NASA Technical Reports Server (NTRS)
Nguyen, Nhan; Ting, Eric
2018-01-01
This paper describes a recent development of an integrated fully coupled aeroservoelastic flight dynamic model of the NASA Generic Transport Model (GTM). The integrated model couples nonlinear flight dynamics to a nonlinear aeroelastic model of the GTM. The nonlinearity includes the coupling of the rigid-body aircraft states in the partial derivatives of the aeroelastic angle of attack. Aeroservoelastic modeling of the control surfaces which are modeled by the Variable Camber Continuous Trailing Edge Flap is also conducted. The R.T. Jones' method is implemented to approximate unsteady aerodynamics. Simulations of the GTM are conducted with simulated continuous and discrete gust loads..
Study of coupled nonlinear partial differential equations for finding exact analytical solutions.
Khan, Kamruzzaman; Akbar, M Ali; Koppelaar, H
2015-07-01
Exact solutions of nonlinear partial differential equations (NPDEs) are obtained via the enhanced (G'/G)-expansion method. The method is subsequently applied to find exact solutions of the Drinfel'd-Sokolov-Wilson (DSW) equation and the (2+1)-dimensional Painlevé integrable Burgers (PIB) equation. The efficiency of this method for finding these exact solutions is demonstrated. The method is effective and applicable for many other NPDEs in mathematical physics.
Rega, Giuseppe
2016-01-01
The nonlinear free oscillations of a straight planar Timoshenko beam are investigated analytically by means of the asymptotic development method. Attention is focused for the first time, to the best of our knowledge, on the nonlinear coupling between the axial and the transversal oscillations of the beam, which are decoupled in the linear regime. The existence of coupled and uncoupled motion is discussed. Furthermore, the softening versus hardening nature of the backbone curves is investigated in depth. The results are summarized by means of behaviour charts that illustrate the different possible classes of motion in the parameter space. New, and partially unexpected, phenomena, such as the changing of the nonlinear behaviour from softening to hardening by adding/removing the axial vibrations, are highlighted. PMID:27436974
Study of coupled nonlinear partial differential equations for finding exact analytical solutions
Khan, Kamruzzaman; Akbar, M. Ali; Koppelaar, H.
2015-01-01
Exact solutions of nonlinear partial differential equations (NPDEs) are obtained via the enhanced (G′/G)-expansion method. The method is subsequently applied to find exact solutions of the Drinfel'd–Sokolov–Wilson (DSW) equation and the (2+1)-dimensional Painlevé integrable Burgers (PIB) equation. The efficiency of this method for finding these exact solutions is demonstrated. The method is effective and applicable for many other NPDEs in mathematical physics. PMID:26587256
Tang, Chen; Lu, Wenjing; Chen, Song; Zhang, Zhen; Li, Botao; Wang, Wenping; Han, Lin
2007-10-20
We extend and refine previous work [Appl. Opt. 46, 2907 (2007)]. Combining the coupled nonlinear partial differential equations (PDEs) denoising model with the ordinary differential equations enhancement method, we propose the new denoising and enhancing model for electronic speckle pattern interferometry (ESPI) fringe patterns. Meanwhile, we propose the backpropagation neural networks (BPNN) method to obtain unwrapped phase values based on a skeleton map instead of traditional interpolations. We test the introduced methods on the computer-simulated speckle ESPI fringe patterns and experimentally obtained fringe pattern, respectively. The experimental results show that the coupled nonlinear PDEs denoising model is capable of effectively removing noise, and the unwrapped phase values obtained by the BPNN method are much more accurate than those obtained by the well-known traditional interpolation. In addition, the accuracy of the BPNN method is adjustable by changing the parameters of networks such as the number of neurons.
Partial synchronization in networks of non-linearly coupled oscillators: The Deserter Hubs Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freitas, Celso, E-mail: cbnfreitas@gmail.com; Macau, Elbert, E-mail: elbert.macau@inpe.br; Pikovsky, Arkady, E-mail: pikovsky@uni-potsdam.de
2015-04-15
We study the Deserter Hubs Model: a Kuramoto-like model of coupled identical phase oscillators on a network, where attractive and repulsive couplings are balanced dynamically due to nonlinearity of interactions. Under weak force, an oscillator tends to follow the phase of its neighbors, but if an oscillator is compelled to follow its peers by a sufficient large number of cohesive neighbors, then it actually starts to act in the opposite manner, i.e., in anti-phase with the majority. Analytic results yield that if the repulsion parameter is small enough in comparison with the degree of the maximum hub, then the fullmore » synchronization state is locally stable. Numerical experiments are performed to explore the model beyond this threshold, where the overall cohesion is lost. We report in detail partially synchronous dynamical regimes, like stationary phase-locking, multistability, periodic and chaotic states. Via statistical analysis of different network organizations like tree, scale-free, and random ones, we found a measure allowing one to predict relative abundance of partially synchronous stationary states in comparison to time-dependent ones.« less
NASA Astrophysics Data System (ADS)
Shallal, Muhannad A.; Jabbar, Hawraz N.; Ali, Khalid K.
2018-03-01
In this paper, we constructed a travelling wave solution for space-time fractional nonlinear partial differential equations by using the modified extended Tanh method with Riccati equation. The method is used to obtain analytic solutions for the space-time fractional Klein-Gordon and coupled conformable space-time fractional Boussinesq equations. The fractional complex transforms and the properties of modified Riemann-Liouville derivative have been used to convert these equations into nonlinear ordinary differential equations.
A Tightly Coupled Non-Equilibrium Magneto-Hydrodynamic Model for Inductively Coupled RF Plasmas
2016-02-29
development a tightly coupled magneto-hydrodynamic model for Inductively Coupled Radio- Frequency (RF) Plasmas. Non Local Thermodynamic Equilibrium (NLTE...for Inductively Coupled Radio-Frequency (RF) Plasmas. Non Local Thermodynamic Equilibrium (NLTE) effects are described based on a hybrid State-to-State... thermodynamic variable. This choice allows one to hide the non-linearity of the gas (total) thermal conductivity κ and can partially alle- 2 viate numerical
The coupled nonlinear dynamics of a lift system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crespo, Rafael Sánchez, E-mail: rafael.sanchezcrespo@northampton.ac.uk, E-mail: stefan.kaczmarczyk@northampton.ac.uk, E-mail: phil.picton@northampton.ac.uk, E-mail: huijuan.su@northampton.ac.uk; Kaczmarczyk, Stefan, E-mail: rafael.sanchezcrespo@northampton.ac.uk, E-mail: stefan.kaczmarczyk@northampton.ac.uk, E-mail: phil.picton@northampton.ac.uk, E-mail: huijuan.su@northampton.ac.uk; Picton, Phil, E-mail: rafael.sanchezcrespo@northampton.ac.uk, E-mail: stefan.kaczmarczyk@northampton.ac.uk, E-mail: phil.picton@northampton.ac.uk, E-mail: huijuan.su@northampton.ac.uk
2014-12-10
Coupled lateral and longitudinal vibrations of suspension and compensating ropes in a high-rise lift system are often induced by the building motions due to wind or seismic excitations. When the frequencies of the building become near the natural frequencies of the ropes, large resonance motions of the system may result. This leads to adverse coupled dynamic phenomena involving nonplanar motions of the ropes, impact loads between the ropes and the shaft walls, as well as vertical vibrations of the car, counterweight and compensating sheave. Such an adverse dynamic behaviour of the system endangers the safety of the installation. This papermore » presents two mathematical models describing the nonlinear responses of a suspension/ compensating rope system coupled with the elevator car / compensating sheave motions. The models accommodate the nonlinear couplings between the lateral and longitudinal modes, with and without longitudinal inertia of the ropes. The partial differential nonlinear equations of motion are derived using Hamilton Principle. Then, the Galerkin method is used to discretise the equations of motion and to develop a nonlinear ordinary differential equation model. Approximate numerical solutions are determined and the behaviour of the system is analysed.« less
Nonlinear ring resonator: spatial pattern generation
NASA Astrophysics Data System (ADS)
Ivanov, Vladimir Y.; Lachinova, Svetlana L.; Irochnikov, Nikita G.
2000-03-01
We consider theoretically spatial pattern formation processes in a unidirectional ring cavity with thin layer of Kerr-type nonlinear medium. Our method is based on studying of two coupled equations. The first is a partial differential equation for temporal dynamics of phase modulation of light wave in the medium. It describes nonlinear interaction in the Kerr-type lice. The second is a free propagation equation for the intracavity field complex amplitude. It involves diffraction effects of light wave in the cavity.
Partial regularity of weak solutions to a PDE system with cubic nonlinearity
NASA Astrophysics Data System (ADS)
Liu, Jian-Guo; Xu, Xiangsheng
2018-04-01
In this paper we investigate regularity properties of weak solutions to a PDE system that arises in the study of biological transport networks. The system consists of a possibly singular elliptic equation for the scalar pressure of the underlying biological network coupled to a diffusion equation for the conductance vector of the network. There are several different types of nonlinearities in the system. Of particular mathematical interest is a term that is a polynomial function of solutions and their partial derivatives and this polynomial function has degree three. That is, the system contains a cubic nonlinearity. Only weak solutions to the system have been shown to exist. The regularity theory for the system remains fundamentally incomplete. In particular, it is not known whether or not weak solutions develop singularities. In this paper we obtain a partial regularity theorem, which gives an estimate for the parabolic Hausdorff dimension of the set of possible singular points.
