-06-25

    A multipurpose coherent instability simulation code has been written, documented, and released for use. TRANFT (tran-eff-tee) uses fast Fourier transforms to model transverse wakefields, transverse detuning wakes and longitudinal wakefields in a computationally efficient way. Dual harmonic RF allows for the study of enhanced synchrotron frequency spread. When coupled with chromaticity, the theoretically challenging but highly practical post head-tail regime is open to study. Detuning wakes allow for transverse space charge forces in low energy hadron beams, and a switch allowing for radiation damping makes the code useful for electrons.

  7. Energy Conservation Code Decoded

    SciTech Connect

    Cole, Pam C.; Taylor, Zachary T.

    2006-09-01

    Designing an energy-efficient, affordable, and comfortable home is a lot easier thanks to a slime, easier to read booklet, the 2006 International Energy Conservation Code (IECC), published in March 2006. States, counties, and cities have begun reviewing the new code as a potential upgrade to their existing codes. Maintained under the public consensus process of the International Code Council, the IECC is designed to do just what its title says: promote the design and construction of energy-efficient homes and commercial buildings. Homes in this case means traditional single-family homes, duplexes, condominiums, and apartment buildings having three or fewer stories. The U.S. Department of Energy, which played a key role in proposing the changes that resulted in the new code, is offering a free training course that covers the residential provisions of the 2006 IECC.

  8. Combustion chamber analysis code

    NASA Technical Reports Server (NTRS)

    Przekwas, A. J.; Lai, Y. G.; Krishnan, A.; Avva, R. K.; Giridharan, M. G.

    1993-01-01

    A three-dimensional, time dependent, Favre averaged, finite volume Navier-Stokes code has been developed to model compressible and incompressible flows (with and without chemical reactions) in liquid rocket engines. The code has a non-staggered formulation with generalized body-fitted-coordinates (BFC) capability. Higher order differencing methodologies such as MUSCL and Osher-Chakravarthy schemes are available. Turbulent flows can be modeled using any of the five turbulent models present in the code. A two-phase, two-liquid, Lagrangian spray model has been incorporated into the code. Chemical equilibrium and finite rate reaction models are available to model chemically reacting flows. The discrete ordinate method is used to model effects of thermal radiation. The code has been validated extensively against benchmark experimental data and has been applied to model flows in several propulsion system components of the SSME and the STME.

  9. Evolving genetic code

    PubMed Central

    OHAMA, Takeshi; INAGAKI, Yuji; BESSHO, Yoshitaka; OSAWA, Syozo

    2008-01-01

    In 1985, we reported that a bacterium, Mycoplasma capricolum, used a deviant genetic code, namely UGA, a “universal” stop codon, was read as tryptophan. This finding, together with the deviant nuclear genetic codes in not a few organisms and a number of mitochondria, shows that the genetic code is not universal, and is in a state of evolution. To account for the changes in codon meanings, we proposed the codon capture theory stating that all the code changes are non-disruptive without accompanied changes of amino acid sequences of proteins. Supporting evidence for the theory is presented in this review. A possible evolutionary process from the ancient to the present-day genetic code is also discussed. PMID:18941287

  10. Design of Pel Adaptive DPCM coding based upon image partition

    NASA Astrophysics Data System (ADS)

    Saitoh, T.; Harashima, H.; Miyakawa, H.

    1982-01-01

    A Pel Adaptive DPCM coding system based on image partition is developed which possesses coding characteristics superior to those of the Block Adaptive DPCM coding system. This method uses multiple DPCM coding loops and nonhierarchical cluster analysis. It is found that the coding performances of the Pel Adaptive DPCM coding method differ depending on the subject images. The Pel Adaptive DPCM designed using these methods is shown to yield a maximum performance advantage of 2.9 dB for the Girl and Couple images and 1.5 dB for the Aerial image, although no advantage was obtained for the moon image. These results show an improvement over the optimally designed Block Adaptive DPCM coding method proposed by Saito et al. (1981).

  11. Foundational development of an advanced nuclear reactor integrated safety code.

    SciTech Connect

    Clarno, Kevin; Lorber, Alfred Abraham; Pryor, Richard J.; Spotz, William F.; Schmidt, Rodney Cannon; Belcourt, Kenneth; Hooper, Russell Warren; Humphries, Larry LaRon

    2010-02-01

    This report describes the activities and results of a Sandia LDRD project whose objective was to develop and demonstrate foundational aspects of a next-generation nuclear reactor safety code that leverages advanced computational technology. The project scope was directed towards the systems-level modeling and simulation of an advanced, sodium cooled fast reactor, but the approach developed has a more general applicability. The major accomplishments of the LDRD are centered around the following two activities. (1) The development and testing of LIME, a Lightweight Integrating Multi-physics Environment for coupling codes that is designed to enable both 'legacy' and 'new' physics codes to be combined and strongly coupled using advanced nonlinear solution methods. (2) The development and initial demonstration of BRISC, a prototype next-generation nuclear reactor integrated safety code. BRISC leverages LIME to tightly couple the physics models in several different codes (written in a variety of languages) into one integrated package for simulating accident scenarios in a liquid sodium cooled 'burner' nuclear reactor. Other activities and accomplishments of the LDRD include (a) further development, application and demonstration of the 'non-linear elimination' strategy to enable physics codes that do not provide residuals to be incorporated into LIME, (b) significant extensions of the RIO CFD code capabilities, (c) complex 3D solid modeling and meshing of major fast reactor components and regions, and (d) an approach for multi-physics coupling across non-conformal mesh interfaces.

  12. Quantum convolutional codes derived from constacyclic codes

    NASA Astrophysics Data System (ADS)

    Yan, Tingsu; Huang, Xinmei; Tang, Yuansheng

    2014-12-01

    In this paper, three families of quantum convolutional codes are constructed. The first one and the second one can be regarded as a generalization of Theorems 3, 4, 7 and 8 [J. Chen, J. Li, F. Yang and Y. Huang, Int. J. Theor. Phys., doi:10.1007/s10773-014-2214-6 (2014)], in the sense that we drop the constraint q ≡ 1 (mod 4). Furthermore, the second one and the third one attain the quantum generalized Singleton bound.

  13. Pyramid image codes

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B.

    1990-01-01

    All vision systems, both human and machine, transform the spatial image into a coded representation. Particular codes may be optimized for efficiency or to extract useful image features. Researchers explored image codes based on primary visual cortex in man and other primates. Understanding these codes will advance the art in image coding, autonomous vision, and computational human factors. In cortex, imagery is coded by features that vary in size, orientation, and position. Researchers have devised a mathematical model of this transformation, called the Hexagonal oriented Orthogonal quadrature Pyramid (HOP). In a pyramid code, features are segregated by size into layers, with fewer features in the layers devoted to large features. Pyramid schemes provide scale invariance, and are useful for coarse-to-fine searching and for progressive transmission of images. The HOP Pyramid is novel in three respects: (1) it uses a hexagonal pixel lattice, (2) it uses oriented features, and (3) it accurately models most of the prominent aspects of primary visual cortex. The transform uses seven basic features (kernels), which may be regarded as three oriented edges, three oriented bars, and one non-oriented blob. Application of these kernels to non-overlapping seven-pixel neighborhoods yields six oriented, high-pass pyramid layers, and one low-pass (blob) layer.

  14. Embedded foveation image coding.

    PubMed

    Wang, Z; Bovik, A C

    2001-01-01

    The human visual system (HVS) is highly space-variant in sampling, coding, processing, and understanding. The spatial resolution of the HVS is highest around the point of fixation (foveation point) and decreases rapidly with increasing eccentricity. By taking advantage of this fact, it is possible to remove considerable high-frequency information redundancy from the peripheral regions and still reconstruct a perceptually good quality image. Great success has been obtained previously by a class of embedded wavelet image coding algorithms, such as the embedded zerotree wavelet (EZW) and the set partitioning in hierarchical trees (SPIHT) algorithms. Embedded wavelet coding not only provides very good compression performance, but also has the property that the bitstream can be truncated at any point and still be decoded to recreate a reasonably good quality image. In this paper, we propose an embedded foveation image coding (EFIC) algorithm, which orders the encoded bitstream to optimize foveated visual quality at arbitrary bit-rates. A foveation-based image quality metric, namely, foveated wavelet image quality index (FWQI), plays an important role in the EFIC system. We also developed a modified SPIHT algorithm to improve the coding efficiency. Experiments show that EFIC integrates foveation filtering with foveated image coding and demonstrates very good coding performance and scalability in terms of foveated image quality measurement.

  15. Report number codes

    SciTech Connect

    Nelson, R.N.

    1985-05-01

    This publication lists all report number codes processed by the Office of Scientific and Technical Information. The report codes are substantially based on the American National Standards Institute, Standard Technical Report Number (STRN)-Format and Creation Z39.23-1983. The Standard Technical Report Number (STRN) provides one of the primary methods of identifying a specific technical report. The STRN consists of two parts: The report code and the sequential number. The report code identifies the issuing organization, a specific program, or a type of document. The sequential number, which is assigned in sequence by each report issuing entity, is not included in this publication. Part I of this compilation is alphabetized by report codes followed by issuing installations. Part II lists the issuing organization followed by the assigned report code(s). In both Parts I and II, the names of issuing organizations appear for the most part in the form used at the time the reports were issued. However, for some of the more prolific installations which have had name changes, all entries have been merged under the current name.

  16. ParaDiS-FEM dislocation dynamics simulation code primer

    SciTech Connect

    Tang, M; Hommes, G; Aubry, S; Arsenlis, A

    2011-09-27

    The ParaDiS code is developed to study bulk systems with periodic boundary conditions. When we try to perform discrete dislocation dynamics simulations for finite systems such as thin films or cylinders, the ParaDiS code must be extended. First, dislocations need to be contained inside the finite simulation box; Second, dislocations inside the finite box experience image stresses due to the free surfaces. We have developed in-house FEM subroutines to couple with the ParaDiS code to deal with free surface related issues in the dislocation dynamics simulations. This primer explains how the coupled code was developed, the main changes from the ParaDiS code, and the functions of the new FEM subroutines.

  17. Multiphysics Code Demonstrated for Propulsion Applications

    NASA Technical Reports Server (NTRS)

    Lawrence, Charles; Melis, Matthew E.

    1998-01-01

    The utility of multidisciplinary analysis tools for aeropropulsion applications is being investigated at the NASA Lewis Research Center. The goal of this project is to apply Spectrum, a multiphysics code developed by Centric Engineering Systems, Inc., to simulate multidisciplinary effects in turbomachinery components. Many engineering problems today involve detailed computer analyses to predict the thermal, aerodynamic, and structural response of a mechanical system as it undergoes service loading. Analysis of aerospace structures generally requires attention in all three disciplinary areas to adequately predict component service behavior, and in many cases, the results from one discipline substantially affect the outcome of the other two. There are numerous computer codes currently available in the engineering community to perform such analyses in each of these disciplines. Many of these codes are developed and used in-house by a given organization, and many are commercially available. However, few, if any, of these codes are designed specifically for multidisciplinary analyses. The Spectrum code has been developed for performing fully coupled fluid, thermal, and structural analyses on a mechanical system with a single simulation that accounts for all simultaneous interactions, thus eliminating the requirement for running a large number of sequential, separate, disciplinary analyses. The Spectrum code has a true multiphysics analysis capability, which improves analysis efficiency as well as accuracy. Centric Engineering, Inc., working with a team of Lewis and AlliedSignal Engines engineers, has been evaluating Spectrum for a variety of propulsion applications including disk quenching, drum cavity flow, aeromechanical simulations, and a centrifugal compressor flow simulation.

  18. Non-coding RNAs in cardiac hypertrophy.

    PubMed

    Ottaviani, Lara; da Costa Martins, Paula A

    2017-02-23

    Heart Failure is one of the largest contributors to disease burden and healthcare outflow in the Western world. Despite significant progress in the treatment of heart failure, disease prognosis remains very poor with the only curative therapy still being heart transplantation. To counteract the current situation, efforts have been made to better understand the underlying molecular pathways in the progression of cardiac disease towards heart failure, and to link the disease to novel therapeutic targets such as non-coding RNAs. The non-coding part of the genome has gained prominence over the last couple of decades by opening a completely new research field and having established different non-coding RNAs species as fundamental regulators of cellular functions. Not surprisingly, their dysregulation is increasingly being linked to pathology, including to cardiac disease. Pre-clinically, non-coding RNAs have been shown to be of great value as therapeutic targets in pathological cardiac remodelling and also as diagnostic/prognostic biomarkers for heart failure. Therefore, it is to expect that non-coding RNA-based therapeutic strategies will reach the bedside in the future and provide new and more efficient treatments for heart failure. Here, we review recent discoveries linking the function and molecular interactions of non-coding RNAs with the pathophysiology of cardiac hypertrophy and heart failure. This article is protected by copyright. All rights reserved.

  19. CBP PHASE I CODE INTEGRATION

    SciTech Connect

    Smith, F.; Brown, K.; Flach, G.; Sarkar, S.

    2011-09-30

    developed to link GoldSim with external codes (Smith III et al. 2010). The DLL uses a list of code inputs provided by GoldSim to create an input file for the external application, runs the external code, and returns a list of outputs (read from files created by the external application) back to GoldSim. In this way GoldSim provides: (1) a unified user interface to the applications, (2) the capability of coupling selected codes in a synergistic manner, and (3) the capability of performing probabilistic uncertainty analysis with the codes. GoldSim is made available by the GoldSim Technology Group as a free 'Player' version that allows running but not editing GoldSim models. The player version makes the software readily available to a wider community of users that would wish to use the CBP application but do not have a license for GoldSim.

  20. Coding for surgical audit.

    PubMed

    Pettigrew, R A; van Rij, A M

    1990-05-01

    A simple system of codes for operations, diagnoses and complications, developed specifically for computerized surgical audit, is described. This arose following a review of our established surgical audit in which problems in the retrieval of data from the database were identified. Evaluation of current methods of classification of surgical data highlighted the need for a dedicated coding system that was suitable for classifying surgical audit data, enabling rapid retrieval from large databases. After 2 years of use, the coding system has been found to fulfil the criteria of being sufficiently flexible and specific for computerized surgical audit, yet simple enough for medical staff to use.

  1. Coupled dynamics analysis of wind energy systems

    NASA Technical Reports Server (NTRS)

    Hoffman, J. A.

    1977-01-01

    A qualitative description of all key elements of a complete wind energy system computer analysis code is presented. The analysis system addresses the coupled dynamics characteristics of wind energy systems, including the interactions of the rotor, tower, nacelle, power train, control system, and electrical network. The coupled dynamics are analyzed in both the frequency and time domain to provide the basic motions and loads data required for design, performance verification and operations analysis activities. Elements of the coupled analysis code were used to design and analyze candidate rotor articulation concepts. Fundamental results and conclusions derived from these studies are presented.

  2. Nonadiabatic Coupling

    NASA Astrophysics Data System (ADS)

    Kryachko, Eugene S.

    The general features of the nonadiabatic coupling and its relation to molecular properties are surveyed. Some consequences of the [`]equation of motion', formally expressing a [`]smoothness' of a given molecular property within the diabatic basis, are demonstrated. A particular emphasis is made on the relation between a [`]smoothness' of the electronic dipole moment and the generalized Mulliken-Hush formula for the diabatic electronic coupling.

  3. SASSYS LMFBR systems code

    SciTech Connect

    Dunn, F.E.; Prohammer, F.G.; Weber, D.P.

    1983-01-01

    The SASSYS LMFBR systems analysis code is being developed mainly to analyze the behavior of the shut-down heat-removal system and the consequences of failures in the system, although it is also capable of analyzing a wide range of transients, from mild operational transients through more severe transients leading to sodium boiling in the core and possible melting of clad and fuel. The code includes a detailed SAS4A multi-channel core treatment plus a general thermal-hydraulic treatment of the primary and intermediate heat-transport loops and the steam generators. The code can handle any LMFBR design, loop or pool, with an arbitrary arrangement of components. The code is fast running: usually faster than real time.

  4. Code Disentanglement: Initial Plan

    SciTech Connect

    Wohlbier, John Greaton; Kelley, Timothy M.; Rockefeller, Gabriel M.; Calef, Matthew Thomas

    2015-01-27

    The first step to making more ambitious changes in the EAP code base is to disentangle the code into a set of independent, levelized packages. We define a package as a collection of code, most often across a set of files, that provides a defined set of functionality; a package a) can be built and tested as an entity and b) fits within an overall levelization design. Each package contributes one or more libraries, or an application that uses the other libraries. A package set is levelized if the relationships between packages form a directed, acyclic graph and each package uses only packages at lower levels of the diagram (in Fortran this relationship is often describable by the use relationship between modules). Independent packages permit independent- and therefore parallel|development. The packages form separable units for the purposes of development and testing. This is a proven path for enabling finer-grained changes to a complex code.

  5. Critical Care Coding for Neurologists.

    PubMed

    Nuwer, Marc R; Vespa, Paul M

    2015-10-01

    Accurate coding is an important function of neurologic practice. This contribution to Continuum is part of an ongoing series that presents helpful coding information along with examples related to the issue topic. Tips for diagnosis coding, Evaluation and Management coding, procedure coding, or a combination are presented, depending on which is most applicable to the subject area of the issue.

  6. Seals Flow Code Development

    NASA Technical Reports Server (NTRS)

    1991-01-01

    In recognition of a deficiency in the current modeling capability for seals, an effort was established by NASA to develop verified computational fluid dynamic concepts, codes, and analyses for seals. The objectives were to develop advanced concepts for the design and analysis of seals, to effectively disseminate the information to potential users by way of annual workshops, and to provide experimental verification for the models and codes under a wide range of operating conditions.

  7. Robust Nonlinear Neural Codes

    NASA Astrophysics Data System (ADS)

    Yang, Qianli; Pitkow, Xaq

    2015-03-01

    Most interesting natural sensory stimuli are encoded in the brain in a form that can only be decoded nonlinearly. But despite being a core function of the brain, nonlinear population codes are rarely studied and poorly understood. Interestingly, the few existing models of nonlinear codes are inconsistent with known architectural features of the brain. In particular, these codes have information content that scales with the size of the cortical population, even if that violates the data processing inequality by exceeding the amount of information entering the sensory system. Here we provide a valid theory of nonlinear population codes by generalizing recent work on information-limiting correlations in linear population codes. Although these generalized, nonlinear information-limiting correlations bound the performance of any decoder, they also make decoding more robust to suboptimal computation, allowing many suboptimal decoders to achieve nearly the same efficiency as an optimal decoder. Although these correlations are extremely difficult to measure directly, particularly for nonlinear codes, we provide a simple, practical test by which one can use choice-related activity in small populations of neurons to determine whether decoding is suboptimal or optimal and limited by correlated noise. We conclude by describing an example computation in the vestibular system where this theory applies. QY and XP was supported by a grant from the McNair foundation.

  8. Scalable motion vector coding

    NASA Astrophysics Data System (ADS)

    Barbarien, Joeri; Munteanu, Adrian; Verdicchio, Fabio; Andreopoulos, Yiannis; Cornelis, Jan P.; Schelkens, Peter

    2004-11-01

    Modern video coding applications require transmission of video data over variable-bandwidth channels to a variety of terminals with different screen resolutions and available computational power. Scalable video coding is needed to optimally support these applications. Recently proposed wavelet-based video codecs employing spatial domain motion compensated temporal filtering (SDMCTF) provide quality, resolution and frame-rate scalability while delivering compression performance comparable to that of the state-of-the-art non-scalable H.264-codec. These codecs require scalable coding of the motion vectors in order to support a large range of bit-rates with optimal compression efficiency. Scalable motion vector coding algorithms based on the integer wavelet transform followed by embedded coding of the wavelet coefficients were recently proposed. In this paper, a new and fundamentally different scalable motion vector codec (MVC) using median-based motion vector prediction is proposed. Extensive experimental results demonstrate that the proposed MVC systematically outperforms the wavelet-based state-of-the-art solutions. To be able to take advantage of the proposed scalable MVC, a rate allocation mechanism capable of optimally dividing the available rate among texture and motion information is required. Two rate allocation strategies are proposed and compared. The proposed MVC and rate allocation schemes are incorporated into an SDMCTF-based video codec and the benefits of scalable motion vector coding are experimentally demonstrated.

  9. Blueprint for an analog quantum code fabric

    NASA Astrophysics Data System (ADS)

    Kapit, Eliot

    2015-03-01

    A physical realization of self correcting quantum code would be profoundly useful for constructing a quantum computer. In this theoretical talk, we provide a partial solution to major challenges preventing self correcting quantum code from being engineered in realistic devices. We consider a variant of Kitaev's toric code coupled to propagating bosons, which induce a long-ranged interaction between anyonic defects. By coupling the primary quantum system to an engineered dissipation source through resonant energy transfer, we demonstrate a ``rate barrier'' which leads to a potentially enormous increase in the system's quantum state lifetime through purely passive quantum error correction, even when coupled to an infinite temperature bath. While our mechanism is not scalable to infinitely large systems, the maximum effective size can be very large, and it is fully compatible with active error correction schemes. Our model uses only on-site and nearest-neighbor interactions, and could be implemented in superconducting qubits. With John T. Chalker and Steven H. Simon of the University of Oxford.

  10. Analysis of the optimality of the standard genetic code.

    PubMed

    Kumar, Balaji; Saini, Supreet

    2016-07-19

    Many theories have been proposed attempting to explain the origin of the genetic code. While strong reasons remain to believe that the genetic code evolved as a frozen accident, at least for the first few amino acids, other theories remain viable. In this work, we test the optimality of the standard genetic code against approximately 17 million genetic codes, and locate 29 which outperform the standard genetic code at the following three criteria: (a) robustness to point mutation; (b) robustness to frameshift mutation; and (c) ability to encode additional information in the coding region. We use a genetic algorithm to generate and score codes from different parts of the associated landscape, which are, as a result, presumably more representative of the entire landscape. Our results show that while the genetic code is sub-optimal for robustness to frameshift mutation and the ability to encode additional information in the coding region, it is very strongly selected for robustness to point mutation. This coupled with the observation that the different performance indicator scores for a particular genetic code are negatively correlated makes the standard genetic code nearly optimal for the three criteria tested in this work.

  11. VIPAR - Vortex Inflation PARachute Code Ver. 1.0

    SciTech Connect

    Strickland, James; Homicz, Greg; Porter, Vicki; Burns, Shawn; Gassler, Albert

    2001-11-01

    VIPAR is a 3-D fluid mechanics code for predicting flow past bluff bodies whose surfaces can be assumed to be made up of shell elements that are simply connected. Version 1.0 of the code contains several first order algorithms, which we are already in the process of replacing with higher order ones. These enhancements will appear in the next version of VIPAR. The present code contains a motion generator, which can be used to produce large class of rigid body motions. The present code has also been fully coupled to a structural dynamics code in which the geometry undergoes large time dependent deformations. Initial surface geometry is generated from triangular shell elements using a code such as Patran and is written into an Exodusll data base file for subsequent input into VIPAR. Surface and wake variable information is output into two Exodusll files which can be processed and viewed using software such as EnSight.

  12. FLEXIBLE COUPLING

    DOEpatents

    Babelay, E.F.

