Quantifying Thin Mat Floating Marsh Strength and Interaction with Hydrodynamic Conditions
NASA Astrophysics Data System (ADS)
Collins, J. H., III; Sasser, C.; Willson, C. S.
2016-12-01
Louisiana possesses over 350,000 acres of unique floating vegetated systems known as floating marshes or flotants. Floating marshes make up 70% of the Terrebonne and Barataria basin wetlands and exist in several forms, mainly thick mat or thin mat. Salt-water intrusion, nutria grazing, and high-energy wave events are believed to be some contributing factors to the degradation of floating marshes; however, there has been little investigation into the hydrodynamic effects on their structural integrity. Due to their unique nature, floating marshes could be susceptible to changes in the hydrodynamic environment that may result from proposed river freshwater and sediment diversion projects introducing flow to areas that are typically somewhat isolated. This study aims to improve the understanding of how thin mat floating marshes respond to increased hydrodynamic stresses and, more specifically, how higher water velocities might increase the washout probability of this vegetation type. There are two major components of this research: 1) A thorough measurement of the material properties of the vegetative mats as a root-soil matrix composite material; and 2) An accurate numerical simulation of the hydrodynamics and forces imposed on the floating marsh mats by the flow. To achieve these goals, laboratory and field experiments were conducted using a customized device to measure the bulk properties of typical floating marshes. Additionally, Delft-3D FLOW and ANSYS FLUENT were used to simulate the flow around a series of simplified mat structures in order to estimate the hydrodynamic forcings on the mats. The hydrodynamic forcings are coupled with a material analysis, allowing for a thorough analysis of their interaction under various conditions. The 2-way Fluid Structure Interaction (F.S.I.) between the flow and the mat is achieved by coupling a Finite Element Analysis (F.E.A.) solver in ANSYS with FLUENT. The flow conditions necessary for the structural failure of the floating marshes are determined for a multitude of mat shapes and sizes, leading to a quantifiable critical velocity required for washout. Ultimately, through dimensional analysis, an equation for washout potential will be developed from the results, which could be used as a design guideline.
NASA Astrophysics Data System (ADS)
Sanders, B. F.; Gallegos, H. A.; Schubert, J. E.
2011-12-01
The Baldwin Hills dam-break flood and associated structural damage is investigated in this study. The flood caused high velocity flows exceeding 5 m/s which destroyed 41 wood-framed residential structures, 16 of which were completed washed out. Damage is predicted by coupling a calibrated hydrodynamic flood model based on the shallow-water equations to structural damage models. The hydrodynamic and damage models are two-way coupled so building failure is predicted upon exceedance of a hydraulic intensity parameter, which in turn triggers a localized reduction in flow resistance which affects flood intensity predictions. Several established damage models and damage correlations reported in the literature are tested to evaluate the predictive skill for two damage states defined by destruction (Level 2) and washout (Level 3). Results show that high-velocity structural damage can be predicted with a remarkable level of skill using established damage models, but only with two-way coupling of the hydrodynamic and damage models. In contrast, when structural failure predictions have no influence on flow predictions, there is a significant reduction in predictive skill. Force-based damage models compare well with a subset of the damage models which were devised for similar types of structures. Implications for emergency planning and preparedness as well as monetary damage estimation are discussed.
Hydrodynamic coupling of two sharp-edged beams vibrating in a viscous fluid
Intartaglia, Carmela; Soria, Leonardo; Porfiri, Maurizio
2014-01-01
In this paper, we study flexural vibrations of two thin beams that are coupled through an otherwise quiescent viscous fluid. While most of the research has focused on isolated beams immersed in placid fluids, inertial and viscous hydrodynamic coupling is ubiquitous across a multitude of engineering and natural systems comprising arrays of flexible structures. In these cases, the distributed hydrodynamic loading experienced by each oscillating structure is not only related to its absolute motion but is also influenced by its relative motion with respect to the neighbouring structures. Here, we focus on linear vibrations of two identical beams for low Knudsen, Keulegan–Carpenter and squeeze numbers. Thus, we describe the fluid flow using unsteady Stokes hydrodynamics and we propose a boundary integral formulation to compute pertinent hydrodynamic functions to study the fluid effect. We validate the proposed theoretical approach through experiments on centimetre-size compliant cantilevers that are subjected to underwater base-excitation. We consider different geometric arrangements, beam interdistances and excitation frequencies to ascertain the model accuracy in terms of the relevant non-dimensional parameters. PMID:24511249
NASA Astrophysics Data System (ADS)
Tan, D.; Erturk, A.
2018-03-01
For bio-inspired, fish-like robotic propulsion, the Macro-Fiber Composite (MFC) piezoelectric technology offers noiseless actuation with a balance between actuation force and velocity response. However, internal nonlinear- ities within the MFCs, such as piezoelectric softening, geometric hardening, inertial softening, and nonlinear dissipation, couple with the hydrodynamic loading on the structure from the surrounding fluid. In the present work, we explore nonlinear actuation of MFC cantilevers underwater and develop a mathematical framework for modeling and analysis. In vacuo resonant actuation experiments are conducted for a set of MFC cantilevers of varying length to width aspect ratios to validate the structural model in the absence of fluid loading. These MFC cantilevers are then subjected to underwater resonant actuation experiments, and model simulations are compared with nonlinear experimental frequency response functions. It is observed that semi-empirical hydro- dynamic loads obtained from quasilinear experiments have to be modified to account for amplitude dependent added mass, and additional nonlinear hydrodynamic effects might be present, yielding qualitative differences in the resulting underwater frequency respones curves with increased excitation amplitude.
Normal modes of weak colloidal gels
NASA Astrophysics Data System (ADS)
Varga, Zsigmond; Swan, James W.
2018-01-01
The normal modes and relaxation rates of weak colloidal gels are investigated in calculations using different models of the hydrodynamic interactions between suspended particles. The relaxation spectrum is computed for freely draining, Rotne-Prager-Yamakawa, and accelerated Stokesian dynamics approximations of the hydrodynamic mobility in a normal mode analysis of a harmonic network representing several colloidal gels. We find that the density of states and spatial structure of the normal modes are fundamentally altered by long-ranged hydrodynamic coupling among the particles. Short-ranged coupling due to hydrodynamic lubrication affects only the relaxation rates of short-wavelength modes. Hydrodynamic models accounting for long-ranged coupling exhibit a microscopic relaxation rate for each normal mode, λ that scales as l-2, where l is the spatial correlation length of the normal mode. For the freely draining approximation, which neglects long-ranged coupling, the microscopic relaxation rate scales as l-γ, where γ varies between three and two with increasing particle volume fraction. A simple phenomenological model of the internal elastic response to normal mode fluctuations is developed, which shows that long-ranged hydrodynamic interactions play a central role in the viscoelasticity of the gel network. Dynamic simulations of hard spheres that gel in response to short-ranged depletion attractions are used to test the applicability of the density of states predictions. For particle concentrations up to 30% by volume, the power law decay of the relaxation modulus in simulations accounting for long-ranged hydrodynamic interactions agrees with predictions generated by the density of states of the corresponding harmonic networks as well as experimental measurements. For higher volume fractions, excluded volume interactions dominate the stress response, and the prediction from the harmonic network density of states fails. Analogous to the Zimm model in polymer physics, our results indicate that long-ranged hydrodynamic interactions play a crucial role in determining the microscopic dynamics and macroscopic properties of weak colloidal gels.
Coherent dynamic structure factors of strongly coupled plasmas: A generalized hydrodynamic approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Di; Hu, GuangYue; Gong, Tao
2016-05-15
A generalized hydrodynamic fluctuation model is proposed to simplify the calculation of the dynamic structure factor S(ω, k) of non-ideal plasmas using the fluctuation-dissipation theorem. In this model, the kinetic and correlation effects are both included in hydrodynamic coefficients, which are considered as functions of the coupling strength (Γ) and collision parameter (kλ{sub ei}), where λ{sub ei} is the electron-ion mean free path. A particle-particle particle-mesh molecular dynamics simulation code is also developed to simulate the dynamic structure factors, which are used to benchmark the calculation of our model. A good agreement between the two different approaches confirms the reliabilitymore » of our model.« less
Hydrodynamic limit of the Yukawa one-component plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salin, Gwenaeel
This paper presents a detailed mathematical analysis of the dynamical correlation of density fluctuations of the Yukawa one component plasma in the framework of linearized hydrodynamics. In particular, expressions for the hydrodynamic modes which hold both for the plasma and the neutral fluid are derived. This work constitutes an extension of the computation of the dynamical structure factor in the hydrodynamic limit done by Vieillefosse and Hansen [Phys. Rev. A 12, 1106 (1975)]. As a typical result of Yukawa plasma, a coupling appears between thermal and mechanical effects in the damping of the sound modes, which does not exist inmore » the classical one component plasma. Theoretical and numerical results obtained by means of equilibrium molecular-dynamic simulations in the microcanonical ensemble are compared and discussed.« less
NASA Astrophysics Data System (ADS)
Su, Yu; Swan, James W.; Zia, Roseanna N.
2017-03-01
Accurate modeling of particle interactions arising from hydrodynamic, entropic, and other microscopic forces is essential to understanding and predicting particle motion and suspension behavior in complex and biological fluids. The long-range nature of hydrodynamic interactions can be particularly challenging to capture. In dilute dispersions, pair-level interactions are sufficient and can be modeled in detail by analytical relations derived by Jeffrey and Onishi [J. Fluid Mech. 139, 261-290 (1984)] and Jeffrey [Phys. Fluids A 4, 16-29 (1992)]. In more concentrated dispersions, analytical modeling of many-body hydrodynamic interactions quickly becomes intractable, leading to the development of simplified models. These include mean-field approaches that smear out particle-scale structure and essentially assume that long-range hydrodynamic interactions are screened by crowding, as particle mobility decays at high concentrations. Toward the development of an accurate and simplified model for the hydrodynamic interactions in concentrated suspensions, we recently computed a set of effective pair of hydrodynamic functions coupling particle motion to a hydrodynamic force and torque at volume fractions up to 50% utilizing accelerated Stokesian dynamics and a fast stochastic sampling technique [Zia et al., J. Chem. Phys. 143, 224901 (2015)]. We showed that the hydrodynamic mobility in suspensions of colloidal spheres is not screened, and the power law decay of the hydrodynamic functions persists at all concentrations studied. In the present work, we extend these mobility functions to include the couplings of particle motion and straining flow to the hydrodynamic stresslet. The couplings computed in these two articles constitute a set of orthogonal coupling functions that can be utilized to compute equilibrium properties in suspensions at arbitrary concentration and are readily applied to solve many-body hydrodynamic interactions analytically.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wayman, E. N.; Sclavounos, P. D.; Butterfield, S.
This article presents a collaborative research program that the Massachusetts Institute of Technology (MIT) and the National Renewable Energy Laboratory (NREL) have undertaken to develop innovative and cost-effective floating and mooring systems for offshore wind turbines in water depths of 10-200 m. Methods for the coupled structural, hydrodynamic, and aerodynamic analysis of floating wind turbine systems are presented in the frequency domain. This analysis was conducted by coupling the aerodynamics and structural dynamics code FAST [4] developed at NREL with the wave load and response simulation code WAMIT (Wave Analysis at MIT) [15] developed at MIT. Analysis tools were developedmore » to consider coupled interactions between the wind turbine and the floating system. These include the gyroscopic loads of the wind turbine rotor on the tower and floater, the aerodynamic damping introduced by the wind turbine rotor, the hydrodynamic damping introduced by wave-body interactions, and the hydrodynamic forces caused by wave excitation. Analyses were conducted for two floater concepts coupled with the NREL 5-MW Offshore Baseline wind turbine in water depths of 10-200 m: the MIT/NREL Shallow Drafted Barge (SDB) and the MIT/NREL Tension Leg Platform (TLP). These concepts were chosen to represent two different methods of achieving stability to identify differences in performance and cost of the different stability methods. The static and dynamic analyses of these structures evaluate the systems' responses to wave excitation at a range of frequencies, the systems' natural frequencies, and the standard deviations of the systems' motions in each degree of freedom in various wind and wave environments. This article in various wind and wave environments. This article explores the effects of coupling the wind turbine with the floating platform, the effects of water depth, and the effects of wind speed on the systems' performance. An economic feasibility analysis of the two concepts was also performed. Key cost components included the material and construction costs of the buoy; material and installation costs of the tethers, mooring lines, and anchor technologies; costs of transporting and installing the system at the chosen site; and the cost of mounting the wind turbine to the platform. The two systems were evaluated based on their static and dynamic performance and the total system installed cost. Both systems demonstrated acceptable motions, and have estimated costs of $1.4-$1.8 million, not including the cost of the wind turbine, the power electronics, or the electrical transmission.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barahona, B.; Jonkman, J.; Damiani, R.
2014-12-01
Coupled dynamic analysis has an important role in the design of offshore wind turbines because the systems are subject to complex operating conditions from the combined action of waves and wind. The aero-hydro-servo-elastic tool FAST v8 is framed in a novel modularization scheme that facilitates such analysis. Here, we present the verification of new capabilities of FAST v8 to model fixed-bottom offshore wind turbines. We analyze a series of load cases with both wind and wave loads and compare the results against those from the previous international code comparison projects-the International Energy Agency (IEA) Wind Task 23 Subtask 2 Offshoremore » Code Comparison Collaboration (OC3) and the IEA Wind Task 30 OC3 Continued (OC4) projects. The verification is performed using the NREL 5-MW reference turbine supported by monopile, tripod, and jacket substructures. The substructure structural-dynamics models are built within the new SubDyn module of FAST v8, which uses a linear finite-element beam model with Craig-Bampton dynamic system reduction. This allows the modal properties of the substructure to be synthesized and coupled to hydrodynamic loads and tower dynamics. The hydrodynamic loads are calculated using a new strip theory approach for multimember substructures in the updated HydroDyn module of FAST v8. These modules are linked to the rest of FAST through the new coupling scheme involving mapping between module-independent spatial discretizations and a numerically rigorous implicit solver. The results show that the new structural dynamics, hydrodynamics, and coupled solutions compare well to the results from the previous code comparison projects.« less
NASA Astrophysics Data System (ADS)
Sassa, S.
2017-12-01
This presentation shows some recent research advances on tsunami-seabed-structure interaction following the 2011 Tohoku Earthquake Tsunami, Japan. It presents a concise summary and discussion of utilizing a geotechnical centrifuge and a large-scale hydro flume for the modelling of tsunami-seabed-structure interaction. I highlight here the role of tsunami-induced seepage in piping/boiling, erosion and bearing capacity decrease and failure of the rubble/seabed foundation. A comparison and discussion are made on the stability assessment for the design of tsunami-resistant structures on the basis of the results from both geo-centrifuge and large-scale hydrodynamic experiments. The concurrent processes of the instability involving the scour of the mound/sandy seabed, bearing capacity failure and flow of the foundation and the failure of caisson breakwaters under tsunami overflow and seepage coupling are made clear in this presentation. Three series of experiments were conducted under fifty gravities. The first series of experiments targeted the instability of the mounds themselves, and the second series of experiments clarified how the mound scour would affect the overall stability of the caissons. The third series of experiments examined the effect of a countermeasure on the basis of the results from the two series of experiments. The experimental results first demonstrated that the coupled overflow-seepage actions promoted the development of the mound scour significantly, and caused bearing capacity failure of the mound, resulting in the total failure of the caisson breakwater, which otherwise remained stable without the coupling effect. The velocity vectors obtained from the high-resolution image analysis illustrated the series of such concurrent scour/bearing-capacity-failure/flow processes leading to the instability of the breakwater. The stability of the breakwaters was significantly improved with decreasing hydraulic gradient underneath the caissons due to an embankment effect. These findings elucidate the crucial role of overflow/seepage coupling in tsunami-seabed-structure interaction from both geotechnical and hydrodynamic perspectives, as an interdisciplinary tsunami science, warranting an enhanced disaster resilience.
Partial Synchronization of Stochastic Oscillators through Hydrodynamic Coupling
NASA Astrophysics Data System (ADS)
Curran, Arran; Lee, Michael P.; Padgett, Miles J.; Cooper, Jonathan M.; Di Leonardo, Roberto
2012-06-01
Holographic optical tweezers are used to construct a static bistable optical potential energy landscape where a Brownian particle experiences restoring forces from two nearby optical traps and undergoes thermally activated transitions between the two energy minima. Hydrodynamic coupling between two such systems results in their partial synchronization. This is interpreted as an emergence of higher mobility pathways, along which it is easier to overcome barriers to structural rearrangement.
Active Polymers — Emergent Conformational and Dynamical Properties: A Brief Review
NASA Astrophysics Data System (ADS)
Winkler, Roland G.; Elgeti, Jens; Gompper, Gerhard
2017-10-01
Active matter exhibits a wealth of emerging nonequilibrium behaviours. A paradigmatic example is the interior of cells, where active components, such as the cytoskeleton, are responsible for its structural organization and the dynamics of the various components. Of particular interest are the properties of polymers and filaments. The intimate coupling of thermal and active noise, hydrodynamic interactions, and polymer conformations implies the emergence of novel structural and dynamical features. In this article, we review recent theoretical and simulation developments and results for the structural and dynamical properties of polymers exposed to activity. Two- and three-dimensional filaments are considered propelled by different mechanisms such as active Brownian particles or hydrodynamically-coupled force dipoles.
Baldock, Tom E; Karampour, Hassan; Sleep, Rachael; Vyltla, Anisha; Albermani, Faris; Golshani, Aliasghar; Callaghan, David P; Roff, George; Mumby, Peter J
2014-09-15
Measurements of coral structural strength are coupled with a fluid dynamics-structural analysis to investigate the resilience of coral to wave loading under sea level rise and a typical Great Barrier Reef lagoon wave climate. The measured structural properties were used to determine the wave conditions and flow velocities that lead to structural failure. Hydrodynamic modelling was subsequently used to investigate the type of the bathymetry where coral is most vulnerable to breakage under cyclonic wave conditions, and how sea level rise (SLR) changes this vulnerability. Massive corals are determined not to be vulnerable to wave induced structural damage, whereas branching corals are susceptible at wave induced orbital velocities exceeding 0.5m/s. Model results from a large suite of idealised bathymetry suggest that SLR of 1m or a loss of skeleton strength of order 25% significantly increases the area of reef flat where branching corals are exposed to damaging wave induced flows. Copyright © 2014 Elsevier Ltd. All rights reserved.
Sankararaman, Sumithra; Menon, Gautam I; Sunil Kumar, P B
2002-09-01
We study the linearized hydrodynamics of a two-component fluid membrane near a repulsive wall, using a model that incorporates curvature-concentration coupling as well as hydrodynamic interactions. This model is a simplified version of a recently proposed one [J.-B. Manneville et al., Phys. Rev. E 64, 021908 (2001)] for nonequilibrium force centers embedded in fluid membranes, such as light-activated bacteriorhodopsin pumps incorporated in phospholipid egg phosphatidyl choline (EPC) bilayers. The pump-membrane system is modeled as an impermeable, two-component bilayer fluid membrane in the presence of an ambient solvent, in which one component, representing active pumps, is described in terms of force dipoles displaced with respect to the bilayer midpoint. We first discuss the case in which such pumps are rendered inactive, computing the mode structure in the bulk as well as the modification of hydrodynamic properties by the presence of a nearby wall. These results should apply, more generally, to equilibrium fluid membranes comprised of two components, in which the effects of curvature-concentration coupling are significant, above the threshold for phase separation. We then discuss the fluctuations and mode structure in the steady state of active two-component membranes near a repulsive wall. We find that proximity to the wall smoothens membrane height fluctuations in the stable regime, resulting in a logarithmic scaling of the roughness even for initially tensionless membranes. This explicitly nonequilibrium result is a consequence of the incorporation of curvature-concentration coupling in our hydrodynamic treatment. This result also indicates that earlier scaling arguments which obtained an increase in the roughness of active membranes near repulsive walls upon neglecting the role played by such couplings may need to be reevaluated.
Fluid-structure coupling for an oscillating hydrofoil
NASA Astrophysics Data System (ADS)
Münch, C.; Ausoni, P.; Braun, O.; Farhat, M.; Avellan, F.
2010-08-01
Fluid-structure investigations in hydraulic machines using coupled simulations are particularly time-consuming. In this study, an alternative method is presented that linearizes the hydrodynamic load of a rigid, oscillating hydrofoil. The hydrofoil, which is surrounded by incompressible, turbulent flow, is modeled with forced and free pitching motions, where the mean incidence angle is 0° with a maximum angle amplitude of 2°. Unsteady simulations of the flow, performed with ANSYS CFX, are presented and validated with experiments which were carried out in the EPFL High-Speed Cavitation Tunnel. First, forced motion is investigated for reduced frequencies ranging from 0.02 to 100. The hydrodynamic load is modeled as a simple combination of inertia, damping and stiffness effects. As expected, the potential flow analysis showed the added moment of inertia is constant, while the fluid damping and the fluid stiffness coefficients depend on the reduced frequency of the oscillation motion. Behavioral patterns were observed and two cases were identified depending on if vortices did or did not develop in the hydrofoil wake. Using the coefficients identified in the forced motion case, the time history of the profile incidence is then predicted analytically for the free motion case and excellent agreement is found for the results from coupled fluid-structure simulations. The model is validated and may be extended to more complex cases, such as blade grids in hydraulic machinery.
Coastal Modeling System: Mathematical Formulations and Numerical Methods
2014-03-01
sediment transport , and morphology change. The CMS was designed and developed for coastal inlets and navigation applications, including channel...numerical methods of hydrodynamic, salinity and sediment transport , and morphology change model CMS-Flow. The CMS- Flow uses the Finite Volume...and the influence of coastal structures. The implicit hydrodynamic model is coupled to a nonequilibrium transport model of multiple-sized total
Linearly resummed hydrodynamics in a weakly curved spacetime
NASA Astrophysics Data System (ADS)
Bu, Yanyan; Lublinsky, Michael
2015-04-01
We extend our study of all-order linearly resummed hydrodynamics in a flat space [1, 2] to fluids in weakly curved spaces. The underlying microscopic theory is a finite temperature super-Yang-Mills theory at strong coupling. The AdS/CFT correspondence relates black brane solutions of the Einstein gravity in asymptotically locally AdS5 geometry to relativistic conformal fluids in a weakly curved 4D background. To linear order in the amplitude of hydrodynamic variables and metric perturbations, the fluid's energy-momentum tensor is computed with derivatives of both the fluid velocity and background metric resummed to all orders. We extensively discuss the meaning of all order hydrodynamics by expressing it in terms of the memory function formalism, which is also suitable for practical simulations. In addition to two viscosity functions discussed at length in refs. [1, 2], we find four curvature induced structures coupled to the fluid via new transport coefficient functions. In ref. [3], the latter were referred to as gravitational susceptibilities of the fluid. We analytically compute these coefficients in the hydrodynamic limit, and then numerically up to large values of momenta.
Fully vs. Sequentially Coupled Loads Analysis of Offshore Wind Turbines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Damiani, Rick; Wendt, Fabian; Musial, Walter
The design and analysis methods for offshore wind turbines must consider the aerodynamic and hydrodynamic loads and response of the entire system (turbine, tower, substructure, and foundation) coupled to the turbine control system dynamics. Whereas a fully coupled (turbine and support structure) modeling approach is more rigorous, intellectual property concerns can preclude this approach. In fact, turbine control system algorithms and turbine properties are strictly guarded and often not shared. In many cases, a partially coupled analysis using separate tools and an exchange of reduced sets of data via sequential coupling may be necessary. In the sequentially coupled approach, themore » turbine and substructure designers will independently determine and exchange an abridged model of their respective subsystems to be used in their partners' dynamic simulations. Although the ability to achieve design optimization is sacrificed to some degree with a sequentially coupled analysis method, the central question here is whether this approach can deliver the required safety and how the differences in the results from the fully coupled method could affect the design. This work summarizes the scope and preliminary results of a study conducted for the Bureau of Safety and Environmental Enforcement aimed at quantifying differences between these approaches through aero-hydro-servo-elastic simulations of two offshore wind turbines on a monopile and jacket substructure.« less
Modelling hydrologic and hydrodynamic processes in basins with large semi-arid wetlands
NASA Astrophysics Data System (ADS)
Fleischmann, Ayan; Siqueira, Vinícius; Paris, Adrien; Collischonn, Walter; Paiva, Rodrigo; Pontes, Paulo; Crétaux, Jean-François; Bergé-Nguyen, Muriel; Biancamaria, Sylvain; Gosset, Marielle; Calmant, Stephane; Tanimoun, Bachir
2018-06-01
Hydrological and hydrodynamic models are core tools for simulation of large basins and complex river systems associated to wetlands. Recent studies have pointed towards the importance of online coupling strategies, representing feedbacks between floodplain inundation and vertical hydrology. Especially across semi-arid regions, soil-floodplain interactions can be strong. In this study, we included a two-way coupling scheme in a large scale hydrological-hydrodynamic model (MGB) and tested different model structures, in order to assess which processes are important to be simulated in large semi-arid wetlands and how these processes interact with water budget components. To demonstrate benefits from this coupling over a validation case, the model was applied to the Upper Niger River basin encompassing the Niger Inner Delta, a vast semi-arid wetland in the Sahel Desert. Simulation was carried out from 1999 to 2014 with daily TMPA 3B42 precipitation as forcing, using both in-situ and remotely sensed data for calibration and validation. Model outputs were in good agreement with discharge and water levels at stations both upstream and downstream of the Inner Delta (Nash-Sutcliffe Efficiency (NSE) >0.6 for most gauges), as well as for flooded areas within the Delta region (NSE = 0.6; r = 0.85). Model estimates of annual water losses across the Delta varied between 20.1 and 30.6 km3/yr, while annual evapotranspiration ranged between 760 mm/yr and 1130 mm/yr. Evaluation of model structure indicated that representation of both floodplain channels hydrodynamics (storage, bifurcations, lateral connections) and vertical hydrological processes (floodplain water infiltration into soil column; evapotranspiration from soil and vegetation and evaporation of open water) are necessary to correctly simulate flood wave attenuation and evapotranspiration along the basin. Two-way coupled models are necessary to better understand processes in large semi-arid wetlands. Finally, such coupled hydrologic and hydrodynamic modelling proves to be an important tool for integrated evaluation of hydrological processes in such poorly gauged, large scale basins. We hope that this model application provides new ways forward for large scale model development in such systems, involving semi-arid regions and complex floodplains.
Ignition sensitivity study of an energetic train configuration using experiments and simulation
NASA Astrophysics Data System (ADS)
Kim, Bohoon; Yu, Hyeonju; Yoh, Jack J.
2018-06-01
A full scale hydrodynamic simulation intended for the accurate description of shock-induced detonation transition was conducted as a part of an ignition sensitivity analysis of an energetic component system. The system is composed of an exploding foil initiator (EFI), a donor explosive unit, a stainless steel gap, and an acceptor explosive. A series of velocity interferometer system for any reflector measurements were used to validate the hydrodynamic simulations based on the reactive flow model that describes the initiation of energetic materials arranged in a train configuration. A numerical methodology with ignition and growth mechanisms for tracking multi-material boundary interactions as well as severely transient fluid-structure coupling between high explosive charges and metal gap is described. The free surface velocity measurement is used to evaluate the sensitivity of energetic components that are subjected to strong pressure waves. Then, the full scale hydrodynamic simulation is performed on the flyer impacted initiation of an EFI driven pyrotechnical system.
Holographic constraints on Bjorken hydrodynamics at finite coupling
NASA Astrophysics Data System (ADS)
DiNunno, Brandon S.; Grozdanov, Sašo; Pedraza, Juan F.; Young, Steve
2017-10-01
In large- N c conformal field theories with classical holographic duals, inverse coupling constant corrections are obtained by considering higher-derivative terms in the corresponding gravity theory. In this work, we use type IIB supergravity and bottom-up Gauss-Bonnet gravity to study the dynamics of boost-invariant Bjorken hydrodynamics at finite coupling. We analyze the time-dependent decay properties of non-local observables (scalar two-point functions and Wilson loops) probing the different models of Bjorken flow and show that they can be expressed generically in terms of a few field theory parameters. In addition, our computations provide an analytically quantifiable probe of the coupling-dependent validity of hydrodynamics at early times in a simple model of heavy-ion collisions, which is an observable closely analogous to the hydrodynamization time of a quark-gluon plasma. We find that to third order in the hydrodynamic expansion, the convergence of hydrodynamics is improved and that generically, as expected from field theory considerations and recent holographic results, the applicability of hydrodynamics is delayed as the field theory coupling decreases.
Colloid-colloid hydrodynamic interaction around a bend in a quasi-one-dimensional channel.
Liepold, Christopher; Zarcone, Ryan; Heumann, Tibor; Rice, Stuart A; Lin, Binhua
2017-07-01
We report a study of how a bend in a quasi-one-dimensional (q1D) channel containing a colloid suspension at equilibrium that exhibits single-file particle motion affects the hydrodynamic coupling between colloid particles. We observe both structural and dynamical responses as the bend angle becomes more acute. The structural response is an increasing depletion of particles in the vicinity of the bend and an increase in the nearest-neighbor separation in the pair correlation function for particles on opposite sides of the bend. The dynamical response monitored by the change in the self-diffusion [D_{11}(x)] and coupling [D_{12}(x)] terms of the pair diffusion tensor reveals that the pair separation dependence of D_{12} mimics that of the pair correlation function just as in a straight q1D channel. We show that the observed behavior is a consequence of the boundary conditions imposed on the q1D channel: both the single-file motion and the hydrodynamic flow must follow the channel around the bend.
Evaluation of various modelling approaches in flood routing simulation and flood area mapping
NASA Astrophysics Data System (ADS)
Papaioannou, George; Loukas, Athanasios; Vasiliades, Lampros; Aronica, Giuseppe
2016-04-01
An essential process of flood hazard analysis and mapping is the floodplain modelling. The selection of the modelling approach, especially, in complex riverine topographies such as urban and suburban areas, and ungauged watersheds may affect the accuracy of the outcomes in terms of flood depths and flood inundation area. In this study, a sensitivity analysis implemented using several hydraulic-hydrodynamic modelling approaches (1D, 2D, 1D/2D) and the effect of modelling approach on flood modelling and flood mapping was investigated. The digital terrain model (DTMs) used in this study was generated from Terrestrial Laser Scanning (TLS) point cloud data. The modelling approaches included 1-dimensional hydraulic-hydrodynamic models (1D), 2-dimensional hydraulic-hydrodynamic models (2D) and the coupled 1D/2D. The 1D hydraulic-hydrodynamic models used were: HECRAS, MIKE11, LISFLOOD, XPSTORM. The 2D hydraulic-hydrodynamic models used were: MIKE21, MIKE21FM, HECRAS (2D), XPSTORM, LISFLOOD and FLO2d. The coupled 1D/2D models employed were: HECRAS(1D/2D), MIKE11/MIKE21(MIKE FLOOD platform), MIKE11/MIKE21 FM(MIKE FLOOD platform), XPSTORM(1D/2D). The validation process of flood extent achieved with the use of 2x2 contingency tables between simulated and observed flooded area for an extreme historical flash flood event. The skill score Critical Success Index was used in the validation process. The modelling approaches have also been evaluated for simulation time and requested computing power. The methodology has been implemented in a suburban ungauged watershed of Xerias river at Volos-Greece. The results of the analysis indicate the necessity of sensitivity analysis application with the use of different hydraulic-hydrodynamic modelling approaches especially for areas with complex terrain.
The biogeodynamics of microbial landscapes
NASA Astrophysics Data System (ADS)
Battin, T. J.; Hödl, I.; Bertuzzo, E.; Mari, L.; Suweis, S. S.; Rinaldo, A.
2011-12-01
Spatial configuration is fundamental in defining the structural and functional properties of biological systems. Biofilms, surface-attached and matrix-enclosed microorganisms, are a striking example of spatial organisation. Coupled biotic and abiotic processes shape the spatial organisation across scales of the landscapes formed by these benthic biofilms in streams and rivers. Experimenting with such biofilms in streams, we found that, depending on the streambed topography and the related hydrodynamic microenvironment, biofilm landscapes form increasingly diverging spatial patterns as they grow. Strikingly, however, cluster size distributions tend to converge even in contrasting hydrodynamic microenvironments. To reproduce the observed cluster size distributions we used a continuous, size-structured population model. The model accounts for the formation, growth, erosion and merging of biofilm clusters. Our results suggest not only that hydrodynamic forcing induce the diverging patterning of the microbial landscape, but also that microorganisms have developed strategies to equally exploit spatial resources independently of the physical structure of the microenvironment where they live.
Effects of Interfacial Translation-rotation Coupling for Confined Ferrofluids
NASA Astrophysics Data System (ADS)
Fang, Angbo
2011-03-01
Ferrofluids have wide applications ranging from semiconductor fabrications to biomedical processes. The hydrodynamic spin diffusion theory for ferrofluids has been successful in explaining many experimental data, but it suffers from some fatal flaws. For example, it fails to predict the incorrect flow direction for a ferrofluid confined in a concentric cylinder channel in the presence of a rotating magnetic field. In this work we develop a method to establish the general hydrodynamic boundary conditions (BCs) for micro-polar fluids such as ferrofluids. Through a dynamic generalization of the mesoscopic diffuse interface model, we are able to obtain the surface dissipation functional, in which the interfacial translation-rotation coupling plays a significant role. The generalized hydrodynamic BCs can be obtained straightforwardly by using Onsager's variational approach. The resulted velocity profile and other quantities compares well with the experimental data, strikingly different from traditional theories. The methodology can be applied to study the hydrodynamic behavior of other structured fluids in confined channels or multi-phase flows. The work is supported by a research award made by the King Abdullah University of Science and Technology.
Nonlinear coupling of flow harmonics: Hexagonal flow and beyond
NASA Astrophysics Data System (ADS)
Giacalone, Giuliano; Yan, Li; Ollitrault, Jean-Yves
2018-05-01
Higher Fourier harmonics of anisotropic flow (v4 and beyond) get large contributions induced by elliptic and triangular flow through nonlinear response. We present a general framework of nonlinear hydrodynamic response which encompasses the existing one and allows us to take into account the mutual correlation between the nonlinear couplings affecting Fourier harmonics of any order. Using Large Hadron Collider data on Pb+Pb collisions at
Hydrodynamic interaction induced spontaneous rotation of coupled active filaments.
Jiang, Huijun; Hou, Zhonghuai
2014-12-14
We investigate the coupled dynamics of active filaments with long range hydrodynamic interactions (HI). Remarkably, we find that filaments can rotate spontaneously under the same conditions in which a single filament alone can only move in translation. Detailed analysis reveals that the emergence of coupled rotation originates from an asymmetric flow field associated with HI which breaks the symmetry of translational motion when filaments approach. The breaking is then further stabilized by HI to form self-sustained coupled rotation. Intensive simulations show that coupled rotation forms easily when one filament tends to collide with the front-half of the other. For head-to-tail approaching, we observe another interesting HI-induced coupled motion, where filaments move together in the form of one following the other. Moreover, the radius of coupled rotation increases exponentially as the rigidity of the filament increases, which suggests that HI are also important for the alignment of rigid-rod-like filaments which has been assumed to be solely a consequence of direct collisions.
Di Stefano, Carlos A.; Malamud, G.; Kuranz, C. C.; ...
2015-10-19
Here, we present experiments observing Richtmyer–Meshkov mode coupling and bubble competition in a system arising from well-characterized initial conditions and driven by a strong (Mach ~ 8) shock. These measurements and the analysis method developed to interpret them provide an important step toward the possibility of observing self-similarity under such conditions, as well as a general platform for performing and analyzing hydrodynamic instability experiments. A key feature of these experiments is that the shock is sustained sufficiently long that this nonlinear behavior occurs without decay of the shock velocity or other hydrodynamic properties of the system, which facilitates analysis andmore » allows the results to be used in the study of analytic models.« less
Peristalticity-driven banded chemical garden
NASA Astrophysics Data System (ADS)
Pópity-Tóth, É.; Schuszter, G.; Horváth, D.; Tóth, Á.
2018-05-01
Complex structures in nature are often formed by self-assembly. In order to mimic the formation, to enhance the production, or to modify the structures, easy-to-use methods are sought to couple engineering and self-assembly. Chemical-garden-like precipitation reactions are frequently used to study such couplings because of the intrinsic chemical and hydrodynamic interplays. In this work, we present a simple method of applying periodic pressure fluctuations given by a peristaltic pump which can be used to achieve regularly banded precipitate membranes in the copper-phosphate system.
OASIS Observation and Analysis of Smectic Islands in Space
NASA Technical Reports Server (NTRS)
Tin, Padetha
2014-01-01
The Observation and Analysis of Smectic Islands in Space (OASIS) project comprises a series of experiments that will probe the interfacial and hydrodynamic behavior of freely suspended liquid crystal films in space. These are the thinnest known stable condensed phase structures, making them ideal for studies of fluctuation and interface phenomena. The experiments seek to verify theories of coarsening dynamics, hydrodynamic flow, relaxation of hydrodynamic perturbations, and hydrodynamic interactions of a near two-dimensional structure. The effects of introducing islands or droplets on a very thin bubble will be studied, both as controllable inclusions that modify the flow and as markers of flow.
NASA Technical Reports Server (NTRS)
Margolis, Stephen B.; Sacksteder, Kurt (Technical Monitor)
1999-01-01
Hydrodynamic (Landau) instability in combustion is typically associated with the onset of wrinkling of a flame surface, corresponding to the formation of steady cellular structures as the stability threshold is crossed. In the context of liquid-propellant combustion, such instability has recently been shown to occur for critical values of the pressure sensitivity of the burning rate and the disturbance wavenumber, significantly generalizing previous classical results for this problem that assumed a constant normal burning rate. Additionally, however, a pulsating form of hydrodynamic instability has been shown to occur as well, corresponding to the onset of temporal oscillations in the location of the liquid/gas interface. In the present work, we consider the realistic influence of a non-zero temperature sensitivity in the local burning rate on both types of stability thresholds. It is found that for sufficiently small values of this parameter, there exists a stable range of pressure sensitivities for steady, planar burning such that the classical cellular form of hydrodynamic instability and the more recent pulsating form of hydrodynamic instability can each occur as the corresponding stability threshold is crossed. For larger thermal sensitivities, however, the pulsating stability boundary evolves into a C-shaped curve in the (disturbance-wavenumber, pressure-sensitivity) plane, indicating loss of stability to pulsating perturbations for all sufficiently large disturbance wavelengths. It is thus concluded, based on characteristic parameter values, that an equally likely form of hydrodynamic instability in liquid-propellant combustion is of a non-steady, long-wave nature, distinct from the steady, cellular form originally predicted by Landau.
Dynamically Coupled Food-web and Hydrodynamic Modeling with ADH-CASM
NASA Astrophysics Data System (ADS)
Piercy, C.; Swannack, T. M.
2012-12-01
Oysters and freshwater mussels are "ecological engineers," modifying the local water quality by filtering zooplankton and other suspended particulate matter from the water column and flow hydraulics by impinging on the near-bed flow environment. The success of sessile, benthic invertebrates such as oysters depends on environmental factors including but not limited to temperature, salinity, and flow regime. Typically food-web and other types of ecological models use flow and water quality data as direct input without regard to the feedback between the ecosystem and the physical environment. The USACE-ERDC has developed a coupled hydrodynamic-ecological modeling approach that dynamically couples a 2-D hydrodynamic and constituent transport model, Adaptive Hydraulics (ADH), with a bioenergetics food-web model, the Comprehensive Aquatics Systems Model (CASM), which captures the dynamic feedback between aquatic ecological systems and the environment. We present modeling results from restored oyster reefs in the Great Wicomico River on the western shore of the Chesapeake Bay, which quantify ecosystem services such as the influence of the benthic ecosystem on water quality. Preliminary results indicate that while the influence of oyster reefs on bulk flow dynamics is limited due to the localized influence of oyster reefs, large reefs and the associated benthic ecosystem can create measurable changes in the concentrations of nitrogen, phosphorus, and carbon in the areas around reefs. We also present a sensitivity analysis to quantify the relative sensitivity of the coupled ADH-CASM model to both hydrodynamic and ecological parameter choice.
NASA Astrophysics Data System (ADS)
Novikov, Dmitrii K.; Diligenskii, Dmitrii S.
2018-01-01
The article considers the work of some squeeze film damper with elastic rings parts. This type of damper is widely used in gas turbine engines supports. Nevertheless, modern analytical solutions have a number of limitations. The article considers the behavior of simple hydrodynamic damping systems. It describes the analysis of fluid-solid interaction simulation applicability for the defying properties of hydrodynamic damper with elastic rings (“allison ring”). There are some recommendations on the fluid structural interaction analysis of the hydrodynamic damper with elastic rings.
NASA Astrophysics Data System (ADS)
Larmat, C. S.; Delorey, A.; Rougier, E.; Knight, E. E.; Steedman, D. W.; Bradley, C. R.
2017-12-01
This presentation reports numerical modeling efforts to improve knowledge of the processes that affect seismic wave generation and propagation from underground explosions, with a focus on Rg waves. The numerical model is based on the coupling of hydrodynamic simulation codes (Abaqus, CASH and HOSS), with a 3D full waveform propagation code, SPECFEM3D. Validation datasets are provided by the Source Physics Experiment (SPE) which is a series of highly instrumented chemical explosions at the Nevada National Security Site with yields from 100kg to 5000kg. A first series of explosions in a granite emplacement has just been completed and a second series in alluvium emplacement is planned for 2018. The long-term goal of this research is to review and improve current existing seismic sources models (e.g. Mueller & Murphy, 1971; Denny & Johnson, 1991) by providing first principles calculations provided by the coupled codes capability. The hydrodynamic codes, Abaqus, CASH and HOSS, model the shocked, hydrodynamic region via equations of state for the explosive, borehole stemming and jointed/weathered granite. A new material model for unconsolidated alluvium materials has been developed and validated with past nuclear explosions, including the 10 kT 1965 Merlin event (Perret, 1971) ; Perret and Bass, 1975). We use the efficient Spectral Element Method code, SPECFEM3D (e.g. Komatitsch, 1998; 2002), and Geologic Framework Models to model the evolution of wavefield as it propagates across 3D complex structures. The coupling interface is a series of grid points of the SEM mesh situated at the edge of the hydrodynamic code domain. We will present validation tests and waveforms modeled for several SPE tests which provide evidence that the damage processes happening in the vicinity of the explosions create secondary seismic sources. These sources interfere with the original explosion moment and reduces the apparent seismic moment at the origin of Rg waves up to 20%.
Hydrodynamics of Normal Atomic Gases with Spin-orbit Coupling
Hou, Yan-Hua; Yu, Zhenhua
2015-01-01
Successful realization of spin-orbit coupling in atomic gases by the NIST scheme opens the prospect of studying the effects of spin-orbit coupling on many-body physics in an unprecedentedly controllable way. Here we derive the linearized hydrodynamic equations for the normal atomic gases of the spin-orbit coupling by the NIST scheme with zero detuning. We show that the hydrodynamics of the system crucially depends on the momentum susceptibilities which can be modified by the spin-orbit coupling. We reveal the effects of the spin-orbit coupling on the sound velocities and the dipole mode frequency of the gases by applying our formalism to the ideal Fermi gas. We also discuss the generalization of our results to other situations. PMID:26483090
Hydrodynamics of Normal Atomic Gases with Spin-orbit Coupling.
Hou, Yan-Hua; Yu, Zhenhua
2015-10-20
Successful realization of spin-orbit coupling in atomic gases by the NIST scheme opens the prospect of studying the effects of spin-orbit coupling on many-body physics in an unprecedentedly controllable way. Here we derive the linearized hydrodynamic equations for the normal atomic gases of the spin-orbit coupling by the NIST scheme with zero detuning. We show that the hydrodynamics of the system crucially depends on the momentum susceptibilities which can be modified by the spin-orbit coupling. We reveal the effects of the spin-orbit coupling on the sound velocities and the dipole mode frequency of the gases by applying our formalism to the ideal Fermi gas. We also discuss the generalization of our results to other situations.
Force-moment line element method for flexible slender bodies in Stokes flow.
Jiang, H; Yang, B
2013-09-01
The hydrodynamics of flexible slender bodies in Stokes flow is studied by taking into account the fluid-structure interaction through both forces and coupled moments. The fluid subjected to line sources of forces and moments is described by using integral equations. Meanwhile, the flexible slender body is modeled using finite beam elements. The two sides are linked through interfacial continuity conditions. Upon discretization, it results in a higher-order line element method for efficient and accurate solution of slender-body hydrodynamics. Four examples are presented to demonstrate the validity and efficiency of the present method: (a) hydrodynamics of a flexible slender rod subjected to a torque at one end, (b) hydrodynamics of a flexible slender rod subjected to a bending moment at one end, (c) hydrodynamics of a flexible slender rod subjected to a cyclic force, and (d) hydrodynamics of a flexible slender rod with a magnetized head within a rotating magnetic field. Examples (a) and (b) may serve as benchmark solutions and examples (c) and (d) show how planar and spiral waves can be excited in a slender body.
Swarming in viscous fluids: three-dimensional patterns in swimmer- and force-induced flows
NASA Astrophysics Data System (ADS)
Chuang, Yao-Li; D'Orsogna, Maria R.; Chou, Tom
Mathematical models of self-propelled interacting particles have reproduced various fascinating ``swarming'' patterns observed in natural and artificial systems. The formulation of such models usually ignores the influence of the surrounding medium in which the particles swarm. Here we develop from first principles a three-dimensional theory of swarming particles in a viscous fluid environment and investigate how the hydrodynamic coupling among the particles may affect their collective behavior. Specifically, we examine the hydrodynamic coupling among self-propelled particles interacting through ``social'' or ``mechanical'' forces. We discover that new patterns arise as a consequence of different interactions and self-propulsion mechanisms. Examples include flocks with prolate or oblate shapes, intermittent mills, recirculating peloton-like structures, and jet-like fluid flows that kinetically destabilize mill-like structures. Our results reveal possible mechanisms for three-dimensional swarms to kinetically control their collective behaviors in fluids. Supported by NSF DMS 1021818 & 1021850, ARO W1911NF-14-1-0472, ARO MURI W1911NF-11-10332.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dharodi, Vikram; Das, Amita, E-mail: amita@ipr.res.in; Patel, Bhavesh
2016-01-15
The strongly coupled dusty plasma has often been modelled by the Generalized Hydrodynamic (GHD) model used for representing visco-elastic fluid systems. The incompressible limit of the model which supports transverse shear wave mode is studied in detail. In particular, dipole structures are observed to emit transverse shear waves in both the limits of sub- and super-luminar propagation, where the structures move slower and faster than the phase velocity of the shear waves, respectively. In the sub-luminar limit the dipole gets engulfed within the shear waves emitted by itself, which then backreacts on it and ultimately the identity of the structuremore » is lost. However, in the super-luminar limit the emission appears like a wake from the tail region of the dipole. The dipole, however, keeps propagating forward with little damping but minimal distortion in its form. A Poynting-like conservation law with radiative, convective, and dissipative terms being responsible for the evolution of W, which is similar to “enstrophy” like quantity in normal hydrodynamic fluid systems, has also been constructed for the incompressible GHD equations. The conservation law is shown to be satisfied in all the cases of evolution and collision amidst the nonlinear structures to a great accuracy. It is shown that monopole structures which do not move at all but merely radiate shear waves, the radiative term, and dissipative losses solely contribute to the evolution of W. The dipolar structures, on the other hand, propagate in the medium and hence convection also plays an important role in the evolution of W.« less
A Tightly Coupled Non-Equilibrium Magneto-Hydrodynamic Model for Inductively Coupled RF Plasmas
2016-02-29
development a tightly coupled magneto-hydrodynamic model for Inductively Coupled Radio- Frequency (RF) Plasmas. Non Local Thermodynamic Equilibrium (NLTE...for Inductively Coupled Radio-Frequency (RF) Plasmas. Non Local Thermodynamic Equilibrium (NLTE) effects are described based on a hybrid State-to-State... thermodynamic variable. This choice allows one to hide the non-linearity of the gas (total) thermal conductivity κ and can partially alle- 2 viate numerical
Dynamic coupling of three hydrodynamic models
NASA Astrophysics Data System (ADS)
Hartnack, J. N.; Philip, G. T.; Rungoe, M.; Smith, G.; Johann, G.; Larsen, O.; Gregersen, J.; Butts, M. B.
2008-12-01
The need for integrated modelling is evidently present within the field of flood management and flood forecasting. Engineers, modellers and managers are faced with flood problems which transcend the classical hydrodynamic fields of urban, river and coastal flooding. Historically the modeller has been faced with having to select one hydrodynamic model to cover all the aspects of the potentially complex dynamics occurring in a flooding situation. Such a single hydrodynamic model does not cover all dynamics of flood modelling equally well. Thus the ideal choice may in fact be a combination of models. Models combining two numerical/hydrodynamic models are becoming more standard, typically these models combine a 1D river model with a 2D overland flow model or alternatively a 1D sewer/collection system model with a 2D overland solver. In complex coastal/urban areas the flood dynamics may include rivers/streams, collection/storm water systems along with the overland flow. The dynamics within all three areas is of the same time scale and there is feedback in the system across the couplings. These two aspects dictate a fully dynamic three way coupling as opposed to running the models sequentially. It will be shown that the main challenges of the three way coupling are time step issues related to the difference in numerical schemes used in the three model components and numerical instabilities caused by the linking of the model components. MIKE FLOOD combines the models MIKE 11, MIKE 21 and MOUSE into one modelling framework which makes it possible to couple any combination of river, urban and overland flow fully dynamically. The MIKE FLOOD framework will be presented with an overview of the coupling possibilities. The flood modelling concept will be illustrated through real life cases in Australia and in Germany. The real life cases reflect dynamics and interactions across all three model components which are not possible to reproduce using a two-way coupling alone. The models comprise 2D inundation modelling, river networks with multiple structures (pumps, weirs, culverts), urban drainage networks as well as dam break modelling. The models were used to quantify the results of storm events or failures (dam break, pumping failures etc) coinciding with high discharge in river system and heavy rainfall. The detailed representation of the flow path through the city allowed a direct assessment of flood risk Thus it is found that the three-way coupled model is a practical and useful tool for integrated flood management.
Bacterial biofilm under flow: First a physical struggle to stay, then a matter of breathing.
Thomen, Philippe; Robert, Jérôme; Monmeyran, Amaury; Bitbol, Anne-Florence; Douarche, Carine; Henry, Nelly
2017-01-01
Bacterial communities attached to surfaces under fluid flow represent a widespread lifestyle of the microbial world. Through shear stress generation and molecular transport regulation, hydrodynamics conveys effects that are very different by nature but strongly coupled. To decipher the influence of these levers on bacterial biofilms immersed in moving fluids, we quantitatively and simultaneously investigated physicochemical and biological properties of the biofilm. We designed a millifluidic setup allowing to control hydrodynamic conditions and to monitor biofilm development in real time using microscope imaging. We also conducted a transcriptomic analysis to detect a potential physiological response to hydrodynamics. We discovered that a threshold value of shear stress determined biofilm settlement, with sub-piconewton forces sufficient to prevent biofilm initiation. As a consequence, distinct hydrodynamic conditions, which set spatial distribution of shear stress, promoted distinct colonization patterns with consequences on the growth mode. However, no direct impact of mechanical forces on biofilm growth rate was observed. Consistently, no mechanosensing gene emerged from our differential transcriptomic analysis comparing distinct hydrodynamic conditions. Instead, we found that hydrodynamic molecular transport crucially impacts biofilm growth by controlling oxygen availability. Our results shed light on biofilm response to hydrodynamics and open new avenues to achieve informed design of fluidic setups for investigating, engineering or fighting adherent communities.
Bacterial biofilm under flow: First a physical struggle to stay, then a matter of breathing
Thomen, Philippe; Robert, Jérôme; Monmeyran, Amaury; Bitbol, Anne-Florence; Douarche, Carine; Henry, Nelly
2017-01-01
Bacterial communities attached to surfaces under fluid flow represent a widespread lifestyle of the microbial world. Through shear stress generation and molecular transport regulation, hydrodynamics conveys effects that are very different by nature but strongly coupled. To decipher the influence of these levers on bacterial biofilms immersed in moving fluids, we quantitatively and simultaneously investigated physicochemical and biological properties of the biofilm. We designed a millifluidic setup allowing to control hydrodynamic conditions and to monitor biofilm development in real time using microscope imaging. We also conducted a transcriptomic analysis to detect a potential physiological response to hydrodynamics. We discovered that a threshold value of shear stress determined biofilm settlement, with sub-piconewton forces sufficient to prevent biofilm initiation. As a consequence, distinct hydrodynamic conditions, which set spatial distribution of shear stress, promoted distinct colonization patterns with consequences on the growth mode. However, no direct impact of mechanical forces on biofilm growth rate was observed. Consistently, no mechanosensing gene emerged from our differential transcriptomic analysis comparing distinct hydrodynamic conditions. Instead, we found that hydrodynamic molecular transport crucially impacts biofilm growth by controlling oxygen availability. Our results shed light on biofilm response to hydrodynamics and open new avenues to achieve informed design of fluidic setups for investigating, engineering or fighting adherent communities. PMID:28403171
Retarded correlators in kinetic theory: branch cuts, poles and hydrodynamic onset transitions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romatschke, Paul
In this paper, the collective modes of an effective kinetic theory description based on the Boltzmann equation in a relaxation-time approximation applicable to gauge theories at weak but finite coupling and low frequencies are studied. Real time retarded two-point correlators of the energy-momentum tensor and the R-charge current are calculated at finite temperature in flat space-times for large N gauge theories. It is found that the real-time correlators possess logarithmic branch cuts which in the limit of large coupling disappear and give rise to non-hydrodynamic poles that are reminiscent of quasi-normal modes in black holes. In addition to branch cuts,more » correlators can have simple hydrodynamic poles, generalizing the concept of hydrodynamic modes to intermediate wavelength. Surprisingly, the hydrodynamic poles cease to exist for some critical value of the wavelength and coupling reminiscent of the properties of onset transitions.« less
Retarded correlators in kinetic theory: branch cuts, poles and hydrodynamic onset transitions
Romatschke, Paul
2016-06-24
In this paper, the collective modes of an effective kinetic theory description based on the Boltzmann equation in a relaxation-time approximation applicable to gauge theories at weak but finite coupling and low frequencies are studied. Real time retarded two-point correlators of the energy-momentum tensor and the R-charge current are calculated at finite temperature in flat space-times for large N gauge theories. It is found that the real-time correlators possess logarithmic branch cuts which in the limit of large coupling disappear and give rise to non-hydrodynamic poles that are reminiscent of quasi-normal modes in black holes. In addition to branch cuts,more » correlators can have simple hydrodynamic poles, generalizing the concept of hydrodynamic modes to intermediate wavelength. Surprisingly, the hydrodynamic poles cease to exist for some critical value of the wavelength and coupling reminiscent of the properties of onset transitions.« less
Hydrodynamic dispersion within porous biofilms
NASA Astrophysics Data System (ADS)
Davit, Y.; Byrne, H.; Osborne, J.; Pitt-Francis, J.; Gavaghan, D.; Quintard, M.
2013-01-01
Many microorganisms live within surface-associated consortia, termed biofilms, that can form intricate porous structures interspersed with a network of fluid channels. In such systems, transport phenomena, including flow and advection, regulate various aspects of cell behavior by controlling nutrient supply, evacuation of waste products, and permeation of antimicrobial agents. This study presents multiscale analysis of solute transport in these porous biofilms. We start our analysis with a channel-scale description of mass transport and use the method of volume averaging to derive a set of homogenized equations at the biofilm-scale in the case where the width of the channels is significantly smaller than the thickness of the biofilm. We show that solute transport may be described via two coupled partial differential equations or telegrapher's equations for the averaged concentrations. These models are particularly relevant for chemicals, such as some antimicrobial agents, that penetrate cell clusters very slowly. In most cases, especially for nutrients, solute penetration is faster, and transport can be described via an advection-dispersion equation. In this simpler case, the effective diffusion is characterized by a second-order tensor whose components depend on (1) the topology of the channels' network; (2) the solute's diffusion coefficients in the fluid and the cell clusters; (3) hydrodynamic dispersion effects; and (4) an additional dispersion term intrinsic to the two-phase configuration. Although solute transport in biofilms is commonly thought to be diffusion dominated, this analysis shows that hydrodynamic dispersion effects may significantly contribute to transport.
Fluid-structure coupling in the guide vanes cascade of a pump-turbine scale model
NASA Astrophysics Data System (ADS)
Roth, S.; Hasmatuchi, V.; Botero, F.; Farhat, M.; Avellan, F.
2010-08-01
The present study concerns fluid-structure coupling phenomena occurring in a guide vane cascade of a pump-turbine scale model placed in the EPFL PF3 test rig. An advanced instrument set is used to monitor both vibrating structures and the surrounding flow. The paper highlights the interaction between vibrating guide vanes and the flow behavior. The pressure fluctuations in the stay vanes region are found to be strongly influenced by the amplitude of the vibrating guide vanes. Moreover, the flow induces different hydrodynamic damping on the vibrating guide vanes depending on the operating point of the pump-turbine.
Hydrodynamic structure of the boundary layers in a rotating cylindrical cavity with radial inflow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herrmann-Priesnitz, Benjamín, E-mail: bherrman@ing.uchile.cl; Torres, Diego A.; Advanced Mining Technology Center, Universidad de Chile, Av. Tupper 2007, Santiago
A flow model is formulated to investigate the hydrodynamic structure of the boundary layers of incompressible fluid in a rotating cylindrical cavity with steady radial inflow. The model considers mass and momentum transfer coupled between boundary layers and an inviscid core region. Dimensionless equations of motion are solved using integral methods and a space-marching technique. As the fluid moves radially inward, entraining boundary layers develop which can either meet or become non-entraining. Pressure and wall shear stress distributions, as well as velocity profiles predicted by the model, are compared to numerical simulations using the software OpenFOAM. Hydrodynamic structure of themore » boundary layers is governed by a Reynolds number, Re, a Rossby number, Ro, and the dimensionless radial velocity component at the periphery of the cavity, U{sub o}. Results show that boundary layers merge for Re < < 10 and Ro > > 0.1, and boundary layers become predominantly non-entraining for low Ro, low Re, and high U{sub o}. Results may contribute to improve the design of technology, such as heat exchange devices, and turbomachinery.« less
Amplified effect of Brownian motion in bacterial near-surface swimming
Li, Guanglai; Tam, Lick-Kong; Tang, Jay X.
2008-01-01
Brownian motion influences bacterial swimming by randomizing displacement and direction. Here, we report that the influence of Brownian motion is amplified when it is coupled to hydrodynamic interaction. We examine swimming trajectories of the singly flagellated bacterium Caulobacter crescentus near a glass surface with total internal reflection fluorescence microscopy and observe large fluctuations over time in the distance of the cell from the solid surface caused by Brownian motion. The observation is compared with computer simulation based on analysis of relevant physical factors, including electrostatics, van der Waals force, hydrodynamics, and Brownian motion. The simulation reproduces the experimental findings and reveals contribution from fluctuations of the cell orientation beyond the resolution of present observation. Coupled with hydrodynamic interaction between the bacterium and the boundary surface, the fluctuations in distance and orientation subsequently lead to variation of the swimming speed and local radius of curvature of swimming trajectory. These results shed light on the fundamental roles of Brownian motion in microbial motility, nutrient uptake, and adhesion. PMID:19015518
Introduction to the Focus Issue: Chemo-Hydrodynamic Patterns and Instabilities
NASA Astrophysics Data System (ADS)
De Wit, A.; Eckert, K.; Kalliadasis, S.
2012-09-01
Pattern forming instabilities are often encountered in a wide variety of natural phenomena and technological applications, from self-organization in biological and chemical systems to oceanic or atmospheric circulation and heat and mass transport processes in engineering systems. Spatio-temporal structures are ubiquitous in hydrodynamics where numerous different convective instabilities generate pattern formation and complex spatiotemporal dynamics, which have been much studied both theoretically and experimentally. In parallel, reaction-diffusion processes provide another large family of pattern forming instabilities and spatio-temporal structures which have been analyzed for several decades. At the intersection of these two fields, "chemo-hydrodynamic patterns and instabilities" resulting from the coupling of hydrodynamic and reaction-diffusion processes have been less studied. The exploration of the new instability and symmetry-breaking scenarios emerging from the interplay between chemical reactions, diffusion and convective motions is a burgeoning field in which numerous exciting problems have emerged during the last few years. These problems range from fingering instabilities of chemical fronts and reactive fluid-fluid interfaces to the dynamics of reaction-diffusion systems in the presence of chaotic mixing. The questions to be addressed are at the interface of hydrodynamics, chemistry, engineering or environmental sciences to name a few and, as a consequence, they have started to draw the attention of several communities including both the nonlinear chemical dynamics and hydrodynamics communities. The collection of papers gathered in this Focus Issue sheds new light on a wide range of phenomena in the general area of chemo-hydrodynamic patterns and instabilities. It also serves as an overview of the current research and state-of-the-art in the field.
Hydrodynamic coupling of particle inclusions embedded in curved lipid bilayer membranes
Sigurdsson, Jon Karl; Atzberger, Paul J.
2016-06-27
Here, we develop theory and computational methods to investigate particle inclusions embedded within curved lipid bilayer membranes. We consider the case of spherical lipid vesicles where inclusion particles are coupled through (i) intramembrane hydrodynamics, (ii) traction stresses with the external and trapped solvent fluid, and (iii) intermonolayer slip between the two leaflets of the bilayer. We investigate relative to flat membranes how the membrane curvature and topology augment hydrodynamic responses. We show how both the translational and rotational mobility of protein inclusions are effected by the membrane curvature, ratio of intramembrane viscosity to solvent viscosity, and intermonolayer slip. For generalmore » investigations of many-particle dynamics, we also discuss how our approaches can be used to treat the collective diffusion and hydrodynamic coupling within spherical bilayers.« less
Hydrodynamic coupling of particle inclusions embedded in curved lipid bilayer membranes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sigurdsson, Jon Karl; Atzberger, Paul J.
Here, we develop theory and computational methods to investigate particle inclusions embedded within curved lipid bilayer membranes. We consider the case of spherical lipid vesicles where inclusion particles are coupled through (i) intramembrane hydrodynamics, (ii) traction stresses with the external and trapped solvent fluid, and (iii) intermonolayer slip between the two leaflets of the bilayer. We investigate relative to flat membranes how the membrane curvature and topology augment hydrodynamic responses. We show how both the translational and rotational mobility of protein inclusions are effected by the membrane curvature, ratio of intramembrane viscosity to solvent viscosity, and intermonolayer slip. For generalmore » investigations of many-particle dynamics, we also discuss how our approaches can be used to treat the collective diffusion and hydrodynamic coupling within spherical bilayers.« less
NASA Astrophysics Data System (ADS)
Kim, Woojin; Lee, Injae; Choi, Haecheon
2018-04-01
We present a weak-coupling approach for fluid-structure interaction with low density ratio (ρ) of solid to fluid. For accurate and stable solutions, we introduce predictors, an explicit two-step method and the implicit Euler method, to obtain provisional velocity and position of fluid-structure interface at each time step, respectively. The incompressible Navier-Stokes equations, together with these provisional velocity and position at the fluid-structure interface, are solved in an Eulerian coordinate using an immersed-boundary finite-volume method on a staggered mesh. The dynamic equation of an elastic solid-body motion, together with the hydrodynamic force at the provisional position of the interface, is solved in a Lagrangian coordinate using a finite element method. Each governing equation for fluid and structure is implicitly solved using second-order time integrators. The overall second-order temporal accuracy is preserved even with the use of lower-order predictors. A linear stability analysis is also conducted for an ideal case to find the optimal explicit two-step method that provides stable solutions down to the lowest density ratio. With the present weak coupling, three different fluid-structure interaction problems were simulated: flows around an elastically mounted rigid circular cylinder, an elastic beam attached to the base of a stationary circular cylinder, and a flexible plate, respectively. The lowest density ratios providing stable solutions are searched for the first two problems and they are much lower than 1 (ρmin = 0.21 and 0.31, respectively). The simulation results agree well with those from strong coupling suggested here and also from previous numerical and experimental studies, indicating the efficiency and accuracy of the present weak coupling.
Semi-analytical models of hydroelastic sloshing impact in tanks of liquefied natural gas vessels.
Ten, I; Malenica, Š; Korobkin, A
2011-07-28
The present paper deals with the methods for the evaluation of the hydroelastic interactions that appear during the violent sloshing impacts inside the tanks of liquefied natural gas carriers. The complexity of both the fluid flow and the structural behaviour (containment system and ship structure) does not allow for a fully consistent direct approach according to the present state of the art. Several simplifications are thus necessary in order to isolate the most dominant physical aspects and to treat them properly. In this paper, choice was made of semi-analytical modelling for the hydrodynamic part and finite-element modelling for the structural part. Depending on the impact type, different hydrodynamic models are proposed, and the basic principles of hydroelastic coupling are clearly described and validated with respect to the accuracy and convergence of the numerical results.
Brookes, Emre; Rocco, Mattia
2018-03-28
The UltraScan SOlution MOdeller (US-SOMO) is a comprehensive, public domain, open-source suite of computer programs centred on hydrodynamic modelling and small-angle scattering (SAS) data analysis and simulation. We describe here the advances that have been implemented since its last official release (#3087, 2017), which are available from release #3141 for Windows, Linux and Mac operating systems. A major effort has been the transition from the legacy Qt3 cross platform software development and user interface library to the modern Qt5 release. Apart from improved graphical support, this has allowed the direct implementation of the newest, almost two-orders of magnitude faster version of the ZENO hydrodynamic computation algorithm for all operating systems. Coupled with the SoMo-generated bead models with overlaps, ZENO provides the most accurate translational friction computations from atomic-level structures available (Rocco and Byron Eur Biophys J 44:417-431, 2015a), with computational times comparable with or faster than those of other methods. In addition, it has allowed us to introduce the direct representation of each atom in a structure as a (hydrated) bead, opening interesting new modelling possibilities. In the small-angle scattering (SAS) part of the suite, an indirect Fourier transform Bayesian algorithm has been implemented for the computation of the pairwise distance distribution function from SAS data. Finally, the SAS HPLC module, recently upgraded with improved baseline correction and Gaussian decomposition of not baseline-resolved peaks and with advanced statistical evaluation tools (Brookes et al. J Appl Cryst 49:1827-1841, 2016), now allows automatic top-peak frame selection and averaging.
Elastohydrodynamic synchronization of adjacent beating flagella
NASA Astrophysics Data System (ADS)
Goldstein, Raymond E.; Lauga, Eric; Pesci, Adriana I.; Proctor, Michael R. E.
2016-11-01
It is now well established that nearby beating pairs of eukaryotic flagella or cilia typically synchronize in phase. A substantial body of evidence supports the hypothesis that hydrodynamic coupling between the active filaments, combined with waveform compliance, provides a robust mechanism for synchrony. This elastohydrodynamic mechanism has been incorporated into bead-spring models in which the beating flagella are represented by microspheres tethered by radial springs as they are driven about orbits by internal forces. While these low-dimensional models reproduce the phenomenon of synchrony, their parameters are not readily relatable to those of the filaments they represent. More realistic models, which reflect the underlying elasticity of the axonemes and the active force generation, take the form of fourth-order nonlinear partial differential equations (PDEs). While computational studies have shown the occurrence of synchrony, the effects of hydrodynamic coupling between nearby filaments governed by such continuum models have been examined theoretically only in the regime of interflagellar distances d large compared to flagellar length L . Yet in many biological situations d /L ≪1 . Here we present an asymptotic analysis of the hydrodynamic coupling between two extended filaments in the regime d /L ≪1 and find that the form of the coupling is independent of the microscopic details of the internal forces that govern the motion of the individual filaments. The analysis is analogous to that yielding the localized induction approximation for vortex filament motion, extended to the case of mutual induction. In order to understand how the elastohydrodynamic coupling mechanism leads to synchrony of extended objects, we introduce a heuristic model of flagellar beating. The model takes the form of a single fourth-order nonlinear PDE whose form is derived from symmetry considerations, the physics of elasticity, and the overdamped nature of the dynamics. Analytical and numerical studies of this model illustrate how synchrony between a pair of filaments is achieved through the asymptotic coupling.
NASA Astrophysics Data System (ADS)
Hoch, J. M.; Neal, J. C.; Baart, F.; Van Beek, L. P.; Winsemius, H.; Bates, P. D.; Bierkens, M. F.
2017-12-01
Currently, many approaches to provide detailed flood hazard and risk estimates are built upon specific hydrologic or hydrodynamic model routines. By applying these routines in stand-alone mode important processes can however not accurately be described. For instance, global hydrologic models run at coarse spatial resolution, not supporting the detailed simulation of flood hazard. Hydrodynamic models excel in the computations of open water flow dynamics, but dependent on specific runoff or observed discharge as input. In most cases hydrodynamic models are forced at the boundaries and thus cannot account for water sources within the model domain, limiting the simulation of inundation dynamics to reaches fed by upstream boundaries. Recently, Hoch et al. (HESS, 2017) coupled PCR-GLOBWB (PCR) with the hydrodynamic model Delft3D Flexible Mesh (DFM). By means of the Basic Model Interface both models were connected on a cell-by-cell basis, allowing for spatially explicit coupling. Model results showed that discharge simulations can profit from model coupling compared to stand-alone runs. As model results of a coupled simulation depend on the quality of the models, it would be worthwhile to allow a suite of models to be coupled. To facilitate this, we present GLOFRIM, a globally applicable framework for integrated hydrologic-hydrodynamic inundation modelling. In the current version coupling between PCR and both DFM and LISFLOOD-FP (LFP) can be established (Hoch et al., GMDD, 2017). First results show that differences between both hydrodynamic models are present in the timing of peak discharge which is most likely due to differences in channel-floodplain interactions and bathymetry processing. Having benchmarked inundation extent, LFP and DFM agree for around half of the inundated area which is attributable to variations in grid size. Results also indicate that, despite using identical boundary conditions and forcing, the schematization itself as well as internal processes can still greatly influence results. In general, the application of GLOFRIM brings several advantages. For example, with PCR being a global model, it is possible to reduce the dependency of observation data for discharge boundaries, and benchmarking of hydrodynamic models is greatly facilitated by employing identical hydrologic forcing.
NASA Astrophysics Data System (ADS)
Camporeale, Carlo; Ridolfi, Luca
2012-06-01
A novel hydrodynamic-driven stability analysis is presented for surface patterns on speleothems, i.e., secondary sedimentary cave deposits, by coupling fluid dynamics to the geochemistry of calcite precipitation or dissolution. Falling film theory provides the solution for the flow-field and depth perturbations, the latter being crucial to triggering patterns known as crenulations. In a wide range of Reynolds numbers, the model provides the dominant wavelengths and pattern celerities, in fair agreement with field data. The analysis of the phase velocity of ridges on speleothems has a potential as a proxy of past film flow rates, thus suggesting a new support for paleoclimate analyses.
NASA Astrophysics Data System (ADS)
Wang, Zhen-yu; Yu, Jian-cheng; Zhang, Ai-qun; Wang, Ya-xing; Zhao, Wen-tao
2017-12-01
Combining high precision numerical analysis methods with optimization algorithms to make a systematic exploration of a design space has become an important topic in the modern design methods. During the design process of an underwater glider's flying-wing structure, a surrogate model is introduced to decrease the computation time for a high precision analysis. By these means, the contradiction between precision and efficiency is solved effectively. Based on the parametric geometry modeling, mesh generation and computational fluid dynamics analysis, a surrogate model is constructed by adopting the design of experiment (DOE) theory to solve the multi-objects design optimization problem of the underwater glider. The procedure of a surrogate model construction is presented, and the Gaussian kernel function is specifically discussed. The Particle Swarm Optimization (PSO) algorithm is applied to hydrodynamic design optimization. The hydrodynamic performance of the optimized flying-wing structure underwater glider increases by 9.1%.
Shock structures in a strongly coupled self-gravitating opposite-polarity dust plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mamun, A. A.; Schlickeiser, R.
2016-03-15
A strongly coupled, self-gravitating, opposite-polarity dust plasma (containing strongly coupled inertial positive and negative dust fluids, and inertialess weakly coupled ions) is considered. The generalized hydrodynamic model and the reductive perturbation method are employed to examine the possibility for the formation of the dust-acoustic (DA) shock structures in such an opposite-polarity dust plasma. It has been shown that the strong correlation among charged dust is a source of dissipation and is responsible for the formation of the DA shock structures in such the opposite-polarity dust plasma medium. The parametric regimes for the existence of the DA shock structures (associated withmore » electrostatic and gravitational potentials) and their basic properties (viz., polarity, amplitude, width, and speed) are found to be significantly modified by the combined effects of positively charged dust component, self-gravitational field, and strong correlation among charged dust. The implications of our results in different space plasma environments and laboratory plasma devices are briefly discussed.« less
Theoretical and experimental investigations of an active hydrofoil with SMA actuators
NASA Astrophysics Data System (ADS)
Rediniotis, Othon K.; Lagoudas, Dimitris C.; Mashio, Tomoka; Garner, Luke J.; Qidwai, Muhammad A.
1997-06-01
In the area of underwater vehicle design, the development of highly maneuverable vehicles is presently of interest with their design being based on the swimming techniques and anatomic structure of fish; primarily the undulatory body motions, the highly controllable fins and the large aspect ratio lunatic tail. The tailoring and implementation of the accumulated knowledge into biomimetic vehicles is a task of multidisciplinary nature with two of the dominant fields being actuation and hydrodynamic control. Within this framework, we present here our progress towards the development of a type of biomimetic muscle that utilizes shape memory alloy (SMA) technology. The muscle is presently applied to the control of hydrodynamic forces and moments, including thrust generation, on a 2D hydrofoil. The main actuation elements are two sets of thin SMA wires embedded into an elastomeric element that provides the main structural support. Controlled heating and cooling of the two wire sets generates bi-direction bending of the elastomer, which in turn deflects or oscillates the trailing edge of the hydrofoil. The aquatic environment of the hydrofoil lends itself to cooling schemes that utilize the excellent heat transfer properties of water. The modeling of deflected shapes as a function of input current has been carried out using a thermomechanical constitutive model for SMA coupled with the elastic response of the elastomer. An approximate structural analysis model, as well as detailed FEM analysis has been performed and the model predictions are been compared with preliminary experimental measurements.