Exact solutions of fractional mBBM equation and coupled system of fractional Boussinesq-Burgers
NASA Astrophysics Data System (ADS)
Javeed, Shumaila; Saif, Summaya; Waheed, Asif; Baleanu, Dumitru
2018-06-01
The new exact solutions of nonlinear fractional partial differential equations (FPDEs) are established by adopting first integral method (FIM). The Riemann-Liouville (R-L) derivative and the local conformable derivative definitions are used to deal with the fractional order derivatives. The proposed method is applied to get exact solutions for space-time fractional modified Benjamin-Bona-Mahony (mBBM) equation and coupled time-fractional Boussinesq-Burgers equation. The suggested technique is easily applicable and effectual which can be implemented successfully to obtain the solutions for different types of nonlinear FPDEs.
NASA Astrophysics Data System (ADS)
Rezaei Kivi, Araz; Azizi, Saber; Norouzi, Peyman
2017-12-01
In this paper, the nonlinear size-dependent static and dynamic behavior of an electrostatically actuated nano-beam is investigated. A fully clamped nano-beam is considered for the modeling of the deformable electrode of the NEMS. The governing differential equation of the motion is derived using Hamiltonian principle based on couple stress theory; a non-classical theory for considering length scale effects. The nonlinear partial differential equation of the motion is discretized to a nonlinear Duffing type ODE's using Galerkin method. Static and dynamic pull-in instabilities obtained by both classical theory and MCST are compared. At the second stage of analysis, shooting technique is utilized to obtain the frequency response curve, and to capture the periodic solutions of the motion; the stability of the periodic solutions are gained by Floquet theory. The nonlinear dynamic behavior of the deformable electrode due to the AC harmonic accompanied with size dependency is investigated.
Judd, Kevin
2013-12-01
Many physical and biochemical systems are well modelled as a network of identical non-linear dynamical elements with linear coupling between them. An important question is how network structure affects chaotic dynamics, for example, by patterns of synchronisation and coherence. It is shown that small networks can be characterised precisely into patterns of exact synchronisation and large networks characterised by partial synchronisation at the local and global scale. Exact synchronisation modes are explained using tools of symmetry groups and invariance, and partial synchronisation is explained by finite-time shadowing of exact synchronisation modes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robinson, Brandon; Rocha da Costa, Leandro Jose; Poirel, Dominique
Our study details the derivation of the nonlinear equations of motion for the axial, biaxial bending and torsional vibrations of an aeroelastic cantilever undergoing rigid body (pitch) rotation at the base. The primary attenstion is focussed on the geometric nonlinearities of the system, whereby the aeroelastic load is modeled by the theory of linear quasisteady aerodynamics. This modelling effort is intended to mimic the wind-tunnel experimental setup at the Royal Military College of Canada. While the derivation closely follows the work of Hodges and Dowell [1] for rotor blades, this aeroelastic system contains new inertial terms which stem from themore » fundamentally different kinematics than those exhibited by helicopter or wind turbine blades. Using the Hamilton’s principle, a set of coupled nonlinear partial differential equations (PDEs) and an ordinary differential equation (ODE) are derived which describes the coupled axial-bending-bending-torsion-pitch motion of the aeroelastic cantilever with the pitch rotation. The finite dimensional approximation of the coupled system of PDEs are obtained using the Galerkin projection, leading to a coupled system of ODEs. Subsequently, these nonlinear ODEs are solved numerically using the built-in MATLAB implicit ODE solver and the associated numerical results are compared with those obtained using Houbolt’s method. It is demonstrated that the system undergoes coalescence flutter, leading to a limit cycle oscillation (LCO) due to coupling between the rigid body pitching mode and teh flexible mode arising from the flapwise bending motion.« less
Scalable Nonlinear Solvers for Fully Implicit Coupled Nuclear Fuel Modeling. Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Xiao-Chuan; Keyes, David; Yang, Chao
2014-09-29
The focus of the project is on the development and customization of some highly scalable domain decomposition based preconditioning techniques for the numerical solution of nonlinear, coupled systems of partial differential equations (PDEs) arising from nuclear fuel simulations. These high-order PDEs represent multiple interacting physical fields (for example, heat conduction, oxygen transport, solid deformation), each is modeled by a certain type of Cahn-Hilliard and/or Allen-Cahn equations. Most existing approaches involve a careful splitting of the fields and the use of field-by-field iterations to obtain a solution of the coupled problem. Such approaches have many advantages such as ease of implementationmore » since only single field solvers are needed, but also exhibit disadvantages. For example, certain nonlinear interactions between the fields may not be fully captured, and for unsteady problems, stable time integration schemes are difficult to design. In addition, when implemented on large scale parallel computers, the sequential nature of the field-by-field iterations substantially reduces the parallel efficiency. To overcome the disadvantages, fully coupled approaches have been investigated in order to obtain full physics simulations.« less
A coupled electro-thermal Discontinuous Galerkin method
NASA Astrophysics Data System (ADS)
Homsi, L.; Geuzaine, C.; Noels, L.
2017-11-01
This paper presents a Discontinuous Galerkin scheme in order to solve the nonlinear elliptic partial differential equations of coupled electro-thermal problems. In this paper we discuss the fundamental equations for the transport of electricity and heat, in terms of macroscopic variables such as temperature and electric potential. A fully coupled nonlinear weak formulation for electro-thermal problems is developed based on continuum mechanics equations expressed in terms of energetically conjugated pair of fluxes and fields gradients. The weak form can thus be formulated as a Discontinuous Galerkin method. The existence and uniqueness of the weak form solution are proved. The numerical properties of the nonlinear elliptic problems i.e., consistency and stability, are demonstrated under specific conditions, i.e. use of high enough stabilization parameter and at least quadratic polynomial approximations. Moreover the prior error estimates in the H1-norm and in the L2-norm are shown to be optimal in the mesh size with the polynomial approximation degree.
Approximate Solutions for Flow with a Stretching Boundary due to Partial Slip
Filobello-Nino, U.; Vazquez-Leal, H.; Sarmiento-Reyes, A.; Benhammouda, B.; Jimenez-Fernandez, V. M.; Pereyra-Diaz, D.; Perez-Sesma, A.; Cervantes-Perez, J.; Huerta-Chua, J.; Sanchez-Orea, J.; Contreras-Hernandez, A. D.
2014-01-01
The homotopy perturbation method (HPM) is coupled with versions of Laplace-Padé and Padé methods to provide an approximate solution to the nonlinear differential equation that describes the behaviour of a flow with a stretching flat boundary due to partial slip. Comparing results between approximate and numerical solutions, we concluded that our results are capable of providing an accurate solution and are extremely efficient. PMID:27433526
Coupled Oscillators System in the True Slime Mold
NASA Astrophysics Data System (ADS)
Takamatsu, A.; Fujii, T.; Endo, I.
The Plasmodium of true slime mold, Physarum polycephalum, which shows various oscillatory phenomena, can be regarded as a coupled nonlinear oscillators system. The partial bodies of the Plasmodium are interconnected by microscale tubes, whose dimension can be related to the coupling strength between the plasmodial oscillators. Investigation on the collective behavior of the oscillators under the condition that the configuration of the tube structure can be manipulated gives significant information on the characteristics of the Plasmodium from the viewpoint of nonlinear dynamics. In this study, we propose a living coupled oscillators system. Using a microfabricated structure, we patterned the geometry and the dimensions of the microscale tube structure of the Plasmodium. As the first step, the Plasmodium was grown in the microstructure for coupled two oscillators system that has two wells (oscillator part) and a microchannel (coupling part). We investigated the oscillation bahavior by monitoring the thickness oscillation of Plasmodium in the strucutre with various width (W) and length (L) of microchannel. We found that there are various types of oscillation bahavior, such as anti-phase and in-phase oscillations depending on the channel dimension W and L. The present method is suitable for further studies of the network of the Plasmodium as a collective nonlinear oscillators system.
Oxidation Behavior of Carbon Fiber-Reinforced Composites
NASA Technical Reports Server (NTRS)
Sullivan, Roy M.
2008-01-01
OXIMAP is a numerical (FEA-based) solution tool capable of calculating the carbon fiber and fiber coating oxidation patterns within any arbitrarily shaped carbon silicon carbide composite structure as a function of time, temperature, and the environmental oxygen partial pressure. The mathematical formulation is derived from the mechanics of the flow of ideal gases through a chemically reacting, porous solid. The result of the formulation is a set of two coupled, non-linear differential equations written in terms of the oxidant and oxide partial pressures. The differential equations are solved simultaneously to obtain the partial vapor pressures of the oxidant and oxides as a function of the spatial location and time. The local rate of carbon oxidation is determined at each time step using the map of the local oxidant partial vapor pressure along with the Arrhenius rate equation. The non-linear differential equations are cast into matrix equations by applying the Bubnov-Galerkin weighted residual finite element method, allowing for the solution of the differential equations numerically.