    1962-02-13

    A flexible shaft coupling for operation at speeds in excess of 14,000 rpm is designed which requires no lubrication. A driving sleeve member and a driven sleeve member are placed in concentric spaced relationship. A torque force is transmitted to the driven member from the driving member through a plurality of nylon balls symmetrically disposed between the spaced sleeves. The balls extend into races and recesses within the respective sleeve members. The sleeve members have a suitable clearance therebetween and the balls have a suitable radial clearance during operation of the coupling to provide a relatively loose coupling. These clearances accommodate for both parallel and/or angular misalignments and avoid metal-tometal contact between the sleeve members during operation. Thus, no lubrication is needed, and a minimum of vibrations is transmitted between the sleeve members. (AEC)

  13. Prosthesis coupling

    NASA Technical Reports Server (NTRS)

    Reswick, J. B.; Mooney, V.; Bright, C. W.; Owens, L. J. (Inventor)

    1979-01-01

    A coupling for use in an apparatus for connecting a prosthesis to the bone of a stump of an amputated limb is described which permits a bio-compatible carbon sleeve forming a part of the prosthesis connector to float so as to prevent disturbing the skin seal around the carbon sleeve. The coupling includes a flexible member interposed between a socket that is inserted within an intermedullary cavity of the bone and the sleeve. A lock pin is carried by the prosthesis and has a stem portion which is adapted to be coaxially disposed and slideably within the tubular female socket for securing the prosthesis to the stump. The skin around the percutaneous carbon sleeve is able to move as a result of the flexing coupling so as to reduce stresses caused by changes in the stump shape and/or movement between the bone and the flesh portion of the stump.

  14. Prioritized LT Codes

    NASA Technical Reports Server (NTRS)

    Woo, Simon S.; Cheng, Michael K.

    2011-01-01

    The original Luby Transform (LT) coding scheme is extended to account for data transmissions where some information symbols in a message block are more important than others. Prioritized LT codes provide unequal error protection (UEP) of data on an erasure channel by modifying the original LT encoder. The prioritized algorithm improves high-priority data protection without penalizing low-priority data recovery. Moreover, low-latency decoding is also obtained for high-priority data due to fast encoding. Prioritized LT codes only require a slight change in the original encoding algorithm, and no changes at all at the decoder. Hence, with a small complexity increase in the LT encoder, an improved UEP and low-decoding latency performance for high-priority data can be achieved. LT encoding partitions a data stream into fixed-sized message blocks each with a constant number of information symbols. To generate a code symbol from the information symbols in a message, the Robust-Soliton probability distribution is first applied in order to determine the number of information symbols to be used to compute the code symbol. Then, the specific information symbols are chosen uniform randomly from the message block. Finally, the selected information symbols are XORed to form the code symbol. The Prioritized LT code construction includes an additional restriction that code symbols formed by a relatively small number of XORed information symbols select some of these information symbols from the pool of high-priority data. Once high-priority data are fully covered, encoding continues with the conventional LT approach where code symbols are generated by selecting information symbols from the entire message block including all different priorities. Therefore, if code symbols derived from high-priority data experience an unusual high number of erasures, Prioritized LT codes can still reliably recover both high- and low-priority data. This hybrid approach decides not only "how to encode

  15. Coded source neutron imaging

    SciTech Connect

    Bingham, Philip R; Santos-Villalobos, Hector J

    2011-01-01

    Coded aperture techniques have been applied to neutron radiography to address limitations in neutron flux and resolution of neutron detectors in a system labeled coded source imaging (CSI). By coding the neutron source, a magnified imaging system is designed with small spot size aperture holes (10 and 100 m) for improved resolution beyond the detector limits and with many holes in the aperture (50% open) to account for flux losses due to the small pinhole size. An introduction to neutron radiography and coded aperture imaging is presented. A system design is developed for a CSI system with a development of equations for limitations on the system based on the coded image requirements and the neutron source characteristics of size and divergence. Simulation has been applied to the design using McStas to provide qualitative measures of performance with simulations of pinhole array objects followed by a quantitative measure through simulation of a tilted edge and calculation of the modulation transfer function (MTF) from the line spread function. MTF results for both 100um and 10um aperture hole diameters show resolutions matching the hole diameters.

  16. Error coding simulations

    NASA Technical Reports Server (NTRS)

    Noble, Viveca K.

    1993-01-01

    There are various elements such as radio frequency interference (RFI) which may induce errors in data being transmitted via a satellite communication link. When a transmission is affected by interference or other error-causing elements, the transmitted data becomes indecipherable. It becomes necessary to implement techniques to recover from these disturbances. The objective of this research is to develop software which simulates error control circuits and evaluate the performance of these modules in various bit error rate environments. The results of the evaluation provide the engineer with information which helps determine the optimal error control scheme. The Consultative Committee for Space Data Systems (CCSDS) recommends the use of Reed-Solomon (RS) and convolutional encoders and Viterbi and RS decoders for error correction. The use of forward error correction techniques greatly reduces the received signal to noise needed for a certain desired bit error rate. The use of concatenated coding, e.g. inner convolutional code and outer RS code, provides even greater coding gain. The 16-bit cyclic redundancy check (CRC) code is recommended by CCSDS for error detection.

  17. Induction technology optimization code

    SciTech Connect

    Caporaso, G.J.; Brooks, A.L.; Kirbie, H.C.

    1992-08-21

    A code has been developed to evaluate relative costs of induction accelerator driver systems for relativistic klystrons. The code incorporates beam generation, transport and pulsed power system constraints to provide an integrated design tool. The code generates an injector/accelerator combination which satisfies the top level requirements and all system constraints once a small number of design choices have been specified (rise time of the injector voltage and aspect ratio of the ferrite induction cores, for example). The code calculates dimensions of accelerator mechanical assemblies and values of all electrical components. Cost factors for machined parts, raw materials and components are applied to yield a total system cost. These costs are then plotted as a function of the two design choices to enable selection of an optimum design based on various criteria. The Induction Technology Optimization Study (ITOS) was undertaken to examine viable combinations of a linear induction accelerator and a relativistic klystron (RK) for high power microwave production. It is proposed, that microwaves from the RK will power a high-gradient accelerator structure for linear collider development. Previous work indicates that the RK will require a nominal 3-MeV, 3-kA electron beam with a 100-ns flat top. The proposed accelerator-RK combination will be a high average power system capable of sustained microwave output at a 300-Hz pulse repetition frequency. The ITOS code models many combinations of injector, accelerator, and pulse power designs that will supply an RK with the beam parameters described above.

  18. Coded source neutron imaging

    NASA Astrophysics Data System (ADS)

    Bingham, Philip; Santos-Villalobos, Hector; Tobin, Ken

    2011-03-01

    Coded aperture techniques have been applied to neutron radiography to address limitations in neutron flux and resolution of neutron detectors in a system labeled coded source imaging (CSI). By coding the neutron source, a magnified imaging system is designed with small spot size aperture holes (10 and 100μm) for improved resolution beyond the detector limits and with many holes in the aperture (50% open) to account for flux losses due to the small pinhole size. An introduction to neutron radiography and coded aperture imaging is presented. A system design is developed for a CSI system with a development of equations for limitations on the system based on the coded image requirements and the neutron source characteristics of size and divergence. Simulation has been applied to the design using McStas to provide qualitative measures of performance with simulations of pinhole array objects followed by a quantitative measure through simulation of a tilted edge and calculation of the modulation transfer function (MTF) from the line spread function. MTF results for both 100μm and 10μm aperture hole diameters show resolutions matching the hole diameters.

  19. User’s Manual for Electromagnetic Pulse Coupling Code TEMPO.

    DTIC Science & Technology

    1981-02-01

    8217SEP 21’’ A "’R’ATI ’N A T� TEE, .’I" *A;W MPTFH OPERAS RANT’ .’PTRlSAATIN ATTN ’R IFEl , .𔃼.’~R "rl . 3M’S DTSET ’TI’EA1 ;FRY Fi.1 TT’I SYSTE~MS

  20. Code query by example

    NASA Astrophysics Data System (ADS)

    Vaucouleur, Sebastien

    2011-02-01

    We introduce code query by example for customisation of evolvable software products in general and of enterprise resource planning systems (ERPs) in particular. The concept is based on an initial empirical study on practices around ERP systems. We motivate our design choices based on those empirical results, and we show how the proposed solution helps with respect to the infamous upgrade problem: the conflict between the need for customisation and the need for upgrade of ERP systems. We further show how code query by example can be used as a form of lightweight static analysis, to detect automatically potential defects in large software products. Code query by example as a form of lightweight static analysis is particularly interesting in the context of ERP systems: it is often the case that programmers working in this field are not computer science specialists but more of domain experts. Hence, they require a simple language to express custom rules.

  1. Autocatalysis, information and coding.

    PubMed

    Wills, P R

    2001-01-01

    Autocatalytic self-construction in macromolecular systems requires the existence of a reflexive relationship between structural components and the functional operations they perform to synthesise themselves. The possibility of reflexivity depends on formal, semiotic features of the catalytic structure-function relationship, that is, the embedding of catalytic functions in the space of polymeric structures. Reflexivity is a semiotic property of some genetic sequences. Such sequences may serve as the basis for the evolution of coding as a result of autocatalytic self-organisation in a population of assignment catalysts. Autocatalytic selection is a mechanism whereby matter becomes differentiated in primitive biochemical systems. In the case of coding self-organisation, it corresponds to the creation of symbolic information. Prions are present-day entities whose replication through autocatalysis reflects aspects of biological semiotics less obvious than genetic coding.

  2. TOUGH+ v1.5 Core Code

    SciTech Connect

    Moridis, George J.

    2015-08-27

    TOUGH+ v1.5 is a numerical code for the simulation of multi-phase, multi-component flow and transport of mass and heat through porous and fractured media, and represents the third update of the code since its first release [Moridis et al., 2008]. TOUGH+ is a successor to the TOUGH2 [Pruess et al., 1991; 2012] family of codes for multi-component, multiphase fluid and heat flow developed at the Lawrence Berkeley National Laboratory. It is written in standard FORTRAN 95/2003, and can be run on any computational platform (workstations, PC, Macintosh). TOUGH+ v1.5 employs dynamic memory allocation, thus minimizing storage requirements. It has a completely modular structure, follows the tenets of Object-Oriented Programming (OOP), and involves the advanced features of FORTRAN 95/2003, i.e., modules, derived data types, the use of pointers, lists and trees, data encapsulation, defined operators and assignments, operator extension and overloading, use of generic procedures, and maximum use of the powerful intrinsic vector and matrix processing operations. TOUGH+ v1.5 is the core code for its family of applications, i.e., the part of the code that is common to all its applications. It provides a description of the underlying physics and thermodynamics of non-isothermal flow, of the mathematical and numerical approaches, as well as a detailed explanation of the general (common to all applications) input requirements, options, capabilities and output specifications. The core code cannot run by itself: it needs to be coupled with the code for the specific TOUGH+ application option that describes a particular type of problem. The additional input requirements specific to a particular TOUGH+ application options and related illustrative examples can be found in the corresponding User’s Manual.

  3. Code inspection instructional validation

    NASA Technical Reports Server (NTRS)

    Orr, Kay; Stancil, Shirley

    1992-01-01

    The Shuttle Data Systems Branch (SDSB) of the Flight Data Systems Division (FDSD) at Johnson Space Center contracted with Southwest Research Institute (SwRI) to validate the effectiveness of an interactive video course on the code inspection process. The purpose of this project was to determine if this course could be effective for teaching NASA analysts the process of code inspection. In addition, NASA was interested in the effectiveness of this unique type of instruction (Digital Video Interactive), for providing training on software processes. This study found the Carnegie Mellon course, 'A Cure for the Common Code', effective for teaching the process of code inspection. In addition, analysts prefer learning with this method of instruction, or this method in combination with other methods. As is, the course is definitely better than no course at all; however, findings indicate changes are needed. Following are conclusions of this study. (1) The course is instructionally effective. (2) The simulation has a positive effect on student's confidence in his ability to apply new knowledge. (3) Analysts like the course and prefer this method of training, or this method in combination with current methods of training in code inspection, over the way training is currently being conducted. (4) Analysts responded favorably to information presented through scenarios incorporating full motion video. (5) Some course content needs to be changed. (6) Some content needs to be added to the course. SwRI believes this study indicates interactive video instruction combined with simulation is effective for teaching software processes. Based on the conclusions of this study, SwRI has outlined seven options for NASA to consider. SwRI recommends the option which involves creation of new source code and data files, but uses much of the existing content and design from the current course. Although this option involves a significant software development effort, SwRI believes this option

  4. Couples' Reports of Relationship Problems in a Naturalistic Therapy Setting

    ERIC Educational Resources Information Center

    Boisvert, Marie-Michele; Wright, John; Tremblay, Nadine; McDuff, Pierre

    2011-01-01

    Understanding couples' relationship problems is fundamental to couple therapy. Although research has documented common relationship problems, no study has used open-ended questions to explore problems in couples seeking therapy in naturalistic settings. The present study used a reliable coding system to explore the relationship problems reported…

  5. Securing mobile code.

    SciTech Connect

    Link, Hamilton E.; Schroeppel, Richard Crabtree; Neumann, William Douglas; Campbell, Philip LaRoche; Beaver, Cheryl Lynn; Pierson, Lyndon George; Anderson, William Erik

    2004-10-01

    If software is designed so that the software can issue functions that will move that software from one computing platform to another, then the software is said to be 'mobile'. There are two general areas of security problems associated with mobile code. The 'secure host' problem involves protecting the host from malicious mobile code. The 'secure mobile code' problem, on the other hand, involves protecting the code from malicious hosts. This report focuses on the latter problem. We have found three distinct camps of opinions regarding how to secure mobile code. There are those who believe special distributed hardware is necessary, those who believe special distributed software is necessary, and those who believe neither is necessary. We examine all three camps, with a focus on the third. In the distributed software camp we examine some commonly proposed techniques including Java, D'Agents and Flask. For the specialized hardware camp, we propose a cryptographic technique for 'tamper-proofing' code over a large portion of the software/hardware life cycle by careful modification of current architectures. This method culminates by decrypting/authenticating each instruction within a physically protected CPU, thereby protecting against subversion by malicious code. Our main focus is on the camp that believes that neither specialized software nor hardware is necessary. We concentrate on methods of code obfuscation to render an entire program or a data segment on which a program depends incomprehensible. The hope is to prevent or at least slow down reverse engineering efforts and to prevent goal-oriented attacks on the software and execution. The field of obfuscation is still in a state of development with the central problem being the lack of a basis for evaluating the protection schemes. We give a brief introduction to some of the main ideas in the field, followed by an in depth analysis of a technique called 'white-boxing'. We put forth some new attacks and improvements

  6. Aeroacoustic Prediction Codes

    NASA Technical Reports Server (NTRS)

    Gliebe, P; Mani, R.; Shin, H.; Mitchell, B.; Ashford, G.; Salamah, S.; Connell, S.; Huff, Dennis (Technical Monitor)

    2000-01-01

    This report describes work performed on Contract NAS3-27720AoI 13 as part of the NASA Advanced Subsonic Transport (AST) Noise Reduction Technology effort. Computer codes were developed to provide quantitative prediction, design, and analysis capability for several aircraft engine noise sources. The objective was to provide improved, physics-based tools for exploration of noise-reduction concepts and understanding of experimental results. Methods and codes focused on fan broadband and 'buzz saw' noise and on low-emissions combustor noise and compliment work done by other contractors under the NASA AST program to develop methods and codes for fan harmonic tone noise and jet noise. The methods and codes developed and reported herein employ a wide range of approaches, from the strictly empirical to the completely computational, with some being semiempirical analytical, and/or analytical/computational. Emphasis was on capturing the essential physics while still considering method or code utility as a practical design and analysis tool for everyday engineering use. Codes and prediction models were developed for: (1) an improved empirical correlation model for fan rotor exit flow mean and turbulence properties, for use in predicting broadband noise generated by rotor exit flow turbulence interaction with downstream stator vanes: (2) fan broadband noise models for rotor and stator/turbulence interaction sources including 3D effects, noncompact-source effects. directivity modeling, and extensions to the rotor supersonic tip-speed regime; (3) fan multiple-pure-tone in-duct sound pressure prediction methodology based on computational fluid dynamics (CFD) analysis; and (4) low-emissions combustor prediction methodology and computer code based on CFD and actuator disk theory. In addition. the relative importance of dipole and quadrupole source mechanisms was studied using direct CFD source computation for a simple cascadeigust interaction problem, and an empirical combustor

  7. Polar Code Validation

    DTIC Science & Technology

    1989-09-30

    Unclassified 2a SECURITY CLASSiF-ICATiON AUTHORIT’Y 3 DIStRIBUTION AVAILABILITY OF REPORT N,A Approved for public release; 2o DECLASSIFICAIiON DOWNGRADING SCH DI...SUMMARY OF POLAR ACHIEVEMENTS ..... .......... 3 3 . POLAR CODE PHYSICAL MODELS ..... ............. 5 3.1 PL-ASMA Su ^"ru5 I1LS SH A...11 Structure of the Bipolar Plasma Sheath Generated by SPEAR I ... ...... 1 3 The POLAR Code Wake Model: Comparison with in Situ Observations . . 23

  8. Coding for reliable satellite communications

    NASA Technical Reports Server (NTRS)

    Lin, S.

    1984-01-01

    Several error control coding techniques for reliable satellite communications were investigated to find algorithms for fast decoding of Reed-Solomon codes in terms of dual basis. The decoding of the (255,223) Reed-Solomon code, which is used as the outer code in the concatenated TDRSS decoder, was of particular concern.

  9. Multiple trellis coded modulation

    NASA Technical Reports Server (NTRS)

    Simon, Marvin K. (Inventor); Divsalar, Dariush (Inventor)

    1990-01-01

    A technique for designing trellis codes to minimize bit error performance for a fading channel. The invention provides a criteria which may be used in the design of such codes which is significantly different from that used for average white Gaussian noise channels. The method of multiple trellis coded modulation of the present invention comprises the steps of: (a) coding b bits of input data into s intermediate outputs; (b) grouping said s intermediate outputs into k groups of s.sub.i intermediate outputs each where the summation of all s.sub.i,s is equal to s and k is equal to at least 2; (c) mapping each of said k groups of intermediate outputs into one of a plurality of symbols in accordance with a plurality of modulation schemes, one for each group such that the first group is mapped in accordance with a first modulation scheme and the second group is mapped in accordance with a second modulation scheme; and (d) outputting each of said symbols to provide k output symbols for each b bits of input data.

  10. Electrical Circuit Simulation Code

    SciTech Connect

    Wix, Steven D.; Waters, Arlon J.; Shirley, David

    2001-08-09

    Massively-Parallel Electrical Circuit Simulation Code. CHILESPICE is a massively-arallel distributed-memory electrical circuit simulation tool that contains many enhanced radiation, time-based, and thermal features and models. Large scale electronic circuit simulation. Shared memory, parallel processing, enhance convergence. Sandia specific device models.

  11. Code Optimization Techniques

    SciTech Connect

    MAGEE,GLEN I.

    2000-08-03

    Computers transfer data in a number of different ways. Whether through a serial port, a parallel port, over a modem, over an ethernet cable, or internally from a hard disk to memory, some data will be lost. To compensate for that loss, numerous error detection and correction algorithms have been developed. One of the most common error correction codes is the Reed-Solomon code, which is a special subset of BCH (Bose-Chaudhuri-Hocquenghem) linear cyclic block codes. In the AURA project, an unmanned aircraft sends the data it collects back to earth so it can be analyzed during flight and possible flight modifications made. To counter possible data corruption during transmission, the data is encoded using a multi-block Reed-Solomon implementation with a possibly shortened final block. In order to maximize the amount of data transmitted, it was necessary to reduce the computation time of a Reed-Solomon encoding to three percent of the processor's time. To achieve such a reduction, many code optimization techniques were employed. This paper outlines the steps taken to reduce the processing time of a Reed-Solomon encoding and the insight into modern optimization techniques gained from the experience.

  12. Dress Codes. Legal Brief.

    ERIC Educational Resources Information Center

    Zirkel, Perry A.

    2000-01-01

    As illustrated by two recent decisions, the courts in the past decade have demarcated wide boundaries for school officials considering dress codes, whether in the form of selective prohibitions or required uniforms. Administrators must warn the community, provide legitimate justification and reasonable clarity, and comply with state law. (MLH)

  13. Code of Ethics.

    ERIC Educational Resources Information Center

    American Sociological Association, Washington, DC.

    The American Sociological Association's code of ethics for sociologists is presented. For sociological research and practice, 10 requirements for ethical behavior are identified, including: maintaining objectivity and integrity; fully reporting findings and research methods, without omission of significant data; reporting fully all sources of…

  14. Dress Codes. Legal Brief.

    ERIC Educational Resources Information Center

    Zirkel, Perry A.

    2000-01-01

    As illustrated by two recent decisions, the courts in the past decade have demarcated wide boundaries for school officials considering dress codes, whether in the form of selective prohibitions or required uniforms. Administrators must warn the community, provide legitimate justification and reasonable clarity, and comply with state law. (MLH)

  15. Dress Codes and Uniforms.

    ERIC Educational Resources Information Center

    Lumsden, Linda; Miller, Gabriel

    2002-01-01

    Students do not always make choices that adults agree with in their choice of school dress. Dress-code issues are explored in this Research Roundup, and guidance is offered to principals seeking to maintain a positive school climate. In "Do School Uniforms Fit?" Kerry White discusses arguments for and against school uniforms and summarizes the…

  16. Student Dress Codes.

    ERIC Educational Resources Information Center

    Uerling, Donald F.

    School officials see a need for regulations that prohibit disruptive and inappropriate forms of expression and attire; students see these regulations as unwanted restrictions on their freedom. This paper reviews court litigation involving constitutional limitations on school authority, dress and hair codes, state law constraints, and school…

  17. Video Coding for ESL.

    ERIC Educational Resources Information Center

    King, Kevin

    1992-01-01

    Coding tasks, a valuable technique for teaching English as a Second Language, are presented that enable students to look at patterns and structures of marital communication as well as objectively evaluate the degree of happiness or distress in the marriage. (seven references) (JL)

  18. Building Codes and Regulations.

    ERIC Educational Resources Information Center

    Fisher, John L.

    The hazard of fire is of great concern to libraries due to combustible books and new plastics used in construction and interiors. Building codes and standards can offer architects and planners guidelines to follow but these standards should be closely monitored, updated, and researched for fire prevention. (DS)

  19. Dual Coding in Children.

    ERIC Educational Resources Information Center

    Burton, John K.; Wildman, Terry M.

    The purpose of this study was to test the applicability of the dual coding hypothesis to children's recall performance. The hypothesis predicts that visual interference will have a small effect on the recall of visually presented words or pictures, but that acoustic interference will cause a decline in recall of visually presented words and…

  20. Coding for urologic office procedures.

    PubMed

    Dowling, Robert A; Painter, Mark

    2013-11-01

    This article summarizes current best practices for documenting, coding, and billing common office-based urologic procedures. Topics covered include general principles, basic and advanced urologic coding, creation of medical records that support compliant coding practices, bundled codes and unbundling, global periods, modifiers for procedure codes, when to bill for evaluation and management services during the same visit, coding for supplies, and laboratory and radiology procedures pertinent to urology practice. Detailed information is included for the most common urology office procedures, and suggested resources and references are provided. This information is of value to physicians, office managers, and their coding staff.