NASA Astrophysics Data System (ADS)
Brahim Mahamat, Hamza; Coz Mathieu, Le; Abderamane, Hamit; Razack, Moumtaz
2017-04-01
Access to water in the Wadi-Fira aquifer system is a crucial problem in Eastern Chad because of (i) the complexity of the hydrogeological context (fractured basement), (ii) large extent of the study area (50,000 km2); And (iii) hard-to-access field data (only 34 water points were available to determine physicochemical and hydrodynamic parameters) often associated with high uncertainty. This groundwater resource is paramount in this arid environment, to meet the water needs of an increasingly growing population (refugees from Darfur) with a predominant pastoral activity. In order to optimally exploit the available data, correlative analyzes are carried out by integrating the spatial dimension of the data with GIS tools. A three-step strategy is thus implemented, based on: (i) point field data with physicochemical and hydrodynamic parameters; (ii) maps interpolated from point data, to increase the number of ''comparable'' parameters for each site; and (iii) interpolated maps coupled to maps from Remote Sensing results describing the area's structural geomorphology (slopes, hydrographic network, faults). The first results show marked correlations between physico-chemical and hydrodynamical parameters. According to the correlation matrix, the static level correlates significantly with the dominant cations (Ca2+ ; R = 0.52) and anions (HCO3- ; R = 0.53). Correlations are lower between electrical conductivity and transmissivity, and electrical conductivity and measured static level. A negative correlation is observed between Fluorine and transmissivity (r = -0.65), and the altered horizon (r = -0.5). The most significant discharges are obtained in fissured horizons. The correlative analysis allowsto differentiate mapped sectors according to the productivity and chemical quality regarding groundwater resource. Keywords: Hydrodynamics, Hydrochemistry, Remote Sensing, SRTM, Basement aquifer, Alteration, Lineaments, Wadi-Fira, Tchad.
NASA Astrophysics Data System (ADS)
Zia, Roseanna N.; Swan, James W.; Su, Yu
2015-12-01
The formulation of detailed models for the dynamics of condensed soft matter including colloidal suspensions and other complex fluids requires accurate description of the physical forces between microstructural constituents. In dilute suspensions, pair-level interactions are sufficient to capture hydrodynamic, interparticle, and thermodynamic forces. In dense suspensions, many-body interactions must be considered. Prior analytical approaches to capturing such interactions such as mean-field approaches replace detailed interactions with averaged approximations. However, long-range coupling and effects of concentration on local structure, which may play an important role in, e.g., phase transitions, are smeared out in such approaches. An alternative to such approximations is the detailed modeling of hydrodynamic interactions utilizing precise couplings between moments of the hydrodynamic traction on a suspended particle and the motion of that or other suspended particles. For two isolated spheres, a set of these functions was calculated by Jeffrey and Onishi [J. Fluid Mech. 139, 261-290 (1984)] and Jeffrey [J. Phys. Fluids 4, 16-29 (1992)]. Along with pioneering work by Batchelor, these are the touchstone for low-Reynolds-number hydrodynamic interactions and have been applied directly in the solution of many important problems related to the dynamics of dilute colloidal dispersions [G. K. Batchelor and J. T. Green, J. Fluid Mech. 56, 375-400 (1972) and G. K. Batchelor, J. Fluid Mech. 74, 1-29 (1976)]. Toward extension of these functions to concentrated systems, here we present a new stochastic sampling technique to rapidly calculate an analogous set of mobility functions describing the hydrodynamic interactions between two hard spheres immersed in a suspension of arbitrary concentration, utilizing accelerated Stokesian dynamics simulations. These mobility functions provide precise, radially dependent couplings of hydrodynamic force and torque to particle translation and rotation, for arbitrary colloid volume fraction ϕ. The pair mobilities (describing entrainment of one particle by the disturbance flow created by another) decay slowly with separation distance: as 1/r, for volume fractions 0.05 ≤ ϕ ≤ 0.5. For the relative mobility, we find an initially rapid growth as a pair separates, followed by a slow, 1/r growth. Up to ϕ ≤ 0.4, the relative mobility does not reached the far-field value even beyond separations of many particle sizes. In the case of ϕ = 0.5, the far-field asymptote is reached but only at a separation of eight radii and after a slow 1/r growth. At these higher concentrations, the coefficients also reveal liquid-like structural effects on pair mobility at close separations. These results confirm that long-range many-body hydrodynamic interactions are an essential part of the dynamics of concentrated systems and that care must be taken when applying renormalization schemes.
Zia, Roseanna N; Swan, James W; Su, Yu
2015-12-14
The formulation of detailed models for the dynamics of condensed soft matter including colloidal suspensions and other complex fluids requires accurate description of the physical forces between microstructural constituents. In dilute suspensions, pair-level interactions are sufficient to capture hydrodynamic, interparticle, and thermodynamic forces. In dense suspensions, many-body interactions must be considered. Prior analytical approaches to capturing such interactions such as mean-field approaches replace detailed interactions with averaged approximations. However, long-range coupling and effects of concentration on local structure, which may play an important role in, e.g., phase transitions, are smeared out in such approaches. An alternative to such approximations is the detailed modeling of hydrodynamic interactions utilizing precise couplings between moments of the hydrodynamic traction on a suspended particle and the motion of that or other suspended particles. For two isolated spheres, a set of these functions was calculated by Jeffrey and Onishi [J. Fluid Mech. 139, 261-290 (1984)] and Jeffrey [J. Phys. Fluids 4, 16-29 (1992)]. Along with pioneering work by Batchelor, these are the touchstone for low-Reynolds-number hydrodynamic interactions and have been applied directly in the solution of many important problems related to the dynamics of dilute colloidal dispersions [G. K. Batchelor and J. T. Green, J. Fluid Mech. 56, 375-400 (1972) and G. K. Batchelor, J. Fluid Mech. 74, 1-29 (1976)]. Toward extension of these functions to concentrated systems, here we present a new stochastic sampling technique to rapidly calculate an analogous set of mobility functions describing the hydrodynamic interactions between two hard spheres immersed in a suspension of arbitrary concentration, utilizing accelerated Stokesian dynamics simulations. These mobility functions provide precise, radially dependent couplings of hydrodynamic force and torque to particle translation and rotation, for arbitrary colloid volume fraction ϕ. The pair mobilities (describing entrainment of one particle by the disturbance flow created by another) decay slowly with separation distance: as 1/r, for volume fractions 0.05 ≤ ϕ ≤ 0.5. For the relative mobility, we find an initially rapid growth as a pair separates, followed by a slow, 1/r growth. Up to ϕ ≤ 0.4, the relative mobility does not reached the far-field value even beyond separations of many particle sizes. In the case of ϕ = 0.5, the far-field asymptote is reached but only at a separation of eight radii and after a slow 1/r growth. At these higher concentrations, the coefficients also reveal liquid-like structural effects on pair mobility at close separations. These results confirm that long-range many-body hydrodynamic interactions are an essential part of the dynamics of concentrated systems and that care must be taken when applying renormalization schemes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zia, Roseanna N., E-mail: zia@cbe.cornell.edu; Su, Yu; Swan, James W.
2015-12-14
The formulation of detailed models for the dynamics of condensed soft matter including colloidal suspensions and other complex fluids requires accurate description of the physical forces between microstructural constituents. In dilute suspensions, pair-level interactions are sufficient to capture hydrodynamic, interparticle, and thermodynamic forces. In dense suspensions, many-body interactions must be considered. Prior analytical approaches to capturing such interactions such as mean-field approaches replace detailed interactions with averaged approximations. However, long-range coupling and effects of concentration on local structure, which may play an important role in, e.g., phase transitions, are smeared out in such approaches. An alternative to such approximations ismore » the detailed modeling of hydrodynamic interactions utilizing precise couplings between moments of the hydrodynamic traction on a suspended particle and the motion of that or other suspended particles. For two isolated spheres, a set of these functions was calculated by Jeffrey and Onishi [J. Fluid Mech. 139, 261–290 (1984)] and Jeffrey [J. Phys. Fluids 4, 16–29 (1992)]. Along with pioneering work by Batchelor, these are the touchstone for low-Reynolds-number hydrodynamic interactions and have been applied directly in the solution of many important problems related to the dynamics of dilute colloidal dispersions [G. K. Batchelor and J. T. Green, J. Fluid Mech. 56, 375–400 (1972) and G. K. Batchelor, J. Fluid Mech. 74, 1–29 (1976)]. Toward extension of these functions to concentrated systems, here we present a new stochastic sampling technique to rapidly calculate an analogous set of mobility functions describing the hydrodynamic interactions between two hard spheres immersed in a suspension of arbitrary concentration, utilizing accelerated Stokesian dynamics simulations. These mobility functions provide precise, radially dependent couplings of hydrodynamic force and torque to particle translation and rotation, for arbitrary colloid volume fraction ϕ. The pair mobilities (describing entrainment of one particle by the disturbance flow created by another) decay slowly with separation distance: as 1/r, for volume fractions 0.05 ≤ ϕ ≤ 0.5. For the relative mobility, we find an initially rapid growth as a pair separates, followed by a slow, 1/r growth. Up to ϕ ≤ 0.4, the relative mobility does not reached the far-field value even beyond separations of many particle sizes. In the case of ϕ = 0.5, the far-field asymptote is reached but only at a separation of eight radii and after a slow 1/r growth. At these higher concentrations, the coefficients also reveal liquid-like structural effects on pair mobility at close separations. These results confirm that long-range many-body hydrodynamic interactions are an essential part of the dynamics of concentrated systems and that care must be taken when applying renormalization schemes.« less
NASA Astrophysics Data System (ADS)
Hanoca, P.; Ramakrishna, H. V.
2018-03-01
This work is related to develop a methodology to model and simulate the TEHD using the sequential application of CFD and CSD. The FSI analyses are carried out using ANSYS Workbench. In this analysis steady state, 3D Navier-Stoke equations along with energy equation are solved. Liquid properties are introduced where the viscosity and density are the function of pressure and temperature. The cavitation phenomenon is adopted in the analysis. Numerical analysis has been carried at different speeds and surfaces temperatures. During the analysis, it was found that as speed increases, hydrodynamic pressures will also increases. The pressure profile obtained from the Roelands equation is more sensitive to the temperature as compared to the Barus equation. The stress distributions specify the significant positions in the bearing structure. The developed method is capable of giving latest approaching into the physics of elasto hydrodynamic lubrication.
Perez, Romel B; Tischer, Alexander; Auton, Matthew; Whitten, Steven T
2014-12-01
Molecular transduction of biological signals is understood primarily in terms of the cooperative structural transitions of protein macromolecules, providing a mechanism through which discrete local structure perturbations affect global macromolecular properties. The recognition that proteins lacking tertiary stability, commonly referred to as intrinsically disordered proteins (IDPs), mediate key signaling pathways suggests that protein structures without cooperative intramolecular interactions may also have the ability to couple local and global structure changes. Presented here are results from experiments that measured and tested the ability of disordered proteins to couple local changes in structure to global changes in structure. Using the intrinsically disordered N-terminal region of the p53 protein as an experimental model, a set of proline (PRO) and alanine (ALA) to glycine (GLY) substitution variants were designed to modulate backbone conformational propensities without introducing non-native intramolecular interactions. The hydrodynamic radius (R(h)) was used to monitor changes in global structure. Circular dichroism spectroscopy showed that the GLY substitutions decreased polyproline II (PP(II)) propensities relative to the wild type, as expected, and fluorescence methods indicated that substitution-induced changes in R(h) were not associated with folding. The experiments showed that changes in local PP(II) structure cause changes in R(h) that are variable and that depend on the intrinsic chain propensities of PRO and ALA residues, demonstrating a mechanism for coupling local and global structure changes. Molecular simulations that model our results were used to extend the analysis to other proteins and illustrate the generality of the observed PRO and alanine effects on the structures of IDPs. © 2014 Wiley Periodicals, Inc.
Perez, Romel B.; Tischer, Alexander; Auton, Matthew; Whitten, Steven T.
2014-01-01
Molecular transduction of biological signals is understood primarily in terms of the cooperative structural transitions of protein macromolecules, providing a mechanism through which discrete local structure perturbations affect global macromolecular properties. The recognition that proteins lacking tertiary stability, commonly referred to as intrinsically disordered proteins, mediate key signaling pathways suggests that protein structures without cooperative intramolecular interactions may also have the ability to couple local and global structure changes. Presented here are results from experiments that measured and tested the ability of disordered proteins to couple local changes in structure to global changes in structure. Using the intrinsically disordered N-terminal region of the p53 protein as an experimental model, a set of proline and alanine to glycine substitution variants were designed to modulate backbone conformational propensities without introducing non-native intramolecular interactions. The hydrodynamic radius (Rh) was used to monitor changes in global structure. Circular dichroism spectroscopy showed that the glycine substitutions decreased polyproline II (PPII) propensities relative to the wild type, as expected, and fluorescence methods indicated that substitution-induced changes in Rh were not associated with folding. The experiments showed that changes in local PPII structure cause changes in Rh that are variable and that depend on the intrinsic chain propensities of proline and alanine residues, demonstrating a mechanism for coupling local and global structure changes. Molecular simulations that model our results were used to extend the analysis to other proteins and illustrate the generality of the observed proline and alanine effects on the structures of intrinsically disordered proteins. PMID:25244701
SPH modeling of fluid-structure interaction
NASA Astrophysics Data System (ADS)
Han, Luhui; Hu, Xiangyu
2018-02-01
This work concerns numerical modeling of fluid-structure interaction (FSI) problems in a uniform smoothed particle hydrodynamics (SPH) framework. It combines a transport-velocity SPH scheme, advancing fluid motions, with a total Lagrangian SPH formulation dealing with the structure deformations. Since both fluid and solid governing equations are solved in SPH framework, while coupling becomes straightforward, the momentum conservation of the FSI system is satisfied strictly. A well-known FSI benchmark test case has been performed to validate the modeling and to demonstrate its potential.
NASA Technical Reports Server (NTRS)
Margolis, Stephen B.; Sacksteder, Kurt (Technical Monitor)
2000-01-01
A pulsating form of hydrodynamic instability has recently been shown to arise during liquid-propellant deflagration in those parameter regimes where the pressure-dependent burning rate is characterized by a negative pressure sensitivity. This type of instability can coexist with the classical cellular, or Landau form of hydrodynamic instability, with the occurrence of either dependent on whether the pressure sensitivity is sufficiently large or small in magnitude. For the inviscid problem, it has been shown that, when the burning rate is realistically allowed to depend on temperature as well as pressure, sufficiently large values of the temperature sensitivity relative to the pressure sensitivity causes like pulsating form of hydrodynamic instability to become dominant. In that regime, steady, planar burning becomes intrinsically unstable to pulsating disturbances whose wave numbers are sufficiently small. This analysis is extended to the fully viscous case, where it is shown that although viscosity is stabilizing for intermediate and larger wave number perturbations, the intrinsic pulsating instability for small wave numbers remains. Under these conditions, liquid-propellant combustion is predicted to be characterized by large unsteady cells along the liquid/gas interface.
Jeans self gravitational instability of strongly coupled quantum plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Prerana, E-mail: preranaiitd@rediffmail.com; Chhajlani, R. K.
2014-07-15
The Jeans self-gravitational instability is studied for quantum plasma composed of weakly coupled degenerate electron fluid and non-degenerate strongly coupled ion fluid. The formulation for such system is done on the basis of two fluid theory. The dynamics of weakly coupled degenerate electron fluid is governed by inertialess momentum equation. The quantum forces associated with the quantum diffraction effects and the quantum statistical effects act on the degenerate electron fluid. The strong correlation effects of ion are embedded in generalized viscoelastic momentum equation including the viscoelasticity and shear viscosities of ion fluid. The general dispersion relation is obtained using themore » normal mode analysis technique for the two regimes of propagation, i.e., hydrodynamic and kinetic regimes. The Jeans condition of self-gravitational instability is also obtained for both regimes, in the hydrodynamic regime it is observed to be affected by the ion plasma oscillations and quantum parameter while in the kinetic regime in addition to ion plasma oscillations and quantum parameter, it is also affected by the ion velocity which is modified by the viscosity generated compressional effects. The Jeans critical wave number and corresponding critical mass are also obtained for strongly coupled quantum plasma for both regimes.« less
Shock-driven fluid-structure interaction for civil design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, Stephen L; Deiterding, Ralf
The multiphysics fluid-structure interaction simulation of shock-loaded structures requires the dynamic coupling of a shock-capturing flow solver to a solid mechanics solver for large deformations. The Virtual Test Facility combines a Cartesian embedded boundary approach with dynamic mesh adaptation in a generic software framework of flow solvers using hydrodynamic finite volume upwind schemes that are coupled to various explicit finite element solid dynamics solvers (Deiterding et al., 2006). This paper gives a brief overview of the computational approach and presents first simulations that utilize the general purpose solid dynamics code DYNA3D for complex 3D structures of interest in civil engineering.more » Results from simulations of a reinforced column, highway bridge, multistory building, and nuclear reactor building are presented.« less
Discrete and continuum links to a nonlinear coupled transport problem of interacting populations
NASA Astrophysics Data System (ADS)
Duong, M. H.; Muntean, A.; Richardson, O. M.
2017-07-01
We are interested in exploring interacting particle systems that can be seen as microscopic models for a particular structure of coupled transport flux arising when different populations are jointly evolving. The scenarios we have in mind are inspired by the dynamics of pedestrian flows in open spaces and are intimately connected to cross-diffusion and thermo-diffusion problems holding a variational structure. The tools we use include a suitable structure of the relative entropy controlling TV-norms, the construction of Lyapunov functionals and particular closed-form solutions to nonlinear transport equations, a hydrodynamics limiting procedure due to Philipowski, as well as the construction of numerical approximates to both the continuum limit problem in 2D and to the original interacting particle systems.
Sensing Structures Inspired by Blind Cave Fish
NASA Astrophysics Data System (ADS)
McConney, Michael E.; Chen, Nannan; Lu, David; Anderson, Kyle D.; Hu, Huan; Liu, Chang; Tsukruk, Vladimir V.
2009-03-01
Blind cave fish, with degenerated non-functioning eyes, have evolved to ``see'' their hydrodynamic environment by using the flow receptors of the lateral line system. The hair-cell receptors are encapsulated in a hydrogel-like material, called a cupula, which increases the sensitivity of the hair-cell receptors by coupling their motion to the surrounding flowing media. We characterized the viscoelastic properties and of blind cave fish cupulae by using colloidal-probe spectroscopy in fluid. A photo-patternable hydrogel with similar properties was developed to mimic the fish receptor coupling structure. Flow-based measurements indicated that the hydrogels enhance drag through increased surface area, but also inherent material properties. These bio-inspired structures endowed micro-fabricated flow sensors with sensitivities rivaling that of fish.
Collective orientational dynamics of pinned chemically-propelled nanorotors
NASA Astrophysics Data System (ADS)
Robertson, Bryan; Stark, Holger; Kapral, Raymond
2018-04-01
Collections of chemically propelled nanomotors free to move in solution can form dynamic clusters with diverse properties as a result of interactions through hydrodynamic flow and concentration fields, as well as direct intermolecular interactions between motors. Here, we study the collective rotational behavior of pinned sphere-dimer motors where direct motor-motor interactions play no role. Since the centers of mass of the motors are pinned, they cannot execute directed translational motion, but they can pump fluid and rotate; thus, the rotors remain coupled through hydrodynamic and chemical fields. Using a microscopic simulation method that accounts for coupling through both these fields, we show that different rotor configurations with a high degree of correlation exist and their forms depend on the nature of the fluid-rotor interactions. The correlations are greatly reduced or completely destroyed when the chemical interactions are removed, indicating that hydrodynamic coupling, while present, plays a lesser role in determining the collective rotor dynamics. These conclusions are supported by Langevin dynamics simulations that neglect hydrodynamics and include an approximate form of coupling through chemical fields.
Interaction dynamics of two diffusing particles: contact times and influence of nearby surfaces.
Tränkle, B; Ruh, D; Rohrbach, A
2016-03-14
Interactions of diffusing particles are governed by hydrodynamics on different length and timescales. The local hydrodynamics can be influenced substantially by simple interfaces. Here, we investigate the interaction dynamics of two micron-sized spheres close to plane interfaces to mimic more complex biological systems or microfluidic environments. Using scanned line optical tweezers and fast 3D interferometric particle tracking, we are able to track the motion of each bead with precisions of a few nanometers and at a rate of 10 kilohertz. From the recorded trajectories, all spatial and temporal information is accessible. This way, we measure diffusion coefficients for two coupling particles at varying distances h to one or two glass interfaces. We analyze their coupling strength and length by cross-correlation analysis relative to h and find a significant decrease in the coupling length when a second particle diffuses nearby. By analysing the times the particles are in close contact, we find that the influence of nearby surfaces and interaction potentials reduce the diffusivity strongly, although we found that the diffusivity hardly affects the contact times and the binding probability between the particles. All experimental results are compared to a theoretical model, which is based on the number of possible diffusion paths following the Catalan numbers and a diffusion probability, which is biased by the spheres' surface potential. The theoretical and experimental results agree very well and therefore enable a better understanding of hydrodynamically coupled interaction processes.
Propulsion and Instability of a Flexible Helical Rod Rotating in a Viscous Fluid
NASA Astrophysics Data System (ADS)
Jawed, M. K.; Khouri, N. K.; Da, F.; Grinspun, E.; Reis, P. M.
2015-10-01
We combine experiments with simulations to investigate the fluid-structure interaction of a flexible helical rod rotating in a viscous fluid, under low Reynolds number conditions. Our analysis takes into account the coupling between the geometrically nonlinear behavior of the elastic rod with a nonlocal hydrodynamic model for the fluid loading. We quantify the resulting propulsive force, as well as the buckling instability of the originally helical filament that occurs above a critical rotation velocity. A scaling analysis is performed to rationalize the onset of this instability. A universal phase diagram is constructed to map out the region of successful propulsion and the corresponding boundary of stability is established. Comparing our results with data for flagellated bacteria suggests that this instability may be exploited in nature for physiological purposes.
Propulsive performance of pitching foils with variable chordwise flexibility
NASA Astrophysics Data System (ADS)
Zeyghami, Samane; Moored, Keith; Lehigh University Team
2017-11-01
Many swimming and flying animals propel themselves efficiently through water by oscillating flexible fins. These fins are not homogeneously flexible, but instead their flexural stiffness varies along their chord and span. Here we seek to evaluate the effect stiffness profile on the propulsive performance of pitching foils. Stiffness profile characterizes the variation in the local fin stiffness along the chord. To this aim, we developed a low order model of a functionally-graded material where the chordwise flexibility is modeled by two torsional springs along the chordline and the stiffness and location of the springs can be varied arbitrarily. The torsional spring structural model is then strongly coupled to a boundary element fluid model to simulate the fluid-structure interactions. Keeping the leading edge kinematics unchanged, we alter the stiffness profile of the foil and allow it to swim freely in response to the resulting hydrodynamic forces. We then detail the dependency of the hydrodynamic performance and the wake structure to the variations in the local structural properties of the foil.
Validation of a coupled wave-flow model in a high-energy setting: the mouth of the Columbia River
Elias, Edwin P.L.; Gelfenbaum, Guy R.; van der Westhuysen, André J.
2012-01-01
A monthlong time series of wave, current, salinity, and suspended-sediment measurements was made at five sites on a transect across the Mouth of Columbia River (MCR). These data were used to calibrate and evaluate the performance of a coupled hydrodynamic and wave model for the MCR based on the Delft3D modeling system. The MCR is a dynamic estuary inlet in which tidal currents, river discharge, and wave-driven currents are all important. Model tuning consisted primarily of spatial adjustments to bottom drag coefficients. In combination with (near-) default parameter settings, the MCR model application is able to simulate the dominant features in the tidal flow, salinity and wavefields observed in field measurements. The wave-orbital averaged method for representing the current velocity profile in the wave model is considered the most realistic for the MCR. The hydrodynamic model is particularly effective in reproducing the observed vertical residual and temporal variations in current structure. Density gradients introduce the observed and modeled reversal of the mean flow at the bed and augment mean and peak flow in the upper half of the water column. This implies that sediment transport during calmer summer conditions is controlled by density stratification and is likely net landward due to the reversal of flow near the bed. The correspondence between observed and modeled hydrodynamics makes this application a tool to investigate hydrodynamics and associated sediment transport.
Validation of a coupled wave-flow model in a high-energy setting: The mouth of the Columbia River
NASA Astrophysics Data System (ADS)
Elias, Edwin P. L.; Gelfenbaum, Guy; Van der Westhuysen, André J.
2012-09-01
A monthlong time series of wave, current, salinity, and suspended-sediment measurements was made at five sites on a transect across the Mouth of Columbia River (MCR). These data were used to calibrate and evaluate the performance of a coupled hydrodynamic and wave model for the MCR based on the Delft3D modeling system. The MCR is a dynamic estuary inlet in which tidal currents, river discharge, and wave-driven currents are all important. Model tuning consisted primarily of spatial adjustments to bottom drag coefficients. In combination with (near-) default parameter settings, the MCR model application is able to simulate the dominant features in the tidal flow, salinity and wavefields observed in field measurements. The wave-orbital averaged method for representing the current velocity profile in the wave model is considered the most realistic for the MCR. The hydrodynamic model is particularly effective in reproducing the observed vertical residual and temporal variations in current structure. Density gradients introduce the observed and modeled reversal of the mean flow at the bed and augment mean and peak flow in the upper half of the water column. This implies that sediment transport during calmer summer conditions is controlled by density stratification and is likely net landward due to the reversal of flow near the bed. The correspondence between observed and modeled hydrodynamics makes this application a tool to investigate hydrodynamics and associated sediment transport.
Computational investigation of large-scale vortex interaction with flexible bodies
NASA Astrophysics Data System (ADS)
Connell, Benjamin; Yue, Dick K. P.
2003-11-01
The interaction of large-scale vortices with flexible bodies is examined with particular interest paid to the energy and momentum budgets of the system. Finite difference direct numerical simulation of the Navier-Stokes equations on a moving curvilinear grid is coupled with a finite difference structural solver of both a linear membrane under tension and linear Euler-Bernoulli beam. The hydrodynamics and structural dynamics are solved simultaneously using an iterative procedure with the external structural forcing calculated from the hydrodynamics at the surface and the flow-field velocity boundary condition given by the structural motion. We focus on an investigation into the canonical problem of a vortex-dipole impinging on a flexible membrane. It is discovered that the structural properties of the membrane direct the interaction in terms of the flow evolution and the energy budget. Pressure gradients associated with resonant membrane response are shown to sustain the oscillatory motion of the vortex pair. Understanding how the key mechanisms in vortex-body interactions are guided by the structural properties of the body is a prerequisite to exploiting these mechanisms.
Hydrodynamics and eutrophication in a mariculture site in the Philippines
NASA Astrophysics Data System (ADS)
Escobar, M. T.; San Diego-McGlone, M. L.; Martin, M.; Villanoy, C.
2014-12-01
Bolinao, Pangasinan in the Philippines is a site for extensive and intensive culture of Chanos chanos. The proliferation of fish farm structures coupled with excessive feeding caused the deterioration of water quality in the area that lead to hypoxic condition (<2mg/L) and fish kills. A hydrodynamic model of the area, developed using DELFT3D, showed a residence time of 5-15 days in the northern channel and 25 to 28 days in the southern end. The complex configuration of the coast, which includes narrow channels that serve as bottlenecks, result to the inefficient flushing of the area. This was further aggravated by the presence of fish farm structures that restricted the natural flow of water. Water quality was monitored in the mariculture site and a nearby seagrass reserve. Nitrate+nitrite concentration ranged from 0.34 - 4.1 µM, 0.13 - 2.7 µM for phosphate, and 1.7 - 8.8 µM for ammonia. Highest nutrient concentrations were seen near the fish farms. Analysis of nutrients, chlorophyll-a and tss for a tidal cycle showed that these substances were inadequately flushed from the coastal waters. Long residence times and high nutrient loading in the area were ideal conditions for the development of hypoxia.
Orbital maneuvering engine feed system coupled stability investigation
NASA Technical Reports Server (NTRS)
Kahn, D. R.; Schuman, M. D.; Hunting, J. K.; Fertig, K. W.
1975-01-01
A digital computer model used to analyze and predict engine feed system coupled instabilities over a frequency range of 10 to 1000 Hz was developed and verified. The analytical approach to modeling the feed system hydrodynamics, combustion dynamics, chamber dynamics, and overall engineering model structure is described and the governing equations in each of the technical areas are presented. This is followed by a description of the generalized computer model, including formulation of the discrete subprograms and their integration into an overall engineering model structure. The operation and capabilities of the engineering model were verified by comparing the model's theoretical predictions with experimental data from an OMS-type engine with a known feed system/engine chugging history.
Block structured adaptive mesh and time refinement for hybrid, hyperbolic + N-body systems
NASA Astrophysics Data System (ADS)
Miniati, Francesco; Colella, Phillip
2007-11-01
We present a new numerical algorithm for the solution of coupled collisional and collisionless systems, based on the block structured adaptive mesh and time refinement strategy (AMR). We describe the issues associated with the discretization of the system equations and the synchronization of the numerical solution on the hierarchy of grid levels. We implement a code based on a higher order, conservative and directionally unsplit Godunov’s method for hydrodynamics; a symmetric, time centered modified symplectic scheme for collisionless component; and a multilevel, multigrid relaxation algorithm for the elliptic equation coupling the two components. Numerical results that illustrate the accuracy of the code and the relative merit of various implemented schemes are also presented.
Propulsion and hydrodynamic particle transport of magnetically twisted colloidal ribbons
NASA Astrophysics Data System (ADS)
Massana-Cid, Helena; Martinez-Pedrero, Fernando; Navarro-Argemí, Eloy; Pagonabarraga, Ignacio; Tierno, Pietro
2017-10-01
We describe a method to trap, transport and release microscopic particles in a viscous fluid using the hydrodynamic flow field generated by a magnetically propelled colloidal ribbon. The ribbon is composed of ferromagnetic microellipsoids that arrange with their long axis parallel to each other, a configuration that is energetically favorable due to their permanent magnetic moments. We use an external precessing magnetic field to torque the anisotropic particles forming the ribbon, and to induce propulsion of the entire structure due to the hydrodynamic coupling with the close substrate. The propulsion speed of the ribbon can be controlled by varying the driving frequency, or the amplitude of the precessing field. The latter parameter is also used to reduce the average inter particle distance and to induce the twisting of the ribbon due to the increase in the attraction between the rotating ellipsoids. Furthermore, non magnetic particles are attracted or repelled with the hydrodynamic flow field generated by the propelling ribbon. The proposed method may be used in channel free microfluidic applications, where the precise trapping and transport of functionalized particles via non invasive magnetic fields is required.
Progress and challenges in coupled hydrodynamic-ecological estuarine modeling.
Ganju, Neil K; Brush, Mark J; Rashleigh, Brenda; Aretxabaleta, Alfredo L; Del Barrio, Pilar; Grear, Jason S; Harris, Lora A; Lake, Samuel J; McCardell, Grant; O'Donnell, James; Ralston, David K; Signell, Richard P; Testa, Jeremy M; Vaudrey, Jamie M P
2016-03-01
Numerical modeling has emerged over the last several decades as a widely accepted tool for investigations in environmental sciences. In estuarine research, hydrodynamic and ecological models have moved along parallel tracks with regard to complexity, refinement, computational power, and incorporation of uncertainty. Coupled hydrodynamic-ecological models have been used to assess ecosystem processes and interactions, simulate future scenarios, and evaluate remedial actions in response to eutrophication, habitat loss, and freshwater diversion. The need to couple hydrodynamic and ecological models to address research and management questions is clear, because dynamic feedbacks between biotic and physical processes are critical interactions within ecosystems. In this review we present historical and modern perspectives on estuarine hydrodynamic and ecological modeling, consider model limitations, and address aspects of model linkage, skill assessment, and complexity. We discuss the balance between spatial and temporal resolution and present examples using different spatiotemporal scales. Finally, we recommend future lines of inquiry, approaches to balance complexity and uncertainty, and model transparency and utility. It is idealistic to think we can pursue a "theory of everything" for estuarine models, but recent advances suggest that models for both scientific investigations and management applications will continue to improve in terms of realism, precision, and accuracy.
Progress and challenges in coupled hydrodynamic-ecological estuarine modeling
Ganju, Neil K.; Brush, Mark J.; Rashleigh, Brenda; Aretxabaleta, Alfredo L.; del Barrio, Pilar; Grear, Jason S.; Harris, Lora A.; Lake, Samuel J.; McCardell, Grant; O'Donnell, James; Ralston, David K.; Signell, Richard P.; Testa, Jeremy; Vaudrey, Jamie M. P.
2016-01-01
Numerical modeling has emerged over the last several decades as a widely accepted tool for investigations in environmental sciences. In estuarine research, hydrodynamic and ecological models have moved along parallel tracks with regard to complexity, refinement, computational power, and incorporation of uncertainty. Coupled hydrodynamic-ecological models have been used to assess ecosystem processes and interactions, simulate future scenarios, and evaluate remedial actions in response to eutrophication, habitat loss, and freshwater diversion. The need to couple hydrodynamic and ecological models to address research and management questions is clear because dynamic feedbacks between biotic and physical processes are critical interactions within ecosystems. In this review, we present historical and modern perspectives on estuarine hydrodynamic and ecological modeling, consider model limitations, and address aspects of model linkage, skill assessment, and complexity. We discuss the balance between spatial and temporal resolution and present examples using different spatiotemporal scales. Finally, we recommend future lines of inquiry, approaches to balance complexity and uncertainty, and model transparency and utility. It is idealistic to think we can pursue a “theory of everything” for estuarine models, but recent advances suggest that models for both scientific investigations and management applications will continue to improve in terms of realism, precision, and accuracy.
Progress and challenges in coupled hydrodynamic-ecological estuarine modeling
Ganju, Neil K.; Brush, Mark J.; Rashleigh, Brenda; Aretxabaleta, Alfredo L.; del Barrio, Pilar; Grear, Jason S.; Harris, Lora A.; Lake, Samuel J.; McCardell, Grant; O’Donnell, James; Ralston, David K.; Signell, Richard P.; Testa, Jeremy M.; Vaudrey, Jamie M.P.
2016-01-01
Numerical modeling has emerged over the last several decades as a widely accepted tool for investigations in environmental sciences. In estuarine research, hydrodynamic and ecological models have moved along parallel tracks with regard to complexity, refinement, computational power, and incorporation of uncertainty. Coupled hydrodynamic-ecological models have been used to assess ecosystem processes and interactions, simulate future scenarios, and evaluate remedial actions in response to eutrophication, habitat loss, and freshwater diversion. The need to couple hydrodynamic and ecological models to address research and management questions is clear, because dynamic feedbacks between biotic and physical processes are critical interactions within ecosystems. In this review we present historical and modern perspectives on estuarine hydrodynamic and ecological modeling, consider model limitations, and address aspects of model linkage, skill assessment, and complexity. We discuss the balance between spatial and temporal resolution and present examples using different spatiotemporal scales. Finally, we recommend future lines of inquiry, approaches to balance complexity and uncertainty, and model transparency and utility. It is idealistic to think we can pursue a “theory of everything” for estuarine models, but recent advances suggest that models for both scientific investigations and management applications will continue to improve in terms of realism, precision, and accuracy. PMID:27721675
NASA Astrophysics Data System (ADS)
Trainor, Thomas A.
2010-08-01
Hydrodynamic (hydro) models applied to heavy ion data from the relativistic heavy ion collider (RHIC) suggest that a dense QCD medium nearly opaque to partons—a strongly coupled quark-gluon plasma—is formed in more-central Au-Au collisions and may have a small viscosity ('perfect liquid'). Claimed evidence for radial and elliptic flows and possible coalescence of 'constituent quarks' seems to support the conclusion. But other measurements provide contradictory evidence. Unbiased angular correlations indicate that most back-to-back jets from initial-state scattered partons with energies as low as 3 GeV survive as 'minijet' hadron correlations even in central Au-Au collisions, suggesting near transparency. Two-component analysis of single-particle spectra reveals a spectrum hard component (parton fragment distribution) which can be mistaken for 'radial flow' in some forms of analysis. Based on recent results, reinterpretation of 'elliptic flow' as a QCD quadrupole scattering process including fragmentation may be possible. In this paper we review conventional analysis methods in the context of two paradigms: a hydrodynamics/hard-probes paradigm and a quadrupole/minijets paradigm. Re-examination of fiducial data suggests that hydrodynamics may not be relevant to RHIC collisions. Collision evolution may be dominated by QCD scattering and fragmentation, albeit strongly modified in more-central A-A collisions.
NASA Astrophysics Data System (ADS)
Hirsh, H.; Torres, W.; Shea, M.
2016-02-01
Interest in seagrass beds as a tool to locally mitigate ocean acidification is growing rapidly. Much of the interest in seagrasses is motivated by their root structure, which is able to sequester carbon over interannual and longer timescales. Far less is known about their biogeochemistry on shorter diel timescales, yet we know that diel cycle variation in CO2 chemistry on coral reefs can be quite substantial. Understanding short-term seagrass biogeochemistry is critical to evaluating if, and how, seagrasses may eventually be utilized to mitigate OA on coral reefs. We present the results of a high-resolution, 24-hour control volume experiment conducted in the Republic of Palau covering a 50m x 100m seagrass bed. Our dataset includes diel cycles of hydrodynamic (current profiles and turbulence), biogeochemical (pH, pCO2, TA, DIC, and O2), and environmental (temperature and salinity) parameters. We use these coupled hydrodynamic-biogeochemical measurements to estimate ecosystem metabolism and better quantify the capacity of seagrass to mitigate local acidification through the photosynthetic uptake of CO2. Combining our field observations with box model predictions allows us to gain better insight into the mechanisms that control seagrass metabolism and their ability to buffer CO2 for downstream corals.
Orbital Maneuvering Engine Feed System Coupled Stability Investigation, Computer User's Manual
NASA Technical Reports Server (NTRS)
Schuman, M. D.; Fertig, K. W.; Hunting, J. K.; Kahn, D. R.
1975-01-01
An operating manual for the feed system coupled stability model was given, in partial fulfillment of a program designed to develop, verify, and document a digital computer model that can be used to analyze and predict engine/feed system coupled instabilities in pressure-fed storable propellant propulsion systems over a frequency range of 10 to 1,000 Hz. The first section describes the analytical approach to modelling the feed system hydrodynamics, combustion dynamics, chamber dynamics, and overall engineering model structure, and presents the governing equations in each of the technical areas. This is followed by the program user's guide, which is a complete description of the structure and operation of the computerized model. Last, appendices provide an alphabetized FORTRAN symbol table, detailed program logic diagrams, computer code listings, and sample case input and output data listings.
NASA Astrophysics Data System (ADS)
Eghtesad, Adnan; Knezevic, Marko
2018-07-01
A corrective smooth particle method (CSPM) within smooth particle hydrodynamics (SPH) is used to study the deformation of an aircraft structure under high-velocity water-ditching impact load. The CSPM-SPH method features a new approach for the prediction of two-way fluid-structure interaction coupling. Results indicate that the implementation is well suited for modeling the deformation of structures under high-velocity impact into water as evident from the predicted stress and strain localizations in the aircraft structure as well as the integrity of the impacted interfaces, which show no artificial particle penetrations. To reduce the simulation time, a heterogeneous particle size distribution over a complex three-dimensional geometry is used. The variable particle size is achieved from a finite element mesh with variable element size and, as a result, variable nodal (i.e., SPH particle) spacing. To further accelerate the simulations, the SPH code is ported to a graphics processing unit using the OpenACC standard. The implementation and simulation results are described and discussed in this paper.
NASA Astrophysics Data System (ADS)
Eghtesad, Adnan; Knezevic, Marko
2017-12-01
A corrective smooth particle method (CSPM) within smooth particle hydrodynamics (SPH) is used to study the deformation of an aircraft structure under high-velocity water-ditching impact load. The CSPM-SPH method features a new approach for the prediction of two-way fluid-structure interaction coupling. Results indicate that the implementation is well suited for modeling the deformation of structures under high-velocity impact into water as evident from the predicted stress and strain localizations in the aircraft structure as well as the integrity of the impacted interfaces, which show no artificial particle penetrations. To reduce the simulation time, a heterogeneous particle size distribution over a complex three-dimensional geometry is used. The variable particle size is achieved from a finite element mesh with variable element size and, as a result, variable nodal (i.e., SPH particle) spacing. To further accelerate the simulations, the SPH code is ported to a graphics processing unit using the OpenACC standard. The implementation and simulation results are described and discussed in this paper.
A first computational framework for integrated hydrologic-hydrodynamic inundation modelling
NASA Astrophysics Data System (ADS)
Hoch, Jannis; Baart, Fedor; Neal, Jeffrey; van Beek, Rens; Winsemius, Hessel; Bates, Paul; Bierkens, Marc
2017-04-01
To provide detailed flood hazard and risk estimates for current and future conditions, advanced modelling approaches are required. Currently, many approaches are however built upon specific hydrologic or hydrodynamic model routines. By applying these routines in stand-alone mode important processes cannot accurately be described. For instance, global hydrologic models (GHM) run at coarse spatial resolution which does not identify locally relevant flood hazard information. Moreover, hydrologic models generally focus on correct computations of water balances, but employ less sophisticated routing schemes such as the kinematic wave approximation. Hydrodynamic models, on the other side, excel in the computations of open water flow dynamics, but are highly dependent on specific runoff or observed discharge for their input. In most cases hydrodynamic models are forced by applying discharge at the boundaries and thus cannot account for water sources within the model domain. Thus, discharge and inundation dynamics at reaches not fed by upstream boundaries cannot be modelled. In a recent study, Hoch et al. (HESS, 2017) coupled the GHM PCR-GLOBWB with the hydrodynamic model Delft3D Flexible Mesh. A core element of this study was that both models were connected on a cell-by-cell basis which allows for direct hydrologic forcing within the hydrodynamic model domain. The means for such model coupling is the Basic Model Interface (BMI) which provides a set of functions to directly access model variables. Model results showed that discharge simulations can profit from model coupling as their accuracy is higher compared to stand-alone runs. Model results of a coupled simulation clearly depend on the quality of the individual models. Depending on purpose, location or simply the models at hand, it would be worthwhile to allow a wider range of models to be coupled. As a first step, we present a framework which allows coupling of PCR-GLOBWB to both Delft3D Flexible Mesh and LISFLOOD-FP. The coupling framework consists of a main script and a set of functions performing the actual model coupling as well as data processing. All that is required therefore are model schematizations of the models involved for the domain of interest. It is noteworthy that no adaptions to already existing schematizations have to be made. Within the framework, it is possible to distribute input volume from PCR-GLOBWB over the 2D hydrodynamic grid ("2D option"), or if available, directly into the 1D channels ("1D option"). Besides, it is possible to input the water volumes into the hydrodynamic models either as fluxes or states. With PCR-GLOBWB being a global model, it is possible to apply the coupling scheme anywhere, which reduces the dependency of observation data for discharge boundaries. Reducing this dependency is of particular benefit for areas where only a limited number of accurate measurements are available. First results of applying the coupling framework show that differences between both hydrodynamic models are mainly apparent in the timing of peak discharge when using the 1D option. Regarding inundation extent, applying LISFLOOD-FP with a regular grid outperforms the flexible mesh of Delft3D for those areas where a coarser spatial resolution is used in the flexible mesh. When using the 2D option, however, using Delft3D Flexible Mesh is more robust than LISFLOOD-FP due to the differences in the solver used in the models. With Delft3D Flexible Mesh solving the full Saint-Vernant equations, and LISFLOOD-FP solving the local inertial wave approximation which lacks the convective acceleration term, the framework hence allows for choosing the hydrodynamic parts based on the local characteristics of a chosen study area.
Lintuvuori, J S; Würger, A; Stratford, K
2017-08-11
We present a study of the hydrodynamics of an active particle-a model squirmer-in an environment with a broken rotational symmetry: a nematic liquid crystal. By combining simulations with analytic calculations, we show that the hydrodynamic coupling between the squirmer flow field and liquid crystalline director can lead to reorientation of the swimmers. The preferred orientation depends on the exact details of the squirmer flow field. In a steady state, pushers are shown to swim parallel with the nematic director while pullers swim perpendicular to the nematic director. This behavior arises solely from hydrodynamic coupling between the squirmer flow field and anisotropic viscosities of the host fluid. Our results suggest that an anisotropic swimming medium can be used to characterize and guide spherical microswimmers in the bulk.
Hydrodynamical simulations of coupled and uncoupled quintessence models - II. Galaxy clusters
NASA Astrophysics Data System (ADS)
Carlesi, Edoardo; Knebe, Alexander; Lewis, Geraint F.; Yepes, Gustavo
2014-04-01
We study the z = 0 properties of clusters (and large groups) of galaxies within the context of interacting and non-interacting quintessence cosmological models, using a series of adiabatic SPH simulations. Initially, we examine the average properties of groups and clusters, quantifying their differences in ΛCold Dark Matter (ΛCDM), uncoupled Dark Energy (uDE) and coupled Dark Energy (cDE) cosmologies. In particular, we focus upon radial profiles of the gas density, temperature and pressure, and we also investigate how the standard hydrodynamic equilibrium hypothesis holds in quintessence cosmologies. While we are able to confirm previous results about the distribution of baryons, we also find that the main discrepancy (with differences up to 20 per cent) can be seen in cluster pressure profiles. We then switch attention to individual structures, mapping each halo in quintessence cosmology to its ΛCDM counterpart. We are able to identify a series of small correlations between the coupling in the dark sector and halo spin, triaxiality and virialization ratio. When looking at spin and virialization of dark matter haloes, we find a weak (5 per cent) but systematic deviation in fifth force scenarios from ΛCDM.
Evolution of surface structure in laser-preheated, perturbed materials
Di Stefano, Carlos; Merritt, Elizabeth Catherine; Doss, Forrest William; ...
2017-02-03
Here, we report an experimental and computational study investigating the effects of laser preheat on the hydrodynamic behavior of a material layer. In particular, we find that perturbation of the surface of the layer results in a complex interaction, in which the bulk of the layer develops density, pressure, and temperature structure and in which the surface experiences instability-like behavior, including mode coupling. A uniform one-temperature preheat model is used to reproduce the experimentally observed behavior, and we find that this model can be used to capture the evolution of the layer, while also providing evidence of complexities in themore » preheat behavior. Lastly, this result has important consequences for inertially confined fusion plasmas, which can be difficult to diagnose in detail, as well as for laser hydrodynamics experiments, which generally depend on assumptions about initial conditions in order to interpret their results.« less
Samson, M; Monnet, T; Bernard, A; Lacouture, P; David, L
2018-01-23
The propulsive forces generated by the hands and arms of swimmers have so far been determined essentially by quasi-steady approaches. This study aims to quantify the temporal dependence of the hydrodynamic forces for a simple translation movement: an impulsive start from rest. The study, carried out in unsteady numerical simulation, couples the calculation of the lift and the drag on an expert swimmer hand-forearm model with visualizations of the flow and flow vortex structure analysis. The results of these simulations show that the hand and forearm hydrodynamic forces should be studied from an unsteady approach because the quasi-steady model is inadequate. It also appears that the delayed stall effect generates higher circulatory forces during a short translation at high angle of attack than forces calculated under steady state conditions. During this phase the hand force coefficients are approximately twice as large as those of the forearm. The total force coefficients are highest for angles of attack between 40° and 60°. For the same angle of attack, the forces produced when the leading edge is the thumb side are slightly greater than those produced when the leading edge is the little finger side. Copyright © 2017 Elsevier Ltd. All rights reserved.
Biomimetics and Tubercles on Flippers for Hydrodynamic Flow Control
NASA Astrophysics Data System (ADS)
Fish, Frank E.
2011-11-01
The biomimetic approach seeks to incorporate designs based on biological organisms into engineered technologies. Biomimetics can be used to engineer machines that emulate the performance of organisms, particularly in instances where the organism's performance exceeds current mechanical technology or provides new directions to solve existing problems. The ability to control the flow of water around the body dictates the performance of marine mammals in the aquatic environment. Morphological specializations of marine mammals afford mechanisms for passive flow control. Aside from the design of the body, which minimizes drag, the morphology of the appendages provide hydrodynamic advantages with respect to drag, lift, thrust, and stall. Of particular interest are the pectoral flippers of the humpback whale (Megaptera novaeangliae). These flippers act as wing-like structures to provide hydrodynamic lift for maneuvering. The use of any such wing-like structure in making small radius turns to enhance both agility and maneuverability is constrained by performance associated with stall. Delay of stall can be accomplished passively by modification of the flipper leading edge. The design of the flippers includes prominent leading edge bumps or tubercles. Such a design is exhibited by the leading edge tubercles on the flippers of humpback whales. These novel morphological structures induce a spanwise flow field of separated vortices alternating with regions of accelerated flow. The coupled flow regions maintain areas of attached flow and delay stall to high angles of attack. The morphological features of humpback whales for flow control can be utilized in the biomimetic design of engineered structures and commercial products for increased hydrodynamic performance. Nature retains a store of untouched knowledge, which would be beneficial in advancing technology.
NASA Astrophysics Data System (ADS)
Crissman, B. J.; Cunderlik, J. M.; Wong, R. P. L.; Pinero, A.
2017-12-01
Waterford 3 nuclear plant, located in Killona, Louisiana, provides approximately 10% of the state's electricity need. Located along the south bank of the Mississippi River, two miles upstream of the Bonnet Carre Spillway, the plant's single pass through cooling system continuously draws up to 1,000,000 gpm water from the river. On behalf of Entergy Louisiana, the project team evaluated options to improve the aging water intake structure with chronic debris and sediment entrainment issues. The highly complex and dynamic environment in the river coupled with regulatory constraints limited available improvement options: varying river stages allow debris to overflow the intake structure, but the maximum new wall height is restricted to minimize aesthetic intrusion and alteration to levee tie-back; bow waves push debris into the downstream intake wall, but the wall needs to maintain an opening to flush debris out from the intake structure; the river delivers significant sediment load, but any proposed intake structure cannot significantly alter existing bathymetry; EPA Clean Water Act Section 316(b) limited maximum velocity at the intake structure to 0.5 fps for entrainment prevention. To expedite alternative evaluation while providing sufficient data to inform management decision, instead of developing physical models, the project team developed a two-tier approach utilizing the TELEMAC hydrodynamic program to prepare screening analysis in 2D modeling and final evaluation in 3D modeling. The model was built upon the USACE ERDC ADH model, calibrated with river gauge data and peer reviewed by ERDC. TELEMAC, developed by EDF, provides novel features for modeling improvement options, including the recommended design concept, which is a hydraulically optimized intake geometry configured to maintain uniform intake flow while streamlining river flowline for debris and sediment deflection. The design includes submerged inlets with upstream and downstream walls to block floating debris and bed load movement, large intake screens to reduce velocity, and a log-boom debris deflection system that floats with the river level. This project demonstrated a time and cost efficient approach to develop reliable solutions and hydrodynamic data describing design alternatives performance.
NASA Astrophysics Data System (ADS)
Lei, Hongwu; Xu, Tianfu; Jin, Guangrong
2015-04-01
Coupled thermal-hydrodynamic-mechanical processes have become increasingly important in studying the issues affecting subsurface flow systems, such as CO2 sequestration in deep saline aquifers and geothermal development. In this study, a mechanical module based on the extended Biot consolidation model was developed and incorporated into the well-established thermal-hydrodynamic simulator TOUGH2, resulting in an integrated numerical THM simulation program TOUGH2Biot. A finite element method was employed to discretize space for rock mechanical calculation and the Mohr-Coulomb failure criterion was used to determine if the rock undergoes shear-slip failure. Mechanics is partly coupled with the thermal-hydrodynamic processes and gives feedback to flow through stress-dependent porosity and permeability. TOUGH2Biot was verified against analytical solutions for the 1D Terzaghi consolidation and cooling-induced subsidence. TOUGH2Biot was applied to evaluate the thermal, hydrodynamic, and mechanical responses of CO2 geological sequestration at the Ordos CCS Demonstration Project, China and geothermal exploitation at the Geysers geothermal field, California. The results demonstrate that TOUGH2Biot is capable of analyzing change in pressure and temperature, displacement, stress, and potential shear-slip failure caused by large scale underground man-made activity in subsurface flow systems. TOUGH2Biot can also be easily extended for complex coupled process problems in fractured media and be conveniently updated to parallel versions on different platforms to take advantage of high-performance computing.
NASA Astrophysics Data System (ADS)
Shrestha, Bishwash; Ahsan, Syed N.; Aureli, Matteo
2018-01-01
In this paper, we present a comprehensive experimental study on harmonic oscillations of a submerged rigid plate in a quiescent, incompressible, Newtonian, viscous fluid. The fluid-structure interaction problem is analyzed from both qualitative and quantitative perspectives via a detailed particle image velocimetry (PIV) experimental campaign conducted over a broad range of oscillation frequency and amplitude parameters. Our primary goal is to identify the effect of the oscillation characteristics on the mechanisms of fluid-structure interaction and on the dynamics of vortex shedding and convection and to elucidate the behavior of hydrodynamic forces on the oscillating structure. Towards this goal, we study the flow in terms of qualitative aspects of its pathlines, vortex shedding, and symmetry breaking phenomena and identify distinct hydrodynamic regimes in the vicinity of the oscillating structure. Based on these experimental observations, we produce a novel phase diagram detailing the occurrence of distinct hydrodynamic regimes as a function of relevant governing nondimensional parameters. We further study the hydrodynamic forces associated with each regime using both PIV and direct force measurement via a load cell. Our quantitative results on experimental estimation of hydrodynamic forces show good agreement against predictions from the literature, where numerical and semi-analytical models are available. The findings and observations in this work shed light on the relationship between flow physics, vortex shedding, and convection mechanisms and the hydrodynamic forces acting on a rigid oscillating plate and, as such, have relevance to various engineering applications, including energy harvesting devices, biomimetic robotic system, and micro-mechanical sensors and actuators.
Marciante, Mathieu; Murillo, Michael Sean
2017-01-10
Particle-level simulations of shocked plasmas are carried out to examine kinetic properties not captured by hydrodynamic models. In particular, molecular dynamics simulations of 2D Yukawa plasmas with variable couplings and screening lengths are used to examine shock features unique to plasmas, including the presence of dispersive shock structures for weak shocks. A phase-space analysis reveals several kinetic properties, including anisotropic velocity distributions, non-Maxwellian tails, and the presence of fast particles ahead of the shock, even for moderately low Mach numbers. As a result, we also examine the thermodynamics (Rankine-Hugoniot relations) of recent experiments and find no anomalies in their equationsmore » of state.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marciante, Mathieu; Murillo, Michael Sean
Particle-level simulations of shocked plasmas are carried out to examine kinetic properties not captured by hydrodynamic models. In particular, molecular dynamics simulations of 2D Yukawa plasmas with variable couplings and screening lengths are used to examine shock features unique to plasmas, including the presence of dispersive shock structures for weak shocks. A phase-space analysis reveals several kinetic properties, including anisotropic velocity distributions, non-Maxwellian tails, and the presence of fast particles ahead of the shock, even for moderately low Mach numbers. As a result, we also examine the thermodynamics (Rankine-Hugoniot relations) of recent experiments and find no anomalies in their equationsmore » of state.« less
Kalra, Tarandeep S.; Aretxabaleta, Alfredo; Seshadri, Pranay; Ganju, Neil K.; Beudin, Alexis
2017-01-01
Coastal hydrodynamics can be greatly affected by the presence of submerged aquatic vegetation. The effect of vegetation has been incorporated into the Coupled-Ocean-Atmosphere-Wave-Sediment Transport (COAWST) Modeling System. The vegetation implementation includes the plant-induced three-dimensional drag, in-canopy wave-induced streaming, and the production of turbulent kinetic energy by the presence of vegetation. In this study, we evaluate the sensitivity of the flow and wave dynamics to vegetation parameters using Sobol' indices and a least squares polynomial approach referred to as Effective Quadratures method. This method reduces the number of simulations needed for evaluating Sobol' indices and provides a robust, practical, and efficient approach for the parameter sensitivity analysis. The evaluation of Sobol' indices shows that kinetic energy, turbulent kinetic energy, and water level changes are affected by plant density, height, and to a certain degree, diameter. Wave dissipation is mostly dependent on the variation in plant density. Performing sensitivity analyses for the vegetation module in COAWST provides guidance for future observational and modeling work to optimize efforts and reduce exploration of parameter space.
Signatures for strongly coupled Quark-Gluon Plasma
NASA Astrophysics Data System (ADS)
Shuryak, Edward
2006-11-01
Dramatic changes had occurred with our understanding of Quark-Gluon Plasma, which is now believed to be rather strongly coupled, sQGP for short. Hydrodynamical behavior is seen experimentally, even for rather small systems (rather peripheral collisions). From elliptic flow the interest is shifting to even more sophysticated observable, the conical flow, created by quenched jets. The exact structure of sQGP remains unknown, at the moment the best picture seem to be a liquid made partly of binary bound states. As we discuss at the end, those can be possibly seen in the dilepton spectra, as "new vector mesons" above Tc.
The role of viscosity in TATB hot spot ignition
NASA Astrophysics Data System (ADS)
Fried, Laurence E.; Zepeda-Ruis, Luis; Howard, W. Michael; Najjar, Fady; Reaugh, John E.
2012-03-01
The role of dissipative effects, such as viscosity, in the ignition of high explosive pores is investigated using a coupled chemical, thermal, and hydrodynamic model. Chemical reactions are tracked with the Cheetah thermochemical code coupled to the ALE3D hydrodynamic code. We perform molecular dynamics simulations to determine the viscosity of liquid TATB. We also analyze shock wave experiments to obtain an estimate for the shock viscosity of TATB. Using the lower bound liquid-like viscosities, we find that the pore collapse is hydrodynamic in nature. Using the upper bound viscosity from shock wave experiments, we find that the pore collapse is closest to the viscous limit.
Holography and hydrodynamics in small systems
NASA Astrophysics Data System (ADS)
Chesler, Paul M.
2016-12-01
Using holographic duality, we present results for the off-center collision of Gaussian wave packets in strongly coupled N = 4 supersymmetric Yang-Mills theory. The wave packets are thin along the collision axis and superficially at least resemble Lorentz contracted colliding protons. The collision results in the formation of a droplet of liquid of size R ∼ 1 /Teff where Teff is the effective temperature, which is the characteristic microscopic scale in strongly coupled plasma. These results demonstrate the applicability of hydrodynamics to microscopically small systems and bolster the notion that hydrodynamics can be applied to heavy-light ion collisions as well as proton-proton collisions.
Nonlinear interaction between underwater explosion bubble and structure based on fully coupled model
NASA Astrophysics Data System (ADS)
Zhang, A. M.; Wu, W. B.; Liu, Y. L.; Wang, Q. X.
2017-08-01
The interaction between an underwater explosion bubble and an elastic-plastic structure is a complex transient process, accompanying violent bubble collapsing, jet impact, penetration through the bubble, and large structural deformation. In the present study, the bubble dynamics are modeled using the boundary element method and the nonlinear transient structural response is modeled using the explicit finite element method. A new fully coupled 3D model is established through coupling the equations for the state variables of the fluid and structure and solving them as a set of coupled linear algebra equations. Based on the acceleration potential theory, the mutual dependence between the hydrodynamic load and the structural motion is decoupled. The pressure distribution in the flow field is calculated with the Bernoulli equation, where the partial derivative of the velocity potential in time is calculated using the boundary integral method to avoid numerical instabilities. To validate the present fully coupled model, the experiments of small-scale underwater explosion near a stiffened plate are carried out. High-speed imaging is used to capture the bubble behaviors and strain gauges are used to measure the strain response. The numerical results correspond well with the experimental data, in terms of bubble shapes and structural strain response. By both the loosely coupled model and the fully coupled model, the interaction between a bubble and a hollow spherical shell is studied. The bubble patterns vary with different parameters. When the fully coupled model and the loosely coupled model are advanced with the same time step, the error caused by the loosely coupled model becomes larger with the coupling effect becoming stronger. The fully coupled model is more stable than the loosely coupled model. Besides, the influences of the internal fluid on the dynamic response of the spherical shell are studied. At last, the case that the bubble interacts with an air-backed stiffened plate is simulated. The associated interesting physical phenomenon is obtained and expounded.
Coordinated Beating of Algal Flagella is Mediated by Basal Coupling
NASA Astrophysics Data System (ADS)
Wan, Kirsty; Goldstein, Raymond
Cilia or flagella often exhibit synchronized behavior. This includes phase-locking, as seen in Chlamydomonas, and metachronal wave formation in the respiratory cilia of higher organisms. Since the observations by Gray and Rothschild of phase synchrony of nearby swimming spermatozoa, it has been a working hypothesis that synchrony arises from hydrodynamic interactions between beating filaments. Recent work on the dynamics of physically separated pairs of flagella isolated from the multicellular alga Volvox has shown that hydrodynamic coupling alone is sufficient for synchrony. However, the situation is more complex when considering multiple flagella on a single cell. We suggest that a mechanism, internal to the cell, provides an additional flagellar coupling. For instance, flagella of Chlamydomonas mutants deficient in filamentary connections between basal bodies are found to display markedly different synchronization from the wildtype. Diverse flagellar coordination strategies found in quadri-, octo- and hexadecaflagellates reveal further evidence that intracellular couplings between flagellar basal bodies compete with hydrodynamic interactions to determine the precise form of flagellar synchronization in unicellular algae.
Dynamical and Radiative Properties of X-Ray Pulsar Accretion Columns: Phase-averaged Spectra
NASA Astrophysics Data System (ADS)
West, Brent F.; Wolfram, Kenneth D.; Becker, Peter A.
2017-02-01
The availability of the unprecedented spectral resolution provided by modern X-ray observatories is opening up new areas for study involving the coupled formation of the continuum emission and the cyclotron absorption features in accretion-powered X-ray pulsar spectra. Previous research focusing on the dynamics and the associated formation of the observed spectra has largely been confined to the single-fluid model, in which the super-Eddington luminosity inside the column decelerates the flow to rest at the stellar surface, while the dynamical effect of gas pressure is ignored. In a companion paper, we have presented a detailed analysis of the hydrodynamic and thermodynamic structure of the accretion column obtained using a new self-consistent model that includes the effects of both gas and radiation pressures. In this paper, we explore the formation of the associated X-ray spectra using a rigorous photon transport equation that is consistent with the hydrodynamic and thermodynamic structure of the column. We use the new model to obtain phase-averaged spectra and partially occulted spectra for Her X-1, Cen X-3, and LMC X-4. We also use the new model to constrain the emission geometry, and compare the resulting parameters with those obtained using previously published models. Our model sheds new light on the structure of the column, the relationship between the ionized gas and the photons, the competition between diffusive and advective transport, and the magnitude of the energy-averaged cyclotron scattering cross-section.
Dynamical and Radiative Properties of X-Ray Pulsar Accretion Columns: Phase-averaged Spectra
DOE Office of Scientific and Technical Information (OSTI.GOV)
West, Brent F.; Wolfram, Kenneth D.; Becker, Peter A., E-mail: bwest@usna.edu, E-mail: kswolfram@gmail.com, E-mail: pbecker@gmu.edu
The availability of the unprecedented spectral resolution provided by modern X-ray observatories is opening up new areas for study involving the coupled formation of the continuum emission and the cyclotron absorption features in accretion-powered X-ray pulsar spectra. Previous research focusing on the dynamics and the associated formation of the observed spectra has largely been confined to the single-fluid model, in which the super-Eddington luminosity inside the column decelerates the flow to rest at the stellar surface, while the dynamical effect of gas pressure is ignored. In a companion paper, we have presented a detailed analysis of the hydrodynamic and thermodynamicmore » structure of the accretion column obtained using a new self-consistent model that includes the effects of both gas and radiation pressures. In this paper, we explore the formation of the associated X-ray spectra using a rigorous photon transport equation that is consistent with the hydrodynamic and thermodynamic structure of the column. We use the new model to obtain phase-averaged spectra and partially occulted spectra for Her X-1, Cen X-3, and LMC X-4. We also use the new model to constrain the emission geometry, and compare the resulting parameters with those obtained using previously published models. Our model sheds new light on the structure of the column, the relationship between the ionized gas and the photons, the competition between diffusive and advective transport, and the magnitude of the energy-averaged cyclotron scattering cross-section.« less
Philippe, Allan; Schaumann, Gabriele E.
2014-01-01
In this study, we evaluated hydrodynamic chromatography (HDC) coupled with inductively coupled plasma mass spectrometry (ICP-MS) for the analysis of nanoparticles in environmental samples. Using two commercially available columns (Polymer Labs-PDSA type 1 and 2), a set of well characterised calibrants and a new external time marking method, we showed that flow rate and eluent composition have few influence on the size resolution and, therefore, can be adapted to the sample particularity. Monitoring the agglomeration of polystyrene nanoparticles over time succeeded without observable disagglomeration suggesting that even weak agglomerates can be measured using HDC. Simultaneous determination of gold colloid concentration and size using ICP-MS detection was validated for elemental concentrations in the ppb range. HDC-ICP-MS was successfully applied to samples containing a high organic and ionic background. Indeed, online combination of UV-visible, fluorescence and ICP-MS detectors allowed distinguishing between organic molecules and inorganic colloids during the analysis of Ag nanoparticles in synthetic surface waters and TiO2 and ZnO nanoparticles in commercial sunscreens. Taken together, our results demonstrate that HDC-ICP-MS is a flexible, sensitive and reliable method to measure the size and the concentration of inorganic colloids in complex media and suggest that there may be a promising future for the application of HDC in environmental science. Nonetheless the rigorous measurements of agglomerates and of matrices containing natural colloids still need to be studied in detail. PMID:24587393
Philippe, Allan; Schaumann, Gabriele E
2014-01-01
In this study, we evaluated hydrodynamic chromatography (HDC) coupled with inductively coupled plasma mass spectrometry (ICP-MS) for the analysis of nanoparticles in environmental samples. Using two commercially available columns (Polymer Labs-PDSA type 1 and 2), a set of well characterised calibrants and a new external time marking method, we showed that flow rate and eluent composition have few influence on the size resolution and, therefore, can be adapted to the sample particularity. Monitoring the agglomeration of polystyrene nanoparticles over time succeeded without observable disagglomeration suggesting that even weak agglomerates can be measured using HDC. Simultaneous determination of gold colloid concentration and size using ICP-MS detection was validated for elemental concentrations in the ppb range. HDC-ICP-MS was successfully applied to samples containing a high organic and ionic background. Indeed, online combination of UV-visible, fluorescence and ICP-MS detectors allowed distinguishing between organic molecules and inorganic colloids during the analysis of Ag nanoparticles in synthetic surface waters and TiO₂ and ZnO nanoparticles in commercial sunscreens. Taken together, our results demonstrate that HDC-ICP-MS is a flexible, sensitive and reliable method to measure the size and the concentration of inorganic colloids in complex media and suggest that there may be a promising future for the application of HDC in environmental science. Nonetheless the rigorous measurements of agglomerates and of matrices containing natural colloids still need to be studied in detail.
Impact of solvent granularity and layering on tracer hydrodynamics in confinement.
Bollinger, Jonathan A; Carmer, James; Jain, Avni; Truskett, Thomas M
2016-11-28
Classic hydrodynamic arguments establish that when a spherical tracer particle is suspended between parallel walls, tracer-wall coupling mediated by the solvent will cause the tracer to exhibit position-dependent diffusivity. We investigate how the diffusivity profiles of confined tracers are impacted by the diameter size-ratio of the tracer to solvent: starting from the classic limit of infinite size-ratio (i.e., continuum solvent), we consider size-ratios of four or less to examine how hydrodynamic predictions are disrupted for systems where the tracer and solvent are of similar scale. We use computer simulations and techniques based on the Fokker-Planck formalism to calculate the diffusivity profiles of hard-sphere tracer particles in hard-sphere solvents, focusing on the dynamics perpendicular to the walls. Given wall separations of several tracer diameters, we first consider confinement between hard walls, where anisotropic structuring at the solvent lengthscale generates inhomogeneity in the tracer free-energy landscape and undermines hydrodynamic predictions locally. We then introduce confining planes that we term transparent walls, which restrict tracer and solvent center-accessibilities while completely eliminating static anisotropy, and reveal position-dependent signatures in tracer diffusivity solely attributable to confinement. With or without suppressing static heterogeneity, we find that tracer diffusivity increasingly deviates on a local basis from hydrodynamic predictions at smaller size-ratios. However, hydrodynamic theory still approximately captures spatially-averaged dynamics across the pores even for very small tracer-solvent size-ratios over a wide range of solvent densities and wall separations.
The physical vulnerability of elements at risk: a methodology based on fluid and classical mechanics
NASA Astrophysics Data System (ADS)
Mazzorana, B.; Fuchs, S.; Levaggi, L.
2012-04-01
The impacts of the flood events occurred in autumn 2011 in the Italian regions Liguria and Tuscany revived the engagement of the public decision makers to enhance in synergy flood control and land use planning. In this context, the design of efficient flood risk mitigation strategies and their subsequent implementation critically relies on a careful vulnerability analysis of both, the immobile and mobile elements at risk potentially exposed to flood hazards. Based on fluid and classical mechanics notions we developed computation schemes enabling for a dynamic vulnerability and risk analysis facing a broad typological variety of elements at risk. The methodological skeleton consists of (1) hydrodynamic computation of the time-varying flood intensities resulting for each element at risk in a succession of loading configurations; (2) modelling the mechanical response of the impacted elements through static, elasto-static and dynamic analyses; (3) characterising the mechanical response through proper structural damage variables and (4) economic valuation of the expected losses as a function of the quantified damage variables. From a computational perspective we coupled the description of the hydrodynamic flow behaviour and the induced structural modifications of the elements at risk exposed. Valuation methods, suitable to support a correct mapping from the value domains of the physical damage variables to the economic loss values are discussed. In such a way we target to complement from a methodological perspective the existing, mainly empirical, vulnerability and risk assessment approaches to refine the conceptual framework of the cost-benefit analysis. Moreover, we aim to support the design of effective flood risk mitigation strategies by diminishing the main criticalities within the systems prone to flood risk.
The role of Weyl symmetry in hydrodynamics
NASA Astrophysics Data System (ADS)
Diles, Saulo
2018-04-01
This article is dedicated to the analysis of Weyl symmetry in the context of relativistic hydrodynamics. Here is discussed how this symmetry is properly implemented using the prescription of minimal coupling: ∂ → ∂ + ωA. It is shown that this prescription has no problem to deal with curvature since it gives the correct expressions for the commutator of covariant derivatives. In hydrodynamics, Weyl gauge connection emerges from the degrees of freedom of the fluid: it is a combination of the expansion and entropy gradient. The remaining degrees of freedom, shear, vorticity and the metric tensor, are see in this context as charged fields under the Weyl gauge connection. The gauge nature of the connection provides natural dynamics to it via equations of motion analogous to the Maxwell equations for electromagnetism. As a consequence, a charge for the Weyl connection is defined and the notion of local charge is analyzed generating the conservation law for the Weyl charge.
NASA Astrophysics Data System (ADS)
Tang, Xian-Zhu; McDevitt, C. J.; Guo, Zehua; Berk, H. L.
2014-03-01
Inertial confinement fusion requires an imploded target in which a central hot spot is surrounded by a cold and dense pusher. The hot spot/pusher interface can take complicated shape in three dimensions due to hydrodynamic mix. It is also a transition region where the Knudsen and inverse Knudsen layer effect can significantly modify the fusion reactivity in comparison with the commonly used value evaluated with background Maxwellians. Here, we describe a hybrid model that couples the kinetic correction of fusion reactivity to global hydrodynamic implosion simulations. The key ingredient is a non-perturbative treatment of the tail ions in the interface region where the Gamow ion Knudsen number approaches or surpasses order unity. The accuracy of the coupling scheme is controlled by the precise criteria for matching the non-perturbative kinetic model to perturbative solutions in both configuration space and velocity space.
The Role of Viscosity in TATB Hot Spot Ignition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fried, L E; Zepeda-Ruis, L; Howard, W M
2011-08-02
The role of dissipative effects, such as viscosity, in the ignition of high explosive pores is investigated using a coupled chemical, thermal, and hydrodynamic model. Chemical reactions are tracked with the Cheetah thermochemical code coupled to the ALE3D hydrodynamic code. We perform molecular dynamics simulations to determine the viscosity of liquid TATB. We also analyze shock wave experiments to obtain an estimate for the shock viscosity of TATB. Using the lower bound liquid-like viscosities, we find that the pore collapse is hydrodynamic in nature. Using the upper bound viscosity from shock wave experiments, we find that the pore collapse ismore » closest to the viscous limit.« less
How big are the smallest drops of quark-gluon plasma?
NASA Astrophysics Data System (ADS)
Chesler, Paul M.
2016-03-01
Using holographic duality, we present results for both head-on and off-center collisions of Gaussian shock waves in strongly coupled {N}=4 supersymmetric Yang-Mills theory. The shock waves superficially resemble Lorentz contracted colliding protons. The collisions results in the formation of a plasma whose evolution is well described by viscous hydrodynamics. The size of the produced droplet is R ˜ 1 /T eff where T eff is the effective temperature, which is the characteristic microscopic scale in strongly coupled plasma. These results demonstrate the applicability of hydrodynamics to microscopically small systems and bolster the notion that hydrodynamics can be applied to heavy-light ion collisions as well as some proton-proton collisions.
Interplay of Laser-Plasma Interactions and Inertial Fusion Hydrodynamics.
Strozzi, D J; Bailey, D S; Michel, P; Divol, L; Sepke, S M; Kerbel, G D; Thomas, C A; Ralph, J E; Moody, J D; Schneider, M B
2017-01-13
The effects of laser-plasma interactions (LPI) on the dynamics of inertial confinement fusion hohlraums are investigated via a new approach that self-consistently couples reduced LPI models into radiation-hydrodynamics numerical codes. The interplay between hydrodynamics and LPI-specifically stimulated Raman scatter and crossed-beam energy transfer (CBET)-mostly occurs via momentum and energy deposition into Langmuir and ion acoustic waves. This spatially redistributes energy coupling to the target, which affects the background plasma conditions and thus, modifies laser propagation. This model shows reduced CBET and significant laser energy depletion by Langmuir waves, which reduce the discrepancy between modeling and data from hohlraum experiments on wall x-ray emission and capsule implosion shape.
NASA Astrophysics Data System (ADS)
Matheny, A. M.; Bohrer, G.; Mirfenderesgi, G.; Schafer, K. V.; Ivanov, V. Y.