MOOSE: A parallel computational framework for coupled systems of nonlinear equations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Derek Gaston; Chris Newman; Glen Hansen
Systems of coupled, nonlinear partial differential equations (PDEs) often arise in simulation of nuclear processes. MOOSE: Multiphysics Object Oriented Simulation Environment, a parallel computational framework targeted at the solution of such systems, is presented. As opposed to traditional data-flow oriented computational frameworks, MOOSE is instead founded on the mathematical principle of Jacobian-free Newton-Krylov (JFNK) solution methods. Utilizing the mathematical structure present in JFNK, physics expressions are modularized into `Kernels,'' allowing for rapid production of new simulation tools. In addition, systems are solved implicitly and fully coupled, employing physics based preconditioning, which provides great flexibility even with large variance in timemore » scales. A summary of the mathematics, an overview of the structure of MOOSE, and several representative solutions from applications built on the framework are presented.« less
NASA Astrophysics Data System (ADS)
Soomro, Feroz Ahmed; Haq, Rizwan Ul; Al-Mdallal, Qasem M.; Zhang, Qiang
2018-03-01
In this study, heat generation/absorption effects are studied in the presence of nonlinear thermal radiation along a moving slip surface. Uniform magnetic field and convective condition along the stretching surface are adjusted to deal the slip mechanisms in term of Brownian motion and thermophoresis for nanofluid. The mathematical model is constructed in the form of coupled partial differential equations. By introducing the suitable similarity transformation, system of coupled nonlinear ordinary differential equations are obtained. Finite difference approach is implemented to obtain the unknown functions of velocity, temperature, nanoparticle concentration. To deduct the effects at the surface, physical quantities of interest are computed under the effects of controlled physical parameters. Present numerical solutions are validated via numerical comparison with existing published work for limiting cases. Present study indicates that due to increase in both Brownian motion and thermophoresis, the Nusselt number decreases while Sherwood number shows the gradual increase.
Theory of advection-driven long range biotic transport
USDA-ARS?s Scientific Manuscript database
We propose a simple mechanistic model to examine the effects of advective flow on the spread of fungal diseases spread by wind-blown spores. The model is defined by a set of two coupled non-linear partial differential equations for spore densities. One equation describes the long-distance advectiv...
NASA Astrophysics Data System (ADS)
Webber, M.; Straughan, B.
2006-03-01
Some models of chemotaxis are reviewed, particularly those involving three coupled nonlinear partial differential equations. It is shown how decay bounds may be formulated in these cases. Applications are considered, in particular to a model for glia aggregation, and the possible connection with Alzheimer's disease.
Linear and nonlinear analysis of fluid slosh dampers
NASA Astrophysics Data System (ADS)
Sayar, B. A.; Baumgarten, J. R.
1982-11-01
A vibrating structure and a container partially filled with fluid are considered coupled in a free vibration mode. To simplify the mathematical analysis, a pendulum model to duplicate the fluid motion and a mass-spring dashpot representing the vibrating structure are used. The equations of motion are derived by Lagrange's energy approach and expressed in parametric form. For a wide range of parametric values the logarithmic decrements of the main system are calculated from theoretical and experimental response curves in the linear analysis. However, for the nonlinear analysis the theoretical and experimental response curves of the main system are compared. Theoretical predictions are justified by experimental observations with excellent agreement. It is concluded finally that for a proper selection of design parameters, containers partially filled with viscous fluids serve as good vibration dampers.
Solving nonlinear evolution equation system using two different methods
NASA Astrophysics Data System (ADS)
Kaplan, Melike; Bekir, Ahmet; Ozer, Mehmet N.
2015-12-01
This paper deals with constructing more general exact solutions of the coupled Higgs equation by using the (G0/G, 1/G)-expansion and (1/G0)-expansion methods. The obtained solutions are expressed by three types of functions: hyperbolic, trigonometric and rational functions with free parameters. It has been shown that the suggested methods are productive and will be used to solve nonlinear partial differential equations in applied mathematics and engineering. Throughout the paper, all the calculations are made with the aid of the Maple software.
NASA Astrophysics Data System (ADS)
Iqbal, Z.; Ahmad, Bilal
2017-11-01
This is an attempt to investigate the influence of thermal radiation on the movement of motile gyrotactic microorganisms submerged in a water-based nanofluid flow over a nonlinear stretching sheet. The mathematical modeling of this physical problem leads to a system of nonlinear coupled partial differential equations. The problem is tackled by converting nonlinear partial differential equations into the system of highly nonlinear ordinary differential equations. The resulting nonlinear equations of momentum, energy, concentration of nanoparticles and motile gyrotactic microorganisms along with the mass flux condition are solved numerically by means of a shooting algorithm. The effects of the involved physical parameters of interest are discussed graphically. The values of the skin friction coefficient, Nusselt number, Sherwood number and local density number of motile microorganisms are tabulated for detailed analysis on the flow pattern at the stretching surface. It is concluded that the nanofluid temperature is an increasing function of the thermal radiation and the Biot number parameter. An opposite trend is observed for the local Nusselt number. The association with the preceding results in limiting sense is shown as well. A tremendous agreement of the current study in a restrictive manner is achieved as well. In addition, flow configurations through stream functions are presented and deliberated significantly.
NASA Astrophysics Data System (ADS)
Liu, Tianyang; Chan, Hiu Ning; Grimshaw, Roger; Chow, Kwok Wing
2017-11-01
The spatial structure of small disturbances in stratified flows without background shear, usually named the `Taylor-Goldstein equation', is studied by employing the Boussinesq approximation (variation in density ignored except in the buoyancy). Analytical solutions are derived for special wavenumbers when the Brunt-Väisälä frequency is quadratic in hyperbolic secant, by comparison with coupled systems of nonlinear Schrödinger equations intensively studied in the literature. Cases of coupled Schrödinger equations with four, five and six components are utilized as concrete examples. Dispersion curves for arbitrary wavenumbers are obtained numerically. The computations of the group velocity, second harmonic, induced mean flow, and the second derivative of the angular frequency can all be facilitated by these exact linear eigenfunctions of the Taylor-Goldstein equation in terms of hyperbolic function, leading to a cubic Schrödinger equation for the evolution of a wavepacket. The occurrence of internal rogue waves can be predicted if the dispersion and cubic nonlinearity terms of the Schrödinger equations are of the same sign. Partial financial support has been provided by the Research Grants Council contract HKU 17200815.
Modulation of kinetic Alfvén waves in an intermediate low-beta magnetoplasma
NASA Astrophysics Data System (ADS)
Chatterjee, Debjani; Misra, A. P.
2018-05-01
We study the amplitude modulation of nonlinear kinetic Alfvén waves (KAWs) in an intermediate low-beta magnetoplasma. Starting from a set of fluid equations coupled to the Maxwell's equations, we derive a coupled set of nonlinear partial differential equations (PDEs) which govern the evolution of KAW envelopes in the plasma. The modulational instability (MI) of such KAW envelopes is then studied by a nonlinear Schrödinger equation derived from the coupled PDEs. It is shown that the KAWs can evolve into bright envelope solitons or can undergo damping depending on whether the characteristic ratio ( α ) of the Alfvén to ion-acoustic speeds remains above or below a critical value. The parameter α is also found to shift the MI domains around the k x k z plane, where k x ( k z ) is the KAW number perpendicular (parallel) to the external magnetic field. The growth rate of MI, as well as the frequency shift and the energy transfer rate, are obtained and analyzed. The results can be useful for understanding the existence and formation of bright and dark envelope solitons, or damping of KAW envelopes in space plasmas, e.g., interplanetary space, solar winds, etc.
Hayat, Tasawar; Awais, Muhammad; Imtiaz, Amna
2016-01-01
This communication deals with the properties of heat source/sink in a magneto-hydrodynamic flow of a non-Newtonian fluid immersed in a porous medium. Shrinking phenomenon along with the permeability of the wall is considered. Mathematical modelling is performed to convert the considered physical process into set of coupled nonlinear mathematical equations. Suitable transformations are invoked to convert the set of partial differential equations into nonlinear ordinary differential equations which are tackled numerically for the solution computations. It is noted that dual solutions for various physical parameters exist which are analyzed in detail.
NASA Technical Reports Server (NTRS)
Hodges, D. H., Roberta.
1976-01-01
The stability of elastic flap bending, lead-lag bending, and torsion of uniform, untwisted, cantilever rotor blades without chordwise offsets between the elastic, mass, tension, and areodynamic center axes is investigated for the hovering flight condition. The equations of motion are obtained by simplifying the general, nonlinear, partial differential equations of motion of an elastic rotating cantilever blade. The equations are adapted for a linearized stability analysis in the hovering flight condition by prescribing aerodynamic forces, applying Galerkin's method, and linearizing the resulting ordinary differential equations about the equilibrium operating condition. The aerodynamic forces are obtained from strip theory based on a quasi-steady approximation of two-dimensional unsteady airfoil theory. Six coupled mode shapes, calculated from free vibration about the equilibrium operating condition, are used in the linearized stability analysis. The study emphasizes the effects of two types of structural coupling that strongly influence the stability of hingeless rotor blades. The first structural coupling is the linear coupling between flap and lead-lag bending of the rotor blade. The second structural coupling is a nonlinear coupling between flap bending, lead-lag bending, and torsion deflections. Results are obtained for a wide variety of hingeless rotor configurations and operating conditions in order to provide a reasonably complete picture of hingeless rotor blade stability characteristics.