  1. Accumulate Repeat Accumulate Coded Modulation

    NASA Technical Reports Server (NTRS)

    Abbasfar, Aliazam; Divsalar, Dariush; Yao, Kung

    2004-01-01

    In this paper we propose an innovative coded modulation scheme called 'Accumulate Repeat Accumulate Coded Modulation' (ARA coded modulation). This class of codes can be viewed as serial turbo-like codes, or as a subclass of Low Density Parity Check (LDPC) codes that are combined with high level modulation. Thus at the decoder belief propagation can be used for iterative decoding of ARA coded modulation on a graph, provided a demapper transforms the received in-phase and quadrature samples to reliability of the bits.

  2. Coding Theory and Projective Spaces

    NASA Astrophysics Data System (ADS)

    Silberstein, Natalia

    2008-05-01

    The projective space of order n over a finite field F_q is a set of all subspaces of the vector space F_q^{n}. In this work, we consider error-correcting codes in the projective space, focusing mainly on constant dimension codes. We start with the different representations of subspaces in the projective space. These representations involve matrices in reduced row echelon form, associated binary vectors, and Ferrers diagrams. Based on these representations, we provide a new formula for the computation of the distance between any two subspaces in the projective space. We examine lifted maximum rank distance (MRD) codes, which are nearly optimal constant dimension codes. We prove that a lifted MRD code can be represented in such a way that it forms a block design known as a transversal design. The incidence matrix of the transversal design derived from a lifted MRD code can be viewed as a parity-check matrix of a linear code in the Hamming space. We find the properties of these codes which can be viewed also as LDPC codes. We present new bounds and constructions for constant dimension codes. First, we present a multilevel construction for constant dimension codes, which can be viewed as a generalization of a lifted MRD codes construction. This construction is based on a new type of rank-metric codes, called Ferrers diagram rank-metric codes. Then we derive upper bounds on the size of constant dimension codes which contain the lifted MRD code, and provide a construction for two families of codes, that attain these upper bounds. We generalize the well-known concept of a punctured code for a code in the projective space to obtain large codes which are not constant dimension. We present efficient enumerative encoding and decoding techniques for the Grassmannian. Finally we describe a search method for constant dimension lexicodes.

  3. Fundamentals of coding and reimbursement.

    PubMed

    Price, Paula

    2002-01-01

    After completing this introduction to radiology coding and reimbursement, readers will: Understand how health care reimbursement evolved over the past 50 years. Know the importance of documenting the patient's history. Have an overall picture of the standardized numerical coding system. Understand how accurate coding affects reimbursement. Understand coding functions as they pertain to regulatory compliance in the radiology department. Be familiar with the U.S. Justice Department's use of coding in tracking health care fraud.

  4. High Dimensional Trellis Coded Modulation

    DTIC Science & Technology

    2002-03-01

    popular recently for the decoding of turbo codes (or parallel concatenated codes ) which require an iteration between two permuted code sequences. The...nonsystematic constituent codes ) Published descriptions of the implementation of turbo decoders refer to the permuted “common” or “extrinsic” information...invented based on that condition. With the recent development of turbo codes [4] and the requirement of short frame transmission [5] [6], trellis

  5. Modeling of the EAST ICRF antenna with ICANT Code

    SciTech Connect

    Qin Chengming; Zhao Yanping; Colas, L.; Heuraux, S.

    2007-09-28

    A Resonant Double Loop (RDL) antenna for ion-cyclotron range of frequencies (ICRF) on Experimental Advanced Superconducting Tokamak (EAST) is under construction. The new antenna is analyzed using the antenna coupling code ICANT which self-consistently determines the surface currents on all antenna parts. In this work, the modeling of the new ICRF antenna using this code is to assess the near-fields in front of the antenna and analysis its coupling capabilities. Moreover, the antenna reactive radiated power computed by ICANT and shows a good agreement with deduced from Transmission Line (TL) theory.

  6. Modeling of the EAST ICRF antenna with ICANT Code

    NASA Astrophysics Data System (ADS)

    Qin, Chengming; Zhao, Yanping; Colas, L.; Heuraux, S.

    2007-09-01

    A Resonant Double Loop (RDL) antenna for ion-cyclotron range of frequencies (ICRF) on Experimental Advanced Superconducting Tokamak (EAST) is under construction. The new antenna is analyzed using the antenna coupling code ICANT which self-consistently determines the surface currents on all antenna parts. In this work, the modeling of the new ICRF antenna using this code is to assess the near-fields in front of the antenna and analysis its coupling capabilities. Moreover, the antenna reactive radiated power computed by ICANT and shows a good agreement with deduced from Transmission Line (TL) theory.

  7. Improved fluid-structure coupling. [BWR

    SciTech Connect

    McMaster, W.H.; Gong, E.Y.; Landram, C.S.

    1981-01-01

    In the computer code PELE-IC, an incompressible Eulerian hydrodynamic algorithm was coupled to a Lagrangian finite element shell algorithm for the analysis of pressure suppression in boiling water reactors. This effort also required the development of a free surface algorithm capable of handling expanding gas bubbles. These algorithms have been improved to strengthen the coupling and to add the capability for following the more complex free surfaces resulting from steam condensation. These improvements have also permitted more economical 2D calculations and have made it feasible to develop a 3D version. A compressible option using the acoustic approximation has also been added, furthering the usefulness of the code. The coupling improvements were made in three areas which are identified as (1) preferential coupling, (2) merged cell coupling, and (3) free surface-structure coupling, and are described. These algorithms have been additionally implemented in a three dimensional version of the code called PELE3D. This version has a free surface capability to follow expanding and contracting bubbles and is coupled to a curved rigid surface.

  8. Quantum codes from linear codes over finite chain rings

    NASA Astrophysics Data System (ADS)

    Liu, Xiusheng; Liu, Hualu

    2017-10-01

    In this paper, we provide two methods of constructing quantum codes from linear codes over finite chain rings. The first one is derived from the Calderbank-Shor-Steane (CSS) construction applied to self-dual codes over finite chain rings. The second construction is derived from the CSS construction applied to Gray images of the linear codes over finite chain ring F_{p^{2m}}+u{F}_{p^{2m}}. The good parameters of quantum codes from cyclic codes over finite chain rings are obtained.

  9. Network predicting drug's anatomical therapeutic chemical code.

    PubMed

    Wang, Yong-Cui; Chen, Shi-Long; Deng, Nai-Yang; Wang, Yong

    2013-05-15

    Discovering drug's Anatomical Therapeutic Chemical (ATC) classification rules at molecular level is of vital importance to understand a vast majority of drugs action. However, few studies attempt to annotate drug's potential ATC-codes by computational approaches. Here, we introduce drug-target network to computationally predict drug's ATC-codes and propose a novel method named NetPredATC. Starting from the assumption that drugs with similar chemical structures or target proteins share common ATC-codes, our method, NetPredATC, aims to assign drug's potential ATC-codes by integrating chemical structures and target proteins. Specifically, we first construct a gold-standard positive dataset from drugs' ATC-code annotation databases. Then we characterize ATC-code and drug by their similarity profiles and define kernel function to correlate them. Finally, we use a kernel method, support vector machine, to automatically predict drug's ATC-codes. Our method was validated on four drug datasets with various target proteins, including enzymes, ion channels, G-protein couple receptors and nuclear receptors. We found that both drug's chemical structure and target protein are predictive, and target protein information has better accuracy. Further integrating these two data sources revealed more experimentally validated ATC-codes for drugs. We extensively compared our NetPredATC with SuperPred, which is a chemical similarity-only based method. Experimental results showed that our NetPredATC outperforms SuperPred not only in predictive coverage but also in accuracy. In addition, database search and functional annotation analysis support that our novel predictions are worthy of future experimental validation. In conclusion, our new method, NetPredATC, can predict drug's ATC-codes more accurately by incorporating drug-target network and integrating data, which will promote drug mechanism understanding and drug repositioning and discovery. NetPredATC is available at http

  10. RELAP5/MOD3 code manual: Code structure, system models, and solution methods. Volume 1

    SciTech Connect

    1995-08-01

    The RELAP5 code has been developed for best estimate transient simulation of light water reactor coolant systems during postulated accidents. The code models the coupled behavior of the reactor coolant system and the core for loss-of-coolant accidents, and operational transients, such as anticipated transient without scram, loss of offsite power, loss of feedwater, and loss of flow. A generic modeling, approach is used that permits simulating a variety of thermal hydraulic systems. Control system and secondary system components are included to permit modeling of plant controls, turbines, condensers, and secondary feedwater systems. RELAP5/MOD3 code documentation is divided into seven volumes: Volume I provides modeling theory and associated numerical schemes.

  11. Binary coding for hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Chang, Chein-I.; Chang, Chein-Chi; Lin, Chinsu

    2004-10-01

    Binary coding is one of simplest ways to characterize spectral features. One commonly used method is a binary coding-based image software system, called Spectral Analysis Manager (SPAM) for remotely sensed imagery developed by Mazer et al. For a given spectral signature, the SPAM calculates its spectral mean and inter-band spectral difference and uses them as thresholds to generate a binary code word for this particular spectral signature. Such coding scheme is generally effective and also very simple to implement. This paper revisits the SPAM and further develops three new SPAM-based binary coding methods, called equal probability partition (EPP) binary coding, halfway partition (HP) binary coding and median partition (MP) binary coding. These three binary coding methods along with the SPAM well be evaluated for spectral discrimination and identification. In doing so, a new criterion, called a posteriori discrimination probability (APDP) is also introduced for performance measure.

  12. Epetra developers coding guidelines.

    SciTech Connect

    Heroux, Michael Allen; Sexton, Paul Michael

    2003-12-01

    Epetra is a package of classes for the construction and use of serial and distributed parallel linear algebra objects. It is one of the base packages in Trilinos. This document describes guidelines for Epetra coding style. The issues discussed here go beyond correct C++ syntax to address issues that make code more readable and self-consistent. The guidelines presented here are intended to aid current and future development of Epetra specifically. They reflect design decisions that were made in the early development stages of Epetra. Some of the guidelines are contrary to more commonly used conventions, but we choose to continue these practices for the purposes of self-consistency. These guidelines are intended to be complimentary to policies established in the Trilinos Developers Guide.

  13. The NIMROD Code

    NASA Astrophysics Data System (ADS)

    Schnack, D. D.; Glasser, A. H.

    1996-11-01

    NIMROD is a new code system that is being developed for the analysis of modern fusion experiments. It is being designed from the beginning to make the maximum use of massively parallel computer architectures and computer graphics. The NIMROD physics kernel solves the three-dimensional, time-dependent two-fluid equations with neo-classical effects in toroidal geometry of arbitrary poloidal cross section. The NIMROD system also includes a pre-processor, a grid generator, and a post processor. User interaction with NIMROD is facilitated by a modern graphical user interface (GUI). The NIMROD project is using Quality Function Deployment (QFD) team management techniques to minimize re-engineering and reduce code development time. This paper gives an overview of the NIMROD project. Operation of the GUI is demonstrated, and the first results from the physics kernel are given.

  14. WHPA Code available

    NASA Astrophysics Data System (ADS)

    The Wellhead Protection Area code is now available for distribution by the International Ground Water Modeling Center in Indianapolis, Ind. The WHPA code is a modular, semianalytical, groundwater flow model developed for the U.S. Environmental Protection Agency, Office of Ground Water Protection, designed to assist state and local technical staff with the task of Wellhead Protection Area (WHPA) delineation. A complete news item appeared in Eos, May 1, 1990, p. 690.The model consists of four independent, semianalytical modules that may be used to identify the areal extent of groundwater contribution to one or multiple pumping wells. One module is a general particle tracking program that may be used as a post-processor for two-dimensional, numerical models of groundwater flow. One module incorporates a Monte Carlo approach to investigate the effects of uncertain input parameters on capture zones. Multiple pumping and injection wells may be present and barrier or stream boundary conditions may be investigated.

  15. WHPA Code available

    NASA Astrophysics Data System (ADS)

    The Wellhead Protection Area (WHPA) code is now available for distribution by the International Ground Water Modeling Center in Indianapolis, Ind. The WHPA code is a modular, semi-analytical, groundwater flow model developed for the U.S. Environmental Protection Agency, Office of Ground Water Protection. It is designed to assist state and local technical staff with the task of WHPA delineation.The model consists of four independent, semi-analytical modules that may be used to identify the areal extent of groundwater contribution to one or multiple pumping wells. One module is a general particle tracking program that may be used as a post-processor for two-dimensional, numerical models of groundwater flow. One module incorporates a Monte Carlo approach to investigate the effects of uncertain input parameters on capture zones. Multiple pumping and injection wells may be present and barrier or stream boundary conditions may be investigated.

  16. Sinusoidal transform coding

    NASA Technical Reports Server (NTRS)

    Mcaulay, Robert J.; Quatieri, Thomas F.

    1988-01-01

    It has been shown that an analysis/synthesis system based on a sinusoidal representation of speech leads to synthetic speech that is essentially perceptually indistinguishable from the original. Strategies for coding the amplitudes, frequencies and phases of the sine waves have been developed that have led to a multirate coder operating at rates from 2400 to 9600 bps. The encoded speech is highly intelligible at all rates with a uniformly improving quality as the data rate is increased. A real-time fixed-point implementation has been developed using two ADSP2100 DSP chips. The methods used for coding and quantizing the sine-wave parameters for operation at the various frame rates are described.

  17. Efficient convolutional sparse coding

    DOEpatents

    Wohlberg, Brendt

    2017-06-20

    Computationally efficient algorithms may be applied for fast dictionary learning solving the convolutional sparse coding problem in the Fourier domain. More specifically, efficient convolutional sparse coding may be derived within an alternating direction method of multipliers (ADMM) framework that utilizes fast Fourier transforms (FFT) to solve the main linear system in the frequency domain. Such algorithms may enable a significant reduction in computational cost over conventional approaches by implementing a linear solver for the most critical and computationally expensive component of the conventional iterative algorithm. The theoretical computational cost of the algorithm may be reduced from O(M.sup.3N) to O(MN log N), where N is the dimensionality of the data and M is the number of elements in the dictionary. This significant improvement in efficiency may greatly increase the range of problems that can practically be addressed via convolutional sparse representations.

  18. Confocal coded aperture imaging

    DOEpatents

    Tobin, Jr., Kenneth William; Thomas, Jr., Clarence E.

    2001-01-01

    A method for imaging a target volume comprises the steps of: radiating a small bandwidth of energy toward the target volume; focusing the small bandwidth of energy into a beam; moving the target volume through a plurality of positions within the focused beam; collecting a beam of energy scattered from the target volume with a non-diffractive confocal coded aperture; generating a shadow image of said aperture from every point source of radiation in the target volume; and, reconstructing the shadow image into a 3-dimensional image of the every point source by mathematically correlating the shadow image with a digital or analog version of the coded aperture. The method can comprise the step of collecting the beam of energy scattered from the target volume with a Fresnel zone plate.

  19. Benchmarking Of Improved DPAC Transient Deflagration Analysis Code

    SciTech Connect

    Laurinat, James E.; Hensel, Steve J.

    2013-03-21

    The transient deflagration code DPAC (Deflagration Pressure Analysis Code) has been upgraded for use in modeling hydrogen deflagration transients. The upgraded code is benchmarked using data from vented hydrogen deflagration tests conducted at the HYDRO-SC Test Facility at the University of Pisa. DPAC originally was written to calculate peak deflagration pressures for deflagrations in radioactive waste storage tanks and process facilities at the Savannah River Site. Upgrades include the addition of a laminar flame speed correlation for hydrogen deflagrations and a mechanistic model for turbulent flame propagation, incorporation of inertial effects during venting, and inclusion of the effect of water vapor condensation on vessel walls. In addition, DPAC has been coupled with CEA, a NASA combustion chemistry code. The deflagration tests are modeled as end-to-end deflagrations. The improved DPAC code successfully predicts both the peak pressures during the deflagration tests and the times at which the pressure peaks.

  20. High-fidelity plasma codes for burn physics

    SciTech Connect

    Cooley, James; Graziani, Frank; Marinak, Marty; Murillo, Michael

    2016-10-19

    Accurate predictions of equation of state (EOS), ionic and electronic transport properties are of critical importance for high-energy-density plasma science. Transport coefficients inform radiation-hydrodynamic codes and impact diagnostic interpretation, which in turn impacts our understanding of the development of instabilities, the overall energy balance of burning plasmas, and the efficacy of self-heating from charged-particle stopping. Important processes include thermal and electrical conduction, electron-ion coupling, inter-diffusion, ion viscosity, and charged particle stopping. However, uncertainties in these coefficients are not well established. Fundamental plasma science codes, also called high-fidelity plasma codes, are a relatively recent computational tool that augments both experimental data and theoretical foundations of transport coefficients. This paper addresses the current status of HFPC codes and their future development, and the potential impact they play in improving the predictive capability of the multi-physics hydrodynamic codes used in HED design.

  1. An evaluation of nozzle afterbody code - AR02P

    NASA Astrophysics Data System (ADS)

    Guyton, F. C.

    1986-07-01

    A project was undertaken to develop a computational fluid dynamics (CFD) code for use in nozzle afterbody analysis. Objectives were to create a three-dimensional code capable of calculating afterbody flows with accuracy quantitatively close to the Navier-Stokes solutions, but which would use significantly fewer computer resources. The resulting program coupled an inverse boundary-layer routine with an Euler code and incorporated a jet plume. Calculations were made for the axisymmetric AGARD 15-deg boattail afterbody with variations in nozzle pressure ratio for Mach numbers 0.6 and 0.9, and compared with experimental results. The code predicted drag changes with NPR which showed the proper variations, but the code did not provide the accuracy required for typical nozzle afterbody analysis. (NPR = Nozzle total pressure to free stream static pressure ratio.)

  2. Status of MARS Code

    SciTech Connect

    N.V. Mokhov

    2003-04-09

    Status and recent developments of the MARS 14 Monte Carlo code system for simulation of hadronic and electromagnetic cascades in shielding, accelerator and detector components in the energy range from a fraction of an electronvolt up to 100 TeV are described. these include physics models both in strong and electromagnetic interaction sectors, variance reduction techniques, residual dose, geometry, tracking, histograming. MAD-MARS Beam Line Build and Graphical-User Interface.

  3. The Tau Code

    PubMed Central

    Avila, Jesús

    2009-01-01

    In this short review, I will focus on how a unique tau gene may produce many tau isoforms through alternative splicing and how the phosphorylation of these isoforms by different kinases may affect their activity and behaviour. Indeed, each of the different tau isoforms may play a distinct role under both physiological and pathological conditions. Thus, I will discuss whether a tau code exists that might explain the involvement of different tau isoforms in different cellular functions. PMID:20552052

  4. Trajectory Code Studies, 1987

    SciTech Connect

    Poukey, J.W.

    1988-01-01

    The trajectory code TRAJ has been used extensively to study nonimmersed foilless electron diodes. The basic goal of the research is to design low-emittance injectors for electron linacs and propagation experiments. Systems studied during 1987 include Delphi, Recirc, and Troll. We also discuss a partly successful attempt to extend the same techniques to high currents (tens of kA). 7 refs., 30 figs.

  5. The PHARO Code.

    DTIC Science & Technology

    1981-11-24

    n.cet..ary ad Identfy by block nutrb.) Visible radiation Sensors Infrared radiation Line and band transitions Isophots High altitude nuclear data...radiation (watts sr) in arbitrary wavelength intervals is determined. The results are a series of " isophot " plots for rbitrariiy placed cameras or sensors...Section II. The output of the PHARO code consists of contour plots of radiative intensity (watts/cm ster) or " isophot " plots for arbitrarily placed sensors

  6. HYCOM Code Development

    DTIC Science & Technology

    2003-02-10

    HYCOM code development Alan J. Wallcraft Naval Research Laboratory 2003 Layered Ocean Model Users’ Workshop February 10, 2003 Report Documentation...unlimited 13. SUPPLEMENTARY NOTES Layered Ocean Modeling Workshop (LOM 2003), Miami, FL, Feb 2003 14. ABSTRACT 15. SUBJECT TERMS 16. SECURITY...Kraus-Turner mixed-layer Æ Energy-Loan (passive) ice model Æ High frequency atmospheric forcing Æ New I/O scheme (.a and .b files) Æ Scalability via

  7. Reeds computer code

    NASA Technical Reports Server (NTRS)

    Bjork, C.

    1981-01-01

    The REEDS (rocket exhaust effluent diffusion single layer) computer code is used for the estimation of certain rocket exhaust effluent concentrations and dosages and their distributions near the Earth's surface following a rocket launch event. Output from REEDS is used in producing near real time air quality and environmental assessments of the effects of certain potentially harmful effluents, namely HCl, Al2O3, CO, and NO.

  8. Benchmarking NNWSI flow and transport codes: COVE 1 results

    SciTech Connect

    Hayden, N.K.

    1985-06-01

    The code verification (COVE) activity of the Nevada Nuclear Waste Storage Investigations (NNWSI) Project is the first step in certification of flow and transport codes used for NNWSI performance assessments of a geologic repository for disposing of high-level radioactive wastes. The goals of the COVE activity are (1) to demonstrate and compare the numerical accuracy and sensitivity of certain codes, (2) to identify and resolve problems in running typical NNWSI performance assessment calculations, and (3) to evaluate computer requirements for running the codes. This report describes the work done for COVE 1, the first step in benchmarking some of the codes. Isothermal calculations for the COVE 1 benchmarking have been completed using the hydrologic flow codes SAGUARO, TRUST, and GWVIP; the radionuclide transport codes FEMTRAN and TRUMP; and the coupled flow and transport code TRACR3D. This report presents the results of three cases of the benchmarking problem solved for COVE 1, a comparison of the results, questions raised regarding sensitivities to modeling techniques, and conclusions drawn regarding the status and numerical sensitivities of the codes. 30 refs.

  9. High Energy Radiation Transport Codes: Their Development and Application

    NASA Astrophysics Data System (ADS)

    Gabriel, Tony A.

    1996-05-01

    The development of high energy radiation transport codes has been very strongly correlated to the development of higher energy accelerators and more powerful computers. During the early 1960's a Nucleon Transport Code (NTC) was developed to transport neutrons and protons up to energies below the pion threshold. During the middle 1960's this code which was renamed to NMTC was expanded to include multiple pion production and could be used for particle energies up to 3.5 GeV. During the late 1960's and early 1970's with the development of Fermi National Accelerator Laboratory (FNAL) NMTC was again refined by the inclusion of a particle nucleus collision scaling model which could generate reliable collision information at the higher energies necessary for the development of radiation shielding at FNAL. This was HETC. During the 1970's HETC was coupled with the EGS code for electromagnetic particle transport the MORSE code for low-energy (<20MeV) neutron transport, and SPECT, a HETC analysis code for obtaining energy deposition, to produce the CALOR code system, a complete high energy radiation transport code package. For this paper CALOR will be described in detail and some recent applications will be presented. The strength and weakness as well as the applicability of other radiation transport code systems like FLUKA will be briefly discussed.