2014-12-01
Hydraulic limitations are known to control transpiration in forest ecosystems when the soil is drying or when the vapor pressure deficit between the air and stomata is very large, but they can also impact stomatal apertures under conditions of adequate soil moisture and lower evaporative demand. We use the NACP dataset of latent heat flux measurements and model observations for multiple sites and models to demonstrate models' difficulties in capturing intra-daily hysteresis. We hypothesize that this is a result of un-resolved afternoon stomata closure due to hydrodynamic stresses. The current formulations for stomatal conductance and the empirical coupling between stomatal conductance and soil moisture used by these models does not resolve the hydrodynamic process of water movement from the soil to the leaves. This approach does not take advantage of advances in our understanding of water flow and storage in the trees, or of tree and canopy structure. A more thorough representation of the tree-hydrodynamic processes could potentially remedy this significant source of model error. In a forest plot at the University of Michigan Biological Station, we use measurements of sap flux and leaf water potential to demonstrate that trees of similar type - late successional deciduous trees - have very different hydrodynamic strategies that lead to differences in their temporal patterns of stomatal conductance and thus hysteretic cycles of transpiration. These differences will lead to large differences in conductance and water use based on the species composition of the forest. We also demonstrate that the size and shape of the tree branching system leads to differences in extent of hydrodynamic stress, which may change the forest respiration patterns as the forest grows and ages. We propose a framework to resolve tree hydrodynamics in global and regional models based on the Finite-Elements Tree-Crown Hydrodynamics model (FETCH) -a hydrodynamic model that can resolve the fast dynamics of stomatal conductance. FETCH simulates water flow through a tree as a system of porous media conduits and calculates the amount of hydraulic limitation to stomatal conductance, given the atmospheric and biological variables from the global model, and could replace the current empirical formulation for stomatal adjustment based on soil moisture.
Probing Active Nematic Films with Magnetically Manipulated Colloids
NASA Astrophysics Data System (ADS)
Rivas, David; Chen, Kui; Henry, Robert; Reich, Daniel; Leheny, Robert
We study microtubule-based extensile active nematic films using rod-like and disk-shaped magnetic colloids to probe the mechanical and hydrodynamic properties of this quasi-two dimensional out-of-equilibrium system. The active nematics are driven by molecular motors that hydrolyze ATP and cause sliding motion between microtubular bundles. This motion produces a dynamic nematic director field, which continuously creates pairs of +1/2 and -1/2 defects. In the absence of externally applied forces or torques, we observe that the magnetic rods in contact with the films align with the local director, indicating the existence of mechanical coupling between the film and probe. By applying known magnetic torques to the rods and observing their rotation with respect to the director, we gain insight into this coupling. We also find that by rotating magnetic microdisks using magnetic fields, hydrodynamic flows are produced that compete with the films' intrinsic flow, leading to significant effects on the director field and the defect landscape. At certain rotation rates, the disks produce a vortex-like structure in the director field and cause the creation and shedding of defects from the disk boundary.
Principal component analysis of the nonlinear coupling of harmonic modes in heavy-ion collisions
NASA Astrophysics Data System (ADS)
BoŻek, Piotr
2018-03-01
The principal component analysis of flow correlations in heavy-ion collisions is studied. The correlation matrix of harmonic flow is generalized to correlations involving several different flow vectors. The method can be applied to study the nonlinear coupling between different harmonic modes in a double differential way in transverse momentum or pseudorapidity. The procedure is illustrated with results from the hydrodynamic model applied to Pb + Pb collisions at √{sN N}=2760 GeV. Three examples of generalized correlations matrices in transverse momentum are constructed corresponding to the coupling of v22 and v4, of v2v3 and v5, or of v23,v33 , and v6. The principal component decomposition is applied to the correlation matrices and the dominant modes are calculated.
Experimental Chaos - Proceedings of the 3rd Conference
NASA Astrophysics Data System (ADS)
Harrison, Robert G.; Lu, Weiping; Ditto, William; Pecora, Lou; Spano, Mark; Vohra, Sandeep
1996-10-01
The Table of Contents for the full book PDF is as follows: * Preface * Spatiotemporal Chaos and Patterns * Scale Segregation via Formation of Domains in a Nonlinear Optical System * Laser Dynamics as Hydrodynamics * Spatiotemporal Dynamics of Human Epileptic Seizures * Experimental Transition to Chaos in a Quasi 1D Chain of Oscillators * Measuring Coupling in Spatiotemporal Dynamical Systems * Chaos in Vortex Breakdown * Dynamical Analysis * Radial Basis Function Modelling and Prediction of Time Series * Nonlinear Phenomena in Polyrhythmic Hand Movements * Using Models to Diagnose, Test and Control Chaotic Systems * New Real-Time Analysis of Time Series Data with Physical Wavelets * Control and Synchronization * Measuring and Controlling Chaotic Dynamics in a Slugging Fluidized Bed * Control of Chaos in a Laser with Feedback * Synchronization and Chaotic Diode Resonators * Control of Chaos by Continuous-time Feedback with Delay * A Framework for Communication using Chaos Sychronization * Control of Chaos in Switching Circuits * Astrophysics, Meteorology and Oceanography * Solar-Wind-Magnetospheric Dynamics via Satellite Data * Nonlinear Dynamics of the Solar Atmosphere * Fractal Dimension of Scalar and Vector Variables from Turbulence Measurements in the Atmospheric Surface Layer * Mechanics * Escape and Overturning: Subtle Transient Behavior in Nonlinear Mechanical Models * Organising Centres in the Dynamics of Parametrically Excited Double Pendulums * Intermittent Behaviour in a Heating System Driven by Phase Transitions * Hydrodynamics * Size Segregation in Couette Flow of Granular Material * Routes to Chaos in Rotational Taylor-Couette Flow * Experimental Study of the Laminar-Turbulent Transition in an Open Flow System * Chemistry * Order and Chaos in Excitable Media under External Forcing * A Chemical Wave Propagation with Accelerating Speed Accompanied by Hydrodynamic Flow * Optics * Instabilities in Semiconductor Lasers with Optical Injection * Spatio-Temporal Dynamics of a Bimode CO2 Laser with Saturable Absorber * Chaotic Homoclinic Phenomena in Opto-Thermal Devices * Observation and Characterisation of Low-Frequency Chaos in Semiconductor Lasers with External Feedback * Condensed Matter * The Application of Nonlinear Dynamics in the Study of Ferroelectric Materials * Cellular Convection in a Small Aspect Ratio Liquid Crystal Device * Driven Spin-Wave Dynamics in YIG Films * Quantum Chaology in Quartz * Small Signal Amplification Caused by Nonlinear Properties of Ferroelectrics * Composite Materials Evolved from Chaos * Electronics and Circuits * Controlling a Chaotic Array of Pulse-Coupled Fitzhugh-Nagumo Circuits * Experimental Observation of On-Off Intermittency * Phase Lock-In of Chaotic Relaxation Oscillators * Biology and Medicine * Singular Value Decomposition and Circuit Structure in Invertebrate Ganglia * Nonlinear Forecasting of Spike Trains from Neurons of a Mollusc * Ultradian Rhythm in the Sensitive Plants: Chaos or Coloured Noise? * Chaos and the Crayfish Sixth Ganglion * Hardware Coupled Nonlinear Oscillators as a Model of Retina
Progress and Challenges in Coupled Hydrodynamic-Ecological Estuarine Modeling
Numerical modeling has emerged over the last several decades as a widely accepted tool for investigations in environmental sciences. In estuarine research, hydrodynamic and ecological models have moved along parallel tracks with regard to complexity, refinement, computational po...
Radhakrishnan, Ravi; Yu, Hsiu-Yu; Eckmann, David M.; Ayyaswamy, Portonovo S.
2017-01-01
Traditionally, the numerical computation of particle motion in a fluid is resolved through computational fluid dynamics (CFD). However, resolving the motion of nanoparticles poses additional challenges due to the coupling between the Brownian and hydrodynamic forces. Here, we focus on the Brownian motion of a nanoparticle coupled to adhesive interactions and confining-wall-mediated hydrodynamic interactions. We discuss several techniques that are founded on the basis of combining CFD methods with the theory of nonequilibrium statistical mechanics in order to simultaneously conserve thermal equipartition and to show correct hydrodynamic correlations. These include the fluctuating hydrodynamics (FHD) method, the generalized Langevin method, the hybrid method, and the deterministic method. Through the examples discussed, we also show a top-down multiscale progression of temporal dynamics from the colloidal scales to the molecular scales, and the associated fluctuations, hydrodynamic correlations. While the motivation and the examples discussed here pertain to nanoscale fluid dynamics and mass transport, the methodologies presented are rather general and can be easily adopted to applications in convective heat transfer. PMID:28035168
2013-04-30
resulting impact on residents and transportation infrastructure. The three-dimensional coastal ocean model FVCOM coupled with a two-dimensional...shallow water model is used to simulate hydrodynamic flooding from coastal ocean water with fine-resolution meshes, and a topography-based hydrologic... ocean model FVCOM coupled with a two-dimensional shallow water model is used to simulate hydrodynamic flooding from coastal ocean water with fine
CASTRO: A NEW COMPRESSIBLE ASTROPHYSICAL SOLVER. II. GRAY RADIATION HYDRODYNAMICS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, W.; Almgren, A.; Bell, J.
We describe the development of a flux-limited gray radiation solver for the compressible astrophysics code, CASTRO. CASTRO uses an Eulerian grid with block-structured adaptive mesh refinement based on a nested hierarchy of logically rectangular variable-sized grids with simultaneous refinement in both space and time. The gray radiation solver is based on a mixed-frame formulation of radiation hydrodynamics. In our approach, the system is split into two parts, one part that couples the radiation and fluid in a hyperbolic subsystem, and another parabolic part that evolves radiation diffusion and source-sink terms. The hyperbolic subsystem is solved explicitly with a high-order Godunovmore » scheme, whereas the parabolic part is solved implicitly with a first-order backward Euler method.« less
Ciliary metachronal wave propagation on the compliant surface of Paramecium cells.
Narematsu, Naoki; Quek, Raymond; Chiam, Keng-Hwee; Iwadate, Yoshiaki
2015-12-01
Ciliary movements in protozoa exhibit metachronal wave-like coordination, in which a constant phase difference is maintained between adjacent cilia. It is at present generally thought that metachronal waves require hydrodynamic coupling between adjacent cilia and the extracellular fluid. To test this hypothesis, we aspirated a Paramecium cell using a micropipette which completely sealed the surface of the cell such that no fluid could pass through the micropipette. Thus, the anterior and the posterior regions of the cell were hydrodynamically decoupled. Nevertheless, we still observed that metachronal waves continued to propagate from the anterior to the posterior ends of the cell, suggesting that in addition to hydrodynamic coupling, there are other mechanisms that can also transmit the metachronal waves. Such transmission was also observed in computational modeling where the fluid was fully decoupled between two partitions of a beating ciliary array. We also imposed cyclic stretching on the surface of live Paramecium cells and found that metachronal waves persisted in the presence of cyclic stretching. This demonstrated that, in addition to hydrodynamic coupling, a compliant substrate can also play a critical role in mediating the propagation of metachronal waves. © 2015 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Larmat, C. S.; Rougier, E.; Delorey, A.; Steedman, D. W.; Bradley, C. R.
2016-12-01
The goal of the Source Physics Experiment (SPE) is to bring empirical and theoretical advances to the problem of detection and identification of underground nuclear explosions. For this, the SPE program includes a strong modeling effort based on first principles calculations with the challenge to capture both the source and near-source processes and those taking place later in time as seismic waves propagate within complex 3D geologic environments. In this paper, we report on results of modeling that uses hydrodynamic simulation codes (Abaqus and CASH) coupled with a 3D full waveform propagation code, SPECFEM3D. For modeling the near source region, we employ a fully-coupled Euler-Lagrange (CEL) modeling capability with a new continuum-based visco-plastic fracture model for simulation of damage processes, called AZ_Frac. These capabilities produce high-fidelity models of various factors believed to be key in the generation of seismic waves: the explosion dynamics, a weak grout-filled borehole, the surrounding jointed rock, and damage creation and deformations happening around the source and the free surface. SPECFEM3D, based on the Spectral Element Method (SEM) is a direct numerical method for full wave modeling with mathematical accuracy. The coupling interface consists of a series of grid points of the SEM mesh situated inside of the hydrodynamic code's domain. Displacement time series at these points are computed using output data from CASH or Abaqus (by interpolation if needed) and fed into the time marching scheme of SPECFEM3D. We will present validation tests with the Sharpe's model and comparisons of waveforms modeled with Rg waves (2-8Hz) that were recorded up to 2 km for SPE. We especially show effects of the local topography, velocity structure and spallation. Our models predict smaller amplitudes of Rg waves for the first five SPE shots compared to pure elastic models such as Denny &Johnson (1991).
Visualization of Topology through Simulation
NASA Astrophysics Data System (ADS)
Mulderig, Andrew; Beaucage, Gregory; Vogtt, Karsten; Jiang, Hanqiu
Complex structures can be decomposed into their minimal topological description coupled with complications of tortuosity. We have found that a stick figure representation can account for the topological content of any structure and coupling with scaling measures of tortuosity we can reconstruct an object. This deconstruction is native to static small-angle scattering measurements where we can obtain quantitative measures of the tortuous structure and the minimal topological structure. For example, a crumpled sheet of paper is composed of a minimal sheet structure and parameters reflecting the extent of crumpling. This quantification yields information that can be used to calculate the hydrodynamic radius, radius of gyration, structural conductive pathway, modulus, and other properties of complex structures. The approach is general and has been applied to a wide range of nanostructures from crumpled graphene to branched polymers and unfolded proteins and RNA. In this poster we will demonstrate how simple structural simulations can be used to reconstruct from these parameters a 3d representation of the complex structure through a heuristic approach. Several examples will be given from nano-fractal aggregates.
Influence of the arc plasma parameters on the weld pool profile in TIG welding
NASA Astrophysics Data System (ADS)
Toropchin, A.; Frolov, V.; Pipa, A. V.; Kozakov, R.; Uhrlandt, D.
2014-11-01
Magneto-hydrodynamic simulations of the arc and fluid simulations of the weld pool can be beneficial in the analysis and further development of arc welding processes and welding machines. However, the appropriate coupling of arc and weld pool simulations needs further improvement. The tungsten inert gas (TIG) welding process is investigated by simulations including the weld pool. Experiments with optical diagnostics are used for the validation. A coupled computational model of the arc and the weld pool is developed using the software ANSYS CFX. The weld pool model considers the forces acting on the motion of the melt inside and on the surface of the pool, such as Marangoni, drag, electromagnetic forces and buoyancy. The experimental work includes analysis of cross-sections of the workpieces, highspeed video images and spectroscopic measurements. Experiments and calculations have been performed for various currents, distances between electrode and workpiece and nozzle diameters. The studies show the significant impact of material properties like surface tension dependence on temperature as well as of the arc structure on the weld pool behaviour and finally the weld seam depth. The experimental weld pool profiles and plasma temperatures are in good agreement with computational results.
Kang, Chang-Wei; Wang, Yan; Tania, Marshella; Zhou, Huancheng; Gao, Yi; Ba, Te; Tan, Guo-Dong Sean; Kim, Sangho; Leo, Hwa Liang
2013-01-01
A myriad of bioreactor configurations have been investigated as extracorporeal medical support systems for temporary replacement of vital organ functions. In recent years, studies have demonstrated that the rotating bioreactors have the potential to be utilized as bioartificial liver assist devices (BLADs) owing to their advantage of ease of scalability of cell-culture volume. However, the fluid movement in the rotating chamber will expose the suspended cells to unwanted flow structures with abnormally high shear conditions that may result in poor cell stability and in turn lower the efficacy of the bioreactor system. In this study, we compared the hydrodynamic performance of our modified rotating bioreactor design with that of an existing rotating bioreactor design. Computational fluid dynamic analysis coupled with experimental results were employed in the optimization process for the development of the modified bioreactor design. Our simulation results showed that the modified bioreactor had lower fluid induced shear stresses and more uniform flow conditions within its rotating chamber than the conventional design. Experimental results revealed that the cells within the modified bioreactor also exhibited better cell-carrier attachment, higher metabolic activity, and cell viability compared to those in the conventional design. In conclusion, this study was able to provide important insights into the flow physics within the rotating bioreactors, and help enhanced the hydrodynamic performance of an existing rotating bioreactor for BLAD applications. © 2013 American Institute of Chemical Engineers.
Nonlinear finite amplitude vibrations of sharp-edged beams in viscous fluids
NASA Astrophysics Data System (ADS)
Aureli, M.; Basaran, M. E.; Porfiri, M.
2012-03-01
In this paper, we study flexural vibrations of a cantilever beam with thin rectangular cross section submerged in a quiescent viscous fluid and undergoing oscillations whose amplitude is comparable with its width. The structure is modeled using Euler-Bernoulli beam theory and the distributed hydrodynamic loading is described by a single complex-valued hydrodynamic function which accounts for added mass and fluid damping experienced by the structure. We perform a parametric 2D computational fluid dynamics analysis of an oscillating rigid lamina, representative of a generic beam cross section, to understand the dependence of the hydrodynamic function on the governing flow parameters. We find that increasing the frequency and amplitude of the vibration elicits vortex shedding and convection phenomena which are, in turn, responsible for nonlinear hydrodynamic damping. We establish a manageable nonlinear correction to the classical hydrodynamic function developed for small amplitude vibration and we derive a computationally efficient reduced order modal model for the beam nonlinear oscillations. Numerical and theoretical results are validated by comparison with ad hoc designed experiments on tapered beams and multimodal vibrations and with data available in the literature. Findings from this work are expected to find applications in the design of slender structures of interest in marine applications, such as biomimetic propulsion systems and energy harvesting devices.
Coupling hydrodynamic and wave propagation modeling for waveform modeling of SPE.
NASA Astrophysics Data System (ADS)
Larmat, C. S.; Steedman, D. W.; Rougier, E.; Delorey, A.; Bradley, C. R.
2015-12-01
The goal of the Source Physics Experiment (SPE) is to bring empirical and theoretical advances to the problem of detection and identification of underground nuclear explosions. This paper presents effort to improve knowledge of the processes that affect seismic wave propagation from the hydrodynamic/plastic source region to the elastic/anelastic far field thanks to numerical modeling. The challenge is to couple the prompt processes that take place in the near source region to the ones taking place later in time due to wave propagation in complex 3D geologic environments. In this paper, we report on results of first-principles simulations coupling hydrodynamic simulation codes (Abaqus and CASH), with a 3D full waveform propagation code, SPECFEM3D. Abaqus and CASH model the shocked, hydrodynamic region via equations of state for the explosive, borehole stemming and jointed/weathered granite. LANL has been recently employing a Coupled Euler-Lagrange (CEL) modeling capability. This has allowed the testing of a new phenomenological model for modeling stored shear energy in jointed material. This unique modeling capability has enabled highfidelity modeling of the explosive, the weak grout-filled borehole, as well as the surrounding jointed rock. SPECFEM3D is based on the Spectral Element Method, a direct numerical method for full waveform modeling with mathematical accuracy (e.g. Komatitsch, 1998, 2002) thanks to its use of the weak formulation of the wave equation and of high-order polynomial functions. The coupling interface is a series of grid points of the SEM mesh situated at the edge of the hydrodynamic code domain. Displacement time series at these points are computed from output of CASH or Abaqus (by interpolation if needed) and fed into the time marching scheme of SPECFEM3D. We will present validation tests and waveforms modeled for several SPE tests conducted so far, with a special focus on effect of the local topography.
Effective dynamical coupling of hydrodynamics and transport for heavy-ion collisions
NASA Astrophysics Data System (ADS)
Oliinychenko, Dmytro; Petersen, Hannah
2017-04-01
Present hydrodynamics-based simulations of heavy-ion collisions neglect the feedback from the frozen-out particles flying back into the hydrodynamical region. This causes an artefact called “negative Cooper-Frye contributions”, which is negligible for high collision energies, but becomes significant for lower RHIC BES energies and for event-by-event simulations. To avoid negative Cooper-Frye contributions, while still preserving hydrodynamical behavior, we propose a pure hadronic transport approach with forced thermalization in the regions of high energy density. It is demonstrated that this approach exhibits enhancement of strangeness and mean transverse momenta compared to conventional transport - an effect typical for hydrodynamical approaches.
Interplay of Laser-Plasma Interactions and Inertial Fusion Hydrodynamics
Strozzi, D. J.; Bailey, D. S.; Michel, P.; ...
2017-01-12
The effects of laser-plasma interactions (LPI) on the dynamics of inertial confinement fusion hohlraums are investigated in this work via a new approach that self-consistently couples reduced LPI models into radiation-hydrodynamics numerical codes. The interplay between hydrodynamics and LPI—specifically stimulated Raman scatter and crossed-beam energy transfer (CBET)—mostly occurs via momentum and energy deposition into Langmuir and ion acoustic waves. This spatially redistributes energy coupling to the target, which affects the background plasma conditions and thus, modifies laser propagation. In conclusion, this model shows reduced CBET and significant laser energy depletion by Langmuir waves, which reduce the discrepancy between modeling andmore » data from hohlraum experiments on wall x-ray emission and capsule implosion shape.« less
Model of Collective Fish Behavior with Hydrodynamic Interactions
NASA Astrophysics Data System (ADS)
Filella, Audrey; Nadal, François; Sire, Clément; Kanso, Eva; Eloy, Christophe
2018-05-01
Fish schooling is often modeled with self-propelled particles subject to phenomenological behavioral rules. Although fish are known to sense and exploit flow features, these models usually neglect hydrodynamics. Here, we propose a novel model that couples behavioral rules with far-field hydrodynamic interactions. We show that (1) a new "collective turning" phase emerges, (2) on average, individuals swim faster thanks to the fluid, and (3) the flow enhances behavioral noise. The results of this model suggest that hydrodynamic effects should be considered to fully understand the collective dynamics of fish.
Experimental observation of a hydrodynamic mode in a flow duct with a porous material.
Aurégan, Yves; Singh, Deepesh Kumar
2014-08-01
This paper experimentally investigates the acoustic behavior of a homogeneous porous material with a rigid frame (metallic foam) under grazing flow. The transmission coefficient shows an unusual oscillation over a particular range of frequencies which reports the presence of an unstable hydrodynamic wave that can exchange energy with the acoustic waves. This coupling of acoustic and hydrodynamic waves becomes larger when the Mach number increases. A rise of the static pressure drop in the lined region is induced by an acoustic excitation when the hydrodynamic wave is present.
NASA Astrophysics Data System (ADS)
Kalra, Tarandeep S.; Aretxabaleta, Alfredo; Seshadri, Pranay; Ganju, Neil K.; Beudin, Alexis
2017-12-01
Coastal hydrodynamics can be greatly affected by the presence of submerged aquatic vegetation. The effect of vegetation has been incorporated into the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system. The vegetation implementation includes the plant-induced three-dimensional drag, in-canopy wave-induced streaming, and the production of turbulent kinetic energy by the presence of vegetation. In this study, we evaluate the sensitivity of the flow and wave dynamics to vegetation parameters using Sobol' indices and a least squares polynomial approach referred to as the Effective Quadratures method. This method reduces the number of simulations needed for evaluating Sobol' indices and provides a robust, practical, and efficient approach for the parameter sensitivity analysis. The evaluation of Sobol' indices shows that kinetic energy, turbulent kinetic energy, and water level changes are affected by plant stem density, height, and, to a lesser degree, diameter. Wave dissipation is mostly dependent on the variation in plant stem density. Performing sensitivity analyses for the vegetation module in COAWST provides guidance to optimize efforts and reduce exploration of parameter space for future observational and modeling work.
Discrete Element Modelling of Floating Debris
NASA Astrophysics Data System (ADS)
Mahaffey, Samantha; Liang, Qiuhua; Parkin, Geoff; Large, Andy; Rouainia, Mohamed
2016-04-01
Flash flooding is characterised by high velocity flows which impact vulnerable catchments with little warning time and as such, result in complex flow dynamics which are difficult to replicate through modelling. The impacts of flash flooding can be made yet more severe by the transport of both natural and anthropogenic debris, ranging from tree trunks to vehicles, wheelie bins and even storage containers, the effects of which have been clearly evident during recent UK flooding. This cargo of debris can have wide reaching effects and result in actual flood impacts which diverge from those predicted. A build-up of debris may lead to partial channel blockage and potential flow rerouting through urban centres. Build-up at bridges and river structures also leads to increased hydraulic loading which may result in damage and possible structural failure. Predicting the impacts of debris transport; however, is difficult as conventional hydrodynamic modelling schemes do not intrinsically include floating debris within their calculations. Subsequently a new tool has been developed using an emerging approach, which incorporates debris transport through the coupling of two existing modelling techniques. A 1D hydrodynamic modelling scheme has here been coupled with a 2D discrete element scheme to form a new modelling tool which predicts the motion and flow-interaction of floating debris. Hydraulic forces arising from flow around the object are applied to instigate its motion. Likewise, an equivalent opposing force is applied to fluid cells, enabling backwater effects to be simulated. Shock capturing capabilities make the tool applicable to predicting the complex flow dynamics associated with flash flooding. The modelling scheme has been applied to experimental case studies where cylindrical wooden dowels are transported by a dam-break wave. These case studies enable validation of the tool's shock capturing capabilities and the coupling technique applied between the two numerical schemes. The results show that the tool is able to adequately replicate water depth and depth-averaged velocity of a dam-break wave, as well as velocity and displacement of floating cylindrical elements, thus validating its shock capturing capabilities and the coupling technique applied for this simple test case. Future development of the tool will incorporate a 2D hydrodynamic scheme and a 3D discrete element scheme in order to model the more complex processes associated with debris transport.
Fornés, José A
2010-01-15
We use the Brownian dynamics with hydrodynamic interactions simulation in order to describe the movement of a elastically coupled dimer Brownian motor in a ratchet potential. The only external forces considered in our system were the load, the random thermal noise and an unbiased thermal fluctuation. For a given set of parameters we observe direct movement against the load force if hydrodynamic interactions were considered.
NASA Astrophysics Data System (ADS)
Voronin, Alexander; Vasilchenko, Ann; Khoperskov, Alexander
2018-03-01
The project of small watercourses restoration in the northern part of the Volga-Akhtuba floodplain is considered together with the aim of increasing the watering of the territory during small and medium floods. The topography irregularity, the complex structure of the floodplain valley consisting of large number of small watercourses, the presence of urbanized and agricultural areas require careful preliminary analysis of the hydrological safety and efficiency of geographically distributed project activities. Using the digital terrain and watercourses structure models of the floodplain, the hydrodynamic flood model, the analysis of the hydrological safety and efficiency of several project implementation strategies has been conducted. The objective function values have been obtained from the hydrodynamic calculations of the floodplain territory flooding for virtual digital terrain models simulating alternatives for the geographically distributed project activities. The comparative efficiency of several empirical strategies for the geographically distributed project activities, as well as a two-stage exact solution method for the optimization problem has been studied.
Structural Loads Analysis for Wave Energy Converters
DOE Office of Scientific and Technical Information (OSTI.GOV)
van Rij, Jennifer A; Yu, Yi-Hsiang; Guo, Yi
2017-06-03
This study explores and verifies the generalized body-modes method for evaluating the structural loads on a wave energy converter (WEC). Historically, WEC design methodologies have focused primarily on accurately evaluating hydrodynamic loads, while methodologies for evaluating structural loads have yet to be fully considered and incorporated into the WEC design process. As wave energy technologies continue to advance, however, it has become increasingly evident that an accurate evaluation of the structural loads will enable an optimized structural design, as well as the potential utilization of composites and flexible materials, and hence reduce WEC costs. Although there are many computational fluidmore » dynamics, structural analyses and fluid-structure-interaction (FSI) codes available, the application of these codes is typically too computationally intensive to be practical in the early stages of the WEC design process. The generalized body-modes method, however, is a reduced order, linearized, frequency-domain FSI approach, performed in conjunction with the linear hydrodynamic analysis, with computation times that could realistically be incorporated into the WEC design process.« less
Hydrodynamic instabilities at an oblique interface: Experiments and Simulations
NASA Astrophysics Data System (ADS)
Douglas-Mann, E.; Fiedler Kawaguchi, C.; Trantham, M. A.; Malamud, G.; Wan, W. C.; Klein, S. R.; Kuranz, C. C.
2017-10-01
Hydrodynamic instabilities are important phenomena that occur in high-energy-density systems, such as astrophysical systems and inertial confinement fusion experiments, where pressure, density, and velocity gradients are present. Using a 30 ns laser pulse from the Omega EP laser system, a steady shock wave is driven into a target. A Spherical Crystal Imager provides high-resolution x-ray radiographs to study the evolution of complex hydrodynamic structures. This experiment has a light-to-heavy interface at an oblique angle with a precision-machined perturbation. The incident shock wave deposits shear and vorticity at the interface causing the perturbation to grow via Richtmyer-Meshkov and Kelvin-Helmholtz processes. We present results from analysis of radiographic data and hydrodynamics simulations showing the evolution of the shock and unstable structure. This work is supported by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, Grant Number DE-NA0002956 and the National Science Foundation through the Basic Plasma Science and Engineering program and LILAC.
Emergence of multiple synchronization modes in hydrodynamically-coupled cilia
NASA Astrophysics Data System (ADS)
Guo, Hanliang; Kanso, Eva
2016-11-01
Motile cilia and flagella exhibit different phase coordinations. For example, closely swimming spermatozoa are observed to synchronize together; bi-flagellates Chlamydomonas regulate the flagella in a "breast-stroke" fashion; cilia on the surface of Paramecium beat in a fixed phase lag in an orchestrated wave like fashion. Experimental evidence suggests that phase coordinations can be achieved solely via hydrodynamical interactions. However, the exact mechanisms behind it remain illusive. Here, adapting a "geometric switch" model, we observe different synchronization modes in pairs of hydrodynamically-coupled cilia by changing physical parameters such as the strength of the cilia internal motor and the separation distance between cilia. Interestingly, we find regions in the parameter space where the coupled cilia reach stable phase coordinations and regions where the phase coordinations are sensitive to perturbations. We also find that leaning into the fluid reduces the sensitivity to perturbations, and produces stable phase coordination that is neither in-phase nor anti-phase, which could explain the origin of metachronal waves in large cilia populations.
NASA Astrophysics Data System (ADS)
Zaman, D. M. S.; Amina, M.; Dip, P. R.; Mamun, A. A.
2017-11-01
The basic properties of planar and non-planar (spherical and cylindrical) nucleus-acoustic (NA) shock structures (SSs) in a strongly coupled self-gravitating degenerate quantum plasma system (containing strongly coupled non-relativistically degenerate heavy nuclear species, weakly coupled non-relativistically degenerate light nuclear species, and inertialess non-/ultra-relativistically degenerate electrons) have been investigated. The generalized quantum hydrodynamic model and the reductive perturbation method have been used to derive the modified Burgers equation. It is shown that the strong correlation among heavy nuclear species acts as the source of dissipation and is responsible for the formation of the NA SSs with positive (negative) electrostatic (self-gravitational) potential. It is also observed that the effects of non-/ultra-relativistically degenerate electron pressure, dynamics of non-relativistically degenerate light nuclear species, spherical geometry, etc., significantly modify the basic features of the NA SSs. The applications of our results in astrophysical compact objects like white dwarfs and neutron stars are briefly discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lopez, Jesse E.; Baptista, António M.
A sediment model coupled to the hydrodynamic model SELFE is validated against a benchmark combining a set of idealized tests and an application to a field-data rich energetic estuary. After sensitivity studies, model results for the idealized tests largely agree with previously reported results from other models in addition to analytical, semi-analytical, or laboratory results. Results of suspended sediment in an open channel test with fixed bottom are sensitive to turbulence closure and treatment for hydrodynamic bottom boundary. Results for the migration of a trench are very sensitive to critical stress and erosion rate, but largely insensitive to turbulence closure.more » The model is able to qualitatively represent sediment dynamics associated with estuarine turbidity maxima in an idealized estuary. Applied to the Columbia River estuary, the model qualitatively captures sediment dynamics observed by fixed stations and shipborne profiles. Representation of the vertical structure of suspended sediment degrades when stratification is underpredicted. Across all tests, skill metrics of suspended sediments lag those of hydrodynamics even when qualitatively representing dynamics. The benchmark is fully documented in an openly available repository to encourage unambiguous comparisons against other models.« less
Using hybrid implicit Monte Carlo diffusion to simulate gray radiation hydrodynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cleveland, Mathew A., E-mail: cleveland7@llnl.gov; Gentile, Nick
This work describes how to couple a hybrid Implicit Monte Carlo Diffusion (HIMCD) method with a Lagrangian hydrodynamics code to evaluate the coupled radiation hydrodynamics equations. This HIMCD method dynamically applies Implicit Monte Carlo Diffusion (IMD) [1] to regions of a problem that are opaque and diffusive while applying standard Implicit Monte Carlo (IMC) [2] to regions where the diffusion approximation is invalid. We show that this method significantly improves the computational efficiency as compared to a standard IMC/Hydrodynamics solver, when optically thick diffusive material is present, while maintaining accuracy. Two test cases are used to demonstrate the accuracy andmore » performance of HIMCD as compared to IMC and IMD. The first is the Lowrie semi-analytic diffusive shock [3]. The second is a simple test case where the source radiation streams through optically thin material and heats a thick diffusive region of material causing it to rapidly expand. We found that HIMCD proves to be accurate, robust, and computationally efficient for these test problems.« less
Hydrodynamic Instability and Thermal Coupling in a Dynamic Model of Liquid-Propellant Combustion
NASA Technical Reports Server (NTRS)
Margolis, S. B.
1999-01-01
For liquid-propellant combustion, the Landau/Levich hydrodynamic models have been combined and extended to account for a dynamic dependence of the burning rate on the local pressure and temperature fields. Analysis of these extended models is greatly facilitated by exploiting the realistic smallness of the gas-to-liquid density ratio rho. Neglecting thermal coupling effects, an asymptotic expression was then derived for the cellular stability boundary A(sub p)(k) where A(sub p) is the pressure sensitivity of the burning rate and k is the disturbance wavenumber. The results explicitly indicate the stabilizing effects of gravity on long-wave disturbances, and those of viscosity and surface tension on short-wave perturbations, and the instability associated with intermediate wavenumbers for critical negative values of A(sub p). In the limit of weak gravity, hydrodynamic instability in liquid-propellant combustion becomes a long-wave, instability phenomenon, whereas at normal gravity, this instability is first manifested through O(1) wavenumbers. In addition, surface tension and viscosity (both liquid and gas) each produce comparable effects in the large-wavenumber regime, thereby providing important modifications to the previous analyses in which one or more of these effects was neglected. For A(sub p)= O, the Landau/Levich results are recovered in appropriate limiting cases, although this typically corresponds to a hydrodynamically unstable parameter regime for p << 1. In addition to the classical cellular form of hydrodynamic stability, there exists a pulsating form corresponding to the loss of stability of steady, planar burning to time-dependent perturbations. This occurs for negative values of the parameter A(sub p), and is thus absent from the original Landau/Levich models. In the extended model, however, there exists a stable band of negative pressure sensitivities bounded above by the Landau type of instability, and below by this pulsating form of hydrodynamic instability. Indeed, nonsteady modes of combustion have been observed at low pressures in hydroxylammonium nitrate (HAN)-based liquid propellants, which often exhibit negative pressure sensitivities. While nonsteady combustion may correspond to secondary and higher-order bifurcations above the cellular boundary, it may also be a manifestation of this pulsating type of hydrodynamic instability. In the present work, a nonzero temperature sensitivity is incorporated into our previous asymptotic analyses. This entails a coupling of the energy equation to the previous purely hydrodynamic problem, and leads to a significant modification of the pulsating boundary such that, for sufficiently large values of the temperature-sensitivity parameter, liquid-propellant combustion can become intrinsically unstable to this alternative form of hydrodynamic instability. For simplicity, further attention is confined here to the inviscid version of the problem since, despite the fact that viscous and surface-tension effects are comparable, the qualitative nature of the cellular boundary remains preserved in the zero-viscosity limit, as does the existence of the pulsating boundary. The mathematical model adopts the classical assumption that there is no distributed reaction in either the liquid or gas phases, but now the reaction sheet, representing either a pyrolysis reaction or an exothermic decomposition at the liquid/gas interface, is assumed to depend on local conditions there.
NASA Astrophysics Data System (ADS)
Scradeanu, D.; Pagnejer, M.
2012-04-01
The purpose of the works is to evaluate the uncertainty of the hydrodynamic model for a multilayered geological structure, a potential trap for carbon dioxide storage. The hydrodynamic model is based on a conceptual model of the multilayered hydrostructure with three components: 1) spatial model; 2) parametric model and 3) energy model. The necessary data to achieve the three components of the conceptual model are obtained from: 240 boreholes explored by geophysical logging and seismic investigation, for the first two components, and an experimental water injection test for the last one. The hydrodinamic model is a finite difference numerical model based on a 3D stratigraphic model with nine stratigraphic units (Badenian and Oligocene) and a 3D multiparameter model (porosity, permeability, hydraulic conductivity, storage coefficient, leakage etc.). The uncertainty of the two 3D models was evaluated using multivariate geostatistical tools: a)cross-semivariogram for structural analysis, especially the study of anisotropy and b)cokriging to reduce estimation variances in a specific situation where is a cross-correlation between a variable and one or more variables that are undersampled. It has been identified important differences between univariate and bivariate anisotropy. The minimised uncertainty of the parametric model (by cokriging) was transferred to hydrodynamic model. The uncertainty distribution of the pressures generated by the water injection test has been additional filtered by the sensitivity of the numerical model. The obtained relative errors of the pressure distribution in the hydrodynamic model are 15-20%. The scientific research was performed in the frame of the European FP7 project "A multiple space and time scale approach for the quantification of deep saline formation for CO2 storage(MUSTANG)".
Improved Finite-Volume Method for Radiative Hydrodynamics
NASA Technical Reports Server (NTRS)
Wray, Alan
2012-01-01
Fully coupled simulations of hydrodynamics and radiative transfer are essential to a number of fields ranging from astrophysics to engineering applications. Of particular interest in this work are hypersonic atmospheric entries and associated experimental apparatus, e.g., shock tubes and high enthalpy testing facilities. The radiative transfer calculations must supply to the CFD a heating term in the energy equation in the form of the divergence of the radiative heat flux and the radiative heat fluxes to bounding surfaces. It is most efficient to solve the radiative transfer equation on the same grid as the CFD solution, and this work presents an algorithm with improved accuracy for such simulations on structured and unstructured grids compared to more conventional approaches. Results will be shown for shock radiation during hypersonic reentry. Issues of parallelization within a radiation sweep will also be discussed.
Dynamics of streaming instability with quantum correction
NASA Astrophysics Data System (ADS)
Goutam, H. P.; Karmakar, P. K.
2017-05-01
A modified quantum hydrodynamic model (m-QHD) is herein proposed on the basis of the Thomas-Fermi (TF) theory of many fermionic quantum systems to investigate the dynamics of electrostatic streaming instability modes in a complex (dusty) quantum plasma system. The newly formulated m-QHD, as an amelioration over the existing usual QHD, employs a dimensionality-dependent Bohmian quantum correction prefactor, γ = [(D-2)/3D], in the electron quantum dynamics, where D symbolizing the problem dimensionality under consideration. The normal mode analysis of the coupled structure equations reveals the excitation of two distinct streaming modes associated with the flowing ions (against electrons and dust) and the flowing dust particulates (against the electrons and ions). It is mainly shown that the γ-factor introduces a new source of stability and dispersive effects to the ion-streaming instability solely; but not to the dust counterparts. A non-trivial application of our investigation in electrostatic beam-plasma (flow-driven) coupled dynamics leading to the development of self-sustained intense electric current, and hence, of strong magnetic field in compact astrophysical objects (in dwarf-family stars) is summarily indicated.
Study of hydrodynamic characteristics of a Sharp Eagle wave energy converter
NASA Astrophysics Data System (ADS)
Zhang, Ya-qun; Sheng, Song-wei; You, Ya-ge; Huang, Zhen-xin; Wang, Wen-sheng
2017-06-01
According to Newton's Second Law and the microwave theory, mechanical analysis of multiple buoys which form Sharp Eagle wave energy converter (WEC) is carried out. The movements of every buoy in three modes couple each other when they are affected with incident waves. Based on the above, mechanical models of the WEC are established, which are concerned with fluid forces, damping forces, hinge forces, and so on. Hydrodynamic parameters of one buoy are obtained by taking the other moving buoy as boundary conditions. Then, by taking those hydrodynamic parameters into the mechanical models, the optimum external damping and optimal capture width ratio are calculated out. Under the condition of the optimum external damping, a plenty of data are obtained, such as the displacements amplitude of each buoy in three modes (sway, heave, pitch), damping forces, hinge forces, and speed of the hydraulic cylinder. Research results provide theoretical references and basis for Sharp Eagle WECs in the design and manufacture.
Bull, Diana L.
2015-09-23
The fundamental interactions between waves, a floating rigid-body, and a moonpool that is selectively open to atmosphere or enclosed to purposefully induce pressure fluctuations are investigated. The moonpool hydrodynamic characteristics and the hydrodynamic coupling to the rigid-body are derived implicitly through reciprocity relations on an array of field points. By modeling the free surface of the moonpool in this manner, an explicit hydrodynamic coupling term is included in the equations of motion. This coupling results in the migration of the moonpool's natural resonance frequency from the piston frequency to a new frequency when enclosed in a floating rigid-body. Two geometriesmore » that highlight distinct aspects of marine vessels and oscillating water column (OWC) renewable energy devices are analyzed to reveal the coupled natural resonance migration. The power performance of these two OWCs in regular waves is also investigated. The air chamber is enclosed and a three-dimensional, linear, frequency domain performance model that links the rigid-body to the moonpool through a linear resistive control strategy is detailed. Furthermore, an analytic expression for the optimal linear resistive control values in regular waves is presented.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bull, Diana L.
The fundamental interactions between waves, a floating rigid-body, and a moonpool that is selectively open to atmosphere or enclosed to purposefully induce pressure fluctuations are investigated. The moonpool hydrodynamic characteristics and the hydrodynamic coupling to the rigid-body are derived implicitly through reciprocity relations on an array of field points. By modeling the free surface of the moonpool in this manner, an explicit hydrodynamic coupling term is included in the equations of motion. This coupling results in the migration of the moonpool's natural resonance frequency from the piston frequency to a new frequency when enclosed in a floating rigid-body. Two geometriesmore » that highlight distinct aspects of marine vessels and oscillating water column (OWC) renewable energy devices are analyzed to reveal the coupled natural resonance migration. The power performance of these two OWCs in regular waves is also investigated. The air chamber is enclosed and a three-dimensional, linear, frequency domain performance model that links the rigid-body to the moonpool through a linear resistive control strategy is detailed. Furthermore, an analytic expression for the optimal linear resistive control values in regular waves is presented.« less
Pitkänen, Leena; Montoro Bustos, Antonio R; Murphy, Karen E; Winchester, Michael R; Striegel, André M
2017-08-18
The physicochemical characterization of nanoparticles (NPs) is of paramount importance for tailoring and optimizing the properties of these materials as well as for evaluating the environmental fate and impact of the NPs. Characterizing the size and chemical identity of disperse NP sample populations can be accomplished by coupling size-based separation methods to physical and chemical detection methods. Informed decisions regarding the NPs can only be made, however, if the separations themselves are quantitative, i.e., if all or most of the analyte elutes from the column within the course of the experiment. We undertake here the size-exclusion chromatographic characterization of Au NPs spanning a six-fold range in mean size. The main problem which has plagued the size-exclusion chromatography (SEC) analysis of Au NPs, namely lack of quantitation accountability due to generally poor NP recovery from the columns, is overcome by carefully matching eluent formulation with the appropriate stationary phase chemistry, and by the use of on-line inductively coupled plasma mass spectrometry (ICP-MS) detection. Here, for the first time, we demonstrate the quantitative analysis of Au NPs by SEC/ICP-MS, including the analysis of a ternary NP blend. The SEC separations are contrasted to HDC/ICP-MS (HDC: hydrodynamic chromatography) separations employing the same stationary phase chemistry. Additionally, analysis of Au NPs by HDC with on-line quasi-elastic light scattering (QELS) allowed for continuous determination of NP size across the chromatographic profiles, circumventing issues related to the shedding of fines from the SEC columns. The use of chemically homogeneous reference materials with well-defined size range allowed for better assessment of the accuracy and precision of the analyses, and for a more direct interpretation of results, than would be possible employing less rigorously characterized analytes. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Di Cintio, Pierfrancesco; Livi, Roberto; Lepri, Stefano; Ciraolo, Guido
2017-04-01
By means of hybrid multiparticle collsion-particle-in-cell (MPC-PIC) simulations we study the dynamical scaling of energy and density correlations at equilibrium in moderately coupled two-dimensional (2D) and quasi-one-dimensional (1D) plasmas. We find that the predictions of nonlinear fluctuating hydrodynamics for the structure factors of density and energy fluctuations in 1D systems with three global conservation laws hold true also for 2D systems that are more extended along one of the two spatial dimensions. Moreover, from the analysis of the equilibrium energy correlators and density structure factors of both 1D and 2D neutral plasmas, we find that neglecting the contribution of the fluctuations of the vanishing self-consistent electrostatic fields overestimates the interval of frequencies over which the anomalous transport is observed. Such violations of the expected scaling in the currents correlation are found in different regimes, hindering the observation of the asymptotic scaling predicted by the theory.
NASA Astrophysics Data System (ADS)
Pahar, Gourabananda; Dhar, Anirban
2017-04-01
A coupled solenoidal Incompressible Smoothed Particle Hydrodynamics (ISPH) model is presented for simulation of sediment displacement in erodible bed. The coupled framework consists of two separate incompressible modules: (a) granular module, (b) fluid module. The granular module considers a friction based rheology model to calculate deviatoric stress components from pressure. The module is validated for Bagnold flow profile and two standardized test cases of sediment avalanching. The fluid module resolves fluid flow inside and outside porous domain. An interaction force pair containing fluid pressure, viscous term and drag force acts as a bridge between two different flow modules. The coupled model is validated against three dambreak flow cases with different initial conditions of movable bed. The simulated results are in good agreement with experimental data. A demonstrative case considering effect of granular column failure under full/partial submergence highlights the capability of the coupled model for application in generalized scenario.
NASA Astrophysics Data System (ADS)
Scukins, A.; Nerukh, D.; Pavlov, E.; Karabasov, S.; Markesteijn, A.
2015-09-01
A multiscale Molecular Dynamics/Hydrodynamics implementation of the 2D Mercedes Benz (MB or BN2D) [1] water model is developed and investigated. The concept and the governing equations of multiscale coupling together with the results of the two-way coupling implementation are reported. The sensitivity of the multiscale model for obtaining macroscopic and microscopic parameters of the system, such as macroscopic density and velocity fluctuations, radial distribution and velocity autocorrelation functions of MB particles, is evaluated. Critical issues for extending the current model to large systems are discussed.
Internal Wave Apparatus for Copepod Behavior Assays
NASA Astrophysics Data System (ADS)
Jung, S.; Haas, K. A.; Webster, D. R.
2015-11-01
Internal waves are ubiquitous features in coastal marine environments and have been observed to mediate vertical distributions of zooplankton in situ. Internal waves are generated through oscillations of the pycnocline in stratified waters and thereby create fine-scale hydrodynamic cues that copepods and other zooplankton are known to sense, such as fluid density gradients and velocity gradients (quantified as shear deformation rate). The role of copepod behavior in response to cues associated with internal waves is largely unknown. Thus, a coupled quantification of copepod behavior and hydrodynamic cues will provide insight to the bio-physical interaction and the role of biological versus physical forcing in mediating organism distributions. We constructed a laboratory-scale internal wave apparatus to facilitate fine-scale observations of copepod behavior in flows that replicate in situ conditions of internal waves in a two-layer stratification. Three cases are chosen with density jump ranging between 0.75 - 1.5 kg/m3. Analytical analysis of the two-layer system provides guidance of the target forcing frequency to generate a standing internal wave with a single dominate frequency of oscillation. Flow visualization and signal processing of the interface location are used to quantify the wave characteristics. A copepod behavior assay is conducted, and sample trajectories are analyzed to identify copepod response to internal wave structure.
NASA Astrophysics Data System (ADS)
Liu, Yang; Ren, Xingfeng; Pan, Changwei; Zheng, Ting; Yuan, Ling; Zheng, Juhua; Gao, Qingyu
2017-10-01
Hydrodynamic flows can exert multiple effects on an exothermal autocatalytic reaction, such as buoyancy and the Marangoni convection, which can change the structure and velocity of chemical waves. Here we report that in the chlorite-trithionate reaction, the production and consumption of chlorine dioxide can induce and inhibit Marangoni flow, respectively, leading to different chemo-hydrodynamic patterns. The horizontal propagation of a reaction-diffusion-convection front was investigated with the upper surface open to the air. The Marangoni convection, induced by gaseous chlorine dioxide on the surface, produced from chlorite disproportionation after the proton autocatalysis, has the same effect as the heat convection. When the Marangoni effect is removed by the reaction of chlorine dioxide with the Congo red (CR) indicator, an oscillatory propagation of the front tip is observed under suitable conditions. Replacing CR with bromophenol blue (BPB) distinctly enhanced the floating, resulting in multiple vortexes, owing to the coexistence between BPB and chlorine dioxide. Using the incompressible Navier-Stokes equations coupled with reaction-diffusion and heat conduction equations, we numerically obtain various experimental scenarios of front instability for the exothermic autocatalytic reaction coupled with buoyancy-driven convection and Marangoni convection.
Mao, Wenbin; Li, Kewei; Sun, Wei
2016-01-01
Computational modeling of heart valve dynamics incorporating both fluid dynamics and valve structural responses has been challenging. In this study, we developed a novel fully-coupled fluid-structure interaction (FSI) model using smoothed particle hydrodynamics (SPH). A previously developed nonlinear finite element (FE) model of transcatheter aortic valves (TAV) was utilized to couple with SPH to simulate valve leaflet dynamics throughout the entire cardiac cycle. Comparative simulations were performed to investigate the impact of using FE-only models versus FSI models, as well as an isotropic versus an anisotropic leaflet material model in TAV simulations. From the results, substantial differences in leaflet kinematics between FE-only and FSI models were observed, and the FSI model could capture the realistic leaflet dynamic deformation due to its more accurate spatial and temporal loading conditions imposed on the leaflets. The stress and the strain distributions were similar between the FE and FSI simulations. However, the peak stresses were different due to the water hammer effect induced by the flow inertia in the FSI model during the closing phase, which led to 13%–28% lower peak stresses in the FE-only model compared to that of the FSI model. The simulation results also indicated that tissue anisotropy had a minor impact on hemodynamics of the valve. However, a lower tissue stiffness in the radial direction of the leaflets could reduce the leaflet peak stress caused by the water hammer effect. It is hoped that the developed FSI models can serve as an effective tool to better assess valve dynamics and optimize next generation TAV designs. PMID:27844463
Mao, Wenbin; Li, Kewei; Sun, Wei
2016-12-01
Computational modeling of heart valve dynamics incorporating both fluid dynamics and valve structural responses has been challenging. In this study, we developed a novel fully-coupled fluid-structure interaction (FSI) model using smoothed particle hydrodynamics (SPH). A previously developed nonlinear finite element (FE) model of transcatheter aortic valves (TAV) was utilized to couple with SPH to simulate valve leaflet dynamics throughout the entire cardiac cycle. Comparative simulations were performed to investigate the impact of using FE-only models vs. FSI models, as well as an isotropic vs. an anisotropic leaflet material model in TAV simulations. From the results, substantial differences in leaflet kinematics between FE-only and FSI models were observed, and the FSI model could capture the realistic leaflet dynamic deformation due to its more accurate spatial and temporal loading conditions imposed on the leaflets. The stress and the strain distributions were similar between the FE and FSI simulations. However, the peak stresses were different due to the water hammer effect induced by the fluid inertia in the FSI model during the closing phase, which led to 13-28% lower peak stresses in the FE-only model compared to that of the FSI model. The simulation results also indicated that tissue anisotropy had a minor impact on hemodynamics of the valve. However, a lower tissue stiffness in the radial direction of the leaflets could reduce the leaflet peak stress caused by the water hammer effect. It is hoped that the developed FSI models can serve as an effective tool to better assess valve dynamics and optimize next generation TAV designs.
Influences of the Darrieus-Landau instability on premixed turbulent flames
NASA Astrophysics Data System (ADS)
Patyal, Advitya; Matalon, Moshe
2017-11-01
The propagation of turbulent flames in three-dimensional turbulent flows is studied within the context of the hydrodynamic theory. The flame is treated as a surface of density discontinuity with the flow modified by gas expansion resulting from heat released during combustion. The flame is tracked using a level-set method with a propagation speed that depends on the local flame stretch, modulated by a Markstein length. Impact of the Darrieus-Landau instability on the topology of the flame surface is studied. It is shown that similar to passive interfaces, flames under the influence of the hydrodynamic instability resort to cylindrical structures with increasing turbulence intensity, even in 3D. The mechanism of modification of vortical structures in the burned gas is identified in terms of the alignments between the vorticity vector, flame surface normal and eigenvectors of the strain rate tensor. The results indicate that the strain rate tensor is intricately coupled with the normal to the flame surface and creates anisotropy in the orientation of vortical structures, which begins to weaken as the turbulent intensity increases. Furthermore, vorticity budgets are used to highlight the relative importance of baroclinic torque due to Darrieus-Landau instability.
Flagellum synchronization inhibits large-scale hydrodynamic instabilities in sperm suspensions
NASA Astrophysics Data System (ADS)
Schöller, Simon F.; Keaveny, Eric E.
2016-11-01
Sperm in suspension can exhibit large-scale collective motion and form coherent structures. Our picture of such coherent motion is largely based on reduced models that treat the swimmers as self-locomoting rigid bodies that interact via steady dipolar flow fields. Swimming sperm, however, have many more degrees of freedom due to elasticity, have a more exotic shape, and generate spatially-complex, time-dependent flow fields. While these complexities are known to lead to phenomena such as flagellum synchronization and attraction, how these effects impact the overall suspension behaviour and coherent structure formation is largely unknown. Using a computational model that captures both flagellum beating and elasticity, we simulate suspensions on the order of 103 individual swimming sperm cells whose motion is coupled through the surrounding Stokesian fluid. We find that the tendency for flagella to synchronize and sperm to aggregate inhibits the emergence of the large-scale hydrodynamic instabilities often associated with active suspensions. However, when synchronization is repressed by adding noise in the flagellum actuation mechanism, the picture changes and the structures that resemble large-scale vortices appear to re-emerge. Supported by an Imperial College PhD scholarship.
The angular structure of jet quenching within a hybrid strong/weak coupling model
NASA Astrophysics Data System (ADS)
Casalderrey-Solana, Jorge; Gulhan, Doga Can; Milhano, José Guilherme; Pablos, Daniel; Rajagopal, Krishna
2017-08-01
Building upon the hybrid strong/weak coupling model for jet quenching, we incorporate and study the effects of transverse momentum broadening and medium response of the plasma to jets on a variety of observables. For inclusive jet observables, we find little sensitivity to the strength of broadening. To constrain those dynamics, we propose new observables constructed from ratios of differential jet shapes, in which particles are binned in momentum, which are sensitive to the in-medium broadening parameter. We also investigate the effect of the back-reaction of the medium on the angular structure of jets as reconstructed with different cone radii R. Finally we provide results for the so called ;missing-pt;, finding a qualitative agreement between our model calculations and data in many respects, although a quantitative agreement is beyond our simplified treatment of the hadrons originating from the hydrodynamic wake.
Water impact analysis of space shuttle solid rocket motor by the finite element method
NASA Technical Reports Server (NTRS)
Buyukozturk, O.; Hibbitt, H. D.; Sorensen, E. P.
1974-01-01
Preliminary analysis showed that the doubly curved triangular shell elements were too stiff for these shell structures. The doubly curved quadrilateral shell elements were found to give much improved results. A total of six load cases were analyzed in this study. The load cases were either those resulting from a static test using reaction straps to simulate the drop conditions or under assumed hydrodynamic conditions resulting from a drop test. The latter hydrodynamic conditions were obtained through an emperical fit of available data. Results obtained from a linear analysis were found to be consistent with results obtained elsewhere with NASTRAN and BOSOR. The nonlinear analysis showed that the originally assumed loads would result in failure of the shell structures. The nonlinear analysis also showed that it was useful to apply internal pressure as a stabilizing influence on collapse. A final analysis with an updated estimate of load conditions resulted in linear behavior up to full load.
Coupled Electro-Hydrodynamic Effects of Electro-Osmosis from Pore Scale to Darcy Scale
NASA Astrophysics Data System (ADS)
Schotting, R.; Joekar-Niasar, V.; Leijnse, A.
2011-12-01
Electro-osmosis is "movement of a fluid under the effect of an electric field in a porous medium". This phenomenon has many applications in civil engineering (slope stabilization, dewatering), environmental engineering (soil remediation, sludge dewatering), chemical engineering (micro- or nano- mixers), medical engineering (drug delivery), etc. The key factor in electro-osmosis is the competition between the electrochemical and hydrodynamic forces as well as the coupling between the solid surface and the electrolyte properties. The objective of this research is to understand the influence of pore-scale heterogeneities of surface properties on the Darcy-scale behavior. We develop novel analytical solutions for the flow and transport of electrolyte including electro-hydrodynamic forces in a single micro-channel. We propose the complete analytical solution for monovalent electrolyte at full range overlapping double layers, and nonlinear electric field, including the Donan effect in transport of ions. These pore-scale formulations are numerically upscaled to obtain the Darcy-scale behavior. Our results show the contribution of electro-osmotic, chemical-osmotic and hydrodynamic components of the flow equation on pressure field evolution and multi-directional flow field at Darcy scale.
A unified model of bedforms in water, Earth and other planetary bodies
NASA Astrophysics Data System (ADS)
Duran Vinent, O.; Claudin, P.; Winter, C.; Andreotti, B.
2017-12-01
The emergence of bedforms as result of the coupling between a fluid flow and sediment transport is a remarkable example of self-organized natural patterns. Subaqueous bedforms generated by unidirectional water flows, like ripples, dunes or compound bedforms, have been shown to depend on grain size, water depth and flow velocity. However, this variety of morphologies, empirically classified according to their size, is still not understood in terms of mechanical and hydrodynamical mechanisms. We present a process-based model that simultaneously explain the scaling of bedforms for Water, Air, Mars and Venus, and can be potentially applied to other planetary bodies such as Titan or Pluto. The model couples hydrodynamics over a modulated bed to sediment transport and relaxation laws, and resolves pattern coarsening from initial to mature bedforms. We find two fundamental types of bedforms, called `laminar' and `turbulent' and analogous to water ripples and dunes, and the conditions leading to their formation. By relating morphology to hydrodynamic and sediment transport details, our model opens the way to extract hydrodynamic information from the stratigraphy record and shed a light to past and current planetary conditions.
Evaporation effects in a shock-driven multiphase instability with a spherical interface
NASA Astrophysics Data System (ADS)
Paudel, Manoj; Dahal, Jeevan; McFarland, Jacob
2017-11-01
This talk presents results from 3D numerical simulations of a shock driven instability of a gas-particle system with a spherical interface. Two cases, one with an evaporating particle cloud and another with a gas only approximation of this particle cloud, were run in the hydrodynamics code FLASH, developed at University of Chicago. It is shown that the gas only approximation, a classical Richtmyer Meshkov instability, cannot replicate effects from particles like, lag, clustering, and evaporation. Instead, both gas hydrodynamics and particle properties influence one another and are coupled. Results are presented to highlight the coupling of interface evolution and particle evaporation. Qualitative and quantitative differences in the RMI and SDMI are presented by studying the change in gas properties like density and vorticity within the interface. Similarly, the effect of gas hydrodynamics on particles distribution and evaporation is studied. Particle evaporation rates are compared with 1D models and show poor agreement. The variation in evaporation rates for similar sized particles and the role of gas hydrodynamics in these variation is explored.
Snezhko, Alexey
2011-04-20
Colloidal dispersions of interacting particles subjected to an external periodic forcing often develop nontrivial self-assembled patterns and complex collective behavior. A fundamental issue is how collective ordering in such non-equilibrium systems arises from the dynamics of discrete interacting components. In addition, from a practical viewpoint, by working in regimes far from equilibrium new self-organized structures which are generally not available through equilibrium thermodynamics can be created. In this review spontaneous self-assembly phenomena in magnetic colloidal dispersions suspended at liquid-air interfaces and driven out of equilibrium by an alternating magnetic field are presented. Experiments reveal a new type of nontrivially ordered self-assembled structures emerging in such systems in a certain range of excitation parameters. These dynamic structures emerge as a result of the competition between magnetic and hydrodynamic forces and have complex unconventional magnetic ordering. Nontrivial self-induced hydrodynamic fields accompany each out-of-equilibrium pattern. Spontaneous symmetry breaking of the self-induced surface flows leading to a formation of self-propelled microstructures has been discovered. Some features of the self-localized structures can be understood in the framework of the amplitude equation (Ginzburg-Landau type equation) for parametric waves coupled to the conservation law equation describing the evolution of the magnetic particle density and the Navier-Stokes equation for hydrodynamic flows. To understand the fundamental microscopic mechanisms governing self-assembly processes in magnetic colloidal dispersions at liquid-air interfaces a first-principle model for a non-equilibrium self-assembly is presented. The latter model allows us to capture in detail the entire process of out-of-equilibrium self-assembly in the system and reproduces most of the observed phenomenology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Ye; Karri, Naveen K.; Wang, Qi
Tidal power as a large-scale renewable source of energy has been receiving significant attention recently because of its advantages over the wind and other renewal energy sources. The technology used to harvest energy from tidal current is called a tidal current turbine. Though some of the principles of wind turbine design are applicable to tidal current turbines, the design of latter ones need additional considerations like cavitation damage, corrosion etc. for the long-term reliability of such turbines. Depending up on the orientation of axis, tidal current turbines can be classified as vertical axis turbines or horizontal axis turbines. Existing studiesmore » on the vertical axis tidal current turbine focus more on the hydrodynamic aspects of the turbine rather than the structural aspects. This paper summarizes our recent efforts to study the integrated hydrodynamic and structural aspects of the vertical axis tidal current turbines. After reviewing existing methods in modeling tidal current turbines, we developed a hybrid approach that combines discrete vortex method -finite element method that can simulate the integrated hydrodynamic and structural response of a vertical axis turbine. This hybrid method was initially employed to analyze a typical three-blade vertical axis turbine. The power coefficient was used to evaluate the hydrodynamic performance, and critical deflection was considered to evaluate the structural reliability. A sensitivity analysis was also conducted with various turbine height-to-radius ratios. The results indicate that both the power output and failure probability increase with the turbine height, suggesting a necessity for optimal design. An attempt to optimize a 3-blade vertical axis turbine design with hybrid method yielded a ratio of turbine height to radius (H/R) about 3.0 for reliable maximum power output.« less
NASA Astrophysics Data System (ADS)
Nugroho, W. H.; Purnomo, N. J. H.; Soedarto, T.
2016-11-01
This paper presents an experimental work to monitor the health of submarine hull structures using strain sensors and wireless communication technology. The monitored - submarine hull was built in a hydro elastic model scale 1: 30 with a steel bar backbone and tested on water tank of Indonesian Hydrodynamic Laboratory (IHL). Specifically, this health monitoring system for the submarine model was developed using wireless modems, data communication software and conventional strain sensors. This system was used to monitor the loads on a steel bar backbone of the running submarine model from the edge of the water tank. Commands were issued from a notebook to instruct the health monitoring system to acquire data from sensors mounted externally to the steel bar. Data from measurements made on the structure are then transmitted wirelessly back to a notebook computer for processing and analysis. The results of the tank test have been validated and showed no loss of communication signal over an area of the tank. This work also presents a potential use of involving complete automation of this system with an in-service structure coupled with an on-line warning/damage detection capability.
An arbitrary boundary with ghost particles incorporated in coupled FEM-SPH model for FSI problems
NASA Astrophysics Data System (ADS)
Long, Ting; Hu, Dean; Wan, Detao; Zhuang, Chen; Yang, Gang
2017-12-01
It is important to treat the arbitrary boundary of Fluid-Structure Interaction (FSI) problems in computational mechanics. In order to ensure complete support condition and restore the first-order consistency near the boundary of Smoothed Particle Hydrodynamics (SPH) method for coupling Finite Element Method (FEM) with SPH model, a new ghost particle method is proposed by dividing the interceptive area of kernel support domain into subareas corresponding to boundary segments of structure. The ghost particles are produced automatically for every fluid particle at each time step, and the properties of ghost particles, such as density, mass and velocity, are defined by using the subareas to satisfy the boundary condition. In the coupled FEM-SPH model, the normal and shear forces from a boundary segment of structure to a fluid particle are calculated through the corresponding ghost particles, and its opposite forces are exerted on the corresponding boundary segment, then the momentum of the present method is conservation and there is no matching requirements between the size of elements and the size of particles. The performance of the present method is discussed and validated by several FSI problems with complex geometry boundary and moving boundary.
Self-organization in suspensions of end-functionalized semiflexible polymers under shear flow
NASA Astrophysics Data System (ADS)
Myung, Jin Suk; Winkler, Roland G.; Gompper, Gerhard
2015-12-01
The nonequilibrium dynamical behavior and structure formation of end-functionalized semiflexible polymer suspensions under flow are investigated by mesoscale hydrodynamic simulations. The hybrid simulation approach combines the multiparticle collision dynamics method for the fluid, which accounts for hydrodynamic interactions, with molecular dynamics simulations for the semiflexible polymers. In equilibrium, various kinds of scaffold-like network structures are observed, depending on polymer flexibility and end-attraction strength. We investigate the flow behavior of the polymer networks under shear and analyze their nonequilibrium structural and rheological properties. The scaffold structure breaks up and densified aggregates are formed at low shear rates, while the structural integrity is completely lost at high shear rates. We provide a detailed analysis of the shear- rate-dependent flow-induced structures. The studies provide a deeper understanding of the formation and deformation of network structures in complex materials.
Sequence Determinants of Compaction in Intrinsically Disordered Proteins
Marsh, Joseph A.; Forman-Kay, Julie D.
2010-01-01
Abstract Intrinsically disordered proteins (IDPs), which lack folded structure and are disordered under nondenaturing conditions, have been shown to perform important functions in a large number of cellular processes. These proteins have interesting structural properties that deviate from the random-coil-like behavior exhibited by chemically denatured proteins. In particular, IDPs are often observed to exhibit significant compaction. In this study, we have analyzed the hydrodynamic radii of a number of IDPs to investigate the sequence determinants of this compaction. Net charge and proline content are observed to be strongly correlated with increased hydrodynamic radii, suggesting that these are the dominant contributors to compaction. Hydrophobicity and secondary structure, on the other hand, appear to have negligible effects on compaction, which implies that the determinants of structure in folded and intrinsically disordered proteins are profoundly different. Finally, we observe that polyhistidine tags seem to increase IDP compaction, which suggests that these tags have significant perturbing effects and thus should be removed before any structural characterizations of IDPs. Using the relationships observed in this analysis, we have developed a sequence-based predictor of hydrodynamic radius for IDPs that shows substantial improvement over a simple model based upon chain length alone. PMID:20483348
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robertson, Amy N.; Wendt, Fabian; Jonkman, Jason M.
This paper summarizes the findings from Phase Ib of the Offshore Code Comparison, Collaboration, Continued with Correlation (OC5) project. OC5 is a project run under the International Energy Agency (IEA) Wind Research Task 30, and is focused on validating the tools used for modelling offshore wind systems through the comparison of simulated responses of select offshore wind systems (and components) to physical test data. For Phase Ib of the project, simulated hydrodynamic loads on a flexible cylinder fixed to a sloped bed were validated against test measurements made in the shallow water basin at the Danish Hydraulic Institute (DHI) withmore » support from the Technical University of Denmark (DTU). The first phase of OC5 examined two simple cylinder structures (Phase Ia and Ib) to focus on validation of hydrodynamic models used in the various tools before moving on to more complex offshore wind systems and the associated coupled physics. As a result, verification and validation activities such as these lead to improvement of offshore wind modelling tools, which will enable the development of more innovative and cost-effective offshore wind designs.« less
Benchmarking an unstructured grid sediment model in an energetic estuary
Lopez, Jesse E.; Baptista, António M.
2016-12-14
A sediment model coupled to the hydrodynamic model SELFE is validated against a benchmark combining a set of idealized tests and an application to a field-data rich energetic estuary. After sensitivity studies, model results for the idealized tests largely agree with previously reported results from other models in addition to analytical, semi-analytical, or laboratory results. Results of suspended sediment in an open channel test with fixed bottom are sensitive to turbulence closure and treatment for hydrodynamic bottom boundary. Results for the migration of a trench are very sensitive to critical stress and erosion rate, but largely insensitive to turbulence closure.more » The model is able to qualitatively represent sediment dynamics associated with estuarine turbidity maxima in an idealized estuary. Applied to the Columbia River estuary, the model qualitatively captures sediment dynamics observed by fixed stations and shipborne profiles. Representation of the vertical structure of suspended sediment degrades when stratification is underpredicted. Across all tests, skill metrics of suspended sediments lag those of hydrodynamics even when qualitatively representing dynamics. The benchmark is fully documented in an openly available repository to encourage unambiguous comparisons against other models.« less
Robertson, Amy N.; Wendt, Fabian; Jonkman, Jason M.; ...
2016-10-13
This paper summarizes the findings from Phase Ib of the Offshore Code Comparison, Collaboration, Continued with Correlation (OC5) project. OC5 is a project run under the International Energy Agency (IEA) Wind Research Task 30, and is focused on validating the tools used for modelling offshore wind systems through the comparison of simulated responses of select offshore wind systems (and components) to physical test data. For Phase Ib of the project, simulated hydrodynamic loads on a flexible cylinder fixed to a sloped bed were validated against test measurements made in the shallow water basin at the Danish Hydraulic Institute (DHI) withmore » support from the Technical University of Denmark (DTU). The first phase of OC5 examined two simple cylinder structures (Phase Ia and Ib) to focus on validation of hydrodynamic models used in the various tools before moving on to more complex offshore wind systems and the associated coupled physics. As a result, verification and validation activities such as these lead to improvement of offshore wind modelling tools, which will enable the development of more innovative and cost-effective offshore wind designs.« less
Hydrodynamics of strongly coupled non-conformal fluids from gauge/gravity duality
NASA Astrophysics Data System (ADS)
Springer, Todd
2009-08-01
The subject of relativistic hydrodynamics is explored using the tools of gauge/gravity duality. A brief literature review of AdS/CFT and gauge/gravity duality is presented first. This is followed by a pedagogical introduction to the use of these methods in determining hydrodynamic dispersion relations, w(q), of perturbations in a strongly coupled fluid. Shear and sound mode perturbations are examined in a special class of gravity duals: those where the matter supporting the metric is scalar in nature. Analytical solutions (to order q^4 and q^3 respectively) for the shear and sound mode dispersion relations are presented for a subset of these backgrounds. The work presented here is based on previous publications by the same author, though some previously unpublished results are also included. In particular, the subleading term in the shear mode dispersion relation is analyzed using the AdS/CFT correspondence without any reference to the black hole membrane paradigm.
A coupled ALE-AMR method for shock hydrodynamics
Waltz, J.; Bakosi, J.
2018-03-05
We present a numerical method combining adaptive mesh refinement (AMR) with arbitrary Lagrangian-Eulerian (ALE) mesh motion for the simulation of shock hydrodynamics on unstructured grids. The primary goal of the coupled method is to use AMR to reduce numerical error in ALE simulations at reduced computational expense relative to uniform fine mesh calculations, in the same manner that AMR has been used in Eulerian simulations. We also identify deficiencies with ALE methods that AMR is able to mitigate, and discuss the unique coupling challenges. The coupled method is demonstrated using three-dimensional unstructured meshes of up to O(10 7) tetrahedral cells.more » Convergence of ALE-AMR solutions towards both uniform fine mesh ALE results and analytic solutions is demonstrated. Speed-ups of 5-10× for a given level of error are observed relative to uniform fine mesh calculations.« less
A coupled ALE-AMR method for shock hydrodynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waltz, J.; Bakosi, J.
We present a numerical method combining adaptive mesh refinement (AMR) with arbitrary Lagrangian-Eulerian (ALE) mesh motion for the simulation of shock hydrodynamics on unstructured grids. The primary goal of the coupled method is to use AMR to reduce numerical error in ALE simulations at reduced computational expense relative to uniform fine mesh calculations, in the same manner that AMR has been used in Eulerian simulations. We also identify deficiencies with ALE methods that AMR is able to mitigate, and discuss the unique coupling challenges. The coupled method is demonstrated using three-dimensional unstructured meshes of up to O(10 7) tetrahedral cells.more » Convergence of ALE-AMR solutions towards both uniform fine mesh ALE results and analytic solutions is demonstrated. Speed-ups of 5-10× for a given level of error are observed relative to uniform fine mesh calculations.« less
NASA Astrophysics Data System (ADS)
Rogers, Justin S.; Monismith, Stephen G.; Fringer, Oliver B.; Koweek, David A.; Dunbar, Robert B.
2017-02-01
We present a hydrodynamic analysis of an atoll system from modeling simulations using a coupled wave and three-dimensional hydrodynamic model (COAWST) applied to Palmyra Atoll in the Central Pacific. This is the first time the vortex force formalism has been applied in a highly frictional reef environment. The model results agree well with field observations considering the model complexity in terms of bathymetry, bottom roughness, and forcing (waves, wind, metrological, tides, regional boundary conditions), and open boundary conditions. At the atoll scale, strong regional flows create flow separation and a well-defined wake, similar to 2D flow past a cylinder. Circulation within the atoll is typically forced by waves and tides, with strong waves from the north driving flow from north to south across the atoll, and from east to west through the lagoon system. Bottom stress is significant for depths less than about 60 m, and in addition to the model bathymetry, is important for correct representation of flow in the model. Connectivity within the atoll system shows that the general trends follow the mean flow paths. However, some connectivity exists between all regions of the atoll system due to nonlinear processes such as eddies and tidal phasing. Moderate wave stress, short travel time (days since entering the reef system), and low temperature appear to be the most ideal conditions for high coral cover at this site.
NASA Astrophysics Data System (ADS)
Rogers, J.; Monismith, S. G.; Fringer, O. B.; Koweek, D.; Dunbar, R. B.
2016-12-01
We present a hydrodynamic analysis of an atoll system from modeling simulations using a coupled wave and three-dimensional hydrodynamic model (COAWST) applied to Palmyra Atoll in the Central Pacific. This is the first time the vortex force formalism has been applied in a highly frictional reef environment. The model results agree well with field observations considering the model complexity in terms of bathymetry, bottom roughness, and forcing (waves, wind, metrological, tides, regional boundary conditions), and open boundary conditions. At the atoll scale, strong regional flows create flow separation and a well-defined wake, similar to 2D flow past a cylinder. Circulation within the atoll is typically forced by waves and tides, with strong waves from the north driving flow from north to south across the atoll, and from east to west through the lagoon system. Bottom stress is significant for depths less than about 60 m, and in addition to the model bathymetry, is important for correct representation of flow in the model. Connectivity within the atoll system shows that the general trends follow the mean flow paths. However, some connectivity exists between all regions of the atoll system due to nonlinear processes such as eddies and tidal phasing. While high mean flow and travel time less than 20 hours appears to differentiate very productive coral regions, low temperature and moderate wave stress appear to be the most ideal conditions for high coral cover on Palmyra.