2014-01-01
The present work is devoted to study the numerical simulation for unsteady MHD flow and heat transfer of a couple stress fluid over a rotating disk. A similarity transformation is employed to reduce the time dependent system of nonlinear partial differential equations (PDEs) to ordinary differential equations (ODEs). The Runge-Kutta method and shooting technique are employed for finding the numerical solution of the governing system. The influences of governing parameters viz. unsteadiness parameter, couple stress and various physical parameters on velocity, temperature and pressure profiles are analyzed graphically and discussed in detail. PMID:24835274
MOOSE: A PARALLEL COMPUTATIONAL FRAMEWORK FOR COUPLED SYSTEMS OF NONLINEAR EQUATIONS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
G. Hansen; C. Newman; D. Gaston
Systems of coupled, nonlinear partial di?erential equations often arise in sim- ulation of nuclear processes. MOOSE: Multiphysics Ob ject Oriented Simulation Environment, a parallel computational framework targeted at solving these systems is presented. As opposed to traditional data / ?ow oriented com- putational frameworks, MOOSE is instead founded on mathematics based on Jacobian-free Newton Krylov (JFNK). Utilizing the mathematical structure present in JFNK, physics are modularized into “Kernels” allowing for rapid production of new simulation tools. In addition, systems are solved fully cou- pled and fully implicit employing physics based preconditioning allowing for a large amount of ?exibility even withmore » large variance in time scales. Background on the mathematics, an inspection of the structure of MOOSE and several rep- resentative solutions from applications built on the framework are presented.« less
Aziz, Asim; Ali, Yasir; Aziz, Taha; Siddique, J. I.
2015-01-01
In this paper, we investigate the slip effects on the boundary layer flow and heat transfer characteristics of a power-law fluid past a porous flat plate embedded in the Darcy type porous medium. The nonlinear coupled system of partial differential equations governing the flow and heat transfer of a power-law fluid is transformed into a system of nonlinear coupled ordinary differential equations by applying a suitable similarity transformation. The resulting system of ordinary differential equations is solved numerically using Matlab bvp4c solver. Numerical results are presented in the form of graphs and the effects of the power-law index, velocity and thermal slip parameters, permeability parameter, suction/injection parameter on the velocity and temperature profiles are examined. PMID:26407162
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yao, Jian Hua; Gooding, R.J.
1994-06-01
We propose an algorithm to solve a system of partial differential equations of the type u[sub t](x,t) = F(x, t, u, u[sub x], u[sub xx], u[sub xxx], u[sub xxxx]) in 1 + 1 dimensions using the method of lines with piecewise ninth-order Hermite polynomials, where u and F and N-dimensional vectors. Nonlinear boundary conditions are easily incorporated with this method. We demonstrate the accuracy of this method through comparisons of numerically determine solutions to the analytical ones. Then, we apply this algorithm to a complicated physical system involving nonlinear and nonlocal strain forces coupled to a thermal field. 4 refs.,more » 5 figs., 1 tab.« less
Phase dynamics of coupled oscillators reconstructed from data
NASA Astrophysics Data System (ADS)
Rosenblum, Michael; Kralemann, Bjoern; Pikovsky, Arkady
2013-03-01
We present a technique for invariant reconstruction of the phase dynamics equations for coupled oscillators from data. The invariant description is achieved by means of a transformation of phase estimates (protophases) obtained from general scalar observables to genuine phases. Staring from the bivariate data, we obtain the coupling functions in terms of these phases. We discuss the importance of the protophase-to-phase transformation for characterization of strength and directionality of interaction. To illustrate the technique we analyse the cardio-respiratory interaction on healthy humans. Our invariant approach is confirmed by high similarity of the coupling functions obtained from different observables of the cardiac system. Next, we generalize the technique to cover the case of small networks of coupled periodic units. We use the partial norms of the reconstructed coupling functions to quantify directed coupling between the oscillators. We illustrate the method by different network motifs for three coupled oscillators. We also discuss nonlinear effects in coupling.
Linear spreading speeds from nonlinear resonant interaction
NASA Astrophysics Data System (ADS)
Faye, Grégory; Holzer, Matt; Scheel, Arnd
2017-06-01
We identify a new mechanism for propagation into unstable states in spatially extended systems, that is based on resonant interaction in the leading edge of invasion fronts. Such resonant invasion speeds can be determined solely based on the complex linear dispersion relation at the unstable equilibrium, but rely on the presence of a nonlinear term that facilitates the resonant coupling. We prove that these resonant speeds give the correct invasion speed in a simple example, we show that fronts with speeds slower than the resonant speed are unstable, and corroborate our speed criterion numerically in a variety of model equations, including a nonlocal scalar neural field model. GF received support from the project NONLOCAL (ANR-14-CE25-0013) funded by the French National Research Agency. MH was partially supported by the National Science Foundation through grant NSF-DMS-1516155. AS was partially supported by the National Science Foundation through grant NSF-DMS-1311740 and through a DAAD Fellowship.
NASA Technical Reports Server (NTRS)
Ball, R. E.
1972-01-01
A digital computer program known as SATANS (static and transient analysis, nonlinear, shells) for the geometrically nonlinear static and dynamic response of arbitrarily loaded shells of revolution is presented. Instructions for the preparation of the input data cards and other information necessary for the operation of the program are described in detail and two sample problems are included. The governing partial differential equations are based upon Sanders' nonlinear thin shell theory for the conditions of small strains and moderately small rotations. The governing equations are reduced to uncoupled sets of four linear, second order, partial differential equations in the meridional and time coordinates by expanding the dependent variables in a Fourier sine or cosine series in the circumferential coordinate and treating the nonlinear modal coupling terms as pseudo loads. The derivatives with respect to the meridional coordinate are approximated by central finite differences, and the displacement accelerations are approximated by the implicit Houbolt backward difference scheme with a constant time interval. The boundaries of the shell may be closed, free, fixed, or elastically restrained. The program is coded in the FORTRAN 4 language and is dimensioned to allow a maximum of 10 arbitrary Fourier harmonics and a maximum product of the total number of meridional stations and the total number of Fourier harmonics of 200. The program requires 155,000 bytes of core storage.
Radiation of partially ionized atomic hydrogen
NASA Technical Reports Server (NTRS)
Soon, W. H.; Kunc, J. A.
1990-01-01
A nonlinear collisional-radiative model for determination of production of electrons, positive and negative ions, excited atoms, and spectral and continuum line intensities in stationary partially ionized atomic hydrogen is presented. Transport of radiation is included by coupling the rate equations for production of the electrons, ions, and excited atoms with the radiation escape factors, which are not constant but depend on plasma conditions. It is found that the contribution of the negative ion emission to the total continuum emission can be important. Comparison of the calculated total continuum emission coefficient, including the negative ion emission, is in good agreement with experimental results.
Collisional-radiative nonequilibrium in partially ionized atomic nitrogen
NASA Technical Reports Server (NTRS)
Kunc, J. A.; Soon, W. H.
1989-01-01
A nonlinear collisional-radiative model for determination of nonequilibrium production of electrons, excited atoms, and bound-bound, dielectronic and continuum line intensities in stationary partially ionized atomic nitrogen is presented. Populations of 14 atomic levels and line intensities are calculated in plasma with T(e) = 8000-15,000 K and N(t) = 10 to the 12th - 10 to the 18th/cu cm. Transport of radiation is included by coupling the rate equations of production of the electrons and excited atoms with the radiation escape factors, which are not constant but depend on plasma conditions.
An efficient numerical scheme for the study of equal width equation
NASA Astrophysics Data System (ADS)
Ghafoor, Abdul; Haq, Sirajul
2018-06-01
In this work a new numerical scheme is proposed in which Haar wavelet method is coupled with finite difference scheme for the solution of a nonlinear partial differential equation. The scheme transforms the partial differential equation to a system of algebraic equations which can be solved easily. The technique is applied to equal width equation in order to study the behaviour of one, two, three solitary waves, undular bore and soliton collision. For efficiency and accuracy of the scheme, L2 and L∞ norms and invariants are computed. The results obtained are compared with already existing results in literature.
A Model for the Oxidation of Carbon Silicon Carbide Composite Structures
NASA Technical Reports Server (NTRS)
Sullivan, Roy M.
2004-01-01
A mathematical theory and an accompanying numerical scheme have been developed for predicting the oxidation behavior of carbon silicon carbide (C/SiC) composite structures. The theory is derived from the mechanics of the flow of ideal gases through a porous solid. The result of the theoretical formulation is a set of two coupled nonlinear differential equations written in terms of the oxidant and oxide partial pressures. The differential equations are solved simultaneously to obtain the partial vapor pressures of the oxidant and oxides as a function of the spatial location and time. The local rate of carbon oxidation is determined using the map of the local oxidant partial vapor pressure along with the Arrhenius rate equation. The nonlinear differential equations are cast into matrix equations by applying the Bubnov-Galerkin weighted residual method, allowing for the solution of the differential equations numerically. The numerical method is demonstrated by utilizing the method to model the carbon oxidation and weight loss behavior of C/SiC specimens during thermogravimetric experiments. The numerical method is used to study the physics of carbon oxidation in carbon silicon carbide composites.