  10. Tubular Coupling

    NASA Technical Reports Server (NTRS)

    Rosenbaum, Bernard J. (Inventor)

    2000-01-01

    A system for coupling a vascular overflow graft or cannula to a heart pump. A pump pipe outlet is provided with an external tapered surface which receives the end of a compressible connula. An annular compression ring with a tapered internal bore surface is arranged about the cannula with the tapered internal surface in a facing relationship to the external tapered surface. The angle of inclination of the tapered surfaces is converging such that the spacing between the tapered surfaces decreases from one end of the external tapered surface to the other end thereby providing a clamping action of the tapered surface on a cannula which increases as a function of the length of cannula segment between the tapered surfaces. The annular compression ring is disposed within a tubular locking nut which threadedly couples to the pump and provides a compression force for urging the annular ring onto the cannula between the tapered surfaces. The nut has a threaded connection to the pump body. The threaded coupling to the pump body provides a compression force for the annular ring. The annular ring has an annular enclosure space in which excess cannula material from the compression between the tapered surfaces to "bunch up" in the space and serve as an enlarged annular ring segment to assist holding the cannula in place. The clamped cannula provides a seamless joint connection to the pump pipe outlet where the clamping force is uniformly applied to the cannula because of self alignment of the tapered surfaces. The nut can be easily disconnected to replace the pump if necessary.

  11. MELCOR computer code manuals

    SciTech Connect

    Summers, R.M.; Cole, R.K. Jr.; Smith, R.C.; Stuart, D.S.; Thompson, S.L.; Hodge, S.A.; Hyman, C.R.; Sanders, R.L.

    1995-03-01

    MELCOR is a fully integrated, engineering-level computer code that models the progression of severe accidents in light water reactor nuclear power plants. MELCOR is being developed at Sandia National Laboratories for the U.S. Nuclear Regulatory Commission as a second-generation plant risk assessment tool and the successor to the Source Term Code Package. A broad spectrum of severe accident phenomena in both boiling and pressurized water reactors is treated in MELCOR in a unified framework. These include: thermal-hydraulic response in the reactor coolant system, reactor cavity, containment, and confinement buildings; core heatup, degradation, and relocation; core-concrete attack; hydrogen production, transport, and combustion; fission product release and transport; and the impact of engineered safety features on thermal-hydraulic and radionuclide behavior. Current uses of MELCOR include estimation of severe accident source terms and their sensitivities and uncertainties in a variety of applications. This publication of the MELCOR computer code manuals corresponds to MELCOR 1.8.3, released to users in August, 1994. Volume 1 contains a primer that describes MELCOR`s phenomenological scope, organization (by package), and documentation. The remainder of Volume 1 contains the MELCOR Users Guides, which provide the input instructions and guidelines for each package. Volume 2 contains the MELCOR Reference Manuals, which describe the phenomenological models that have been implemented in each package.

  12. Orthopedics coding and funding.

    PubMed

    Baron, S; Duclos, C; Thoreux, P

    2014-02-01

    The French tarification à l'activité (T2A) prospective payment system is a financial system in which a health-care institution's resources are based on performed activity. Activity is described via the PMSI medical information system (programme de médicalisation du système d'information). The PMSI classifies hospital cases by clinical and economic categories known as diagnosis-related groups (DRG), each with an associated price tag. Coding a hospital case involves giving as realistic a description as possible so as to categorize it in the right DRG and thus ensure appropriate payment. For this, it is essential to understand what determines the pricing of inpatient stay: namely, the code for the surgical procedure, the patient's principal diagnosis (reason for admission), codes for comorbidities (everything that adds to management burden), and the management of the length of inpatient stay. The PMSI is used to analyze the institution's activity and dynamism: change on previous year, relation to target, and comparison with competing institutions based on indicators such as the mean length of stay performance indicator (MLS PI). The T2A system improves overall care efficiency. Quality of care, however, is not presently taken account of in the payment made to the institution, as there are no indicators for this; work needs to be done on this topic. Copyright © 2014. Published by Elsevier Masson SAS.

  13. Bar coded retroreflective target

    DOEpatents

    Vann, Charles S.

    2000-01-01

    This small, inexpensive, non-contact laser sensor can detect the location of a retroreflective target in a relatively large volume and up to six degrees of position. The tracker's laser beam is formed into a plane of light which is swept across the space of interest. When the beam illuminates the retroreflector, some of the light returns to the tracker. The intensity, angle, and time of the return beam is measured to calculate the three dimensional location of the target. With three retroreflectors on the target, the locations of three points on the target are measured, enabling the calculation of all six degrees of target position. Until now, devices for three-dimensional tracking of objects in a large volume have been heavy, large, and very expensive. Because of the simplicity and unique characteristics of this tracker, it is capable of three-dimensional tracking of one to several objects in a large volume, yet it is compact, light-weight, and relatively inexpensive. Alternatively, a tracker produces a diverging laser beam which is directed towards a fixed position, and senses when a retroreflective target enters the fixed field of view. An optically bar coded target can be read by the tracker to provide information about the target. The target can be formed of a ball lens with a bar code on one end. As the target moves through the field, the ball lens causes the laser beam to scan across the bar code.

  14. High compression image and image sequence coding

    NASA Technical Reports Server (NTRS)

    Kunt, Murat

    1989-01-01

    The digital representation of an image requires a very large number of bits. This number is even larger for an image sequence. The goal of image coding is to reduce this number, as much as possible, and reconstruct a faithful duplicate of the original picture or image sequence. Early efforts in image coding, solely guided by information theory, led to a plethora of methods. The compression ratio reached a plateau around 10:1 a couple of years ago. Recent progress in the study of the brain mechanism of vision and scene analysis has opened new vistas in picture coding. Directional sensitivity of the neurones in the visual pathway combined with the separate processing of contours and textures has led to a new class of coding methods capable of achieving compression ratios as high as 100:1 for images and around 300:1 for image sequences. Recent progress on some of the main avenues of object-based methods is presented. These second generation techniques make use of contour-texture modeling, new results in neurophysiology and psychophysics and scene analysis.

  15. Status report on SHARP coupling framework.

    SciTech Connect

    Caceres, A.; Tautges, T. J.; Lottes, J.; Fischer, P.; Rabiti, C.; Smith, M. A.; Siegel, A.; Yang, W. S.; Palmiotti, G.

    2008-05-30

    This report presents the software engineering effort under way at ANL towards a comprehensive integrated computational framework (SHARP) for high fidelity simulations of sodium cooled fast reactors. The primary objective of this framework is to provide accurate and flexible analysis tools to nuclear reactor designers by simulating multiphysics phenomena happening in complex reactor geometries. Ideally, the coupling among different physics modules (such as neutronics, thermal-hydraulics, and structural mechanics) needs to be tight to preserve the accuracy achieved in each module. However, fast reactor cores in steady state mode represent a special case where weak coupling between neutronics and thermal-hydraulics is usually adequate. Our framework design allows for both options. Another requirement for SHARP framework has been to implement various coupling algorithms that are parallel and scalable to large scale since nuclear reactor core simulations are among the most memory and computationally intensive, requiring the use of leadership-class petascale platforms. This report details our progress toward achieving these goals. Specifically, we demonstrate coupling independently developed parallel codes in a manner that does not compromise performance or portability, while minimizing the impact on individual developers. This year, our focus has been on developing a lightweight and loosely coupled framework targeted at UNIC (our neutronics code) and Nek (our thermal hydraulics code). However, the framework design is not limited to just using these two codes.

  16. The triple distribution of codes and ordered codes

    PubMed Central

    Trinker, Horst

    2011-01-01

    We study the distribution of triples of codewords of codes and ordered codes. Schrijver [A. Schrijver, New code upper bounds from the Terwilliger algebra and semidefinite programming, IEEE Trans. Inform. Theory 51 (8) (2005) 2859–2866] used the triple distribution of a code to establish a bound on the number of codewords based on semidefinite programming. In the first part of this work, we generalize this approach for ordered codes. In the second part, we consider linear codes and linear ordered codes and present a MacWilliams-type identity for the triple distribution of their dual code. Based on the non-negativity of this linear transform, we establish a linear programming bound and conclude with a table of parameters for which this bound yields better results than the standard linear programming bound. PMID:22505770

  17. Computer-Based Coding of Occupation Codes for Epidemiological Analyses

    PubMed Central

    Russ, Daniel E.; Ho, Kwan-Yuet; Johnson, Calvin A.; Friesen, Melissa C.

    2014-01-01

    Mapping job titles to standardized occupation classification (SOC) codes is an important step in evaluating changes in health risks over time as measured in inspection databases. However, manual SOC coding is cost prohibitive for very large studies. Computer based SOC coding systems can improve the efficiency of incorporating occupational risk factors into large-scale epidemiological studies. We present a novel method of mapping verbatim job titles to SOC codes using a large table of prior knowledge available in the public domain that included detailed description of the tasks and activities and their synonyms relevant to each SOC code. Job titles are compared to our knowledge base to find the closest matching SOC code. A soft Jaccard index is used to measure the similarity between a previously unseen job title and the knowledge base. Additional information such as standardized industrial codes can be incorporated to improve the SOC code determination by providing additional context to break ties in matches. PMID:25221787

  18. Preliminary Assessment of Turbomachinery Codes

    NASA Technical Reports Server (NTRS)

    Mazumder, Quamrul H.

    2007-01-01

    This report assesses different CFD codes developed and currently being used at Glenn Research Center to predict turbomachinery fluid flow and heat transfer behavior. This report will consider the following codes: APNASA, TURBO, GlennHT, H3D, and SWIFT. Each code will be described separately in the following section with their current modeling capabilities, level of validation, pre/post processing, and future development and validation requirements. This report addresses only previously published and validations of the codes. However, the codes have been further developed to extend the capabilities of the codes.

  19. Design of convolutional tornado code

    NASA Astrophysics Data System (ADS)

    Zhou, Hui; Yang, Yao; Gao, Hongmin; Tan, Lu

    2017-09-01

    As a linear block code, the traditional tornado (tTN) code is inefficient in burst-erasure environment and its multi-level structure may lead to high encoding/decoding complexity. This paper presents a convolutional tornado (cTN) code which is able to improve the burst-erasure protection capability by applying the convolution property to the tTN code, and reduce computational complexity by abrogating the multi-level structure. The simulation results show that cTN code can provide a better packet loss protection performance with lower computation complexity than tTN code.

  20. Suboptimum decoding of block codes

    NASA Technical Reports Server (NTRS)

    Lin, Shu; Kasami, Tadao

    1991-01-01

    This paper investigates a class of decomposable codes, their distance and structural properties. it is shown that this class includes several classes of well known and efficient codes as subclasses. Several methods for constructing decomposable codes or decomposing codes are presented. A two-stage soft decision decoding scheme for decomposable codes, their translates or unions of translates is devised. This two-stage soft-decision decoding is suboptimum, and provides an excellent trade-off between the error performance and decoding complexity for codes of moderate and long block length.

  1. An integrated radiation physics computer code system.

    NASA Technical Reports Server (NTRS)

    Steyn, J. J.; Harris, D. W.

    1972-01-01

    An integrated computer code system for the semi-automatic and rapid analysis of experimental and analytic problems in gamma photon and fast neutron radiation physics is presented. Such problems as the design of optimum radiation shields and radioisotope power source configurations may be studied. The system codes allow for the unfolding of complex neutron and gamma photon experimental spectra. Monte Carlo and analytic techniques are used for the theoretical prediction of radiation transport. The system includes a multichannel pulse-height analyzer scintillation and semiconductor spectrometer coupled to an on-line digital computer with appropriate peripheral equipment. The system is geometry generalized as well as self-contained with respect to material nuclear cross sections and the determination of the spectrometer response functions. Input data may be either analytic or experimental.

  2. Tokamak Simulation Code modeling of NSTX

    SciTech Connect

    S.C. Jardin; S. Kaye; J. Menard; C. Kessel; A.H. Glasser

    2000-07-20

    The Tokamak Simulation Code [TSC] is widely used for the design of new axisymmetric toroidal experiments. In particular, TSC was used extensively in the design of the National Spherical Torus eXperiment [NSTX]. The authors have now benchmarked TSC with initial NSTX results and find excellent agreement for plasma and vessel currents and magnetic flux loops when the experimental coil currents are used in the simulations. TSC has also been coupled with a ballooning stability code and with DCON to provide stability predictions for NSTX operation. TSC has also been used to model initial CHI experiments where a large poloidal voltage is applied to the NSTX vacuum vessel, causing a force-free current to appear in the plasma. This is a phenomenon that is similar to the plasma halo current that sometimes develops during a plasma disruption.

  3. An integrated radiation physics computer code system.

    NASA Technical Reports Server (NTRS)

    Steyn, J. J.; Harris, D. W.

    1972-01-01

    An integrated computer code system for the semi-automatic and rapid analysis of experimental and analytic problems in gamma photon and fast neutron radiation physics is presented. Such problems as the design of optimum radiation shields and radioisotope power source configurations may be studied. The system codes allow for the unfolding of complex neutron and gamma photon experimental spectra. Monte Carlo and analytic techniques are used for the theoretical prediction of radiation transport. The system includes a multichannel pulse-height analyzer scintillation and semiconductor spectrometer coupled to an on-line digital computer with appropriate peripheral equipment. The system is geometry generalized as well as self-contained with respect to material nuclear cross sections and the determination of the spectrometer response functions. Input data may be either analytic or experimental.

  4. THE THREE DIMENSIONAL THERMAL HYDRAULIC CODE BAGIRA.

    SciTech Connect

    KALINICHENKO,S.D.; KOHUT,P.; KROSHILIN,A.E.; KROSHILIN,V.E.; SMIRNOV,A.V.

    2003-05-04

    BAGIRA - a thermal-hydraulic program complex was primarily developed for using it in nuclear power plant simulator models, but is also used as a best-estimate analytical tool for modeling two-phase mixture flows. The code models allow consideration of phase transients and the treatment of the hydrodynamic behavior of boiling and pressurized water reactor circuits. It provides the capability to explicitly model three-dimensional flow regimes in various regions of the primary and secondary circuits such as, the mixing regions, circular downcomer, pressurizer, reactor core, main primary loops, the steam generators, the separator-reheaters. In addition, it is coupled to a severe-accident module allowing the analysis of core degradation and fuel damage behavior. Section II will present the theoretical basis for development and selected results are presented in Section III. The primary use for the code complex is to realistically model reactor core behavior in power plant simulators providing enhanced training tools for plant operators.

  5. Construction of new quantum MDS codes derived from constacyclic codes

    NASA Astrophysics Data System (ADS)

    Taneja, Divya; Gupta, Manish; Narula, Rajesh; Bhullar, Jaskaran

    Obtaining quantum maximum distance separable (MDS) codes from dual containing classical constacyclic codes using Hermitian construction have paved a path to undertake the challenges related to such constructions. Using the same technique, some new parameters of quantum MDS codes have been constructed here. One set of parameters obtained in this paper has achieved much larger distance than work done earlier. The remaining constructed parameters of quantum MDS codes have large minimum distance and were not explored yet.

  6. Convolutional coding techniques for data protection

    NASA Technical Reports Server (NTRS)

    Massey, J. L.

    1975-01-01

    Results of research on the use of convolutional codes in data communications are presented. Convolutional coding fundamentals are discussed along with modulation and coding interaction. Concatenated coding systems and data compression with convolutional codes are described.

  7. A class of constacyclic BCH codes and new quantum codes

    NASA Astrophysics Data System (ADS)

    liu, Yang; Li, Ruihu; Lv, Liangdong; Ma, Yuena

    2017-03-01

    Constacyclic BCH codes have been widely studied in the literature and have been used to construct quantum codes in latest years. However, for the class of quantum codes of length n=q^{2m}+1 over F_{q^2} with q an odd prime power, there are only the ones of distance δ ≤ 2q^2 are obtained in the literature. In this paper, by a detailed analysis of properties of q2-ary cyclotomic cosets, maximum designed distance δ _{max} of a class of Hermitian dual-containing constacyclic BCH codes with length n=q^{2m}+1 are determined, this class of constacyclic codes has some characteristic analog to that of primitive BCH codes over F_{q^2}. Then we can obtain a sequence of dual-containing constacyclic codes of designed distances 2q^2<δ ≤ δ _{max}. Consequently, new quantum codes with distance d > 2q^2 can be constructed from these dual-containing codes via Hermitian Construction. These newly obtained quantum codes have better code rate compared with those constructed from primitive BCH codes.

  8. New optimal asymmetric quantum codes from constacyclic codes

    NASA Astrophysics Data System (ADS)

    Zhang, Guanghui; Chen, Bocong; Li, Liangchen

    2014-06-01

    In this paper, we construct two classes of asymmetric quantum codes by using constacyclic codes. The first class is the asymmetric quantum codes with parameters [[q2 + 1, q2 + 1 - 2(t + k + 1), (2k + 2)/(2t + 2)

  9. New quantum MDS-convolutional codes derived from constacyclic codes

    NASA Astrophysics Data System (ADS)

    Li, Fengwei; Yue, Qin

    2015-12-01

    In this paper, we utilize a family of Hermitian dual-containing constacyclic codes to construct classical and quantum MDS convolutional codes. Our classical and quantum convolutional codes are optimal in the sense that they attain the classical (quantum) generalized Singleton bound.

  10. Combinatorial neural codes from a mathematical coding theory perspective.

    PubMed

    Curto, Carina; Itskov, Vladimir; Morrison, Katherine; Roth, Zachary; Walker, Judy L

    2013-07-01

    Shannon's seminal 1948 work gave rise to two distinct areas of research: information theory and mathematical coding theory. While information theory has had a strong influence on theoretical neuroscience, ideas from mathematical coding theory have received considerably less attention. Here we take a new look at combinatorial neural codes from a mathematical coding theory perspective, examining the error correction capabilities of familiar receptive field codes (RF codes). We find, perhaps surprisingly, that the high levels of redundancy present in these codes do not support accurate error correction, although the error-correcting performance of receptive field codes catches up to that of random comparison codes when a small tolerance to error is introduced. However, receptive field codes are good at reflecting distances between represented stimuli, while the random comparison codes are not. We suggest that a compromise in error-correcting capability may be a necessary price to pay for a neural code whose structure serves not only error correction, but must also reflect relationships between stimuli.

  11. Fast ignitor coupling physics

    SciTech Connect

    Mason, R.J.; Tabak, M.

    1997-10-01

    The Fast Ignitor is an alternate approach to ICF in which short pulse lasers are used to initiate burn at the surface of the compressed DT fuel. The aim is to avoid the need for careful central focussing of final shocks, and possibly to lower substantially the energy requirements for ignition. Ultimately, both goals may prove crucial to Stockpile Stewardship. For success with the Fast Ignitor, the laser energy must be efficiently deposited into megavolt electrons, which must, in turn, couple to the background ions within an alpha particle range. To understand this coupling, we have used ANTHEM plasma simulation code to model the transport of hot electrons generated by an intense ({ge} 3 x 10{sup 18} W/cm{sup 2}) short pulse 1.06 {mu}m laser into plasma targets over a broad range of densities (0.35 to 10{sup 4} x n{sub crit}). Ponderomotive effects are included as a force on the cold background and hot emission electrons of the form, F{sub h,c} = -({omega}{sup 2}{sub Ph,c}/2{omega}{sup 2}){del}I, in which I is the laser intensity and {omega}{sub p}{sup 2} = 4{pi}e{sup 2}n/m{sub 0}{gamma} with m{sub 0} the electron rest mass.

  12. Fast ignitor coupling physics

    SciTech Connect

    Mason, R.J.; Tabak, M.

    1997-10-01

    The Fast Ignitor is an alternate approach to ICF in which short pulse lasers are used to initiate burn at the surface of the compressed DT fuel. The aim is to avoid the need for careful central focusing of final shocks, and possibly to lower substantially the energy requirements for ignition. Ultimately, both goals may prove crucial to Science Based Stockpile Stewardship (SBSS). This will be the case should either emerging energetic needs, or funding difficulties render the presently planned radiative fusion approach to ignition with the NIF impractical. Ignition is a first step towards the achievement of substantial energy and neutron outputs for such Stewardship. For success with the Fast Ignitor, the laser energy must be efficiently deposited into megavolt electrons (suprathermal), which must, in turn, couple to the background ions within an alpha particle range. To understand the electron fuel coupling, we have used ANTHEM plasma simulation code to model the transport of hot electrons generated by an intense short pulse laser into plasma targets over a broad range of densities. Our study will spell out the acceleration and transport mechanisms active in the Fast Ignitor environment.

  13. Adaptive Dynamic Event Tree in RAVEN code

    SciTech Connect

    Alfonsi, Andrea; Rabiti, Cristian; Mandelli, Diego; Cogliati, Joshua Joseph; Kinoshita, Robert Arthur

    2014-11-01

    RAVEN is a software tool that is focused on performing statistical analysis of stochastic dynamic systems. RAVEN has been designed in a high modular and pluggable way in order to enable easy integration of different programming languages (i.e., C++, Python) and coupling with other applications (system codes). Among the several capabilities currently present in RAVEN, there are five different sampling strategies: Monte Carlo, Latin Hyper Cube, Grid, Adaptive and Dynamic Event Tree (DET) sampling methodologies. The scope of this paper is to present a new sampling approach, currently under definition and implementation: an evolution of the DET me

  14. Finite Element Heat & Mass Transfer Code

    SciTech Connect

    Trease, Lynn

    1996-10-10

    FEHM is a numerical simulation code for subsurface transport processes. It models 3-D, time-dependent, multiphase, multicomponent, non-isothermal, reactive flow through porous and fractured media. It can accurately represent complex 3-D geologic media and structures and their effects on subsurface flow and transport. Its capabilities include flow of gas, water, and heat; flow of air, water, and heat; multiple chemically reactive and sorbing tracers; finite element/finite volume formulation; coupled stress module; saturated and unsaturated media; and double porosity and double porosity/double permeability capabilities.

  15. FEHM. Finite Element Heat & Mass Transfer Code

    SciTech Connect

    Zyvoloski, G.A.

    1996-10-10

    FEHM is a numerical simulation code for subsurface transport processes. It models 3-D, time-dependent, multiphase, multicomponent, non-isothermal, reactive flow through porous and fractured media. It can accurately represent complex 3-D geologic media and structures and their effects on subsurface flow and transport. Its capabilities include flow of gas, water, and heat; flow of air, water, and heat; multiple chemically reactive and sorbing tracers; finite element/finite volume formulation; coupled stress module; saturated and unsaturated media; and double porosity and double porosity/double permeability capabilities.

  16. On lossless coding for HEVC

    NASA Astrophysics Data System (ADS)

    Gao, Wen; Jiang, Minqiang; Yu, Haoping

    2013-02-01

    In this paper, we first review the lossless coding mode in the version 1 of the HEVC standard that has recently finalized. We then provide a performance comparison between the lossless coding mode in the HEVC and MPEG-AVC/H.264 standards and show that the HEVC lossless coding has limited coding efficiency. To improve the performance of the lossless coding mode, several new coding tools that were contributed to JCT-VC but not adopted in version 1 of HEVC standard are introduced. In particular, we discuss sample based intra prediction and coding of residual coefficients in more detail. At the end, we briefly address a new class of coding tools, i.e., a dictionary-based coder, that is efficient in encoding screen content including graphics and text.

  17. Summary of 1990 Code Conference

    SciTech Connect

    Cooper, R.K.; Chan, Kwok-Chi D.