Development of a nearshore oscillating surge wave energy converter with variable geometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tom, N. M.; Lawson, M. J.; Yu, Y. H.
This paper presents an analysis of a novel wave energy converter concept that combines an oscillating surge wave energy converter (OSWEC) with control surfaces. The control surfaces allow for a variable device geometry that enables the hydrodynamic properties to be adapted with respect to structural loading, absorption range and power-take-off capability. The device geometry is adjusted on a sea state-to-sea state time scale and combined with wave-to-wave manipulation of the power take-off (PTO) to provide greater control over the capture efficiency, capacity factor, and design loads. This work begins with a sensitivity study of the hydrodynamic coefficients with respect tomore » device width, support structure thickness, and geometry. A linear frequency domain analysis is used to evaluate device performance in terms of absorbed power, foundation loads, and PTO torque. Previous OSWEC studies included nonlinear hydrodynamics, in response a nonlinear model that includes a quadratic viscous damping torque that was linearized via the Lorentz linearization. Inclusion of the quadratic viscous torque led to construction of an optimization problem that incorporated motion and PTO constraints. Results from this study found that, when transitioning from moderate-to-large sea states the novel OSWEC was capable of reducing structural loads while providing a near constant power output.« less
Decomposition of fluctuating initial conditions and flow harmonics
NASA Astrophysics Data System (ADS)
Qian, Wei-Liang; Mota, Philipe; Andrade, Rone; Gardim, Fernando; Grassi, Frédérique; Hama, Yogiro; Kodama, Takeshi
2014-01-01
Collective flow observed in heavy-ion collisions is largely attributed to initial geometrical fluctuations, and it is the hydrodynamic evolution of the system that transforms those initial spatial irregularities into final state momentum anisotropies. Cumulant analysis provides a mathematical tool to decompose those initial fluctuations in terms of radial and azimuthal components. It is usually thought that a specified order of azimuthal cumulant, for the most part, linearly produces flow harmonics of the same order. In this work, by considering the most central collisions (0%-5%), we carry out a systematic study on the connection between cumulants and flow harmonics using a hydrodynamic code called NeXSPheRIO. We conduct three types of calculation, by explicitly decomposing the initial conditions into components corresponding to a given eccentricity and studying the out-coming flow through hydrodynamic evolution. It is found that for initial conditions deviating significantly from Gaussian, such as those from NeXuS, the linearity between eccentricities and flow harmonics partially breaks down. Combined with the effect of coupling between cumulants of different orders, it causes the production of extra flow harmonics of higher orders. We argue that these results can be seen as a natural consequence of the non-linear nature of hydrodynamics, and they can be understood intuitively in terms of the peripheral-tube model.
Overpressures in the Uinta Basin, Utah: Analysis using a three-dimensional basin evolution model
NASA Astrophysics Data System (ADS)
McPherson, Brian J. O. L.; Bredehoeft, John D.
2001-04-01
High pore fluid pressures, approaching lithostatic, are observed in the deepest sections of the Uinta basin, Utah. Geologic observations and previous modeling studies suggest that the most likely cause of observed overpressures is hydrocarbon generation. We studied Uinta overpressures by developing and applying a three-dimensional, numerical model of the evolution of the basin. The model was developed from a public domain computer code, with addition of a new mesh generator that builds the basin through time, coupling the structural, thermal, and hydrodynamic evolution. Also included in the model are in situ hydrocarbon generation and multiphase migration. The modeling study affirmed oil generation as an overpressure mechanism, but also elucidated the relative roles of multiphase fluid interaction, oil density and viscosity, and sedimentary compaction. An important result is that overpressures by oil generation create conditions for rock fracturing, and associated fracture permeability may regulate or control the propensity to maintain overpressures.
NASA Astrophysics Data System (ADS)
Raymond, Samuel J.; Jones, Bruce; Williams, John R.
2018-01-01
A strategy is introduced to allow coupling of the material point method (MPM) and smoothed particle hydrodynamics (SPH) for numerical simulations. This new strategy partitions the domain into SPH and MPM regions, particles carry all state variables and as such no special treatment is required for the transition between regions. The aim of this work is to derive and validate the coupling methodology between MPM and SPH. Such coupling allows for general boundary conditions to be used in an SPH simulation without further augmentation. Additionally, as SPH is a purely particle method, and MPM is a combination of particles and a mesh. This coupling also permits a smooth transition from particle methods to mesh methods, where further coupling to mesh methods could in future provide an effective farfield boundary treatment for the SPH method. The coupling technique is introduced and described alongside a number of simulations in 1D and 2D to validate and contextualize the potential of using these two methods in a single simulation. The strategy shown here is capable of fully coupling the two methods without any complicated algorithms to transform information from one method to another.
The long-time dynamics of two hydrodynamically-coupled swimming cells.
Michelin, Sébastien; Lauga, Eric
2010-05-01
Swimming microorganisms such as bacteria or spermatozoa are typically found in dense suspensions, and exhibit collective modes of locomotion qualitatively different from that displayed by isolated cells. In the dilute limit where fluid-mediated interactions can be treated rigorously, the long-time hydrodynamics of a collection of cells result from interactions with many other cells, and as such typically eludes an analytical approach. Here, we consider the only case where such problem can be treated rigorously analytically, namely when the cells have spatially confined trajectories, such as the spermatozoa of some marine invertebrates. We consider two spherical cells swimming, when isolated, with arbitrary circular trajectories, and derive the long-time kinematics of their relative locomotion. We show that in the dilute limit where the cells are much further away than their size, and the size of their circular motion, a separation of time scale occurs between a fast (intrinsic) swimming time, and a slow time where hydrodynamic interactions lead to change in the relative position and orientation of the swimmers. We perform a multiple-scale analysis and derive the effective dynamical system--of dimension two--describing the long-time behavior of the pair of cells. We show that the system displays one type of equilibrium, and two types of rotational equilibrium, all of which are found to be unstable. A detailed mathematical analysis of the dynamical systems further allows us to show that only two cell-cell behaviors are possible in the limit of t-->infinity, either the cells are attracted to each other (possibly monotonically), or they are repelled (possibly monotonically as well), which we confirm with numerical computations. Our analysis shows therefore that, even in the dilute limit, hydrodynamic interactions lead to new modes of cell-cell locomotion.
Impact of hydrodynamics on effective interactions in suspensions of active and passive matter.
Krafnick, Ryan C; García, Angel E
2015-02-01
Passive particles exhibit unique properties when immersed in an active bath of self-propelling entities. In particular, an effective attraction can appear between particles that repel each other when in a passive solution. Here we numerically study the effect of hydrodynamics on an active-passive hybrid system, where we observe qualitative differences as compared to simulations with excluded volume effects alone. The results shed light on an existing discrepancy in pair lifetimes between simulation and experiment, due to the hydrodynamically enhanced stability of coupled passive particles.
USDA-ARS?s Scientific Manuscript database
To investigate the coupled effects of solution chemistry and vadose zone processes on the mobility of quantum dot (QD) nanoparticles, laboratory scale transport experiments were performed. The complex coupled effects of ionic strength, size of QD aggregates, surface tension, contact angle, infiltrat...
High-fidelity numerical modeling of the Upper Mississippi River under extreme flood condition
NASA Astrophysics Data System (ADS)
Khosronejad, Ali; Le, Trung; DeWall, Petra; Bartelt, Nicole; Woldeamlak, Solomon; Yang, Xiaolei; Sotiropoulos, Fotis
2016-12-01
We present data-driven numerical simulations of extreme flooding in a large-scale river coupling coherent-structure resolving hydrodynamics with bed morphodynamics under live-bed conditions. The study area is a ∼ 3.2 km long and ∼ 300 m wide reach of the Upper Mississippi River, near Minneapolis MN, which contains several natural islands and man-made hydraulic structures. We employ the large-eddy simulation (LES) and bed-morphodynamic modules of the Virtual Flow Simulator (VFS-Rivers) model, a recently developed in-house code, to investigate the flow and bed evolution of the river during a 100-year flood event. The coupling of the two modules is carried out via a fluid-structure interaction approach using a nested domain approach to enhance the resolution of bridge scour predictions. We integrate data from airborne Light Detection and Ranging (LiDAR), sub-aqueous sonar apparatus on-board a boat and in-situ laser scanners to construct a digital elevation model of the river bathymetry and surrounding flood plain, including islands and bridge piers. A field campaign under base-flow condition is also carried out to collect mean flow measurements via Acoustic Doppler Current Profiler (ADCP) to validate the hydrodynamic module of the VFS-Rivers model. Our simulation results for the bed evolution of the river under the 100-year flood reveal complex sediment transport dynamics near the bridge piers consisting of both scour and refilling events due to the continuous passage of sand dunes. We find that the scour depth near the bridge piers can reach to a maximum of ∼ 9 m. The data-driven simulation strategy we present in this work exemplifies a practical simulation-based-engineering-approach to investigate the resilience of infrastructures to extreme flood events in intricate field-scale riverine systems.
2016-05-01
Geochemistry 54 5.2.3.2 Toxicity 56 5.2.4 Discussion 57 5.3 Effects of Bioturbation and Bioirrigation on Particle Dispersion and Oxygen ...Redistribution 61 5.3.1 Burrow structures and sediment mixing 61 5.3.2 Discussion 64 5.3.3 Oxygen optode results 65 5.3.4 Discussion 68 5.4 Effects ...concentrations in the pore water 84 5.5.4 Dissolved oxygen profile 86 5.5.5 Effects of physical, chemical and biological processes on metal mobility 86
NASA Astrophysics Data System (ADS)
Adams, T. E.
2016-12-01
Accurate and timely predictions of the lateral exent of floodwaters and water level depth in floodplain areas are critical globally. This paper demonstrates the coupling of hydrologic ensembles, derived from the use of numerical weather prediction (NWP) model forcings as input to a fully distributed hydrologic model. Resulting ensemble output from the distributed hydrologic model are used as upstream flow boundaries and lateral inflows to a 1-D hydrodynamic model. An example is presented for the Potomac River in the vicinity of Washington, DC (USA). The approach taken falls within the broader goals of the Hydrologic Ensemble Prediction EXperiment (HEPEX).
An L-stable method for solving stiff hydrodynamics
NASA Astrophysics Data System (ADS)
Li, Shengtai
2017-07-01
We develop a new method for simulating the coupled dynamics of gas and multi-species dust grains. The dust grains are treated as pressure-less fluids and their coupling with gas is through stiff drag terms. If an explicit method is used, the numerical time step is subject to the stopping time of the dust particles, which can become extremely small for small grains. The previous semi-implicit method [1] uses second-order trapezoidal rule (TR) on the stiff drag terms and it works only for moderately small size of the dust particles. This is because TR method is only A-stable not L-stable. In this work, we use TR-BDF2 method [2] for the stiff terms in the coupled hydrodynamic equations. The L-stability of TR-BDF2 proves essential in treating a number of dust species. The combination of TR-BDF2 method with the explicit discretization of other hydro terms can solve a wide variety of stiff hydrodynamics equations accurately and efficiently. We have implemented our method in our LA-COMPASS (Los Alamos Computational Astrophysics Suite) package. We have applied the code to simulate some dusty proto-planetary disks and obtained very good match with astronomical observations.
A new hydrodynamic analysis of double layers
NASA Technical Reports Server (NTRS)
Hora, Heinrich
1987-01-01
A genuine two-fluid model of plasmas with collisions permits the calculation of dynamic (not necessarily static) electric fields and double layers inside of plasmas including oscillations and damping. For the first time a macroscopic model for coupling of electromagnetic and Langmuir waves was achieved with realistic damping. Starting points were laser-produced plasmas showing very high dynamic electric fields in nonlinear force-produced cavitous and inverted double layers in agreement with experiments. Applications for any inhomogeneous plasma as in laboratory or in astrophysical plasmas can then be followed up by a transparent hydrodynamic description. Results are the rotation of plasmas in magnetic fields and a new second harmonic resonance, explanation of the measured inverted double layers, explanation of the observed density-independent, second harmonics emission from laser-produced plasmas, and a laser acceleration scheme by the very high fields of the double layers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castor, J I
2003-10-16
The discipline of radiation hydrodynamics is the branch of hydrodynamics in which the moving fluid absorbs and emits electromagnetic radiation, and in so doing modifies its dynamical behavior. That is, the net gain or loss of energy by parcels of the fluid material through absorption or emission of radiation are sufficient to change the pressure of the material, and therefore change its motion; alternatively, the net momentum exchange between radiation and matter may alter the motion of the matter directly. Ignoring the radiation contributions to energy and momentum will give a wrong prediction of the hydrodynamic motion when the correctmore » description is radiation hydrodynamics. Of course, there are circumstances when a large quantity of radiation is present, yet can be ignored without causing the model to be in error. This happens when radiation from an exterior source streams through the problem, but the latter is so transparent that the energy and momentum coupling is negligible. Everything we say about radiation hydrodynamics applies equally well to neutrinos and photons (apart from the Einstein relations, specific to bosons), but in almost every area of astrophysics neutrino hydrodynamics is ignored, simply because the systems are exceedingly transparent to neutrinos, even though the energy flux in neutrinos may be substantial. Another place where we can do ''radiation hydrodynamics'' without using any sophisticated theory is deep within stars or other bodies, where the material is so opaque to the radiation that the mean free path of photons is entirely negligible compared with the size of the system, the distance over which any fluid quantity varies, and so on. In this case we can suppose that the radiation is in equilibrium with the matter locally, and its energy, pressure and momentum can be lumped in with those of the rest of the fluid. That is, it is no more necessary to distinguish photons from atoms, nuclei and electrons, than it is to distinguish hydrogen atoms from helium atoms, for instance. There are all just components of a mixed fluid in this case. So why do we have a special subject called ''radiation hydrodynamics'', when photons are just one of the many kinds of particles that comprise our fluid? The reason is that photons couple rather weakly to the atoms, ions and electrons, much more weakly than those particles couple with each other. Nor is the matter-radiation coupling negligible in many problems, since the star or nebula may be millions of mean free paths in extent. Radiation hydrodynamics exists as a discipline to treat those problems for which the energy and momentum coupling terms between matter and radiation are important, and for which, since the photon mean free path is neither extremely large nor extremely small compared with the size of the system, the radiation field is not very easy to calculate. In the theoretical development of this subject, many of the relations are presented in a form that is described as approximate, and perhaps accurate only to order of {nu}/c. This makes the discussion cumbersome. Why are we required to do this? It is because we are using Newtonian mechanics to treat our fluid, yet its photon component is intrinsically relativistic; the particles travel at the speed of light. There is a perfectly consistent relativistic kinetic theory, and a corresponding relativistic theory of fluid mechanics, which is perfectly suited to describing the photon gas. But it is cumbersome to use this for the fluid in general, and we prefer to avoid it for cases in which the flow velocity satisfies {nu} << c. The price we pay is to spend extra effort making sure that the source-sink terms relating to our relativistic gas component are included in the equations of motion in a form that preserves overall conservation of energy and momentum, something that would be automatic if the relativistic equations were used throughout.« less
Carrel, Maxence; Morales, Verónica L; Beltran, Mario A; Derlon, Nicolas; Kaufmann, Rolf; Morgenroth, Eberhard; Holzner, Markus
2018-05-01
This study investigates the functional correspondence between porescale hydrodynamics, mass transfer, pore structure and biofilm morphology during progressive biofilm colonization of a porous medium. Hydrodynamics and the structure of both the porous medium and the biofilm are experimentally measured with 3D particle tracking velocimetry and micro X-ray Computed Tomography, respectively. The analysis focuses on data obtained in a clean porous medium after 36 h of biofilm growth. Registration of the particle tracking and X-ray data sets allows to delineate the interplay between porous medium geometry, hydrodynamic and mass transfer processes on the morphology of the developing biofilm. A local analysis revealed wide distributions of wall shear stresses and concentration boundary layer thicknesses. The spatial distribution of the biofilm patches uncovered that the wall shear stresses controlled the biofilm development. Neither external nor internal mass transfer limitations were noticeable in the considered system, consistent with the excess supply of nutrient and electron acceptors. The wall shear stress remained constant in the vicinity of the biofilm but increased substantially elsewhere. Copyright © 2018 Elsevier Ltd. All rights reserved.
Piaggio, Maria V; Peirotti, Marta B; Deiber, Julio A
2010-08-01
Peptide electrophoretic mobility data are interpreted through a physicochemical CZE model, providing estimates of the equivalent hydrodynamic radius, hydration, effective and total charge numbers, actual ionizing pK, pH-near molecule and electrical permittivity of peptide domain, among other basic properties. In this study, they are used to estimate some peptide global structural properties proposed, providing thus a distinction among different peptides. Therefore, the solvent drag on the peptide is obtained through a characteristic friction power coefficient of the number of amino acid residues, defined from the global chain conformation in solution. As modeling of the effective electrophoretic mobility of peptides is carried out in terms of particle hydrodynamic size and shape coupled to hydration and effective charge, a packing dimension related to chain conformation within the peptide domain may be defined. In addition, the effective and total charge number fractions of peptides provide some clues on the interpretation of chain conformations within the framework of scaling laws. Furthermore, the model estimates transport properties, such as sedimentation, friction and diffusion coefficients. As the relative numbers of ionizing, polar and non-polar amino acid residues vary in peptides, their global structural properties defined here change appreciably. Needs for further research are also discussed.
NASA Astrophysics Data System (ADS)
Snezhko, Alexey
2010-03-01
Ensembles of interacting particles subject to an external periodic forcing often develop nontrivial collective behavior and self-assembled dynamic patterns. We study emergent phenomena in magnetic granular ensembles suspended at a liquid-air and liquid-liquid interfaces and subjected to a transversal alternating magnetic field. Experiments reveal a new type of nontrivially ordered dynamic self-assembled structures (in particular, ``magnetic snakes'', ``asters'', ``clams'') emerging in such systems in a certain range of excitation parameters. These non-equilibrium dynamic structures emerge as a result of the competition between magnetic and hydrodynamic forces and have complex magnetic ordering. Transition between different self-assembled phases with parameters of external driving magnetic field is observed. I will show that above some frequency threshold magnetic snakes spontaneously break the symmetry of the self-induced surface flows (symmetry breaking instability) and turn into swimmers. Self-induced surface flows symmetry can be also broken in a controlled fashion by introduction of a large bead to a magnetic snake (bead-snake hybrid), that transforms it into a robust self-locomoting entity. Some features of the self-localized structures can be understood in the framework of an amplitude equation for parametric waves coupled to the conservation law equation describing the evolution of the magnetic particle density and the Navier-Stokes equation for hydrodynamic flows.
Applications of Computer Graphics in Engineering
NASA Technical Reports Server (NTRS)
1975-01-01
Various applications of interactive computer graphics to the following areas of science and engineering were described: design and analysis of structures, configuration geometry, animation, flutter analysis, design and manufacturing, aircraft design and integration, wind tunnel data analysis, architecture and construction, flight simulation, hydrodynamics, curve and surface fitting, gas turbine engine design, analysis, and manufacturing, packaging of printed circuit boards, spacecraft design.
NASA Astrophysics Data System (ADS)
Jimenez, H.; Dumas, P.; Ponton, D.; Ferraris, J.
2012-03-01
Invertebrates represent an essential component of coral reef ecosystems; they are ecologically important and a major resource, but their assemblages remain largely unknown, particularly on Pacific islands. Understanding their distribution and building predictive models of community composition as a function of environmental variables therefore constitutes a key issue for resource management. The goal of this study was to define and classify the main environmental factors influencing tropical invertebrate distributions in New Caledonian reef flats and to test the resulting predictive model. Invertebrate assemblages were sampled by visual counting during 2 years and 2 seasons, then coupled to different environmental conditions (habitat composition, hydrodynamics and sediment characteristics) and harvesting status (MPA vs. non-MPA and islets vs. coastal flats). Environmental conditions were described by a principal component analysis (PCA), and contributing variables were selected. Permutational analysis of variance (PERMANOVA) was used to test the effects of different factors (status, flat, year and season) on the invertebrate assemblage composition. Multivariate regression trees (MRT) were then used to hierarchically classify the effects of environmental and harvesting variables. MRT model explained at least 60% of the variation in structure of invertebrate communities. Results highlighted the influence of status (MPA vs. non-MPA) and location (islet vs. coastal flat), followed by habitat composition, organic matter content, hydrodynamics and sampling year. Predicted assemblages defined by indicator families were very different for each environment-exploitation scenario and correctly matched a calibration data matrix. Predictions from MRT including both environmental variables and harvesting pressure can be useful for management of invertebrates in coral reef environments.
NASA Astrophysics Data System (ADS)
Mohanty, Ritesh P.; Zia, Roseanna N.
2017-11-01
We theoretically study the impact of particle roughness, Brownian motion, and hydrodynamic interactions on the relaxation of colloidal dispersions by examining the structural and rheological relaxation after microrheological flow cessation. In particular, we focus on the disparity in timescales over which hydrodynamic and entropic forces act and influence colloidal relaxation. To do this, we employ the active microrheology framework, in which a colloidal probe, driven by an arbitrarily strong external force, interacts with many surrounding particle configurations before reaching steady-state motion. We utilize the steady-state structure around the probe as the initial condition in a Smoluchowski equation that we solve to obtain the structural evolution upon flow cessation. We systematically tune the strength of hydrodynamic and entropic forces, and study their influence on structural and rheological relaxation. Upon cessation, the non-Newtonian behavior arising directly from hydrodynamic forces dissipates instantaneously, while the entropic contributions decay over longer times. We find that increasing pre-cessation external flow strength enhances the relaxation rate, while hydrodynamic interactions slow down the relaxation.
NASA Astrophysics Data System (ADS)
Rudin, Sergey; Rupper, Greg; Kachorovski, Valentin; Shur, Michael S.
2017-05-01
The electromagnetic wave impinging on the spatially modulated two-dimensional electron liquid (2DEL) induces a direct current (DC) when the wave amplitude modulated with the same wave vector as the 2DEL but is shifted in phase (the ratchet effect). The recent theory of this phenomenon predicted a dramatic enhancement at the plasmonic resonances and a non-trivial polarization dependence [1]. We will present the results of the numerical simulations using a hydrodynamic model exploring the helicity dependence of the DC current for silicon, InGaAs, and GaN metamaterial structures at cryogenic and room temperatures. In particular we will report on the effect of the DEL viscosity and explore the nonlinear effects at large amplitudes of the helical electromagnetic radiation impinging on the ratchet structures. We will then discuss the applications of the ratchet effect for terahertz metamaterials in order to realize ultra-sensitive terahertz (THz) radiation detectors, modulators, phase shifters, and delay lines with cross sections matching the terahertz wavelength and capable of determining the electromagnetic wave polarization and helicity. To this end, we propose and analyze the four contact ratchet devices capable of registering the two perpendicular components of the electric currents induced by the elliptically or circularly polarized radiation and analyze the load impedance effects in the structures optimized for the ratchet metamaterial THz components. The analysis is based on the hydrodynamic model suitable for the multi-gated semiconductor structures, coupled self-consistently with Poisson's equation for the electric potential. The model accounts for the effects of pressure gradients and 2DEL viscosity. Our numerical solutions are applicable to the wide ranges of electron mobility and terahertz power. [1] I. V. Rozhansky, V. Yu. Kachorovskii, and M. S. Shur, Helicity-Driven Ratchet Effect Enhanced by Plasmons, Phys. Rev. Lett. 114, 246601, 15 June 2015
Wen, Yingying; Li, Jinhua; Liu, Junshen; Lu, Wenhui; Ma, Jiping; Chen, Lingxin
2013-07-01
A dual cloud point extraction (dCPE) off-line enrichment procedure coupled with a hydrodynamic-electrokinetic two-step injection online enrichment technique was successfully developed for simultaneous preconcentration of trace phenolic estrogens (hexestrol, dienestrol, and diethylstilbestrol) in water samples followed by micellar electrokinetic chromatography (MEKC) analysis. Several parameters affecting the extraction and online injection conditions were optimized. Under optimal dCPE-two-step injection-MEKC conditions, detection limits of 7.9-8.9 ng/mL and good linearity in the range from 0.05 to 5 μg/mL with correlation coefficients R(2) ≥ 0.9990 were achieved. Satisfactory recoveries ranging from 83 to 108% were obtained with lake and tap water spiked at 0.1 and 0.5 μg/mL, respectively, with relative standard deviations (n = 6) of 1.3-3.1%. This method was demonstrated to be convenient, rapid, cost-effective, and environmentally benign, and could be used as an alternative to existing methods for analyzing trace residues of phenolic estrogens in water samples.
Coupled structural/thermal/electromagnetic analysis/tailoring of graded composite structures
NASA Technical Reports Server (NTRS)
Mcknight, R. L.; Huang, H.; Hartle, M.
1992-01-01
Accomplishments are described for the third years effort of a 5-year program to develop a methodology for coupled structural/thermal/electromagnetic analysis/tailoring of graded composite structures. These accomplishments include: (1) structural analysis capability specialized for graded composite structures including large deformation and deformation position eigenanalysis technologies; (2) a thermal analyzer specialized for graded composite structures; (3) absorption of electromagnetic waves by graded composite structures; and (4) coupled structural thermal/electromagnetic analysis of graded composite structures.
Hydrodynamical analysis of the effect of fish fins morphology
NASA Astrophysics Data System (ADS)
Azwadi Che Sidik, Nor; Yen, Tey Wah
2013-12-01
The previous works on the biomechanics of fishes focuses on the locomotion effect of the fish bodies. However, there is quite a insufficiency in unveiling the respective function of fins when the fishes pose statics and exposed to fluid flow. Accordingly, this paper's focus is to investigate the hydrodynamic effect of the fins configuration to the fluid flow of shark-shaped-inspired structure. The drag and lift coefficient is computed for different cases of fish fins addition and configuration. The k-epsilon turbulence model is deployed using finite volume method with the aid of commercial software ANSYS CFX. The finding will demystify some of the functions of the fish's fins in term of their contribution to the hydrodynamic flow around the fishes.
Tang, H T; Hajizadeh, K; Halsall, H B; Heineman, W R
1991-01-01
The determination of reduced nicotinamide adenine dinucleotide (NADH) by electrochemical oxidation requires a more positive potential than is predicted by the formal reduction potential for the NAD+/NADH couple. This problem is alleviated by use of 2,6-dichloroindophenol (DCIP) as a redox coupling agent for NADH. The electrochemical characteristics of DCIP at the glassy carbon electrode are examined by cyclic voltammetry and hydrodynamic voltammetry. NADH is determined by reaction with DCIP to form NAD+ and DCIPH2. DCIPH2 is then quantitated by flow-injection analysis with electrochemical detection by oxidation at a detector potential of +0.25 V at pH 7. NADH is determined over a linear range of 0.5 to 200 microM and with a detection limit of 0.38 microM. The lower detection potential for DCIPH2 compared to NADH helps to minimize interference from oxidizable components in serum samples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nicolaie, Ph.; Stenz, C.; Tikhonchuk, V.
2008-08-15
The interaction of laser driven jets with gas puffs at various pressures is investigated experimentally and is analyzed by means of numerical tools. In the experiment, a combination of two complementary diagnostics allowed to characterize the main structures in the interaction zone. By changing the gas composition and its density, the plasma cooling time can be controlled and one can pass from a quasiadiabatic outflow to a strongly radiation cooling jet. This tuning yields hydrodynamic structures very similar to those seen in astrophysical objects; the bow shock propagating through the gas, the shocked materials, the contact discontinuity, and the Machmore » disk. From a dimensional analysis, a scaling is made between both systems and shows the study relevance for the jet velocity, the Mach number, the jet-gas density ratio, and the dissipative processes. The use of a two-dimensional radiation hydrodynamic code, confirms the previous analysis and provides detailed structure of the interaction zone and energy repartition between jet and surrounding gases.« less
Study of Lambda polarization at RHIC BES and LHC energies
NASA Astrophysics Data System (ADS)
Karpenko, Iurii; Becattini, Francesco
2018-02-01
In hydrodynamic approach to relativistic heavy ion collisions, hadrons with nonzero spin, produced out of the hydrodynamic medium, can acquire polarization via spin-vorticity thermodynamic coupling mechanism. The hydrodynamical quantity steering the polarization is the thermal vorticity, that is minus the antisymmetric part of the gradient of four-temperature field. Based on this mechanism there have been several calculations in hydrodynamic and non-hydrodynamic models for non-central heavy ion collisions in the RHIC Beam Energy Scan energy range, showing that the amount of polarization of produced Λ hyperons ranges from few percents to few permille, and decreases with collision energy. We report on an extension of our existing calculation of global Λ polarization in UrQMD+vHLLE model to full RHIC and LHC energies, and discuss the component of polarization along the beam direction, which is the dominant one at high energies.
NASA Astrophysics Data System (ADS)
Khayyer, Abbas; Gotoh, Hitoshi; Falahaty, Hosein; Shimizu, Yuma
2018-02-01
Simulation of incompressible fluid flow-elastic structure interactions is targeted by using fully-Lagrangian mesh-free computational methods. A projection-based fluid model (moving particle semi-implicit (MPS)) is coupled with either a Newtonian or a Hamiltonian Lagrangian structure model (MPS or HMPS) in a mathematically-physically consistent manner. The fluid model is founded on the solution of Navier-Stokes and continuity equations. The structure models are configured either in the framework of Newtonian mechanics on the basis of conservation of linear and angular momenta, or Hamiltonian mechanics on the basis of variational principle for incompressible elastodynamics. A set of enhanced schemes are incorporated for projection-based fluid model (Enhanced MPS), thus, the developed coupled solvers for fluid structure interaction (FSI) are referred to as Enhanced MPS-MPS and Enhanced MPS-HMPS. Besides, two smoothed particle hydrodynamics (SPH)-based FSI solvers, being developed by the authors, are considered and their potential applicability and comparable performance are briefly discussed in comparison with MPS-based FSI solvers. The SPH-based FSI solvers are established through coupling of projection-based incompressible SPH (ISPH) fluid model and SPH-based Newtonian/Hamiltonian structure models, leading to Enhanced ISPH-SPH and Enhanced ISPH-HSPH. A comparative study is carried out on the performances of the FSI solvers through a set of benchmark tests, including hydrostatic water column on an elastic plate, high speed impact of an elastic aluminum beam, hydroelastic slamming of a marine panel and dam break with elastic gate.
Hydrodynamic effects in a misaligned radial face seal
NASA Technical Reports Server (NTRS)
Etsion, I.
1978-01-01
Hydrodynamic effects in a flat seal having an angular misalignment are analyzed, taking into account the radial variation in seal clearance. An analytical solution for axial force, restoring moment, and transverse moment is presented that covers the whole range from zero to full angular misalignment. Both low pressure seals with cavitating flow and high pressure seals with full fluid film are considered. Strong coupling is demonstrated between angular misalignment and transverse moment which leads the misalignment vector by 90 degrees. This transverse moment, which is entirely due to hydrodynamic effects, may be a significant factor in seal operating mechanism.
Hydrodynamic effects in a misaligned radial face seal
NASA Technical Reports Server (NTRS)
Etsion, I.
1977-01-01
Hydrodynamic effects in a flat seal having an angular misalignment are analyzed, taking into account the radial variation in seal clearance. An analytical solution for axial force, restoring moment, and transverse moment is presented that covers the whole range from zero to full angular misalignment. Both low pressure seals with cavitating flow and high pressure seals with full fluid film are considered. Strong coupling is demonstrated between angular misalignment and transverse moment which leads the misalignment vector by 90 degrees. This transverse moment, which is entirely due to hydrodynamic effects, is a significant factor in the seal operating mechanism.
Capillary waves' dynamics at the nanoscale
NASA Astrophysics Data System (ADS)
Delgado-Buscalioni, Rafael; Chacón, Enrique; Tarazona, Pedro
2008-12-01
We study the dynamics of thermally excited capillary waves (CW) at molecular scales, using molecular dynamics simulations of simple liquid slabs. The analysis is based on the Fourier modes of the liquid surface, constructed via the intrinsic sampling method (Chacón and Tarazona 2003 Phys. Rev. Lett. 91 166103). We obtain the time autocorrelation of the Fourier modes to get the frequency and damping rate Γd(q) of each mode, with wavenumber q. Continuum hydrodynamics predicts \\Gamma (q) \\propto q\\gamma (q) and thus provides a dynamic measure of the q-dependent surface tension, γd(q). The dynamical estimation is much more robust than the structural prediction based on the amplitude of the Fourier mode, γs(q). Using the optimal estimation of the intrinsic surface, we obtain quantitative agreement between the structural and dynamic pictures. Quite surprisingly, the hydrodynamic prediction for CW remains valid up to wavelengths of about four molecular diameters. Surface tension hydrodynamics break down at shorter scales, whereby a transition to a molecular diffusion regime is observed.
A fluid-structure interaction model of soft robotics using an active strain approach
NASA Astrophysics Data System (ADS)
Hess, Andrew; Lin, Zhaowu; Gao, Tong
2017-11-01
Soft robotic swimmers exhibit rich dynamics that stem from the non-linear interplay of the fluid and immersed soft elastic body. Due to the difficulty of handling the nonlinear two-way coupling of hydrodynamic flow and deforming elastic body, studies of flexible swimmers often employ either one-way coupling strategies with imposed motions of the solid body or some simplified elasticity models. To explore the nonlinear dynamics of soft robots powered by smart soft materials, we develop a computational model to deal with the two-way fluid/elastic structure interactions using the fictitious domain method. To mimic the dynamic response of the functional soft material under external actuations, we assume the solid phase to be neo-Hookean, and employ an active strain approach to incorporate actuation, which is based on the multiplicative decomposition of the deformation gradient tensor. We demonstrate the capability of our algorithm by performing a series of numerical explorations that manipulate an elastic structure with finite thickness, starting from simple rectangular or circular plates to soft robot prototypes such as stingrays and jellyfish.
A structural analysis of an ocean going patrol boat subjected to planning loads
NASA Technical Reports Server (NTRS)
Clark, James H.; Lafreniere, Robert; Stoodt, Robert; Wiedenheft, John
1987-01-01
A static structural analysis of an ocean going patrol vessel subjected to hydrodynamic planning loads is discussed. The analysis required the development of a detailed model that included hull plating, five structural bulkheads, longitudinal and transverse stiffners, and a coarse representation of the superstructure. The finite element model was developed from fabrication drawings using the Navy computer aided design system. Various stress and displacement contours are shown for the entire hull. Because several critical areas appeared to be overstressed, these areas were remeshed for detail and are presented for completeness.
1980-01-01
standard procedure for Analysis of all types of civil engineering struc- tures. Early in its development, it became apparent that this method had...unique potentialities in the evaluation of stress in dams, and many of its earliest civil engineering applications concerned special problems associated...with such structures [3,4]. The earliest dynamic finite element analyses of civil engineering structures involved the earthquake response analysis of
Stability of gravito-coupled complex gyratory astrofluids
NASA Astrophysics Data System (ADS)
Kumar Karmakar, Pralay; Das, Papari
2017-07-01
We analyze the gravitational instability of complex rotating astrofluids in the presence of dynamic role of dark matter in a homogeneous hydrostatic equilibrium framework. The effects of the lowest-order fluid viscoelasticity, Coriolis force, fluid turbulence and inter-layer frictional coupling dynamics are concurrently considered in spatially-flat geometry. The Coriolis rotation is relative to the center of the entire fluid mass distribution, contributed by both the gyratory bright (visible) and dark (invisible) sectors, conjugated via the mutual gravitational interaction. The turbulence effects are included via the modified Larson equation of state. We use a regular Fourier-based linear perturbation analysis over the rotating fluid field equations to obtain a unique form of quartic dispersion relation with variable coefficients. We numerically carry out the dispersion analysis in two extreme limits: hydrodynamic (low-frequency) and kinetic (high-frequency) regimes. It is demonstrated that, in the former regime, the gas as well as dark matter rotations have stabilizing effects on the Jeans instability of the bi-fluidic admixture. In contrast, in the latter, the rotations play destabilizing roles on the instability. An interesting feature noted here is that the magnitude of the group velocity of the fluctuations throughout increases with both the gas and dark matter rotation frequencies, and vice-versa. We, finally, hope that the obtained results could be helpful in understanding the top-down kinetic mechanisms of bounded structure formation via gravitational collapse dynamics.
Sarkar, N; Basu, A
2012-11-01
We construct a coarse-grained effective two-dimensional (2d hydrodynamic theory as a theoretical model for a coupled system of a fluid membrane and a thin layer of a polar active fluid in its ordered state that is anchored to the membrane. We show that such a system is prone to generic instabilities through the interplay of nonequilibrium drive, polar order and membrane fluctuation. We use our model equations to calculate diffusion coefficients of an inclusion in the membrane and show that their values depend strongly on the system size, in contrast to their equilibrium values. Our work extends the work of S. Sankararaman and S. Ramaswamy (Phys. Rev. Lett., 102, 118107 (2009)) to a coupled system of a fluid membrane and an ordered active fluid layer. Our model is broadly inspired by and should be useful as a starting point for theoretical descriptions of the coupled dynamics of a cell membrane and a cortical actin layer anchored to it.
Convective Sedimentation of Colloidal Particles in a Bowl.
Stiles; Kagan
1999-08-01
A physical model, which regards a colloidal dispersion as a single fluid continuum, is used to investigate cellular convection accompanying gravitational sedimentation in a hemispherical bowl with a thin cylindrical shaft along its vertical axis of symmetry. We have adapted the stream-function-vorticity form of the Navier-Stokes equations to describe momentum conservation in axially symmetric containers. These hydrodynamic equations have been coupled to the mass balance equation for binary hydrodynamic diffusion in the presence of a vertical gravitational field. Using finite-element software we have solved the equations governing coupled diffusive and hydrodynamic flow. A rapidly intensifying horizontal toroidal vortex develops around the axis of the bowl. This vortex is characterized by downward barycentric flow along the curved surface of the bowl and upward flow in the vicinity of its axis. We find that after a short period of time this large-scale cellular convection associated with the curved boundary of the bowl greatly enhances the rate of sedimentation. Copyright 1999 Academic Press.
Roman, Marco; Rigo, Chiara; Castillo-Michel, Hiram; Munivrana, Ivan; Vindigni, Vincenzo; Mičetić, Ivan; Benetti, Federico; Manodori, Laura; Cairns, Warren R L
2016-07-01
Silver nanoparticles (AgNPs) are increasingly used in medical devices as innovative antibacterial agents, but no data are currently available on their chemical transformations and fate in vivo in the human body, particularly on their potential to reach the circulatory system. To study the processes involving AgNPs in human plasma and blood, we developed an analytical method based on hydrodynamic chromatography (HDC) coupled to inductively coupled plasma mass spectrometry (ICP-MS) in single-particle detection mode. An innovative algorithm was implemented to deconvolute the signals of dissolved Ag and AgNPs and to extrapolate a multiparametric characterization of the particles in the same chromatogram. From a single injection, the method provides the concentration of dissolved Ag and the distribution of AgNPs in terms of hydrodynamic diameter, mass-derived diameter, number and mass concentration. This analytical approach is robust and suitable to study quantitatively the dynamics and kinetics of AgNPs in complex biological fluids, including processes such as agglomeration, dissolution and formation of protein coronas. The method was applied to study the transformations of AgNP standards and an AgNP-coated dressing in human plasma, supported by micro X-ray fluorescence (μXRF) and micro X-ray absorption near-edge spectroscopy (μXANES) speciation analysis and imaging, and to investigate, for the first time, the possible presence of AgNPs in the blood of three burn patients treated with the same dressing. Together with our previous studies, the results strongly support the hypothesis that the systemic mobilization of the metal after topical administration of AgNPs is driven by their dissolution in situ. Graphical Abstract Simplified scheme of the combined analytical approach adopted for studying the chemical dynamics of AgNPs in human plasma/blood.
NASA Astrophysics Data System (ADS)
Eladawy, Ahmed; Shaltout, Mohamed; Sousa, Magda Catarina; Dias, João Miguel; Nadaoka, Kazuo
2018-05-01
The Gulf of Suez, Northern Islands protected area, and Hurghada zone are experiencing mega developments in all sectors including tourism, industry, and logistics. The need for moderately accurate near-shore hydrodynamic models is increasing to support the sustainable development of this oceanic area. This can be accomplished by following a nesting approach including the downscaling of global atmospheric and oceanic models into local models using higher resolution datasets. This work aims to present the development of a one-way coupling between atmospheric and hydrodynamic models for the Gulf of Suez (GOS) to understand the local oceanic characteristics and processes. The Regional Climate Model system (RegCM4) is used to simulate moderate resolution atmospheric features and its results are used to force a local dedicated application of Delft3D model. The results indicate that the predicted water level, water temperature, and evaporation accurately follow in situ measurements, remotely sensed data, and re-analysis data. The results suggest that the annual sea surface temperature is averaged at 23 °C, while the annual average of evaporation rates equals 8.02 mm/day. The study suggests that the water level displays a marked seasonal and spatial variation. Moreover, the water balance in the Gulf of Suez was controlled by the difference between inflows and outflows through the Straits of Gubal and by the net precipitation. In addition, the water balance indicated a net loss of approximately 3.9 × 10-3 m of water during 2013. Moreover, the exchange through the Straits of Gubal showed a two-way exchange with a net inflow of 0.0007 Sv, where the outflow dominated in the surface layer along the western coast and the inflow dominated in the lower layers along the middle of the Straits. To conclude, the one-way coupling modeling technique proved to be a reliable tool for studying local features of the GOS region.
Hydrodynamic Forces on Microbubbles under Ultrasound Excitation
NASA Astrophysics Data System (ADS)
Clark, Alicia; Aliseda, Alberto
2014-11-01
Ultrasound (US) pressure waves exert a force on microbubbles that can be used to steer them in a flow. To control the motion of microbubbles under ultrasonic excitation, the coupling between the volume oscillations induced by the ultrasound pressure and the hydrodynamic forces needs to be well understood. We present experimental results for the motion of small, coated microbubbles, with similar sizes and physico-chemical properties as clinically-available ultrasound contrast agents (UCAs). The size distribution for the bubbles, resulting from the in-house manufacturing process, was characterized by analysis of high magnification microscopic images and determined to be bimodal. More than 99% of the volume is contained in microbubbles less than 10 microns in diameter, the size of a red blood cell. The motion of the microbubbles in a pulsatile flow, at different Reynolds and Womersley numbers, is studied from tracking of high-speed shadowgraphy. The influence of ultrasound forcing, at or near the resonant frequency of the bubbles, on the hydrodynamic forces due to the pulsatile flow is determined from the experimental measurements of the trajectories. Previous evidence of a sign reversal in Saffman lift is the focus of particular attention, as this is frequently the only hydrodynamic force acting in the direction perpendicular to the flow pathlines. Application of the understanding of this physical phenomenon to targeted drug delivery is analyzed in terms of the transport of the microbubbles. NSF GRFP.
The flow of plasma in the solar terrestrial environment
NASA Technical Reports Server (NTRS)
Schunk, R. W.
1992-01-01
The overall goal of our NASA Theory Program is to study the coupling, time delays, and feedback mechanisms between the various regions of the solar-terrestrial system in a self-consistent, quantitative manner. To accomplish this goal, it will eventually be necessary to have time-dependent macroscopic models of the different regions of the solar-terrestrial system and we are continually working toward this goal. However, our immediate emphasis is on the near-earth plasma environment, including the ionosphere, the plasmasphere, and the polar wind. In this area, we have developed unique global models that allow us to study the coupling between the different regions. Another important aspect of our NASA Theory Program concerns the effect that localized structure has on the macroscopic flow in the ionosphere, plasmasphere, thermosphere, and polar wind. The localized structure can be created by structured magnetospheric inputs (i.e., structured plasma convection, particle precipitation or Birkeland current patterns) or time variations in these inputs due to storms and substorms. Also, some of the plasma flows that we predict with our macroscopic models may be unstable, and another one of our goals is to examine the stability of our predicted flows. Because time-dependent, three-dimensional numerical models of the solar-terrestrial environment generally require extensive computer resources, they are usually based on relatively simple mathematical formulations (i.e., simple MHD or hydrodynamic formulation). Therefore, another long-range goal of our NASA Theory Program is to study the conditions under which various mathematical formulations can be applied to specific solar-terrestrial regions. This may involve a detailed comparison of kinetic, semikinetic, and hydrodynamic predictions for a given polar wind scenario or it may involve the comparison of a small-scale particle-in-cell (PIC) simulation of a plasma expansion event with a similar macroscopic expansion event. The different mathematical formulations have different strengths and weaknesses and a careful comparison of model predictions for similar geophysical situations will provide insight into when the various models can be used with confidence.
NASA Astrophysics Data System (ADS)
Whalen, Daniel; Norman, Michael L.
2006-02-01
Radiation hydrodynamical transport of ionization fronts (I-fronts) in the next generation of cosmological reionization simulations holds the promise of predicting UV escape fractions from first principles as well as investigating the role of photoionization in feedback processes and structure formation. We present a multistep integration scheme for radiative transfer and hydrodynamics for accurate propagation of I-fronts and ionized flows from a point source in cosmological simulations. The algorithm is a photon-conserving method that correctly tracks the position of I-fronts at much lower resolutions than nonconservative techniques. The method applies direct hierarchical updates to the ionic species, bypassing the need for the costly matrix solutions required by implicit methods while retaining sufficient accuracy to capture the true evolution of the fronts. We review the physics of ionization fronts in power-law density gradients, whose analytical solutions provide excellent validation tests for radiation coupling schemes. The advantages and potential drawbacks of direct and implicit schemes are also considered, with particular focus on problem time-stepping, which if not properly implemented can lead to morphologically plausible I-front behavior that nonetheless departs from theory. We also examine the effect of radiation pressure from very luminous central sources on the evolution of I-fronts and flows.
A three-dimensional model of corotating streams in the solar wind. 1: Theoretical foundations
NASA Technical Reports Server (NTRS)
Pizzo, V. J.
1978-01-01
The theoretical and mathematical background pertinent to the study of steady, corotating solar wind structure in all three spatial dimensions (3-D) is discussed. The dynamical evolution of the plasma in interplanetary space (defined as the region beyond roughly 35 solar radii where the flow is supersonic) is approximately described by the nonlinear, single fluid, polytropic (magneto-) hydrodynamic equations. Efficient numerical techniques for solving this complex system of coupled, hyperbolic partial differential equations are outlined. The formulation is inviscid and nonmagnetic, but methods allow for the potential inclusion of both features with only modest modifications. One simple, highly idealized, hydrodynamic model stream is examined to illustrate the fundamental processes involved in the 3-D dynamics of stream evolution. Spatial variations in the rotational stream interaction mechanism were found to produce small nonradial flows on a global scale that lead to the transport of mass, energy, and momentum away from regions of relative compression and into regions of relative rarefaction.
Hydrodynamic simulations with the Godunov smoothed particle hydrodynamics
NASA Astrophysics Data System (ADS)
Murante, G.; Borgani, S.; Brunino, R.; Cha, S.-H.
2011-10-01
We present results based on an implementation of the Godunov smoothed particle hydrodynamics (GSPH), originally developed by Inutsuka, in the GADGET-3 hydrodynamic code. We first review the derivation of the GSPH discretization of the equations of moment and energy conservation, starting from the convolution of these equations with the interpolating kernel. The two most important aspects of the numerical implementation of these equations are (a) the appearance of fluid velocity and pressure obtained from the solution of the Riemann problem between each pair of particles, and (b) the absence of an artificial viscosity term. We carry out three different controlled hydrodynamical three-dimensional tests, namely the Sod shock tube, the development of Kelvin-Helmholtz instabilities in a shear-flow test and the 'blob' test describing the evolution of a cold cloud moving against a hot wind. The results of our tests confirm and extend in a number of aspects those recently obtained by Cha, Inutsuka & Nayakshin: (i) GSPH provides a much improved description of contact discontinuities, with respect to smoothed particle hydrodynamics (SPH), thus avoiding the appearance of spurious pressure forces; (ii) GSPH is able to follow the development of gas-dynamical instabilities, such as the Kevin-Helmholtz and the Rayleigh-Taylor ones; (iii) as a result, GSPH describes the development of curl structures in the shear-flow test and the dissolution of the cold cloud in the 'blob' test. Besides comparing the results of GSPH with those from standard SPH implementations, we also discuss in detail the effect on the performances of GSPH of changing different aspects of its implementation: choice of the number of neighbours, accuracy of the interpolation procedure to locate the interface between two fluid elements (particles) for the solution of the Riemann problem, order of the reconstruction for the assignment of variables at the interface, choice of the limiter to prevent oscillations of interpolated quantities in the solution of the Riemann Problem. The results of our tests demonstrate that GSPH is in fact a highly promising hydrodynamic scheme, also to be coupled to an N-body solver, for astrophysical and cosmological applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strozzi, D. J.; Bailey, D. S.; Michel, P.
The effects of laser-plasma interactions (LPI) on the dynamics of inertial confinement fusion hohlraums are investigated in this work via a new approach that self-consistently couples reduced LPI models into radiation-hydrodynamics numerical codes. The interplay between hydrodynamics and LPI—specifically stimulated Raman scatter and crossed-beam energy transfer (CBET)—mostly occurs via momentum and energy deposition into Langmuir and ion acoustic waves. This spatially redistributes energy coupling to the target, which affects the background plasma conditions and thus, modifies laser propagation. In conclusion, this model shows reduced CBET and significant laser energy depletion by Langmuir waves, which reduce the discrepancy between modeling andmore » data from hohlraum experiments on wall x-ray emission and capsule implosion shape.« less
Moreno-Martin, Gustavo; Pescuma, Micaela; Pérez-Corona, Teresa; Mozzi, Fernanda; Madrid, Yolanda
2017-11-01
Selenium nanoparticles (SeNPs) were synthesized by a green technology using lactic acid bacteria (LAB, Lactobacillus acidophilus, L. delbrueckii subsp. bulgaricus and L. reuteri). The exposure of aqueous sodium selenite to LAB led to the synthesis of SeNPs. Characterization of SeNPs by transmission electron microscopy with energy dispersive X-ray spectrum (EDXS) analysis revealed the presence of stable, predominantly monodispersed and spherical SeNPs of an average size of 146 ± 71 nm. Additionally, SeNPs hydrodynamic size was determined by dispersive light scattering (DLS) and nanoparticle tracking analysis (NTA). For this purpose, a methodology based on the use of surfactants in basic medium was developed for isolating SeNPs from the bacterial pellet. The hydrodynamic size values provided by DLS and NTA were 258 ± 4 and 187 ± 56 nm, respectively. NTA measurements of number-based concentration reported values of (4.67±0.30)x10 9 SeNPs mL -1 with a relative standard deviation lower than 5% (n = 3). The quantitative results obtained by NTA were supported by theoretical calculations. Asymmetrical flow field flow fractionation (AF 4 ) on line coupled to the inductively couple plasma mass spectrometry (ICP-MS) and off-line coupled to DLS was further employed to characterize biogenic SeNPs. The distribution of the particle size for the Se-containing peak provide an average size of (247 ± 14) nm. The data obtained by independent techniques were in good agreement and the developed methodology could be implemented for characterizing NPs in complex matrices such as biogenic nanoparticles embedded inside microbial material. Copyright © 2017. Published by Elsevier B.V.
White Dwarf Mergers On Adaptive Meshes. I. Methodology And Code Verification
Katz, Max P.; Zingale, Michael; Calder, Alan C.; ...
2016-03-02
The Type Ia supernova (SN Ia) progenitor problem is one of the most perplexing and exciting problems in astrophysics, requiring detailed numerical modeling to complement observations of these explosions. One possible progenitor that has merited recent theoretical attention is the white dwarf (WD) merger scenario, which has the potential to naturally explain many of the observed characteristics of SNe Ia. To date there have been relatively few self-consistent simulations of merging WD systems using mesh-based hydrodynamics. This is the first study in a series describing simulations of these systems using a hydrodynamics code with adaptive mesh refinement. In this papermore » we describe our numerical methodology and discuss our implementation in the compressible hydrodynamics code CASTRO, which solves the Euler equations, and the Poisson equation for self-gravity, and couples the gravitational and rotation forces to the hydrodynamics. Standard techniques for coupling gravitation and rotation forces to the hydrodynamics do not adequately conserve the total energy of the system for our problem, but recent advances in the literature allow progress and we discuss our implementation here. We present a set of test problems demonstrating the extent to which our software sufficiently models a system where large amounts of mass are advected on the computational domain over long timescales. Finally, future papers in this series will describe our treatment of the initial conditions of these systems and will examine the early phases of the merger to determine its viability for triggering a thermonuclear detonation.« less
Piaggio, Maria V; Peirotti, Marta B; Deiber, Julio A
2007-10-01
Effective electrophoretic mobility data of 20 amino acids reported in the literature are analyzed and interpreted through simple physicochemical models, which are able to provide estimates of coupled quantities like hydrodynamic shape factor, equivalent hydrodynamic radius (size), net charge, actual pK values of ionizing groups, partial charges of ionizing groups, hydration number, and pH near molecule (microenvironment-pH of the BGE). It is concluded that the modeling of the electrophoretic mobility of these analytes requires a careful consideration of hydrodynamic shape coupled to hydration. In the low range of pH studied here, distinctive hydrodynamic behaviors of amino acids are found. For instance, amino acids with basic polar and ionizing side chain remain with prolate shape for pH values varying from 1.99 to 3.2. It is evident that as the pH increases from low values, amino acids get higher hydrations as a consequence each analyte total charge also increases. This result is consistent with the monotonic increase of the hydrodynamic radius, which accounts for both the analyte and the quite immobilized water molecules defining the electrophoretic kinematical unit. It is also found that the actual or effective pK value of the alpha-carboxylic ionizing group of amino acids increases when the pH is changed from 1.99 to 3.2. Several limitations concerning the simple modeling of the electrophoretic mobility of amino acids are presented for further research.
Dispersion Engineering of Bose-Einstein Condensates
NASA Astrophysics Data System (ADS)
Khamehchi, Mohammad Amin
The subject of this dissertation is engineering the dispersion relation for dilute Bose-Einstein condensates (BECs). When a BEC is immersed into suitably tailored laser fields its dispersion can be strongly modified. Prominent examples for such laser fields include optical lattice geometries and Raman dressing fields. The ability to engineer the dispersion of a BEC allows for the investigation of a range of phenomena related to quantum hydrodynamics and condensed matter. In the first context, this dissertation studies the excitation spectrum of a spin-orbit coupled (SOC) BEC. The spin-orbit coupling is generated by " dressing" the atoms with two Raman laser fields. The excitation spectrum has a Roton-like feature that can be altered by tuning the Raman laser parameters. It is demonstrated that the Roton mode can be softened, but it does not reach the ground state energy for the experimental conditions we had. Furthermore, the expansion of SOC BECs in 1D is studied by relaxing the trap allowing the BEC to expand in the SOC direction. Contrary to the findings for optical lattices, it is observed that the condensate partially occupies quasimomentum states with negative effective mass, and therefore an abrupt deceleration is observed although the mean field force is along the direction of expansion. In condensed-matter systems, a periodic lattice structure often plays an important role. In this context, an alternative to the Raman dressing scheme can be realized by coupling the s- and p- bands of a static optical lattice via a weak moving lattice. The bands can be treated as pseudo-spin states. It is shown that similar to the dispersion relation of a Raman dressed SOC, the quasimomentum of the ground state is different from zero. Coherent coupling of the SOC dispersion minima can lead to the realization of the stripe phase even though it is not the thermodynamic ground state of the system. Along the lines of studying the hydrodynamics of BECs, three novel multicomponent solitonic states are realized. It is shown that the solitons are structurally stable and the oscillation of vector dark-anti-dark solitons is studied in a weak harmonic trap.
Araujo, Adriana V; Dias, Cristina O; Bonecker, Sérgio L C
2017-02-15
We examined the relationship between pollution and structure of copepod assemblages in estuaries, using sampling standardization of salinity range to reduce the effects of "Estuarine Quality Paradox". Copepod assemblages were analyzed in four Southeast Brazilian estuaries with different water quality levels and different hydrodynamic characteristics. The pollution negatively impacted the descriptors of the assemblage structure. The distribution of structure of copepod assemblages also showed a main separation trend between the most polluted estuaries and those less polluted. Temperature was the main factor affecting the assemblage structuring in the four estuaries. This factor acted in synergism with the effects of pollution impact and physical characteristics of the estuaries on the structure of copepod assemblages, supporting the potential vulnerability of coastal environments due to nutrient enrichment associated with climate change. Our study demonstrated the importance of sampling standardization of the salinity range in estuaries for reliable analysis of pollution effects on biota. Copyright © 2016 Elsevier Ltd. All rights reserved.
Separability of electrostatic and hydrodynamic forces in particle electrophoresis
NASA Astrophysics Data System (ADS)
Todd, Brian A.; Cohen, Joel A.
2011-09-01
By use of optical tweezers we explicitly measure the electrostatic and hydrodynamic forces that determine the electrophoretic mobility of a charged colloidal particle. We test the ansatz of O'Brien and White [J. Chem. Soc. Faraday IIJCFTBS0300-923810.1039/f29787401607 74, 1607 (1978)] that the electrostatically and hydrodynamically coupled electrophoresis problem is separable into two simpler problems: (1) a particle held fixed in an applied electric field with no flow field and (2) a particle held fixed in a flow field with no applied electric field. For a system in the Helmholtz-Smoluchowski and Debye-Hückel regimes, we find that the electrostatic and hydrodynamic forces measured independently accurately predict the electrophoretic mobility within our measurement precision of 7%; the O'Brien and White ansatz holds under the conditions of our experiment.
Multiplex Particle Focusing via Hydrodynamic Force in Viscoelastic Fluids
NASA Astrophysics Data System (ADS)
Lee, Doo Jin; Brenner, Howard; Youn, Jae Ryoun; Song, Young Seok
2013-11-01
We introduce a multiplex particle focusing phenomenon that arises from the hydrodynamic interaction between the viscoelastic force and the Dean drag force in a microfluidic device. In a confined microchannel, the first normal stress difference of viscoelastic fluids results in a lateral migration of suspended particles. Such a viscoelastic force was harnessed to focus different sized particles in the middle of a microchannel, and spiral channel geometry was also considered in order to take advantage of the counteracting force, Dean drag force that induces particle migration in the outward direction. For theoretical understanding, we performed a numerical analysis of viscoelastic fluids in the spiral microfluidic channel. From these results, a concept of the `Dean-coupled Elasto-inertial Focusing band (DEF)' was proposed. This study provides in-depth physical insight into the multiplex focusing of particles that can open a new venue for microfluidic particle dynamics for a concrete high throughput platform at microscale.
Water Impact Test and Simulation of a Composite Energy Absorbing Fuselage Section
NASA Technical Reports Server (NTRS)
Fasanella, Edwin L.; Jackson, Karen E.; Sparks, Chad; Sareen, Ashish
2003-01-01
In March 2002, a 25-ft/s vertical drop test of a composite fuselage section was conducted onto water. The purpose of the test was to obtain experimental data characterizing the structural response of the fuselage section during water impact for comparison with two previous drop tests that were performed onto a rigid surface and soft soil. For the drop test, the fuselage section was configured with ten 100-lb. lead masses, five per side, that were attached to seat rails mounted to the floor. The fuselage section was raised to a height of 10-ft. and dropped vertically into a 15-ft. diameter pool filled to a depth of 3.5-ft. with water. Approximately 70 channels of data were collected during the drop test at a 10-kHz sampling rate. The test data were used to validate crash simulations of the water impact that were developed using the nonlinear, explicit transient dynamic codes, MSC.Dytran and LS-DYNA. The fuselage structure was modeled using shell and solid elements with a Lagrangian mesh, and the water was modeled with both Eulerian and Lagrangian techniques. The fluid-structure interactions were executed using the fast general coupling in MSC.Dytran and the Arbitrary Lagrange-Euler (ALE) coupling in LS-DYNA. Additionally, the smooth particle hydrodynamics (SPH) meshless Lagrangian technique was used in LS-DYNA to represent the fluid. The simulation results were correlated with the test data to validate the modeling approach. Additional simulation studies were performed to determine how changes in mesh density, mesh uniformity, fluid viscosity, and failure strain influence the test-analysis correlation.
Swain, Eric D.; Decker, Jeremy D.; Hughes, Joseph D.
2014-01-01
In this paper, the authors present an analysis of the magnitude of the temporal and spatial acceleration (inertial) terms in the surface-water flow equations and determine the conditions under which these inertial terms have sufficient magnitude to be required in the computations. Data from two South Florida field sites are examined and the relative magnitudes of temporal acceleration, spatial acceleration, and the gravity and friction terms are compared. Parameters are derived by using dimensionless numbers and applied to quantify the significance of the hydrodynamic effects. The time series of the ratio of the inertial and gravity terms from field sites are presented and compared with both a simplified indicator parameter and a more complex parameter called the Hydrodynamic Significance Number (HSN). Two test-case models were developed by using the SWIFT2D hydrodynamic simulator to examine flow behavior with and without the inertial terms and compute the HSN. The first model represented one of the previously-mentioned field sites during gate operations of a structure-managed coastal canal. The second model was a synthetic test case illustrating the drainage of water down a sloped surface from an initial stage while under constant flow. The analyses indicate that the times of substantial hydrodynamic effects are sporadic but significant. The simplified indicator parameter correlates much better with the hydrodynamic effect magnitude for a constant width channel such as Miami Canal than at the non-uniform North River. Higher HSN values indicate flow situations where the inertial terms are large and need to be taken into account.
NASA Astrophysics Data System (ADS)
Wan, Yu; Jin, Kai; Ahmad, Talha J.; Black, Michael J.; Xu, Zhiping
2017-03-01
Fluidic environment is encountered for mechanical components in many circumstances, which not only damps the oscillation but also modulates their dynamical behaviors through hydrodynamic interactions. In this study, we examine energy transfer and motion synchronization between two mechanical micro-oscillators by performing thermal lattice-Boltzmann simulations. The coefficient of inter-oscillator energy transfer is measured to quantify the strength of microhydrodynamic coupling, which depends on their distance and fluid properties such as density and viscosity. Synchronized motion of the oscillators is observed in the simulations for typical parameter sets in relevant applications, with the formation and loss of stable anti-phase synchronization controlled by the oscillating frequency, amplitude, and hydrodynamic coupling strength. The critical ranges of key parameters to assure efficient energy transfer or highly synchronized motion are predicted. These findings could be used to advise mechanical design of passive and active devices that operate in fluid.
NASA Astrophysics Data System (ADS)
Dönmez, Orhan
2004-09-01
In this paper, the general procedure to solve the general relativistic hydrodynamical (GRH) equations with adaptive-mesh refinement (AMR) is presented. In order to achieve, the GRH equations are written in the conservation form to exploit their hyperbolic character. The numerical solutions of GRH equations are obtained by high resolution shock Capturing schemes (HRSC), specifically designed to solve nonlinear hyperbolic systems of conservation laws. These schemes depend on the characteristic information of the system. The Marquina fluxes with MUSCL left and right states are used to solve GRH equations. First, different test problems with uniform and AMR grids on the special relativistic hydrodynamics equations are carried out to verify the second-order convergence of the code in one, two and three dimensions. Results from uniform and AMR grid are compared. It is found that adaptive grid does a better job when the number of resolution is increased. Second, the GRH equations are tested using two different test problems which are Geodesic flow and Circular motion of particle In order to do this, the flux part of GRH equations is coupled with source part using Strang splitting. The coupling of the GRH equations is carried out in a treatment which gives second order accurate solutions in space and time.
Derivation of a hydrodynamic theory for mesoscale dynamics in microswimmer suspensions
NASA Astrophysics Data System (ADS)
Reinken, Henning; Klapp, Sabine H. L.; Bär, Markus; Heidenreich, Sebastian
2018-02-01
In this paper, we systematically derive a fourth-order continuum theory capable of reproducing mesoscale turbulence in a three-dimensional suspension of microswimmers. We start from overdamped Langevin equations for a generic microscopic model (pushers or pullers), which include hydrodynamic interactions on both small length scales (polar alignment of neighboring swimmers) and large length scales, where the solvent flow interacts with the order parameter field. The flow field is determined via the Stokes equation supplemented by an ansatz for the stress tensor. In addition to hydrodynamic interactions, we allow for nematic pair interactions stemming from excluded-volume effects. The results here substantially extend and generalize earlier findings [S. Heidenreich et al., Phys. Rev. E 94, 020601 (2016), 10.1103/PhysRevE.94.020601], in which we derived a two-dimensional hydrodynamic theory. From the corresponding mean-field Fokker-Planck equation combined with a self-consistent closure scheme, we derive nonlinear field equations for the polar and the nematic order parameter, involving gradient terms of up to fourth order. We find that the effective microswimmer dynamics depends on the coupling between solvent flow and orientational order. For very weak coupling corresponding to a high viscosity of the suspension, the dynamics of mesoscale turbulence can be described by a simplified model containing only an effective microswimmer velocity.
Black Hole Scrambling from Hydrodynamics.
Grozdanov, Sašo; Schalm, Koenraad; Scopelliti, Vincenzo
2018-06-08
We argue that the gravitational shock wave computation used to extract the scrambling rate in strongly coupled quantum theories with a holographic dual is directly related to probing the system's hydrodynamic sound modes. The information recovered from the shock wave can be reconstructed in terms of purely diffusionlike, linearized gravitational waves at the horizon of a single-sided black hole with specific regularity-enforced imaginary values of frequency and momentum. In two-derivative bulk theories, this horizon "diffusion" can be related to late-time momentum diffusion via a simple relation, which ceases to hold in higher-derivative theories. We then show that the same values of imaginary frequency and momentum follow from a dispersion relation of a hydrodynamic sound mode. The frequency, momentum, and group velocity give the holographic Lyapunov exponent and the butterfly velocity. Moreover, at this special point along the sound dispersion relation curve, the residue of the retarded longitudinal stress-energy tensor two-point function vanishes. This establishes a direct link between a hydrodynamic sound mode at an analytically continued, imaginary momentum and the holographic butterfly effect. Furthermore, our results imply that infinitely strongly coupled, large-N_{c} holographic theories exhibit properties similar to classical dilute gases; there, late-time equilibration and early-time scrambling are also controlled by the same dynamics.
Black Hole Scrambling from Hydrodynamics
NASA Astrophysics Data System (ADS)
Grozdanov, Sašo; Schalm, Koenraad; Scopelliti, Vincenzo
2018-06-01
We argue that the gravitational shock wave computation used to extract the scrambling rate in strongly coupled quantum theories with a holographic dual is directly related to probing the system's hydrodynamic sound modes. The information recovered from the shock wave can be reconstructed in terms of purely diffusionlike, linearized gravitational waves at the horizon of a single-sided black hole with specific regularity-enforced imaginary values of frequency and momentum. In two-derivative bulk theories, this horizon "diffusion" can be related to late-time momentum diffusion via a simple relation, which ceases to hold in higher-derivative theories. We then show that the same values of imaginary frequency and momentum follow from a dispersion relation of a hydrodynamic sound mode. The frequency, momentum, and group velocity give the holographic Lyapunov exponent and the butterfly velocity. Moreover, at this special point along the sound dispersion relation curve, the residue of the retarded longitudinal stress-energy tensor two-point function vanishes. This establishes a direct link between a hydrodynamic sound mode at an analytically continued, imaginary momentum and the holographic butterfly effect. Furthermore, our results imply that infinitely strongly coupled, large-Nc holographic theories exhibit properties similar to classical dilute gases; there, late-time equilibration and early-time scrambling are also controlled by the same dynamics.
NASA Astrophysics Data System (ADS)
Chu, Henry; Zia, Roseanna
In our recently developed non-equilibrium Stokes-Einstein relation, we showed that, in the absence of hydrodynamic interactions, the stress in a suspension is given by a balance between fluctuation and dissipation. Here, we generalize our theory for systems of hydrodynamically interacting colloids, via active microrheology, where motion of a Brownian probe through the medium reveals rheological properties. The strength of probe forcing compared to the entropic restoring force defines a Peclet number, Pe. In the absence of hydrodynamics, the first normal stress difference and the osmotic pressure scale as Pe4 and Pe2 respectively when probe forcing is weak, and uniformly as Pe for strong probe forcing. As hydrodynamics become important, interparticle forces give way to lubrication interactions. Hydrodynamic coupling leads to a new low-Pe scaling of the first normal stress difference and the osmotic pressure as Pe2, and high-Pe scaling as Peδ, where 0.799 <= δ <= 1 as hydrodynamics vary from strong to weak. For the entire range of the strength of hydrodynamic interactions and probe forcing, the new phenomenological theory is shown to agree with standard micromechanical definitions of the stress. We further draw a connection between the stress and the energy storage in a suspension, and the entropic nature of such storage is identified.
NASA Astrophysics Data System (ADS)
Riest, Jonas; Nägele, Gerhard; Liu, Yun; Wagner, Norman J.; Godfrin, P. Douglas
2018-02-01
Recently, atypical static features of microstructural ordering in low-salinity lysozyme protein solutions have been extensively explored experimentally and explained theoretically based on a short-range attractive plus long-range repulsive (SALR) interaction potential. However, the protein dynamics and the relationship to the atypical SALR structure remain to be demonstrated. Here, the applicability of semi-analytic theoretical methods predicting diffusion properties and viscosity in isotropic particle suspensions to low-salinity lysozyme protein solutions is tested. Using the interaction potential parameters previously obtained from static structure factor measurements, our results of Monte Carlo simulations representing seven experimental lysoyzme samples indicate that they exist either in dispersed fluid or random percolated states. The self-consistent Zerah-Hansen scheme is used to describe the static structure factor, S(q), which is the input to our calculation schemes for the short-time hydrodynamic function, H(q), and the zero-frequency viscosity η. The schemes account for hydrodynamic interactions included on an approximate level. Theoretical predictions for H(q) as a function of the wavenumber q quantitatively agree with experimental results at small protein concentrations obtained using neutron spin echo measurements. At higher concentrations, qualitative agreement is preserved although the calculated hydrodynamic functions are overestimated. We attribute the differences for higher concentrations and lower temperatures to translational-rotational diffusion coupling induced by the shape and interaction anisotropy of particles and clusters, patchiness of the lysozyme particle surfaces, and the intra-cluster dynamics, features not included in our simple globular particle model. The theoretical results for the solution viscosity, η, are in qualitative agreement with our experimental data even at higher concentrations. We demonstrate that semi-quantitative predictions of diffusion properties and viscosity of solutions of globular proteins are possible given only the equilibrium structure factor of proteins. Furthermore, we explore the effects of changing the attraction strength on H(q) and η.
Microbial competition in porous environments can select against rapid biofilm growth
Coyte, Katharine Z.; Tabuteau, Hervé; Gaffney, Eamonn A.; Durham, William M.
2017-01-01
Microbes often live in dense communities called biofilms, where competition between strains and species is fundamental to both evolution and community function. Although biofilms are commonly found in soil-like porous environments, the study of microbial interactions has largely focused on biofilms growing on flat, planar surfaces. Here, we use microfluidic experiments, mechanistic models, and game theory to study how porous media hydrodynamics can mediate competition between bacterial genotypes. Our experiments reveal a fundamental challenge faced by microbial strains that live in porous environments: cells that rapidly form biofilms tend to block their access to fluid flow and redirect resources to competitors. To understand how these dynamics influence the evolution of bacterial growth rates, we couple a model of flow–biofilm interaction with a game theory analysis. This investigation revealed that hydrodynamic interactions between competing genotypes give rise to an evolutionarily stable growth rate that stands in stark contrast with that observed in typical laboratory experiments: cells within a biofilm can outcompete other genotypes by growing more slowly. Our work reveals that hydrodynamics can profoundly affect how bacteria compete and evolve in porous environments, the habitat where most bacteria live. PMID:28007984
Coiling, Entrainment, and Hydrodynamic Coupling of Decelerated Fluid Jets
NASA Astrophysics Data System (ADS)
Dombrowski, Christopher; Lewellyn, Braddon; Pesci, Adriana I.; Restrepo, Juan M.; Kessler, John O.; Goldstein, Raymond E.
2005-10-01
From algal suspensions to magma upwellings, one finds jets which exhibit complex symmetry-breaking instabilities as they are decelerated by their surroundings. We consider here a model system—a saline jet descending through a salinity gradient—which produces dynamics unlike those of standard momentum jets or plumes. The jet coils like a corkscrew within a conduit of viscously entrained fluid, whose upward recirculation braids the jet, and nearly confines transverse mixing to the narrow conduit. We show that the underlying jet structure and certain scaling relations follow from similarity solutions to the fluid equations and the physics of Kelvin-Helmholtz instabilities.
NASA Astrophysics Data System (ADS)
Ahuja, V. R.; van der Gucht, J.; Briels, W. J.
2018-01-01
We present a novel coarse-grain particle-based simulation technique for modeling self-developing flow of dilute and semi-dilute polymer solutions. The central idea in this paper is the two-way coupling between a mesoscopic polymer model and a phenomenological fluid model. As our polymer model, we choose Responsive Particle Dynamics (RaPiD), a Brownian dynamics method, which formulates the so-called "conservative" and "transient" pair-potentials through which the polymers interact besides experiencing random forces in accordance with the fluctuation dissipation theorem. In addition to these interactions, our polymer blobs are also influenced by the background solvent velocity field, which we calculate by solving the Navier-Stokes equation discretized on a moving grid of fluid blobs using the Smoothed Particle Hydrodynamics (SPH) technique. While the polymers experience this frictional force opposing their motion relative to the background flow field, our fluid blobs also in turn are influenced by the motion of the polymers through an interaction term. This makes our technique a two-way coupling algorithm. We have constructed this interaction term in such a way that momentum is conserved locally, thereby preserving long range hydrodynamics. Furthermore, we have derived pairwise fluctuation terms for the velocities of the fluid blobs using the Fokker-Planck equation, which have been alternatively derived using the General Equation for the Non-Equilibrium Reversible-Irreversible Coupling (GENERIC) approach in Smoothed Dissipative Particle Dynamics (SDPD) literature. These velocity fluctuations for the fluid may be incorporated into the velocity updates for our fluid blobs to obtain a thermodynamically consistent distribution of velocities. In cases where these fluctuations are insignificant, however, these additional terms may well be dropped out as they are in a standard SPH simulation. We have applied our technique to study the rheology of two different concentrations of our model linear polymer solutions. The results show that the polymers and the fluid are coupled very well with each other, showing no lag between their velocities. Furthermore, our results show non-Newtonian shear thinning and the characteristic flattening of the Poiseuille flow profile typically observed for polymer solutions.