NASA Astrophysics Data System (ADS)
Ganesh Kumar, K.; Rudraswamy, N. G.; Gireesha, B. J.; Krishnamurthy, M. R.
2017-09-01
Present exploration discusses the combined effect of viscous dissipation and Joule heating on three dimensional flow and heat transfer of a Jeffrey nanofluid in the presence of nonlinear thermal radiation. Here the flow is generated over bidirectional stretching sheet in the presence of applied magnetic field by accounting thermophoresis and Brownian motion of nanoparticles. Suitable similarity transformations are employed to reduce the governing partial differential equations into coupled nonlinear ordinary differential equations. These nonlinear ordinary differential equations are solved numerically by using the Runge-Kutta-Fehlberg fourth-fifth order method with shooting technique. Graphically results are presented and discussed for various parameters. Validation of the current method is proved by comparing our results with the existing results under limiting situations. It can be concluded that combined effect of Joule and viscous heating increases the temperature profile and thermal boundary layer thickness.
NASA Astrophysics Data System (ADS)
Mann, Nishan; Hughes, Stephen
2018-02-01
We present the analytical and numerical details behind our recently published article [Phys. Rev. Lett. 118, 253901 (2017), 10.1103/PhysRevLett.118.253901], describing the impact of disorder-induced multiple scattering on counterpropagating solitons in photonic crystal waveguides. Unlike current nonlinear approaches using the coupled mode formalism, we account for the effects of intraunit cell multiple scattering. To solve the resulting system of coupled semilinear partial differential equations, we introduce a modified Crank-Nicolson-type norm-preserving implicit finite difference scheme inspired by the transfer matrix method. We provide estimates of the numerical dispersion characteristics of our scheme so that optimal step sizes can be chosen to either minimize numerical dispersion or to mimic the exact dispersion. We then show numerical results of a fundamental soliton propagating in the presence of multiple scattering to demonstrate that choosing a subunit cell spatial step size is critical in accurately capturing the effects of multiple scattering, and illustrate the stochastic nature of disorder by simulating soliton propagation in various instances of disordered photonic crystal waveguides. Our approach is easily extended to include a wide range of optical nonlinearities and is applicable to various photonic nanostructures where power propagation is bidirectional, either by choice, or as a result of multiple scattering.
Hayat, Tasawar; Awais, Muhammad; Imtiaz, Amna
2016-01-01
This communication deals with the properties of heat source/sink in a magneto-hydrodynamic flow of a non-Newtonian fluid immersed in a porous medium. Shrinking phenomenon along with the permeability of the wall is considered. Mathematical modelling is performed to convert the considered physical process into set of coupled nonlinear mathematical equations. Suitable transformations are invoked to convert the set of partial differential equations into nonlinear ordinary differential equations which are tackled numerically for the solution computations. It is noted that dual solutions for various physical parameters exist which are analyzed in detail. PMID:27598314
Simultaneous Measurements of Harmonic Waves at Fatigue-Cracked Interfaces
NASA Astrophysics Data System (ADS)
Hyunjo, Jeong; Dan, Barnard
2011-08-01
Nonlinear harmonic waves generated at cracked interfaces are investigated theoretically and experimentally. A compact tension specimen is fabricated and the amplitude of the transmitted wave is analyzed as a function of position along the fatigued crack surface. In order to measure as many nonlinear harmonic components as possible, broadband lithium niobate (LiNbO3) transducers are employed together with a calibration technique for making absolute amplitude measurements with fluid-coupled receiving transducers. Cracked interfaces are shown to generate high acoustic nonlinearities, which are manifested as harmonics in the power spectrum of the received signal. The first subharmonic f/2 and the second harmonic 2f waves are found to be dominant nonlinear components for an incident toneburst signal of frequency f. To explain the observed nonlinear behavior, a partially closed crack is modeled by planar half interfaces that can account for crack parameters, such as crack opening displacement and crack surface conditions. The simulation results show reasonable agreement with the experimental results.
NASA Astrophysics Data System (ADS)
Wang, L.; Jiang, T. L.; Dai, H. L.; Ni, Q.
2018-05-01
The present study develops a new three-dimensional nonlinear model for investigating vortex-induced vibrations (VIV) of flexible pipes conveying internal fluid flow. The unsteady hydrodynamic forces associated with the wake dynamics are modeled by two distributed van der Pol wake oscillators. In particular, the nonlinear partial differential equations of motion of the pipe and the wake are derived, taking into account the coupling between the structure and the fluid. The nonlinear equations of motion for the coupled system are then discretized by means of the Galerkin technique, resulting in a high-dimensional reduced-order model of the system. It is shown that the natural frequencies for in-plane and out-of-plane motions of the pipe may be different at high internal flow velocities beyond the threshold of buckling instability. The orientation angle of the postbuckling configuration is time-varying due to the disturbance of hydrodynamic forces, thus yielding sometimes unexpected results. For a buckled pipe with relatively low cross-flow velocity, interestingly, examining the nonlinear dynamics of the pipe indicates that the combined effects of the cross-flow-induced resonance of the in-plane first mode and the internal-flow-induced buckling on the IL and CF oscillation amplitudes may be significant. For higher cross-flow velocities, however, the effect of internal fluid flow on the nonlinear VIV responses of the pipe is not pronounced.
Thin film flow along a periodically-stretched elastic beam
NASA Astrophysics Data System (ADS)
Boamah Mensah, Chris; Chini, Greg; Jensen, Oliver
2017-11-01
Motivated by an application to pulmonary alveolar micro-mechanics, a system of partial differential equations is derived that governs the motion of a thin liquid film lining both sides of an inertia-less elastic substrate. The evolution of the film mass distribution is described by invoking the usual lubrication approximation while the displacement of the substrate is determined by employing a kinematically nonlinear Euler-Bernoulli beam formulation. In the parameter regime of interest, the axial strain can be readily shown to be a linear function of arc-length specified completely by the motion of ends of the substrate. In contrast, the normal force balance on the beam yields an equation for the substrate curvature that is fully coupled to the time-dependent lubrication equation. Linear analyses of both a stationary and periodically-stretched flat substrate confirm the potential for buckling instabilities and reveal an upper bound on the dimensionless axial stiffness for which the coupled thin-film/inertial-less-beam model is well-posed. Numerical simulations of the coupled system are used to explore the nonlinear development of the buckling instabilities.
Mustafa, Meraj; Mushtaq, Ammar; Hayat, Tasawar; Ahmad, Bashir
2014-01-01
The problem of natural convective boundary layer flow of nanofluid past a vertical plate is discussed in the presence of nonlinear radiative heat flux. The effects of magnetic field, Joule heating and viscous dissipation are also taken into consideration. The governing partial differential equations are transformed into a system of coupled nonlinear ordinary differential equations via similarity transformations and then solved numerically using the Runge–Kutta fourth-fifth order method with shooting technique. The results reveal an existence of point of inflection for the temperature distribution for sufficiently large wall to ambient temperature ratio. Temperature and thermal boundary layer thickness increase as Brownian motion and thermophoretic effects intensify. Moreover temperature increases and heat transfer from the plate decreases with an increase in the radiation parameter. PMID:25251242
Large amplitude flexural vibration of thin elastic flat plates and shells
NASA Technical Reports Server (NTRS)
Pandalia, K. A. V.
1972-01-01
The general equations governing the large amplitude flexural vibration of any thin elastic shell using curvilinear orthogonal coordinates are derived and consist of two coupled, nonlinear, partial differential equations in the normal displacement w and the stress function F. From these equations, the governing equations for the case of shells of revolution or flat plates can be readily obtained as special cases. The material of the shell or plate is isotropic and homogeneous and Hooke's law for the two-dimensional case is valid. It is suggested that the difference between the hardening type of nonlinearity in the case of flat plates and straight beams and the softening type of nonlinearity in the case of shells and rings can, in general, be traced to the amount of curvature present in the underformed median surface of the structure concerned.
Chimera patterns in the Kuramoto-Battogtokh model
NASA Astrophysics Data System (ADS)
Smirnov, Lev; Osipov, Grigory; Pikovsky, Arkady
2017-02-01
Kuramoto and Battogtokh (2002 Nonlinear Phenom. Complex Syst. 5 380) discovered chimera states represented by stable coexisting synchrony and asynchrony domains in a lattice of coupled oscillators. After a reformulation in terms of a local order parameter, the problem can be reduced to partial differential equations. We find uniformly rotating, spatially periodic chimera patterns as solutions of a reversible ordinary differential equation, and demonstrate a plethora of such states. In the limit of neutral coupling they reduce to analytical solutions in the form of one- and two-point chimera patterns as well as localized chimera solitons. Patterns at weakly attracting coupling are characterized by virtue of a perturbative approach. Stability analysis reveals that only the simplest chimeras with one synchronous region are stable.