    1990-01-01

    The Conference on Codes and the Linear Accelerator Community was held in Los Alamos in January 1990, and had approximately 100 participants. This conference was the second in a series which has as its goal the exchange of information about codes and code practices among those writing and actually using these codes for the design and analysis of linear accelerators and their components. The first conference was held in San Diego in January 1988, and concentrated on beam dynamics codes and Maxwell solvers. This most recent conference concentrated on 3-D codes and techniques to handle the large amounts of data required for three-dimensional problems. In addition to descriptions of codes, their algorithms and implementations, there were a number of paper describing the use of many of the codes. Proceedings of both these conferences are available. 3 refs., 2 tabs.

  18. ENSDF ANALYSIS AND UTILITY CODES.

    SciTech Connect

    BURROWS, T.

    2005-04-04

    The ENSDF analysis and checking codes are briefly described, along with their uses with various types of ENSDF datasets. For more information on the programs see ''Read Me'' entries and other documentation associated with each code.

  19. Chemical Laser Computer Code Survey,

    DTIC Science & Technology

    1980-12-01

    DOCUMENTATION: Resonator Geometry Synthesis Code Requi rement NV. L. Gamiz); Incorporate General Resonator into Ray Trace Code (W. H. Southwell... Synthesis Code Development (L. R. Stidhm) CATEGRY ATIUEOPTICS KINETICS GASOYNAM41CS None * None *iNone J.LEVEL Simrple Fabry Perot Simple SaturatedGt... Synthesis Co2de Require- ment (V L. ami l ncor~orate General Resonatorn into Ray Trace Code (W. H. Southwel) Srace Optimization Algorithms and Equations (W

  20. Computational methods for coupling microstructural and micromechanical materials response simulations

    SciTech Connect

    HOLM,ELIZABETH A.; BATTAILE,CORBETT C.; BUCHHEIT,THOMAS E.; FANG,HUEI ELIOT; RINTOUL,MARK DANIEL; VEDULA,VENKATA R.; GLASS,S. JILL; KNOROVSKY,GERALD A.; NEILSEN,MICHAEL K.; WELLMAN,GERALD W.; SULSKY,DEBORAH; SHEN,YU-LIN; SCHREYER,H. BUCK

    2000-04-01

    Computational materials simulations have traditionally focused on individual phenomena: grain growth, crack propagation, plastic flow, etc. However, real materials behavior results from a complex interplay between phenomena. In this project, the authors explored methods for coupling mesoscale simulations of microstructural evolution and micromechanical response. In one case, massively parallel (MP) simulations for grain evolution and microcracking in alumina stronglink materials were dynamically coupled. In the other, codes for domain coarsening and plastic deformation in CuSi braze alloys were iteratively linked. this program provided the first comparison of two promising ways to integrate mesoscale computer codes. Coupled microstructural/micromechanical codes were applied to experimentally observed microstructures for the first time. In addition to the coupled codes, this project developed a suite of new computational capabilities (PARGRAIN, GLAD, OOF, MPM, polycrystal plasticity, front tracking). The problem of plasticity length scale in continuum calculations was recognized and a solution strategy was developed. The simulations were experimentally validated on stockpile materials.

  1. Coupled radiation effects in thermochemical nonequilibrium shock-capturing flowfield calculations

    NASA Astrophysics Data System (ADS)

    Hartung, Lin C.; Mitcheltree, Robert A.; Gnoffo, Peter A.

    1992-07-01

    Lunar and Mars return conditions are examined using the LAURA flowfield code and the LORAN radiation code to assess the effect of radiative coupling on axisymmetric thermochemical nonequilibrium flows. Coupling of the two codes is achieved iteratively. Special treatment required to couple radiation in a shock-capturing method is discussed. Results indicate that while coupling effects are generally the same as occur in equilibrium flows, under certain conditions radiation can modify the chemical kinetics of a nonequilibrium flow and thus alter relaxation processes. Coupling effects are found to be small for all cases considered, except for a five meter diameter aerobrake returning from Mars at 13.6 km/sec.

  2. Coupled Radiation Effects in Thermochemical Nonequilibrium Shock-Capturing Flowfield Calculations

    NASA Technical Reports Server (NTRS)

    Hartung, Lin C.; Mitcheltree, Robert A.; Gnoffo, Peter A.

    1993-01-01

    Lunar and Mars return conditions are examined using the LAURA flow field code and the LORAN radiation code to assess the effect of radiative coupling on axisymmetric thermochemical nonequilibrium flows. Coupling of the two codes is achieved iteratively. Special treatment required to couple radiation in a shock-capturing method is discussed. Results indicate that while coupling effects are generally the same as occur in equilibrium flows, under certain conditions radiation can modify the chemical kinetics of a nonequilibrium flow and thus alter relaxation processes. Coupling effects are found to be small for all cases considered, except for a five meter diameter aerobrake returning from Mars at 13.6 kilometers per second.

  3. Dark coupling

    SciTech Connect

    Gavela, M.B.; Hernández, D.; Honorez, L. Lopez; Mena, O.; Rigolin, S. E-mail: d.hernandez@uam.es E-mail: omena@ific.uv.es

    2009-07-01

    The two dark sectors of the universe—dark matter and dark energy—may interact with each other. Background and linear density perturbation evolution equations are developed for a generic coupling. We then establish the general conditions necessary to obtain models free from non-adiabatic instabilities. As an application, we consider a viable universe in which the interaction strength is proportional to the dark energy density. The scenario does not exhibit ''phantom crossing'' and is free from instabilities, including early ones. A sizeable interaction strength is compatible with combined WMAP, HST, SN, LSS and H(z) data. Neutrino mass and/or cosmic curvature are allowed to be larger than in non-interacting models. Our analysis sheds light as well on unstable scenarios previously proposed.

  4. Thermoacoustic couple

    DOEpatents

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1983-10-04

    An apparatus and method for determining acoustic power density level and its direction in a fluid using a single sensor are disclosed. The preferred embodiment of the apparatus, which is termed a thermoacoustic couple, consists of a stack of thin, spaced apart polymeric plates, selected ones of which include multiple bimetallic thermocouple junctions positioned along opposite end edges thereof. The thermocouple junctions are connected in series in the nature of a thermopile, and are arranged so as to be responsive to small temperature differences between the opposite edges of the plates. The magnitude of the temperature difference, as represented by the magnitude of the electrical potential difference generated by the thermopile, is found to be directly related to the level of acoustic power density in the gas.

  5. On quantum codes obtained from cyclic codes over A2

    NASA Astrophysics Data System (ADS)

    Dertli, Abdullah; Cengellenmis, Yasemin; Eren, Senol

    2015-05-01

    In this paper, quantum codes from cyclic codes over A2 = F2 + uF2 + vF2 + uvF2, u2 = u, v2 = v, uv = vu, for arbitrary length n have been constructed. It is shown that if C is self orthogonal over A2, then so is Ψ(C), where Ψ is a Gray map. A necessary and sufficient condition for cyclic codes over A2 that contains its dual has also been given. Finally, the parameters of quantum error correcting codes are obtained from cyclic codes over A2.

  6. A multilingual programming model for coupled systems.

    SciTech Connect

    Ong, E. T.; Larson, J. W.; Norris, B.; Tobis, M.; Steder, M.; Jacob, R. L.; Mathematics and Computer Science; Univ. of Wisconsin; Univ. of Chicago; The Australian National Univ.

    2008-01-01

    Multiphysics and multiscale simulation systems share a common software requirement-infrastructure to implement data exchanges between their constituent parts-often called the coupling problem. On distributed-memory parallel platforms, the coupling problem is complicated by the need to describe, transfer, and transform distributed data, known as the parallel coupling problem. Parallel coupling is emerging as a new grand challenge in computational science as scientists attempt to build multiscale and multiphysics systems on parallel platforms. An additional coupling problem in these systems is language interoperability between their constituent codes. We have created a multilingual parallel coupling programming model based on a successful open-source parallel coupling library, the Model Coupling Toolkit (MCT). This programming model's capabilities reach beyond MCT's native Fortran implementation to include bindings for the C++ and Python programming languages. We describe the method used to generate the interlanguage bindings. This approach enables an object-based programming model for implementing parallel couplings in non-Fortran coupled systems and in systems with language heterogeneity. We describe the C++ and Python versions of the MCT programming model and provide short examples. We report preliminary performance results for the MCT interpolation benchmark. We describe a major Python application that uses the MCT Python bindings, a Python implementation of the control and coupling infrastructure for the community climate system model. We conclude with a discussion of the significance of this work to productivity computing in multidisciplinary computational science.

  7. Code stroke in Asturias.

    PubMed

    Benavente, L; Villanueva, M J; Vega, P; Casado, I; Vidal, J A; Castaño, B; Amorín, M; de la Vega, V; Santos, H; Trigo, A; Gómez, M B; Larrosa, D; Temprano, T; González, M; Murias, E; Calleja, S

    2016-04-01

    Intravenous thrombolysis with alteplase is an effective treatment for ischaemic stroke when applied during the first 4.5 hours, but less than 15% of patients have access to this technique. Mechanical thrombectomy is more frequently able to recanalise proximal occlusions in large vessels, but the infrastructure it requires makes it even less available. We describe the implementation of code stroke in Asturias, as well as the process of adapting various existing resources for urgent stroke care in the region. By considering these resources, and the demographic and geographic circumstances of our region, we examine ways of reorganising the code stroke protocol that would optimise treatment times and provide the most appropriate treatment for each patient. We distributed the 8 health districts in Asturias so as to permit referral of candidates for reperfusion therapies to either of the 2 hospitals with 24-hour stroke units and on-call neurologists and providing IV fibrinolysis. Hospitals were assigned according to proximity and stroke severity; the most severe cases were immediately referred to the hospital with on-call interventional neurology care. Patient triage was provided by pre-hospital emergency services according to the NIHSS score. Modifications to code stroke in Asturias have allowed us to apply reperfusion therapies with good results, while emphasising equitable care and managing the severity-time ratio to offer the best and safest treatment for each patient as soon as possible. Copyright © 2015 Sociedad Española de Neurología. Published by Elsevier España, S.L.U. All rights reserved.

  8. A user's manual for MASH 1. 0: A Monte Carlo Adjoint Shielding Code System

    SciTech Connect

    Johnson, J.O.

    1992-03-01

    The Monte Carlo Adjoint Shielding Code System, MASH, calculates neutron and gamma-ray environments and radiation protection factors for armored military vehicles, structures, trenches, and other shielding configurations by coupling a forward discrete ordinates air-over-ground transport calculation with an adjoint Monte Carlo treatment of the shielding geometry. Efficiency and optimum use of computer time are emphasized. The code system include the GRTUNCL and DORT codes for air-over-ground transport calculations, the MORSE code with the GIFT5 combinatorial geometry package for adjoint shielding calculations, and several peripheral codes that perform the required data preparations, transformations, and coupling functions. MASH is the successor to the Vehicle Code System (VCS) initially developed at Oak Ridge National Laboratory (ORNL). The discrete ordinates calculation determines the fluence on a coupling surface surrounding the shielding geometry due to an external neutron/gamma-ray source. The Monte Carlo calculation determines the effectiveness of the fluence at that surface in causing a response in a detector within the shielding geometry, i.e., the dose importance'' of the coupling surface fluence. A coupling code folds the fluence together with the dose importance, giving the desired dose response. The coupling code can determine the dose response a a function of the shielding geometry orientation relative to the source, distance from the source, and energy response of the detector. This user's manual includes a short description of each code, the input required to execute the code along with some helpful input data notes, and a representative sample problem (input data and selected output edits) for each code.

  9. Noiseless Coding Of Magnetometer Signals

    NASA Technical Reports Server (NTRS)

    Rice, Robert F.; Lee, Jun-Ji

    1989-01-01

    Report discusses application of noiseless data-compression coding to digitized readings of spaceborne magnetometers for transmission back to Earth. Objective of such coding to increase efficiency by decreasing rate of transmission without sacrificing integrity of data. Adaptive coding compresses data by factors ranging from 2 to 6.

  10. Coding Issues in Grounded Theory

    ERIC Educational Resources Information Center

    Moghaddam, Alireza

    2006-01-01

    This paper discusses grounded theory as one of the qualitative research designs. It describes how grounded theory generates from data. Three phases of grounded theory--open coding, axial coding, and selective coding--are discussed, along with some of the issues which are the source of debate among grounded theorists, especially between its…

  11. Improved code-tracking loop

    NASA Technical Reports Server (NTRS)

    Laflame, D. T.

    1980-01-01

    Delay-locked loop tracks pseudonoise codes without introducing dc timing errors, because it is not sensitive to gain imbalance between signal processing arms. "Early" and "late" reference codes pass in combined form through both arms, and each arm acts on both codes. Circuit accomodates 1 dB weaker input signals with tracking ability equal to that of tau-dither loops.

  12. Validation of the BEPLATE code

    SciTech Connect

    Giles, G.E.; Bullock, J.S.

    1997-11-01

    The electroforming simulation code BEPLATE (Boundary Element-PLATE) has been developed and validated for specific applications at Oak Ridge. New areas of application are opening up and more validations are being performed. This paper reports the validation experience of the BEPLATE code on two types of electroforms and describes some recent applications of the code.

  13. Coding Major Fields of Study.

    ERIC Educational Resources Information Center

    Bobbitt, L. G.; Carroll, C. D.

    The National Center for Education Statistics conducts surveys which require the coding of the respondent's major field of study. This paper presents a new system for the coding of major field of study. It operates on-line i a Computer Assisted Telephone Interview (CATI) environment and allows conversational checks to verify coding directly from…

  14. Energy Codes and Standards: Facilities

    SciTech Connect

    Bartlett, Rosemarie; Halverson, Mark A.; Shankle, Diana L.

    2007-01-01

    Energy codes and standards play a vital role in the marketplace by setting minimum requirements for energy-efficient design and construction. They outline uniform requirements for new buildings as well as additions and renovations. This article covers basic knowledge of codes and standards; development processes of each; adoption, implementation, and enforcement of energy codes and standards; and voluntary energy efficiency programs.

  15. Coding Issues in Grounded Theory

    ERIC Educational Resources Information Center

    Moghaddam, Alireza

    2006-01-01

    This paper discusses grounded theory as one of the qualitative research designs. It describes how grounded theory generates from data. Three phases of grounded theory--open coding, axial coding, and selective coding--are discussed, along with some of the issues which are the source of debate among grounded theorists, especially between its…

  16. Authorship Attribution of Source Code

    ERIC Educational Resources Information Center

    Tennyson, Matthew F.

    2013-01-01

    Authorship attribution of source code is the task of deciding who wrote a program, given its source code. Applications include software forensics, plagiarism detection, and determining software ownership. A number of methods for the authorship attribution of source code have been presented in the past. A review of those existing methods is…

  17. Authorship Attribution of Source Code

    ERIC Educational Resources Information Center

    Tennyson, Matthew F.

    2013-01-01

    Authorship attribution of source code is the task of deciding who wrote a program, given its source code. Applications include software forensics, plagiarism detection, and determining software ownership. A number of methods for the authorship attribution of source code have been presented in the past. A review of those existing methods is…

  18. Quantum Codes From Cyclic Codes Over The Ring R2

    NASA Astrophysics Data System (ADS)

    Altinel, Alev; Güzeltepe, Murat

    2016-10-01

    Let R 2 denotes the ring F 2 + μF 2 + υ2 + μυF 2 + wF 2 + μwF 2 + υwF 2 + μυwF2. In this study, we construct quantum codes from cyclic codes over the ring R2, for arbitrary length n, with the restrictions μ2 = 0, υ2 = 0, w 2 = 0, μυ = υμ, μw = wμ, υw = wυ and μ (υw) = (μυ) w. Also, we give a necessary and sufficient condition for cyclic codes over R2 that contains its dual. As a final point, we obtain the parameters of quantum error-correcting codes from cyclic codes over R2 and we give an example of quantum error-correcting codes form cyclic codes over R 2.

  19. Structured error recovery for code-word-stabilized quantum codes

    NASA Astrophysics Data System (ADS)

    Li, Yunfan; Dumer, Ilya; Grassl, Markus; Pryadko, Leonid P.

    2010-05-01

    Code-word-stabilized (CWS) codes are, in general, nonadditive quantum codes that can correct errors by an exhaustive search of different error patterns, similar to the way that we decode classical nonlinear codes. For an n-qubit quantum code correcting errors on up to t qubits, this brute-force approach consecutively tests different errors of weight t or less and employs a separate n-qubit measurement in each test. In this article, we suggest an error grouping technique that allows one to simultaneously test large groups of errors in a single measurement. This structured error recovery technique exponentially reduces the number of measurements by about 3t times. While it still leaves exponentially many measurements for a generic CWS code, the technique is equivalent to syndrome-based recovery for the special case of additive CWS codes.

  20. The random coding bound is tight for the average code.

    NASA Technical Reports Server (NTRS)

    Gallager, R. G.

    1973-01-01

    The random coding bound of information theory provides a well-known upper bound to the probability of decoding error for the best code of a given rate and block length. The bound is constructed by upperbounding the average error probability over an ensemble of codes. The bound is known to give the correct exponential dependence of error probability on block length for transmission rates above the critical rate, but it gives an incorrect exponential dependence at rates below a second lower critical rate. Here we derive an asymptotic expression for the average error probability over the ensemble of codes used in the random coding bound. The result shows that the weakness of the random coding bound at rates below the second critical rate is due not to upperbounding the ensemble average, but rather to the fact that the best codes are much better than the average at low rates.

  1. New quantum codes constructed from quaternary BCH codes

    NASA Astrophysics Data System (ADS)

    Xu, Gen; Li, Ruihu; Guo, Luobin; Ma, Yuena

    2016-10-01

    In this paper, we firstly study construction of new quantum error-correcting codes (QECCs) from three classes of quaternary imprimitive BCH codes. As a result, the improved maximal designed distance of these narrow-sense imprimitive Hermitian dual-containing quaternary BCH codes are determined to be much larger than the result given according to Aly et al. (IEEE Trans Inf Theory 53:1183-1188, 2007) for each different code length. Thus, families of new QECCs are newly obtained, and the constructed QECCs have larger distance than those in the previous literature. Secondly, we apply a combinatorial construction to the imprimitive BCH codes with their corresponding primitive counterpart and construct many new linear quantum codes with good parameters, some of which have parameters exceeding the finite Gilbert-Varshamov bound for linear quantum codes.

  2. Structured error recovery for code-word-stabilized quantum codes

    SciTech Connect

    Li Yunfan; Dumer, Ilya; Grassl, Markus; Pryadko, Leonid P.

    2010-05-15

    Code-word-stabilized (CWS) codes are, in general, nonadditive quantum codes that can correct errors by an exhaustive search of different error patterns, similar to the way that we decode classical nonlinear codes. For an n-qubit quantum code correcting errors on up to t qubits, this brute-force approach consecutively tests different errors of weight t or less and employs a separate n-qubit measurement in each test. In this article, we suggest an error grouping technique that allows one to simultaneously test large groups of errors in a single measurement. This structured error recovery technique exponentially reduces the number of measurements by about 3{sup t} times. While it still leaves exponentially many measurements for a generic CWS code, the technique is equivalent to syndrome-based recovery for the special case of additive CWS codes.

  3. Low Density Parity Check Codes: Bandwidth Efficient Channel Coding

    NASA Technical Reports Server (NTRS)

    Fong, Wai; Lin, Shu; Maki, Gary; Yeh, Pen-Shu

    2003-01-01

    Low Density Parity Check (LDPC) Codes provide near-Shannon Capacity performance for NASA Missions. These codes have high coding rates R=0.82 and 0.875 with moderate code lengths, n=4096 and 8176. Their decoders have inherently parallel structures which allows for high-speed implementation. Two codes based on Euclidean Geometry (EG) were selected for flight ASIC implementation. These codes are cyclic and quasi-cyclic in nature and therefore have a simple encoder structure. This results in power and size benefits. These codes also have a large minimum distance as much as d,,, = 65 giving them powerful error correcting capabilities and error floors less than lo- BER. This paper will present development of the LDPC flight encoder and decoder, its applications and status.

  4. Acceptance versus change interventions in behavioral couple therapy: impact on couples' in-session communication.

    PubMed

    Cordova, J V; Jacobson, N S; Christensen, A

    1998-10-01

    Integrative Behavioral Couple Therapy (IBCT) attempts to improve Traditional Behavioral Couple Therapy (TBCT) by incorporating an emphasis on promoting acceptance into TBCT's emphasis on behavioral change. This study examined changes in couples' communication over the course of IBCT and TBCT. Early, middle, and late sessions were coded to measure couples' communication of acceptance. Results showed that IBCT couples expressed more nonblaming descriptions of problems and more soft emotions than TBCT couples during late stages of therapy. IBCT couples significantly increased their nonblaming description of problems and significantly decreased their expressions of hard emotions and their problematic communication over time. Results support the hypothesis that structural differences between the therapies affect initial levels of emotional expression in session. Increases in nonblaming descriptions of problems were significantly correlated with increases in marital satisfaction.

  5. Point kinetics calculations with fully coupled thermal fluids reactivity feedback

    SciTech Connect

    Zhang, H.; Zou, L.; Andrs, D.; Zhao, H.; Martineau, R.

    2013-07-01

    The point kinetics model has been widely used in the analysis of the transient behavior of a nuclear reactor. In the traditional nuclear reactor system safety analysis codes such as RELAP5, the reactivity feedback effects are calculated in a loosely coupled fashion through operator splitting approach. This paper discusses the point kinetics calculations with the fully coupled thermal fluids and fuel temperature feedback implemented into the RELAP-7 code currently being developed with the MOOSE framework. (authors)

  6. FAST GYROSYNCHROTRON CODES

    SciTech Connect

    Fleishman, Gregory D.; Kuznetsov, Alexey A.

    2010-10-01

    Radiation produced by charged particles gyrating in a magnetic field is highly significant in the astrophysics context. Persistently increasing resolution of astrophysical observations calls for corresponding three-dimensional modeling of the radiation. However, available exact equations are prohibitively slow in computing a comprehensive table of high-resolution models required for many practical applications. To remedy this situation, we develop approximate gyrosynchrotron (GS) codes capable of quickly calculating the GS emission (in non-quantum regime) from both isotropic and anisotropic electron distributions in non-relativistic, mildly relativistic, and ultrarelativistic energy domains applicable throughout a broad range of source parameters including dense or tenuous plasmas and weak or strong magnetic fields. The computation time is reduced by several orders of magnitude compared with the exact GS algorithm. The new algorithm performance can gradually be adjusted to the user's needs depending on whether precision or computation speed is to be optimized for a given model. The codes are made available for users as a supplement to this paper.

  7. Genetic code for sine

    NASA Astrophysics Data System (ADS)

    Abdullah, Alyasa Gan; Wah, Yap Bee

    2015-02-01

    The computation of the approximate values of the trigonometric sines was discovered by Bhaskara I (c. 600-c.680), a seventh century Indian mathematician and is known as the Bjaskara's I's sine approximation formula. The formula is given in his treatise titled Mahabhaskariya. In the 14th century, Madhava of Sangamagrama, a Kerala mathematician astronomer constructed the table of trigonometric sines of various angles. Madhava's table gives the measure of angles in arcminutes, arcseconds and sixtieths of an arcsecond. The search for more accurate formulas led to the discovery of the power series expansion by Madhava of Sangamagrama (c.1350-c. 1425), the founder of the Kerala school of astronomy and mathematics. In 1715, the Taylor series was introduced by Brook Taylor an English mathematician. If the Taylor series is centered at zero, it is called a Maclaurin series, named after the Scottish mathematician Colin Maclaurin. Some of the important Maclaurin series expansions include trigonometric functions. This paper introduces the genetic code of the sine of an angle without using power series expansion. The genetic code using square root approach reveals the pattern in the signs (plus, minus) and sequence of numbers in the sine of an angle. The square root approach complements the Pythagoras method, provides a better understanding of calculating an angle and will be useful for teaching the concepts of angles in trigonometry.