Ahuja, V R; van der Gucht, J; Briels, W J
2018-01-21
We present a novel coarse-grain particle-based simulation technique for modeling self-developing flow of dilute and semi-dilute polymer solutions. The central idea in this paper is the two-way coupling between a mesoscopic polymer model and a phenomenological fluid model. As our polymer model, we choose Responsive Particle Dynamics (RaPiD), a Brownian dynamics method, which formulates the so-called "conservative" and "transient" pair-potentials through which the polymers interact besides experiencing random forces in accordance with the fluctuation dissipation theorem. In addition to these interactions, our polymer blobs are also influenced by the background solvent velocity field, which we calculate by solving the Navier-Stokes equation discretized on a moving grid of fluid blobs using the Smoothed Particle Hydrodynamics (SPH) technique. While the polymers experience this frictional force opposing their motion relative to the background flow field, our fluid blobs also in turn are influenced by the motion of the polymers through an interaction term. This makes our technique a two-way coupling algorithm. We have constructed this interaction term in such a way that momentum is conserved locally, thereby preserving long range hydrodynamics. Furthermore, we have derived pairwise fluctuation terms for the velocities of the fluid blobs using the Fokker-Planck equation, which have been alternatively derived using the General Equation for the Non-Equilibrium Reversible-Irreversible Coupling (GENERIC) approach in Smoothed Dissipative Particle Dynamics (SDPD) literature. These velocity fluctuations for the fluid may be incorporated into the velocity updates for our fluid blobs to obtain a thermodynamically consistent distribution of velocities. In cases where these fluctuations are insignificant, however, these additional terms may well be dropped out as they are in a standard SPH simulation. We have applied our technique to study the rheology of two different concentrations of our model linear polymer solutions. The results show that the polymers and the fluid are coupled very well with each other, showing no lag between their velocities. Furthermore, our results show non-Newtonian shear thinning and the characteristic flattening of the Poiseuille flow profile typically observed for polymer solutions.
NASA Astrophysics Data System (ADS)
Chen, XinJian
2012-06-01
This paper presents a sensitivity study of simulated availability of low salinity habitats by a hydrodynamic model for the Manatee River estuary located in the southwest portion of the Florida peninsula. The purpose of the modeling study was to establish a regulatory minimum freshwater flow rate required to prevent the estuarine ecosystem from significant harm. The model used in the study was a multi-block model that dynamically couples a three-dimensional (3D) hydrodynamic model with a laterally averaged (2DV) hydrodynamic model. The model was calibrated and verified against measured real-time data of surface elevation and salinity at five stations during March 2005-July 2006. The calibrated model was then used to conduct a series of scenario runs to investigate effects of the flow reduction on salinity distributions in the Manatee River estuary. Based on simulated salinity distribution in the estuary, water volumes, bottom areas and shoreline lengths for salinity less than certain predefined values were calculated and analyzed to help establish the minimum freshwater flow rate for the estuarine system. The sensitivity analysis conducted during the modeling study for the Manatee River estuary examined effects of the bottom roughness, ambient vertical eddy viscosity/diffusivity, horizontal eddy viscosity/diffusivity, and ungauged flow on the model results and identified the relative importance of these model parameters (input data) to the outcome of the availability of low salinity habitats. It is found that the ambient vertical eddy viscosity/diffusivity is the most influential factor controlling the model outcome, while the horizontal eddy viscosity/diffusivity is the least influential one.
Determination of the hydrodynamic friction matrix for various anisotropic particles
NASA Astrophysics Data System (ADS)
Kraft, Daniela; Wittkowksi, Raphael; Löwen, Hartmut; Pine, David
2013-03-01
The relationship between the shape of a colloidal particle and its Brownian motion can be captured by the hydrodynamic friction matrix. It fully describes the translational and rotational diffusion along the particle's main axes as well as the coupling between rotational and translational diffusion. We observed a wide variety of anisotropic colloidal particles with confocal microscopy and calculated the hydrodynamic friction matrix from the particle trajectories. We find that symmetries in the particle shape are reflected in the entries of the friction matrix. We compare our experimentally obtained results with numerical simulations and theoretical predictions. Financial support through a Rubicon grant by the Netherlands Organisation for Scientific Research.
Hydrodynamic theory of thermoelectric transport and negative magnetoresistance in Weyl semimetals
Lucas, Andrew; Davison, Richard A.
2016-01-01
We present a theory of thermoelectric transport in weakly disordered Weyl semimetals where the electron–electron scattering time is faster than the electron–impurity scattering time. Our hydrodynamic theory consists of relativistic fluids at each Weyl node, coupled together by perturbatively small intervalley scattering, and long-range Coulomb interactions. The conductivity matrix of our theory is Onsager reciprocal and positive semidefinite. In addition to the usual axial anomaly, we account for the effects of a distinct, axial–gravitational anomaly expected to be present in Weyl semimetals. Negative thermal magnetoresistance is a sharp, experimentally accessible signature of this axial–gravitational anomaly, even beyond the hydrodynamic limit. PMID:27512042
CFD Modeling of a CFB Riser Using Improved Inlet Boundary Conditions
NASA Astrophysics Data System (ADS)
Peng, B. T.; Zhang, C.; Zhu, J. X.; Qi, X. B.
2010-03-01
A computational fluid dynamics (CFD) model based on Eulerian-Eulerian approach coupled with granular kinetics theory was adopted to investigate the hydrodynamics and flow structures in a circulating fluidized bed (CFB) riser column. A new approach to specify the inlet boundary conditions was proposed in this study to simulate gas-solids flow in CFB risers more accurately. Simulation results were compared with the experimental data, and good agreement between the numerical results and experimental data was observed under different operating conditions, which indicates the effectiveness and accuracy of the CFD model with the proposed inlet boundary conditions. The results also illustrate a clear core annulus structure in the CFB riser under all operating conditions both experimentally and numerically.
NASA Astrophysics Data System (ADS)
Wang, Qiqi; Rigas, Georgios; Esclapez, Lucas; Magri, Luca; Blonigan, Patrick
2016-11-01
Bluff body flows are of fundamental importance to many engineering applications involving massive flow separation and in particular the transport industry. Coherent flow structures emanating in the wake of three-dimensional bluff bodies, such as cars, trucks and lorries, are directly linked to increased aerodynamic drag, noise and structural fatigue. For low Reynolds laminar and transitional regimes, hydrodynamic stability theory has aided the understanding and prediction of the unstable dynamics. In the same framework, sensitivity analysis provides the means for efficient and optimal control, provided the unstable modes can be accurately predicted. However, these methodologies are limited to laminar regimes where only a few unstable modes manifest. Here we extend the stability analysis to low-dimensional chaotic regimes by computing the Lyapunov covariant vectors and their associated Lyapunov exponents. We compare them to eigenvectors and eigenvalues computed in traditional hydrodynamic stability analysis. Computing Lyapunov covariant vectors and Lyapunov exponents also enables the extension of sensitivity analysis to chaotic flows via the shadowing method. We compare the computed shadowing sensitivities to traditional sensitivity analysis. These Lyapunov based methodologies do not rely on mean flow assumptions, and are mathematically rigorous for calculating sensitivities of fully unsteady flow simulations.
NASA Astrophysics Data System (ADS)
Wang, L.; Jiang, T. L.; Dai, H. L.; Ni, Q.
2018-05-01
The present study develops a new three-dimensional nonlinear model for investigating vortex-induced vibrations (VIV) of flexible pipes conveying internal fluid flow. The unsteady hydrodynamic forces associated with the wake dynamics are modeled by two distributed van der Pol wake oscillators. In particular, the nonlinear partial differential equations of motion of the pipe and the wake are derived, taking into account the coupling between the structure and the fluid. The nonlinear equations of motion for the coupled system are then discretized by means of the Galerkin technique, resulting in a high-dimensional reduced-order model of the system. It is shown that the natural frequencies for in-plane and out-of-plane motions of the pipe may be different at high internal flow velocities beyond the threshold of buckling instability. The orientation angle of the postbuckling configuration is time-varying due to the disturbance of hydrodynamic forces, thus yielding sometimes unexpected results. For a buckled pipe with relatively low cross-flow velocity, interestingly, examining the nonlinear dynamics of the pipe indicates that the combined effects of the cross-flow-induced resonance of the in-plane first mode and the internal-flow-induced buckling on the IL and CF oscillation amplitudes may be significant. For higher cross-flow velocities, however, the effect of internal fluid flow on the nonlinear VIV responses of the pipe is not pronounced.
NASA Astrophysics Data System (ADS)
Martinez Perez, Laura; Luquot, Linda
2017-04-01
Processes affecting geological media often show complex and unpredictable behavior due to the presence of heterogeneities. This remains problematic when facing contaminant transport problems, in the CO2 storage industry or dealing with the mechanisms underneath natural processes where chemical reactions can be observed during the percolation of rock non-equilibrated fluid (e.g. karst formation, seawater intrusion). To understand the mechanisms taking place in a porous medium as a result of this water-rock interaction, we need to know the flow parameters that control them, and how they evolve with time as a result of that concurrence. This is fundamental to ensure realistic predictions of the behavior of natural systems in response of reactive transport processes. We investigate the coupled influence of structural and hydrodynamic heterogeneities in limestone rock samples tracking its variations during chemical reactions. To do so we use laboratory petrophysical techniques such as helium porosimetry, gas permeability, centrifugue, electrical resistivity and sonic waves measurements to obtain the parameters that characterize flow within rock matrix (porosity, permeability, retention curve and pore size distribution, electrical conductivity, formation factor, cementation index and tortuosity) before and after percolation experiments. We built an experimental setup that allows injection of acid brine into core samples under well controlled conditions, monitor changes in hydrodynamic properties and obtain the chemical composition of the injected solution at different stages. 3D rock images were also acquired before and after the experiments using a micro-CT to locate the alteration processes and perform an acurate analysis of the structural changes. Two limestones with distinct textural classification and thus contrasting transport properties have been used in the laboratory experiments: a crinoid limestone and an oolithic limestone. Core samples dimensions were 1 inch in diameter and varied from 0.5 to 2 inches in length. Experiments were performed at room temperature, 8 bar of total pressure and 3 bar of PCO2. The acidic fluid has been injected at constant flow rate ranging from 0.4 mL/min to 6.7 mL/min depending of the rock typology and sample length. As expected, limestone dissolution occurred during the different percolation experiments, porosity and permeability augmented and sonic waves speed propagation decreased, showing an increase in the degree of heterogeneity of the rocks. The integration of all these parameters measured at different stages of dissolution provides contrasted and realistic geochemical, hydrodynamic and structural parameters to improve numerical simulations.
Hydrodynamic dispersion of microswimmers in suspension
NASA Astrophysics Data System (ADS)
Martin, Matthieu; Rafaï, Salima; Peyla, Philippe
2014-11-01
In our laboratory, we study hydrodynamics of suspensions of micro-swimmers. These micro-organisms are unicellular algae Chlamydomonas Rheinhardii which are able to swim by using their flagella. The swimming dynamics of these micro-swimmers can be seen as a random walk, in absence of any kind of interaction. In addition, these algae have the property of being phototactic, i.e. they swim towards the light. Combining this property with a hydrodynamic flow, we were able to reversibly separate algae from the rest of the fluid. But for sufficiently high volume fraction, these active particles interact with each other. We are now interested in how the coupling of hydrodynamic interactions between swimmers and phototaxis can modify the swimming dynamics at the scale of the suspension. To this aim, we conduct experiments in microfluidic devices to study the dispersion of the micro-organisms in a the liquid phase as a function of the volume fraction. We show that the dispersion of an assembly of puller type microswimmers is quantitatively affected by hydrodynamics interactions. Phd student.
Anisotropic hydrodynamics for conformal Gubser flow
NASA Astrophysics Data System (ADS)
Nopoush, Mohammad; Ryblewski, Radoslaw; Strickland, Michael
2015-02-01
We derive the equations of motion for a system undergoing boost-invariant longitudinal and azimuthally symmetric transverse "Gubser flow" using leading-order anisotropic hydrodynamics. This is accomplished by assuming that the one-particle distribution function is ellipsoidally symmetric in the momenta conjugate to the de Sitter coordinates used to parametrize the Gubser flow. We then demonstrate that the S O (3 )q symmetry in de Sitter space further constrains the anisotropy tensor to be of spheroidal form. The resulting system of two coupled ordinary differential equations for the de Sitter-space momentum scale and anisotropy parameter are solved numerically and compared to a recently obtained exact solution of the relaxation-time-approximation Boltzmann equation subject to the same flow. We show that anisotropic hydrodynamics describes the spatiotemporal evolution of the system better than all currently known dissipative hydrodynamics approaches. In addition, we prove that anisotropic hydrodynamics gives the exact solution of the relaxation-time approximation Boltzmann equation in the ideal, η /s →0 , and free-streaming, η /s →∞, limits.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tentner, A.; Bojanowski, C.; Feldman, E.
An experimental and computational effort was undertaken in order to evaluate the capability of the fluid-structure interaction (FSI) simulation tools to describe the deflection of a Missouri University Research Reactor (MURR) fuel element plate redesigned for conversion to lowenriched uranium (LEU) fuel due to hydrodynamic forces. Experiments involving both flat plates and curved plates were conducted in a water flow test loop located at the University of Missouri (MU), at conditions and geometries that can be related to the MURR LEU fuel element. A wider channel gap on one side of the test plate, and a narrower on the othermore » represent the differences that could be encountered in a MURR element due to allowed fabrication variability. The difference in the channel gaps leads to a pressure differential across the plate, leading to plate deflection. The induced plate deflection the pressure difference induces in the plate was measured at specified locations using a laser measurement technique. High fidelity 3-D simulations of the experiments were performed at MU using the computational fluid dynamics code STAR-CCM+ coupled with the structural mechanics code ABAQUS. Independent simulations of the experiments were performed at Argonne National Laboratory (ANL) using the STAR-CCM+ code and its built-in structural mechanics solver. The simulation results obtained at MU and ANL were compared with the corresponding measured plate deflections.« less
Lattice Boltzmann approach for complex nonequilibrium flows.
Montessori, A; Prestininzi, P; La Rocca, M; Succi, S
2015-10-01
We present a lattice Boltzmann realization of Grad's extended hydrodynamic approach to nonequilibrium flows. This is achieved by using higher-order isotropic lattices coupled with a higher-order regularization procedure. The method is assessed for flow across parallel plates and three-dimensional flows in porous media, showing excellent agreement of the mass flow with analytical and numerical solutions of the Boltzmann equation across the full range of Knudsen numbers, from the hydrodynamic regime to ballistic motion.
Effective temperatures of hot Brownian motion.
Falasco, G; Gnann, M V; Rings, D; Kroy, K
2014-09-01
We derive generalized Langevin equations for the translational and rotational motion of a heated Brownian particle from the fluctuating hydrodynamics of its nonisothermal solvent. The temperature gradient around the particle couples to the hydrodynamic modes excited by the particle itself so that the resulting noise spectrum is governed by a frequency-dependent temperature. We show how the effective temperatures at which the particle coordinates and (angular) velocities appear to be thermalized emerge from this central quantity.
Hydrodynamics of bacterial colonies: A model
NASA Astrophysics Data System (ADS)
Lega, J.; Passot, T.
2003-03-01
We propose a hydrodynamic model for the evolution of bacterial colonies growing on soft agar plates. This model consists of reaction-diffusion equations for the concentrations of nutrients, water, and bacteria, coupled to a single hydrodynamic equation for the velocity field of the bacteria-water mixture. It captures the dynamics inside the colony as well as on its boundary and allows us to identify a mechanism for collective motion towards fresh nutrients, which, in its modeling aspects, is similar to classical chemotaxis. As shown in numerical simulations, our model reproduces both usual colony shapes and typical hydrodynamic motions, such as the whirls and jets recently observed in wet colonies of Bacillus subtilis. The approach presented here could be extended to different experimental situations and provides a general framework for the use of advection-reaction-diffusion equations in modeling bacterial colonies.
Effect of wall-mediated hydrodynamic fluctuations on the kinetics of a Brownian nanoparticle
NASA Astrophysics Data System (ADS)
Yu, Hsiu-Yu; Eckmann, David M.; Ayyaswamy, Portonovo S.; Radhakrishnan, Ravi
2016-12-01
The reactive flux formalism (Chandler 1978 J. Chem. Phys. 68, 2959-2970. (doi:10.1063/1.436049)) and the subsequent development of methods such as transition path sampling have laid the foundation for explicitly quantifying the rate process in terms of microscopic simulations. However, explicit methods to account for how the hydrodynamic correlations impact the transient reaction rate are missing in the colloidal literature. We show that the composite generalized Langevin equation (Yu et al. 2015 Phys. Rev. E 91, 052303. (doi:10.1103/PhysRevE.91.052303)) makes a significant step towards solving the coupled processes of molecular reactions and hydrodynamic relaxation by examining how the wall-mediated hydrodynamic memory impacts the two-stage temporal relaxation of the reaction rate for a nanoparticle transition between two bound states in the bulk, near-wall and lubrication regimes.
Spatio-temporal dynamics of an active, polar, viscoelastic ring.
Marcq, Philippe
2014-04-01
Constitutive equations for a one-dimensional, active, polar, viscoelastic liquid are derived by treating the strain field as a slow hydrodynamic variable. Taking into account the couplings between strain and polarity allowed by symmetry, the hydrodynamics of an active, polar, viscoelastic body include an evolution equation for the polarity field that generalizes the damped Kuramoto-Sivashinsky equation. Beyond thresholds of the active coupling coefficients between the polarity and the stress or the strain rate, bifurcations of the homogeneous state lead first to stationary waves, then to propagating waves of the strain, stress and polarity fields. I argue that these results are relevant to living matter, and may explain rotating actomyosin rings in cells and mechanical waves in epithelial cell monolayers.
Lattuada, Marco; Olivo, Carlos; Gauer, Cornelius; Storti, Giuseppe; Morbidelli, Massimo
2010-05-18
The characterization of complex colloidal dispersions is a relevant and challenging problem in colloidal science. In this work, we show how asymmetric flow-field flow fractionation (AF4) coupled to static light scattering can be used for this purpose. As an example of complex colloidal dispersions, we have chosen two systems undergoing aggregation. The first one is a conventional polystyrene latex undergoing reaction-limited aggregation, which leads to the formation of fractal clusters with well-known structure. The second one is a dispersion of elastomeric colloidal particles made of a polymer with a low glass transition temperature, which undergoes coalescence upon aggregation. Samples are withdrawn during aggregation at fixed times, fractionated with AF4 using a two-angle static light scattering unit as a detector. We have shown that from the analysis of the ratio between the intensities of the scattered light at the two angles the cluster size distribution can be recovered, without any need for calibration based on standard elution times, provided that the geometry and scattering properties of particles and clusters are known. The nonfractionated samples have been characterized also by conventional static and dynamic light scattering to determine their average radius of gyration and hydrodynamic radius. The size distribution of coalescing particles has been investigated also through image analysis of cryo-scanning electron microscopy (SEM) pictures. The average radius of gyration and the average hydrodynamic radius of the nonfractionated samples have been calculated and successfully compared to the values obtained from the size distributions measured by AF4. In addition, the data obtained are also in good agreement with calculations made with population balance equations.
Multi-scale coupled modelling of waves and currents on the Catalan shelf.
NASA Astrophysics Data System (ADS)
Grifoll, M.; Warner, J. C.; Espino, M.; Sánchez-Arcilla, A.
2012-04-01
Catalan shelf circulation is characterized by a background along-shelf flow to the southwest (including some meso-scale features) plus episodic storm driven patterns. To investigate these dynamics, a coupled multi-scale modeling system is applied to the Catalan shelf (North-western Mediterranean Sea). The implementation consists of a set of increasing-resolution nested models, based on the circulation model ROMS and the wave model SWAN as part of the COAWST modeling system, covering from the slope and shelf region (~1 km horizontal resolution) down to a local area around Barcelona city (~40 m). The system is initialized with MyOcean products in the coarsest outer domain, and uses atmospheric forcing from other sources for the increasing resolution inner domains. Results of the finer resolution domains exhibit improved agreement with observations relative to the coarser model results. Several hydrodynamic configurations were simulated to determine dominant forcing mechanisms and hydrodynamic processes that control coastal scale processes. The numerical results reveal that the short term (hours to days) inner-shelf variability is strongly influenced by local wind variability, while sea-level slope, baroclinic effects, radiation stresses and regional circulation constitute second-order processes. Additional analysis identifies the significance of shelf/slope exchange fluxes, river discharge and the effect of the spatial resolution of the atmospheric fluxes.
View of hydrodynamic support cylinders, removed from structure and relocated ...
View of hydrodynamic support cylinders, removed from structure and relocated for reconditioning to return them to service. - Marshall Space Flight Center, Saturn V Dynamic Test Facility, East Test Area, Huntsville, Madison County, AL
The effect of hydrodynamic conditions on the phenotype of Pseudomonas fluorescens biofilms.
Simões, Manuel; Pereira, Maria O; Sillankorva, Sanna; Azeredo, Joana; Vieira, Maria J
2007-01-01
This study investigated the phenotypic characteristics of monoculture P. fluorescens biofilms grown under turbulent and laminar flow, using flow cells reactors with stainless steel substrata. The cellular physiology and the overall biofilm activity, structure and composition were characterized, and compared, within hydrodynamically distinct conditions. The results indicate that turbulent flow-generated biofilm cells were significantly less extensive, with decreased metabolic activity and a lower protein and polysaccharides composition per cell than those from laminar flow-generated biofilms. The effect of flow regime did not cause significantly different outer membrane protein expression. From the analysis of biofilm activity, structure and composition, turbulent flow-generated biofilms were metabolically more active, had twice more mass per cm(2), and higher cellular density and protein content (mainly cellular) than laminar flow-generated biofilms. Conversely, laminar flow-generated biofilms presented higher total and matrix polysaccharide contents. Direct visualisation and scanning electron microscopy analysis showed that these different flows generate structurally different biofilms, corroborating the quantitative results. The combination of applied methods provided useful information regarding a broad spectrum of biofilm parameters, which can contribute to control and model biofilm processes.
Mali, Matilda; Malcangio, Daniela; Dell' Anna, Maria Michela; Damiani, Leonardo; Mastrorilli, Piero
2018-01-01
The environmental quality of Torre a Mare port (Italy) was assessed evaluating on one side, the chemical concentration of nine metals and metalloids within bottom sediments and on the other one, by exploring the impact of hydrodynamic conditions in contaminant's transport within the most polluted basins. The investigated port was selected as case study because it resulted much more polluted than it was expected based on the touristic port activities and related stressors loading on it. In order to determine the origin and fate of contaminants in the port basin, 2D numerical simulations were carried out by MIKE21 software. The hydrodynamic module (HD) based on a rectangular grid was initially used to characterize the flow field into two domains that cover the inner and offshore harbor area. Then, advection-dispersion (AD) and water quality (WQ) modules were coupled in order to simulate the simultaneous processes of transport and dispersion of hypothetical pollutant sources. The dissolved/suspended sediment particulates (DSS) were selected as contaminant tracers. The comparative analysis between simulation responses and the real metal contaminant distribution showed high agreement, suggesting that contaminants mainly come from outside port and tend to accumulate in the inner basin. In fact, hydrodynamic circulations cause inflowing streams toward the harbor entrance and the particular port morphology hampers the exit of fine sediments from the inner basin, enhancing thus the accumulation of sediment-associated contaminants within the port area. The study confirms that the quality of touristic port areas strongly depends on both pollution sources located within and outside the port domain and it is controlled mainly by the hydrodynamic-driven processes.
Flow sensing by pinniped whiskers
Miersch, L.; Hanke, W.; Wieskotten, S.; Hanke, F. D.; Oeffner, J.; Leder, A.; Brede, M.; Witte, M.; Dehnhardt, G.
2011-01-01
Beside their haptic function, vibrissae of harbour seals (Phocidae) and California sea lions (Otariidae) both represent highly sensitive hydrodynamic receptor systems, although their vibrissal hair shafts differ considerably in structure. To quantify the sensory performance of both hair types, isolated single whiskers were used to measure vortex shedding frequencies produced in the wake of a cylinder immersed in a rotational flow tank. These measurements revealed that both whisker types were able to detect the vortex shedding frequency but differed considerably with respect to the signal-to-noise ratio (SNR). While the signal detected by sea lion whiskers was substantially corrupted by noise, harbour seal whiskers showed a higher SNR with largely reduced noise. However, further analysis revealed that in sea lion whiskers, each noise signal contained a dominant frequency suggested to function as a characteristic carrier signal. While in harbour seal whiskers the unique surface structure explains its high sensitivity, this more or less steady fundamental frequency might represent the mechanism underlying hydrodynamic reception in the fast swimming sea lion by being modulated in response to hydrodynamic stimuli impinging on the hair. PMID:21969689
Second-order hydrodynamics and universality in non-conformal holographic fluids
NASA Astrophysics Data System (ADS)
Kleinert, Philipp; Probst, Jonas
2016-12-01
We study second-order hydrodynamic transport in strongly coupled non-conformal field theories with holographic gravity duals in asymptotically anti-de Sitter space. We first derive new Kubo formulae for five second-order transport coefficients in non-conformal fluids in (3 + 1) dimensions. We then apply them to holographic RG flows induced by scalar operators of dimension Δ = 3. For general background solutions of the dual bulk geometry, we find explicit expressions for the five transport coefficients at infinite coupling and show that a specific combination, tilde{H}=2η {τ}_{π }-2(κ -{κ}^{ast})-{λ}_2 , always vanishes. We prove analytically that the Haack-Yarom identity H = 2 ητ π - 4λ1 - λ2 = 0, which is known to be true for conformal holographic fluids at infinite coupling, also holds when taking into account leading non-conformal corrections. The numerical results we obtain for two specific families of RG flows suggest that H vanishes regardless of conformal symmetry. Our work provides further evidence that the Haack-Yarom identity H = 0 may be universally satisfied by strongly coupled fluids.
Improved Swimming Performance in Hydrodynamically- coupled Airfoils
NASA Astrophysics Data System (ADS)
Heydari, Sina; Shelley, Michael J.; Kanso, Eva
2017-11-01
Collective motion is a widespread phenomenon in the animal kingdom from fish schools to bird flocks. Half of the known fish species are thought to exhibit schooling behavior during some phase of their life cycle. Schooling likely occurs to serve multiple purposes, including foraging for resources and protection from predators. Growing experimental and theoretical evidence supports the hypothesis that fish can benefit from the hydrodynamic interactions with their neighbors, but it is unclear whether this requires particular configurations or regulations. Here, we propose a physics-based approach that account for hydrodynamic interactions among swimmers based on the vortex sheet model. The benefit of this model is that it is scalable to a large number of swimmers. We start by examining the case of two swimmers, heaving plates, moving in parallel and in tandem. We find that for the same heaving amplitude and frequency, the coupled-swimmers move faster and more efficiently. This increase in velocity depends strongly on the configuration and separation distance between the swimmers. Our results are consistent with recent experimental findings on heaving airfoils and underline the role of fluid dynamic interactions in the collective behavior of swimmers.
Hydrodynamic description of spin Calogero-Sutherland model
NASA Astrophysics Data System (ADS)
Abanov, Alexander; Kulkarni, Manas; Franchini, Fabio
2009-03-01
We study a non-linear collective field theory for an integrable spin-Calogero-Sutherland model. The hydrodynamic description of this SU(2) model in terms of charge density, charge velocity and spin currents is used to study non-perturbative solutions (solitons) and examine their correspondence with known quantum numbers of elementary excitations [1]. A conventional linear bosonization or harmonic approximation is not sufficient to describe, for example, the physics of spin-charge (non)separation. Therefore, we need this new collective bosonic field description that captures the effects of the band curvature. In the strong coupling limit [2] this model reduces to integrable SU(2) Haldane-Shastry model. We study a non-linear coupling of left and right spin currents which form a Kac-Moody algebra. Our quantum hydrodynamic description for the spin case is an extension for the one found in the spinless version in [3].[3pt] [1] Y. Kato,T. Yamamoto, and M. Arikawa, J. Phys. Soc. Jpn. 66, 1954-1961 (1997).[0pt] [2] A. Polychronakos, Phys Rev Lett. 70,2329-2331(1993).[0pt] [3] A.G.Abanov and P.B. Wiegmann, Phys Rev Lett 95, 076402(2005)
3D Kinematics and Hydrodynamic Analysis of Freely Swimming Cetacean
NASA Astrophysics Data System (ADS)
Ren, Yan; Sheinberg, Dustin; Liu, Geng; Dong, Haibo; Fish, Frank; Javed, Joveria
2015-11-01
It's widely thought that flexibility and the ability to control flexibility are crucial elements in determining the performance of animal swimming. However, there is a lack of quantification of both span-wise and chord-wise deformation of Cetacean's flukes and associated hydrodynamic performance during actively swimming. To fill this gap, we examined the motion and flexure of both dolphin fluke and orca fluke in steady swimming using a combined experimental and computational approach. It is found that the fluke surface morphing can effectively modulate the flow structures and influence the propulsive performance. Findings from this work are fundamental for understanding key kinematic features of effective Cetacean propulsors, and for quantifying the hydrodynamic force production that naturally occurs during different types of swimming. This work is supported by ONR MURI N00014-14-1-0533 and NSF CBET-1313217.
Dynamics modeling and loads analysis of an offshore floating wind turbine
NASA Astrophysics Data System (ADS)
Jonkman, Jason Mark
The vast deepwater wind resource represents a potential to use offshore floating wind turbines to power much of the world with renewable energy. Many floating wind turbine concepts have been proposed, but dynamics models, which account for the wind inflow, aerodynamics, elasticity, and controls of the wind turbine, along with the incident waves, sea current, hydrodynamics, and platform and mooring dynamics of the floater, were needed to determine their technical and economic feasibility. This work presents the development of a comprehensive simulation tool for modeling the coupled dynamic response of offshore floating wind turbines, the verification of the simulation tool through model-to-model comparisons, and the application of the simulation tool to an integrated loads analysis for one of the promising system concepts. A fully coupled aero-hydro-servo-elastic simulation tool was developed with enough sophistication to address the limitations of previous frequency- and time-domain studies and to have the features required to perform loads analyses for a variety of wind turbine, support platform, and mooring system configurations. The simulation capability was tested using model-to-model comparisons. The favorable results of all of the verification exercises provided confidence to perform more thorough analyses. The simulation tool was then applied in a preliminary loads analysis of a wind turbine supported by a barge with catenary moorings. A barge platform was chosen because of its simplicity in design, fabrication, and installation. The loads analysis aimed to characterize the dynamic response and to identify potential loads and instabilities resulting from the dynamic couplings between the turbine and the floating barge in the presence of combined wind and wave excitation. The coupling between the wind turbine response and the barge-pitch motion, in particular, produced larger extreme loads in the floating turbine than experienced by an equivalent land-based turbine. Instabilities were also found in the system. The influence of conventional wind turbine blade-pitch control actions on the pitch damping of the floating turbine was also assessed. Design modifications for reducing the platform motions, improving the turbine response, and eliminating the instabilities are suggested. These suggestions are aimed at obtaining cost-effective designs that achieve favorable performance while maintaining structural integrity.
NASA Astrophysics Data System (ADS)
De Lucia, Marco; Kempka, Thomas; Afanasyev, Andrey; Melnik, Oleg; Kühn, Michael
2016-04-01
Coupled reactive transport simulations, especially in heterogeneous settings considering multiphase flow, are extremely time consuming and suffer from significant numerical issues compared to purely hydrodynamic simulations. This represents a major hurdle in the assessment of geological subsurface utilization, since it constrains the practical application of reactive transport modelling to coarse spatial discretization or oversimplified geological settings. In order to overcome such limitations, De Lucia et al. [1] developed and validated a one-way coupling approach between geochemistry and hydrodynamics, which is particularly well suited for CO2 storage simulations, while being of general validity. In the present study, the models used for the validation of the one-way coupling approach introduced by De Lucia et al. (2015), and originally performed with the TOUGHREACT simulator, are transferred to and benchmarked against the multiphase reservoir simulator MUFITS [2]. The geological model is loosely inspired by an existing CO2 storage site. Its grid comprises 2,950 elements enclosed in a single layer, but reflecting a realistic three-dimensional anticline geometry. For the purpose of this comparison, homogeneous and heterogeneous scenarios in terms of porosity and permeability were investigated. In both cases, the results of the MUFITS simulator are in excellent agreement with those produced with the fully-coupled TOUGHREACT simulator, while profiting from significantly higher computational performance. This study demonstrates how a computationally efficient simulator such as MUFITS can be successfully included in a coupled process simulation framework, and also suggests ameliorations and specific strategies for the coupling of chemical processes with hydrodynamics and heat transport, aiming at tackling geoscientific problems beyond the storage of CO2. References [1] De Lucia, M., Kempka, T., and Kühn, M. A coupling alternative to reactive transport simulations for long-term prediction of chemical reactions in heterogeneous CO2 storage systems, Geosci. Model Dev., 8, 279-294, 2015, doi:10.5194/gmd-8-279-2015 [2] Afanasyev, A.A. Application of the reservoir simulator MUFITS for 3D modeling of CO2 storage in geological formations, Energy Procedia, 40, 365-374, 2013, doi:10.1016/j.egypro.2013.08.042
Linking Wave Forcing to Coral Cover and Structural Complexity Across Coral Reef Flats
NASA Astrophysics Data System (ADS)
Harris, D. L.; Rovere, A.; Parravicini, V.; Casella, E.
2015-12-01
The hydrodynamic regime is a significant component in the geomorphic and ecological development of coral reefs. The energy gradients and flow conditions generated by the breaking and transformation of waves across coral reef crests and flats drive changes in geomorphic structure, and coral growth form and distribution. One of the key aspects in regulating the wave energy propagating across reef flats is the rugosity or roughness of the benthic substrate. Rugosity and structural complexity of coral reefs is also a key indicator of species diversity, ecological functioning, and reef health. However, the links between reef rugosity, coral species distribution and abundance, and hydrodynamic forcing are poorly understood. In this study we examine this relationship by using high resolution measurement of waves in the surf zone and coral reef benthic structure.Pressure transducers (logging at 4 Hz) were deployed in cross reef transects at two sites (Tiahura and Ha'apiti reef systems) in Moorea, French Polynesia with wave characteristics determined on a wave by wave basis. A one dimensional hydrodynamic model (XBeach) was calibrated from this data to determine wave processes on the reef flats under average conditions. Transects of the reef benthic structure were conducted using photographic analysis and the three dimensional reef surface was constructed using structure from motion procedures. From this analysis reef rugosity, changes in coral genus and growth form, and across reef shifts in benthic community were determined. The results show clear changes in benthic assemblages along wave energy gradients with some indication of threshold values of wave induced bed shear stress above which live coral cover was reduced. Reef rugosity was shown to be significantly along the cross-reef transect which has important implications for accurate assessment of wave dissipation across coral reef flats. Links between reef rugosity and coral genus were also observed and may indicate that some coral species are crucial in maintaining the structural diversity of coral reefs.
1992-02-01
14 Measurements of Sediment Properties and Data Analysis ............................................. 15 object...Object Sensing Methods (Detect/Classification) and (B) Sediment Properties Measurements and Data Analysis . Although important to the understanding of S...characterized by a variety of geological materials, seabed properties, and hydrodynamic processes, the problems of I modeling, analysis , and prediction of S-SI
Self-Consistent Hydrodynamical Models For Stellar Winds
NASA Astrophysics Data System (ADS)
Boulangier, Jels; Homan, Ward; van Marle, Allard Jan; Decin, Leen; de Koter, Alex
2016-07-01
The physical and chemical conditions in the atmosphere of pulsating AGB stars are not well understood. In order to properly model this region, which is packed with shocks arisen from the pulsational behaviour of the star, we aim to understand the interplay between spatial and temporal changes in both the chemical composition and the hydro/thermodynamical behaviour inside these regions. Ideal models require the coupling of hydrodynamics, chemistry and radiative transfer, in three dimensions. As this is computationally not yet feasible, we aim to model this zone via a bottom-up approach. At first, we build correct 3D hydrodynamical set-up without any cooling or heating. Omitting cooling hampers the mass-loss of the AGB star within the reasonable confines of a realistic parameter space. Introducing cooling will decrease the temperature gradients in the atmosphere, counteracting the mass-loss even more. However, cooling also ensures the existence of regions where the temperature is low enough for the formation of dust to take place. This dust will absorb the momentum of the impacting photons from the AGB photosphere, accelerate outward and collide with the obstructing gas, dragging it along. Moreover, since chemistry, nucleation and dust formation depend critically on the temperature structure of the circumstellar environment, it is of utmost importance to include all relevant heating/cooling sources. Efforts to include cooling have been undertaken in the last decades, making use of different radiative cooling mechanisms for several chemical species, with some simplified radiative transfer. However, often the chemical composition of these 1D atmosphere models is fixed, implying the very strong assumption of chemical equilibrium, which is not at all true for a pulsating AGB atmosphere. We wish to model these atmospheres making as few assumptions as possible on equilibrium conditions. Therefore, as a first step, we introduce H2 dissociative cooling to the hydrodynamical model, arguing this is the dominant cooling factor. Using dissociative H2 cooling allows the ratio of the H-H2 gas mixture to vary, making the cooling efficiency time and space dependent. This will affect local cooling, in turn affecting the hydrodynamics and chemical composition, hereby introducing a feedback loop. Secondly, most significant radiative heating/cooling sources will be introduced to obtain the most realistic temperature structure. Next, dust acceleration will be introduced in the regions cool enough for dust condensation to exists. Hereby laying the basis of our hydrodynamical chemistry model for stellar winds of evolved stars.
Stress-stress correlator in ϕ 4 theory: poles or a cut?
NASA Astrophysics Data System (ADS)
Moore, Guy D.
2018-05-01
We explore the analytical properties of the traceless stress tensor 2-point function at zero momentum and small frequency (relevant for shear viscosity and hydrodynamic response) in hot, weakly coupled λ ϕ 4 theory. We show that, rather than one or a small number of poles, the correlator has a cut along the negative imaginary frequency axis. We briefly discuss this result's relevance for constructing 2'nd order hydrodynamic models of hot relativistic field theories.
Water Impact of Syntactic Foams
Shams, Adel; Zhao, Sam; Porfiri, Maurizio
2017-01-01
Syntactic foams are particulate composite materials that are extensively integrated in naval and aerospace structures as core materials for sandwich panels. While several studies have demonstrated the potential of syntactic foams as energy absorbing materials in impact tests, our understanding of their response to water impact remains elusive. In this work, we attempt a first characterization of the behavior of a vinyl ester/glass syntactic subject to slamming. High-speed imaging is leveraged to elucidate the physics of water impact of syntactic foam wedges in a free-fall drop tower. From the images, we simultaneously measure the deformation of the wedge and the hydrodynamic loading, thereby clarifying the central role of fluid–structure interaction during water impact. We study two different impact heights and microballoon density to assess the role of impact energy and syntactic foam composition on the slamming response. Our results demonstrate that both these factors have a critical role on the slamming response of syntactic foams. Reducing the density of microballoons might help to reduce the severity of the hydrodynamic loading experienced by the wedge, but this comes at the expense of a larger deformation. Such a larger deformation could ultimately lead to failure for large drop heights. These experimental results offer compelling evidence for the role of hydroelastic coupling in the slamming response of syntactic foams. PMID:28772581
Numerical and Experimental Study on Hydrodynamic Performance of A Novel Semi-Submersible Concept
NASA Astrophysics Data System (ADS)
Gao, Song; Tao, Long-bin; Kou, Yu-feng; Lu, Chao; Sun, Jiang-long
2018-04-01
Multiple Column Platform (MCP) semi-submersible is a newly proposed concept, which differs from the conventional semi-submersibles, featuring centre column and middle pontoon. It is paramount to ensure its structural reliability and safe operation at sea, and a rigorous investigation is conducted to examine the hydrodynamic and structural performance for the novel structure concept. In this paper, the numerical and experimental studies on the hydrodynamic performance of MCP are performed. Numerical simulations are conducted in both the frequency and time domains based on 3D potential theory. The numerical models are validated by experimental measurements obtained from extensive sets of model tests under both regular wave and irregular wave conditions. Moreover, a comparative study on MCP and two conventional semi-submersibles are carried out using numerical simulation. Specifically, the hydrodynamic characteristics, including hydrodynamic coefficients, natural periods and motion response amplitude operators (RAOs), mooring line tension are fully examined. The present study proves the feasibility of the novel MCP and demonstrates the potential possibility of optimization in the future study.
NASA Astrophysics Data System (ADS)
De Lucia, Marco; Kempka, Thomas; Kühn, Michael
2014-05-01
Fully-coupled reactive transport simulations involving multiphase hydrodynamics and chemical reactions in heterogeneous settings are extremely challenging from a computational point of view. This often leads to oversimplification of the investigated system: coarse spatial discretization, to keep the number of elements in the order of few thousands; simplified chemistry, disregarding many potentially important reactions. A novel approach for coupling non-reactive hydrodynamic simulations with the outcome of single batch geochemical simulations was therefore introduced to assess the potential long-term mineral trapping at the Ketzin pilot site for underground CO2 storage in Germany [1],[2]. The advantage of the coupling is the ability to use multi-million grid non-reactive hydrodynamics simulations on one side and few batch 0D geochemical simulations on the other, so that the complexity of both systems does not need to be reduced. This contribution shows the approach which was taken to validate this simplified coupling scheme. The procedure involved batch simulations of the reference geochemical model, then performing both non-reactive and fully coupled 1D and 3D reactive transport simulations and finally applying the simplified coupling scheme based on the non-reactive and geochemical batch model. The TOUGHREACT/ECO2N [3] simulator was adopted for the validation. The degree of refinement of the spatial grid and the complexity and velocity of the mineral reactions, along with a cut-off value for the minimum concentration of dissolved CO2 allowed to originate precipitates in the simplified approach were found out to be the governing parameters for the convergence of the two schemes. Systematic discrepancies between the approaches are not reducible, simply because there is no feedback between chemistry and hydrodynamics, and can reach 20 % - 30 % in unfavourable cases. However, even such discrepancy is completely acceptable, in our opinion, given the amount of uncertainty underlying the geochemical models. References [1] Klein, E., De Lucia, M., Kempka, T. Kühn, M. 2013. Evaluation of longterm mineral trapping at the Ketzin pilot site for CO2 storage: an integrative approach using geochemical modelling and reservoir simulation. International Journal of Greenhouse Gas Control 19: 720-730, doi:10.1016/j.ijggc.2013.05.014 [2] Kempka, T., Klein, E., De Lucia, M., Tillner, E. Kühn, M. 2013. Assessment of Long-term CO2 Trapping Mechanisms at the Ketzin Pilot Site (Germany) by Coupled Numerical Modelling. Energy Procedia 37: 5419-5426, doi:10.1016/j.egypro.2013.06.460 [3] Xu, T., Spycher, N., Sonnenthal, E., Zhang, G., Zheng, L., Pruess, K. 2010. TOUGHREACT Version 2.0: A simulator for subsurface reactive transport under non-isothermal multiphase flow conditions, Computers & Geosciences 37(6), doi:10.1016/j.cageo.2010.10.007
Computational fluid dynamics analysis in support of the simplex turbopump design
NASA Technical Reports Server (NTRS)
Garcia, Roberto; Griffin, Lisa W.; Benjamin, Theodore G.; Cornelison, Joni W.; Ruf, Joseph H.; Williams, Robert W.
1994-01-01
Simplex is a turbopump that is being developed at NASA/Marshall Space Flight Center (MSFC) by an in-house team. The turbopump consists of a single-stage centrifugal impeller, vaned-diffuser pump powered by a single-stage, axial, supersonic, partial admission turbine. The turbine is driven by warm gaseous oxygen tapped off of the hybrid motor to which it will be coupled. Rolling element bearings are cooled by the pumping fluid. Details of the configuration and operating conditions are given by Marsh. CFD has been used extensively to verify one-dimensional (1D) predictions, assess aerodynamic and hydrodynamic designs, and to provide flow environments. The complete primary flow path of the pump-end and the hot gas path of the turbine, excluding the inlet torus, have been analyzed. All CFD analyses conducted for the Simplex turbopump employed the pressure based Finite Difference Navier-Stokes (FDNS) code using a standard kappa-epsilon turbulence model with wall functions. More detailed results are presented by Garcia et. al. To support the team, loading and temperature results for the turbine rotor were provided as inputs to structural and thermal analyses, and blade loadings from the inducer were provided for structural analyses.
Charge redistribution from novel magneto-vorticity coupling in anomalous hydrodynamics
NASA Astrophysics Data System (ADS)
Hattori, Koichi; Yin, Yi
2017-11-01
We discuss new transport phenomena in the presence of both a strong magnetic field and a vortex field. Their interplay induces a charge distribution and a current along the magnetic field. We show that the associated transport coefficients can be obtained from a simple analysis of the single-particle distribution functions and also from the Kubo formula calculation. The consistent results from these analyses suggest that the transport coefficients are tied to the chiral anomaly in the (1 + 1) dimension because of the dimensional reduction in the lowest Landau levels.
Khan, Waqar A.; Uddin, Md Jashim; Ismail, A. I. Md.
2013-01-01
The effects of hydrodynamic and thermal slip boundary conditions on the double-diffusive free convective flow of a nanofluid along a semi-infinite flat solid vertical plate are investigated numerically. It is assumed that free stream is moving. The governing boundary layer equations are non-dimensionalized and transformed into a system of nonlinear, coupled similarity equations. The effects of the controlling parameters on the dimensionless velocity, temperature, solute and nanofluid concentration as well as on the reduced Nusselt number, reduced Sherwood number and the reduced nanoparticle Sherwood number are investigated and presented graphically. To the best of our knowledge, the effects of hydrodynamic and thermal slip boundary conditions have not been investigated yet. It is found that the reduced local Nusselt, local solute and the local nanofluid Sherwood numbers increase with hydrodynamic slip and decrease with thermal slip parameters. PMID:23533566
Computer modeling and simulation in inertial confinement fusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCrory, R.L.; Verdon, C.P.
1989-03-01
The complex hydrodynamic and transport processes associated with the implosion of an inertial confinement fusion (ICF) pellet place considerable demands on numerical simulation programs. Processes associated with implosion can usually be described using relatively simple models, but their complex interplay requires that programs model most of the relevant physical phenomena accurately. Most hydrodynamic codes used in ICF incorporate a one-fluid, two-temperature model. Electrons and ions are assumed to flow as one fluid (no charge separation). Due to the relatively weak coupling between the ions and electrons, each species is treated separately in terms of its temperature. In this paper wemore » describe some of the major components associated with an ICF hydrodynamics simulation code. To serve as an example we draw heavily on a two-dimensional Lagrangian hydrodynamic code (ORCHID) written at the University of Rochester's Laboratory for Laser Energetics. 46 refs., 19 figs., 1 tab.« less
NASA Astrophysics Data System (ADS)
Ma, Guang-ying; Yao, Yun-long
2018-03-01
In this paper, the fatigue lives of a new type of assembled marine floating platform for special purposes were studied. Firstly, by using ANSYS AQWA software, the hydrodynamic model of the platform was established. Secondly, the structural stresses under alternating change loads were calculated under complex water environments, such as wind, wave, current and ice. The minimum fatigue lives were obtained under different working conditions. The analysis results showed that the fatigue life of the platform structure can meet the requirements
Analytic Modeling of the Hydrodynamic, Thermal, and Structural Behavior of Foil Thrust Bearings
NASA Technical Reports Server (NTRS)
Bruckner, Robert J.; DellaCorte, Christopher; Prahl, Joseph M.
2005-01-01
A simulation and modeling effort is conducted on gas foil thrust bearings. A foil bearing is a self acting hydrodynamic device capable of separating stationary and rotating components of rotating machinery by a film of air or other gaseous lubricant. Although simple in appearance these bearings have proven to be complicated devices in analysis. They are sensitive to fluid structure interaction, use a compressible gas as a lubricant, may not be in the fully continuum range of fluid mechanics, and operate in the range where viscous heat generation is significant. These factors provide a challenge to the simulation and modeling task. The Reynolds equation with the addition of Knudsen number effects due to thin film thicknesses is used to simulate the hydrodynamics. The energy equation is manipulated to simulate the temperature field of the lubricant film and combined with the ideal gas relationship, provides density field input to the Reynolds equation. Heat transfer between the lubricant and the surroundings is also modeled. The structural deformations of the bearing are modeled with a single partial differential equation. The equation models the top foil as a thin, bending dominated membrane whose deflections are governed by the biharmonic equation. A linear superposition of hydrodynamic load and compliant foundation reaction is included. The stiffness of the compliant foundation is modeled as a distributed stiffness that supports the top foil. The system of governing equations is solved numerically by a computer program written in the Mathematica computing environment. Representative calculations and comparisons with experimental results are included for a generation I gas foil thrust bearing.
Development of a Probabilistic Decision-Support Model to Forecast Coastal Resilience
NASA Astrophysics Data System (ADS)
Wilson, K.; Safak, I.; Brenner, O.; Lentz, E. E.; Hapke, C. J.
2016-02-01
Site-specific forecasts of coastal change are a valuable management tool in preparing for and assessing storm-driven impacts in coastal areas. More specifically, understanding the likelihood of storm impacts, recovery following events, and the alongshore variability of both is central in evaluating vulnerability and resiliency of barrier islands. We introduce a probabilistic modeling framework that integrates hydrodynamic, anthropogenic, and morphologic components of the barrier system to evaluate coastal change at Fire Island, New York. The model is structured on a Bayesian network (BN), which utilizes observations to learn statistical relationships between system variables. In addition to predictive ability, probabilistic models convey the level of confidence associated with a prediction, an important consideration for coastal managers. Our model predicts the likelihood of morphologic change on the upper beach based on several decades of beach monitoring data. A coupled hydrodynamic BN combines probabilistic and deterministic modeling approaches; by querying nearly two decades of nested-grid wave simulations that account for both distant swells and local seas, we produce scenarios of event and seasonal wave climates. The wave scenarios of total water level - a sum of run up, surge and tide - and anthropogenic modification are the primary drivers of morphologic change in our model structure. Preliminary results show the hydrodynamic BN is able to reproduce time series of total water levels, a critical validation process before generating scenarios, and forecasts of geomorphic change over three month intervals are up to 70% accurate. Predictions of storm-induced change and recovery are linked to evaluate zones of persistent vulnerability or resilience and will help managers target restoration efforts, identify areas most vulnerable to habitat degradation, and highlight resilient zones that may best support relocation of critical infrastructure.
Photoelectrons in the Quiet Polar Wind
NASA Technical Reports Server (NTRS)
Glocer, A.; Khazanov, G.; Liemohn, M.
2017-01-01
This study presents a newly coupled model capable of treating the superthermal electron population in the global polar wind solution. The model combines the hydrodynamic Polar Wind Outflow Model (PWOM) with the kinetic SuperThermal Electron Transport (STET) code. The resulting PWOM-STET coupled model is described and then used to investigate the role of photoelectrons in the polar wind. We present polar wind results along single stationary field lines under dayside and nightside conditions, as well as the global solution reconstructed from nearly 1000 moving field lines. The model results show significant day-night asymmetries in the polar wind solution owing to the higher ionization and photoelectron fluxes on the dayside compared to the nightside. Field line motion is found to modify this dependence and create global structure by transporting field lines through different conditions of illumination and through the localized effects of Joule heating.
Flow structure in continuous flow electrophoresis chambers
NASA Technical Reports Server (NTRS)
Deiber, J. A.; Saville, D. A.
1982-01-01
There are at least two ways that hydrodynamic processes can limit continiuous flow electrophoresis. One arises from the sensitivity of the flow to small temerature gradients, especially at low flow rates and power levels. This sensitivity can be suppressed, at least in principle, by providing a carefully tailored, stabilizing temperature gradient in the cooling system that surrounds the flow channel. At higher power levels another limitation arises due to a restructuring of the main flow. This restructuring is caused by buoyancy, which is in turn affected by the electro-osmotic crossflow. Approximate solutions to appropriate partial differential equations have been computed by finite difference methods. One set of results is described here to illustrate the strong coupling between the structure of the main (axial) flow and the electro-osmotic flow.
Pitkänen, Leena; Striegel, André M
2015-02-06
Accurate characterization of the molar mass and size of polysaccharides is an ongoing challenge, oftentimes due to architectural diversity but also to the broad molar mass (M) range over which a single polysaccharide can exist and to the ultra-high M of many polysaccharides. Because of the latter, many of these biomacromolecules experience on-column, flow-induced degradation during analysis by size-exclusion and, even, hydrodynamic chromatography (SEC and HDC, respectively). The necessity for gentler fractionation methods has, to date, been addressed employing asymmetric flow field-flow fractionation (AF4). Here, we introduce the coupling of hollow-fiber flow field-flow fractionation (HF5) to multi-angle static light scattering (MALS) and differential refractometry (DRI) detection for the analysis of polysaccharides. In HF5, less stresses are placed on the macromolecules during separation than in SEC or HDC, and HF5 can offer a higher sensitivity, with less propensity for system overloading and analyte aggregation, than generally found in AF4. The coupling to MALS and DRI affords the determination of absolute, calibration-curve-independent molar mass averages and dispersities. Results from the present HF5/MALS/DRI experiments with dextrans, pullulans, and larch arabinogalactan were augmented with hydrodynamic radius (RH) measurements from off-line quasi-elastic light scattering (QELS) and by RH distribution calculations and fractogram simulations obtained via a finite element analysis implementation of field-flow fractionation theory by commercially available software. As part of this study, we have investigated analyte recovery in HF5 and also possible reasons for discrepancies between calculated and simulated results vis-à-vis experimentally determined data. Published by Elsevier B.V.
Equilibration and hydrodynamics at strong and weak coupling
NASA Astrophysics Data System (ADS)
van der Schee, Wilke
2017-11-01
We give an updated overview of both weak and strong coupling methods to describe the approach to a plasma described by viscous hydrodynamics, a process now called hydrodynamisation. At weak coupling the very first moments after a heavy ion collision is described by the colour-glass condensate framework, but quickly thereafter the mean free path is long enough for kinetic theory to become applicable. Recent simulations indicate thermalization in a time t ∼ 40(η / s) 4 / 3 / T [L. Keegan, A. Kurkela, P. Romatschke, W. van der Schee, Y. Zhu, Weak and strong coupling equilibration in nonabelian gauge theories, JHEP 04 (2016) 031. arxiv:arXiv:1512.05347, doi:10.1007/JHEP04(2016)031], with T the temperature at that time and η / s the shear viscosity divided by the entropy density. At (infinitely) strong coupling it is possible to mimic heavy ion collisions by using holography, which leads to a dual description of colliding gravitational shock waves. The plasma formed hydrodynamises within a time of 0.41/T recent extension found corrections to this result for finite values of the coupling, when η / s is bigger than the canonical value of 1/4π, which leads to t ∼ (0.41 + 1.6 (η / s - 1 / 4 π)) / T [S. Grozdanov, W. van der Schee, Coupling constant corrections in holographic heavy ion collisions, arxiv:arXiv:1610.08976]. Future improvements include the inclusion of the effects of the running coupling constant in QCD.
Investigating Dynamics of Eccentricity in Turbomachines
NASA Technical Reports Server (NTRS)
Baun, Daniel
2010-01-01
A methodology (and hardware and software to implement the methodology) has been developed as a means of investigating coupling between certain rotordynamic and hydrodynamic phenomena in turbomachines. Originally, the methodology was intended for application in an investigation of coupled rotordynamic and hydrodynamic effects postulated to have caused high synchronous vibration in the space shuttle s high-pressure oxygen turbopump (HPOTP). The methodology can also be applied in investigating (for the purpose of developing means of suppressing) undesired hydrodynamic rotor/stator interactions in turbomachines in general. The methodology and the types of phenomena that can be investigated by use of the methodology are best summarized by citing the original application as an example. In that application, in consideration of the high synchronous vibration in the space-shuttle main engine (SSME) HPOTP, it was determined to be necessary to perform tests to investigate the influence of inducer eccentricity and/or synchronous whirl motion on inducer hydrodynamic forces under prescribed flow and cavitation conditions. It was believed that manufacturing tolerances of the turbopump resulted in some induced runout of the pump rotor. Such runout, if oriented with an inducer blade, would cause that blade to run with tip clearance smaller than the tip clearances of the other inducer blades. It was hypothesized that the resulting hydraulic asymmetry, coupled with alternating blade cavitation, could give rise to the observed high synchronous vibration. In tests performed to investigate this hypothesis, prescribed rotor whirl motions have been imposed on a 1/3-scale water-rig version of the SSME LPOTP inducer (which is also a 4-biased inducer having similar cavitation dynamics as the HPOTP) in a magnetic-bearing test facility. The particular magnetic-bearing test facility, through active vibration control, affords a capability to impose, on the rotor, whirl orbits having shapes and whirl rates prescribed by the user, and to simultaneously measure the resulting hydrodynamic forces generated by the impeller. Active control also made it possible to modulate the inducer-blade running tip clearance and consequently effect alternating blade cavitation. The measured hydraulic forces have been compared and correlated with shroud dynamic-pressure measurements.
Multi-Hamiltonian structure of equations of hydrodynamic type
NASA Astrophysics Data System (ADS)
Gümral, H.; Nutku, Y.
1990-11-01
The discussion of the Hamiltonian structure of two-component equations of hydrodynamic type is completed by presenting the Hamiltonian operators for Euler's equation governing the motion of plane sound waves of finite amplitude and another quasilinear second-order wave equation. There exists a doubly infinite family of conserved Hamiltonians for the equations of gas dynamics that degenerate into one, namely, the Benney sequence, for shallow-water waves. Infinite sequences of conserved quantities for these equations are also presented. In the case of multicomponent equations of hydrodynamic type, it is shown, that Kodama's generalization of the shallow-water equations admits bi-Hamiltonian structure.
Ando, Tadashi; Skolnick, Jeffrey
2014-12-01
DNA binding proteins efficiently search for their cognitive sites on long genomic DNA by combining 3D diffusion and 1D diffusion (sliding) along the DNA. Recent experimental results and theoretical analyses revealed that the proteins show a rotation-coupled sliding along DNA helical pitch. Here, we performed Brownian dynamics simulations using newly developed coarse-grained protein and DNA models for evaluating how hydrodynamic interactions between the protein and DNA molecules, binding affinity of the protein to DNA, and DNA fluctuations affect the one dimensional diffusion of the protein on the DNA. Our results indicate that intermolecular hydrodynamic interactions reduce 1D diffusivity by 30%. On the other hand, structural fluctuations of DNA give rise to steric collisions between the CG-proteins and DNA, resulting in faster 1D sliding of the protein. Proteins with low binding affinities consistent with experimental estimates of non-specific DNA binding show hopping along the CG-DNA. This hopping significantly increases sliding speed. These simulation studies provide additional insights into the mechanism of how DNA binding proteins find their target sites on the genome.
Dynamic Fluid in a Porous Transducer-Based Angular Accelerometer
Cheng, Siyuan; Fu, Mengyin; Wang, Meiling; Ming, Li; Fu, Huijin; Wang, Tonglei
2017-01-01
This paper presents a theoretical model of the dynamics of liquid flow in an angular accelerometer comprising a porous transducer in a circular tube of liquid. Wave speed and dynamic permeability of the transducer are considered to describe the relation between angular acceleration and the differential pressure on the transducer. The permeability and streaming potential coupling coefficient of the transducer are determined in the experiments, and special prototypes are utilized to validate the theoretical model in both the frequency and time domains. The model is applied to analyze the influence of structural parameters on the frequency response and the transient response of the fluidic system. It is shown that the radius of the circular tube and the wave speed affect the low frequency gain, as well as the bandwidth of the sensor. The hydrodynamic resistance of the transducer and the cross-section radius of the circular tube can be used to control the transient performance. The proposed model provides the basic techniques to achieve the optimization of the angular accelerometer together with the methodology to control the wave speed and the hydrodynamic resistance of the transducer. PMID:28230793
Lattice Boltzmann simulation of asymmetric flow in nematic liquid crystals with finite anchoring
NASA Astrophysics Data System (ADS)
Zhang, Rui; Roberts, Tyler; Aranson, Igor S.; de Pablo, Juan J.
2016-02-01
Liquid crystals (LCs) display many of the flow characteristics of liquids but exhibit long range orientational order. In the nematic phase, the coupling of structure and flow leads to complex hydrodynamic effects that remain to be fully elucidated. Here, we consider the hydrodynamics of a nematic LC in a hybrid cell, where opposite walls have conflicting anchoring boundary conditions, and we employ a 3D lattice Boltzmann method to simulate the time-dependent flow patterns that can arise. Due to the symmetry breaking of the director field within the hybrid cell, we observe that at low to moderate shear rates, the volumetric flow rate under Couette and Poiseuille flows is different for opposite flow directions. At high shear rates, the director field may undergo a topological transition which leads to symmetric flows. By applying an oscillatory pressure gradient to the channel, a net volumetric flow rate is found to depend on the magnitude and frequency of the oscillation, as well as the anchoring strength. Taken together, our findings suggest several intriguing new applications for LCs in microfluidic devices.
Spatial-structural analysis of leafless woody riparian vegetation for hydraulic considerations
NASA Astrophysics Data System (ADS)
Weissteiner, Clemens; Jalonen, Johanna; Järvelä, Juha; Rauch, Hans Peter
2013-04-01
Woody riparian vegetation is a vital element of riverine environments. On one hand woody riparian vegetation has to be taken into account from a civil engineering point of view due to boundary shear stress and vegetation drag. On the other hand it has to be considered from a river ecological point of view due to shadowing effects and as a source of organic material for aquatic habitats. In hydrodynamic and hydro-ecological studies the effects of woody riparian vegetation on flow patterns are usually investigated on a very detailed level. On the contrary vegetation elements and their spatial patterns are generally analysed and discussed on the basis of an integral approach measuring for example basal diameters, heights and projected plant areas. For a better understanding of the influence of woody riparian vegetation on turbulent flow and on river ecology, it is essential to record and analyse plant data sets on the same level of quality as for hydrodynamic or hydro-ecologic purposes. As a result of the same scale of the analysis it is possible to incorporate riparian vegetation as a sub-model in the hydraulic analysis. For plant structural components, such as branches on different topological levels it is crucial to record plant geometrical parameters describing the habitus of the plant on branch level. An exact 3D geometrical model of real plants allows for an extraction of various spatial-structural plant parameters. In addition, allometric relationships help to summarize and describe plant traits of riparian vegetation. This paper focuses on the spatial-structural composition of leafless riparia woddy vegetation. Structural and spatial analyses determine detailed geometric properties of the structural components of the plants. Geometrical and topological parameters were recorded with an electro-magnetic scanning device. In total, 23 plants (willows, alders and birches) were analysed in the study. Data were recorded on branch level, which allowed for the development of a 3D geometric plant model. The results are expected to improve knowledge on how the architectural system and allometric relationships of the plants relate to ecological and hydrodynamic properties.
Kinetic Equation for a Soliton Gas and Its Hydrodynamic Reductions
NASA Astrophysics Data System (ADS)
El, G. A.; Kamchatnov, A. M.; Pavlov, M. V.; Zykov, S. A.
2011-04-01
We introduce and study a new class of kinetic equations, which arise in the description of nonequilibrium macroscopic dynamics of soliton gases with elastic collisions between solitons. These equations represent nonlinear integro-differential systems and have a novel structure, which we investigate by studying in detail the class of N-component `cold-gas' hydrodynamic reductions. We prove that these reductions represent integrable linearly degenerate hydrodynamic type systems for arbitrary N which is a strong evidence in favour of integrability of the full kinetic equation. We derive compact explicit representations for the Riemann invariants and characteristic velocities of the hydrodynamic reductions in terms of the `cold-gas' component densities and construct a number of exact solutions having special properties (quasiperiodic, self-similar). Hydrodynamic symmetries are then derived and investigated. The obtained results shed light on the structure of a continuum limit for a large class of integrable systems of hydrodynamic type and are also relevant to the description of turbulent motion in conservative compressible flows.
Hydrodynamic Modeling and Its Application in AUC.
Rocco, Mattia; Byron, Olwyn
2015-01-01
The hydrodynamic parameters measured in an AUC experiment, s(20,w) and D(t)(20,w)(0), can be used to gain information on the solution structure of (bio)macromolecules and their assemblies. This entails comparing the measured parameters with those that can be computed from usually "dry" structures by "hydrodynamic modeling." In this chapter, we will first briefly put hydrodynamic modeling in perspective and present the basic physics behind it as implemented in the most commonly used methods. The important "hydration" issue is also touched upon, and the distinction between rigid bodies versus those for which flexibility must be considered in the modeling process is then made. The available hydrodynamic modeling/computation programs, HYDROPRO, BEST, SoMo, AtoB, and Zeno, the latter four all implemented within the US-SOMO suite, are described and their performance evaluated. Finally, some literature examples are presented to illustrate the potential applications of hydrodynamics in the expanding field of multiresolution modeling. © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Donmez, Orhan
We present a general procedure to solve the General Relativistic Hydrodynamical (GRH) equations with Adaptive-Mesh Refinement (AMR) and model of an accretion disk around a black hole. To do this, the GRH equations are written in a conservative form to exploit their hyperbolic character. The numerical solutions of the general relativistic hydrodynamic equations is done by High Resolution Shock Capturing schemes (HRSC), specifically designed to solve non-linear hyperbolic systems of conservation laws. These schemes depend on the characteristic information of the system. We use Marquina fluxes with MUSCL left and right states to solve GRH equations. First, we carry out different test problems with uniform and AMR grids on the special relativistic hydrodynamics equations to verify the second order convergence of the code in 1D, 2 D and 3D. Second, we solve the GRH equations and use the general relativistic test problems to compare the numerical solutions with analytic ones. In order to this, we couple the flux part of general relativistic hydrodynamic equation with a source part using Strang splitting. The coupling of the GRH equations is carried out in a treatment which gives second order accurate solutions in space and time. The test problems examined include shock tubes, geodesic flows, and circular motion of particle around the black hole. Finally, we apply this code to the accretion disk problems around the black hole using the Schwarzschild metric at the background of the computational domain. We find spiral shocks on the accretion disk. They are observationally expected results. We also examine the star-disk interaction near a massive black hole. We find that when stars are grounded down or a hole is punched on the accretion disk, they create shock waves which destroy the accretion disk.
Core-Collapse Supernovae Explored by Multi-D Boltzmann Hydrodynamic Simulations
NASA Astrophysics Data System (ADS)
Sumiyoshi, Kohsuke; Nagakura, Hiroki; Iwakami, Wakana; Furusawa, Shun; Matsufuru, Hideo; Imakura, Akira; Yamada, Shoichi
We report the latest results of numerical simulations of core-collapse supernovae by solving multi-D neutrino-radiation hydrodynamics with Boltzmann equations. One of the longstanding issues of the explosion mechanism of supernovae has been uncertainty in the approximations of the neutrino transfer in multi-D such as the diffusion approximation and ray-by-ray method. The neutrino transfer is essential, together with 2D/3D hydrodynamical instabilities, to evaluate the neutrino heating behind the shock wave for successful explosions and to predict the neutrino burst signals. We tackled this difficult problem by utilizing our solver of the 6D Boltzmann equation for neutrinos in 3D space and 3D neutrino momentum space coupled with multi-D hydrodynamics adding special and general relativistic extensions. We have performed a set of 2D core-collapse simulations from 11M ⊙ and 15M ⊙ stars on K-computer in Japan by following long-term evolution over 400 ms after bounce to reveal the outcome from the full Boltzmann hydrodynamic simulations with a sophisticated equation of state with multi-nuclear species and updated rates for electron captures on nuclei.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wesseldyke, Eric S.; Becker, Jennifer G.; Seagren, Eric A.
Dissolution of dense non-aqueous phase liquid (DNAPL) contaminants like tetrachloroethene (PCE) can be “bioenhanced” via biodegradation, which increases the concentration gradient at the DNAPL–water interface. Model simulations were used to evaluate the impact of ecological interactions between different dehalorespiring strains and hydrodynamics on the bioenhancement effect and the extent of PCE dechlorination. Simulations were performed using a two-dimensional coupled flow-transport model, with a DNAPL pool source and two microbial species, Dehalococcoides mccartyi 195 and Desulfuromonas michiganensis, which compete for electron acceptors (e.g., PCE), but not for their electron donors. Under biostimulation, low vx conditions, D. michiganensis alone significantly enhanced dissolutionmore » by rapidly utilizing aqueous-phase PCE. In co-culture under these conditions, D. mccartyi 195 increased this bioenhancement modestly and greatly increased the extent of PCE transformation. Although D. michiganensis was the dominant population under low velocity conditions, D. mccartyi 195 dominated under high velocity conditions due to bioclogging effects.« less
Piaggio, Maria V; Peirotti, Marta B; Deiber, Julio A
2009-07-01
Electrophoretic mobility data of four proteins are analyzed and interpreted through a physicochemical CZE model, which provides estimates of quantities like equivalent hydrodynamic radius (size), effective charge number, shape orientation factor, hydration, actual pK values of ionizing groups, and pH near molecule, among others. Protein friction coefficients are simulated through the creeping flow theory of prolate spheroidal particles. The modeling of the effective electrophoretic mobility of proteins requires consideration of hydrodynamic size and shape coupled to hydration and effective charge. The model proposed predicts native protein hydration within the range of values obtained experimentally from other techniques. Therefore, this model provides consistently other physicochemical properties such as average friction and diffusion coefficients and packing fractal dimension. As the pH varies from native conditions to those that are denaturing the protein, hydration and packing fractal dimension change substantially. Needs for further research are also discussed and proposed.
Li, Calvin H.; Rioux, Russell P.
2016-01-01
Spherical Cu nanocavity surfaces are synthesized to examine the individual role of contact angles in connecting lateral Rayleigh-Taylor wavelength to vertical Kevin-Helmholtz wavelength on hydrodynamic instability for the onset of pool boiling Critical Heat Flux (CHF). Solid and porous Cu pillar surfaces are sintered to investigate the individual role of pillar structure pitch at millimeter scale, named as module wavelength, on hydrodynamic instability at CHF. Last, spherical Cu nanocavities are coated on the porous Cu pillars to create a multiscale Cu structure, which is studied to examine the collective role and relative significance of contact angles and module wavelength on hydrodynamic instability at CHF, and the results indicate that module wavelength plays the dominant role on hydrodynamic instability at CHF when the height of surface structures is equal or above ¼ Kelvin-Helmholtz wavelength. Pool boiling Heat Transfer Coefficient (HTC) enhancements on spherical Cu nanocavity surfaces, solid and porous Cu pillar surfaces, and the integrated multiscale structure have been investigated, too. The experimental results reveal that the nanostructures and porous pillar structures can be combined together to achieve even higher enhancement of HTC than that of individual structures. PMID:27841322
Performance of end-face seals with diametral tilt and coning - Hydrodynamic effects
NASA Technical Reports Server (NTRS)
Sharoni, A.; Etsion, I.
1979-01-01
Hydrodynamic effects in end-face seals with diametral tilt and coning are analyzed. A closed-form solution for the axial separating force and the restoring and transverse moments is presented that covers the whole range from zero to full angular misalignment at various degrees of coning. Both low-pressure seals with cavitating flow and high-pressure seals with full fluid film are considered. The effect of coning is to reduce the axial force and the restoring and transverse moments compared to their magnitude in flat-face seals. Strong coupling between diametral tilt and transverse moment is demonstrated. This transverse moment which is entirely due to hydrodynamic effects can be the source of dynamic instability in the form of seal wobble.
Critical review of membrane bioreactor models--part 2: hydrodynamic and integrated models.
Naessens, W; Maere, T; Ratkovich, N; Vedantam, S; Nopens, I
2012-10-01
Membrane bioreactor technology exists for a couple of decades, but has not yet overwhelmed the market due to some serious drawbacks of which operational cost due to fouling is the major contributor. Knowledge buildup and optimisation for such complex systems can heavily benefit from mathematical modelling. In this paper, the vast literature on hydrodynamic and integrated MBR modelling is critically reviewed. Hydrodynamic models are used at different scales and focus mainly on fouling and only little on system design/optimisation. Integrated models also focus on fouling although the ones including costs are leaning towards optimisation. Trends are discussed, knowledge gaps identified and interesting routes for further research suggested. Copyright © 2012 Elsevier Ltd. All rights reserved.
Coupled structural/thermal/electromagnetic analysis/tailoring of graded composite structures
NASA Technical Reports Server (NTRS)
Mcknight, R. L.; Chen, P. C.; Dame, L. T.; Huang, H.
1992-01-01
Accomplishments are described for the first year effort of a 5-year program to develop a methodology for coupled structural/thermal/electromagnetic analysis/tailoring of graded composite structures. These accomplishments include: (1) the results of the selective literature survey; (2) 8-, 16-, and 20-noded isoparametric plate and shell elements; (3) large deformation structural analysis; (4) eigenanalysis; (5) anisotropic heat transfer analysis; and (6) anisotropic electromagnetic analysis.
The flow of plasma in the solar terrestrial environment
NASA Technical Reports Server (NTRS)
Schunk, Robert W.; Banks, P.; Barakat, A. R.; Crain, D. J.; Demars, H. G.; Lemaire, J.; Ma, T.-Z.; Rasmussen, C. E.; Richards, P.; Sica, R.
1990-01-01
The overall goal of our NASA Theory Program was to study the coupling, time delays, and feedback mechanisms between the various regions of the solar-terrestrial system in a self-consistent, quantitative manner. To accomplish this goal, it will eventually be necessary to have time-dependent macroscopic models of the different regions of the solar-terrestrial system and we are continually working toward this goal. However, with the funding from this NASA program, we concentrated on the near-earth plasma environment, including the ionosphere, the plasmasphere, and the polar wind. In this area, we developed unique global models that allowed us to study the coupling between the different regions. These results are highlighted in the next section. Another important aspect of our NASA Theory Program concerned the effect that localized 'structure' had on the macroscopic flow in the ionosphere, plasmasphere, thermosphere, and polar wind. The localized structure can be created by structured magnetospheric inputs (i.e., structured plasma convection, particle precipitation or Birkland current patterns) or time variations in these input due to storms and substorms. Also, some of the plasma flows that we predicted with our macroscopic models could be unstable, and another one of our goals was to examine the stability of our predicted flows. Because time-dependent, three-dimensional numerical models of the solar-terrestrial environment generally require extensive computer resources, they are usually based on relatively simple mathematical formulations (i.e., simple MHD or hydrodynamic formulations). Therefore, another goal of our NASA Theory Program was to study the conditions under which various mathematical formulations can be applied to specific solar-terrestrial regions. This could involve a detailed comparison of kinetic, semi-kinetic, and hydrodynamic predictions for a given polar wind scenario or it could involve the comparison of a small-scale particle-in-cell (PIC) simulation of a plasma expansion event with a similar macroscopic expansion event. The different mathematical formulations have different strengths and weaknesses and a careful comparison of model predictions for similar geophysical situations provides insight into when the various models can be used with confidence.