NASA Astrophysics Data System (ADS)
Ramzan, Muhammad; Chung, Jae Dong; Ullah, Naeem
The aim of present exploration is to study the flow of micropolar nanofluid due to a rotating disk in the presence of magnetic field and partial slip condition. The governing coupled partial differential equations are reduced to nonlinear ordinary differential equations using appropriate transformations. The differential equations are solved numerically by using Maple dsolve command with option numeric which utilize Runge-Kutta fourth-fifth order Fehlberg technique. A comparison to previous study is also added to validate the present results. Moreover, behavior of different parameters on velocity, microrotation, temperature and concentration of nanofluid are presented via graphs and tables. It is noted that the slip effect and magnetic field decay the velocity and microrotation or spin component.
Integrable pair-transition-coupled nonlinear Schrödinger equations.
Ling, Liming; Zhao, Li-Chen
2015-08-01
We study integrable coupled nonlinear Schrödinger equations with pair particle transition between components. Based on exact solutions of the coupled model with attractive or repulsive interaction, we predict that some new dynamics of nonlinear excitations can exist, such as the striking transition dynamics of breathers, new excitation patterns for rogue waves, topological kink excitations, and other new stable excitation structures. In particular, we find that nonlinear wave solutions of this coupled system can be written as a linear superposition of solutions for the simplest scalar nonlinear Schrödinger equation. Possibilities to observe them are discussed in a cigar-shaped Bose-Einstein condensate with two hyperfine states. The results would enrich our knowledge on nonlinear excitations in many coupled nonlinear systems with transition coupling effects, such as multimode nonlinear fibers, coupled waveguides, and a multicomponent Bose-Einstein condensate system.
Active control of panel vibrations induced by a boundary layer flow
NASA Technical Reports Server (NTRS)
Chow, Pao-Liu
1995-01-01
The problems of active and passive control of sound and vibration has been investigated by many researchers for a number of years. However, few of the articles are concerned with the sound and vibration with flow-structure interaction. Experimental and numerical studies on the coupling between panel vibration and acoustic radiation due to flow excitation have been done by Maestrello and his associates at NASA/Langley Research Center. Since the coupled system of nonlinear partial differential equations is formidable, an analytical solution to the full problem seems impossible. For this reason, we have to simplify the problem to that of the nonlinear panel vibration induced by a uniform flow or a boundary-layer flow with a given wall pressure distribution. Based on this simplified model, we have been able to consider the control and stabilization of the nonlinear panel vibration, which have not been treated satisfactorily by other authors. Although the sound radiation has not been included, the vibration suppression will clearly reduce the sound radiation power from the panel. The major research findings are presented in three sections. In section two we describe results on the boundary control of nonlinear panel vibration, with or without flow excitation. Sections three and four are concerned with some analytical and numerical results in the optimal control of the linear and nonlinear panel vibrations, respectively, excited by the flow pressure fluctuations. Finally, in section five, we draw some conclusions from research findings.
Internal resonance and low frequency vibration energy harvesting
NASA Astrophysics Data System (ADS)
Yang, Wei; Towfighian, Shahrzad
2017-09-01
A nonlinear vibration energy harvester with internal resonance is presented. The proposed harvester consists of two cantilevers, each with a permanent magnet on its tip. One cantilever has a piezoelectric layer at its base. When magnetic force is applied this two degrees-of-freedom nonlinear vibration system shows the internal resonance phenomenon that broadens the frequency bandwidth compared to a linear system. Three coupled partial differential equations are obtained to predict the dynamic behavior of the nonlinear energy harvester. The perturbation method of multiple scales is used to solve equations. Results from experiments done at different vibration levels with varying distances between the magnets validate the mathematical model. Experiments and simulations show the design outperforms the linear system by doubling the frequency bandwidth. Output voltage for frequency response is studied for different system parameters. The optimal load resistance is obtained for the maximum power in the internal resonance case. The results demonstrate that a design combining internal resonance and magnetic nonlinearity improves the efficiency of energy harvesting.
Hydromagnetic couple-stress nanofluid flow over a moving convective wall: OHAM analysis
NASA Astrophysics Data System (ADS)
Awais, M.; Saleem, S.; Hayat, T.; Irum, S.
2016-12-01
This communication presents the magnetohydrodynamics (MHD) flow of a couple-stress nanofluid over a convective moving wall. The flow dynamics are analyzed in the boundary layer region. Convective cooling phenomenon combined with thermophoresis and Brownian motion effects has been discussed. Similarity transforms are utilized to convert the system of partial differential equations into coupled non-linear ordinary differential equation. Optimal homotopy analysis method (OHAM) is utilized and the concept of minimization is employed by defining the average squared residual errors. Effects of couple-stress parameter, convective cooling process parameter and energy enhancement parameters are displayed via graphs and discussed in detail. Various tables are also constructed to present the error analysis and a comparison of obtained results with the already published data. Stream lines are plotted showing a difference of Newtonian fluid model and couplestress fluid model.
Nonlinear Tollmien-Schlichting/vortex interaction in boundary layers
NASA Technical Reports Server (NTRS)
Hall, P.; Smith, F. T.
1988-01-01
The nonlinear reaction between two oblique 3-D Tollmein-Schlichting (TS) waves and their induced streamwise-vortex flow is considered theoretically for an imcompressible boundary layer. The same theory applies to the destabilization of an incident vortex motion by subharmonic TS waves, followed by interaction. The scales and flow structure involved are addressed for high Reynolds numbers. The nonlionear interaction is powerful, starting at quite low amplitudes with a triple-deck structure for the TS waves but a large-scale structure for the induced vortex, after which strong nonlinear amplification occurs. This includes nonparallel-flow effects. The nonlinear interaction is governed by a partial differential system for the vortex flow coupled with an ordinary-differential one for the TS pressure. The solution properties found sometimes produce a breakup within a finite distance and sometimes further downstream, depending on the input amplitudes upstream and on the wave angles, and that then leads to the second stages of interaction associated with higher amplitudes, the main second stages giving either long-scale phenomena significantly affected by nonparallelism or shorter quasi-parallel ones governed by the full nonlinear triple-deck response.
NASA Astrophysics Data System (ADS)
Shateyi, Stanford; Marewo, Gerald T.
2018-05-01
We numerically investigate a mixed convection model for a magnetohydrodynamic (MHD) Jeffery fluid flowing over an exponentially stretching sheet. The influence of thermal radiation and chemical reaction is also considered in this study. The governing non-linear coupled partial differential equations are reduced to a set of coupled non-linear ordinary differential equations by using similarity functions. This new set of ordinary differential equations are solved numerically using the Spectral Quasi-Linearization Method. A parametric study of physical parameters involved in this study is carried out and displayed in tabular and graphical forms. It is observed that the velocity is enhanced with increasing values of the Deborah number, buoyancy and thermal radiation parameters. Furthermore, the temperature and species concentration are decreasing functions of the Deborah number. The skin friction coefficient increases with increasing values of the magnetic parameter and relaxation time. Heat and mass transfer rates increase with increasing values of the Deborah number and buoyancy parameters.
NASA Astrophysics Data System (ADS)
Chan, Hiu Ning; Chow, Kwok Wing; Kedziora, David Jacob; Grimshaw, Roger Hamilton James; Ding, Edwin
2014-11-01
Rogue waves are unexpectedly large displacements of the water surface and will obviously pose threat to maritime activities. Recently, the formation of rogue waves is correlated with the onset of modulation instabilities of plane waves of the system. The long wave-short wave resonance and the derivative nonlinear Schrödinger models are considered. They are relevant in a two-layer fluid and a fourth order perturbation expansion of free surface waves respectively. Analytical solutions of rogue wave modes for the two models are derived by the Hirota bilinear method. Properties and amplitudes of these rogue wave modes are investigated. Conditions for modulation instability of the plane waves are shown to be precisely the requirements for the occurrence of rogue waves. In contrast with the nonlinear Schrödinger equation, rogue wave modes for the derivative nonlinear Schrödinger model exist even if the dispersion and cubic nonlinearity are of the opposite signs, provided that a sufficiently strong self-steepening nonlinearity is present. Extensions to the coupled case (multiple waveguides) will be discussed. This work is partially supported by the Research Grants Council General Research Fund Contract HKU 711713E.
Nonlinear Elastic Plate in a Flow of Gas: Recent Results and Conjectures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chueshov, Igor, E-mail: chueshov@karazin.ua; Dowell, Earl H., E-mail: dowell@duke.edu; Lasiecka, Irena, E-mail: lasiecka@memphis.edu
2016-06-15
We give a survey of recent results on flow-structure interactions modeled by a modified wave equation coupled at an interface with equations of nonlinear elasticity. Both subsonic and supersonic flow velocities are considered. The focus of the discussion here is on the interesting mathematical aspects of physical phenomena occurring in aeroelasticity, such as flutter and divergence. This leads to a partial differential equation treatment of issues such as well-posedness of finite energy solutions, and long-time (asymptotic) behavior. The latter includes theory of asymptotic stability, convergence to equilibria, and to global attracting sets. We complete the discussion with several well knownmore » observations and conjectures based on experimental/numerical studies.« less
A soft body as a reservoir: case studies in a dynamic model of octopus-inspired soft robotic arm.