  8. Measuring Diagnoses: ICD Code Accuracy

    PubMed Central

    O'Malley, Kimberly J; Cook, Karon F; Price, Matt D; Wildes, Kimberly Raiford; Hurdle, John F; Ashton, Carol M

    2005-01-01

    Objective To examine potential sources of errors at each step of the described inpatient International Classification of Diseases (ICD) coding process. Data Sources/Study Setting The use of disease codes from the ICD has expanded from classifying morbidity and mortality information for statistical purposes to diverse sets of applications in research, health care policy, and health care finance. By describing a brief history of ICD coding, detailing the process for assigning codes, identifying where errors can be introduced into the process, and reviewing methods for examining code accuracy, we help code users more systematically evaluate code accuracy for their particular applications. Study Design/Methods We summarize the inpatient ICD diagnostic coding process from patient admission to diagnostic code assignment. We examine potential sources of errors at each step and offer code users a tool for systematically evaluating code accuracy. Principle Findings Main error sources along the “patient trajectory” include amount and quality of information at admission, communication among patients and providers, the clinician's knowledge and experience with the illness, and the clinician's attention to detail. Main error sources along the “paper trail” include variance in the electronic and written records, coder training and experience, facility quality-control efforts, and unintentional and intentional coder errors, such as misspecification, unbundling, and upcoding. Conclusions By clearly specifying the code assignment process and heightening their awareness of potential error sources, code users can better evaluate the applicability and limitations of codes for their particular situations. ICD codes can then be used in the most appropriate ways. PMID:16178999

  9. Current and anticipated uses of thermal hydraulic codes in Korea

    SciTech Connect

    Kim, Kyung-Doo; Chang, Won-Pyo

    1997-07-01

    In Korea, the current uses of thermal hydraulic codes are categorized into 3 areas. The first application is in designing both nuclear fuel and NSSS. The codes have usually been introduced based on the technology transfer programs agreed between KAERI and the foreign vendors. Another area is in the supporting of the plant operations and licensing by the utility. The third category is research purposes. In this area assessments and some applications to the safety issue resolutions are major activities using the best estimate thermal hydraulic codes such as RELAP5/MOD3 and CATHARE2. Recently KEPCO plans to couple thermal hydraulic codes with a neutronics code for the design of the evolutionary type reactor by 2004. KAERI also plans to develop its own best estimate thermal hydraulic code, however, application range is different from KEPCO developing code. Considering these activities, it is anticipated that use of the best estimate hydraulic analysis code developed in Korea may be possible in the area of safety evaluation within 10 years.

  10. Determinate-state convolutional codes

    NASA Technical Reports Server (NTRS)

    Collins, O.; Hizlan, M.

    1991-01-01

    A determinate state convolutional code is formed from a conventional convolutional code by pruning away some of the possible state transitions in the decoding trellis. The type of staged power transfer used in determinate state convolutional codes proves to be an extremely efficient way of enhancing the performance of a concatenated coding system. The decoder complexity is analyzed along with free distances of these new codes and extensive simulation results is provided of their performance at the low signal to noise ratios where a real communication system would operate. Concise, practical examples are provided.

  11. Coding for reliable satellite communications

    NASA Technical Reports Server (NTRS)

    Gaarder, N. T.; Lin, S.

    1986-01-01

    This research project was set up to study various kinds of coding techniques for error control in satellite and space communications for NASA Goddard Space Flight Center. During the project period, researchers investigated the following areas: (1) decoding of Reed-Solomon codes in terms of dual basis; (2) concatenated and cascaded error control coding schemes for satellite and space communications; (3) use of hybrid coding schemes (error correction and detection incorporated with retransmission) to improve system reliability and throughput in satellite communications; (4) good codes for simultaneous error correction and error detection, and (5) error control techniques for ring and star networks.

  12. Typology of Couples Entering Alcohol Behavioral Couple Therapy: An Empirical Approach and Test of Predictive Validity on Treatment Response

    PubMed Central

    Ladd, Benjamin O.; McCrady, Barbara S.

    2016-01-01

    The current study aimed to examine whether classification of couples in which one partner has an alcohol problem is similar to that reported in the general couples literature. Typologies of couples seeking Alcohol Behavioral Couple Therapy (ABCT) were developed via hierarchical cluster analysis using behavioral codes of couple interactions during their first ABCT session. Four couples types based on in-session behavior were established reliably, labeled Avoider, Validator, Hostile, and Ambivalent-Detached. These couple types resembled couples types found in previous research. Couple type was associated with baseline relationship satisfaction, but not alcohol use. Results suggest heterogeneity in couples with alcohol problems presenting to treatment; further study is needed to investigate the function of alcohol within these different types. PMID:25808432

  13. Guide to Coupled Electrostatic-Structural Analyses with Arpeggio

    SciTech Connect

    Porter, Vicki L.

    2006-09-01

    Many applications in micromechanical systems (MEMS) involve electrostatically actuated parts. Arpeggio is a code for facilitating loose coupling between computational mechanics modules in a parallel computing environment. This document describes how to use Arpeggio for coupled elecromechanical analyses using examples commonly encountered in MEMS applications, namely the response of structures to loads imposed by electrostatic fields. For this type of analysis, Arpeggio is used to couple Adagio, a three dimensional finite element code for nonlinear, quasi static or implicit dynamic analysis of three-dimensional structures, with BEM, a boundary integral method code for the analysis of electrostatic fields. This guide describes the methodology used for the loose coupling and the commands the user needs in an input file to perform such an analysis. All commands related to coupled analyses are described and examples are provided.

  14. Circular codes, symmetries and transformations.

    PubMed

    Fimmel, Elena; Giannerini, Simone; Gonzalez, Diego Luis; Strüngmann, Lutz

    2015-06-01

    Circular codes, putative remnants of primeval comma-free codes, have gained considerable attention in the last years. In fact they represent a second kind of genetic code potentially involved in detecting and maintaining the normal reading frame in protein coding sequences. The discovering of an universal code across species suggested many theoretical and experimental questions. However, there is a key aspect that relates circular codes to symmetries and transformations that remains to a large extent unexplored. In this article we aim at addressing the issue by studying the symmetries and transformations that connect different circular codes. The main result is that the class of 216 C3 maximal self-complementary codes can be partitioned into 27 equivalence classes defined by a particular set of transformations. We show that such transformations can be put in a group theoretic framework with an intuitive geometric interpretation. More general mathematical results about symmetry transformations which are valid for any kind of circular codes are also presented. Our results pave the way to the study of the biological consequences of the mathematical structure behind circular codes and contribute to shed light on the evolutionary steps that led to the observed symmetries of present codes.

  15. Development of 1D Liner Compression Code for IDL

    NASA Astrophysics Data System (ADS)

    Shimazu, Akihisa; Slough, John; Pancotti, Anthony

    2015-11-01

    A 1D liner compression code is developed to model liner implosion dynamics in the Inductively Driven Liner Experiment (IDL) where FRC plasmoid is compressed via inductively-driven metal liners. The driver circuit, magnetic field, joule heating, and liner dynamics calculations are performed at each time step in sequence to couple these effects in the code. To obtain more realistic magnetic field results for a given drive coil geometry, 2D and 3D effects are incorporated into the 1D field calculation through use of correction factor table lookup approach. Commercial low-frequency electromagnetic fields solver, ANSYS Maxwell 3D, is used to solve the magnetic field profile for static liner condition at various liner radius in order to derive correction factors for the 1D field calculation in the code. The liner dynamics results from the code is verified to be in good agreement with the results from commercial explicit dynamics solver, ANSYS Explicit Dynamics, and previous liner experiment. The developed code is used to optimize the capacitor bank and driver coil design for better energy transfer and coupling. FRC gain calculations are also performed using the liner compression data from the code for the conceptual design of the reactor sized system for fusion energy gains.

  16. Development of the Brief Romantic Relationship Interaction Coding Scheme (BRRICS)

    PubMed Central

    Humbad, Mikhila N.; Donnellan, M. Brent; Klump, Kelly L.; Burt, S. Alexandra

    2012-01-01

    Although observational studies of romantic relationships are common, many existing coding schemes require considerable amounts of time and resources to implement. The current study presents a new coding scheme, the Brief Romantic Relationship Interaction Coding Scheme (BRRICS), designed to assess various aspects of romantic relationship both quickly and efficiently. The BRRICS consists of four individual coding dimensions assessing positive and negative affect in each member of the dyad, as well as four codes assessing specific components of the dyadic interaction (i.e., positive reciprocity, demand-withdraw pattern, negative reciprocity, and overall satisfaction). Concurrent associations with measures of marital adjustment and conflict were evaluated in a sample of 118 married couples participating in the Michigan State University Twin Registry. Couples were asked to discuss common conflicts in their marriage while being videotaped. Undergraduate coders used the BRRICS to rate these interactions. The BRRICS scales were correlated in expected directions with self-reports of marital adjustment, as well as children’s perception of the severity and frequency of marital conflict. Based on these results, the BRRICS may be an efficient tool for researchers with large samples of observational data who are interested in coding global aspects of the relationship but do not have the resources to use labor intensive schemes. PMID:21875192

  17. Thermal hydraulic-severe accident code interfaces for SCDAP/RELAP5/MOD3.2

    SciTech Connect

    Coryell, E.W.; Siefken, L.J.; Harvego, E.A.

    1997-07-01

    The SCDAP/RELAP5 computer code is designed to describe the overall reactor coolant system thermal-hydraulic response, core damage progression, and fission product release during severe accidents. The code is being developed at the Idaho National Engineering Laboratory under the primary sponsorship of the Office of Nuclear Regulatory Research of the U.S. Nuclear Regulatory Commission. The code is the result of merging the RELAP5, SCDAP, and COUPLE codes. The RELAP5 portion of the code calculates the overall reactor coolant system, thermal-hydraulics, and associated reactor system responses. The SCDAP portion of the code describes the response of the core and associated vessel structures. The COUPLE portion of the code describes response of lower plenum structures and debris and the failure of the lower head. The code uses a modular approach with the overall structure, input/output processing, and data structures following the pattern established for RELAP5. The code uses a building block approach to allow the code user to easily represent a wide variety of systems and conditions through a powerful input processor. The user can represent a wide variety of experiments or reactor designs by selecting fuel rods and other assembly structures from a range of representative core component models, and arrange them in a variety of patterns within the thermalhydraulic network. The COUPLE portion of the code uses two-dimensional representations of the lower plenum structures and debris beds. The flow of information between the different portions of the code occurs at each system level time step advancement. The RELAP5 portion of the code describes the fluid transport around the system. These fluid conditions are used as thermal and mass transport boundary conditions for the SCDAP and COUPLE structures and debris beds.

  18. Subspace-Aware Index Codes

    DOE PAGES

    Kailkhura, Bhavya; Theagarajan, Lakshmi Narasimhan; Varshney, Pramod K.

    2017-04-12

    In this paper, we generalize the well-known index coding problem to exploit the structure in the source-data to improve system throughput. In many applications (e.g., multimedia), the data to be transmitted may lie (or can be well approximated) in a low-dimensional subspace. We exploit this low-dimensional structure of the data using an algebraic framework to solve the index coding problem (referred to as subspace-aware index coding) as opposed to the traditional index coding problem which is subspace-unaware. Also, we propose an efficient algorithm based on the alternating minimization approach to obtain near optimal index codes for both subspace-aware and -unawaremore » cases. In conclusion, our simulations indicate that under certain conditions, a significant throughput gain (about 90%) can be achieved by subspace-aware index codes over conventional subspace-unaware index codes.« less

  19. Coded Apertures in Mass Spectrometry.

    PubMed

    Amsden, Jason J; Gehm, Michael E; Russell, Zachary E; Chen, Evan X; Di Dona, Shane T; Wolter, Scott D; Danell, Ryan M; Kibelka, Gottfried; Parker, Charles B; Stoner, Brian R; Brady, David J; Glass, Jeffrey T

    2017-06-12

    The use of coded apertures in mass spectrometry can break the trade-off between throughput and resolution that has historically plagued conventional instruments. Despite their very early stage of development, coded apertures have been shown to increase throughput by more than one order of magnitude, with no loss in resolution in a simple 90-degree magnetic sector. This enhanced throughput can increase the signal level with respect to the underlying noise, thereby significantly improving sensitivity to low concentrations of analyte. Simultaneous resolution can be maintained, preventing any decrease in selectivity. Both one- and two-dimensional (2D) codes have been demonstrated. A 2D code can provide increased measurement diversity and therefore improved numerical conditioning of the mass spectrum that is reconstructed from the coded signal. This review discusses the state of development, the applications where coding is expected to provide added value, and the various instrument modifications necessary to implement coded apertures in mass spectrometers.

  20. Visual pattern image sequence coding

    NASA Technical Reports Server (NTRS)

    Silsbee, Peter; Bovik, Alan C.; Chen, Dapang

    1990-01-01

    The visual pattern image coding (VPIC) configurable digital image-coding process is capable of coding with visual fidelity comparable to the best available techniques, at compressions which (at 30-40:1) exceed all other technologies. These capabilities are associated with unprecedented coding efficiencies; coding and decoding operations are entirely linear with respect to image size and entail a complexity that is 1-2 orders of magnitude faster than any previous high-compression technique. The visual pattern image sequence coding to which attention is presently given exploits all the advantages of the static VPIC in the reduction of information from an additional, temporal dimension, to achieve unprecedented image sequence coding performance.

  1. Orthogonal coding of object location.

    PubMed

    Knutsen, Per Magne; Ahissar, Ehud

    2009-02-01

    It has been argued whether internal representations are encoded using a universal ('the neural code') or multiple codes. Here, we review a series of experiments that demonstrate that tactile encoding of object location via whisking employs an orthogonal, triple-code scheme. Rats, and other rodents, actively move the whiskers back and forth to localize and identify objects. Neural recordings from primary sensory afferents, along with behavioral observations, demonstrate that vertical coordinates of contacted objects are encoded by the identity of activated afferents, horizontal coordinates by the timing of activation and radial coordinates by the intensity of activation. Because these codes are mutually independent, the three-dimensional location of an object could, in principle, be encoded by individual afferents during single whisker-object contacts. One advantage of such a same-neuron-different-codes scheme over the traditionally assumed same-code-different-neurons scheme is a reduction of code ambiguity that, in turn, simplifies decoding circuits.

  2. Practices in Code Discoverability: Astrophysics Source Code Library

    NASA Astrophysics Data System (ADS)

    Allen, A.; Teuben, P.; Nemiroff, R. J.; Shamir, L.

    2012-09-01

    Here we describe the Astrophysics Source Code Library (ASCL), which takes an active approach to sharing astrophysics source code. ASCL's editor seeks out both new and old peer-reviewed papers that describe methods or experiments that involve the development or use of source code, and adds entries for the found codes to the library. This approach ensures that source codes are added without requiring authors to actively submit them, resulting in a comprehensive listing that covers a significant number of the astrophysics source codes used in peer-reviewed studies. The ASCL now has over 340 codes in it and continues to grow. In 2011, the ASCL has on average added 19 codes per month. An advisory committee has been established to provide input and guide the development and expansion of the new site, and a marketing plan has been developed and is being executed. All ASCL source codes have been used to generate results published in or submitted to a refereed journal and are freely available either via a download site or from an identified source. This paper provides the history and description of the ASCL. It lists the requirements for including codes, examines the advantages of the ASCL, and outlines some of its future plans.

  3. Making your code citable with the Astrophysics Source Code Library

    NASA Astrophysics Data System (ADS)

    Allen, Alice; DuPrie, Kimberly; Schmidt, Judy; Berriman, G. Bruce; Hanisch, Robert J.; Mink, Jessica D.; Nemiroff, Robert J.; Shamir, Lior; Shortridge, Keith; Taylor, Mark B.; Teuben, Peter J.; Wallin, John F.

    2016-01-01

    The Astrophysics Source Code Library (ASCL, ascl.net) is a free online registry of codes used in astronomy research. With nearly 1,200 codes, it is the largest indexed resource for astronomy codes in existence. Established in 1999, it offers software authors a path to citation of their research codes even without publication of a paper describing the software, and offers scientists a way to find codes used in refereed publications, thus improving the transparency of the research. It also provides a method to quantify the impact of source codes in a fashion similar to the science metrics of journal articles. Citations using ASCL IDs are accepted by major astronomy journals and if formatted properly are tracked by ADS and other indexing services. The number of citations to ASCL entries increased sharply from 110 citations in January 2014 to 456 citations in September 2015. The percentage of code entries in ASCL that were cited at least once rose from 7.5% in January 2014 to 17.4% in September 2015. The ASCL's mid-2014 infrastructure upgrade added an easy entry submission form, more flexible browsing, search capabilities, and an RSS feeder for updates. A Changes/Additions form added this past fall lets authors submit links for papers that use their codes for addition to the ASCL entry even if those papers don't formally cite the codes, thus increasing the transparency of that research and capturing the value of their software to the community.

  4. HEMP internal coupling phenomenology study

    SciTech Connect

    Kunz, K.S.; Hudson, H.G.; Breakall, J.K.; King, R.J.; Ziolkowski, R.; Madsen, N.; Peterson, J.; Pennock, S.T.

    1985-09-01

    This report documents a task sponsored by DNA to unravel the electromagnetic coupling problem associated with the interaction of the high altitude electromagnetic pulse HEMP) with typical aerospace systems. A bottom up approach to this task has been selected. In this approach, tools are developed for measuring and predicting the responses of simple test systems; from these measurements and predictions phenomenological understanding of the coupling mechanisms may be obtained and the tools may be verified. The construction and the experimental characterization of a test system embodying the fundamental features of an interior coupling problem, is discussed. Experimental, computational and analytical tools has been applied to this test system. Experimental measurements have revealed a pronounced modal interior response which has been closely replicated with the time domain three dimensional finite difference code G3DXL3. The persistence of these modes has been established analytically with an N-series analysis. Focusing and reflection effects as well as hot spot formation have been examined with the N-series analysis and with a time domain two-dimensional finite element code GEM2D.

  5. Accelerating execution of the integrated TIGER series Monte Carlo radiation transport codes

    SciTech Connect

    Smith, L.M.; Hochstedler, R.D.

    1997-02-01

    Execution of the integrated TIGER series (ITS) of coupled electron/photon Monte Carlo radiation transport codes has been accelerated by modifying the FORTRAN source code for more efficient computation. Each member code of ITS was benchmarked and profiled with a specific test case that directed the acceleration effort toward the most computationally intensive subroutines. Techniques for accelerating these subroutines included replacing linear search algorithms with binary versions, replacing the pseudo-random number generator, reducing program memory allocation, and proofing the input files for geometrical redundancies. All techniques produced identical or statistically similar results to the original code. Final benchmark timing of the accelerated code resulted in speed-up factors of 2.00 for TIGER (the one-dimensional slab geometry code), 1.74 for CYLTRAN (the two-dimensional cylindrical geometry code), and 1.90 for ACCEPT (the arbitrary three-dimensional geometry code).

  6. Methodology, status and plans for development and assessment of Cathare code

    SciTech Connect

    Bestion, D.; Barre, F.; Faydide, B.

    1997-07-01

    This paper presents the methodology, status and plans for the development, assessment and uncertainty evaluation of the Cathare code. Cathare is a thermalhydraulic code developed by CEA (DRN), IPSN, EDF and FRAMATOME for PWR safety analysis. First, the status of the code development and assessment is presented. The general strategy used for the development and the assessment of the code is presented. Analytical experiments with separate effect tests, and component tests are used for the development and the validation of closure laws. Successive Revisions of constitutive laws are implemented in successive Versions of the code and assessed. System tests or integral tests are used to validate the general consistency of the Revision. Each delivery of a code Version + Revision is fully assessed and documented. A methodology is being developed to determine the uncertainty on all constitutive laws of the code using calculations of many analytical tests and applying the Discrete Adjoint Sensitivity Method (DASM). At last, the plans for the future developments of the code are presented. They concern the optimization of the code performance through parallel computing - the code will be used for real time full scope plant simulators - the coupling with many other codes (neutronic codes, severe accident codes), the application of the code for containment thermalhydraulics. Also, physical improvements are required in the field of low pressure transients and in the modeling for the 3-D model.

  7. Peripheral coding of taste

    PubMed Central

    Liman, Emily R.; Zhang, Yali V.; Montell, Craig

    2014-01-01

    Five canonical tastes, bitter, sweet, umami (amino acid), salty and sour (acid) are detected by animals as diverse as fruit flies and humans, consistent with a near universal drive to consume fundamental nutrients and to avoid toxins or other harmful compounds. Surprisingly, despite this strong conservation of basic taste qualities between vertebrates and invertebrates, the receptors and signaling mechanisms that mediate taste in each are highly divergent. The identification over the last two decades of receptors and other molecules that mediate taste has led to stunning advances in our understanding of the basic mechanisms of transduction and coding of information by the gustatory systems of vertebrates and invertebrates. In this review, we discuss recent advances in taste research, mainly from the fly and mammalian systems, and we highlight principles that are common across species, despite stark differences in receptor types. PMID:24607224

  8. Surface code quantum communication.

    PubMed

    Fowler, Austin G; Wang, David S; Hill, Charles D; Ladd, Thaddeus D; Van Meter, Rodney; Hollenberg, Lloyd C L

    2010-05-07

    Quantum communication typically involves a linear chain of repeater stations, each capable of reliable local quantum computation and connected to their nearest neighbors by unreliable communication links. The communication rate of existing protocols is low as two-way classical communication is used. By using a surface code across the repeater chain and generating Bell pairs between neighboring stations with probability of heralded success greater than 0.65 and fidelity greater than 0.96, we show that two-way communication can be avoided and quantum information can be sent over arbitrary distances with arbitrarily low error at a rate limited only by the local gate speed. This is achieved by using the unreliable Bell pairs to measure nonlocal stabilizers and feeding heralded failure information into post-transmission error correction. Our scheme also applies when the probability of heralded success is arbitrarily low.

  9. Code lock with microcircuit

    NASA Astrophysics Data System (ADS)

    Korobka, A.; May, I.

    1985-01-01

    A code lock with a microcircuit was invented which contains only a very few components. Two DD-triggers control the state of two identical transistors. When both transistors are turned on simultaneously the transistor VS1 is turned on so that the electromagnet YA1 pulls in the bolt and the door opens. This will happen only when a logic 1 appears at the inverted output of the first trigger and at the straight output of the second one. After the door is opened, a button on it resets the contactors to return both triggers to their original state. The electromagnetic is designed to produce the necessary pull force and sufficient power when under rectified 127 V line voltage, with the neutral wire of the lock circuit always connected to the - terminal of the power supply.

  10. Electromagnetic particle simulation codes

    NASA Technical Reports Server (NTRS)

    Pritchett, P. L.