The flow of plasma in the solar terrestrial environment
NASA Technical Reports Server (NTRS)
Schunk, Robert W.
1991-01-01
The overall goal of our NASA Theory Program is to study the coupling, time delays, and feedback mechanisms between the various regions of the solar-terrestrial system in a self-consistent, quantitative, manner. To accomplish this goal, it will eventually be necessary to have time-dependent macroscopic models of the different regions of the solar-terrestrial system and we are continually working toward this goal. However, our immediate emphasis is on the near-earth plasma environment, including the ionosphere, the plasmasphere, and the polar wind. In this area, we have developed unique global models that allow us to study the coupling between the different regions. These results are highlighted. Another important aspect of our NASA Theory Program concerns the effect that localized structure has on the macroscopic flow in the ionosphere, plasmasphere, thermosphere and polar wind. The localized structure can be created by structured magnetospheric inputs (i.e., structured plasma convection, particle precipitation or Birkeland current patterns) or time variations in these inputs due to storms and substorms. Also, some of the plasma flows that we predict with our macroscopic models may be unstable. Another one of our goals is to examine the stability of our predicted flows. Because time-dependent three-dimensional numerical models of the solar-terrestrial environment generally require extensive computer resources, they are usually based on relatively simple mathematical formulations (i.e., simple MHD or hydrodynamic formulations). Therefore, another long-range goal of our NASA Theory Program is to study the conditions under which various mathematical formulations can be applied to specific solar-terrestrial regions. This may involve a detailed comparison of kinetic, semikinetic, and hydrodynamic predictions for a given polar wind scenario or it may involve the comparison of a small-scale particle-in-cell (PIC) simulation of a plasma expansion event with a similar macroscopic expansion event. The different mathematical formulations have different strengths and weaknesses and a careful comparison of model predictions for similar geophysical situations will provide insight into when the various models can be used with confidence.
[Research on the feasibility of a magnetic-coupling-driven axial flow blood pump].
Yu, Xiaoqing; Ding, Wenxiang; Wang, Wei; Chen, En; Jiang, Zuming; Zou, Wenyan
2004-02-01
A new-designed axial flow blood pump, dived by magnetic coupling and using internal hollow brushless DC motor and inlet and outlet in line with impeller, was tested in mimic circuit. The results showed good performance of the new pump and indicated that its hydrodynamic characteristic can meet the demands of clinical extracorporeal circulation and auxiliary circulation.
NASA Astrophysics Data System (ADS)
Le Goff, Clément; Lavaud, Romain; Cugier, Philippe; Jean, Fred; Flye-Sainte-Marie, Jonathan; Foucher, Eric; Desroy, Nicolas; Fifas, Spyros; Foveau, Aurélie
2017-03-01
In this paper we used a modelling approach integrating both physical and biological constraints to understand the biogeographical distribution of the great scallop Pecten maximus in the English Channel during its whole life cycle. A 3D bio-hydrodynamical model (ECO-MARS3D) providing environmental conditions was coupled to (i) a population dynamics model and (ii) an individual ecophysiological model (Dynamic Energy Budget model). We performed the coupling sequentially, which underlined the respective role of biological and physical factors in defining P. maximus distribution in the English Channel. Results show that larval dispersion by hydrodynamics explains most of the scallop distribution and enlighten the main known hotspots for the population, basically corresponding to the main fishing areas. The mechanistic description of individual bioenergetics shows that food availability and temperature control growth and reproduction and explain how populations may maintain themselves in particular locations. This last coupling leads to more realistic densities and distributions of adults in the English Channel. The results of this study improves our knowledge on the stock and distribution dynamics of P. maximus, and provides grounds for useful tools to support management strategies.
Coupled structural/thermal/electromagnetic analysis/tailoring of graded composite structures
NASA Technical Reports Server (NTRS)
Mcknight, R. L.; Huang, H.; Hartle, M.
1992-01-01
Accomplishments are described for the fourth years effort of a 5-year program to develop a methodology for coupled structural/thermal/electromagnetic analysis/tailoring of graded component structures. These accomplishments include: (1) demonstration of coupled solution capability; (2) alternate CSTEM electromagnetic technology; (3) CSTEM acoustic capability; (4) CSTEM tailoring; (5) CSTEM composite micromechanics using ICAN; and (6) multiple layer elements in CSTEM.
Nonlinear finite amplitude torsional vibrations of cantilevers in viscous fluids
NASA Astrophysics Data System (ADS)
Aureli, Matteo; Pagano, Christopher; Porfiri, Maurizio
2012-06-01
In this paper, we study torsional vibrations of cantilever beams undergoing moderately large oscillations within a quiescent viscous fluid. The structure is modeled as an Euler-Bernoulli beam, with thin rectangular cross section, under base excitation. The distributed hydrodynamic loading experienced by the vibrating structure is described through a complex-valued hydrodynamic function which incorporates added mass and fluid damping elicited by moderately large rotations. We conduct a parametric study on the two dimensional computational fluid dynamics of a pitching rigid lamina, representative of a generic beam cross section, to investigate the dependence of the hydrodynamic function on the governing flow parameters. As the frequency and amplitude of the oscillation increase, vortex shedding and convection phenomena increase, thus resulting into nonlinear hydrodynamic damping. We derive a handleable nonlinear correction to the classical hydrodynamic function developed for small amplitude torsional vibrations for use in a reduced order nonlinear modal model and we validate theoretical results against experimental findings.
A Bayesian approach to modelling the impact of hydrodynamic shear stress on biofilm deformation
Wilkinson, Darren J.; Jayathilake, Pahala Gedara; Rushton, Steve P.; Bridgens, Ben; Li, Bowen; Zuliani, Paolo
2018-01-01
We investigate the feasibility of using a surrogate-based method to emulate the deformation and detachment behaviour of a biofilm in response to hydrodynamic shear stress. The influence of shear force, growth rate and viscoelastic parameters on the patterns of growth, structure and resulting shape of microbial biofilms was examined. We develop a statistical modelling approach to this problem, using combination of Bayesian Poisson regression and dynamic linear models for the emulation. We observe that the hydrodynamic shear force affects biofilm deformation in line with some literature. Sensitivity results also showed that the expected number of shear events, shear flow, yield coefficient for heterotrophic bacteria and extracellular polymeric substance (EPS) stiffness per unit EPS mass are the four principal mechanisms governing the bacteria detachment in this study. The sensitivity of the model parameters is temporally dynamic, emphasising the significance of conducting the sensitivity analysis across multiple time points. The surrogate models are shown to perform well, and produced ≈ 480 fold increase in computational efficiency. We conclude that a surrogate-based approach is effective, and resulting biofilm structure is determined primarily by a balance between bacteria growth, viscoelastic parameters and applied shear stress. PMID:29649240
Shock waves in strongly coupled plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khlebnikov, Sergei; Kruczenski, Martin; Michalogiorgakis, Georgios
2010-12-15
Shock waves are supersonic disturbances propagating in a fluid and giving rise to dissipation and drag. Weak shocks, i.e., those of small amplitude, can be well described within the hydrodynamic approximation. On the other hand, strong shocks are discontinuous within hydrodynamics and therefore probe the microscopics of the theory. In this paper, we consider the case of the strongly coupled N=4 plasma whose microscopic description, applicable for scales smaller than the inverse temperature, is given in terms of gravity in an asymptotically AdS{sub 5} space. In the gravity approximation, weak and strong shocks should be described by smooth metrics withmore » no discontinuities. For weak shocks, we find the dual metric in a derivative expansion, and for strong shocks we use linearized gravity to find the exponential tail that determines the width of the shock. In particular, we find that, when the velocity of the fluid relative to the shock approaches the speed of light v{yields}1 the penetration depth l scales as l{approx}(1-v{sup 2}){sup 1/4}. We compare the results with second-order hydrodynamics and the Israel-Stewart approximation. Although they all agree in the hydrodynamic regime of weak shocks, we show that there is not even qualitative agreement for strong shocks. For the gravity side, the existence of shock waves implies that there are disturbances of constant shape propagating on the horizon of the dual black holes.« less
Shear viscosity and out of equilibrium dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
El, Andrej; Xu Zhe; Greiner, Carsten
2009-04-15
Using Grad's method, we calculate the entropy production and derive a formula for the second-order shear viscosity coefficient in a one-dimensionally expanding particle system, which can also be considered out of chemical equilibrium. For a one-dimensional expansion of gluon matter with Bjorken boost invariance, the shear tensor and the shear viscosity to entropy density ratio {eta}/s are numerically calculated by an iterative and self-consistent prescription within the second-order Israel-Stewart hydrodynamics and by a microscopic parton cascade transport theory. Compared with {eta}/s obtained using the Navier-Stokes approximation, the present result is about 20% larger at a QCD coupling {alpha}{sub s}{approx}0.3 (withmore » {eta}/s{approx_equal}0.18) and is a factor of 2-3 larger at a small coupling {alpha}{sub s}{approx}0.01. We demonstrate an agreement between the viscous hydrodynamic calculations and the microscopic transport results on {eta}/s, except when employing a small {alpha}{sub s}. On the other hand, we demonstrate that for such small {alpha}{sub s}, the gluon system is far from kinetic and chemical equilibrium, which indicates the break down of second-order hydrodynamics because of the strong nonequilibrium evolution. In addition, for large {alpha}{sub s} (0.3-0.6), the Israel-Stewart hydrodynamics formally breaks down at large momentum p{sub T} > or approx. 3 GeV but is still a reasonably good approximation.« less
Self organization of exotic oil-in-oil phases driven by tunable electrohydrodynamics
Varshney, Atul; Ghosh, Shankar; Bhattacharya, S.; Yethiraj, Anand
2012-01-01
Self organization of large-scale structures in nature - either coherent structures like crystals, or incoherent dynamic structures like clouds - is governed by long-range interactions. In many problems, hydrodynamics and electrostatics are the source of such long-range interactions. The tuning of electrostatic interactions has helped to elucidate when coherent crystalline structures or incoherent amorphous structures form in colloidal systems. However, there is little understanding of self organization in situations where both electrostatic and hydrodynamic interactions are present. We present a minimal two-component oil-in-oil model system where we can control the strength and lengthscale of the electrohydrodynamic interactions by tuning the amplitude and frequency of the imposed electric field. As a function of the hydrodynamic lengthscale, we observe a rich phenomenology of exotic structure and dynamics, from incoherent cloud-like structures and chaotic droplet dynamics, to polyhedral droplet phases, to coherent droplet arrays. PMID:23071902
NASA Astrophysics Data System (ADS)
Cheng, Qing; Yang, Xiaofeng; Shen, Jie
2017-07-01
In this paper, we consider numerical approximations of a hydro-dynamically coupled phase field diblock copolymer model, in which the free energy contains a kinetic potential, a gradient entropy, a Ginzburg-Landau double well potential, and a long range nonlocal type potential. We develop a set of second order time marching schemes for this system using the "Invariant Energy Quadratization" approach for the double well potential, the projection method for the Navier-Stokes equation, and a subtle implicit-explicit treatment for the stress and convective term. The resulting schemes are linear and lead to symmetric positive definite systems at each time step, thus they can be efficiently solved. We further prove that these schemes are unconditionally energy stable. Various numerical experiments are performed to validate the accuracy and energy stability of the proposed schemes.
Phase-space methods for the spin dynamics in condensed matter systems
Hurst, Jérôme; Manfredi, Giovanni
2017-01-01
Using the phase-space formulation of quantum mechanics, we derive a four-component Wigner equation for a system composed of spin- fermions (typically, electrons) including the Zeeman effect and the spin–orbit coupling. This Wigner equation is coupled to the appropriate Maxwell equations to form a self-consistent mean-field model. A set of semiclassical Vlasov equations with spin effects is obtained by expanding the full quantum model to first order in the Planck constant. The corresponding hydrodynamic equations are derived by taking velocity moments of the phase-space distribution function. A simple closure relation is proposed to obtain a closed set of hydrodynamic equations. This article is part of the themed issue ‘Theoretical and computational studies of non-equilibrium and non-statistical dynamics in the gas phase, in the condensed phase and at interfaces’. PMID:28320903
NASA Astrophysics Data System (ADS)
Hughes, Anna; Boley, Aaron C.
2016-10-01
The growth and migration of planetesimals in young protoplanetary disks are fundamental to the planet formation process. A number of mechanisms seemingly inhibit small grains from growing to sizes much larger than a centimeter, limiting planetesimal growth. In spite of this, the meteoritic record, abundance of exoplanets, and the lifetimes of disks considered altogether indicate that growth must be rapid and common. If a small number of 100-km sized planetesimals do form by some method such as the streaming instability, then gas drag effects could enable those objects to accrete small solids efficiently. In particular, accretion rates for such planetesimals could be higher or lower than rates based on the geometric cross-section and gravitational focusing alone. The local gas conditions and properties of accreting bodies select a locally optimal accretion size for the pebbles. As planetesimals accrete pebbles, they feel an additional angular momentum exchange - causing the planetesimal to slowly drift inward, which becomes significant at short orbital periods. We present self-consistent hydrodynamic simulations with direct particle integration and gas-drag coupling to evaluate the rate of planetesimal growth due to pebble accretion. We explore a range of particle sizes, planetesimal properties, and disk conditions using wind tunnel simulations. These results are followed by numerical analysis of planetesimal drift rates at a variety of stellar distances.
Tanase, Maya; Zolla, Valerio; Clement, Cristina C; Borghi, Francesco; Urbanska, Aleksandra M; Rodriguez-Navarro, Jose Antonio; Roda, Barbara; Zattoni, Andrea; Reschiglian, Pierluigi; Cuervo, Ana Maria; Santambrogio, Laura
2016-01-01
Herein we describe a protocol that uses hollow-fiber flow field-flow fractionation (FFF) coupled with multiangle light scattering (MALS) for hydrodynamic size-based separation and characterization of complex protein aggregates. The fractionation method, which requires 1.5 h to run, was successfully modified from the analysis of protein aggregates, as found in simple protein mixtures, to complex aggregates, as found in total cell lysates. In contrast to other related methods (filter assay, analytical ultracentrifugation, gel electrophoresis and size-exclusion chromatography), hollow-fiber flow FFF coupled with MALS allows a flow-based fractionation of highly purified protein aggregates and simultaneous measurement of their molecular weight, r.m.s. radius and molecular conformation (e.g., round, rod-shaped, compact or relaxed). The polyethersulfone hollow fibers used, which have a 0.8-mm inner diameter, allow separation of as little as 20 μg of total cell lysates. In addition, the ability to run the samples in different denaturing and nondenaturing buffer allows defining true aggregates from artifacts, which can form during sample preparation. The protocol was set up using Paraquat-induced carbonylation, a model that induces protein aggregation in cultured cells. This technique will advance the biochemical, proteomic and biophysical characterization of molecular-weight aggregates associated with protein mutations, as found in many CNS degenerative diseases, or chronic oxidative stress, as found in aging, and chronic metabolic and inflammatory conditions. PMID:25521790
Makler-Pick, Vardit; Hipsey, Matthew R; Zohary, Tamar; Carmel, Yohay; Gal, Gideon
2017-03-29
The food web of Lake Kinneret contains intraguild predation (IGP). Predatory invertebrates and planktivorous fish both feed on herbivorous zooplankton, while the planktivorous fish also feed on the predatory invertebrates. In this study, a complex mechanistic hydrodynamic-ecological model, coupled to a bioenergetics-based fish population model (DYCD-FISH), was employed with the aim of revealing IGP dynamics. The results indicate that the predation pressure of predatory zooplankton on herbivorous zooplankton varies widely, depending on the season. At the time of its annual peak, it is 10-20 times higher than the fish predation pressure. When the number of fish was significantly higher, as occurs in the lake after atypical meteorological years, the effect was a shift from a bottom-up controlled ecosystem, to the top-down control of planktivorous fish and a significant reduction of predatory and herbivorous zooplankton biomass. Yet, seasonally, the decrease in predatory-zooplankton biomass was followed by a decrease in their predation pressure on herbivorous zooplankton, leading to an increase of herbivorous zooplankton biomass to an extent similar to the base level. The analysis demonstrates the emergence of non-equilibrium IGP dynamics due to intra-annual and inter-annual changes in the physico-chemical characteristics of the lake, and suggests that IGP dynamics should be considered in food web models in order to more accurately capture mass transfer and trophic interactions.
Noise Production of an Idealized Two-Dimensional Fish School
NASA Astrophysics Data System (ADS)
Wagenhoffer, Nathan; Moored, Keith; Jaworski, Justin
2017-11-01
The analysis of quiet bio-inspired propulsive concepts requires a rapid, unified computational framework that integrates the coupled fluid-solid dynamics of swimmers and their wakes with the resulting noise generation. Such a framework is presented for two-dimensional flows, where the fluid motion is modeled by an unsteady boundary element method with a vortex-particle wake. The unsteady surface forces from the potential flow solver are then passed to an acoustic boundary element solver to predict the radiated sound in low-Mach-number flows. The coupled flow-acoustic solver is validated against canonical vortex-sound problems. A diamond arrangement of four airfoils are subjected to traveling wave kinematics representing a known idealized pattern for a school of fish, and the airfoil motion and inflow values are derived from the range of Strouhal values common to many natural swimmers. The coupled flow-acoustic solver estimates and analyzes the hydrodynamic performance and noise production of the idealized school of swimmers.
Gillies, Eric A; Bondarenko, Volodymyr; Cosson, Jacky; Pacey, Allan A
2013-02-01
The flagella of sturgeon sperm have an ultrastructure comprising paddle-like fins extending along most of their length. These fins are seen in several other marine and freshwater fish. The sperm of these fish are fast swimmers and are relatively short lived: it is therefore tempting to think of these fins as having evolved for hydrodynamic advantage, but the actual advantage they impart, at such a small length scale and slow speed, is unclear. The phrase "the fins improve hydrodynamic efficiency" is commonly found in biological literature, yet little hydrodynamic analysis has previously been used to support such conjectures. In this paper, we examine various hydrodynamic models of sturgeon sperm and investigate both swimming velocity and energy expenditure. All of the models indicate a modest hydrodynamic advantage of finned sperm, in both straight line swimming speed and a hydrodynamic efficiency measure. We find a hydrodynamic advantage for a flagellum with fins, over one without fins, of the order of 15-20% in straight line propulsive velocity and 10-15% in a hydrodynamic efficiency measure. Copyright © 2012 Wiley Periodicals, Inc.
Cooperative motion of intrinsic and actuated semiflexible swimmers
NASA Astrophysics Data System (ADS)
Llopis, I.; Pagonabarraga, I.; Cosentino Lagomarsino, M.; Lowe, C. P.
2013-03-01
We examine the phenomenon of hydrodynamic-induced cooperativity for pairs of flagellated micro-organism swimmers, of which spermatozoa cells are an example. We consider semiflexible swimmers, where inextensible filaments are driven by an internal intrinsic force and torque-free mechanism (intrinsic swimmers). The velocity gain for swimming cooperatively, which depends on both the geometry and the driving, develops as a result of the near-field coupling of bending and hydrodynamic stresses. We identify the regimes where hydrodynamic cooperativity is advantageous and quantify the change in efficiency. When the filaments' axes are parallel, hydrodynamic interaction induces a directional instability that causes semiflexible swimmers that profit from swimming together to move apart from each other. Biologically, this implies that flagella need to select different synchronized collective states and to compensate for directional instabilities (e.g., by binding) in order to profit from swimming together. By analyzing the cooperative motion of pairs of externally actuated filaments, we assess the impact that stress distribution along the filaments has on their collective displacements.
Theers, Mario; Winkler, Roland G
2014-08-28
We investigate the emergent dynamical behavior of hydrodynamically coupled microrotors by means of multiparticle collision dynamics (MPC) simulations. The two rotors are confined in a plane and move along circles driven by active forces. Comparing simulations to theoretical results based on linearized hydrodynamics, we demonstrate that time-dependent hydrodynamic interactions lead to synchronization of the rotational motion. Thermal noise implies large fluctuations of the phase-angle difference between the rotors, but synchronization prevails and the ensemble-averaged time dependence of the phase-angle difference agrees well with analytical predictions. Moreover, we demonstrate that compressibility effects lead to longer synchronization times. In addition, the relevance of the inertia terms of the Navier-Stokes equation are discussed, specifically the linear unsteady acceleration term characterized by the oscillatory Reynolds number ReT. We illustrate the continuous breakdown of synchronization with the Reynolds number ReT, in analogy to the continuous breakdown of the scallop theorem with decreasing Reynolds number.
2015-01-01
Guanine-rich oligonucleotides can adopt noncanonical tertiary structures known as G-quadruplexes, which can exist in different forms depending on experimental conditions. High-resolution structural methods, such as X-ray crystallography and NMR spectroscopy, have been of limited usefulness in resolving the inherent structural polymorphism associated with G-quadruplex formation. The lack of, or the ambiguous nature of, currently available high-resolution structural data, in turn, has severely hindered investigations into the nature of these structures and their interactions with small-molecule inhibitors. We have used molecular dynamics in conjunction with hydrodynamic bead modeling to study the structures of the human telomeric G-quadruplex-forming sequences at the atomic level. We demonstrated that molecular dynamics can reproduce experimental hydrodynamic measurements and thus can be a powerful tool in the structural study of existing G-quadruplex sequences or in the prediction of new G-quadruplex structures. PMID:24779348
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Eungsoo; Manuel, Lance; Curcic, Milan
In the United States, potential offshore wind plant sites have been identified along the Atlantic seaboard and in the Gulf of Mexico. It is imperative that we define external conditions associated with hurricanes and severe winter storms and consider load cases for which wind turbines may need to be designed. We selected two hurricanes, Ike (2008) and Sandy (2012), and investigated the effect these tropical storms would have on bottom-supported offshore wind turbines that were hypothetically in or close to their path as they made landfall. For realistic turbine loads assessment, it is important that the coupled influences of themore » changing wind, wave, and current fields are simulated throughout the evolution of the hurricanes. We employed a coupled model--specifically, the University of Miami Coupled Model (UMCM)--that integrates atmospheric, wave, and ocean components to produce needed wind, wave, and current data. The wind data are used to generate appropriate vertical wind profiles and full wind velocity fields including turbulence; the current field over the water column is obtained by interpolated discrete output current data; and short-crested irregular second-order waves are simulated using output directional wave spectra from the coupled model. We studied two monopile-supported offshore wind turbines sited in 20 meters of water in the Gulf of Mexico to estimate loads during Hurricane Ike, and a jacket space-frame platform-supported offshore wind turbine sited in 50 meters of water in the mid-Atlantic region to estimate loads during Hurricane Sandy. In this report we discuss in detail how the simulated hurricane wind, wave, and current output data are used in turbine loads studies. In addition, important characteristics of the external conditions are studied, including the relative importance of swell versus wind seas, aerodynamic versus hydrodynamic forces, current velocity effects, yaw control options for the turbine, hydrodynamic drag versus inertia forces, and soil-structure interaction effects. A detailed framework is presented that explains how coupled inputs can be included in turbine loads studies during a hurricane. This framework can aid in future efforts aimed at developing offshore wind turbine design criteria and load cases related to hurricanes.« less
NASA Astrophysics Data System (ADS)
Cossarini, Gianpiero; Querin, Stefano; Solidoro, Cosimo; Sannino, Gianmaria; Lazzari, Paolo; Di Biagio, Valeria; Bolzon, Giorgio
2017-04-01
In this paper, we present a coupling scheme between the Massachusetts Institute of Technology general circulation model (MITgcm) and the Biogeochemical Flux Model (BFM). The MITgcm and BFM are widely used models for geophysical fluid dynamics and for ocean biogeochemistry, respectively, and they benefit from the support of active developers and user communities. The MITgcm is a state-of-the-art general circulation model for simulating the ocean and the atmosphere. This model is fully 3-D (including the non-hydrostatic term of momentum equations) and is characterized by a finite-volume discretization and a number of additional features enabling simulations from global (O(107) m) to local scales (O(100) m). The BFM is a biogeochemical model based on plankton functional type formulations, and it simulates the cycling of a number of constituents and nutrients within marine ecosystems. The online coupling presented in this paper is based on an open-source code, and it is characterized by a modular structure. Modularity preserves the potentials of the two models, allowing for a sustainable programming effort to handle future evolutions in the two codes. We also tested specific model options and integration schemes to balance the numerical accuracy against the computational performance. The coupling scheme allows us to solve several processes that are not considered by each of the models alone, including light attenuation parameterizations along the water column, phytoplankton and detritus sinking, external inputs, and surface and bottom fluxes. Moreover, this new coupled hydrodynamic-biogeochemical model has been configured and tested against an idealized problem (a cyclonic gyre in a mid-latitude closed basin) and a realistic case study (central part of the Mediterranean Sea in 2006-2012). The numerical results consistently reproduce the interplay of hydrodynamics and biogeochemistry in both the idealized case and Mediterranean Sea experiments. The former reproduces correctly the alternation of surface bloom and deep chlorophyll maximum dynamics driven by the seasonal cycle of winter vertical mixing and summer stratification; the latter simulates the main basin-wide and mesoscale spatial features of the physical and biochemical variables in the Mediterranean, thus demonstrating the applicability of the new coupled model to a wide range of ocean biogeochemistry problems.
Hydrodynamics of Turning Flocks.
Yang, Xingbo; Marchetti, M Cristina
2015-12-18
We present a hydrodynamic model of flocking that generalizes the familiar Toner-Tu equations to incorporate turning inertia of well-polarized flocks. The continuum equations controlled by only two dimensionless parameters, orientational inertia and alignment strength, are derived by coarse-graining the inertial spin model recently proposed by Cavagna et al. The interplay between orientational inertia and bend elasticity of the flock yields anisotropic spin waves that mediate the propagation of turning information throughout the flock. The coupling between spin-current density to the local vorticity field through a nonlinear friction gives rise to a hydrodynamic mode with angular-dependent propagation speed at long wavelengths. This mode becomes unstable as a result of the growth of bend and splay deformations augmented by the spin wave, signaling the transition to complex spatiotemporal patterns of continuously turning and swirling flocks.
2-dimensional implicit hydrodynamics on adaptive grids
NASA Astrophysics Data System (ADS)
Stökl, A.; Dorfi, E. A.
2007-12-01
We present a numerical scheme for two-dimensional hydrodynamics computations using a 2D adaptive grid together with an implicit discretization. The combination of these techniques has offered favorable numerical properties applicable to a variety of one-dimensional astrophysical problems which motivated us to generalize this approach for two-dimensional applications. Due to the different topological nature of 2D grids compared to 1D problems, grid adaptivity has to avoid severe grid distortions which necessitates additional smoothing parameters to be included into the formulation of a 2D adaptive grid. The concept of adaptivity is described in detail and several test computations demonstrate the effectivity of smoothing. The coupled solution of this grid equation together with the equations of hydrodynamics is illustrated by computation of a 2D shock tube problem.
Unconventional transport in ultraclean graphene constriction devices
NASA Astrophysics Data System (ADS)
Pita Vidal, Marta; Ma, Qiong; Watanabe, Kenji; Taniguchi, Takashi; Jarillo-Herrero, Pablo
Under mesoscopic conditions, strong electron-electron interactions and weak electron-phonon coupling in graphene lead to hydrodynamic behavior of electrons, resulting in unusual and unexpected transport phenomena. Specifically, this hydrodynamical collective cooperation of electrons is predicted to enhance the flow of electrical current, leading to a striking higher-than-ballistic conductance through a narrow geometrical constriction. To access the hydrodynamic regime, we fabricated high-quality, low-disorder graphene nano-constriction devices encapsulated by hexagonal boron nitride, where electron-electron scattering dominates impurity scattering. We will report on our systematic four-probe conductance measurements on devices with different constriction widths as a function of number density and temperature. The observation of quantum transport phenomena that are inconsistent with the non-interacting ballistic free-fermion model would suggest a macroscopic transport signature of electron viscosity.
Nonisothermal fluctuating hydrodynamics and Brownian motion
NASA Astrophysics Data System (ADS)
Falasco, G.; Kroy, K.
2016-03-01
The classical theory of Brownian dynamics follows from coarse graining the underlying linearized fluctuating hydrodynamics of the solvent. We extend this procedure to globally nonisothermal conditions, requiring only a local thermal equilibration of the solvent. Starting from the conservation laws, we establish the stochastic equations of motion for the fluid momentum fluctuations in the presence of a suspended Brownian particle. These are then contracted to the nonisothermal generalized Langevin description of the suspended particle alone, for which the coupling to stochastic temperature fluctuations is found to be negligible under typical experimental conditions.
Capillary electrophoresis (CE) with hydride generation inductively coupled plasma mass spectrometry was used to determine four arsenicals and two selenium species. Selenate (SeVI) was reduced on-line to selenite (SeIV') by mixing the CE effluent with concentrated HCl. A microporo...
Hydrodynamic damping and stiffness prediction in Francis turbine runners using CFD
NASA Astrophysics Data System (ADS)
Nennemann, Bernd; Monette, Christine; Chamberland-Lauzon, Joël
2016-11-01
Fluid-structure interaction (FSI) has a major impact on the dynamic response of the structural components of hydroelectric turbines. On mid- to high-head Francis runners, the rotor-stator interaction (RSI) phenomenon has to be considered carefully during the design phase to avoid operational issues on the prototype machine. The RSI dynamic response amplitudes of the runner are driven by three main factors: (1) pressure forcing amplitudes, (2) excitation frequencies in relation to natural frequencies and (3) damping. All three of the above factors are significantly influenced by both mechanical and hydraulic parameters. The prediction of the first two factors has been largely documented in the literature. However, the prediction of hydro-dynamic damping has only recently and only partially been treated. Two mode-based approaches (modal work and coupled single degree of freedom) for the prediction of flow-added dynamic parameters using separate finite element analyses (FEA) in still water and unsteady computational fluid dynamic (CFD) analyses are presented. The modal motion is connected to the time resolved CFD calculation by means of dynamic mesh deformation. This approach has partially been presented in a previous paper applied to a simplified hydrofoil. The present work extends the approach to Francis runners under RSI loading. In particular the travelling wave mode shapes of turbine runners are considered. Reasonable agreement with experimental results is obtained in parts of the operating range.
Sensitivity Analysis for Coupled Aero-structural Systems
NASA Technical Reports Server (NTRS)
Giunta, Anthony A.
1999-01-01
A novel method has been developed for calculating gradients of aerodynamic force and moment coefficients for an aeroelastic aircraft model. This method uses the Global Sensitivity Equations (GSE) to account for the aero-structural coupling, and a reduced-order modal analysis approach to condense the coupling bandwidth between the aerodynamic and structural models. Parallel computing is applied to reduce the computational expense of the numerous high fidelity aerodynamic analyses needed for the coupled aero-structural system. Good agreement is obtained between aerodynamic force and moment gradients computed with the GSE/modal analysis approach and the same quantities computed using brute-force, computationally expensive, finite difference approximations. A comparison between the computational expense of the GSE/modal analysis method and a pure finite difference approach is presented. These results show that the GSE/modal analysis approach is the more computationally efficient technique if sensitivity analysis is to be performed for two or more aircraft design parameters.
A tightly coupled non-equilibrium model for inductively coupled radio-frequency plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Munafò, A., E-mail: munafo@illinois.edu; Alfuhaid, S. A., E-mail: alfuhai2@illinois.edu; Panesi, M., E-mail: mpanesi@illinois.edu
2015-10-07
The objective of the present work is the development of a tightly coupled magneto-hydrodynamic model for inductively coupled radio-frequency plasmas. Non Local Thermodynamic Equilibrium (NLTE) effects are described based on a hybrid State-to-State approach. A multi-temperature formulation is used to account for thermal non-equilibrium between translation of heavy-particles and vibration of molecules. Excited electronic states of atoms are instead treated as separate pseudo-species, allowing for non-Boltzmann distributions of their populations. Free-electrons are assumed Maxwellian at their own temperature. The governing equations for the electro-magnetic field and the gas properties (e.g., chemical composition and temperatures) are written as a coupled systemmore » of time-dependent conservation laws. Steady-state solutions are obtained by means of an implicit Finite Volume method. The results obtained in both LTE and NLTE conditions over a broad spectrum of operating conditions demonstrate the robustness of the proposed coupled numerical method. The analysis of chemical composition and temperature distributions along the torch radius shows that: (i) the use of the LTE assumption may lead to an inaccurate prediction of the thermo-chemical state of the gas, and (ii) non-equilibrium phenomena play a significant role close the walls, due to the combined effects of Ohmic heating and macroscopic gradients.« less
Hydrodynamic fabrication of structurally gradient ZnO nanorods.
Kim, Hyung Min; Youn, Jae Ryoun; Song, Young Seok
2016-02-26
We studied a new approach where structurally gradient nanostructures were fabricated by means of hydrodynamics. Zinc oxide (ZnO) nanorods were synthesized in a drag-driven rotational flow in a controlled manner. The structural characteristics of nanorods such as orientation and diameter were determined by momentum and mass transfer at the substrate surface. The nucleation of ZnO was induced by shear stress which plays a key role in determining the orientation of ZnO nanorods. The nucleation and growth of such nanostructures were modeled theoretically and analyzed numerically to understand the underlying physics of the fabrication of nanostructures controlled by hydrodynamics. The findings demonstrated that the precise control of momentum and mass transfer enabled the formation of ZnO nanorods with a structural gradient in diameter and orientation.
Resurgence and hydrodynamic attractors in Gauss-Bonnet holography
NASA Astrophysics Data System (ADS)
Casalderrey-Solana, Jorge; Gushterov, Nikola I.; Meiring, Ben
2018-04-01
We study the convergence of the hydrodynamic series in the gravity dual of Gauss-Bonnet gravity in five dimensions with negative cosmological constant via holography. By imposing boost invariance symmetry, we find a solution to the Gauss-Bonnet equation of motion in inverse powers of the proper time, from which we can extract high order corrections to Bjorken flow for different values of the Gauss-Bonnet parameter λGB. As in all other known examples the gradient expansion is, at most, an asymptotic series which can be understood through applying the techniques of Borel-Padé summation. As expected from the behaviour of the quasi-normal modes in the theory, we observe that the singularities in the Borel plane of this series show qualitative features that interpolate between the infinitely strong coupling limit of N=4 Super Yang Mills theory and the expectation from kinetic theory. We further perform the Borel resummation to constrain the behaviour of hydrodynamic attractors beyond leading order in the hydrodynamic expansion. We find that for all values of λGB considered, the convergence of different initial conditions to the resummation and its hydrodynamization occur at large and comparable values of the pressure anisotropy.
NASA Astrophysics Data System (ADS)
Smith, J. P.; Reed, A. H.; Boyd, T. J.
2016-12-01
Changes in hydrodynamic shear, variations in ionic strength (salinity), and to a lesser degree pH, along the salinity gradient influences clay-organic matter (OM) flocculation, disaggregation and particle size distributions with depth in natural river-estuarine waters. The scale and rate of aggregation and disaggregation of specific clay-OM flocs assemblages under different hydrodynamic and physiochemical conditions in estuaries or coastal river systems is an area of ongoing research. Chromophoric dissolved organic matter (CDOM) is the fraction of the DOM pool that absorbs and/or emits light at discrete wavelengths when excited. The CDOM absorbance and Excitation Emission Matrix (EEM) fluorescence spectra in natural waters can potentially be used to investigate clay-OM interactions and implications for formation kinetics, size, strength, and settling velocities of cohesive particulate aggregates (flocs and suspended sediments) as they respond to hydrodynamic shear under different physiochemical conditions. Size characteristics of particulate matter and sediment samples collected from the Misa River in Italy in 2014 were compared to the optical properties of the water column to identify potential OM components/constituents influencing flocculation processes in riverine-estuarine systems. The EEMs results were coupled with a parallel factor analysis (PARAFAC) model to associate previously identified EEMS regions of CDOM components to those found in the waters of this study and identify the main OM components/constituents influencing the multi-way variance of the EEMS data. Initial results from the Misa River and subsequent studies show a difference in dominant DOM types by salinity, clay-OM composition, and flow conditions that may be indicative of system specific particle flocculation and disaggregation under different hydrodynamic regimes. These results suggest that the CDOM absorbance and EEMS fluorescence spectra in natural waters can potentially be used to qualify the influence of OM on the flocculation and sedimentation of clay particulates in river-estuarine systems under different physiochemical and hydrodynamic conditions.
Flexibility Considerations on the Hydrodynamic Loading on a Vertical Wedge Drop
NASA Astrophysics Data System (ADS)
Ren, Zhongshu; Wang, Zhaoyuan; Judge, Carolyn; Stern, Fred; Ikeda, Christine
2017-11-01
High-speed craft operating at in waves frequently become airborne and slam into the water surface. This fluid-structure interaction problem is important to understand in order to increase the operating envelope of these craft. The goals of the current work are to investigate both the hydrodynamic loads and the resulting structural response on a planing hull. A V-shaped wedge is dropped vertically into calm water. The hydrodynamic pressure is measured using pressure sensors at discrete points on the hull. Two hulls are studied: one is rigid and one is flexible. Predictions of the hydrodynamic loading are made using Wagner's theory, Vorus's theory, and simulations in CFDShip Iowa. These predictions assume the structure is completely rigid. These predictions of the pressure coefficient match well with the rigid hull, as expected. The spray root is tracked in the rigid experimental set and compared with the theoretical and computational models. The pressure coefficient measured on the flexible hull shows discrepancies with the predictions due to the fluid-structure interaction. These discrepancies are quantified and interpreted in light of the structural flexibility. Funding for this work is from the Office of Naval Research Grant Number N00014-16-1-3188.
Coupled Responses of Sewol, Twin Barges and Slings During Salvage
NASA Astrophysics Data System (ADS)
Yao, Zong; Wang, Wei-ping; Jiang, Yan; Chen, Shi-hai
2018-04-01
Korean Sewol is successfully lifted up with the strand jack system based on twin barges. During the salvage operation, two barges and Sewol encounter offshore environmental conditions of wave, current and wind. It is inevitable that the relative motions among the three bodies are coupled with the sling tensions, which may cause big dynamic loads for the lifting system. During the project engineering phase and the site operation, it is necessary to build up a simulation model that can precisely generate the coupled responses in order to define a suitable weather window and monitor risks for the salvage operation. A special method for calculating multibody coupled responses is introduced into Sewol salvage project. Each body's hydrodynamic force and moment in multibody configuration is calculated in the way that one body is treated as freely moving in space, while other bodies are set as fixed globally. The hydrodynamic force and moment are then applied into a numerical simulation model with some calibration coefficients being inserted. These coefficients are calibrated with the model test results. The simulation model built up this way can predict coupled responses with the similar accuracy as the model test and full scale measurement, and particularly generate multibody shielding effects. Site measured responses and the responses only resulted from from the simulation keep project management simultaneously to judge risks of each salvage stage, which are important for success of Sewol salvage.
Klinkenberg effect in hydrodynamics of gas flow through anisotropic porous materials
NASA Astrophysics Data System (ADS)
Wałowski, Grzegorz; Filipczak, Gabriel
2017-10-01
This study discusses results of experiments on hydrodynamic assessment of gas flow through backbone (skeletal) porous materials with an anisotropic structure. The research was conducted upon materials of diversified petrographic characteristics, both natural origin (rocky, pumice) and process materials (char and coke). The study was conducted for a variety of hydrodynamic conditions, using air, as well as for nitrogen and carbon dioxide. The basis for assessing hydrodynamics of gas flow through porous material was a gas stream that results from the pressure forcing such flow. The results of measurements indicate a clear impact of the type of material on the gas permeability, and additionally - as a result of their anisotropic internal structure - to a significant effect of the flow direction on the value of gas stream.
Final Report: Ionization chemistry of high temperature molecular fluids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fried, L E
2007-02-26
With the advent of coupled chemical/hydrodynamic reactive flow models for high explosives, understanding detonation chemistry is of increasing importance to DNT. The accuracy of first principles detonation codes, such as CHEETAH, are dependent on an accurate representation of the species present under detonation conditions. Ionic species and non-molecular phases are not currently included coupled chemistry/hydrodynamic simulations. This LDRD will determine the prevalence of such species during high explosive detonations, by carrying out experimental and computational investigation of common detonation products under extreme conditions. We are studying the phase diagram of detonation products such as H{sub 2}O, or NH{sub 3} andmore » mixtures under conditions of extreme pressure (P > 1 GPa) and temperature (T > 1000K). Under these conditions, the neutral molecular form of matter transforms to a phase dominated by ions. The phase boundaries of such a region are unknown.« less
Magnuson, M L; Creed, J T; Brockhoff, C A
1997-10-01
Capillary electrophoresis (CE) with hydride generation inductively coupled plasma mass spectrometry was used to determine four arsenicals and two selenium species. Selenate (SeVI) was reduced on-line to selenite (SeIV) by mixing the CE effluent with concentrated HCl. A microporous PTFE tube was used as a gas-liquid separator to eliminate the 40Ar37Cl and 40Ar35Cl interference from 77Se and 75As, respectively. The direction of the electroosmotic flow during CE was reversed with hydrodynamic pressure, which allowed increased freedom of buffer choice. For conventional pressure injection, method detection limits for SeIV and SeVI based on seven replicate injections were 10 and 24 pg, respectively. Recoveries of SeIV and SeVI in drinking water were measured.
NASA Astrophysics Data System (ADS)
Xu, Yan; Cai, Yanpeng; Sun, Tao; Yang, Zhifeng; Hao, Yan
2018-03-01
A multiphase finite-element hydrodynamic model and a phytoplankton simulation approach are coupled into a general modeling framework. It can help quantify impacts of land reclamation. Compared with previous studies, it has the following improvements: a) reflection of physical currents and suitable growth areas for phytoplankton, (b) advancement of a simulation method to describe the suitability of phytoplankton in the sea water. As the results, water velocity is 16.7% higher than that of original state without human disturbances. The related filling engineering has shortened sediment settling paths, weakened the vortex flow and reduced the capacity of material exchange. Additionally, coastal reclamation lead to decrease of the growth suitability index (GSI), thus it cut down the stability of phytoplankton species approximately 4-12%. The proposed GSI can be applied to the management of coastal reclamation for minimizing ecological impacts. It will be helpful for facilitating identifying suitable phytoplankton growth areas.
NASA Astrophysics Data System (ADS)
Hoch, J. M.; Bierkens, M. F.; Van Beek, R.; Winsemius, H.; Haag, A.
2015-12-01
Understanding the dynamics of fluvial floods is paramount to accurate flood hazard and risk modeling. Currently, economic losses due to flooding constitute about one third of all damage resulting from natural hazards. Given future projections of climate change, the anticipated increase in the World's population and the associated implications, sound knowledge of flood hazard and related risk is crucial. Fluvial floods are cross-border phenomena that need to be addressed accordingly. Yet, only few studies model floods at the large-scale which is preferable to tiling the output of small-scale models. Most models cannot realistically model flood wave propagation due to a lack of either detailed channel and floodplain geometry or the absence of hydrologic processes. This study aims to develop a large-scale modeling tool that accounts for both hydrologic and hydrodynamic processes, to find and understand possible sources of errors and improvements and to assess how the added hydrodynamics affect flood wave propagation. Flood wave propagation is simulated by DELFT3D-FM (FM), a hydrodynamic model using a flexible mesh to schematize the study area. It is coupled to PCR-GLOBWB (PCR), a macro-scale hydrological model, that has its own simpler 1D routing scheme (DynRout) which has already been used for global inundation modeling and flood risk assessments (GLOFRIS; Winsemius et al., 2013). A number of model set-ups are compared and benchmarked for the simulation period 1986-1996: (0) PCR with DynRout; (1) using a FM 2D flexible mesh forced with PCR output and (2) as in (1) but discriminating between 1D channels and 2D floodplains, and, for comparison, (3) and (4) the same set-ups as (1) and (2) but forced with observed GRDC discharge values. Outputs are subsequently validated against observed GRDC data at Óbidos and flood extent maps from the Dartmouth Flood Observatory. The present research constitutes a first step into a globally applicable approach to fully couple hydrologic with hydrodynamic computations while discriminating between 1D-channels and 2D-floodplains. Such a fully-fledged set-up would be able to provide higher-order flood hazard information, e.g. time to flooding and flood duration, ultimately leading to improved flood risk assessment and management at the large scale.
NASA Astrophysics Data System (ADS)
Demissie, H. K.; Bilskie, M. V.; Hagen, S. C.; Morris, J. T.; Alizad, K.
2015-12-01
Sea level rise (SLR) can significantly impact both human and ecological habitats in coastal and inland regions. Studies show that coastal estuaries and marsh systems are at the risk of losing their productivity under increasing rates of SLR (Donnelly and Bertness, 2001; Warren and Niering, 1993). The integrated hydrodynamic-marsh model (Hagen et al., 2013 & Alizad et al., 2015) uses a set of parameters and conditions to simulate tidal flow through the salt marsh of Plum Island Estuary, Massachusetts. The hydrodynamic model computes mean high water (MHW) and mean low water (MLW) and is coupled to the zero-dimensional Marsh Equilibrium Model (Morris et al. 2002) to estimate changes in biomass productivity and accretion. The coupled hydrodynamic-marsh model was used to examine the effects of different scenarios of SLR (Parris et al., 2012) on salt marsh productivity for the year 2100 in the Plum Island Estuary. In this particular study, responses of salt marsh production for different scenarios of SLR were compared. The study shows higher productivity of salt marsh under a low SLR scenario and lower productivity under the higher SLR. The study also demonstrates the migration of salt marshes under higher SLR scenarios. References: Alizad, K., S. C. Hagen, Morris, J.T., Bacopoulos, P., Bilskie, M.V., and John, F.W. 2015. A coupled, two-dimensional hydrodynamic-marsh model with biological feedback. Limnology and Oceanography, In review. Donnelly, J.P., and M.D. Bertness. 2001. Rapid shoreward encroachment of salt marsh cordgrass in response to accelerated sea-level rise. Proceedings of the National Academy of Sciences 98: 14218-14223.Hagen, S.C., J.T. Morris, P. Bacopoulos, and J. Weishampel. 2013. Sea-Level Rise Impact on a Salt Marsh System of the Lower St. Johns River. ASCE Journal of Waterway, Port, Coastal, and Ocean Engineering, Vol. 139, No. 2, March/April 2013, pp. 118-125.Morris, J.T., P.V. Sundareshwar, C.T. Nietch, B. Kjerfve, and D.R. Cahoon. 2002. Responses of coastal wetlands to rising sea level. Ecology 83: 2869-2877.Parris, A., P. Bromirski, V. Burkett, D. Cayan, M. Culver, J. Hall, R. Horton, K. Knuuti, R. Moss, J. Obeysekera, A. Sallenger, and J. Weiss. 2012. Global Sea Level Rise Scenarios for the US National Climate Assessment. In NOAA Tech Memo OAR CPO, 1-37.
Effects of Second-Order Hydrodynamics on a Semisubmersible Floating Offshore Wind Turbine: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bayati, I.; Jonkman, J.; Robertson, A.
2014-07-01
The objective of this paper is to assess the second-order hydrodynamic effects on a semisubmersible floating offshore wind turbine. Second-order hydrodynamics induce loads and motions at the sum- and difference-frequencies of the incident waves. These effects have often been ignored in offshore wind analysis, under the assumption that they are significantly smaller than first-order effects. The sum- and difference-frequency loads can, however, excite eigenfrequencies of the system, leading to large oscillations that strain the mooring system or vibrations that cause fatigue damage to the structure. Observations of supposed second-order responses in wave-tank tests performed by the DeepCwind consortium at themore » MARIN offshore basin suggest that these effects might be more important than originally expected. These observations inspired interest in investigating how second-order excitation affects floating offshore wind turbines and whether second-order hydrodynamics should be included in offshore wind simulation tools like FAST in the future. In this work, the effects of second-order hydrodynamics on a floating semisubmersible offshore wind turbine are investigated. Because FAST is currently unable to account for second-order effects, a method to assess these effects was applied in which linearized properties of the floating wind system derived from FAST (including the 6x6 mass and stiffness matrices) are used by WAMIT to solve the first- and second-order hydrodynamics problems in the frequency domain. The method has been applied to the OC4-DeepCwind semisubmersible platform, supporting the NREL 5-MW baseline wind turbine. The loads and response of the system due to the second-order hydrodynamics are analysed and compared to first-order hydrodynamic loads and induced motions in the frequency domain. Further, the second-order loads and induced response data are compared to the loads and motions induced by aerodynamic loading as solved by FAST.« less
Dynamic simulations of geologic materials using combined FEM/DEM/SPH analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morris, J P; Johnson, S M
2008-03-26
An overview of the Lawrence Discrete Element Code (LDEC) is presented, and results from a study investigating the effect of explosive and impact loading on geologic materials using the Livermore Distinct Element Code (LDEC) are detailed. LDEC was initially developed to simulate tunnels and other structures in jointed rock masses using large numbers of polyhedral blocks. Many geophysical applications, such as projectile penetration into rock, concrete targets, and boulder fields, require a combination of continuum and discrete methods in order to predict the formation and interaction of the fragments produced. In an effort to model this class of problems, LDECmore » now includes implementations of Cosserat point theory and cohesive elements. This approach directly simulates the transition from continuum to discontinuum behavior, thereby allowing for dynamic fracture within a combined finite element/discrete element framework. In addition, there are many application involving geologic materials where fluid-structure interaction is important. To facilitate solution of this class of problems a Smooth Particle Hydrodynamics (SPH) capability has been incorporated into LDEC to simulate fully coupled systems involving geologic materials and a saturating fluid. We will present results from a study of a broad range of geomechanical problems that exercise the various components of LDEC in isolation and in tandem.« less
A 3-D SPH model for simulating water flooding of a damaged floating structure
NASA Astrophysics Data System (ADS)
Guo, Kai; Sun, Peng-nan; Cao, Xue-yan; Huang, Xiao
2017-10-01
With the quasi-static analysis method, the terminal floating state of a damaged ship is usually evaluated for the risk assessment. But this is not enough since the ship has the possibility to lose its stability during the transient flooding process. Therefore, an enhanced smoothed particle hydrodynamics (SPH) model is applied in this paper to investigate the response of a simplified cabin model under the condition of the transient water flooding. The enhanced SPH model is presented firstly including the governing equations, the diffusive terms, the boundary implementations and then an algorithm regarding the coupling motions of six degrees of freedom (6-DOF) between the structure and the fluid is described. In the numerical results, a non-damaged cabin floating under the rest condition is simulated. It is shown that a stable floating state can be reached and maintained by using the present SPH scheme. After that, three-dimensional (3-D) test cases of the damaged cabin with a hole at different locations are simulated. A series of model tests are also carried out for the validation. Fairly good agreements are achieved between the numerical results and the experimental data. Relevant conclusions are drawn with respect to the mechanism of the responses of the damaged cabin model under water flooding conditions.
NASA Astrophysics Data System (ADS)
Wang, Zhen; Zheng, Yi; Mao, Yu-feng; Wang, Ya-zhou; Yu, Yan-ting; Liu, Hong-ning
2018-03-01
In the disturbance of unsteady flow field under the sea, the monitoring accuracy and precision of the bottom-mounted acoustic monitoring platform will decrease. In order to reduce the hydrodynamic interference, the platform wrapped with fairing structure and separated from the retrieval unit is described. The suppression effect evaluation based on the correlation theory of sound pressure and particle velocity for spherical wave in infinite homogeneous medium is proposed and the difference value between them is used to evaluate the hydrodynamic restraining performance of the bottom-mounted platform under far field condition. Through the sea test, it is indicated that the platform with sparse layers fairing structure (there are two layers for the fairing, in which the inside layer is 6-layers sparse metal net, and the outside layer is 1-layer polyester cloth, and then it takes sparse layers for short) has no attenuation in the sound pressure response to the sound source signal, but obvious suppression in the velocity response to the hydrodynamic noise. The effective frequency of the fairing structure is decreased below 10 Hz, and the noise magnitude is reduced by 10 dB. With the comparison of different fairing structures, it is concluded that the tighter fairing structure can enhance the performance of sound transmission and flow restraining.
NASA Astrophysics Data System (ADS)
Zhang, S. F.; Yin, J.; Liu, Y.; Sha, Z. H.; Ma, F. J.
2016-11-01
There always exists severe non-uniform wear of brake pad in large-megawatt wind turbine brake during the braking process, which has the brake pad worn out in advance and even threats the safety production of wind turbine. The root cause of this phenomenon is the non-uniform deformation caused by thermal-structural coupling effect between brake pad and disc while braking under the conditions of both high speed and heavy load. For this problem, mathematical model of thermal-structural coupling analysis is built. Based on the topology optimization method of Solid Isotropic Microstructures with Penalization, SIMP, structure topology optimization of brake pad is developed considering the deformation caused by thermal-structural coupling effect. The objective function is the minimum flexibility, and the structure topology optimization model of brake pad is established after indirect thermal- structural coupling analysis. Compared with the optimization result considering non-thermal- structural coupling, the conspicuous influence of thermal effect on brake pad wear and deformation is proven as well as the rationality of taking thermal-structural coupling effect as optimization condition. Reconstructed model is built according to the result, meanwhile analysis for verification is carried out with the same working condition. This study provides theoretical foundation for the design of high-speed and heavy-load brake pad. The new structure may provide design reference for improving the stress condition between brake pad and disc, enhancing the use ratio of friction material and increasing the working performance of large-megawatt wind turbine brake.
Aspects of Coulomb damping in rotors supported on hydrodynamic bearings
NASA Technical Reports Server (NTRS)
Morton, P. G.
1982-01-01
The paper is concerned with the effect of friction in drive couplings on the non-sychronous whirling of a shaft. A simplified model is used to demonstrate the effect of large coupling misalignments on the stability of the system. It is concluded that provided these misalignments are large enough, the system becomes totally stable provided the shaft is supported on bearings exhibiting a viscous damping capacity.
Ganzenmüller, Georg C.; Hiermaier, Stefan; Steinhauser, Martin O.
2012-01-01
We propose a thermodynamically consistent and energy-conserving temperature coupling scheme between the atomistic and the continuum domain. The coupling scheme links the two domains using the DPDE (Dissipative Particle Dynamics at constant Energy) thermostat and is designed to handle strong temperature gradients across the atomistic/continuum domain interface. The fundamentally different definitions of temperature in the continuum and atomistic domain – internal energy and heat capacity versus particle velocity – are accounted for in a straightforward and conceptually intuitive way by the DPDE thermostat. We verify the here-proposed scheme using a fluid, which is simultaneously represented as a continuum using Smooth Particle Hydrodynamics, and as an atomistically resolved liquid using Molecular Dynamics. In the case of equilibrium contact between both domains, we show that the correct microscopic equilibrium properties of the atomistic fluid are obtained. As an example of a strong non-equilibrium situation, we consider the propagation of a steady shock-wave from the continuum domain into the atomistic domain, and show that the coupling scheme conserves both energy and shock-wave dynamics. To demonstrate the applicability of our scheme to real systems, we consider shock loading of a phospholipid bilayer immersed in water in a multi-scale simulation, an interesting topic of biological relevance. PMID:23300586
Structural-acoustic coupling in aircraft fuselage structures
NASA Technical Reports Server (NTRS)
Mathur, Gopal P.; Simpson, Myles A.
1992-01-01
Results of analytical and experimental investigations of structural-acoustic coupling phenomenon in an aircraft fuselage are described. The structural and acoustic cavity modes of DC-9 fuselage were determined using a finite element approach to vibration analysis. Predicted structural and acoustic dispersion curves were used to determine possible occurrences of structural-acoustic coupling for the fuselage. An aft section of DC-9 aircraft fuselage, housed in an anechoic chamber, was used for experimental investigations. The test fuselage was excited by a shaker and vibration response and interior sound field were measured using accelerometer and microphone arrays. The wavenumber-frequency structural and cavity response maps were generated from the measured data. Analysis and interpretation of the spatial plots and wavenumber maps provided the required information on modal characteristics, fuselage response and structural-acoustic coupling.
NASA Astrophysics Data System (ADS)
Huang, Jie; Li, Piao; Yao, Weixing
2018-05-01
A loosely coupled fluid-structural thermal numerical method is introduced for the thermal protection system (TPS) gap thermal control analysis in this paper. The aerodynamic heating and structural thermal are analyzed by computational fluid dynamics (CFD) and numerical heat transfer (NHT) methods respectively. An interpolation algorithm based on the control surface is adopted for the data exchanges on the coupled surface. In order to verify the analysis precision of the loosely coupled method, a circular tube example was analyzed, and the wall temperature agrees well with the test result. TPS gap thermal control performance was studied by the loosely coupled method successfully. The gap heat flux is mainly distributed in the small region at the top of the gap which is the high temperature region. Besides, TPS gap temperature and the power of the active cooling system (CCS) calculated by the traditional uncoupled method are higher than that calculated by the coupled method obviously. The reason is that the uncoupled method doesn't consider the coupled effect between the aerodynamic heating and structural thermal, however the coupled method considers it, so TPS gap thermal control performance can be analyzed more accurately by the coupled method.
NASA Astrophysics Data System (ADS)
Umgiesser, Georg; Razinkovas-Baziukas, Arturas; Zemlys, Petras; Ertürk, Ali; Mėžinė, Jovita
2015-04-01
The spatial pattern of the hydrodynamic circulation of the Curonian lagoon, the largest European coastal lagoon, is still little understood. In absence of automatic current registration data all the existing models relied mostly on such data as water levels leaving high level of uncertainty. Here we present CISOCUR, a new project financed by European Social Fund under the Global Grant measure. The project applies a new methodology that uses the carbon stable isotope (SI) ratio of C12 and C13 that characterize different water sources entering the lagoon and may be altered by internal kinetic processes. Through the tracing of these isotope ratios different water masses can be identified. This gives the possibility to validate several hypotheses of water circulation and validate hydrodynamic models. In particular it will be possible to 1) trace water masses entering the lagoon through the Nemunas and the Klaipeda strait; 2) test the hypothesis of sediment transport mechanisms inside the lagoon; 3) evaluate the importance of physical forcing on the lagoon circulation. The use of a hydrodynamic finite element model, coupled with the SI method, will allow for a realistic description of the transport processes inside the Curonian lagoon. So the main research goal is to apply the stable isotope tracers and a finite element model to determine the circulation patterns in the Curonian lagoon. Here we show how the SI analysis was used to validate the hydrodynamic model on the basis of residence time. The average residence time of the Nemunas waters is estimated through SI data and is then compared with the model data computed through standard algorithms. Seasonal changes of carbon content are taken care of through a preliminary application of a carbon kinetic model. The results are compared to literature data.
PAI-OFF: A new proposal for online flood forecasting in flash flood prone catchments
NASA Astrophysics Data System (ADS)
Schmitz, G. H.; Cullmann, J.
2008-10-01
SummaryThe Process Modelling and Artificial Intelligence for Online Flood Forecasting (PAI-OFF) methodology combines the reliability of physically based, hydrologic/hydraulic modelling with the operational advantages of artificial intelligence. These operational advantages are extremely low computation times and straightforward operation. The basic principle of the methodology is to portray process models by means of ANN. We propose to train ANN flood forecasting models with synthetic data that reflects the possible range of storm events. To this end, establishing PAI-OFF requires first setting up a physically based hydrologic model of the considered catchment and - optionally, if backwater effects have a significant impact on the flow regime - a hydrodynamic flood routing model of the river reach in question. Both models are subsequently used for simulating all meaningful and flood relevant storm scenarios which are obtained from a catchment specific meteorological data analysis. This provides a database of corresponding input/output vectors which is then completed by generally available hydrological and meteorological data for characterizing the catchment state prior to each storm event. This database subsequently serves for training both a polynomial neural network (PoNN) - portraying the rainfall-runoff process - and a multilayer neural network (MLFN), which mirrors the hydrodynamic flood wave propagation in the river. These two ANN models replace the hydrological and hydrodynamic model in the operational mode. After presenting the theory, we apply PAI-OFF - essentially consisting of the coupled "hydrologic" PoNN and "hydrodynamic" MLFN - to the Freiberger Mulde catchment in the Erzgebirge (Ore-mountains) in East Germany (3000 km 2). Both the demonstrated computational efficiency and the prediction reliability underline the potential of the new PAI-OFF methodology for online flood forecasting.
Dynamic simulations of the inhomogeneous sedimentation of rigid fibres
NASA Astrophysics Data System (ADS)
Butler, Jason E.; Shaqfeh, Eric S. G.
2002-10-01
We have simulated the dynamics of suspensions of fibres sedimenting in the limit of zero Reynolds number. In these simulations, the dominant inter-particle force arises from hydrodynamic interactions between the rigid, non-Brownian fibres. The simulation algorithm uses slender-body theory to model the linear and rotational velocities of each fibre. To include far-field interactions between the fibres, the line distribution of force on each fibre is approximated by making a Legendre polynomial expansion of the disturbance velocity on the fibre, where only the first two terms of the expansion are retained in the calculation. Thus, the resulting linear force distribution can be specified completely by a centre-of-mass force, a couple, and a stresslet. Short-range interactions between particles are included using a lubrication approximation, and an infinite suspension is simulated by using periodic boundary conditions. Our numerical results confirm that the sedimentation of these non-spherical, orientable particles differs qualitatively from the sedimentation of spherical particles. The simulations demonstrate that an initially homogeneous, settling suspension develops clusters, or streamers, which are particle rich surrounded by clarified fluid. The instability which causes the heterogeneous structure arises solely from hydrodynamic interactions which couple the particle orientation and the sedimentation rate in particle clusters. Depending upon the concentration and aspect ratio, the formation of clusters of particles can enhance the sedimentation rate of the suspension to a value in excess of the maximum settling speed of an isolated particle. The suspension of fibres tends to orient with gravity during the sedimentation process. The average velocities and orientations, as well as their distributions, compare favourably with previous experimental measurements.
Simplified galaxy formation with mesh-less hydrodynamics
NASA Astrophysics Data System (ADS)
Lupi, Alessandro; Volonteri, Marta; Silk, Joseph
2017-09-01
Numerical simulations have become a necessary tool to describe the complex interactions among the different processes involved in galaxy formation and evolution, unfeasible via an analytic approach. The last decade has seen a great effort by the scientific community in improving the sub-grid physics modelling and the numerical techniques used to make numerical simulations more predictive. Although the recently publicly available code gizmo has proven to be successful in reproducing galaxy properties when coupled with the model of the MUFASA simulations and the more sophisticated prescriptions of the Feedback In Realistic Environment (FIRE) set-up, it has not been tested yet using delayed cooling supernova feedback, which still represent a reasonable approach for large cosmological simulations, for which detailed sub-grid models are prohibitive. In order to limit the computational cost and to be able to resolve the disc structure in the galaxies we perform a suite of zoom-in cosmological simulations with rather low resolution centred around a sub-L* galaxy with a halo mass of 3 × 1011 M⊙ at z = 0, to investigate the ability of this simple model, coupled with the new hydrodynamic method of gizmo, to reproduce observed galaxy scaling relations (stellar to halo mass, stellar and baryonic Tully-Fisher, stellar mass-metallicity and mass-size). We find that the results are in good agreement with the main scaling relations, except for the total stellar mass, larger than that predicted by the abundance matching technique, and the effective sizes for the most massive galaxies in the sample, which are too small.
Generalized hydrodynamic reductions of the kinetic equation for a soliton gas
NASA Astrophysics Data System (ADS)
Pavlov, M. V.; Taranov, V. B.; El, G. A.
2012-05-01
We derive generalized multiflow hydrodynamic reductions of the nonlocal kinetic equation for a soliton gas and investigate their structure. These reductions not only provide further insight into the properties of the new kinetic equation but also could prove to be representatives of a novel class of integrable systems of hydrodynamic type beyond the conventional semi-Hamiltonian framework.
Instabilities in a Relativistic Viscous Fluid
NASA Astrophysics Data System (ADS)
Corona-Galindo, M. G.; Klapp, J.; Vazquez, A.
1990-11-01
RESUMEN. Las ecuaciones hidrodinamicas de un fluido imperfecto relativista son resueltas, y los modos hidrodinamicos son analizados con el prop6sito de estabiecer correlaciones con las estructuras cosmol6gicas. ABSTRACT The hydrodynamical equations of a relativistic imperfect fluid are solved, and the hydrodynamical modes are analysed with the aim to establish correlations with cosmological structures. Ke, words: COSMOLOGY - HYDRODYNAMICS - RELATIVITY
NASA Astrophysics Data System (ADS)
Fanelli, Pierluigi; Biscarini, Chiara; Jannelli, Elio; Ubertini, Filippo; Ubertini, Stefano
2017-02-01
Various mechanical, ocean, aerospace and civil engineering problems involve solid bodies impacting the water surface and often result in complex coupled dynamics, characterized by impulsive loading conditions, high amplitude vibrations and large local deformations. Monitoring in such problems for purposes such as remaining fatigue life estimation and real time damage detection is a technical and scientific challenge of primary concern in this context. Open issues include the need for developing distributed sensing systems able to operate at very high acquisition frequencies, to be utilized to study rapidly varying strain fields, with high resolution and very low noise, while scientific challenges mostly relate to the definition of appropriate signal processing and modeling tools enabling the extraction of useful information from distributed sensing signals. Building on previous work by some of the authors, we propose an enhanced method for real time deformed shape reconstruction using distributed FBG strain measurements in curved bodies subjected to impulsive loading and we establish a new framework for applying this method for structural health monitoring purposes, as the main focus of the work. Experiments are carried out on a cylinder impacting the water at various speeds, proving improved performance in displacement reconstruction of the enhanced method compared to its previous version. A numerical study is then carried out considering the same physical problem with different delamination damages affecting the body. The potential for detecting, localizing and quantifying this damage using the reconstruction algorithm is thoroughly investigated. Overall, the results presented in the paper show the potential of distributed FBG strain measurements for real time structural health monitoring of curved bodies under impulsive hydrodynamic loading, defining damage sensitive features in terms of strain or displacement reconstruction errors at selected locations along the structure.
Aguayo-Ortiz, A; Mendoza, S; Olvera, D
2018-01-01
In this article we develop a Primitive Variable Recovery Scheme (PVRS) to solve any system of coupled differential conservative equations. This method obtains directly the primitive variables applying the chain rule to the time term of the conservative equations. With this, a traditional finite volume method for the flux is applied in order avoid violation of both, the entropy and "Rankine-Hugoniot" jump conditions. The time evolution is then computed using a forward finite difference scheme. This numerical technique evades the recovery of the primitive vector by solving an algebraic system of equations as it is often used and so, it generalises standard techniques to solve these kind of coupled systems. The article is presented bearing in mind special relativistic hydrodynamic numerical schemes with an added pedagogical view in the appendix section in order to easily comprehend the PVRS. We present the convergence of the method for standard shock-tube problems of special relativistic hydrodynamics and a graphical visualisation of the errors using the fluctuations of the numerical values with respect to exact analytic solutions. The PVRS circumvents the sometimes arduous computation that arises from standard numerical methods techniques, which obtain the desired primitive vector solution through an algebraic polynomial of the charges.
Mendoza, S.; Olvera, D.
2018-01-01
In this article we develop a Primitive Variable Recovery Scheme (PVRS) to solve any system of coupled differential conservative equations. This method obtains directly the primitive variables applying the chain rule to the time term of the conservative equations. With this, a traditional finite volume method for the flux is applied in order avoid violation of both, the entropy and “Rankine-Hugoniot” jump conditions. The time evolution is then computed using a forward finite difference scheme. This numerical technique evades the recovery of the primitive vector by solving an algebraic system of equations as it is often used and so, it generalises standard techniques to solve these kind of coupled systems. The article is presented bearing in mind special relativistic hydrodynamic numerical schemes with an added pedagogical view in the appendix section in order to easily comprehend the PVRS. We present the convergence of the method for standard shock-tube problems of special relativistic hydrodynamics and a graphical visualisation of the errors using the fluctuations of the numerical values with respect to exact analytic solutions. The PVRS circumvents the sometimes arduous computation that arises from standard numerical methods techniques, which obtain the desired primitive vector solution through an algebraic polynomial of the charges. PMID:29659602
Measuring Local Viscosities near Plasma Membranes of Living Cells with Photonic Force Microscopy
Jünger, Felix; Kohler, Felix; Meinel, Andreas; Meyer, Tim; Nitschke, Roland; Erhard, Birgit; Rohrbach, Alexander
2015-01-01
The molecular processes of particle binding and endocytosis are influenced by the locally changing mobility of the particle nearby the plasma membrane of a living cell. However, it is unclear how the particle’s hydrodynamic drag and momentum vary locally and how they are mechanically transferred to the cell. We have measured the thermal fluctuations of a 1 μm-sized polystyrene sphere, which was placed in defined distances to plasma membranes of various cell types by using an optical trap and fast three-dimensional (3D) interferometric particle tracking. From the particle position fluctuations on a 30 μs timescale, we determined the distance-dependent change of the viscous drag in directions perpendicular and parallel to the cell membrane. Measurements on macrophages, adenocarcinoma cells, and epithelial cells revealed a significantly longer hydrodynamic coupling length of the particle to the membrane than those measured at giant unilamellar vesicles (GUVs) or a plane glass interface. In contrast to GUVs, there is also a strong increase in friction and in mean first passage time normal to the cell membrane. This hydrodynamic coupling transfers a different amount of momentum to the interior of living cells and might serve as an ultra-soft stimulus triggering further reactions. PMID:26331245
A simple model for molecular hydrogen chemistry coupled to radiation hydrodynamics
NASA Astrophysics Data System (ADS)
Nickerson, Sarah; Teyssier, Romain; Rosdahl, Joakim
2018-06-01
We introduce non-equilibrium molecular hydrogen chemistry into the radiation-hydrodynamics code RAMSES-RT. This is an adaptive mesh refinement grid code with radiation hydrodynamics that couples the thermal chemistry of hydrogen and helium to moment-based radiative transfer with the Eddington tensor closure model. The H2 physics that we include are formation on dust grains, gas phase formation, formation by three-body collisions, collisional destruction, photodissociation, photoionisation, cosmic ray ionisation and self-shielding. In particular, we implement the first model for H2 self-shielding that is tied locally to moment-based radiative transfer by enhancing photo-destruction. This self-shielding from Lyman-Werner line overlap is critical to H2 formation and gas cooling. We can now track the non-equilibrium evolution of molecular, atomic, and ionised hydrogen species with their corresponding dissociating and ionising photon groups. Over a series of tests we show that our model works well compared to specialised photodissociation region codes. We successfully reproduce the transition depth between molecular and atomic hydrogen, molecular cooling of the gas, and a realistic Strömgren sphere embedded in a molecular medium. In this paper we focus on test cases to demonstrate the validity of our model on small scales. Our ultimate goal is to implement this in large-scale galactic simulations.
A hydrodynamic treatment of the cold dark matter cosmological scenario
NASA Technical Reports Server (NTRS)
Cen, Renyue; Ostriker, Jeremiah
1992-01-01
The evolution of structure in a postrecombination Friedmann-Robertson-Walker universe containing both gaseous baryons and cold dark matter (CDM) is studied by means of an Eulerian code coupled with a standard particle-mesh code. Ionization state and radiative opacity are calculated in detail, and the hydrodynamic simulations make it possible to compute properties of gas distribution on scales larger than three cell sizes. The model yields a soft X-ray background consistent with the latest cosmic nucleosynthesis values, and can accurately reproduce the galaxy-galaxy two-point correlation. The rate of galaxy formation peaks at a relatively late epoch. With regard to mass function, the smallest objects are stabilized against collapse by thermal energy: the mass-weighted mass spectrum peaks in the vicinity of m(b) = 10 exp 9.2 solar masses with a reasonable fit to the Schecter luminosity function if the baryon mass to blue light ratio is approximately 4. Overall, the simulations provide strong support for the CMD scenario. Of particular interest is that, while the baryons are not biased on scales greater than 1/h Mpc, the galaxies are, and that the 'galaxies' have a correlation function of the required slope and the correct amplitude.
Radiative-hydrodynamic Modeling of the SL-9 Plume Infall
NASA Astrophysics Data System (ADS)
Deming, D.; Harrington, J.
1998-09-01
We are developing a model for the plume-infall phase of the SL-9/Jupiter collision. The modeling takes place in two steps. The first step is a ballistic Monte-Carlo simulation of the ejecta from the collision, based on a power-law distribution of ejecta velocities. Parameters from this simulation are adjusted to best reproduce the appearance of the ejecta plume above the jovian limb, and the debris patterns on the disk, as seen by HST. Results of those calculations are reported in a paper by Harrington and Deming (this meeting). In this paper we report results from the second step, wherein the ballistic Monte-Carlo plume simulations are coupled to the Zeus-3D hydrodynamic code. Zeus is used in a 2-D mode to follow both the radial and z-component motions of the infalling plume material, and model the resultant shock-heating of the ambient atmosphere. Zeus was modified to include radiative transport in the gray approximation. We discuss the results as concerns: 1) the temperatures and other physical conditions in the radiating upper atmospheric shocks, 2) the morphology of the light curve, including the nature of secondary maxima, and 3) the structure of the post-collision jovian atmosphere.
Adding Spice to Vanilla LCDM simulations: From Alternative Cosmologies to Lighting up Galaxies
NASA Astrophysics Data System (ADS)
Jahan Elahi, Pascal
2015-08-01
Cold Dark Matter simulations have formed the backbone of our theoretical understanding of cosmological structure formation. Predictions from the Lambda Cold Dark Matter (LCDM) cosmology, in which the Universe contains two major dark components, namely Dark Matter and Dark Energy, are in excellent agreement with the Large-Scale Structures observed, i.e., the distribution of galaxies across cosmic time. However, this paradigm is in tension with observations at small-scales, from the number and properties of satellite galaxies around galaxies such as the Milky Way and Andromeda, to the lensing statistics of massive galaxy clusters. I will present several alternative models of cosmology (from Warm Dark Matter to coupled Dark Matter-Dark Energy models) and how they compare to vanilla LCDM by studying formation of groups and clusters dark matter only and adiabatic hydrodynamical zoom simulations. I will show how modifications to the dark sector can lead to some surprising results. For example, Warm Dark Matter, so often examined on small satellite galaxies scales, can be probed observationally using weak lensing at cluster scales. Coupled dark sectors, where dark matter decays into dark energy and experiences an effective gravitational potential that differs from that experienced by normal matter, is effectively hidden away from direct observations of galaxies. Studies like these are vital if we are to pinpoint observations which can look for unique signatures of the physics that governs the hidden Universe. Of course, all of these predictions are unfortunately affected by uncertain galaxy formation physics. I will end by presenting results from a comparison study of numerous hydrodynamical codes, the nIFTY cluster comparison project, and how even how purely adiabatic simulations run with different codes give in quite different galaxy populations. The galaxies that form in these simulations, which all attempt to reproduce the observed galaxy population via not unreasonable subgrid physics, can and do vary in stellar mass, morphology and gas fraction.