Nakajima, Kohei; Hauser, Helmut; Kang, Rongjie; Guglielmino, Emanuele; Caldwell, Darwin G; Pfeifer, Rolf
2013-01-01
The behaviors of the animals or embodied agents are characterized by the dynamic coupling between the brain, the body, and the environment. This implies that control, which is conventionally thought to be handled by the brain or a controller, can partially be outsourced to the physical body and the interaction with the environment. This idea has been demonstrated in a number of recently constructed robots, in particular from the field of "soft robotics". Soft robots are made of a soft material introducing high-dimensionality, non-linearity, and elasticity, which often makes the robots difficult to control. Biological systems such as the octopus are mastering their complex bodies in highly sophisticated manners by capitalizing on their body dynamics. We will demonstrate that the structure of the octopus arm cannot only be exploited for generating behavior but also, in a sense, as a computational resource. By using a soft robotic arm inspired by the octopus we show in a number of experiments how control is partially incorporated into the physical arm's dynamics and how the arm's dynamics can be exploited to approximate non-linear dynamical systems and embed non-linear limit cycles. Future application scenarios as well as the implications of the results for the octopus biology are also discussed.
A soft body as a reservoir: case studies in a dynamic model of octopus-inspired soft robotic arm
Nakajima, Kohei; Hauser, Helmut; Kang, Rongjie; Guglielmino, Emanuele; Caldwell, Darwin G.; Pfeifer, Rolf
2013-01-01
The behaviors of the animals or embodied agents are characterized by the dynamic coupling between the brain, the body, and the environment. This implies that control, which is conventionally thought to be handled by the brain or a controller, can partially be outsourced to the physical body and the interaction with the environment. This idea has been demonstrated in a number of recently constructed robots, in particular from the field of “soft robotics”. Soft robots are made of a soft material introducing high-dimensionality, non-linearity, and elasticity, which often makes the robots difficult to control. Biological systems such as the octopus are mastering their complex bodies in highly sophisticated manners by capitalizing on their body dynamics. We will demonstrate that the structure of the octopus arm cannot only be exploited for generating behavior but also, in a sense, as a computational resource. By using a soft robotic arm inspired by the octopus we show in a number of experiments how control is partially incorporated into the physical arm's dynamics and how the arm's dynamics can be exploited to approximate non-linear dynamical systems and embed non-linear limit cycles. Future application scenarios as well as the implications of the results for the octopus biology are also discussed. PMID:23847526
On two parabolic systems: Convergence and blowup
NASA Astrophysics Data System (ADS)
Huang, Yamin
1998-12-01
This dissertation studies two parabolic systems. It consists of two parts. In part one (chapter one), we prove a convergence result, namely, the solution (AK,/ BK) of a system of chemical diffusion-reaction equations (with reaction rate K) converges to the solution (A, B) of a diffusion- instantaneous-reaction equation. To prove our main result, we use some L1 and L2 'energy' estimates and a compactness result due to Aubin (1). As a by-product we also prove that as K approaches infinity, the limit solution exhibits phase separation between A and B. In part two (chapter two), we study the blowup rate for a system of heat equations ut=/Delta u,/ vt=/Delta v in a bounded domain Ωtimes(0,T) coupled in the nonlinear Neumann boundary conditions [/partial u/over/partial n]=vp,/ [/partial v/over/partial n]=uq on ∂Omega×[ 0,T), where p>0,/ q>0,/ pq>1 and n is the exterior normal vector on ∂Omega. Under certain assumptions, we establish exact blowup rate which generalizes the corresponding results of some authors' recent work including Deng (2), Deng-Fila-Levine (3) and Hu-Yin (4). ftn (1) J. P. A scUBIN, Un theoreme de compacite, C. R. Acad. Sci., 256(1963), pp. 5042-5044. (2) K. D scENG, Blow-up rates for parabolic systems, Z. Angew. Math. Phys., 47(1996), No. 1, pp. 132-143. (3) K. D scENG, M. F scILA AND H. A. L scEVINE, On critical exponents for a system of heat equations coupled in the boundary conditions, Acta Math. Univ. Comenian. (N.S.), 36(1994), No. 2, pp. 169-192. (4) B. H scU scAND H. M. Y scIN, The profile near blowup time for solutions of the heat equation with a nonlinear boundary condition, Trans. Amer. Math. Soc., 346(1994), pp. 117-135.
Challenges and opportunities for improved understanding of regional climate dynamics
NASA Astrophysics Data System (ADS)
Collins, Matthew; Minobe, Shoshiro; Barreiro, Marcelo; Bordoni, Simona; Kaspi, Yohai; Kuwano-Yoshida, Akira; Keenlyside, Noel; Manzini, Elisa; O'Reilly, Christopher H.; Sutton, Rowan; Xie, Shang-Ping; Zolina, Olga
2018-01-01
Dynamical processes in the atmosphere and ocean are central to determining the large-scale drivers of regional climate change, yet their predictive understanding is poor. Here, we identify three frontline challenges in climate dynamics where significant progress can be made to inform adaptation: response of storms, blocks and jet streams to external forcing; basin-to-basin and tropical-extratropical teleconnections; and the development of non-linear predictive theory. We highlight opportunities and techniques for making immediate progress in these areas, which critically involve the development of high-resolution coupled model simulations, partial coupling or pacemaker experiments, as well as the development and use of dynamical metrics and exploitation of hierarchies of models.
Spectral method for pricing options in illiquid markets
NASA Astrophysics Data System (ADS)
Pindza, Edson; Patidar, Kailash C.
2012-09-01
We present a robust numerical method to solve a problem of pricing options in illiquid markets. The governing equation is described by a nonlinear Black-Scholes partial differential equation (BS-PDE) of the reaction-diffusion-advection type. To discretise this BS-PDE numerically, we use a spectral method in the asset (spatial) direction and couple it with a fifth order RADAU method for the discretisation in the time direction. Numerical experiments illustrate that our approach is very efficient for pricing financial options in illiquid markets.
NASA Astrophysics Data System (ADS)
Geng, Xianguo; Liu, Huan
2018-04-01
The Riemann-Hilbert problem for the coupled nonlinear Schrödinger equation is formulated on the basis of the corresponding 3× 3 matrix spectral problem. Using the nonlinear steepest descent method, we obtain leading-order asymptotics for the Cauchy problem of the coupled nonlinear Schrödinger equation.
Integrability and Linear Stability of Nonlinear Waves
NASA Astrophysics Data System (ADS)
Degasperis, Antonio; Lombardo, Sara; Sommacal, Matteo
2018-03-01
It is well known that the linear stability of solutions of 1+1 partial differential equations which are integrable can be very efficiently investigated by means of spectral methods. We present here a direct construction of the eigenmodes of the linearized equation which makes use only of the associated Lax pair with no reference to spectral data and boundary conditions. This local construction is given in the general N× N matrix scheme so as to be applicable to a large class of integrable equations, including the multicomponent nonlinear Schrödinger system and the multiwave resonant interaction system. The analytical and numerical computations involved in this general approach are detailed as an example for N=3 for the particular system of two coupled nonlinear Schrödinger equations in the defocusing, focusing and mixed regimes. The instabilities of the continuous wave solutions are fully discussed in the entire parameter space of their amplitudes and wave numbers. By defining and computing the spectrum in the complex plane of the spectral variable, the eigenfrequencies are explicitly expressed. According to their topological properties, the complete classification of these spectra in the parameter space is presented and graphically displayed. The continuous wave solutions are linearly unstable for a generic choice of the coupling constants.
Controllable nonlinearity in a dual-coupling optomechanical system under a weak-coupling regime
NASA Astrophysics Data System (ADS)
Zhu, Gui-Lei; Lü, Xin-You; Wan, Liang-Liang; Yin, Tai-Shuang; Bin, Qian; Wu, Ying
2018-03-01
Strong quantum nonlinearity gives rise to many interesting quantum effects and has wide applications in quantum physics. Here we investigate the quantum nonlinear effect of an optomechanical system (OMS) consisting of both linear and quadratic coupling. Interestingly, a controllable optomechanical nonlinearity is obtained by applying a driving laser into the cavity. This controllable optomechanical nonlinearity can be enhanced into a strong coupling regime, even if the system is initially in the weak-coupling regime. Moreover, the system dissipation can be suppressed effectively, which allows the appearance of phonon sideband and photon blockade effects in the weak-coupling regime. This work may inspire the exploration of a dual-coupling optomechanical system as well as its applications in modern quantum science.
Optimal linear-quadratic control of coupled parabolic-hyperbolic PDEs
NASA Astrophysics Data System (ADS)
Aksikas, I.; Moghadam, A. Alizadeh; Forbes, J. F.
2017-10-01
This paper focuses on the optimal control design for a system of coupled parabolic-hypebolic partial differential equations by using the infinite-dimensional state-space description and the corresponding operator Riccati equation. Some dynamical properties of the coupled system of interest are analysed to guarantee the existence and uniqueness of the solution of the linear-quadratic (LQ)-optimal control problem. A state LQ-feedback operator is computed by solving the operator Riccati equation, which is converted into a set of algebraic and differential Riccati equations, thanks to the eigenvalues and the eigenvectors of the parabolic operator. The results are applied to a non-isothermal packed-bed catalytic reactor. The LQ-optimal controller designed in the early portion of the paper is implemented for the original nonlinear model. Numerical simulations are performed to show the controller performances.