    1985-01-01

    Electromagnetic particle simulations solve the full set of Maxwell's equations. They thus include the effects of self-consistent electric and magnetic fields, magnetic induction, and electromagnetic radiation. The algorithms for an electromagnetic code which works directly with the electric and magnetic fields are described. The fields and current are separated into transverse and longitudinal components. The transverse E and B fields are integrated in time using a leapfrog scheme applied to the Fourier components. The particle pushing is performed via the relativistic Lorentz force equation for the particle momentum. As an example, simulation results are presented for the electron cyclotron maser instability which illustrate the importance of relativistic effects on the wave-particle resonance condition and on wave dispersion.

  11. IMP: A performance code

    NASA Technical Reports Server (NTRS)

    Dauro, Vincent A., Sr.

    1991-01-01

    IMP (Integrated Mission Program) is a simulation language and code used to model present and future Earth, Moon, or Mars missions. The profile is user controlled through selection from a large menu of events and maneuvers. A Fehlberg 7/13 Runge-Kutta integrator with error and step size control is used to numerically integrate the differential equations of motion (DEQ) of three spacecraft, a main, a target, and an observer. Through selection, the DEQ's include guided thrust, oblate gravity, atmosphere drag, solar pressure, and Moon gravity effects. Guide parameters for thrust events and performance parameters of velocity changes (Delta-V) and propellant usage (maximum of five systems) are developed as needed. Print, plot, summary, and debug files are output.

  12. Telescope Adaptive Optics Code

    SciTech Connect

    Phillion, D.

    2005-07-28

    The Telescope AO Code has general adaptive optics capabilities plus specialized models for three telescopes with either adaptive optics or active optics systems. It has the capability to generate either single-layer or distributed Kolmogorov turbulence phase screens using the FFT. Missing low order spatial frequencies are added using the Karhunen-Loeve expansion. The phase structure curve is extremely dose to the theoreUcal. Secondly, it has the capability to simulate an adaptive optics control systems. The default parameters are those of the Keck II adaptive optics system. Thirdly, it has a general wave optics capability to model the science camera halo due to scintillation from atmospheric turbulence and the telescope optics. Although this capability was implemented for the Gemini telescopes, the only default parameter specific to the Gemini telescopes is the primary mirror diameter. Finally, it has a model for the LSST active optics alignment strategy. This last model is highly specific to the LSST

  13. FORTRAN Versions of Reformulated HFGMC Codes

    NASA Technical Reports Server (NTRS)

    Arnold, Steven M.; Aboudi, Jacob; Bednarcyk, Brett A.

    2006-01-01

    Several FORTRAN codes have been written to implement the reformulated version of the high-fidelity generalized method of cells (HFGMC). Various aspects of the HFGMC and its predecessors were described in several prior NASA Tech Briefs articles, the most recent being HFGMC Enhancement of MAC/GMC (LEW-17818-1), NASA Tech Briefs, Vol. 30, No. 3 (March 2006), page 34. The HFGMC is a mathematical model of micromechanics for simulating stress and strain responses of fiber/matrix and other composite materials. The HFGMC overcomes a major limitation of a prior version of the GMC by accounting for coupling of shear and normal stresses and thereby affords greater accuracy, albeit at a large computational cost. In the reformulation of the HFGMC, the issue of computational efficiency was addressed: as a result, codes that implement the reformulated HFGMC complete their calculations about 10 times as fast as do those that implement the HFGMC. The present FORTRAN implementations of the reformulated HFGMC were written to satisfy a need for compatibility with other FORTRAN programs used to analyze structures and composite materials. The FORTRAN implementations also afford capabilities, beyond those of the basic HFGMC, for modeling inelasticity, fiber/matrix debonding, and coupled thermal, mechanical, piezo, and electromagnetic effects.

  14. MAGNUM-2D computer code: user's guide

    SciTech Connect

    England, R.L.; Kline, N.W.; Ekblad, K.J.; Baca, R.G.

    1985-01-01

    Information relevant to the general use of the MAGNUM-2D computer code is presented. This computer code was developed for the purpose of modeling (i.e., simulating) the thermal and hydraulic conditions in the vicinity of a waste package emplaced in a deep geologic repository. The MAGNUM-2D computer computes (1) the temperature field surrounding the waste package as a function of the heat generation rate of the nuclear waste and thermal properties of the basalt and (2) the hydraulic head distribution and associated groundwater flow fields as a function of the temperature gradients and hydraulic properties of the basalt. MAGNUM-2D is a two-dimensional numerical model for transient or steady-state analysis of coupled heat transfer and groundwater flow in a fractured porous medium. The governing equations consist of a set of coupled, quasi-linear partial differential equations that are solved using a Galerkin finite-element technique. A Newton-Raphson algorithm is embedded in the Galerkin functional to formulate the problem in terms of the incremental changes in the dependent variables. Both triangular and quadrilateral finite elements are used to represent the continuum portions of the spatial domain. Line elements may be used to represent discrete conduits. 18 refs., 4 figs., 1 tab.

  15. Transionospheric Propagation Code (TIPC)

    SciTech Connect

    Roussel-Dupre, R.; Kelley, T.A.

    1990-10-01

    The Transionospheric Propagation Code is a computer program developed at Los Alamos National Lab to perform certain tasks related to the detection of vhf signals following propagation through the ionosphere. The code is written in Fortran 77, runs interactively and was designed to be as machine independent as possible. A menu format in which the user is prompted to supply appropriate parameters for a given task has been adopted for the input while the output is primarily in the form of graphics. The user has the option of selecting from five basic tasks, namely transionospheric propagation, signal filtering, signal processing, DTOA study, and DTOA uncertainty study. For the first task a specified signal is convolved against the impulse response function of the ionosphere to obtain the transionospheric signal. The user is given a choice of four analytic forms for the input pulse or of supplying a tabular form. The option of adding Gaussian-distributed white noise of spectral noise to the input signal is also provided. The deterministic ionosphere is characterized to first order in terms of a total electron content (TEC) along the propagation path. In addition, a scattering model parameterized in terms of a frequency coherence bandwidth is also available. In the second task, detection is simulated by convolving a given filter response against the transionospheric signal. The user is given a choice of a wideband filter or a narrowband Gaussian filter. It is also possible to input a filter response. The third task provides for quadrature detection, envelope detection, and three different techniques for time-tagging the arrival of the transionospheric signal at specified receivers. The latter algorithms can be used to determine a TEC and thus take out the effects of the ionosphere to first order. Task four allows the user to construct a table of delta-times-of-arrival (DTOAs) vs TECs for a specified pair of receivers.

  16. Surface acoustic wave coding for orthogonal frequency coded devices

    NASA Technical Reports Server (NTRS)

    Malocha, Donald (Inventor); Kozlovski, Nikolai (Inventor)

    2011-01-01

    Methods and systems for coding SAW OFC devices to mitigate code collisions in a wireless multi-tag system. Each device producing plural stepped frequencies as an OFC signal with a chip offset delay to increase code diversity. A method for assigning a different OCF to each device includes using a matrix based on the number of OFCs needed and the number chips per code, populating each matrix cell with OFC chip, and assigning the codes from the matrix to the devices. The asynchronous passive multi-tag system includes plural surface acoustic wave devices each producing a different OFC signal having the same number of chips and including a chip offset time delay, an algorithm for assigning OFCs to each device, and a transceiver to transmit an interrogation signal and receive OFC signals in response with minimal code collisions during transmission.

  17. Improved lossless intra coding for next generation video coding

    NASA Astrophysics Data System (ADS)

    Vanam, Rahul; He, Yuwen; Ye, Yan

    2016-09-01

    Recently, there have been efforts by the ITU-T VCEG and ISO/IEC MPEG to further improve the compression performance of the High Efficiency Video Coding (HEVC) standard for developing a potential next generation video coding standard. The exploratory codec software of this potential standard includes new coding tools for inter and intra coding. In this paper, we present a new intra prediction mode for lossless intra coding. Our new intra mode derives a prediction filter for each input pixel using its neighboring reconstructed pixels, and applies this filter to the nearest neighboring reconstructed pixels to generate a prediction pixel. The proposed intra mode is demonstrated to improve the performance of the exploratory software for lossless intra coding, yielding a maximum and average bitrate savings of 4.4% and 2.11%, respectively.

  18. A User's Manual for MASH V1.5 - A Monte Carlo Adjoint Shielding Code System

    SciTech Connect

    C. O. Slater; J. M. Barnes; J. O. Johnson; J.D. Drischler

    1998-10-01

    The Monte Carlo ~djoint ~ielding Code System, MASH, calculates neutron and gamma- ray environments and radiation protection factors for armored military vehicles, structures, trenches, and other shielding configurations by coupling a forward discrete ordinates air- over-ground transport calculation with an adjoint Monte Carlo treatment of the shielding geometry. Efficiency and optimum use of computer time are emphasized. The code system includes the GRTUNCL and DORT codes for air-over-ground transport calculations, the MORSE code with the GIFT5 combinatorial geometry package for adjoint shielding calculations, and several peripheral codes that perform the required data preparations, transformations, and coupling functions. The current version, MASH v 1.5, is the successor to the original MASH v 1.0 code system initially developed at Oak Ridge National Laboratory (ORNL). The discrete ordinates calculation determines the fluence on a coupling surface surrounding the shielding geometry due to an external neutron/gamma-ray source. The Monte Carlo calculation determines the effectiveness of the fluence at that surface in causing a response in a detector within the shielding geometry, i.e., the "dose importance" of the coupling surface fluence. A coupling code folds the fluence together with the dose importance, giving the desired dose response. The coupling code can determine the dose response as a function of the shielding geometry orientation relative to the source, distance from the source, and energy response of the detector. This user's manual includes a short description of each code, the input required to execute the code along with some helpful input data notes, and a representative sample problem.

  19. Multi-shot compressed coded aperture imaging

    NASA Astrophysics Data System (ADS)

    Shao, Xiaopeng; Du, Juan; Wu, Tengfei; Jin, Zhenhua

    2013-09-01

    The classical methods of compressed coded aperture (CCA) still require an optical sensor with high resolution, although the sampling rate has broken the Nyquist sampling rate already. A novel architecture of multi-shot compressed coded aperture imaging (MCCAI) using a low resolution optical sensor is proposed, which is mainly based on the 4-f imaging system, combining with two spatial light modulators (SLM) to achieve the compressive imaging goal. The first SLM employed for random convolution is placed at the frequency spectrum plane of the 4-f imaging system, while the second SLM worked as a selecting filter is positioned in front of the optical sensor. By altering the random coded pattern of the second SLM and sampling, a couple of observations can be obtained by a low resolution optical sensor easily, and these observations will be combined mathematically and used to reconstruct the high resolution image. That is to say, MCCAI aims at realizing the super resolution imaging with multiple random samplings by using a low resolution optical sensor. To improve the computational imaging performance, total variation (TV) regularization is introduced into the super resolution reconstruction model to get rid of the artifacts, and alternating direction method of multipliers (ADM) is utilized to solve the optimal result efficiently. The results show that the MCCAI architecture is suitable for super resolution computational imaging using a much lower resolution optical sensor than traditional CCA imaging methods by capturing multiple frame images.

  20. Coupled multi-disciplinary composites behavior simulation

    NASA Technical Reports Server (NTRS)

    Singhal, Surendra N.; Murthy, Pappu L. N.; Chamis, Christos C.

    1993-01-01

    The capabilities of the computer code CSTEM (Coupled Structural/Thermal/Electro-Magnetic Analysis) are discussed and demonstrated. CSTEM computationally simulates the coupled response of layered multi-material composite structures subjected to simultaneous thermal, structural, vibration, acoustic, and electromagnetic loads and includes the effect of aggressive environments. The composite material behavior and structural response is determined at its various inherent scales: constituents (fiber/matrix), ply, laminate, and structural component. The thermal and mechanical properties of the constituents are considered to be nonlinearly dependent on various parameters such as temperature and moisture. The acoustic and electromagnetic properties also include dependence on vibration and electromagnetic wave frequencies, respectively. The simulation is based on a three dimensional finite element analysis in conjunction with composite mechanics and with structural tailoring codes, and with acoustic and electromagnetic analysis methods. An aircraft engine composite fan blade is selected as a typical structural component to demonstrate the CSTEM capabilities. Results of various coupled multi-disciplinary heat transfer, structural, vibration, acoustic, and electromagnetic analyses for temperature distribution, stress and displacement response, deformed shape, vibration frequencies, mode shapes, acoustic noise, and electromagnetic reflection from the fan blade are discussed for their coupled effects in hot and humid environments. Collectively, these results demonstrate the effectiveness of the CSTEM code in capturing the coupled effects on the various responses of composite structures subjected to simultaneous multiple real-life loads.

  1. Multiband Asymmetric Transmission of Airborne Sound by Coded Metasurfaces

    NASA Astrophysics Data System (ADS)

    Xie, Boyang; Cheng, Hua; Tang, Kun; Liu, Zhengyou; Chen, Shuqi; Tian, Jianguo

    2017-02-01

    We present the design, characterization, and theoretical and experimental demonstration of multiband asymmetric transmission of airborne sound using an ultrathin coded metasurface formed by an alternating arrangement of the coding elements 0 and 1. The asymmetric transmission effect can be easily controlled to selectively achieve off and on by coding different patterns. Both frequency- and angle-selective transmission is discussed. The proposed multiband asymmetric transmission stems from the constructive and destructive interferences of acoustic-wave coupling between the coded elements. The experimental results are in relative agreement with numerical simulations. This work opens an alternative path for ultrathin acoustic-device design and shows promise for application in acoustic rectification and noise control.

  2. A code for calculating intrabeam scattering and beam lifetime

    SciTech Connect

    Kim, C.H.

    1997-05-01

    Beam emittances in a circular accelerator with a high beam intensity are strongly affected by the small angle intrabeam Coulomb scattering. In the computer simulation model the authors present here they used three coupled nonlinear differential equations to describe the evolution of the emittances in the transverse and the longitudinal planes. These equations include terms which take into account the intra-beam scattering, adiabatic damping, microwave instabilities, synchrotron damping, and quantum excitations. A code is generated to solve the equations numerically and incorporated into a FORTRAN code library. Circular high intensity physics routines are included in the library such as intrabeam scattering, Touschek scattering, and the bunch lengthening effect of higher harmonic cavities. The code runs presently in the PC environment. Description of the code and some examples are presented.

  3. Status and Benchmarking of the Free Boundary Equilibrium Code FREEBIE

    NASA Astrophysics Data System (ADS)

    Urban, Jakub; Artaud, Jean-Francois; Basiuk, Vincent; Besseghir, Karim; Huynh, Philippe; Kim, Sunhee; Lister, Jonathan Bryan; Nardon, Eric

    2013-10-01

    FREEBIE is a recent free boundary equilibrium (FBE) code, which solves the temporal evolution of tokamak equilibrium, described by the Grad-Shafranov equation and circuit equations for active and passive poloidal field components. FREEBIE can be run stand-alone, within the transport code CRONOS or on the ITM (European Integrated Tokamak Modelling) platform. FREEBIE with prescribed plasma profiles has already been successfully benchmarked against DINA simulations and TCV experiments. Here we report on the current status of the code coupling with transport solvers and benchmarking of fully consistent transport-FBE simulations. A benchmarking procedure is developed and applied to several ITER cases using FREEBIE, DINA and CEDRES++. The benchmarks indicate that because of the different methods and the complexity of the problem, results obtained from the different codes are comparable only to a certain extent. Supported by GACR 13-38121P, EURATOM, AS CR AV0Z 20430508, MSMT 7G10072 and MSMT LM2011021.

  4. Coded Aperture Imaging for Fluorescent X-rays-Biomedical Applications

    SciTech Connect

    Haboub, Abdel; MacDowell, Alastair; Marchesini, Stefano; Parkinson, Dilworth

    2013-06-01

    Employing a coded aperture pattern in front of a charge couple device pixilated detector (CCD) allows for imaging of fluorescent x-rays (6-25KeV) being emitted from samples irradiated with x-rays. Coded apertures encode the angular direction of x-rays and allow for a large Numerical Aperture x- ray imaging system. The algorithm to develop the self-supported coded aperture pattern of the Non Two Holes Touching (NTHT) pattern was developed. The algorithms to reconstruct the x-ray image from the encoded pattern recorded were developed by means of modeling and confirmed by experiments. Samples were irradiated by monochromatic synchrotron x-ray radiation, and fluorescent x-rays from several different test metal samples were imaged through the newly developed coded aperture imaging system. By choice of the exciting energy the different metals were speciated.

  5. DEXTER: A one-dimensional code for calculating thermionic performance of long converters

    NASA Technical Reports Server (NTRS)

    Sawyer, C. D.

    1971-01-01

    A versatile code is described for computing the coupled thermionic electric-thermal performance of long thermionic converters in which the temperature and voltage variations cannot be neglected. The code is capable of accounting for a variety of external electrical connection schemes, coolant flow paths and converter failures by partial shorting. Example problem solutions are included along with a user's manual.

  6. Dexter - A one-dimensional code for calculating thermionic performance of long converters.

    NASA Technical Reports Server (NTRS)

    Sawyer, C. D.

    1971-01-01

    This paper describes a versatile code for computing the coupled thermionic electric-thermal performance of long thermionic converters in which the temperature and voltage variations cannot be neglected. The code is capable of accounting for a variety of external electrical connection schemes, coolant flow paths and converter failures by partial shorting. Example problem solutions are given.

  7. The Classification of Behavioral Observation Codes in Studies of Family Interaction.

    ERIC Educational Resources Information Center

    Jacob, Theodore; Krahn, Gloria

    1987-01-01

    Interaction data from 96 married couples in which the husband was an alcoholic, depressive, or normal control were coded with Marital Interaction Coding System and subjected to multidimensional scaling, principle components analysis, and transitional probability analyses. Resulting solutions indicated several clusters common across methods and…

  8. Nonlinear, nonbinary cyclic group codes

    NASA Technical Reports Server (NTRS)

    Solomon, G.

    1992-01-01

    New cyclic group codes of length 2(exp m) - 1 over (m - j)-bit symbols are introduced. These codes can be systematically encoded and decoded algebraically. The code rates are very close to Reed-Solomon (RS) codes and are much better than Bose-Chaudhuri-Hocquenghem (BCH) codes (a former alternative). The binary (m - j)-tuples are identified with a subgroup of the binary m-tuples which represents the field GF(2 exp m). Encoding is systematic and involves a two-stage procedure consisting of the usual linear feedback register (using the division or check polynomial) and a small table lookup. For low rates, a second shift-register encoding operation may be invoked. Decoding uses the RS error-correcting procedures for the m-tuple codes for m = 4, 5, and 6.

  9. On multilevel block modulation codes

    NASA Technical Reports Server (NTRS)

    Kasami, Tadao; Takata, Toyoo; Fujiwara, Toru; Lin, Shu

    1991-01-01

    The multilevel (ML) technique for combining block coding and modulation is investigated. A general formulation is presented for ML modulation codes in terms of component codes with appropriate distance measures. A specific method for constructing ML block modulation codes (MLBMCs) with interdependency among component codes is proposed. Given an MLBMC C with no interdependency among the binary component codes, the proposed method gives an MLBC C-prime that has the same rate as C, a minimum squared Euclidean distance not less than that of C, a trellis diagram with the same number of states as that of C, and a smaller number of nearest-neighbor codewords than that of C. Finally, a technique is presented for analyzing the error performance of MLBMCs for an additive white Gaussian noise channel based on soft-decision maximum-likelihood decoding.

  10. On multilevel block modulation codes

    NASA Technical Reports Server (NTRS)

    Kasami, Tadao; Takata, Toyoo; Fujiwara, Toru; Lin, Shu

    1991-01-01

    The multilevel (ML) technique for combining block coding and modulation is investigated. A general formulation is presented for ML modulation codes in terms of component codes with appropriate distance measures. A specific method for constructing ML block modulation codes (MLBMCs) with interdependency among component codes is proposed. Given an MLBMC C with no interdependency among the binary component codes, the proposed method gives an MLBC C-prime that has the same rate as C, a minimum squared Euclidean distance not less than that of C, a trellis diagram with the same number of states as that of C, and a smaller number of nearest-neighbor codewords than that of C. Finally, a technique is presented for analyzing the error performance of MLBMCs for an additive white Gaussian noise channel based on soft-decision maximum-likelihood decoding.

  11. Upgrades to NRLMOL code

    NASA Astrophysics Data System (ADS)

    Basurto, Luis

    This project consists of performing upgrades to the massively parallel NRLMOL electronic structure code in order to enhance its performance by increasing its flexibility by: a) Utilizing dynamically allocated arrays, b) Executing in a parallel environment sections of the program that were previously executed in a serial mode, c) Exploring simultaneous concurrent executions of the program through the use of an already existing MPI environment; thus enabling the simulation of larger systems than it is currently capable of performing. Also developed was a graphical user interface that will allow less experienced users to start performing electronic structure calculations by aiding them in performing the necessary configuration of input files as well as providing graphical tools for the displaying and analysis of results. Additionally, a computational toolkit that can avail of large supercomputers and make use of various levels of approximation for atomic interactions was developed to search for stable atomic clusters and predict novel stable endohedral fullerenes. As an application of the developed computational toolkit, a search was conducted for stable isomers of Sc3N C80 fullerene. In this search, about 1.2 million isomers of C80 were optimized in various charged states at the PM6 level. Subsequently, using the selected optimized isomers of C80 in various charged state, about 10,000 isomers of Sc3N C80 were constructed which were optimized using semi-empirical PM6 quantum chemical method. A few selected lowest isomers of Sc3N C80 were optimized at the DFT level. The calculation confirms the lowest 3 isomers previously reported in literature but 4 new isomers are found within the lowest 10 isomers. Using the upgraded NRLMOL code, a study was done of the electronic structure of a multichromoric molecular complex containing two of each borondipyrromethane dye, Zn-tetraphenyl-porphyrin, bisphenyl anthracene and a fullerene. A systematic examination of the effect of

  12. Bar-Code-Scribing Tool

    NASA Technical Reports Server (NTRS)

    Badinger, Michael A.; Drouant, George J.

    1991-01-01

    Proposed hand-held tool applies indelible bar code to small parts. Possible to identify parts for management of inventory without tags or labels. Microprocessor supplies bar-code data to impact-printer-like device. Device drives replaceable scribe, which cuts bar code on surface of part. Used to mark serially controlled parts for military and aerospace equipment. Also adapts for discrete marking of bulk items used in food and pharmaceutical processing.

  13. Explosive Formulation Code Naming SOP

    SciTech Connect

    Martz, H. E.

    2014-09-19

    The purpose of this SOP is to provide a procedure for giving individual HME formulations code names. A code name for an individual HME formulation consists of an explosive family code, given by the classified guide, followed by a dash, -, and a number. If the formulation requires preparation such as packing or aging, these add additional groups of symbols to the X-ray specimen name.

  14. QR code for medical information uses.

    PubMed

    Fontelo, Paul; Liu, Fang; Ducut, Erick G

    2008-11-06

    We developed QR code online tools, simulated and tested QR code applications for medical information uses including scanning QR code labels, URLs and authentication. Our results show possible applications for QR code in medicine.

  15. Treatment of small wire loops in the method of moments code NEC (Numerical Electromagnetics Code)

    NASA Astrophysics Data System (ADS)

    Burke, G. J.