Modeling Compound Flood Hazards in Coastal Embayments
NASA Astrophysics Data System (ADS)
Moftakhari, H.; Schubert, J. E.; AghaKouchak, A.; Luke, A.; Matthew, R.; Sanders, B. F.
2017-12-01
Coastal cities around the world are built on lowland topography adjacent to coastal embayments and river estuaries, where multiple factors threaten increasing flood hazards (e.g. sea level rise and river flooding). Quantitative risk assessment is required for administration of flood insurance programs and the design of cost-effective flood risk reduction measures. This demands a characterization of extreme water levels such as 100 and 500 year return period events. Furthermore, hydrodynamic flood models are routinely used to characterize localized flood level intensities (i.e., local depth and velocity) based on boundary forcing sampled from extreme value distributions. For example, extreme flood discharges in the U.S. are estimated from measured flood peaks using the Log-Pearson Type III distribution. However, configuring hydrodynamic models for coastal embayments is challenging because of compound extreme flood events: events caused by a combination of extreme sea levels, extreme river discharges, and possibly other factors such as extreme waves and precipitation causing pluvial flooding in urban developments. Here, we present an approach for flood risk assessment that coordinates multivariate extreme analysis with hydrodynamic modeling of coastal embayments. First, we evaluate the significance of correlation structure between terrestrial freshwater inflow and oceanic variables; second, this correlation structure is described using copula functions in unit joint probability domain; and third, we choose a series of compound design scenarios for hydrodynamic modeling based on their occurrence likelihood. The design scenarios include the most likely compound event (with the highest joint probability density), preferred marginal scenario and reproduced time series of ensembles based on Monte Carlo sampling of bivariate hazard domain. The comparison between resulting extreme water dynamics under the compound hazard scenarios explained above provides an insight to the strengths/weaknesses of each approach and helps modelers choose the appropriate scenario that best fit to the needs of their project. The proposed risk assessment approach can help flood hazard modeling practitioners achieve a more reliable estimate of risk, by cautiously reducing the dimensionality of the hazard analysis.
Surrogate model approach for improving the performance of reactive transport simulations
NASA Astrophysics Data System (ADS)
Jatnieks, Janis; De Lucia, Marco; Sips, Mike; Dransch, Doris
2016-04-01
Reactive transport models can serve a large number of important geoscientific applications involving underground resources in industry and scientific research. It is common for simulation of reactive transport to consist of at least two coupled simulation models. First is a hydrodynamics simulator that is responsible for simulating the flow of groundwaters and transport of solutes. Hydrodynamics simulators are well established technology and can be very efficient. When hydrodynamics simulations are performed without coupled geochemistry, their spatial geometries can span millions of elements even when running on desktop workstations. Second is a geochemical simulation model that is coupled to the hydrodynamics simulator. Geochemical simulation models are much more computationally costly. This is a problem that makes reactive transport simulations spanning millions of spatial elements very difficult to achieve. To address this problem we propose to replace the coupled geochemical simulation model with a surrogate model. A surrogate is a statistical model created to include only the necessary subset of simulator complexity for a particular scenario. To demonstrate the viability of such an approach we tested it on a popular reactive transport benchmark problem that involves 1D Calcite transport. This is a published benchmark problem (Kolditz, 2012) for simulation models and for this reason we use it to test the surrogate model approach. To do this we tried a number of statistical models available through the caret and DiceEval packages for R, to be used as surrogate models. These were trained on randomly sampled subset of the input-output data from the geochemical simulation model used in the original reactive transport simulation. For validation we use the surrogate model to predict the simulator output using the part of sampled input data that was not used for training the statistical model. For this scenario we find that the multivariate adaptive regression splines (MARS) method provides the best trade-off between speed and accuracy. This proof-of-concept forms an essential step towards building an interactive visual analytics system to enable user-driven systematic creation of geochemical surrogate models. Such a system shall enable reactive transport simulations with unprecedented spatial and temporal detail to become possible. References: Kolditz, O., Görke, U.J., Shao, H. and Wang, W., 2012. Thermo-hydro-mechanical-chemical processes in porous media: benchmarks and examples (Vol. 86). Springer Science & Business Media.
Coupled diffusion processes and 2D affinities of adhesion molecules at synthetic membrane junctions
NASA Astrophysics Data System (ADS)
Peel, Christopher; Choudhuri, Kaushik; Schmid, Eva M.; Bakalar, Matthew H.; Ann, Hyoung Sook; Fletcher, Daniel A.; Journot, Celine; Turberfield, Andrew; Wallace, Mark; Dustin, Michael
A more complete understanding of the physically intrinsic mechanisms underlying protein mobility at cellular interfaces will provide additional insights into processes driving adhesion and organization in signalling junctions such as the immunological synapse. We observed diffusional slowing of structurally diverse binding proteins at synthetic interfaces formed by giant unilamellar vesicles (GUVs) on supported lipid bilayers (SLBs) that shows size dependence not accounted for by existing models. To model the effects of size and intermembrane spacing on interfacial reaction-diffusion processes, we describe a multistate diffusion model incorporating entropic effects of constrained binding. This can be merged with hydrodynamic theories of receptor-ligand diffusion and coupling to thermal membrane roughness. A novel synthetic membrane adhesion assay based on reversible and irreversible DNA-mediated interactions between GUVs and SLBs is used to precisely vary length, affinity, and flexibility, and also provides a platform to examine these effects on the dynamics of processes such as size-based segregation of binding and non-binding species.
Complex collective dynamics of active torque-driven colloids at interfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snezhko, Alexey
Modern self-assembly techniques aiming to produce complex structural order or functional diversity often rely on non-equilibrium conditions in the system. Light, electric, or magnetic fields are predominantly used to modify interaction profiles of colloidal particles during self-assembly or induce complex out-of-equilibrium dynamic ordering. The energy injection rate, properties of the environment are important control parameters that influence the outcome of active (dynamic) self-assembly. The current review is focused on a case of collective dynamics and self-assembly of particles with externally driven torques coupled to a liquid or solid interface. The complexity of interactions in such systems is further enriched bymore » strong hydrodynamic coupling between particles. Unconventionally ordered dynamic self-assembled patterns, spontaneous symmetry breaking phenomena, self-propulsion, and collective transport have been reported in torque-driven colloids. Some of the features of the complex collective behavior and dynamic pattern formation in those active systems have been successfully captured in simulations.« less
Hydrodynamic flows of non-Fermi liquids: Magnetotransport and bilayer drag
NASA Astrophysics Data System (ADS)
Patel, Aavishkar A.; Davison, Richard A.; Levchenko, Alex
2017-11-01
We consider a hydrodynamic description of transport for generic two-dimensional electron systems that lack Galilean invariance and do not fall into the category of Fermi liquids. We study magnetoresistance and show that it is governed only by the electronic viscosity provided that the wavelength of the underlying disorder potential is large compared to the microscopic equilibration length. We also derive the Coulomb drag transresistance for double-layer non-Fermi-liquid systems in the hydrodynamic regime. As an example, we consider frictional drag between two quantum Hall states with half-filled lowest Landau levels, each described by a Fermi surface of composite fermions coupled to a U (1 ) gauge field. We contrast our results to prior calculations of drag of Chern-Simons composite particles and place our findings in the context of available experimental data.
NASA Astrophysics Data System (ADS)
Vittecoq, B.; Reninger, P. A.; Violette, S.; Martelet, G.; Dewandel, B.; Audru, J. C.
2015-10-01
We conducted a multidisciplinary study to analyze the structure and the hydrogeological functioning of an andesitic coastal aquifer and to highlight the importance of faults and associated rock fracturing on groundwater flow. A helicopter-borne geophysical survey with an unprecedented resolution (SkyTEM) was flown over this aquifer in 2013. TDEM resistivity, total magnetic intensity, geological and hydrogeological data from 30 boreholes and two pumping tests were correlated, including one which lasted an exceptional 15 months. We demonstrate that heterogeneous hydrodynamic properties and channelized flows result from tectonically-controlled aquifer compartmentalization along the structural directions of successive tectonic phases. Significant fracturing of the central compartment results in enhanced hydrodynamic properties of the aquifer and an inverse relationship between electrical resistivity and transmissivity. Basalts within the fractured compartment have lower resistivity and higher permeability than basalts outside the compartment. Pumping tests demonstrate that the key factor is the hydraulic conductivity contrast between compartments rather than the hydrodynamic properties of the fault structure. In addition, compartmentalization and associated transmissivity contrasts protect the aquifer from seawater intrusion. Finally, unlike basaltic volcanic islands, the age of the volcanic formations is not the key factor that determines hydrodynamic properties of andesitic islands. Basalts that are several million years old (15 Ma here) have favorable hydrodynamic properties that are generated or maintained by earthquakes/faulting that result from active subduction beneath these islands, which is superimposed on their primary permeability.
Optimization techniques applied to passive measures for in-orbit spacecraft survivability
NASA Technical Reports Server (NTRS)
Mog, Robert A.; Price, D. Marvin
1991-01-01
Spacecraft designers have always been concerned about the effects of meteoroid impacts on mission safety. The engineering solution to this problem has generally been to erect a bumper or shield placed outboard from the spacecraft wall to disrupt/deflect the incoming projectiles. Spacecraft designers have a number of tools at their disposal to aid in the design process. These include hypervelocity impact testing, analytic impact predictors, and hydrodynamic codes. Analytic impact predictors generally provide the best quick-look estimate of design tradeoffs. The most complete way to determine the characteristics of an analytic impact predictor is through optimization of the protective structures design problem formulated with the predictor of interest. Space Station Freedom protective structures design insight is provided through the coupling of design/material requirements, hypervelocity impact phenomenology, meteoroid and space debris environment sensitivities, optimization techniques and operations research strategies, and mission scenarios. Major results are presented.
Elastic Valve Using Induced-Charge Electro-Osmosis
NASA Astrophysics Data System (ADS)
Sugioka, Hideyuki
2015-06-01
Biomimic devices using induced-charge electro-osmosis (ICEO) is interesting since they have the possibility to realize high-performance functions with simple structures and with low-energy consumption. Thus, inspired by a cilium, we propose a two-dimensional artificial elastic valve using hydrodynamic force due to ICEO with a thin elastic beam in a microfluidic channel and numerically examine the valving performance. By an implicit strongly coupled simulation technique between a fluid and an elastic structure based on the boundary-element method, along with the thin-double-layer approximation, we realize stable calculations and find that the elastic valve using ICEO functions effectively at high frequency with low applied voltages in a realistic pressure flow. Further, we also examine passive motion of the valve; i.e., it stops a reverse flow effectively and releases a forward flow in the channel. We believe that our device can be used in a wide range of microfluidic applications, such as mixers, pumps, etc.
Bistable synchronization modes in hydrodynamically coupled micro-rotors
NASA Astrophysics Data System (ADS)
Guo, Hanliang; Kanale, Anup; Fuerthauer, Sebastian; Kanso, Eva
2017-11-01
Cilia often beat in synchrony, and they may transition between different synchronization modes in the same cell type. For example, cilia in the mammalian brain ventricles are reported to periodically change their collective beat orientation, providing a cilia-based switch for redirecting the transport of cerebrospinal fluid. Experimental and theoretical evidences suggest that phase coordinations can be achieved solely via hydrodynamical interactions. However, the exact mechanisms responsible for transitioning between various synchronization modes remain illusive. Here, we use a theoretical model where each cilium is represented by a bead moving along a closed trajectory close to a no-slip surface. We investigate the emergent synchronization modes and their stability for various cilia-inspired force profiles. We observe distinct stable synchronization modes between two rotors, including a bistable regime where both in-phase and anti-phase synchronizations are stable. We then extend this analysis to an array of rotors where we demonstrate the dynamical formations of metachronal waves. These findings may help us to understand the origin of synchrony in biological and bio-inspired systems, and the mechanisms underlying transitions between different synchronization modes.
Kazemzadeh, Argang; Elias, Cynthia; Tamer, Melih; Ein-Mozaffari, Farhad
2018-05-01
The hydrodynamics of gas-liquid two-phase flow in a single-use bioreactor were investigated in detail both experimentally and numerically. Electrical resistance tomography (ERT) and dynamic gas disengagement (DGD) combined with computational fluid dynamics (CFD) were employed to assess the effect of the volumetric gas flow rate and impeller speed on the gas-liquid flow field, local and global gas holdup values, and Sauter mean bubble diameter. From the results obtained from DGD coupled with ERT, the bubble sizes were determined. The experimental data indicated that the total gas holdup values increased with increasing both the rotational speed of impeller and volumetric gas flow rate. Moreover, the analysis of the flow field generated inside the aerated stirred bioreactor was conducted using CFD results. Overall, a more uniform distribution of the gas holdup was obtained at impeller speeds ≥ 100 rpm for volumetric gas flow rates ≥ 1.6 × 10 -5 m 3 /s.
Aeroelastic Modeling of Offshore Turbines and Support Structures in Hurricane-Prone Regions (Poster)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Damiani, R.
US offshore wind turbines (OWTs) will likely have to contend with hurricanes and the associated loading conditions. Current industry standards do not account for these design load cases (DLCs), thus a new approach is required to guarantee that the OWTs achieve an appropriate level of reliability. In this study, a sequentially coupled aero-hydro-servo-elastic modeling technique was used to address two design approaches: 1.) The ABS (American Bureau of Shipping) approach; and 2.) The Hazard Curve or API (American Petroleum Institute) approach. The former employs IEC partial load factors (PSFs) and 100-yr return-period (RP) metocean events. The latter allows setting PSFsmore » and RP to a prescribed level of system reliability. The 500-yr RP robustness check (appearing in [2] and [3] upcoming editions) is a good indicator of the target reliability for L2 structures. CAE tools such as NREL's FAST and Bentley's' SACS (offshore analysis and design software) can be efficiently coupled to simulate system loads under hurricane DLCs. For this task, we augmented the latest FAST version (v. 8) to include tower aerodynamic drag that cannot be ignored in hurricane DLCs. In this project, a 6 MW turbine was simulated on a typical 4-legged jacket for a mid-Atlantic site. FAST-calculated tower base loads were fed to SACS at the interface level (transition piece); SACS added hydrodynamic and wind loads on the exposed substructure, and calculated mudline overturning moments, and member and joint utilization. Results show that CAE tools can be effectively used to compare design approaches for the design of OWTs in hurricane regions and to achieve a well-balanced design, where reliability levels and costs are optimized.« less
Experiments on Plume Spreading by Engineered Injection and Extraction
NASA Astrophysics Data System (ADS)
Mays, D. C.; Jones, M.; Tigera, R. G.; Neupauer, R.
2014-12-01
The notion that groundwater remediation is transport-limited emphasizes the coupling between physical (i.e., hydrodynamic), geochemical, and microbiological processes in the subsurface. Here we leverage this coupling to promote groundwater remediation using the approach of engineered injection and extraction. In this approach, inspired by the literature on chaotic advection, uncontaminated groundwater is injected and extracted through a manifold of wells surrounding the contaminated plume. The potential of this approach lies in its ability to actively manipulate the velocity field near the contaminated plume, generating plume spreading above and beyond that resulting from aquifer heterogeneity. Plume spreading, in turn, promotes mixing and reaction by chemical and biological processes. Simulations have predicted that engineered injection and extraction generates (1) chaotic advection whose characteristics depend on aquifer heterogeneity, and (2) faster rates and increased extent of groundwater remediation. This presentation focuses on a complimentary effort to experimentally demonstrate these predictions experimentally. In preparation for future work using refractive index matched (RIM) porous media, the experiments reported here use a Hele-Shaw apparatus containing silicone oil. Engineered injection and extraction is used to manipulate the geometry of an initially circular plume of black pigment, and photographs record the plume geometry after each step of injection of extraction. Image analysis, using complimentary Eulerian and Lagrangian approaches, reveals the thickness and variability of the dispersion zone surrounding the deformed plume of black pigment. The size, shape, and evolution of this dispersion zone provides insight into the interplay between engineered injection and extraction, which generates plume structure, and dispersion (here Taylor dispersion), which destroys plume structure. These experiments lay the groundwork for application of engineered injection and extraction at field sites where improvements to the rate, extent, and cost of remediation are hoped.
New methods and astrophysical applications of adaptive mesh fluid simulations
NASA Astrophysics Data System (ADS)
Wang, Peng
The formation of stars, galaxies and supermassive black holes are among the most interesting unsolved problems in astrophysics. Those problems are highly nonlinear and involve enormous dynamical ranges. Thus numerical simulations with spatial adaptivity are crucial in understanding those processes. In this thesis, we discuss the development and application of adaptive mesh refinement (AMR) multi-physics fluid codes to simulate those nonlinear structure formation problems. To simulate the formation of star clusters, we have developed an AMR magnetohydrodynamics (MHD) code, coupled with radiative cooling. We have also developed novel algorithms for sink particle creation, accretion, merging and outflows, all of which are coupled with the fluid algorithms using operator splitting. With this code, we have been able to perform the first AMR-MHD simulation of star cluster formation for several dynamical times, including sink particle and protostellar outflow feedbacks. The results demonstrated that protostellar outflows can drive supersonic turbulence in dense clumps and explain the observed slow and inefficient star formation. We also suggest that global collapse rate is the most important factor in controlling massive star accretion rate. In the topics of galaxy formation, we discuss the results of three projects. In the first project, using cosmological AMR hydrodynamics simulations, we found that isolated massive star still forms in cosmic string wakes even though the mega-parsec scale structure has been perturbed significantly by the cosmic strings. In the second project, we calculated the dynamical heating rate in galaxy formation. We found that by balancing our heating rate with the atomic cooling rate, it gives a critical halo mass which agrees with the result of numerical simulations. This demonstrates that the effect of dynamical heating should be put into semi-analytical works in the future. In the third project, using our AMR-MHD code coupled with radiative cooling module, we performed the first MHD simulations of disk galaxy formation. We find that the initial magnetic fields are quickly amplified to Milky-Way strength in a self-regulated way with amplification rate roughly one e-folding per orbit. This suggests that Milky Way strength magnetic field might be common in high redshift disk galaxies. We have also developed AMR relativistic hydrodynamics code to simulate black hole relativistic jets. We discuss the coupling of the AMR framework with various relativistic solvers and conducted extensive algorithmic comparisons. Via various test problems, we emphasize the importance of resolution studies in relativistic flow simulations because extremely high resolution is required especially when shear flows are present in the problem. Then we present the results of 3D simulations of supermassive black hole jets propagation and gamma ray burst jet breakout. Resolution studies of the two 3D jets simulations further highlight the need of high resolutions to calculate accurately relativistic flow problems. Finally, to push forward the kind of simulations described above, we need faster codes with more physics included. We describe an implementation of compressible inviscid fluid solvers with AMR on Graphics Processing Units (GPU) using NVIDIA's CUDA. We show that the class of high resolution shock capturing schemes can be mapped naturally on this architecture. For both uniform and adaptive simulations, we achieve an overall speedup of approximately 10 times faster execution on one Quadro FX 5600 GPU as compared to a single 3 GHz Intel core on the host computer. Our framework can readily be applied to more general systems of conservation laws and extended to higher order shock capturing schemes. This is shown directly by an implementation of a magneto-hydrodynamic solver and comparing its performance to the pure hydrodynamic case.
A Navier-Stokes phase-field crystal model for colloidal suspensions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Praetorius, Simon, E-mail: simon.praetorius@tu-dresden.de; Voigt, Axel, E-mail: axel.voigt@tu-dresden.de
2015-04-21
We develop a fully continuous model for colloidal suspensions with hydrodynamic interactions. The Navier-Stokes Phase-Field Crystal model combines ideas of dynamic density functional theory with particulate flow approaches and is derived in detail and related to other dynamic density functional theory approaches with hydrodynamic interactions. The derived system is numerically solved using adaptive finite elements and is used to analyze colloidal crystallization in flowing environments demonstrating a strong coupling in both directions between the crystal shape and the flow field. We further validate the model against other computational approaches for particulate flow systems for various colloidal sedimentation problems.
A Navier-Stokes phase-field crystal model for colloidal suspensions.
Praetorius, Simon; Voigt, Axel
2015-04-21
We develop a fully continuous model for colloidal suspensions with hydrodynamic interactions. The Navier-Stokes Phase-Field Crystal model combines ideas of dynamic density functional theory with particulate flow approaches and is derived in detail and related to other dynamic density functional theory approaches with hydrodynamic interactions. The derived system is numerically solved using adaptive finite elements and is used to analyze colloidal crystallization in flowing environments demonstrating a strong coupling in both directions between the crystal shape and the flow field. We further validate the model against other computational approaches for particulate flow systems for various colloidal sedimentation problems.
Hayat, Tasawar; Awais, Muhammad; Imtiaz, Amna
2016-01-01
This communication deals with the properties of heat source/sink in a magneto-hydrodynamic flow of a non-Newtonian fluid immersed in a porous medium. Shrinking phenomenon along with the permeability of the wall is considered. Mathematical modelling is performed to convert the considered physical process into set of coupled nonlinear mathematical equations. Suitable transformations are invoked to convert the set of partial differential equations into nonlinear ordinary differential equations which are tackled numerically for the solution computations. It is noted that dual solutions for various physical parameters exist which are analyzed in detail.
Makler-Pick, Vardit; Hipsey, Matthew R.; Zohary, Tamar; Carmel, Yohay; Gal, Gideon
2017-01-01
The food web of Lake Kinneret contains intraguild predation (IGP). Predatory invertebrates and planktivorous fish both feed on herbivorous zooplankton, while the planktivorous fish also feed on the predatory invertebrates. In this study, a complex mechanistic hydrodynamic-ecological model, coupled to a bioenergetics-based fish population model (DYCD-FISH), was employed with the aim of revealing IGP dynamics. The results indicate that the predation pressure of predatory zooplankton on herbivorous zooplankton varies widely, depending on the season. At the time of its annual peak, it is 10–20 times higher than the fish predation pressure. When the number of fish was significantly higher, as occurs in the lake after atypical meteorological years, the effect was a shift from a bottom-up controlled ecosystem, to the top-down control of planktivorous fish and a significant reduction of predatory and herbivorous zooplankton biomass. Yet, seasonally, the decrease in predatory-zooplankton biomass was followed by a decrease in their predation pressure on herbivorous zooplankton, leading to an increase of herbivorous zooplankton biomass to an extent similar to the base level. The analysis demonstrates the emergence of non-equilibrium IGP dynamics due to intra-annual and inter-annual changes in the physico-chemical characteristics of the lake, and suggests that IGP dynamics should be considered in food web models in order to more accurately capture mass transfer and trophic interactions. PMID:28353646
Flexible Inhibitor Fluid-Structure Interaction Simulation in RSRM.
NASA Astrophysics Data System (ADS)
Wasistho, Bono
2005-11-01
We employ our tightly coupled fluid/structure/combustion simulation code 'Rocstar-3' for solid propellant rocket motors to study 3D flows past rigid and flexible inhibitors in the Reusable Solid Rocket Motor (RSRM). We perform high resolution simulations of a section of the rocket near the center joint slot at 100 seconds after ignition, using inflow conditions based on less detailed 3D simulations of the full RSRM. Our simulations include both inviscid and turbulent flows (using LES dynamic subgrid-scale model), and explore the interaction between the inhibitor and the resulting fluid flow. The response of the solid components is computed by an implicit finite element solver. The internal mesh motion scheme in our block-structured fluid solver enables our code to handle significant changes in geometry. We compute turbulent statistics and determine the compound instabilities originated from the natural hydrodynamic instabilities and the inhibitor motion. The ultimate goal is to studdy the effect of inhibitor flexing on the turbulent field.
Is the spiral morphology of the Elias 2-27 circumstellar disc due to gravitational instability?
NASA Astrophysics Data System (ADS)
Hall, Cassandra; Rice, Ken; Dipierro, Giovanni; Forgan, Duncan; Harries, Tim; Alexander, Richard
2018-06-01
A recent Atacama Large Millimeter/submillimeter Array (ALMA) observation of the Elias 2-27 system revealed a two-armed structure extending out to ˜300 au in radius. The protostellar disc surrounding the central star is unusually massive, raising the possibility that the system is gravitationally unstable. Recent work has shown that the observed morphology of the system can be explained by disc self-gravity, so we examine the physical properties of the disc necessary to detect self-gravitating spiral waves. Using three-dimensional smoothed particle hydrodynamics, coupled with radiative transfer and synthetic ALMA imaging, we find that observable spiral structure can only be explained by self-gravity if the disc has a low opacity (and therefore efficient cooling), and is minimally supported by external irradiation. This corresponds to a very narrow region of parameter space, suggesting that, although it is possible for the spiral structure to be due to disc self-gravity, other explanations, such as an external perturbation, may be preferred.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhardwaj, Shubhendu; Sensale-Rodriguez, Berardi; Xing, Huili Grace
A rigorous theoretical and computational model is developed for the plasma-wave propagation in high electron mobility transistor structures with electron injection from a resonant tunneling diode at the gate. We discuss the conditions in which low-loss and sustainable plasmon modes can be supported in such structures. The developed analytical model is used to derive the dispersion relation for these plasmon-modes. A non-linear full-wave-hydrodynamic numerical solver is also developed using a finite difference time domain algorithm. The developed analytical solutions are validated via the numerical solution. We also verify previous observations that were based on a simplified transmission line model. Itmore » is shown that at high levels of negative differential conductance, plasmon amplification is indeed possible. The proposed rigorous models can enable accurate design and optimization of practical resonant tunnel diode-based plasma-wave devices for terahertz sources, mixers, and detectors, by allowing a precise representation of their coupling when integrated with other electromagnetic structures.« less
The role of disk self-gravity on gap formation of the HL Tau proto-planetary disk
Li, Shengtai; Li, Hui
2016-05-31
Here, we use extensive global hydrodynamic disk gas+dust simulations with embedded planets to model the dust ring and gap structures in the HL Tau protoplanetary disk observed with the Atacama Large Millimeter/Submillimeter Array (ALMA). Since the HL Tau is a relatively massive disk, we find the disk self-gravity (DSG) plays an important role in the gap formation induced by the planets. Our simulation results demonstrate that DSG is necessary in explaining of the dust ring and gap in HL Tau disk. The comparison of simulation results shows that the dust rings and gap structures are more evident when the fullymore » 2D DSG (non-axisymmetric components are included) is used than if 1D axisymmetric DSG (only the axisymetric component is included) is used, or the disk self-gravity is not considered. We also find that the couple dust+gas+planet simulations are required because the gap and ring structure is different between dust and gas surface density.« less
Wetland Responses to Sea Level Rise in the Northern Gulf of Mexico
NASA Astrophysics Data System (ADS)
Alizad, K.; Bilskie, M. V.; Hagen, S. C.; Medeiros, S. C.; Morris, J. T.
2016-12-01
Coastal regions are vulnerable to flood risk due to climate change, sea level rise, and wetland losses. The Northern Gulf of Mexico (NGOM) is a region in which extreme events are projected to be more intense under climate change and sea level rise scenarios [Wang et al., 2013; Bilskie et al., 2014]. Considering increased frequency and intensity of coastal flooding, wetlands are valuable natural resources that protect shorelines by dissipating waves and storm surges [Costanza et al., 2008]. Therefore, it is critical to investigate the response of salt marsh systems in different estuaries to sea level rise in the NGOM and their effects on storm surges to inform coastal managers to choose effective restoration plans. This research applies the coupled Hydro-MEM model [Alizad et al., 2016] to study three different estuarine systems in the NGOM. The model incorporates both sea level rise rate and feedbacks between physics and biology by coupling a hydrodynamic (ADCIRC) and salt marsh (MEM) model. The results of the model provide tidal hydrodynamics and biomass density change under four sea level rise projections during a 100-year period. The results are used to investigate marsh migration path in the estuarine systems. In addition, this study shows how marsh migration and biomass density change can impact storm surge modeling. The results imply the broader impacts of sea level rise on the estuarine systems in the NGOM. ReferencesAlizad, K., S. C. Hagen, J. T. Morris, P. Bacopoulos, M. V. Bilskie, J. Weishampel, and S. C. Medeiros (2016), A coupled, two-dimensional hydrodynamic-marsh model with biological feedback, Ecological Modeling, 327, 29-43. Bilskie, M. V., S. C. Hagen, S. C. Medeiros, and D. L. Passeri (2014), Dynamics of sea level rise and coastal flooding on a changing landscape, Geophysical Research Letters, 41(3), 927-934. Costanza, R., O. Pérez-Maqueo, M. L. Martinez, P. Sutton, S. J. Anderson, and K. Mulder (2008), The Value of Coastal Wetlands for Hurricane Protection, AMBIO: A Journal of the Human Environment, 37(4). Wang, D., S. C. Hagen, and K. Alizad (2013), Climate change impact and uncertainty analysis of extreme rainfall events in the Apalachicola River basin, Florida, Journal of Hydrology, 480(0), 125-135.
Simulating storm surge inundation and damage potential within complex port facilities
NASA Astrophysics Data System (ADS)
Mawdsley, Robert; French, Jon; Fujiyama, Taku; Achutan, Kamalasudhan
2017-04-01
Storm surge inundation of port facilities can cause damage to critical elements of infrastructure, significantly disrupt port operations and cause downstream impacts on vital supply chains. A tidal surge in December 2013 in the North Sea partly flooded the Port of Immingham, which handles the largest volume of bulk cargo in the UK including major flows of coal and biomass for power generation. This flooding caused damage to port and rail transport infrastructure and disrupted operations for several weeks. This research aims to improve resilience to storm surges using hydrodynamic modelling coupled to an agent-based model of port operations. Using the December 2013 event to validate flood extent, depth and duration, we ran a high resolution hydrodynamic simulation using the open source Telemac 2D finite element code. The underlying Digital Elevation Model (DEM) was derived from Environment Agency LiDAR data, with ground truthing of the flood defences along the port frontage. Major infrastructure and buildings are explicitly resolved with varying degrees of permeability. Telemac2D simulations are run in parallel and take only minutes on a single 16 cpu compute node. Inundation characteristics predicted using Telemac 2D differ from a simple Geographical Information System 'bath-tub' analysis of the DEM based upon horizontal application of the maximum water level across the port topography. The hydrodynamic simulation predicts less extensive flooding and more closely matches observed flood extent. It also provides more precise depth and duration curves. Detailed spatial flood depth and duration maps were generated for a range of tide and surge scenarios coupled to mean sea-level rise projections. These inundation scenarios can then be integrated with critical asset databases and an agent-based model of port operation (MARS) that is capable of simulating storm surge disruption along wider supply chains. Port operators are able to act on information from a particular flood scenario to perform adaptive responses (e.g. pre-emptive relocation of equipment), as well as estimate the likely duration of any disruption to port and supply chain operation. High resolution numerical inundation modelling, coupled to accurate storm surge forecasting and an agent based port operation model, thus has the potential to significantly reduce damage and disruption costs associated with storm surge impacts on port infrastructure and systems.
NASA Astrophysics Data System (ADS)
Rahman, A.; Kollet, S. J.; Sulis, M.
2013-12-01
In the terrestrial hydrological cycle, the atmosphere and the free groundwater table act as the upper and lower boundary condition, respectively, in the non-linear two-way exchange of mass and energy across the land surface. Identifying and quantifying the interactions among various atmospheric-subsurface-landsurface processes is complicated due to the diverse spatiotemporal scales associated with these processes. In this study, the coupled subsurface-landsurface model ParFlow.CLM was applied over a ~28,000 km2 model domain encompassing the Rur catchment, Germany, to simulate the fluxes of the coupled water and energy cycle. The model was forced by hourly atmospheric data from the COSMO-DE model (numerical weather prediction system of the German Weather Service) over one year. Following a spinup period, the model results were synthesized with observed river discharge, soil moisture, groundwater table depth, temperature, and landsurface energy flux data at different sites in the Rur catchment. It was shown that the model is able to reproduce reasonably the dynamics and also absolute values in observed fluxes and state variables without calibration. The spatiotemporal patterns in simulated water and energy fluxes as well as the interactions were studied using statistical, geostatistical and wavelet transform methods. While spatial patterns in the mass and energy fluxes can be predicted from atmospheric forcing and power law scaling in the transition and winter months, it appears that, in the summer months, the spatial patterns are determined by the spatially correlated variability in groundwater table depth. Continuous wavelet transform techniques were applied to study the variability of the catchment average mass and energy fluxes at varying time scales. From this analysis, the time scales associated with significant interactions among different mass and energy balance components were identified. The memory of precipitation variability in subsurface hydrodynamics acts at the 20-30 day time scale, while the groundwater contribution to sustain the long-term variability patterns in evapotranspiration acts at the 40-60 day scale. Diurnal patterns in connection with subsurface hydrodynamics were also detected. Thus, it appears that the subsurface hydrodynamics respond to the temporal patterns in land surface fluxes due to the variability in atmospheric forcing across multiple space and time scales.
A Simple Demonstration of Convective Effects on Reaction-Diffusion Systems: A Burning Cigarette.
ERIC Educational Resources Information Center
Pojman, John A.
1990-01-01
Described is a demonstration that provides an introduction to nonequilibrium reaction-diffusion systems and the coupling of hydrodynamics to chemical reactions. Experiments that demonstrate autocatalytic behavior that are effected by gravity and convection are included. (KR)
2002-09-30
integrated observation system that is being coupled to a data assimilative hydrodynamic bio-optical ecosystem model. The system was used adaptively to develop hyperspectral remote sensing techniques in optically complex nearshore coastal waters.
The use of analytical sedimentation velocity to extract thermodynamic linkage.
Cole, James L; Correia, John J; Stafford, Walter F
2011-11-01
For 25 years, the Gibbs Conference on Biothermodynamics has focused on the use of thermodynamics to extract information about the mechanism and regulation of biological processes. This includes the determination of equilibrium constants for macromolecular interactions by high precision physical measurements. These approaches further reveal thermodynamic linkages to ligand binding events. Analytical ultracentrifugation has been a fundamental technique in the determination of macromolecular reaction stoichiometry and energetics for 85 years. This approach is highly amenable to the extraction of thermodynamic couplings to small molecule binding in the overall reaction pathway. In the 1980s this approach was extended to the use of sedimentation velocity techniques, primarily by the analysis of tubulin-drug interactions by Na and Timasheff. This transport method necessarily incorporates the complexity of both hydrodynamic and thermodynamic nonideality. The advent of modern computational methods in the last 20 years has subsequently made the analysis of sedimentation velocity data for interacting systems more robust and rigorous. Here we review three examples where sedimentation velocity has been useful at extracting thermodynamic information about reaction stoichiometry and energetics. Approaches to extract linkage to small molecule binding and the influence of hydrodynamic nonideality are emphasized. These methods are shown to also apply to the collection of fluorescence data with the new Aviv FDS. Copyright © 2011 Elsevier B.V. All rights reserved.
The use of analytical sedimentation velocity to extract thermodynamic linkage
Cole, James L.; Correia, John J.; Stafford, Walter F.
2011-01-01
For 25 years, the Gibbs Conference on Biothermodynamics has focused on the use of thermodynamics to extract information about the mechanism and regulation of biological processes. This includes the determination of equilibrium constants for macromolecular interactions by high precision physical measurements. These approaches further reveal thermodynamic linkages to ligand binding events. Analytical ultracentrifugation has been a fundamental technique in the determination of macromolecular reaction stoichiometry and energetics for 85 years. This approach is highly amenable to the extraction of thermodynamic couplings to small molecule binding in the overall reaction pathway. In the 1980’s this approach was extended to the use of sedimentation velocity techniques, primarily by the analysis of tubulin-drug interactions by Na and Timasheff. This transport method necessarily incorporates the complexity of both hydrodynamic and thermodynamic nonideality. The advent of modern computational methods in the last 20 years has subsequently made the analysis of sedimentation velocity data for interacting systems more robust and rigorous. Here we review three examples where sedimentation velocity has been useful at extracting thermodynamic information about reaction stoichiometry and energetics. Approaches to extract linkage to small molecule binding and the influence of hydrodynamic nonideality are emphasized. These methods are shown to also apply to the collection of fluorescence data with the new Aviv FDS. PMID:21703752
NASA Astrophysics Data System (ADS)
Hu, Haoyue; Eberhard, Peter
2017-10-01
Process simulations of conduction mode laser welding are performed using the meshless Lagrangian smoothed particle hydrodynamics (SPH) method. The solid phase is modeled based on the governing equations in thermoelasticity. For the liquid phase, surface tension effects are taken into account to simulate the melt flow in the weld pool, including the Marangoni force caused by a temperature-dependent surface tension gradient. A non-isothermal solid-liquid phase transition with the release or absorption of additional energy known as the latent heat of fusion is considered. The major heat transfer through conduction is modeled, whereas heat convection and radiation are neglected. The energy input from the laser beam is modeled as a Gaussian heat source acting on the initial material surface. The developed model is implemented in Pasimodo. Numerical results obtained with the model are presented for laser spot welding and seam welding of aluminum and iron. The change of process parameters like welding speed and laser power, and their effects on weld dimensions are investigated. Furthermore, simulations may be useful to obtain the threshold for deep penetration welding and to assess the overall welding quality. A scalability and performance analysis of the implemented SPH algorithm in Pasimodo is run in a shared memory environment. The analysis reveals the potential of large welding simulations on multi-core machines.
NASA Astrophysics Data System (ADS)
Pan, Wen-hao; Liu, Shi-he; Huang, Li
2018-02-01
This study developed a three-layer velocity model for turbulent flow over large-scale roughness. Through theoretical analysis, this model coupled both surface and subsurface flow. Flume experiments with flat cobble bed were conducted to examine the theoretical model. Results show that both the turbulent flow field and the total flow characteristics are quite different from that in the low gradient flow over microscale roughness. The velocity profile in a shallow stream converges to the logarithmic law away from the bed, while inflecting over the roughness layer to the non-zero subsurface flow. The velocity fluctuations close to a cobble bed are different from that of a sand bed, and it indicates no sufficiently large peak velocity. The total flow energy loss deviates significantly from the 1/7 power law equation when the relative flow depth is shallow. Both the coupled model and experiments indicate non-negligible subsurface flow that accounts for a considerable proportion of the total flow. By including the subsurface flow, the coupled model is able to predict a wider range of velocity profiles and total flow energy loss coefficients when compared with existing equations.
A fast platform for simulating semi-flexible fiber suspensions applied to cell mechanics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nazockdast, Ehssan, E-mail: ehssan@cims.nyu.edu; Center for Computational Biology, Simons Foundation, New York, NY 10010; Rahimian, Abtin, E-mail: arahimian@acm.org
We present a novel platform for the large-scale simulation of three-dimensional fibrous structures immersed in a Stokesian fluid and evolving under confinement or in free-space in three dimensions. One of the main motivations for this work is to study the dynamics of fiber assemblies within biological cells. For this, we also incorporate the key biophysical elements that determine the dynamics of these assemblies, which include the polymerization and depolymerization kinetics of fibers, their interactions with molecular motors and other objects, their flexibility, and hydrodynamic coupling. This work, to our knowledge, is the first technique to include many-body hydrodynamic interactions (HIs),more » and the resulting fluid flows, in cellular assemblies of flexible fibers. We use non-local slender body theory to compute the fluid–structure interactions of the fibers and a second-kind boundary integral formulation for other rigid bodies and the confining boundary. A kernel-independent implementation of the fast multipole method is utilized for efficient evaluation of HIs. The deformation of the fibers is described by nonlinear Euler–Bernoulli beam theory and their polymerization is modeled by the reparametrization of the dynamic equations in the appropriate non-Lagrangian frame. We use a pseudo-spectral representation of fiber positions and implicit time-stepping to resolve large fiber deformations, and to allow time-steps not excessively constrained by temporal stiffness or fiber–fiber interactions. The entire computational scheme is parallelized, which enables simulating assemblies of thousands of fibers. We use our method to investigate two important questions in the mechanics of cell division: (i) the effect of confinement on the hydrodynamic mobility of microtubule asters; and (ii) the dynamics of the positioning of mitotic spindle in complex cell geometries. Finally to demonstrate the general applicability of the method, we simulate the sedimentation of a cloud of semi-flexible fibers.« less
A fast platform for simulating semi-flexible fiber suspensions applied to cell mechanics
NASA Astrophysics Data System (ADS)
Nazockdast, Ehssan; Rahimian, Abtin; Zorin, Denis; Shelley, Michael
2017-01-01
We present a novel platform for the large-scale simulation of three-dimensional fibrous structures immersed in a Stokesian fluid and evolving under confinement or in free-space in three dimensions. One of the main motivations for this work is to study the dynamics of fiber assemblies within biological cells. For this, we also incorporate the key biophysical elements that determine the dynamics of these assemblies, which include the polymerization and depolymerization kinetics of fibers, their interactions with molecular motors and other objects, their flexibility, and hydrodynamic coupling. This work, to our knowledge, is the first technique to include many-body hydrodynamic interactions (HIs), and the resulting fluid flows, in cellular assemblies of flexible fibers. We use non-local slender body theory to compute the fluid-structure interactions of the fibers and a second-kind boundary integral formulation for other rigid bodies and the confining boundary. A kernel-independent implementation of the fast multipole method is utilized for efficient evaluation of HIs. The deformation of the fibers is described by nonlinear Euler-Bernoulli beam theory and their polymerization is modeled by the reparametrization of the dynamic equations in the appropriate non-Lagrangian frame. We use a pseudo-spectral representation of fiber positions and implicit time-stepping to resolve large fiber deformations, and to allow time-steps not excessively constrained by temporal stiffness or fiber-fiber interactions. The entire computational scheme is parallelized, which enables simulating assemblies of thousands of fibers. We use our method to investigate two important questions in the mechanics of cell division: (i) the effect of confinement on the hydrodynamic mobility of microtubule asters; and (ii) the dynamics of the positioning of mitotic spindle in complex cell geometries. Finally to demonstrate the general applicability of the method, we simulate the sedimentation of a cloud of semi-flexible fibers.
Coevolution of Binaries and Circumbinary Gaseous Disks
NASA Astrophysics Data System (ADS)
Fleming, David; Quinn, Thomas R.
2018-04-01
The recent discoveries of circumbinary planets by Kepler raise questions for contemporary planet formation models. Understanding how these planets form requires characterizing their formation environment, the circumbinary protoplanetary disk, and how the disk and binary interact. The central binary excites resonances in the surrounding protoplanetary disk that drive evolution in both the binary orbital elements and in the disk. To probe how these interactions impact both binary eccentricity and disk structure evolution, we ran N-body smooth particle hydrodynamics (SPH) simulations of gaseous protoplanetary disks surrounding binaries based on Kepler 38 for 10^4 binary orbital periods for several initial binary eccentricities. We find that nearly circular binaries weakly couple to the disk via a parametric instability and excite disk eccentricity growth. Eccentric binaries strongly couple to the disk causing eccentricity growth for both the disk and binary. Disks around sufficiently eccentric binaries strongly couple to the disk and develop an m = 1 spiral wave launched from the 1:3 eccentric outer Lindblad resonance (EOLR). This wave corresponds to an alignment of gas particle longitude of periastrons. We find that in all simulations, the binary semi-major axis decays due to dissipation from the viscous disk.
NASA Astrophysics Data System (ADS)
Oladeinde, Mobolaji Humphrey; Akpobi, John Ajokpaoghene
2011-10-01
The hydrodynamic and magnetohydrodynamic (MHD) lubrication problem of infinitely wide inclined and parabolic slider bearings is solved numerically using the finite element method. The bearing configurations are discretized into three-node isoparametric quadratic elements. Stiffness integrals obtained from the weak form of the governing equations are solved using Gauss quadrature to obtain a finite number of stiffness matrices. The global system of equations obtained from enforcing nodal continuity of pressure for the bearings are solved using the Gauss-Seidel iterative scheme with a convergence criterion of 10-10. Numerical computations reveal that, when compared for similar profile and couple stress parameters, greater pressure builds up in a parabolic slider compared to an inclined slider, indicating a greater wedge effect in the parabolic slider. The parabolic slider bearing is also shown to develop a greater load capacity when lubricated with magnetic fluids. The superior performance of parabolic slider bearing is more pronounced at greater Hartmann numbers for identical bearing structural parameters. It is also shown that when load carrying capacity is the yardstick for comparison, the parabolic slider bearings are superior to the inclined bearings when lubricated with couple stress or magnetic lubricants.
Coupled multi-disciplinary composites behavior simulation
NASA Technical Reports Server (NTRS)
Singhal, Surendra N.; Murthy, Pappu L. N.; Chamis, Christos C.
1993-01-01
The capabilities of the computer code CSTEM (Coupled Structural/Thermal/Electro-Magnetic Analysis) are discussed and demonstrated. CSTEM computationally simulates the coupled response of layered multi-material composite structures subjected to simultaneous thermal, structural, vibration, acoustic, and electromagnetic loads and includes the effect of aggressive environments. The composite material behavior and structural response is determined at its various inherent scales: constituents (fiber/matrix), ply, laminate, and structural component. The thermal and mechanical properties of the constituents are considered to be nonlinearly dependent on various parameters such as temperature and moisture. The acoustic and electromagnetic properties also include dependence on vibration and electromagnetic wave frequencies, respectively. The simulation is based on a three dimensional finite element analysis in conjunction with composite mechanics and with structural tailoring codes, and with acoustic and electromagnetic analysis methods. An aircraft engine composite fan blade is selected as a typical structural component to demonstrate the CSTEM capabilities. Results of various coupled multi-disciplinary heat transfer, structural, vibration, acoustic, and electromagnetic analyses for temperature distribution, stress and displacement response, deformed shape, vibration frequencies, mode shapes, acoustic noise, and electromagnetic reflection from the fan blade are discussed for their coupled effects in hot and humid environments. Collectively, these results demonstrate the effectiveness of the CSTEM code in capturing the coupled effects on the various responses of composite structures subjected to simultaneous multiple real-life loads.
Christine L. May; Bonnie S. Pryor; Thomas E. Lisle; Margaret M. Lang
2009-01-01
n order to assess the risk of scour and fill of spawning redds during floods, an understanding of the relations among river discharge, bed mobility, and scour and fill depths in areas of the streambed heavily utilized by spawning salmon is needed. Our approach coupled numerical flow modeling and empirical data from the Trinity River, California, to quantify spatially...
Concept for a new hydrodynamic blood bearing for miniature blood pumps.
Kink, Thomas; Reul, Helmut
2004-10-01
The most crucial element of a long-term implantable rotary blood pump is the rotor bearing. Because of heat generation and power loss resulting from friction, seals within the devices have to be avoided. Actively controlled magnetic bearings, although maintenance-free, increase the degree of complexity. Hydrodynamic bearings for magnetically coupled rotors may offer an alternative solution to this problem. Additionally, for miniature pumps, the load capacity of hydrodynamic bearings scales slower than that of, for example, magnetic bearings because of the cube-square-law. A special kind of hydrodynamic bearing is a spiral groove bearing (SGB), which features an excellent load capacity. Mock-loop tests showed that SGBs do not influence the hydraulic performance of the tested pumps. Although, as of now, the power consumption of the SBG is higher than for a mechanical pivot bearing, it is absolutely contact-free and has an unlimited lifetime. The liftoff of the rotor occurs already at 10% of design speed. Further tests and flow visualization studies on scaled-up models must demonstrate its overall blood compatibility.
NASA Astrophysics Data System (ADS)
Chattopadhyay, Chandrodoy; Bhalerao, Rajeev S.; Ollitrault, Jean-Yves; Pal, Subrata
2018-03-01
We evaluate the effects of preequilibrium dynamics on observables in ultrarelativistic heavy-ion collisions. We simulate the initial nonequilibrium phase within a multiphase transport (AMPT) model, while the subsequent near-equilibrium evolution is modeled using (2+1)-dimensional relativistic viscous hydrodynamics. We match the two stages of evolution carefully by calculating the full energy-momentum tensor from AMPT and using it as input for the hydrodynamic evolution. We find that when the preequilibrium evolution is taken into account, final-state observables are insensitive to the switching time from AMPT to hydrodynamics. Unlike some earlier treatments of preequilibrium dynamics, we do not find the initial shear viscous tensor to be large. With a shear viscosity to entropy density ratio of 0.12, our model describes quantitatively a large set of experimental data on Pb+Pb collisions at the Large Hadron Collider over a wide range of centrality: differential anisotropic flow vn(pT) (n =2 -6 ) , event-plane correlations, correlation between v2 and v3, and cumulant ratio v2{4 } /v2{2 } .
Paths to equilibrium in non-conformal collisions
NASA Astrophysics Data System (ADS)
Attems, Maximilian; Bea, Yago; Casalderrey-Solana, Jorge; Mateos, David; Santos-Oliván, Daniel; Sopuerta, Carlos F.; Triana, Miquel; Zilhão, Miguel
2018-03-01
Ever since fast hydrodynamization has been observed in heavy ion collisions the understanding of the hot early out-of-equilibrium stage of such collisions has been a topic of intense research. We use the gauge/gravity duality to model the creation of a strongly coupled Quark-Gluon plasma in a non-conformal gauge theory. This numerical relativity study is the first non-conformal holographic simulation of a heavy ion collision and reveals the existence of new relaxation channels due to the presence of non-vanishing bulk viscosity. We study shock wave collisions at different energies in gauge theories with different degrees of non-conformality and compare three relaxation times which can occur in different orderings: the hydrodynamization time (when hydrodynamics becomes applicable), the EoSization time (when the average pressure approaches its equilibrium value) and the condensate relaxation time (when the expectation value of a scalar operator approaches its equilibrium value). We find that these processes can occur in several different orderings. In particular, the condensate can remain far from equilibrium even long after the plasma has hydrodynamized and EoSized.
Second-order (2 +1 ) -dimensional anisotropic hydrodynamics
NASA Astrophysics Data System (ADS)
Bazow, Dennis; Heinz, Ulrich; Strickland, Michael
2014-11-01
We present a complete formulation of second-order (2 +1 ) -dimensional anisotropic hydrodynamics. The resulting framework generalizes leading-order anisotropic hydrodynamics by allowing for deviations of the one-particle distribution function from the spheroidal form assumed at leading order. We derive complete second-order equations of motion for the additional terms in the macroscopic currents generated by these deviations from their kinetic definition using a Grad-Israel-Stewart 14-moment ansatz. The result is a set of coupled partial differential equations for the momentum-space anisotropy parameter, effective temperature, the transverse components of the fluid four-velocity, and the viscous tensor components generated by deviations of the distribution from spheroidal form. We then perform a quantitative test of our approach by applying it to the case of one-dimensional boost-invariant expansion in the relaxation time approximation (RTA) in which case it is possible to numerically solve the Boltzmann equation exactly. We demonstrate that the second-order anisotropic hydrodynamics approach provides an excellent approximation to the exact (0+1)-dimensional RTA solution for both small and large values of the shear viscosity.
Hydrodynamics of the double-wave structure of insect spermatozoa flagella
Pak, On Shun; Spagnolie, Saverio E.; Lauga, Eric
2012-01-01
In addition to conventional planar and helical flagellar waves, insect sperm flagella have also been observed to display a double-wave structure characterized by the presence of two superimposed helical waves. In this paper, we present a hydrodynamic investigation of the locomotion of insect spermatozoa exhibiting the double-wave structure, idealized here as superhelical waves. Resolving the hydrodynamic interactions with a non-local slender body theory, we predict the swimming kinematics of these superhelical swimmers based on experimentally collected geometric and kinematic data. Our consideration provides insight into the relative contributions of the major and minor helical waves to swimming; namely, propulsion is owing primarily to the minor wave, with negligible contribution from the major wave. We also explore the dependence of the propulsion speed on geometric and kinematic parameters, revealing counterintuitive results, particularly for the case when the minor and major helical structures are of opposite chirality. PMID:22298815
Gangamallaiah, V; Dutt, G B
2012-10-25
In an attempt to find out whether the length of the alkyl chain on the imidazolium cation has a bearing on solute rotation, temperature-dependent fluorescence anisotropies of three structurally similar solutes have been measured in a series of 1-alkyl-3-methylimidazolium (alkyl = methyl, ethyl, propyl, butyl, and hexyl) bis(trifluoromethylsulfonyl)imides. Solute-solvent coupling constants obtained from the experimentally measured reorientation times with the aid of Stokes-Einstein-Debye hydrodynamic theory indicate that there is no influence of the length of the alkyl chain on the rotation of nonpolar, anionic, and cationic solutes 9-phenylanthracene (9-PA), fluorescein (FL), and rhodamine 110 (R110), respectively. It has also been noticed that the rotational diffusion of 9-PA is closer to the predictions of slip hydrodynamics, whereas the rotation of negatively charged FL and positively charged R110 is almost identical and follows stick hydrodynamics in these ionic liquids. Despite having similar shape and size, ionic solutes rotate slower by a factor of 3-4 compared to the nonpolar solute. Interplay of specific and electrostatic interactions between FL and the imidazolium cation of the ionic liquids, and between R110 and the bis(trifluoromethylsulfonyl)imide anion, appear to be responsible for the observed behavior. These results are an indication that the length of the alkyl chain on the imidazolium cation does not alter their physical properties in a manner that has an effect on solute rotation.
Development of Advanced Carbon Face Seals for Aircraft Engines
NASA Astrophysics Data System (ADS)
Falaleev, S. V.; Bondarchuk, P. V.; Tisarev, A. Yu
2018-01-01
Modern aircraft gas turbine engines require the development of seals which can operate for a long time with low leakages. The basic type of seals applied for gas turbine engine rotor supports is face seal. To meet the modern requirements of reliability, leak-tightness and weight, low-leakage gas-static and hydrodynamic seals have to be developed. Dry gas seals use both gas-static and hydrodynamic principles. In dry gas seals microgrooves are often used, which ensure the reverse injection of leakages in the sealed cavity. Authors have developed a calculation technique including the concept of coupled hydrodynamic, thermal and structural calculations. This technique allows to calculate the seal performance taking into account the forces of inertia, rupture of the lubricant layer and the real form of the gap. Authors have compared the efficiency of seals with different forms of microgrooves. Results of calculations show that seal with rectangular form of microgrooves has a little gap leading to both the contact of seal surfaces and the wear. Reversible microgrooves have a higher oil mass flow rate, whereas HST micro-grooves have good performance, but they are difficult to produce. Spiral microgrooves have both an acceptable leakages and a high stiffness of liquid layer that is important in terms of ensuring of sealing performance at vibration conditions. Therefore, the spiral grooves were chosen for the developed seal. Based on calculation results, geometric dimensions were chosen to ensure the reliability of the seal operation by creating a guaranteed liquid film, which eliminates the wear of the sealing surfaces. Seals designed were tested both at the test rig and in the engine.
Multiscale Universal Interface: A concurrent framework for coupling heterogeneous solvers
NASA Astrophysics Data System (ADS)
Tang, Yu-Hang; Kudo, Shuhei; Bian, Xin; Li, Zhen; Karniadakis, George Em
2015-09-01
Concurrently coupled numerical simulations using heterogeneous solvers are powerful tools for modeling multiscale phenomena. However, major modifications to existing codes are often required to enable such simulations, posing significant difficulties in practice. In this paper we present a C++ library, i.e. the Multiscale Universal Interface (MUI), which is capable of facilitating the coupling effort for a wide range of multiscale simulations. The library adopts a header-only form with minimal external dependency and hence can be easily dropped into existing codes. A data sampler concept is introduced, combined with a hybrid dynamic/static typing mechanism, to create an easily customizable framework for solver-independent data interpretation. The library integrates MPI MPMD support and an asynchronous communication protocol to handle inter-solver information exchange irrespective of the solvers' own MPI awareness. Template metaprogramming is heavily employed to simultaneously improve runtime performance and code flexibility. We validated the library by solving three different multiscale problems, which also serve to demonstrate the flexibility of the framework in handling heterogeneous models and solvers. In the first example, a Couette flow was simulated using two concurrently coupled Smoothed Particle Hydrodynamics (SPH) simulations of different spatial resolutions. In the second example, we coupled the deterministic SPH method with the stochastic Dissipative Particle Dynamics (DPD) method to study the effect of surface grafting on the hydrodynamics properties on the surface. In the third example, we consider conjugate heat transfer between a solid domain and a fluid domain by coupling the particle-based energy-conserving DPD (eDPD) method with the Finite Element Method (FEM).
Multiscale Universal Interface: A concurrent framework for coupling heterogeneous solvers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Yu-Hang, E-mail: yuhang_tang@brown.edu; Kudo, Shuhei, E-mail: shuhei-kudo@outlook.jp; Bian, Xin, E-mail: xin_bian@brown.edu
2015-09-15
Graphical abstract: - Abstract: Concurrently coupled numerical simulations using heterogeneous solvers are powerful tools for modeling multiscale phenomena. However, major modifications to existing codes are often required to enable such simulations, posing significant difficulties in practice. In this paper we present a C++ library, i.e. the Multiscale Universal Interface (MUI), which is capable of facilitating the coupling effort for a wide range of multiscale simulations. The library adopts a header-only form with minimal external dependency and hence can be easily dropped into existing codes. A data sampler concept is introduced, combined with a hybrid dynamic/static typing mechanism, to create anmore » easily customizable framework for solver-independent data interpretation. The library integrates MPI MPMD support and an asynchronous communication protocol to handle inter-solver information exchange irrespective of the solvers' own MPI awareness. Template metaprogramming is heavily employed to simultaneously improve runtime performance and code flexibility. We validated the library by solving three different multiscale problems, which also serve to demonstrate the flexibility of the framework in handling heterogeneous models and solvers. In the first example, a Couette flow was simulated using two concurrently coupled Smoothed Particle Hydrodynamics (SPH) simulations of different spatial resolutions. In the second example, we coupled the deterministic SPH method with the stochastic Dissipative Particle Dynamics (DPD) method to study the effect of surface grafting on the hydrodynamics properties on the surface. In the third example, we consider conjugate heat transfer between a solid domain and a fluid domain by coupling the particle-based energy-conserving DPD (eDPD) method with the Finite Element Method (FEM)« less
Coupled structural/thermal/electromagnetic analysis/tailoring of graded composite structures
NASA Technical Reports Server (NTRS)
Hartle, M. S.; Mcknight, R. L.; Huang, H.; Holt, R.
1992-01-01
Described here are the accomplishments of a 5-year program to develop a methodology for coupled structural, thermal, electromagnetic analysis tailoring of graded component structures. The capabilities developed over the course of the program are the analyzer module and the tailoring module for the modeling of graded materials. Highlighted accomplishments for the past year include the addition of a buckling analysis capability, the addition of mode shape slope calculation for flutter analysis, verification of the analysis modules using simulated components, and verification of the tailoring module.
Quality factors and local adaption (with applications in Eulerian hydrodynamics)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crowley, W.P.
1992-06-17
Adapting the mesh to suit the solution is a technique commonly used for solving both ode`s and pde`s. For Lagrangian hydrodynamics, ALE and Free-Lagrange are examples of structured and unstructured adaptive methods. For Eulerian hydrodynamics the two basic approaches are the macro-unstructuring technique pioneered by Oliger and Berger and the micro-structuring technique due to Lohner and others. Here we will describe a new micro-unstructuring technique, LAM, (for Local Adaptive Mesh) as applied to Eulerian hydrodynamics. The LAM technique consists of two independent parts: (1) the time advance scheme is a variation on the artificial viscosity method; (2) the adaption schememore » uses a micro-unstructured mesh with quadrilateral mesh elements. The adaption scheme makes use of quality factors and the relation between these and truncation errors is discussed. The time advance scheme; the adaption strategy; and the effect of different adaption parameters on numerical solutions are described.« less
Quality factors and local adaption (with applications in Eulerian hydrodynamics)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crowley, W.P.
1992-06-17
Adapting the mesh to suit the solution is a technique commonly used for solving both ode's and pde's. For Lagrangian hydrodynamics, ALE and Free-Lagrange are examples of structured and unstructured adaptive methods. For Eulerian hydrodynamics the two basic approaches are the macro-unstructuring technique pioneered by Oliger and Berger and the micro-structuring technique due to Lohner and others. Here we will describe a new micro-unstructuring technique, LAM, (for Local Adaptive Mesh) as applied to Eulerian hydrodynamics. The LAM technique consists of two independent parts: (1) the time advance scheme is a variation on the artificial viscosity method; (2) the adaption schememore » uses a micro-unstructured mesh with quadrilateral mesh elements. The adaption scheme makes use of quality factors and the relation between these and truncation errors is discussed. The time advance scheme; the adaption strategy; and the effect of different adaption parameters on numerical solutions are described.« less
NASA Technical Reports Server (NTRS)
Mei, Chuh; Pates, Carl S., III
1994-01-01
A coupled boundary element (BEM)-finite element (FEM) approach is presented to accurately model structure-acoustic interaction systems. The boundary element method is first applied to interior, two and three-dimensional acoustic domains with complex geometry configurations. Boundary element results are very accurate when compared with limited exact solutions. Structure-interaction problems are then analyzed with the coupled FEM-BEM method, where the finite element method models the structure and the boundary element method models the interior acoustic domain. The coupled analysis is compared with exact and experimental results for a simplistic model. Composite panels are analyzed and compared with isotropic results. The coupled method is then extended for random excitation. Random excitation results are compared with uncoupled results for isotropic and composite panels.
2009-07-01
produce a configuration parallel to, and longitudinally aligned with, the north jetty, but the rebuilt structure essentially cuts off the inner south...Normalized Root Mean Square Deviation PMAB Prototype Measurement and Analysis Branch RGB Red, Green, Blue RMSD Root Mean Square Deviation SHOALS...intended height of the rubble mound off the seafloor (submergent). The latter method is used for a variety of structural assignments besides a
NASA Astrophysics Data System (ADS)
Liu, Chao; Yang, Guigeng; Zhang, Yiqun
2015-01-01
The electrostatically controlled deployable membrane reflector (ECDMR) is a promising scheme to construct large size and high precision space deployable reflector antennas. This paper presents a novel design method for the large size and small F/D ECDMR considering the coupled structure-electrostatic problem. First, the fully coupled structural-electrostatic system is described by a three field formulation, in which the structure and passive electrical field is modeled by finite element method, and the deformation of the electrostatic domain is predicted by a finite element formulation of a fictitious elastic structure. A residual formulation of the structural-electrostatic field finite element model is established and solved by Newton-Raphson method. The coupled structural-electrostatic analysis procedure is summarized. Then, with the aid of this coupled analysis procedure, an integrated optimization method of membrane shape accuracy and stress uniformity is proposed, which is divided into inner and outer iterative loops. The initial state of relatively high shape accuracy and uniform stress distribution is achieved by applying the uniform prestress on the membrane design shape and optimizing the voltages, in which the optimal voltage is computed by a sensitivity analysis. The shape accuracy is further improved by the iterative prestress modification using the reposition balance method. Finally, the results of the uncoupled and coupled methods are compared and the proposed optimization method is applied to design an ECDMR. The results validate the effectiveness of this proposed methods.
Hydrodynamic Modeling for Channel and Shoreline Stabilization at Rhodes Point, Smith Island, MD
2016-11-01
shorelines. Both Alternatives included the same revetment structure for protecting the south shoreline. The Coastal Modeling System (CMS, including CMS...ER D C/ CH L TR -1 6- 17 Coastal Inlets Research Program Hydrodynamic Modeling for Channel and Shoreline Stabilization at Rhodes Point...acwc.sdp.sirsi.net/client/default. Coastal Inlets Research Program ERDC/CHL TR-16-17 November 2016 Hydrodynamic Modeling for Channel and Shoreline
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harilal, S. S.; Miloshevsky, G. V.; Diwakar, P. K.
2012-08-15
We investigated spatio-temporal evolution of ns laser ablation plumes at atmospheric pressure, a favored condition for laser-induced breakdown spectroscopy and laser-ablation inductively coupled plasma mass-spectrometry. The 1064 nm, 6 ns pulses from a Nd:YAG laser were focused on to an Al target and the generated plasma was allowed to expand in 1 atm Ar. The hydrodynamic expansion features were studied using focused shadowgraphy and gated 2 ns self-emission visible imaging. Shadowgram images showed material ejection and generation of shock fronts. A secondary shock is observed behind the primary shock during the time window of 100-500 ns with instabilities near themore » laser cone angle. By comparing the self-emission images obtained using fast photography, it is concluded that the secondary shocks observed in the shadowgraphy were generated by fast moving target material. The plume front estimates using fast photography exhibited reasonable agreement with data obtained from shadowgraphy at early times {<=}400 ns. However, at later times, fast photography images showed plume confinement while the shadowgraphic images showed propagation of the plume front even at greater times. The structure and dynamics of the plume obtained from optical diagnostic tools were compared to numerical simulations. We have shown that the main features of plume expansion in ambient Ar observed in the experiments can be reproduced using a continuum hydrodynamics model which provided valuable insight into the expansion dynamics and shock structure of the plasma plume.« less
Horizontal density-gradient effects on simulation of flow and transport in the Potomac Estuary
Schaffranek, Raymond W.; Baltzer, Robert A.; ,
1990-01-01
A two-dimensional, depth-integrated, hydrodynamic/transport model of the Potomac Estuary between Indian Head and Morgantown, Md., has been extended to include treatment of baroclinic forcing due to horizontal density gradients. The finite-difference model numerically integrates equations of mass and momentum conservation in conjunction with a transport equation for heat, salt, and constituent fluxes. Lateral and longitudinal density gradients are determined from salinity distributions computed from the convection-diffusion equation and an equation of state that expresses density as a function of temperature and salinity; thus, the hydrodynamic and transport computations are directly coupled. Horizontal density variations are shown to contribute significantly to momentum fluxes determined in the hydrodynamic computation. These fluxes lead to enchanced tidal pumping, and consequently greater dispersion, as is evidenced by numerical simulations. Density gradient effects on tidal propagation and transport behavior are discussed and demonstrated.
Nanoscale swimmers: hydrodynamic interactions and propulsion of molecular machines
NASA Astrophysics Data System (ADS)
Sakaue, T.; Kapral, R.; Mikhailov, A. S.
2010-06-01
Molecular machines execute nearly regular cyclic conformational changes as a result of ligand binding and product release. This cyclic conformational dynamics is generally non-reciprocal so that under time reversal a different sequence of machine conformations is visited. Since such changes occur in a solvent, coupling to solvent hydrodynamic modes will generally result in self-propulsion of the molecular machine. These effects are investigated for a class of coarse grained models of protein machines consisting of a set of beads interacting through pair-wise additive potentials. Hydrodynamic effects are incorporated through a configuration-dependent mobility tensor, and expressions for the propulsion linear and angular velocities, as well as the stall force, are obtained. In the limit where conformational changes are small so that linear response theory is applicable, it is shown that propulsion is exponentially small; thus, propulsion is nonlinear phenomenon. The results are illustrated by computations on a simple model molecular machine.
Lagrangian description of warm plasmas
NASA Technical Reports Server (NTRS)
Kim, H.
1970-01-01
Efforts are described to extend the averaged Lagrangian method of describing small signal wave propagation and nonlinear wave interaction, developed by earlier workers for cold plasmas, to the more general conditions of warm collisionless plasmas, and to demonstrate particularly the effectiveness of the method in analyzing wave-wave interactions. The theory is developed for both the microscopic description and the hydrodynamic approximation to plasma behavior. First, a microscopic Lagrangian is formulated rigorously, and expanded in terms of perturbations about equilibrium. Two methods are then described for deriving a hydrodynamic Lagrangian. In the first of these, the Lagrangian is obtained by velocity integration of the exact microscopic Lagrangian. In the second, the expanded hydrodynamic Lagrangian is obtained directly from the expanded microscopic Lagrangian. As applications of the microscopic Lagrangian, the small-signal dispersion relations and the coupled mode equations are derived for all possible waves in a warm infinite, weakly inhomogeneous magnetoplasma, and their interactions are examined.
Dueri, Sibylle; Marinov, Dimitar; Fiandrino, Annie; Tronczyński, Jacek; Zaldívar, José-Manuel
2010-01-01
A 3D hydrodynamic and contaminant fate model was implemented for polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in Thau lagoon. The hydrodynamic model was tested against temperature and salinity measurements, while the contaminant fate model was assessed against available data collected at different stations inside the lagoon. The model results allow an assessment of the spatial and temporal variability of the distribution of contaminants in the lagoon, the seasonality of loads and the role of atmospheric deposition for the input of PCDD/Fs. The outcome suggests that air is an important source of PCDD/Fs for this ecosystem, therefore the monitoring of air pollution is very appropriate for assessing the inputs of these contaminants. These results call for the development of integrated environmental protection policies. PMID:20617040
Microscopic diffusion and hydrodynamic interactions of hemoglobin in red blood cells.
Doster, Wolfgang; Longeville, Stéphane
2007-08-15
The cytoplasm of red blood cells is congested with the oxygen storage protein hemoglobin occupying a quarter of the cell volume. The high protein concentration leads to a reduced mobility; the self-diffusion coefficient of hemoglobin in blood cells is six times lower than in dilute solution. This effect is generally assigned to excluded volume effects in crowded media. However, the collective or gradient diffusion coefficient of hemoglobin is only weakly dependent on concentration, suggesting the compensation of osmotic and friction forces. This would exclude hydrodynamic interactions, which are of dynamic origin and do not contribute to the osmotic pressure. Hydrodynamic coupling between protein molecules is dominant at short time- and length scales before direct interactions are fully established. Employing neutron spin-echo-spectroscopy, we study hemoglobin diffusion on a nanosecond timescale and protein displacements on the scale of a few nanometers. A time- and wave-vector dependent diffusion coefficient is found, suggesting the crossover of self- and collective diffusion. Moreover, a wave-vector dependent friction function is derived, which is a characteristic feature of hydrodynamic interactions. The wave-vector and concentration dependence of the long-time self-diffusion coefficient of hemoglobin agree qualitatively with theoretical results on hydrodynamics in hard spheres suspensions. Quantitative agreement requires us to adjust the volume fraction by including part of the hydration shell: Proteins exhibit a larger surface/volume ratio compared to standard colloids of much larger size. It is concluded that hydrodynamic and not direct interactions dominate long-range molecular transport at high concentration.
Fundamental Insights into Combustion Instability Predictions in Aerospace Propulsion
NASA Astrophysics Data System (ADS)
Huang, Cheng
Integrated multi-fidelity modeling has been performed for combustion instability in aerospace propulsion, which includes two levels of analysis: first, computational fluid dynamics (CFD) using hybrid RANS/LES simulations for underlying physics investigations (high-fidelity modeling); second, modal decomposition techniques for diagnostics (analysis & validation); third, development of flame response model using model reduction techniques for practical design applications (low-order model). For the high-fidelity modeling, the relevant CFD code development work is moving towards combustion instability prediction for liquid propulsion system. A laboratory-scale single-element lean direct injection (LDI) gas turbine combustor is used for configuration that produces self-excited combustion instability. The model gas turbine combustor is featured with an air inlet section, air plenum, swirler-venturi-injector assembly, combustion chamber, and exit nozzle. The combustor uses liquid fuel (Jet-A/FT-SPK) and heated air up to 800K. Combustion dynamics investigations are performed with the same geometry and operating conditions concurrently between the experiment and computation at both high (φ=0.6) and low (φ=0.36) equivalence ratios. The simulation is able to reach reasonable agreement with experiment measurements in terms of the pressure signal. Computational analyses are also performed using an acoustically-open geometry to investigate the characteristic hydrodynamics in the combustor with both constant and perturbed inlet mass flow rates. Two hydrodynamic modes are identified by using Dynamic Mode Decomposition (DMD) analysis: Vortex Breakdown Bubble (VBB) and swirling modes. Following that, the closed geometry simulation results are analyzed in three steps. In step one, a detailed cycle analysis shows two physically important couplings in the combustor: first, the acoustic compression enhances the spray drop breakup and vaporization, and generates more gaseous fuel for reaction; second, the acoustic compression couples with the unsteady hydrodynamics found in the open-geometry simulation, enhances the fuel/air mixing, and triggers a large amount of heat addition. In step two, a modal analysis using DMD extracts the dynamic features of important modes in the combustor, and identifies the presence of Precessing Vortex Core (PVC) mode and its nonlinear interactions with acoustic modes. Moreover, the DMD analysis helps to establish the couplings between the hydrodynamics and acoustics in terms of frequencies. In step 3, Rayleigh index analysis provides a quantitative assessment of acoustics/combustion couplings and identifies local regions for instability driving/damping. Two modal decomposition techniques, Proper Orthogonal Decomposition (POD) and Dynamic Mode Decomposition (DMD), are assessed in terms of their capabilities in extracting important information from the original simulation dataset and in validating the computational results using the experiment measurement. A POD analysis provides a series of modes with decreasing energy content and it offers an efficient and optimized way to represent a large dataset. The frequency-based DMD technique provides modes that correspond to all single frequencies. For the low-order modeling, fundamental aspects are examined to study necessary conditions, criteria and approaches to develop a reduced-order model (ROM) that is able to represent generic combustion/flame responses, which then can be used in an engineering level tool to provide efficient predictions of combustion instability for practical design applications. Explorations are focused on model reduction techniques by using the so-called POD/Galerkin method. The method uses the numerical solutions of the model equations as the database for building a set of POD eigen-bases. Specifically, the numerical solutions are calculated by perturbing quantities of interest such as the inlet conditions. The POD-derived eigen-bases are, in turn, used in conjunction with a Galerkin procedure to reduce the governing partial differential equation to an ordinary differential equation, which constitutes the ROM. Once the ROM is established, it can then be used as a lower-order test-bed to predict detailed results within certain parametric ranges at a fraction of the cost of solving the full governing equations. A detailed assessment is performed on the method in two parts. In part one, a one-dimensional scalar reaction-advection model equation is used for fundamental investigations, which include verification of the POD eigen-basis calculation and of the ROM development procedure. Moreover, certain criteria during ROM development are established: 1. a necessary number of POD modes that should be included to guarantee a stable ROM; 2. the need for the numerical discretization scheme to be consistent between the original CFD and the developed ROM. Furthermore, the predictive capabilities of the resulting ROM are evaluated to test its limits and to validate the values of applying broadband forcing in improving the ROM performance. In part two, the exploration is extended to a vector system of equations. Using the one-dimensional Euler equation is used as a model equation. A numerical stability issue is identified during the ROM development, the cause of which is further studied and attributed to the normalization methods implemented to generate coupled POD eigen-bases for vector variables. (Abstract shortened by UMI.).
Hydrodynamic Coherence and Vortex Solutions of the Euler-Helmholtz Equation
NASA Astrophysics Data System (ADS)
Fimin, N. N.; Chechetkin, V. M.
2018-03-01
The form of the general solution of the steady-state Euler-Helmholtz equation (reducible to the Joyce-Montgomery one) in arbitrary domains on the plane is considered. This equation describes the dynamics of vortex hydrodynamic structures.
Design and application of squeeze film dampers for turbomachinery stabilization
NASA Technical Reports Server (NTRS)
Gunter, E. J.; Barrett, L. E.; Allaire, P. E.
1975-01-01
The steady-state transient response of the squeeze film damper bearing was investigated. Both the steady-state and transient equations for the hydrodynamic bearing forces are derived; the steady-state equations were used to determine the damper equivalent stiffness and damping coefficients. These coefficients are used to find the damper configuration which will provide the optimum support characteristics based on a stability analysis of the rotor-bearing system. The effects of end seals and cavitated fluid film are included. The transient analysis of rotor-bearing systems was conducted by coupling the damping and rotor equations and integrating forward in time. The effects of unbalance, cavitation, and retainer springs are included. Methods of determining the stability of a rotor-bearing system under the influence of aerodynamic forces and internal shaft friction are discussed.
A hydrodynamic model for granular material flows including segregation effects
NASA Astrophysics Data System (ADS)
Gilberg, Dominik; Klar, Axel; Steiner, Konrad
2017-06-01
The simulation of granular flows including segregation effects in large industrial processes using particle methods is accurate, but very time-consuming. To overcome the long computation times a macroscopic model is a natural choice. Therefore, we couple a mixture theory based segregation model to a hydrodynamic model of Navier-Stokes-type, describing the flow behavior of the granular material. The granular flow model is a hybrid model derived from kinetic theory and a soil mechanical approach to cover the regime of fast dilute flow, as well as slow dense flow, where the density of the granular material is close to the maximum packing density. Originally, the segregation model has been formulated by Thornton and Gray for idealized avalanches. It is modified and adapted to be in the preferred form for the coupling. In the final coupled model the segregation process depends on the local state of the granular system. On the other hand, the granular system changes as differently mixed regions of the granular material differ i.e. in the packing density. For the modeling process the focus lies on dry granular material flows of two particle types differing only in size but can be easily extended to arbitrary granular mixtures of different particle size and density. To solve the coupled system a finite volume approach is used. To test the model the rotational mixing of small and large particles in a tumbler is simulated.
Kalgin, Igor V; Caflisch, Amedeo; Chekmarev, Sergei F; Karplus, Martin
2013-05-23
A new analysis of the 20 μs equilibrium folding/unfolding molecular dynamics simulations of the three-stranded antiparallel β-sheet miniprotein (beta3s) in implicit solvent is presented. The conformation space is reduced in dimensionality by introduction of linear combinations of hydrogen bond distances as the collective variables making use of a specially adapted principal component analysis (PCA); i.e., to make structured conformations more pronounced, only the formed bonds are included in determining the principal components. It is shown that a three-dimensional (3D) subspace gives a meaningful representation of the folding behavior. The first component, to which eight native hydrogen bonds make the major contribution (four in each beta hairpin), is found to play the role of the reaction coordinate for the overall folding process, while the second and third components distinguish the structured conformations. The representative points of the trajectory in the 3D space are grouped into conformational clusters that correspond to locally stable conformations of beta3s identified in earlier work. A simplified kinetic network based on the three components is constructed, and it is complemented by a hydrodynamic analysis. The latter, making use of "passive tracers" in 3D space, indicates that the folding flow is much more complex than suggested by the kinetic network. A 2D representation of streamlines shows there are vortices which correspond to repeated local rearrangement, not only around minima of the free energy surface but also in flat regions between minima. The vortices revealed by the hydrodynamic analysis are apparently not evident in folding pathways generated by transition-path sampling. Making use of the fact that the values of the collective hydrogen bond variables are linearly related to the Cartesian coordinate space, the RMSD between clusters is determined. Interestingly, the transition rates show an approximate exponential correlation with distance in the hydrogen bond subspace. Comparison with the many published studies shows good agreement with the present analysis for the parts that can be compared, supporting the robust character of our understanding of this "hydrogen atom" of protein folding.
NASA Astrophysics Data System (ADS)
Chatterjee, K.; Schunk, R. W.
2017-12-01
The refilling of the plasmasphere following a geomagnetic storm remains one of the longstanding problems in the area of ionosphere-magnetosphere coupling. Both diffusion and hydrodynamic approximations have been adopted for the modeling and solution of this problem. The diffusion approximation neglects the nonlinear inertial term in the momentum equation and so this approximation is not rigorously valid immediately after the storm. Over the last few years, we have developed a hydrodynamic refilling model using the flux-corrected transport method, a numerical method that is extremely well suited to handling nonlinear problems with shocks and discontinuities. The plasma transport equations are solved along 1D closed magnetic field lines that connect conjugate ionospheres and the model currently includes three ion (H+, O+, He+) and two neutral (O, H) species. In this work, each ion species under consideration has been modeled as two separate streams emanating from the conjugate hemispheres and the model correctly predicts supersonic ion speeds and the presence of high levels of Helium during the early hours of refilling. The ultimate objective of this research is the development of a 3D model for the plasmasphere refilling problem and with additional development, the same methodology can potentially be applied to the study of other complex space plasma coupling problems in closed flux tube geometries. Index Terms: 2447 Modeling and forecasting [IONOSPHERE] 2753 Numerical modeling [MAGNETOSPHERIC PHYSICS] 7959 Models [SPACE WEATHER
Unsteady Propeller Hydrodynamics
2001-06-01
coupling routines, making the code more robust while decreasing the computation burden over currect methods. Finally, a higher order quadratic influence ... function technique was implemented within the wake to more accurately define the induction velocity at the trailing edge which has suffered in the past due to lack of discretization.
Assessing the Effects of Data Compression in Simulations Using Physically Motivated Metrics
Laney, Daniel; Langer, Steven; Weber, Christopher; ...
2014-01-01
This paper examines whether lossy compression can be used effectively in physics simulations as a possible strategy to combat the expected data-movement bottleneck in future high performance computing architectures. We show that, for the codes and simulations we tested, compression levels of 3–5X can be applied without causing significant changes to important physical quantities. Rather than applying signal processing error metrics, we utilize physics-based metrics appropriate for each code to assess the impact of compression. We evaluate three different simulation codes: a Lagrangian shock-hydrodynamics code, an Eulerian higher-order hydrodynamics turbulence modeling code, and an Eulerian coupled laser-plasma interaction code. Wemore » compress relevant quantities after each time-step to approximate the effects of tightly coupled compression and study the compression rates to estimate memory and disk-bandwidth reduction. We find that the error characteristics of compression algorithms must be carefully considered in the context of the underlying physics being modeled.« less
The terahertz dynamics of simplest fluids probed by inelastic X-ray scattering
Cunsolo, Alessandro
2017-06-12
More than two decades of inelastic X-ray scattering (IXS) studies on noble gases and alkali metals are reviewed to illustrate the advances they prompted in our understanding of the terahertz dynamics of simplest systems. The various literature results outline a remarkably coherent picture of common and distinctive behaviours of liquids and their crystalline counterparts. Furthermore, they draw a consistent and comprehensive picture of the evolution of collective modes at the crossover between the hydrodynamic and the single particle regime, their coupling with fast (sub-ps) relaxation processes and their gradual disappearance upon approaching microscopic scales. The gradual transition of the spectrummore » towards the single particle limit along with its coupling with collisional relaxations will be discussed in some detail. Lastly, less understood emerging topics will be discussed as the occurrence of polyamorphic crossovers, the onset of non-hydrodynamic modes and quantum effects on the spectrum, as well as recent IXS results challenging our vision of the supercritical phase as an intrinsically homogeneous thermodynamic domain.« less
Hydrodynamic Model of Spatio-Temporal Evolution of Two-Plasmon Decay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dimitrijevic, D. R.; Maluckov, A. A.
A hydrodynamic model of two-plasmon decay in a homogeneous plasma slab near the quarter-critical density is constructed in order to gain better insight into the spatio-temporal evolution of the daughter electron plasma waves in plasma in the course of the instability. The influence of laser and plasma parameters on the evolution of the amplitudes of the participating waves is discussed. The secondary coupling of two daughter electron plasma waves with an ion-acoustic wave is assumed to be the principal mechanism of saturation of the instability. The impact of the inherently nonresonant nature of this secondary coupling on the development ofmore » TPD is investigated and it is shown to significantly influence the electron plasma wave dynamics. Its inclusion leads to nonuniformity of the spatial profile of the instability and causes the burst-like pattern of the instability development, which should result in the burst-like hot-electron production in homogeneous plasma.« less
Flow Meter Based on Freely Suspended Smectic Liquid Crystal Films
NASA Astrophysics Data System (ADS)
Green, Adam; Qi, Zhiyuan; Park, Cheol; Glaser, Matthew; Maclennan, Joseph; Clark, Noel
We present the realization of a idealized 2D hydrodynamic system coupled to air-flow, and show that freely suspended films (FSF) of smectic liquid crystals can be used as a novel flow-meter. Freely-suspended films of liquid crystals are one of the closest physical realizations of an idealized 2D fluid. The velocity of air-flow above a film suspended above a channel can be inferred by studying the velocity profile of the smectic film. This velocity profile can be measured using digital video microscopy to track the inclusions present in the moving film. The velocity profile is then fitted to the coupled 2D solutions of an embedded fluid in air, and the velocity of the air can then be extracted. This flow meter serves as a demonstration of a robust test-bed for further exploration of 2D hydrodynamics. This work was supported by NASA Grant No. NNX-13AQ81G, NSF MRSEC Grant No. DMR-0820579, and DMR-1420736.
Ubertini, Martin; Lefebvre, Sébastien; Gangnery, Aline; Grangeré, Karine; Le Gendre, Romain; Orvain, Francis
2012-01-01
The high degree of physical factors in intertidal estuarine ecosystem increases material processing between benthic and pelagic compartments. In these ecosystems, microphytobenthos resuspension is a major phenomenon since its contribution to higher trophic levels can be highly significant. Understanding the sediment and associated microphytobenthos resuspension and its fate in the water column is indispensable for measuring the food available to benthic and pelagic food webs. To identify and hierarchize the physical/biological factors potentially involved in MPB resuspension, the entire intertidal area and surrounding water column of an estuarine ecosystem, the Bay des Veys, was sampled during ebb tide. A wide range of physical parameters (hydrodynamic regime, grain size of the sediment, and suspended matter) and biological parameters (flora and fauna assemblages, chlorophyll) were analyzed to characterize benthic-pelagic coupling at the bay scale. Samples were collected in two contrasted periods, spring and late summer, to assess the impact of forcing variables on benthic-pelagic coupling. A mapping approach using kriging interpolation enabled us to overlay benthic and pelagic maps of physical and biological variables, for both hydrological conditions and trophic indicators. Pelagic Chl a concentration was the best predictor explaining the suspension-feeders spatial distribution. Our results also suggest a perennial spatio-temporal structure of both benthic and pelagic compartments in the ecosystem, at least when the system is not imposed to intense wind, with MPB distribution controlled by both grain size and bathymetry. The benthic component appeared to control the pelagic one via resuspension phenomena at the scale of the bay. Co-inertia analysis showed closer benthic-pelagic coupling between the variables in spring. The higher MPB biomass observed in summer suggests a higher contribution to filter-feeders diets, indicating a higher resuspension effect in summer than in spring, in turn suggesting an important role of macrofauna bioturbation and filter feeding (Cerastoderma edule). PMID:22952910
NASA Astrophysics Data System (ADS)
Hoch, Jannis M.; Neal, Jeffrey C.; Baart, Fedor; van Beek, Rens; Winsemius, Hessel C.; Bates, Paul D.; Bierkens, Marc F. P.
2017-10-01
We here present GLOFRIM, a globally applicable computational framework for integrated hydrological-hydrodynamic modelling. GLOFRIM facilitates spatially explicit coupling of hydrodynamic and hydrologic models and caters for an ensemble of models to be coupled. It currently encompasses the global hydrological model PCR-GLOBWB as well as the hydrodynamic models Delft3D Flexible Mesh (DFM; solving the full shallow-water equations and allowing for spatially flexible meshing) and LISFLOOD-FP (LFP; solving the local inertia equations and running on regular grids). The main advantages of the framework are its open and free access, its global applicability, its versatility, and its extensibility with other hydrological or hydrodynamic models. Before applying GLOFRIM to an actual test case, we benchmarked both DFM and LFP for a synthetic test case. Results show that for sub-critical flow conditions, discharge response to the same input signal is near-identical for both models, which agrees with previous studies. We subsequently applied the framework to the Amazon River basin to not only test the framework thoroughly, but also to perform a first-ever benchmark of flexible and regular grids on a large-scale. Both DFM and LFP produce comparable results in terms of simulated discharge with LFP exhibiting slightly higher accuracy as expressed by a Kling-Gupta efficiency of 0.82 compared to 0.76 for DFM. However, benchmarking inundation extent between DFM and LFP over the entire study area, a critical success index of 0.46 was obtained, indicating that the models disagree as often as they agree. Differences between models in both simulated discharge and inundation extent are to a large extent attributable to the gridding techniques employed. In fact, the results show that both the numerical scheme of the inundation model and the gridding technique can contribute to deviations in simulated inundation extent as we control for model forcing and boundary conditions. This study shows that the presented computational framework is robust and widely applicable. GLOFRIM is designed as open access and easily extendable, and thus we hope that other large-scale hydrological and hydrodynamic models will be added. Eventually, more locally relevant processes would be captured and more robust model inter-comparison, benchmarking, and ensemble simulations of flood hazard on a large scale would be allowed for.
High resolution modelling and observation of wind-driven surface currents in a semi-enclosed estuary
NASA Astrophysics Data System (ADS)
Nash, S.; Hartnett, M.; McKinstry, A.; Ragnoli, E.; Nagle, D.
2012-04-01
Hydrodynamic circulation in estuaries is primarily driven by tides, river inflows and surface winds. While tidal and river data can be quite easily obtained for input to hydrodynamic models, sourcing accurate surface wind data is problematic. Firstly, the wind data used in hydrodynamic models is usually measured on land and can be quite different in magnitude and direction from offshore winds. Secondly, surface winds are spatially-varying but due to a lack of data it is common practice to specify a non-varying wind speed and direction across the full extents of a model domain. These problems can lead to inaccuracies in the surface currents computed by three-dimensional hydrodynamic models. In the present research, a wind forecast model is coupled with a three-dimensional numerical model of Galway Bay, a semi-enclosed estuary on the west coast of Ireland, to investigate the effect of surface wind data resolution on model accuracy. High resolution and low resolution wind fields are specified to the model and the computed surface currents are compared with high resolution surface current measurements obtained from two high frequency SeaSonde-type Coastal Ocean Dynamics Applications Radars (CODAR). The wind forecast models used for the research are Harmonie cy361.3, running on 2.5 and 0.5km spatial grids for the low resolution and high resolution models respectively. The low-resolution model runs over an Irish domain on 540x500 grid points with 60 vertical levels and a 60s timestep and is driven by ECMWF boundary conditions. The nested high-resolution model uses 300x300 grid points on 60 vertical levels and a 12s timestep. EFDC (Environmental Fluid Dynamics Code) is used for the hydrodynamic model. The Galway Bay model has ten vertical layers and is resolved spatially and temporally at 150m and 4 sec respectively. The hydrodynamic model is run for selected hindcast dates when wind fields were highly energetic. Spatially- and temporally-varying wind data is provided by offline coupling with the wind forecast models. Modelled surface currents show good correlation with CODAR observed currents and the resolution of the surface wind data is shown to be important for model accuracy.
Structural Transformations in Metallic Materials During Plastic Deformation
NASA Astrophysics Data System (ADS)
Zasimchuk, E.; Turchak, T.; Baskova, A.; Chausov, N.; Hutsaylyuk, V.
2017-03-01
In this paper, the structure formation during the plastic deformation of polycrystalline nickel and aluminum based alloy 2024-T3 is investigated. The possibility of the relaxation and synergetic structure formation is examined. It is shown the deformation softening to be due to the crystallization of the amorphous structure of hydrodynamics flow channels (synergetic structure) HC as micrograins and their subsequent growth. The possible mechanism of micrograins' growth is proposed. The deformation processes change the phase composition of the multiphase alloy 2024-T3. It is shown by the quantitative analysis of the structures which were deformed in different regimes of the alloy samples. A method for increasing of the fatigue life through a dynamic pre-deformation is suggested.
NASA Astrophysics Data System (ADS)
Hu, Jiafei; Pan, Mengchun; Xin, Jianguang; Chen, Dixiang
2008-12-01
The magnetostrictive transducer is the most important part of the optic-fiber magnetic field sensor, and the optic-fiber/giant magnetostrictive(GMS) film coupled structure is a novel coupling form of the magnetostrictive transducer. Always we analyze the coupled structure based on the entire coupled structure being sputtered GMS material without tail-fibers. In practical application, the coupled structure has tail-fibers without films at two ends. When the entire coupled structure is immersed in the detected magnetic field, the detected magnetic field causes the GMS film strain then causing optic-fiber strain. This strain transmission process is different from it in the coupled structure entirely with GMS films without tail-fibers. The strain transmission relationship can be calculated theoretically in the coupled structure without tail-fibers, but it's complicated to theoretically calculate the strain transmission relationship in the coupled structure with tail-fibers. After large numbers of calculations and analyses by ANSYS software, we figure out some relationships of the two strain transmission processes in the respective structures and the stress distribution in the tail-fibers. These results are helpful to the practical application of the optic-fiber/ GMS film coupled structure.
Coupled Aerodynamic and Structural Sensitivity Analysis of a High-Speed Civil Transport
NASA Technical Reports Server (NTRS)
Mason, B. H.; Walsh, J. L.
2001-01-01
An objective of the High Performance Computing and Communication Program at the NASA Langley Research Center is to demonstrate multidisciplinary shape and sizing optimization of a complete aerospace vehicle configuration by using high-fidelity, finite-element structural analysis and computational fluid dynamics aerodynamic analysis. In a previous study, a multi-disciplinary analysis system for a high-speed civil transport was formulated to integrate a set of existing discipline analysis codes, some of them computationally intensive, This paper is an extension of the previous study, in which the sensitivity analysis for the coupled aerodynamic and structural analysis problem is formulated and implemented. Uncoupled stress sensitivities computed with a constant load vector in a commercial finite element analysis code are compared to coupled aeroelastic sensitivities computed by finite differences. The computational expense of these sensitivity calculation methods is discussed.
Local lubrication model for spherical particles within incompressible Navier-Stokes flows.
Lambert, B; Weynans, L; Bergmann, M
2018-03-01
The lubrication forces are short-range hydrodynamic interactions essential to describe suspension of the particles. Usually, they are underestimated in direct numerical simulations of particle-laden flows. In this paper, we propose a lubrication model for a coupled volume penalization method and discrete element method solver that estimates the unresolved hydrodynamic forces and torques in an incompressible Navier-Stokes flow. Corrections are made locally on the surface of the interacting particles without any assumption on the global particle shape. The numerical model has been validated against experimental data and performs as well as existing numerical models that are limited to spherical particles.
Hayat, Tasawar; Awais, Muhammad; Imtiaz, Amna
2016-01-01
This communication deals with the properties of heat source/sink in a magneto-hydrodynamic flow of a non-Newtonian fluid immersed in a porous medium. Shrinking phenomenon along with the permeability of the wall is considered. Mathematical modelling is performed to convert the considered physical process into set of coupled nonlinear mathematical equations. Suitable transformations are invoked to convert the set of partial differential equations into nonlinear ordinary differential equations which are tackled numerically for the solution computations. It is noted that dual solutions for various physical parameters exist which are analyzed in detail. PMID:27598314
USSR Report. Life Sciences: Biomedical and Behavioral Sciences
1987-05-29
Ioffe, M.G. Bezrukov; BIOTEKHNOLOGIYA, No 5, Sep-Oct 86) • 29 Influence of Hydrodynamic Structure of Flows on Processes in Bubbler Reactor (A.A...Ye.F. Andreyev and M.A. Kazaryan, Ali-Union Scientific Research Biosynthetic Institute, Moscow] [Abstract] Flow -through microbiocalorimeters widely...references 13: 2 Russian, 11 Western. 6508/13046 CSO: 1840/356 UDC 663.033.063.86 INFLUENCE OF HYDRODYNAMIC STRUCTURE OF FLOWS ON PROCESSES IN
Brandt, J Paul; Patapoff, Thomas W; Aragon, Sergio R
2010-08-04
At 150 kDa, antibodies of the IgG class are too large for their structure to be determined with current NMR methodologies. Because of hinge-region flexibility, it is difficult to obtain atomic-level structural information from the crystal, and questions regarding antibody structure and dynamics in solution remain unaddressed. Here we describe the construction of a model of a human IgG1 monoclonal antibody (trastuzumab) from the crystal structures of fragments. We use a combination of molecular-dynamics (MD) simulation, continuum hydrodynamics modeling, and experimental diffusion measurements to explore antibody behavior in aqueous solution. Hydrodynamic modeling provides a link between the atomic-level details of MD simulation and the size- and shape-dependent data provided by hydrodynamic measurements. Eight independent 40 ns MD trajectories were obtained with the AMBER program suite. The ensemble average of the computed transport properties over all of the MD trajectories agrees remarkably well with the value of the translational diffusion coefficient obtained with dynamic light scattering at 20 degrees C and 27 degrees C, and the intrinsic viscosity measured at 20 degrees C. Therefore, our MD results likely represent a realistic sampling of the conformational space that an antibody explores in aqueous solution. 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Onset of Darrieus-Landau Instability in Expanding Flames
NASA Astrophysics Data System (ADS)
Mohan, Shikhar; Matalon, Moshe
2017-11-01
The effect of small amplitude perturbations on the propagation of circular flames in unconfined domains is investigated, computationally and analytically, within the context of the hydrodynamic theory. The flame, treated as a surface of density discontinuity separating fresh combustible mixture from the burnt gas, propagates at a speed dependent upon local curvature and hydrodynamic strain. For mixtures with Lewis numbers above criticality, thermodiffusive effects have stabilizing influences which largely affect the flame at small radii. The amplitude of these disturbances initially decay and only begin to grow once a critical radius is reached. This instability is hydrodynamic in nature and is a consequence of thermal expansion. Through linear stability analysis, predictions of critical flame radius at the onset of instability are obtained as functions of Markstein length and thermal expansion coefficients. The flame evolution is also examined numerically where the motion of the interface is tracked via a level-set method. Consistent with linear stability results, simulations show the flame initially remaining stable and the existence of a particular mode that will be first to grow and later determine the cellular structure observed experimentally at the onset of instability.
NASA Astrophysics Data System (ADS)
Miclosina, C. O.; Balint, D. I.; Campian, C. V.; Frunzaverde, D.; Ion, I.
2012-11-01
This paper deals with the optimization of the axial hydraulic turbines of Kaplan type. The optimization of the runner blade is presented systematically from two points of view: hydrodynamic and constructive. Combining these aspects in order to gain a safer operation when unsteady effects occur in the runner of the turbine is attempted. The design and optimization of the runner blade is performed with QTurbo3D software developed at the Center for Research in Hydraulics, Automation and Thermal Processes (CCHAPT) from "Eftimie Murgu" University of Resita, Romania. QTurbo3D software offers possibilities to design the meridian channel of hydraulic turbines design the blades and optimize the runner blade. 3D modeling and motion analysis of the runner blade operating mechanism are accomplished using SolidWorks software. The purpose of motion study is to obtain forces, torques or stresses in the runner blade operating mechanism, necessary to estimate its lifetime. This paper clearly states the importance of combining the hydrodynamics with the structural design in the optimization procedure of the runner of hydraulic turbines.
"Ladder" structure in tonal noise generated by laminar flow around an airfoil.
Chong, Tze Pei; Joseph, Phillip
2012-06-01
The presence of a "ladder" structure in the airfoil tonal noise was discovered in the 1970s, but its mechanism hitherto remains a subject of continual investigation in the research community. Based on the measured noise results and some numerical analysis presented in this letter, the variations of four types of airfoil tonal noise frequencies with the flow velocity were analyzed individually. The ladder structure is proposed to be caused by the acoustic/hydrodynamic frequency lag between the scattering of the boundary layer instability noise and the discrete noise produced by an aeroacoustic feedback loop.
NASA Technical Reports Server (NTRS)
Hodges, Robert V.; Nixon, Mark W.; Rehfield, Lawrence W.
1987-01-01
A methodology was developed for the structural analysis of composite rotor blades. This coupled-beam analysis is relatively simple to use compared with alternative analysis techniques. The beam analysis was developed for thin-wall single-cell rotor structures and includes the effects of elastic coupling. This paper demonstrates the effectiveness of the new composite-beam analysis method through comparison of its results with those of an established baseline analysis technique. The baseline analysis is an MSC/NASTRAN finite-element model built up from anisotropic shell elements. Deformations are compared for three linear static load cases of centrifugal force at design rotor speed, applied torque, and lift for an ideal rotor in hover. A D-spar designed to twist under axial loading is the subject of the analysis. Results indicate the coupled-beam analysis is well within engineering accuracy.
NASA Astrophysics Data System (ADS)
Drummond, B.; Mayne, N. J.; Baraffe, I.; Tremblin, P.; Manners, J.; Amundsen, D. S.; Goyal, J.; Acreman, D.
2018-05-01
In this work, we have performed a series of simulations of the atmosphere of GJ 1214b assuming different metallicities using the Met Office Unified Model (UM). The UM is a general circulation model (GCM) that solves the deep, non-hydrostatic equations of motion and uses a flexible and accurate radiative transfer scheme, based on the two-stream and correlated-k approximations, to calculate the heating rates. In this work we consistently couple a well-tested Gibbs energy minimisation scheme to solve for the chemical equilibrium abundances locally in each grid cell for a general set of elemental abundances, further improving the flexibility and accuracy of the model. As the metallicity of the atmosphere is increased we find significant changes in the dynamical and thermal structure, with subsequent implications for the simulated phase curve. The trends that we find are qualitatively consistent with previous works, though with quantitative differences. We investigate in detail the effect of increasing the metallicity by splitting the mechanism into constituents, involving the mean molecular weight, the heat capacity and the opacities. We find the opacity effect to be the dominant mechanism in altering the circulation and thermal structure. This result highlights the importance of accurately computing the opacities and radiative transfer in 3D GCMs.
Coupled hydrologic and hydraulic modeling of Upper Niger River Basin
NASA Astrophysics Data System (ADS)
Fleischmann, Ayan; Siqueira, Vinícius; Paris, Adrien; Collischonn, Walter; Paiva, Rodrigo; Gossett, Marielle; Pontes, Paulo; Calmant, Stephane; Biancamaria, Sylvain; Crétaux, Jean-François; Tanimoune, Bachir
2017-04-01
The Upper Niger Basin is located in Western Africa, flowing from Guinea Highlands towards the Sahel region. In this area lies the seasonally inundated Niger Inland Delta, which supports important environmental services such as habitats for wildlife, climate and flood regulation, as well as large fishery and agricultural areas. In this study, we present the application of MGB-IPH large scale hydrologic and hydrodynamic model for the Upper Niger Basin, totaling c.a. 650,000 km2 and set up until the city of Niamey in Niger. The model couples hydrological vertical balance and runoff generation with hydrodynamic flood wave propagation, by allowing infiltration from floodplains into soil column as well as representing backwater effects and floodplain storage throughout flat areas such as the Inland Delta. The model is forced with TRMM 3B42 daily precipitation and Climate Research Unit (CRU) climatology for the period 2000-2010, and was calibrated against in-situ discharge gauges and validated with in-situ water level, remotely sensed estimations of flooded areas (classification of MODIS imagery) and satellite altimetry (JASON-2 mission). Model results show good predictions for calibrated daily discharge and validated water level and altimetry at stations both upstream and downstream of the delta (Nash-Sutcliffe Efficiency>0.7 for all stations), as well as for flooded areas within the delta region (ENS=0.5; r2=0.8), allowing a good representation of flooding dynamics basinwide and simulation of flooding behavior of both perennial (e.g., Niger main stem) and ephemeral rivers (e.g., Niger Red Flood tributaries in Sahel). Coupling between hydrology and hydrodynamic processes indicates an important feedback between floodplain and soil water storage that allows high evapotranspiration rates even after the flood passage around the inner delta area. Also, representation of water retention in floodplain channels and distributaries in the inner delta (e.g., Diaka river distributary) is fundamental for the correct representation of the flood wave attenuation in Niger main stem. Improvements could be made in terms of floods propagation across the basin -through parameters such as Manning's roughness and section depth and width-using the comparison with satellite altimetry data, for instance. Finally, such coupled hydrologic and hydrodynamic models prove to be an important tool for integrated evaluation of hydrological processes in such ungauged, large scale floodplain areas. Possible uses of the model involve the assessment of different scenarios of anthropic alteration, e.g., the effects of reservoirs implementation and climate and land use changes.
A web portal for hydrodynamical, cosmological simulations
NASA Astrophysics Data System (ADS)
Ragagnin, A.; Dolag, K.; Biffi, V.; Cadolle Bel, M.; Hammer, N. J.; Krukau, A.; Petkova, M.; Steinborn, D.
2017-07-01
This article describes a data centre hosting a web portal for accessing and sharing the output of large, cosmological, hydro-dynamical simulations with a broad scientific community. It also allows users to receive related scientific data products by directly processing the raw simulation data on a remote computing cluster. The data centre has a multi-layer structure: a web portal, a job control layer, a computing cluster and a HPC storage system. The outer layer enables users to choose an object from the simulations. Objects can be selected by visually inspecting 2D maps of the simulation data, by performing highly compounded and elaborated queries or graphically by plotting arbitrary combinations of properties. The user can run analysis tools on a chosen object. These services allow users to run analysis tools on the raw simulation data. The job control layer is responsible for handling and performing the analysis jobs, which are executed on a computing cluster. The innermost layer is formed by a HPC storage system which hosts the large, raw simulation data. The following services are available for the users: (I) CLUSTERINSPECT visualizes properties of member galaxies of a selected galaxy cluster; (II) SIMCUT returns the raw data of a sub-volume around a selected object from a simulation, containing all the original, hydro-dynamical quantities; (III) SMAC creates idealized 2D maps of various, physical quantities and observables of a selected object; (IV) PHOX generates virtual X-ray observations with specifications of various current and upcoming instruments.
Asymmetric (1+1)-dimensional hydrodynamics in high-energy collisions
NASA Astrophysics Data System (ADS)
Bialas, A.; Peschanski, R.
2011-05-01
The possibility that particle production in high-energy collisions is a result of two asymmetric hydrodynamic flows is investigated using the Khalatnikov form of the (1+1)-dimensional approximation of hydrodynamic equations. The general solution is discussed and applied to the physically appealing “generalized in-out cascade” where the space-time and energy-momentum rapidities are equal at initial temperature but boost invariance is not imposed. It is demonstrated that the two-bump structure of the entropy density, characteristic of the asymmetric input, changes easily into a single broad maximum compatible with data on particle production in symmetric processes. A possible microscopic QCD interpretation of asymmetric hydrodynamics is proposed.
Laser x-ray Conversion and Electron Thermal Conductivity
NASA Astrophysics Data System (ADS)
Wang, Guang-yu; Chang, Tie-qiang
2001-02-01
The influence of electron thermal conductivity on the laser x-ray conversion in the coupling of 3ωo laser with Au plane target has been investigated by using a non-LTE radiation hydrodynamic code. The non-local electron thermal conductivity is introduced and compared with the other two kinds of the flux-limited Spitzer-Härm description. The results show that the non-local thermal conductivity causes the increase of the laser x-ray conversion efficiency and important changes of the plasma state and coupling feature.
NASA Astrophysics Data System (ADS)
Radecki-Pawlik, Artur; Plesiński, Karol
2016-04-01
In modern river management practices and philosophy one can notice coming more into use ecological friendly hydraulic structures. Those, which are especially needed for river training works, as far as expectation of Water Framework Directive is concerned, are block ramps which are hydraulic structures working similar to riffles known very well from fluvial geomorphology studies and are natural features in streams and rivers. What is important well designed block ramps do not stop fish and invertebrates against migrating, provide natural and esthetical view being built within the river channel, still working as hydraulic engineering structures and might be used in river management in different river ecosystems. The main aim of the research was to describe changes of values of hydrodynamics parameters upstream and downstream of the block ramps and to find out their influence on hydrodynamics of the stream. The study was undertaken on the Porębianka River in the Gorce Mountains, Polish Carpathians. Observed hydrodynamic parameters within the reach of the block ramps depend on the location of measuring point and the influence of individual part of the structure. We concluded that: 1. Hydrodynamic parameters close to block ramps depend on the location of the measurement points in relation to particular elements of the structure; 2. The highest value of velocities don't cause the highest force values, which acting on the bed of the watercourse, because they are rather related to the water level of the channel; 3. The values of mean velocities, shear velocities and shear stresses were similar upstream and downstream the block ramps, which means that the structures stabilize the river bed. This study was performed within the scope of the Science Activity money from Ministry of High Education and Young Scientist's Activity Money of Department of Hydraulics Engineering and Geotechnique, University of Agriculture, Cracow, Poland
NASA Technical Reports Server (NTRS)
Dorodnitsyn, A.; Bisnovatyi-Kogan. G. S.; Kallman, T.
2011-01-01
We construct a radiation-hydrodynamics model for the obscuring toroidal structure in active galactic nuclei. In this model the obscuration is produced at parsec scale by a dense, dusty wind which is supported by infrared radiation pressure on dust grains. To find the distribution of radiation pressure, we numerically solve the 2D radiation transfer problem in a flux limited diffusion approximation. We iteratively couple the solution with calculations of stationary 1D models for the wind, and obtain the z-component of the velocity. Our results demonstrate that for AGN luminosities greater than 0.1 L(sub edd) external illumination can support a geometrically thick obscuration via outflows driven by infrared radiation pressure. The terminal velocity of marginally Compton-thin models (0.2 < tau(sub T) < 0.6), is comparable to or greater than the escape velocity. In Compton thick models the maximum value of the vertical component of the velocity is lower than the escape velocity, suggesting that a significant part of our torus is in the form of failed wind. The results demonstrate that obscuration via normal or failed infrared-driven winds is a viable option for the AGN torus problem and AGN unification models. Such winds can also provide an important channel for AGN feedback.
Self-consistent modelling of line-driven hot-star winds with Monte Carlo radiation hydrodynamics
NASA Astrophysics Data System (ADS)
Noebauer, U. M.; Sim, S. A.
2015-11-01
Radiative pressure exerted by line interactions is a prominent driver of outflows in astrophysical systems, being at work in the outflows emerging from hot stars or from the accretion discs of cataclysmic variables, massive young stars and active galactic nuclei. In this work, a new radiation hydrodynamical approach to model line-driven hot-star winds is presented. By coupling a Monte Carlo radiative transfer scheme with a finite volume fluid dynamical method, line-driven mass outflows may be modelled self-consistently, benefiting from the advantages of Monte Carlo techniques in treating multiline effects, such as multiple scatterings, and in dealing with arbitrary multidimensional configurations. In this work, we introduce our approach in detail by highlighting the key numerical techniques and verifying their operation in a number of simplified applications, specifically in a series of self-consistent, one-dimensional, Sobolev-type, hot-star wind calculations. The utility and accuracy of our approach are demonstrated by comparing the obtained results with the predictions of various formulations of the so-called CAK theory and by confronting the calculations with modern sophisticated techniques of predicting the wind structure. Using these calculations, we also point out some useful diagnostic capabilities our approach provides. Finally, we discuss some of the current limitations of our method, some possible extensions and potential future applications.
NASA Astrophysics Data System (ADS)
Zhou, W.; Zhao, C. S.; Duan, L. B.; Qu, C. R.; Lu, J. Y.; Chen, X. P.
Oxy-fuel circulating fluidized bed (CFB) combustion technology is in the stage of initial development for carbon capture and storage (CCS). Numerical simulation is helpful to better understanding the combustion process and will be significant for CFB scale-up. In this paper, a computational fluid dynamics (CFD) model was employed to simulate the hydrodynamics of gas-solid flow in a CFB riser based on the Eulerian-Granular multiphase model. The cold model predicted the main features of the complex gas-solid flow, including the cluster formation of the solid phase along the walls, the flow structure of up-flow in the core and downward flow in the annular region. Furthermore, coal devolatilization, char combustion and heat transfer were considered by coupling semi-empirical sub-models with CFD model to establish a comprehensive model. The gas compositions and temperature profiles were predicted and the outflow gas fractions are validated with the experimental data in air combustion. With the experimentally validated model being applied, the concentration and temperature distributions in O2/CO2 combustion were predicted. The model is useful for the further development of a comprehensive model including more sub-models, such as pollutant emissions, and better understanding the combustion process in furnace.
Hydrodynamic Stability of Multicomponent Droplet Gasification in Reduced Gravity
NASA Technical Reports Server (NTRS)
Aharon, I.; Shaw, B. D.
1995-01-01
This investigation addresses the problem of hydrodynamic stability of a two-component droplet undergoing spherically-symmetrical gasification. The droplet components are assumed to have characteristic liquid species diffusion times that are large relative to characteristic droplet surface regression times. The problem is formulated as a linear stability analysis, with a goal of predicting when spherically-symmetric droplet gasification can be expected to be hydrodynamically unstable from surface-tension gradients acting along the surface of a droplet which result from perturbations. It is found that for the conditions assumed in this paper (quasisteady gas phase, no initial droplet temperature gradients, diffusion-dominated gasification), surface tension gradients do not play a role in the stability characteristics. In addition, all perturbations are predicted to decay such that droplets were hydrodynamically stable. Conditions are identified, however, that deserve more analysis as they may lead to hydrodynamic instabilities driven by capillary effects.
Structural analysis of a ship on global aspect using ANSYS
NASA Astrophysics Data System (ADS)
Rahman, M. Muzibur; Kamol, Rajia Sultana; Islam, Reyana
2017-12-01
Ship is a complex geometry which undergoes a combination of loadings such as hydrostatic, hydrodynamic, wind, wave etc. at sea and thus adequate strength in a ship has always been one of the most challenging tasks for the ship designers. International Maritime Organization (IMO) and classification societies are providing the standards to ensure the adequacy of strength for the ship against all demands throughout its service life. Thus, structural analysis is needed to assess the overall strength of hull, and the means in this regard are based on finite element method which may be applied either local or global aspect of the ship. This paper is an attempt to carry out the structural analysis of a ship in global aspect using ANSYS software to locate the most stress concentration and deformed area, which will have ultimate effect on fatigue fracture.
Density and spin modes in imbalanced normal Fermi gases from collisionless to hydrodynamic regime
NASA Astrophysics Data System (ADS)
Narushima, Masato; Watabe, Shohei; Nikuni, Tetsuro
2018-03-01
We study the mass- and population-imbalance effect on density (in-phase) and spin (out-of-phase) collective modes in a two-component normal Fermi gas. By calculating the eigenmodes of the linearized Boltzmann equation as well as the density/spin dynamic structure factor, we show that mass- and population-imbalance effects offer a variety of collective mode crossover behaviors from collisionless to hydrodynamic regimes. The mass-imbalance effect shifts the crossover regime to the higher-temperature, and a significant peak of the spin dynamic structure factor emerges only in the collisionless regime. This is in contrast to the case of mass- and population-balanced normal Fermi gases, where the spin dynamic response is always absent. Although the population-imbalance effect does not shift the crossover regime, the spin dynamic structure factor survives both in the collisionless and hydrodynamic regimes.
Stanley Corrsin Award Talk: The role of singularities in hydrodynamics
NASA Astrophysics Data System (ADS)
Eggers, Jens
2017-11-01
If a tap is opened slowly, a drop will form. The separation of the drop is described by a singularity of the Navier-Stokes equation with a free surface. Shock waves are singular solutions of the equations of ideal, compressible hydrodynamics. These examples show that singularities are characteristic for the tendency of the hydrodynamic equations to develop small scale features spontaneously, starting from smooth initial conditions. As a result, new structures are created, which form the building blocks of more complicated flows. The mathematical structure of singularities is self-similar, and their characteristics are fixed by universal properties. This will be illustrated by physical examples, as well as by applications to engineering problems such as printing, coating, or air entrainment. Finally, more recent developments will be discussed: the increasing complexity underlying the self-similar behavior of some singularities, and the spatial structure of shock waves.
Hydrodynamic Limit of Multiple SLE
NASA Astrophysics Data System (ADS)
Hotta, Ikkei; Katori, Makoto
2018-04-01
Recently del Monaco and Schleißinger addressed an interesting problem whether one can take the limit of multiple Schramm-Loewner evolution (SLE) as the number of slits N goes to infinity. When the N slits grow from points on the real line R in a simultaneous way and go to infinity within the upper half plane H, an ordinary differential equation describing time evolution of the conformal map g_t(z) was derived in the N → ∞ limit, which is coupled with a complex Burgers equation in the inviscid limit. It is well known that the complex Burgers equation governs the hydrodynamic limit of the Dyson model defined on R studied in random matrix theory, and when all particles start from the origin, the solution of this Burgers equation is given by the Stieltjes transformation of the measure which follows a time-dependent version of Wigner's semicircle law. In the present paper, first we study the hydrodynamic limit of the multiple SLE in the case that all slits start from the origin. We show that the time-dependent version of Wigner's semicircle law determines the time evolution of the SLE hull, K_t \\subset H\\cup R, in this hydrodynamic limit. Next we consider the situation such that a half number of the slits start from a>0 and another half of slits start from -a < 0, and determine the multiple SLE in the hydrodynamic limit. After reporting these exact solutions, we will discuss the universal long-term behavior of the multiple SLE and its hull K_t in the hydrodynamic limit.
Two new planar coil designs for a high pressure radio frequency plasma source
NASA Astrophysics Data System (ADS)
Munsat, T.; Hooke, W. M.; Bozeman, S. P.; Washburn, S.
1995-04-01
Two planar coil designs for a high pressure rf plasma source are investigated using spectroscopic techniques and circuit analysis. In an Ar plasma a truncated version of the commonly used ``spiral'' coil is found to produce improvements in peak electron density of 20% over the full version. A coil with figure-8 geometry is found to move plasma inhomogeneities off of center and produce electron densities comparable to the spiral coils. Both of these characteristics are advantageous in industrial applications. Coil design characteristics for favorable power coupling are also determined, including the necessity of closed hydrodynamic plasma loops and the drawback of closely situated antiparallel coil currents.
Blount, G.; Gorensek, M.; Hamm, L.; ...
2014-12-31
Partnering in Innovation, Inc. (Pi-Innovation) introduces an aqueous post-combustion carbon dioxide (CO₂) capture system (Pi-CO₂) that offers high market value by directly addressing the primary constraints limiting beneficial re-use markets (lowering parasitic energy costs, reducing delivered cost of capture, eliminating the need for special solvents, etc.). A highly experienced team has completed initial design, modeling, manufacturing verification, and financial analysis for commercial market entry. Coupled thermodynamic and thermal-hydraulic mass transfer modeling results fully support proof of concept. Pi-CO₂ has the potential to lower total cost and risk to levels sufficient to stimulate global demand for CO₂ from local industrial sources.
LES, DNS, and RANS for the Analysis of High-Speed Turbulent Reacting Flows
NASA Technical Reports Server (NTRS)
Colucci, P. J.; Jaberi, F. A.; Givi, P.
1996-01-01
A filtered density function (FDF) method suitable for chemically reactive flows is developed in the context of large eddy simulation. The advantage of the FDF methodology is its inherent ability to resolve subgrid scales (SGS) scalar correlations that otherwise have to be modeled. Because of the lack of robust models to accurately predict these correlations in turbulent reactive flows, simulations involving turbulent combustion are often met with a degree of skepticism. The FDF methodology avoids the closure problem associated with these terms and treats the reaction in an exact manner. The scalar FDF approach is particularly attractive since it can be coupled with existing hydrodynamic computational fluid dynamics (CFD) codes.
Role of IAC in large space systems thermal analysis
NASA Technical Reports Server (NTRS)
Jones, G. K.; Skladany, J. T.; Young, J. P.
1982-01-01
Computer analysis programs to evaluate critical coupling effects that can significantly influence spacecraft system performance are described. These coupling effects arise from the varied parameters of the spacecraft systems, environments, and forcing functions associated with disciplines such as thermal, structures, and controls. Adverse effects can be expected to significantly impact system design aspects such as structural integrity, controllability, and mission performance. One such needed design analysis capability is a software system that can integrate individual discipline computer codes into a highly user-oriented/interactive-graphics-based analysis capability. The integrated analysis capability (IAC) system can be viewed as: a core framework system which serves as an integrating base whereby users can readily add desired analysis modules and as a self-contained interdisciplinary system analysis capability having a specific set of fully integrated multidisciplinary analysis programs that deal with the coupling of thermal, structures, controls, antenna radiation performance, and instrument optical performance disciplines.
Classifying and modelling spiral structures in hydrodynamic simulations of astrophysical discs
NASA Astrophysics Data System (ADS)
Forgan, D. H.; Ramón-Fox, F. G.; Bonnell, I. A.
2018-05-01
We demonstrate numerical techniques for automatic identification of individual spiral arms in hydrodynamic simulations of astrophysical discs. Building on our earlier work, which used tensor classification to identify regions that were `spiral-like', we can now obtain fits to spirals for individual arm elements. We show this process can even detect spirals in relatively flocculent spiral patterns, but the resulting fits to logarithmic `grand-design' spirals are less robust. Our methods not only permit the estimation of pitch angles, but also direct measurements of the spiral arm width and pattern speed. In principle, our techniques will allow the tracking of material as it passes through an arm. Our demonstration uses smoothed particle hydrodynamics simulations, but we stress that the method is suitable for any finite-element hydrodynamics system. We anticipate our techniques will be essential to studies of star formation in disc galaxies, and attempts to find the origin of recently observed spiral structure in protostellar discs.
Kuznetsov-Ma Soliton Dynamics Based on the Mechanical Effect of Light
NASA Astrophysics Data System (ADS)
Xiong, Hao; Gan, Jinghui; Wu, Ying
2017-10-01
A Kuznetsov-Ma soliton that exhibits an unusual pulsating dynamics has attracted particular attention in hydrodynamics and plasma physics in the context of understanding nonlinear coherent phenomena. Here, we demonstrate theoretically the formation of a novel form of Kuznetsov-Ma soliton in a microfabricated optomechanical array, where both photonic and phononic evolutionary dynamics exhibit periodic structure and coherent localized behavior enabled by radiation-pressure coupling of optical fields and mechanical oscillations, which is a manifestation of the unique property of optomechanical systems. Numerical calculations of the optomechanical dynamics show an excellent agreement with this theory. In addition to providing insight into optomechanical nonlinearity, optomechanical Kuznetsov-Ma soliton dynamics fundamentally broadens the regime of cavity optomechanics and may find applications in on-chip manipulation of light propagation.
Coupled multi-disciplinary simulation of composite engine structures in propulsion environment
NASA Technical Reports Server (NTRS)
Chamis, Christos C.; Singhal, Surendra N.
1992-01-01
A computational simulation procedure is described for the coupled response of multi-layered multi-material composite engine structural components which are subjected to simultaneous multi-disciplinary thermal, structural, vibration, and acoustic loadings including the effect of hostile environments. The simulation is based on a three dimensional finite element analysis technique in conjunction with structural mechanics codes and with acoustic analysis methods. The composite material behavior is assessed at the various composite scales, i.e., the laminate/ply/constituents (fiber/matrix), via a nonlinear material characterization model. Sample cases exhibiting nonlinear geometrical, material, loading, and environmental behavior of aircraft engine fan blades, are presented. Results for deformed shape, vibration frequency, mode shapes, and acoustic noise emitted from the fan blade, are discussed for their coupled effect in hot and humid environments. Results such as acoustic noise for coupled composite-mechanics/heat transfer/structural/vibration/acoustic analyses demonstrate the effectiveness of coupled multi-disciplinary computational simulation and the various advantages of composite materials compared to metals.
A study of fluid-structure problems
NASA Astrophysics Data System (ADS)
Lam, Dennis Kang-Por
The stability of structures with and without fluid load is investigated. A method is developed for determining the fluid load in terms of added structural mass. Finite element methods are employed to study the buckling of a cylindrical shell under axial compression and liquid storage tanks under hydrodynamic load. Both linear and nonlinear analyses are performed. Diamond modes are found to be the possible postbuckling shapes of the cylindrical shell. Local buckling including elephant-foot buckle and diamond buckle are found for the liquid storage tank models. Comparison between the linear and nonlinear results indicates a substantial difference in buckling mode shapes, though the buckling loads are close to each other. The method for determining the hydrodynamic mass is applied to the impeller stage of a centrifugal pump. The method is based on a linear perturbation technique which assumes that the disturbance in the flow boundaries and velocities caused by the motion of the structure is small. A potential method is used to estimate the velocity flow field. The hydrodynamic mass is then obtained by calculating the total force which results from the pressure induced by a perturbation of the structure.
Collective Modes in a Trapped Gas from Second-Order Hydrodynamics
NASA Astrophysics Data System (ADS)
Lewis, William; Romatschke, Paul
Navier-Stokes equations are often used to analyze collective oscillations and expansion dynamics of strongly interacting quantum gases. However, their use, for example, in precision determination of transport properties such as the ratio shear viscosity to entropy density (η / s) in strongly interacting Fermi gases problematic. Second-order hydrodynamics addresses this by promoting the viscous stress tensor to a hydrodynamic variable relaxing to the Navier-Stokes form on a timescale τπ. We derive frequencies, damping rates, and spatial structure of collective oscillations up to the decapole mode of a harmonically trapped gas in this framework. We find damping of higher-order modes (i.e. beyond quadrupolar) exhibits greater sensitivity to shear viscosity. Thus measurement of the hexapolar mode, for example, may lead to a stronger experimental constraint on η / s . Additionally, we find ``non-hydrodynamic'' modes not contained in a Navier-Stokes description. We calculate excitation amplitudes of non-hydrodynamic modes demonstrating they should be observable. Non-hydrodynamic modes may have implications for the hydrodynamization timescale, the existence of quasi-particles, and universal transport behavior in strongly interacting quantum fluids.
Donarelli, Zaira; Gullo, Salvatore; Lo Coco, Gianluca; Marino, Angelo; Scaglione, Piero; Volpes, Aldo; Allegra, Adolfo
2015-01-01
The factor structure of the Fertility Problem Inventory (FPI) and its invariance across gender were examined in Italian couples undergoing infertility treatment. About 1000 subjects (both partners of 500 couples) completed two questionnaires prior to commencing infertility treatment at a private Clinic in Palermo, Italy. Confirmatory Factor Analysis demonstrated that the original factor structure of the FPI was partially confirmed. Two correlated factors (Infertility Life Domains and Importance of Parenthood) were obtained via a post hoc Exploratory Factor Analysis. Finally, the invariance of this factor structure across gender was confirmed. The study supported the relevance of two interrelated factors specific to infertility stress which could help clinicians to focus on the core infertility-related stress domains of infertile couples.
NASA Astrophysics Data System (ADS)
Trautz, A.; Illangasekare, T. H.; Rodriguez-Iturbe, I.; Howington, S. E.
2017-12-01
The availability of soil moisture in water-stressed environments is one of the primary factors controlling plant performance and overall plant community productivity and structure. The minimization of non-consumptive water loss, or water not utilized by plants (i.e. consumptive use), to bare soil evaporation is a key plant survival strategy and important agricultural consideration. Competitive (negative) and facilitative (positive) interactions between individual plants play a pivotal role in controlling the local coupled soil-plant-atmosphere hydrodynamics that affect both consumptive and non-consumptive water use. The strength of these two types of interactions vary with spacing distance between individuals. In a recent PNAS publication, we hypothesized that there exists a quantifiable spacing distance between plants that optimizes the balance between competition and facilitation, and hence maximizes water conservation. This study expands upon on our previous work, for which only a subset of the data generated was used, through the development and testing of a numerical model that can test a conceptual model we presented. The model simulates soil-plant-atmosphere continuum heat and mass transfer hydrodynamics, taking into account the complex feedbacks that exist between the near-surface atmosphere, subsurface, and plants. This model has been developed to explore the combined effects of subsurface competition and micro-climatic amelioration (i.e., facilitation) on local soil moisture redistribution and fluxes in the context of water-stressed environments that experienced sustained winds. We believe the results have the potential to provide new insights into climatological, ecohydrological, and hydrological problems pertaining to: the extensively used and much debated stress-gradient hypothesis, plant community population self-organization, agricultural best practices (e.g., water management), and spatial heterogeneity of land-atmosphere fluxes.
Matos, Jislene B; Oliveira, Suellen M O DE; Pereira, Luci C C; Costa, Rauquírio M DA
2016-09-01
The present study aimed to analyze the structure and the temporal variation of the phytoplankton of Ajuruteua beach (Bragança, Pará) and to investigate the influence of environmental variables on the dynamics of this community to provide a basis about the trophic state of this environment. Biological, hydrological and hydrodynamic samplings were performed during a nyctemeral cycle in the months of November/08, March/09, June/09 and September/09. We identified 110 taxa, which were distributed among the diatoms (87.3%), dinoflagellates (11.8%) and cyanobacteria (0.9%), with the predominance of neritic species, followed by the tychoplankton species. Chlorophyll-a concentrations were the highest during the rainy period (24.5 mg m-3), whereas total phytoplankton density was higher in the dry period (1,255 x 103 cell L-1). However, phytoflagellates density was significantly higher during the rainy period. Cluster Analysis revealed the formation of four groups, which were influenced by the monthly differences in the environmental variables. The Principal Component Analysis indicated salinity and chlorophyll-a as the main variables that explained the components. Spearman correlation analysis supported the influence of these variables on the local phytoplankton community. Overall, the results obtained suggest that rainfall and strong local hydrodynamics play an important role in the dynamic of the phytoplankton of Ajuruteua beach, by influencing both environmental and biological variables.
Capillary electrophoresis (CE) was used to speciate four environmentally significant, toxic forms of arsenic: arsenite, arsenate, monomethylarsonic acid and dimethylarsinic acid. Hydride generation (HG) was used to convert the species into their respective hydrides. The hydride ...
NASA Astrophysics Data System (ADS)
Passeri, D. L.; Hagen, S. C.; Plant, N. G.; Bilskie, M. V.
2014-12-01
Sea level rise (SLR) threatens coastal environments with increased erosion, inundation of wetlands, and changes in hydrodynamic patterns. Planning for the effects of SLR requires understanding the coupled response of SLR, geomorphic and hydrodynamic processes; this will provide crucial information for managers to make informed decisions for human and natural communities. Evaluating changes in tidal hydrodynamics under future scenarios is a key aspect for understanding the effects of SLR on coastal systems; tidal hydrodynamics influence inundation, circulation patterns, sediment transport processes, shoreline erosion, and productivity of marshes and other species. This study evaluates the dynamic effects of SLR and morphologic change on tidal hydrodynamics along the Northern Gulf of Mexico (NGOM) coast from Mississippi to the Florida panhandle. A large-scale hydrodynamic model is used to simulate astronomic tides under present (circa 2005), and future conditions (circa 2050 and 2100). The model is modified with specific SLR scenarios, morphology, and shorelines that represent the conditions at each of the time periods. Future sea levels for the years 2050 and 2100 are determined using the Parris et al. (2012) projections. To make projections of future morphology, a Bayesian Network (BN) is implemented. The BN is used to define relationships between forcing mechanisms and coastal responses based on long-term relative SLR, mean wave height, long-term shoreline change rates, mean tidal range, geomorphic setting and coastal slope. Probabilistic predictions of future shoreline positions and dune heights are developed for each SLR scenario for the years 2050 and 2100. The Digital Elevation Model (DEM) is then updated to reflect the future morphologic changes. Comparison of present and future conditions illustrates the hydrodynamic response of the system to the changing landscape. Changes in variables such as harmonic tidal constituents, tidal range, tidal prism, tidal datums, circulation patterns and inundation areas are examined. This provides a better understanding of the physical processes of the current state of the NGOM and gives insight into how future SLR and coastal landscape changes may affect hydrodynamics within the NGOM estuary systems.
Biomass assimilation in coupled ecohydrodynamical model of the Mediterranean Sea
NASA Astrophysics Data System (ADS)
Crispi, G.; Bournaski, E.; Crise, A.
2003-04-01
Data assimilation has raised new interest in the last years in the context of the environmental sciences. The swift increment of the attention paid to it in oceanography is due to the coming age of operational services for the marine environment which is going to dramatically increase the demand for accurate, timely and reliable estimates of the space and time distribution both for physical and in a near future for biogeochemical fields. Data assimilation combines information derived from measurements with knowledge of the rules that govern the evolution of the system of interest through formalization and implementation in numerical models. The importance of ocean data assimilation has been recognized by several international programmes as JGOFS, GOOS and CLIVAR. This work presents an eco-hydrodynamic model of the Mediterranean Sea developed at the Istituto Nazionale di Oceanografia e di Geofisica Sperimentale - OGS, Trieste, Italy. It includes 3-D MOM-based hydrodynamics of the Mediterranean Sea, coupled with biochemical model of Nitrogen, Phytoplankton, Zooplankton, and Detritus (NPZD). Monthly mean wind forcings are adopted to force this MOM-NPZD model. For better prediction and analysis of N, P, Z and D distributions in the sea the model needs data assimilation from biomass observations on the sea surface. Chosen approach for evaluating performances of data assimilation techniques in coupled model is the definition of a twin experiment testbed where a reference run is carried out assuming its result as the truth. We define a sampling strategy to obtain different datasets to be incorporated in another ecological model in successive runs in order to appraise the potential of the data assimilation and sampling strategy. The runs carried out with different techniques and different spatio-temporal coverages are compared in order to evaluate the sensitivity to different coverage of dataset. The discussed alternative way is to assume the ecosystem at steady state and redistribute, via nudging and according with this constraint, the informations to non-observed variables.
NASA Astrophysics Data System (ADS)
De Lucia, Marco; Kempka, Thomas; Jatnieks, Janis; Kühn, Michael
2017-04-01
Reactive transport simulations - where geochemical reactions are coupled with hydrodynamic transport of reactants - are extremely time consuming and suffer from significant numerical issues. Given the high uncertainties inherently associated with the geochemical models, which also constitute the major computational bottleneck, such requirements may seem inappropriate and probably constitute the main limitation for their wide application. A promising way to ease and speed-up such coupled simulations is achievable employing statistical surrogates instead of "full-physics" geochemical models [1]. Data-driven surrogates are reduced models obtained on a set of pre-calculated "full physics" simulations, capturing their principal features while being extremely fast to compute. Model reduction of course comes at price of a precision loss; however, this appears justified in presence of large uncertainties regarding the parametrization of geochemical processes. This contribution illustrates the integration of surrogates into the flexible simulation framework currently being developed by the authors' research group [2]. The high level language of choice for obtaining and dealing with surrogate models is R, which profits from state-of-the-art methods for statistical analysis of large simulations ensembles. A stand-alone advective mass transport module was furthermore developed in order to add such capability to any multiphase finite volume hydrodynamic simulator within the simulation framework. We present 2D and 3D case studies benchmarking the performance of surrogates and "full physics" chemistry in scenarios pertaining the assessment of geological subsurface utilization. [1] Jatnieks, J., De Lucia, M., Dransch, D., Sips, M.: "Data-driven surrogate model approach for improving the performance of reactive transport simulations.", Energy Procedia 97, 2016, p. 447-453. [2] Kempka, T., Nakaten, B., De Lucia, M., Nakaten, N., Otto, C., Pohl, M., Chabab [Tillner], E., Kühn, M.: "Flexible Simulation Framework to Couple Processes in Complex 3D Models for Subsurface Utilization Assessment.", Energy Procedia, 97, 2016 p. 494-501.
Wave energy extraction by coupled resonant absorbers.
Evans, D V; Porter, R
2012-01-28
In this article, a range of problems and theories will be introduced that will build towards a new wave energy converter (WEC) concept, with the acronym 'ROTA' standing for resonant over-topping absorber. First, classical results for wave power absorption for WECs constrained to operate in a single degree of freedom will be reviewed and the role of resonance in their operation highlighted. Emphasis will then be placed on how the introduction of further resonances can improve power take-off characteristics by extending the range of frequencies over which the efficiency is close to a theoretical maximum. Methods for doing this in different types of WECs will be demonstrated. Coupled resonant absorbers achieve this by connecting a WEC device equipped with its own resonance (determined from a hydrodynamic analysis) to a new system having separate mass/spring/damper characteristics. It is shown that a coupled resonant effect can be realized by inserting a water tank into a WEC, and this idea forms the basis of the ROTA device. In essence, the idea is to exploit the coupling between the natural sloshing frequencies of the water in the internal tank and the natural resonance of a submerged buoyant circular cylinder device that is tethered to the sea floor, allowing a rotary motion about its axis of attachment.
A Coupled Fluid-Structure Interaction Analysis of Solid Rocket Motor with Flexible Inhibitors
NASA Technical Reports Server (NTRS)
Yang, H. Q.; West, Jeff
2014-01-01
A capability to couple NASA production CFD code, Loci/CHEM, with CFDRC's structural finite element code, CoBi, has been developed. This paper summarizes the efforts in applying the installed coupling software to demonstrate/investigate fluid-structure interaction (FSI) between pressure wave and flexible inhibitor inside reusable solid rocket motor (RSRM). First a unified governing equation for both fluid and structure is presented, then an Eulerian-Lagrangian framework is described to satisfy the interfacial continuity requirements. The features of fluid solver, Loci/CHEM and structural solver, CoBi, are discussed before the coupling methodology of the solvers is described. The simulation uses production level CFD LES turbulence model with a grid resolution of 80 million cells. The flexible inhibitor is modeled with full 3D shell elements. Verifications against analytical solutions of structural model under steady uniform pressure condition and under dynamic condition of modal analysis show excellent agreements in terms of displacement distribution and eigen modal frequencies. The preliminary coupled result shows that due to acoustic coupling, the dynamics of one of the more flexible inhibitors shift from its first modal frequency to the first acoustic frequency of the solid rocket motor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, S. L.
1998-08-25
Fluid Catalytic Cracking (FCC) technology is the most important process used by the refinery industry to convert crude oil to valuable lighter products such as gasoline. Process development is generally very time consuming especially when a small pilot unit is being scaled-up to a large commercial unit because of the lack of information to aide in the design of scaled-up units. Such information can now be obtained by analysis based on the pilot scale measurements and computer simulation that includes controlling physics of the FCC system. A Computational fluid dynamic (CFD) code, ICRKFLO, has been developed at Argonne National Laboratorymore » (ANL) and has been successfully applied to the simulation of catalytic petroleum cracking risers. It employs hybrid hydrodynamic-chemical kinetic coupling techniques, enabling the analysis of an FCC unit with complex chemical reaction sets containing tens or hundreds of subspecies. The code has been continuously validated based on pilot-scale experimental data. It is now being used to investigate the effects of scaled-up FCC units. Among FCC operating conditions, the feed injection conditions are found to have a strong impact on the product yields of scaled-up FCC units. The feed injection conditions appear to affect flow and heat transfer patterns and the interaction of hydrodynamics and cracking kinetics causes the product yields to change accordingly.« less
Large-scale Synchronization in Carpets of Micro-rotors
NASA Astrophysics Data System (ADS)
Kanale, Anup; Guo, Hanliang; Yan, Wen; Kanso, Eva
2017-11-01
Motile cilia are ubiquitous in nature, and have a critical role in biological locomotion and fluid transport. They often beat in an orchestrated wavelike fashion, and theoretical evidence suggests that this coordinated motion could arise from hydrodynamic interactions. Models based on bead-spring oscillators were used to examine the interaction between pairs of cilia, focusing on in-phase or anti-phase synchrony, while models of hydrodynamically-coupled elastic filaments looked at metachronal coordination in large but finite numbers of interacting cilia. The latter models reproduce metachronal wave coordination, but they are not readily amenable to analysis and parametric studies that highlight the origin of the instabilities that lead to wave propagations and wavelength selection. Here, we use a known model in which each cilium is represented by a rigid sphere moving along a circular trajectory close to a wall, hence the term rotor. The rotor is driven by a cilia-inspired force profile. We generalize this model to a doubly-periodic array of rotors, assuming small distance to the bounding wall, and employ Ewald summation techniques to solve for the flow field. Our goal is to examine the conditions that give rise to stable metachronal waves and their associated wavelength.
Unsteady bio-fluid dynamics in flying and swimming
NASA Astrophysics Data System (ADS)
Liu, Hao; Kolomenskiy, Dmitry; Nakata, Toshiyuki; Li, Gen
2017-08-01
Flying and swimming in nature present sophisticated and exciting ventures in biomimetics, which seeks sustainable solutions and solves practical problems by emulating nature's time-tested patterns, functions, and strategies. Bio-fluids in insect and bird flight, as well as in fish swimming are highly dynamic and unsteady; however, they have been studied mostly with a focus on the phenomena associated with a body or wings moving in a steady flow. Characterized by unsteady wing flapping and body undulation, fluid-structure interactions, flexible wings and bodies, turbulent environments, and complex maneuver, bio-fluid dynamics normally have challenges associated with low Reynolds number regime and high unsteadiness in modeling and analysis of flow physics. In this article, we review and highlight recent advances in unsteady bio-fluid dynamics in terms of leading-edge vortices, passive mechanisms in flexible wings and hinges, flapping flight in unsteady environments, and micro-structured aerodynamics in flapping flight, as well as undulatory swimming, flapping-fin hydrodynamics, body-fin interaction, C-start and maneuvering, swimming in turbulence, collective swimming, and micro-structured hydrodynamics in swimming. We further give a perspective outlook on future challenges and tasks of several key issues of the field.
Wojtas, Magdalena; Hołubowicz, Rafał; Poznar, Monika; Maciejewska, Marta; Ożyhar, Andrzej; Dobryszycki, Piotr
2015-10-27
Starmaker (Stm) is an intrinsically disordered protein (IDP) involved in otolith biomineralization in Danio rerio. Stm controls calcium carbonate crystal formation in vivo and in vitro. Phosphorylation of Stm affects its biomineralization properties. This study examined the effects of calcium ions and phosphorylation on the structure of Stm. We have shown that CK2 kinase phosphorylates 25 or 26 residues in Stm. Furthermore, we have demonstrated that Stm's affinity for calcium binding is dependent on its phosphorylation state. Phosphorylated Stm (StmP) has an estimated 30 ± 1 calcium binding sites per protein molecule with a dissociation constant (KD) of 61 ± 4 μM, while the unphosphorylated protein has 28 ± 3 sites and a KD of 210 ± 22 μM. Calcium ion binding induces a compaction of the Stm molecule, causing a significant decrease in its hydrodynamic radius and the formation of a secondary structure. The screening effect of Na(+) ions on calcium binding was also observed. Analysis of the hydrodynamic properties of Stm and StmP showed that Stm and StmP molecules adopt the structure of native coil-like proteins.
Gogate, Parag R; Patil, Pankaj N
2015-07-01
The present work highlights the novel approach of combination of hydrodynamic cavitation and advanced oxidation processes for wastewater treatment. The initial part of the work concentrates on the critical analysis of the literature related to the combined approaches based on hydrodynamic cavitation followed by a case study of triazophos degradation using different approaches. The analysis of different combinations based on hydrodynamic cavitation with the Fenton chemistry, advanced Fenton chemistry, ozonation, photocatalytic oxidation, and use of hydrogen peroxide has been highlighted with recommendations for important design parameters. Subsequently degradation of triazophos pesticide in aqueous solution (20 ppm solution of commercially available triazophos pesticide) has been investigated using hydrodynamic cavitation and ozonation operated individually and in combination for the first time. Effect of different operating parameters like inlet pressure (1-8 bar) and initial pH (2.5-8) have been investigated initially. The effect of addition of Fenton's reagent at different loadings on the extent of degradation has also been investigated. The combined method of hydrodynamic cavitation and ozone has been studied using two approaches of injecting ozone in the solution tank and at the orifice (at the flow rate of 0.576 g/h and 1.95 g/h). About 50% degradation of triazophos was achieved by hydrodynamic cavitation alone under optimized operating parameters. About 80% degradation of triazophos was achieved by combination of hydrodynamic cavitation and Fenton's reagent whereas complete degradation was achieved using combination of hydrodynamic cavitation and ozonation. TOC removal of 96% was also obtained for the combination of ozone and hydrodynamic cavitation making it the best treatment strategy for removal of triazophos. Copyright © 2014 Elsevier B.V. All rights reserved.
A DYNAMIC DENSITY FUNCTIONAL THEORY APPROACH TO DIFFUSION IN WHITE DWARFS AND NEUTRON STAR ENVELOPES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diaw, A.; Murillo, M. S.
2016-09-20
We develop a multicomponent hydrodynamic model based on moments of the Born–Bogolyubov–Green–Kirkwood–Yvon hierarchy equations for physical conditions relevant to astrophysical plasmas. These equations incorporate strong correlations through a density functional theory closure, while transport enters through a relaxation approximation. This approach enables the introduction of Coulomb coupling correction terms into the standard Burgers equations. The diffusive currents for these strongly coupled plasmas is self-consistently derived. The settling of impurities and its impact on cooling can be greatly affected by strong Coulomb coupling, which we show can be quantified using the direct correlation function.
Hydrodynamical processes in planet-forming accretion disks
NASA Astrophysics Data System (ADS)
Lin, Min-Kai
Understanding the physics of accretion flows in circumstellar disk provides the foundation to any theory of planet formation. The last few years have witnessed dramatic a revision in the fundamental fluid dynamics of protoplanetary accretion disks. There is growing evidence that the key to answering some of the most pressing questions, such as the origin of disk turbulence, mass transport, and planetesimal formation, may lie within, and intimately linked to, purely hydrodynamical processes in protoplanetary disks. Recent studies, including those from the proposal team, have discovered and highlighted the significance of several new hydrodynamical instabilities in the planet-forming regions of these disks. These include, but not limited to: the vertical shear instability, active between 10 to 100 AU; the zombie vortex instability, operating in regions interior to about 1AU; and the convective over-stability at intermediate radii. Secondary Rossbywave and elliptic instabilities may also be triggered, feeding off the structures that emerge from the above primary instabilities. The result of these hydrodynamic processes range from small-scale turbulence that transports angular momentum, to large-scale vortices that concentrate dust particles and enhance planetesimal formation. Hydrodynamic processes pertain to a wide range of disk conditions, meaning that at least one of these processes are active at any given disk location and evolutionary epoch. This remains true even after planet formation, which affects their subsequent orbital evolution. Hydrodynamical processes also have direct observable consequences. For example, vortices have being invoked to explain recent ALMA images of asymmetric `dust-traps' in transition disks. Hydrodynamic activities thus play a crucial role at every stage of planet formation and disk evolution. We propose to develop theoretical models of the above hydrodynamic processes under physical disk conditions by properly accounting for disk thermodynamics, dust dynamics, disk self-gravity and three-dimensional effects. By including these effects, we go wellbeyond previous works based on idealized disk models. This effort is necessary to understand how these instabilities operate and interact in realistic protoplanetary disks. This will enable us to provide a unified picture of how various hydrodynamic activities fit together to drive global disk evolution. We will address key questions including the strength of the resulting hydrodynamic turbulence, the lifetime of large-scale vortices under realistic disk conditions, and their impact on the evolution of solids within the disk. Inclusion of these additional physics will likely uncover new, yet-unknown hydrodynamic processes. Our generalized models enables a direct link between theory and observations. For example, a self-consistent incorporation of dust dynamics into the theory of hydrodynamic instabilities is particularly important, since it is the dust component that is usually observed. We will also establish the connection between the properties of large-scale, observable structures such as vortices, to the underlying disk properties, such as disk mass, and vertical structure, which are difficult to infer directly from observations. We also propose to study, for the first time, the dynamical interaction between hydrodynamic turbulence and proto-planets, as well as the influence of largescale vortices on disk-planet interaction. This is necessary towards a realistic modeling of the orbital evolution of proto planets, and thus in predicting the final architecture of planetary systems. The proposal team's expertise and experience, ranging from mathematical analyses to state-of the-art numerical simulations in astrophysical fluid dynamics, provides a multi-method approach to these problems. This is necessary towards establishing a rigorous understanding of these fundamental hydrodynamical processes in protoplanetary accretion disks.
Analysis of data characterizing tide and current fluxes in coastal basins
NASA Astrophysics Data System (ADS)
Armenio, Elvira; De Serio, Francesca; Mossa, Michele
2017-07-01
Many coastal monitoring programmes have been carried out to investigate in situ hydrodynamic patterns and correlated physical processes, such as sediment transport or spreading of pollutants. The key point is the necessity to transform this growing amount of data provided by marine sensors into information for users. The present paper aims to outline that it is possible to recognize the recurring and typical hydrodynamic processes of a coastal basin, by conveniently processing some selected marine field data. The illustrated framework is made up of two steps. Firstly, a sequence of analysis with classic methods characterized by low computational cost was executed in both time and frequency domains on detailed field measurements of waves, tides, and currents. After this, some indicators of the hydrodynamic state of the basin were identified and evaluated. Namely, the assessment of the net flow through a connecting channel, the time delay of current peaks between upper and bottom layers, the ratio of peak ebb and peak flood currents and the tidal asymmetry factor exemplify results on the vertical structure of the flow, on the correlation between currents and tide and flood/ebb dominance. To demonstrate how this simple and generic framework could be applied, a case study is presented, referring to Mar Piccolo, a shallow water basin located in the inner part of the Ionian Sea (southern Italy).
Constrained Analysis of Fluorescence Anisotropy Decay:Application to Experimental Protein Dynamics
Feinstein, Efraim; Deikus, Gintaras; Rusinova, Elena; Rachofsky, Edward L.; Ross, J. B. Alexander; Laws, William R.
2003-01-01
Hydrodynamic properties as well as structural dynamics of proteins can be investigated by the well-established experimental method of fluorescence anisotropy decay. Successful use of this method depends on determination of the correct kinetic model, the extent of cross-correlation between parameters in the fitting function, and differences between the timescales of the depolarizing motions and the fluorophore's fluorescence lifetime. We have tested the utility of an independently measured steady-state anisotropy value as a constraint during data analysis to reduce parameter cross correlation and to increase the timescales over which anisotropy decay parameters can be recovered accurately for two calcium-binding proteins. Mutant rat F102W parvalbumin was used as a model system because its single tryptophan residue exhibits monoexponential fluorescence intensity and anisotropy decay kinetics. Cod parvalbumin, a protein with a single tryptophan residue that exhibits multiexponential fluorescence decay kinetics, was also examined as a more complex model. Anisotropy decays were measured for both proteins as a function of solution viscosity to vary hydrodynamic parameters. The use of the steady-state anisotropy as a constraint significantly improved the precision and accuracy of recovered parameters for both proteins, particularly for viscosities at which the protein's rotational correlation time was much longer than the fluorescence lifetime. Thus, basic hydrodynamic properties of larger biomolecules can now be determined with more precision and accuracy by fluorescence anisotropy decay. PMID:12524313