    1987-10-01

    The Numerical Electromagnetics code (NEC) is generally an accurate and versatile method-of-moments code for modeling wire antennas. NEC has been found to suffer loss of accuracy in VLF applications involving electrically small antennas, however. Some of these problems were discussed previously and corrections demonstrated to improve accuracy for open wire antennas such as dipoles. This report covers the special problems of modeling small wire loops. To model small loops the method-of-moments solution now used in NEC, with point matching and spline basis functions, was modified to use a constant loop basis function and a loop weighting function on each loop. The need for loop basis and weighting functions on small loops has been noted previously for a Galerkin method-of-moments code similar to MININEC. This treatment is implemented in the NEC solution with an approximation of the loop weighting. Also, an algorithm was developed for finding and labeling loops on which the new basis and weighting functions should be applied. The option for loop basis and weighting functions has been incorporated into the code NEC3 VLF which resulted from the previous VLF enhancement described. The improvement in solution accuracy and stability is demonstrated for loop antennas, loops coupled to dipoles and wire grids.

  16. Coded Cooperation for Multiway Relaying in Wireless Sensor Networks.

    PubMed

    Si, Zhongwei; Ma, Junyang; Thobaben, Ragnar

    2015-06-29

    Wireless sensor networks have been considered as an enabling technology for constructing smart cities. One important feature of wireless sensor networks is that the sensor nodes collaborate in some manner for communications. In this manuscript, we focus on the model of multiway relaying with full data exchange where each user wants to transmit and receive data to and from all other users in the network. We derive the capacity region for this specific model and propose a coding strategy through coset encoding. To obtain good performance with practical codes, we choose spatially-coupled LDPC (SC-LDPC) codes for the coded cooperation. In particular, for the message broadcasting from the relay, we construct multi-edge-type (MET) SC-LDPC codes by repeatedly applying coset encoding. Due to the capacity-achieving property of the SC-LDPC codes, we prove that the capacity region can theoretically be achieved by the proposed MET SC-LDPC codes. Numerical results with finite node degrees are provided, which show that the achievable rates approach the boundary of the capacity region in both binary erasure channels and additive white Gaussian channels.

  17. ALEPH2 - A general purpose Monte Carlo depletion code

    SciTech Connect

    Stankovskiy, A.; Van Den Eynde, G.; Baeten, P.; Trakas, C.; Demy, P. M.; Villatte, L.

    2012-07-01

    The Monte-Carlo burn-up code ALEPH is being developed at SCK-CEN since 2004. A previous version of the code implemented the coupling between the Monte Carlo transport (any version of MCNP or MCNPX) and the ' deterministic' depletion code ORIGEN-2.2 but had important deficiencies in nuclear data treatment and limitations inherent to ORIGEN-2.2. A new version of the code, ALEPH2, has several unique features making it outstanding among other depletion codes. The most important feature is full data consistency between steady-state Monte Carlo and time-dependent depletion calculations. The last generation general-purpose nuclear data libraries (JEFF-3.1.1, ENDF/B-VII and JENDL-4) are fully implemented, including special purpose activation, spontaneous fission, fission product yield and radioactive decay data. The built-in depletion algorithm allows to eliminate the uncertainties associated with obtaining the time-dependent nuclide concentrations. A predictor-corrector mechanism, calculation of nuclear heating, calculation of decay heat, decay neutron sources are available as well. The validation of the code on the results of REBUS experimental program has been performed. The ALEPH2 has shown better agreement with measured data than other depletion codes. (authors)

  18. Component coding and the neurointerventionalist: a tale with an end.

    PubMed

    Hirsch, Joshua A; Donovan, William D; Leslie-Mazwi, Thabele M; Nicola, Greg N; Manchikanti, Laxmaiah; Silva, Ezequiel

    2013-11-01

    Component coding is the method NeuroInterventionalists have used for the past 20 years to bill procedural care. The term refers to separate billing for each discrete aspect of a surgical or interventional procedure, and has typically allowed billing the procedural activity, such as catheterization of vessels, separately from the diagnostic evaluation of radiographic images. This work is captured by supervision and interpretation codes. Benefits of component coding will be reviewed in this article. The American Medical Association/Specialty Society Relative Value Scale Update Committee has been filtering for codes that are frequently reported together. NeuroInterventional procedures are going to be caught in this filter as our codes are often reported simultaneously as for example routinely occurs when procedural codes are coupled to those for supervision and interpretation. Unfortunately, history has shown that when bundled codes have been reviewed at the RUC, there has been a trend to lower overall RVU value for the combined service compared with the sum of the values of the separate services.

  19. The FLUKA Code: An Overview

    NASA Technical Reports Server (NTRS)

    Ballarini, F.; Battistoni, G.; Campanella, M.; Carboni, M.; Cerutti, F.; Empl, A.; Fasso, A.; Ferrari, A.; Gadioli, E.; Garzelli, M. V.; hide

    2006-01-01

    FLUKA is a multipurpose Monte Carlo code which can transport a variety of particles over a wide energy range in complex geometries. The code is a joint project of INFN and CERN: part of its development is also supported by the University of Houston and NASA. FLUKA is successfully applied in several fields, including but not only, particle physics, cosmic ray physics, dosimetry, radioprotection, hadron therapy, space radiation, accelerator design and neutronics. The code is the standard tool used at CERN for dosimetry, radioprotection and beam-machine interaction studies. Here we give a glimpse into the code physics models with a particular emphasis to the hadronic and nuclear sector.

  20. Implementation issues in source coding

    NASA Technical Reports Server (NTRS)

    Sayood, Khalid; Chen, Yun-Chung; Hadenfeldt, A. C.

    1989-01-01

    An edge preserving image coding scheme which can be operated in both a lossy and a lossless manner was developed. The technique is an extension of the lossless encoding algorithm developed for the Mars observer spectral data. It can also be viewed as a modification of the DPCM algorithm. A packet video simulator was also developed from an existing modified packet network simulator. The coding scheme for this system is a modification of the mixture block coding (MBC) scheme described in the last report. Coding algorithms for packet video were also investigated.

  1. Golay and other box codes

    NASA Technical Reports Server (NTRS)

    Solomon, G.

    1992-01-01

    The (24,12;8) extended Golay Code can be generated as a 6 x 4 binary matrix from the (15,11;3) BCH-Hamming Code, represented as a 5 x 3 matrix, by adding a row and a column, both of odd or even parity. The odd-parity case provides the additional 12th dimension. Furthermore, any three columns and five rows of the 6 x 4 Golay form a BCH-Hamming (15,11;3) Code. Similarly a (80,58;8) code can be generated as a 10 x 8 binary matrix from the (63,57;3) BCH-Hamming Code represented as a 9 x 7 matrix by adding a row and a column both of odd and even parity. Furthermore, any seven columns along with the top nine rows is a BCH-Hamming (53,57;3) Code. A (80,40;16) 10 x 8 matrix binary code with weight structure identical to the extended (80,40;16) Quadratic Residue Code is generated from a (63,39;7) binary cyclic code represented as a 9 x 7 matrix, by adding a row and a column, both of odd or even parity.

  2. Golay and other box codes

    NASA Technical Reports Server (NTRS)

    Solomon, G.

    1992-01-01

    The (24,12;8) extended Golay Code can be generated as a 6x4 binary matrix from the (15,11;3) BCH-Hamming Code, represented as a 5 x 3 matrix, by adding a row and a column, both of odd or even parity. The odd-parity case provides the additional 12th dimension. Furthermore, any three columns and five rows of the 6 x 4 Golay form a BCH-Hamming (15,11;3) Code. Similarly a (80,58;8) code can be generated as a 10 x 8 binary matrix from the (63,57;3) BCH-Hamming Code represented as a 9 x 7 matrix by adding a row and a column both of odd and even parity. Furthermore, any seven columns along with the top nine rows is a BCH-Hamming (63,57;3) Code. A (80,40;16) 10 x 8 matrix binary code with weight structure identical to the extended (80,40;16) Quadratic Residue Code is generated from a (63,39;7) binary cyclic code represented as a 9 x 7 matrix, by adding a row and a column, both of odd or even parity.

  3. Parallelization of the SIR code

    NASA Astrophysics Data System (ADS)

    Thonhofer, S.; Bellot Rubio, L. R.; Utz, D.; Jurčak, J.; Hanslmeier, A.; Piantschitsch, I.; Pauritsch, J.; Lemmerer, B.; Guttenbrunner, S.

    A high-resolution 3-dimensional model of the photospheric magnetic field is essential for the investigation of small-scale solar magnetic phenomena. The SIR code is an advanced Stokes-inversion code that deduces physical quantities, e.g. magnetic field vector, temperature, and LOS velocity, from spectropolarimetric data. We extended this code by the capability of directly using large data sets and inverting the pixels in parallel. Due to this parallelization it is now feasible to apply the code directly on extensive data sets. Besides, we included the possibility to use different initial model atmospheres for the inversion, which enhances the quality of the results.

  4. Computer Code Validation in Electromagnetics

    DTIC Science & Technology

    1989-06-01

    modeling code. This user perception of validity is based on documentation, peer review, user experience and computer resource management. Keywords: Electromagnetic environment effects; Electromagnetic interference; Reprints. (jhd)

  5. The FLUKA Code: an Overview

    SciTech Connect

    Ballarini, F.; Battistoni, G.; Campanella, M.; Carboni, M.; Cerutti, F.; Empl, A.; Fasso, A.; Ferrari, A.; Gadioli, E.; Garzelli, M.V.; Lantz, M.; Liotta, M.; Mairani, A.; Mostacci, A.; Muraro, S.; Ottolenghi, A.; Pelliccioni, M.; Pinsky, L.; Ranft, J.; Roesler, S.; Sala, P.R.; /Milan U. /INFN, Milan /Pavia U. /INFN, Pavia /CERN /Siegen U. /Houston U. /SLAC /Frascati /NASA, Houston /ENEA, Frascati

    2005-11-09

    FLUKA is a multipurpose Monte Carlo code which can transport a variety of particles over a wide energy range in complex geometries. The code is a joint project of INFN and CERN: part of its development is also supported by the University of Houston and NASA. FLUKA is successfully applied in several fields, including but not only, particle physics, cosmic ray physics, dosimetry, radioprotection, hadron therapy, space radiation, accelerator design and neutronics. The code is the standard tool used at CERN for dosimetry, radioprotection and beam-machine interaction studies. Here we give a glimpse into the code physics models with a particular emphasis to the hadronic and nuclear sector.

  6. High Order Modulation Protograph Codes

    NASA Technical Reports Server (NTRS)

    Nguyen, Thuy V. (Inventor); Nosratinia, Aria (Inventor); Divsalar, Dariush (Inventor)

    2014-01-01

    Digital communication coding methods for designing protograph-based bit-interleaved code modulation that is general and applies to any modulation. The general coding framework can support not only multiple rates but also adaptive modulation. The method is a two stage lifting approach. In the first stage, an original protograph is lifted to a slightly larger intermediate protograph. The intermediate protograph is then lifted via a circulant matrix to the expected codeword length to form a protograph-based low-density parity-check code.

  7. Astrophysics Source Code Library Enhancements

    NASA Astrophysics Data System (ADS)

    Hanisch, R. J.; Allen, A.; Berriman, G. B.; DuPrie, K.; Mink, J.; Nemiroff, R. J.; Schmidt, J.; Shamir, L.; Shortridge, K.; Taylor, M.; Teuben, P. J.; Wallin, J.

    2015-09-01

    The Astrophysics Source Code Library (ASCL)1 is a free online registry of codes used in astronomy research; it currently contains over 900 codes and is indexed by ADS. The ASCL has recently moved a new infrastructure into production. The new site provides a true database for the code entries and integrates the WordPress news and information pages and the discussion forum into one site. Previous capabilities are retained and permalinks to ascl.net continue to work. This improvement offers more functionality and flexibility than the previous site, is easier to maintain, and offers new possibilities for collaboration. This paper covers these recent changes to the ASCL.

  8. Patched Conic Trajectory Code

    NASA Technical Reports Server (NTRS)

    Park, Brooke Anderson; Wright, Henry

    2012-01-01

    PatCon code was developed to help mission designers run trade studies on launch and arrival times for any given planet. Initially developed in Fortran, the required inputs included launch date, arrival date, and other orbital parameters of the launch planet and arrival planets at the given dates. These parameters include the position of the planets, the eccentricity, semi-major axes, argument of periapsis, ascending node, and inclination of the planets. With these inputs, a patched conic approximation is used to determine the trajectory. The patched conic approximation divides the planetary mission into three parts: (1) the departure phase, in which the two relevant bodies are Earth and the spacecraft, and where the trajectory is a departure hyperbola with Earth at the focus; (2) the cruise phase, in which the two bodies are the Sun and the spacecraft, and where the trajectory is a transfer ellipse with the Sun at the focus; and (3) the arrival phase, in which the two bodies are the target planet and the spacecraft, where the trajectory is an arrival hyperbola with the planet as the focus.

  9. The KIDTALK Behavior and Language Code: Manual and Coding Protocol.

    ERIC Educational Resources Information Center

    Delaney, Elizabeth M.; Ezell, Sara S.; Solomon, Ned A.; Hancock, Terry B.; Kaiser, Ann P.

    Developed as part of the Milieu Language Teaching Project at the John F. Kennedy Center at Vanderbilt University in Nashville, Tennessee, this KIDTALK Behavior-Language Coding Protocol and manual measures behavior occurring during adult-child interactions. The manual is divided into 5 distinct sections: (1) the adult behavior codes describe…

  10. Coupling strength versus coupling impact in nonidentical bidirectionally coupled dynamics

    NASA Astrophysics Data System (ADS)

    Laiou, Petroula; Andrzejak, Ralph G.

    2017-01-01

    The understanding of interacting dynamics is important for the characterization of real-world networks. In general, real-world networks are heterogeneous in the sense that each node of the network is a dynamics with different properties. For coupled nonidentical dynamics symmetric interactions are not straightforwardly defined from the coupling strength values. Thus, a challenging issue is whether we can define a symmetric interaction in this asymmetric setting. To address this problem we introduce the notion of the coupling impact. The coupling impact considers not only the coupling strength but also the energy of the individual dynamics, which is conveyed via the coupling. To illustrate this concept, we follow a data-driven approach by analyzing signals from pairs of coupled model dynamics using two different connectivity measures. We find that the coupling impact, but not the coupling strength, correctly detects a symmetric interaction between pairs of coupled dynamics regardless of their degree of asymmetry. Therefore, this approach allows us to reveal the real impact that one dynamics has on the other and hence to define symmetric interactions in pairs of nonidentical dynamics.

  11. Civil Code, 11 December 1987.

    PubMed

    1988-01-01

    Article 162 of this Mexican Code provides, among other things, that "Every person has the right freely, responsibly, and in an informed fashion to determine the number and spacing of his or her children." When a marriage is involved, this right is to be observed by the spouses "in agreement with each other." The civil codes of the following states contain the same provisions: 1) Baja California (Art. 159 of the Civil Code of 28 April 1972 as revised in Decree No. 167 of 31 January 1974); 2) Morelos (Art. 255 of the Civil Code of 26 September 1949 as revised in Decree No. 135 of 29 December 1981); 3) Queretaro (Art. 162 of the Civil Code of 29 December 1950 as revised in the Act of 9 January 1981); 4) San Luis Potosi (Art. 147 of the Civil Code of 24 March 1946 as revised in 13 June 1978); Sinaloa (Art. 162 of the Civil Code of 18 June 1940 as revised in Decree No. 28 of 14 October 1975); 5) Tamaulipas (Art. 146 of the Civil Code of 21 November 1960 as revised in Decree No. 20 of 30 April 1975); 6) Veracruz-Llave (Art. 98 of the Civil Code of 1 September 1932 as revised in the Act of 30 December 1975); and 7) Zacatecas (Art. 253 of the Civil Code of 9 February 1965 as revised in Decree No. 104 of 13 August 1975). The Civil Codes of Puebla and Tlaxcala provide for this right only in the context of marriage with the spouses in agreement. See Art. 317 of the Civil Code of Puebla of 15 April 1985 and Article 52 of the Civil Code of Tlaxcala of 31 August 1976 as revised in Decree No. 23 of 2 April 1984. The Family Code of Hidalgo requires as a formality of marriage a certification that the spouses are aware of methods of controlling fertility, responsible parenthood, and family planning. In addition, Article 22 the Civil Code of the Federal District provides that the legal capacity of natural persons is acquired at birth and lost at death; however, from the moment of conception the individual comes under the protection of the law, which is valid with respect to the

  12. Error coding simulations in C

    NASA Technical Reports Server (NTRS)

    Noble, Viveca K.

    1994-01-01

    When data is transmitted through a noisy channel, errors are produced within the data rendering it indecipherable. Through the use of error control coding techniques, the bit error rate can be reduced to any desired level without sacrificing the transmission data rate. The Astrionics Laboratory at Marshall Space Flight Center has decided to use a modular, end-to-end telemetry data simulator to simulate the transmission of data from flight to ground and various methods of error control. The simulator includes modules for random data generation, data compression, Consultative Committee for Space Data Systems (CCSDS) transfer frame formation, error correction/detection, error generation and error statistics. The simulator utilizes a concatenated coding scheme which includes CCSDS standard (255,223) Reed-Solomon (RS) code over GF(2(exp 8)) with interleave depth of 5 as the outermost code, (7, 1/2) convolutional code as an inner code and CCSDS recommended (n, n-16) cyclic redundancy check (CRC) code as the innermost code, where n is the number of information bits plus 16 parity bits. The received signal-to-noise for a desired bit error rate is greatly reduced through the use of forward error correction techniques. Even greater coding gain is provided through the use of a concatenated coding scheme. Interleaving/deinterleaving is necessary to randomize burst errors which may appear at the input of the RS decoder. The burst correction capability length is increased in proportion to the interleave depth. The modular nature of the simulator allows for inclusion or exclusion of modules as needed. This paper describes the development and operation of the simulator, the verification of a C-language Reed-Solomon code, and the possibility of using Comdisco SPW(tm) as a tool for determining optimal error control schemes.

  13. DSD - A Particle Simulation Code for Modeling Dusty Plasmas

    NASA Astrophysics Data System (ADS)

    Joyce, Glenn; Lampe, Martin; Ganguli, Gurudas

    1999-11-01

    The NRL Dynamically Shielded Dust code (DSD) is a particle simulation code developed to study the behavior of strongly coupled, dusty plasmas. The model includes the electrostatic wake effects of plasma ions flowing through plasma electrons, collisions of dust and plasma particles with each other and with neutrals. The simulation model contains the short-range strong forces of a shielded Coulomb system, and the long-range forces that are caused by the wake. It also includes other effects of a flowing plasma such as drag forces. In order to model strongly coupled dust in plasmas, we make use of the techniques of molecular dynamics simulation, PIC simulation, and the "particle-particle/particle-mesh" (P3M) technique of Hockney and Eastwood. We also make use of the dressed test particle representation of Rostoker and Rosenbluth. Many of the techniques we use in the model are common to all PIC plasma simulation codes. The unique properties of the code follow from the accurate representation of both the short-range aspects of the interaction between dust grains, and long-range forces mediated by the complete plasma dielectric response. If the streaming velocity is zero, the potential used in the model reduces to the Debye-Huckel potential, and the simulation is identical to molecular dynamics models of the Yukawa potential. The plasma appears only implicitly through the plasma dispersion function, so it is not necessary in the code to resolve the fast plasma time scales.

  14. Coding in pigeons: Multiple-coding versus single-code/default strategies.

    PubMed

    Pinto, Carlos; Machado, Armando

    2015-05-01

    To investigate the coding strategies that pigeons may use in a temporal discrimination tasks, pigeons were trained on a matching-to-sample procedure with three sample durations (2s, 6s and 18s) and two comparisons (red and green hues). One comparison was correct following 2-s samples and the other was correct following both 6-s and 18-s samples. Tests were then run to contrast the predictions of two hypotheses concerning the pigeons' coding strategies, the multiple-coding and the single-code/default. According to the multiple-coding hypothesis, three response rules are acquired, one for each sample. According to the single-code/default hypothesis, only two response rules are acquired, one for the 2-s sample and a "default" rule for any other duration. In retention interval tests, pigeons preferred the "default" key, a result predicted by the single-code/default hypothesis. In no-sample tests, pigeons preferred the key associated with the 2-s sample, a result predicted by multiple-coding. Finally, in generalization tests, when the sample duration equaled 3.5s, the geometric mean of 2s and 6s, pigeons preferred the key associated with the 6-s and 18-s samples, a result predicted by the single-code/default hypothesis. The pattern of results suggests the need for models that take into account multiple sources of stimulus control.

  15. Building codes : obstacle or opportunity?

    Treesearch

    Alberto Goetzl; David B. McKeever

    1999-01-01

    Building codes are critically important in the use of wood products for construction. The codes contain regulations that are prescriptive or performance related for various kinds of buildings and construction types. A prescriptive standard might dictate that a particular type of material be used in a given application. A performance standard requires that a particular...

  16. Language Recognition via Sparse Coding

    DTIC Science & Technology

    2016-09-08

    a posteriori (MAP) adaptation scheme that further optimizes the discriminative quality of sparse-coded speech fea - tures. We empirically validate the...significantly improve the discriminative quality of sparse-coded speech fea - tures. In Section 4, we evaluate the proposed approaches against an i-vector

  17. Coding Processes in Human Memory.

    ERIC Educational Resources Information Center

    Melton, Arthur W., Ed.; Martin, Edwin, Ed.

    This collection of papers represents the proceedings of a research workshop on coding processes in human memory held in Massachusetts in August, 1971. The emphasis is on the contemporary issue of coding and particularly on the encoding processes at the time information is stored in memory. This volume is intended for use by research workers and…

  18. QPhiX Code Generator

    SciTech Connect

    Joo, Balint

    2014-09-16

    A simple code-generator to generate the low level code kernels used by the QPhiX Library for Lattice QCD. Generates Kernels for Wilson-Dslash, and Wilson-Clover kernels. Can be reused to write other optimized kernels for Intel Xeon Phi(tm), Intel Xeon(tm) and potentially other architectures.

  19. Computer algorithm for coding gain

    NASA Technical Reports Server (NTRS)

    Dodd, E. E.

    1974-01-01

    Development of a computer algorithm for coding gain for use in an automated communications link design system. Using an empirical formula which defines coding gain as used in space communications engineering, an algorithm is constructed on the basis of available performance data for nonsystematic convolutional encoding with soft-decision (eight-level) Viterbi decoding.

  20. LFSC - Linac Feedback Simulation Code

    SciTech Connect

    Ivanov, Valentin; /Fermilab

    2008-05-01

    The computer program LFSC (Code>) is a numerical tool for simulation beam based feedback in high performance linacs. The code LFSC is based on the earlier version developed by a collective of authors at SLAC (L.Hendrickson, R. McEwen, T. Himel, H. Shoaee, S. Shah, P. Emma, P. Schultz) during 1990-2005. That code was successively used in simulation of SLC, TESLA, CLIC and NLC projects. It can simulate as pulse-to-pulse feedback on timescale corresponding to 5-100 Hz, as slower feedbacks, operating in the 0.1-1 Hz range in the Main Linac and Beam Delivery System. The code LFSC is running under Matlab for MS Windows operating system. It contains about 30,000 lines of source code in more than 260 subroutines. The code uses the LIAR ('Linear Accelerator Research code') for particle tracking under ground motion and technical noise perturbations. It uses the Guinea Pig code to simulate the luminosity performance. A set of input files includes the lattice description (XSIF format), and plane text files with numerical parameters, wake fields, ground motion data etc. The Matlab environment provides a flexible system for graphical output.