Nonlinear interaction between underwater explosion bubble and structure based on fully coupled model
NASA Astrophysics Data System (ADS)
Zhang, A. M.; Wu, W. B.; Liu, Y. L.; Wang, Q. X.
2017-08-01
The interaction between an underwater explosion bubble and an elastic-plastic structure is a complex transient process, accompanying violent bubble collapsing, jet impact, penetration through the bubble, and large structural deformation. In the present study, the bubble dynamics are modeled using the boundary element method and the nonlinear transient structural response is modeled using the explicit finite element method. A new fully coupled 3D model is established through coupling the equations for the state variables of the fluid and structure and solving them as a set of coupled linear algebra equations. Based on the acceleration potential theory, the mutual dependence between the hydrodynamic load and the structural motion is decoupled. The pressure distribution in the flow field is calculated with the Bernoulli equation, where the partial derivative of the velocity potential in time is calculated using the boundary integral method to avoid numerical instabilities. To validate the present fully coupled model, the experiments of small-scale underwater explosion near a stiffened plate are carried out. High-speed imaging is used to capture the bubble behaviors and strain gauges are used to measure the strain response. The numerical results correspond well with the experimental data, in terms of bubble shapes and structural strain response. By both the loosely coupled model and the fully coupled model, the interaction between a bubble and a hollow spherical shell is studied. The bubble patterns vary with different parameters. When the fully coupled model and the loosely coupled model are advanced with the same time step, the error caused by the loosely coupled model becomes larger with the coupling effect becoming stronger. The fully coupled model is more stable than the loosely coupled model. Besides, the influences of the internal fluid on the dynamic response of the spherical shell are studied. At last, the case that the bubble interacts with an air-backed stiffened plate is simulated. The associated interesting physical phenomenon is obtained and expounded.
Three-dimensional vibration analysis of a uniform beam with offset inertial masses at the ends
NASA Technical Reports Server (NTRS)
Robertson, D. K.
1985-01-01
Analysis of a flexible beam with displaced end-located inertial masses is presented. The resulting three-dimensional mode shape is shown to consist of two one-plane bending modes and one torsional mode. These three components of the mode shapes are shown to be linear combinations of trigonometric and hyperbolic sine and cosine functions. Boundary conditions are derived to obtain nonlinear algebraic equations through kinematic coupling of the general solutions of the three governing partial differential equations. A method of solution which takes these boundary conditions into account is also presented. A computer program has been written to obtain unique solutions to the resulting nonlinear algebraic equations. This program, which calculates natural frequencies and three-dimensional mode shapes for any number of modes, is presented and discussed.
Enhanced energy transport owing to nonlinear interface interaction
Su, Ruixia; Yuan, Zongqiang; Wang, Jun; Zheng, Zhigang
2016-01-01
It is generally expected that the interface coupling leads to the suppression of thermal transport through coupled nanostructures due to the additional interface phonon-phonon scattering. However, recent experiments demonstrated that the interface van der Waals interactions can significantly enhance the thermal transfer of bonding boron nanoribbons compared to a single freestanding nanoribbon. To obtain a more in-depth understanding on the important role of the nonlinear interface coupling in the heat transports, in the present paper, we explore the effect of nonlinearity in the interface interaction on the phonon transport by studying the coupled one-dimensional (1D) Frenkel-Kontorova lattices. It is found that the thermal conductivity increases with increasing interface nonlinear intensity for weak inter-chain nonlinearity. By developing the effective phonon theory of coupled systems, we calculate the dependence of heat conductivity on interfacial nonlinearity in weak inter-chain couplings regime which is qualitatively in good agreement with the result obtained from molecular dynamics simulations. Moreover, we demonstrate that, with increasing interface nonlinear intensity, the system dimensionless nonlinearity strength is reduced, which in turn gives rise to the enhancement of thermal conductivity. Our results pave the way for manipulating the energy transport through coupled nanostructures for future emerging applications. PMID:26787363
Stability of post-fertilization traveling waves
NASA Astrophysics Data System (ADS)
Flores, Gilberto; Plaza, Ramón G.
This paper studies the stability of a family of traveling wave solutions to the system proposed by Lane et al. [D.C. Lane, J.D. Murray, V.S. Manoranjan, Analysis of wave phenomena in a morphogenetic mechanochemical model and an application to post-fertilization waves on eggs, IMA J. Math. Appl. Med. Biol. 4 (4) (1987) 309-331], to model a pair of mechanochemical phenomena known as post-fertilization waves on eggs. The waves consist of an elastic deformation pulse on the egg's surface, and a free calcium concentration front. The family is indexed by a coupling parameter measuring contraction stress effects on the calcium concentration. This work establishes the spectral, linear and nonlinear orbital stability of these post-fertilization waves for small values of the coupling parameter. The usual methods for the spectral and evolution equations cannot be applied because of the presence of mixed partial derivatives in the elastic equation. Nonetheless, exponential decay of the directly constructed semigroup on the complement of the zero eigenspace is established. We show that small perturbations of the waves yield solutions to the nonlinear equations decaying exponentially to a phase-modulated traveling wave.
The nonlinear dynamics of a spacecraft coupled to the vibration of a contained fluid
NASA Technical Reports Server (NTRS)
Peterson, Lee D.; Crawley, Edward F.; Hansman, R. John
1988-01-01
The dynamics of a linear spacecraft mode coupled to a nonlinear low gravity slosh of a fluid in a cylindrical tank is investigated. Coupled, nonlinear equations of motion for the fluid-spacecraft dynamics are derived through an assumed mode Lagrangian method. Unlike linear fluid slosh models, this nonlinear slosh model retains two fundamental slosh modes and three secondary modes. An approximate perturbation solution of the equations of motion indicates that the nonlinear coupled system response involves fluid-spacecraft modal resonances not predicted by either a linear, or a nonlinear, uncoupled slosh analysis. Experimental results substantiate the analytical predictions.
A Bifurcation Problem for a Nonlinear Partial Differential Equation of Parabolic Type,
NONLINEAR DIFFERENTIAL EQUATIONS, INTEGRATION), (*PARTIAL DIFFERENTIAL EQUATIONS, BOUNDARY VALUE PROBLEMS), BANACH SPACE , MAPPING (TRANSFORMATIONS), SET THEORY, TOPOLOGY, ITERATIONS, STABILITY, THEOREMS
Current flow instability and nonlinear structures in dissipative two-fluid plasmas
NASA Astrophysics Data System (ADS)
Koshkarov, O.; Smolyakov, A. I.; Romadanov, I. V.; Chapurin, O.; Umansky, M. V.; Raitses, Y.; Kaganovich, I. D.
2018-01-01
The current flow in two-fluid plasma is inherently unstable if plasma components (e.g., electrons and ions) are in different collisionality regimes. A typical example is a partially magnetized E ×B plasma discharge supported by the energy released from the dissipation of the current in the direction of the applied electric field (perpendicular to the magnetic field). Ions are not magnetized so they respond to the fluctuations of the electric field ballistically on the inertial time scale. In contrast, the electron current in the direction of the applied electric field is dissipatively supported either by classical collisions or anomalous processes. The instability occurs due to a positive feedback between the electron and ion current coupled by the quasi-neutrality condition. The theory of this instability is further developed taking into account the electron inertia, finite Larmor radius and nonlinear effects. It is shown that this instability results in highly nonlinear quasi-coherent structures resembling breathing mode oscillations in Hall thrusters.
On nonlinear Tollmien-Schlichting/vortex interaction in three-dimensional boundary layers
NASA Technical Reports Server (NTRS)
Davis, Dominic A. R.; Smith, Frank T.
1993-01-01
The instability of an incompressible three-dimensional boundary layer (that is, one with cross-flow) is considered theoretically and computationally in the context of vortex/wave interactions. Specifically the work centers on two low amplitude, lower-branch Tollmien-Schlichting waves which mutually interact to induce a weak longitudinal vortex flow; the vortex motion, in turn, gives rise to significant wave-modulation via wall-shear forcing. The characteristic Reynolds number is taken as a large parameter and, as a consequence, the waves' and the vortex motion are governed primarily by triple-deck theory. The nonlinear interaction is captured by a viscous partial-differential system for the vortex coupled with a pair of amplitude equations for each wave pressure. Three distinct possibilities were found to emerge for the nonlinear behavior of the flow solution downstream - an algebraic finite-distance singularity, far downstream saturation or far-downstream wave-decay (leaving pure vortex flow) - depending on the input conditions, the wave angles, and the size of the cross-flow.
Chimera at the phase-flip transition of an ensemble of identical nonlinear oscillators
NASA Astrophysics Data System (ADS)
Gopal, R.; Chandrasekar, V. K.; Senthilkumar, D. V.; Venkatesan, A.; Lakshmanan, M.
2018-06-01
A complex collective emerging behavior characterized by coexisting coherent and incoherent domains is termed as a chimera state. We bring out the existence of a new type of chimera in a nonlocally coupled ensemble of identical oscillators driven by a common dynamic environment. The latter facilitates the onset of phase-flip bifurcation/transitions among the coupled oscillators of the ensemble, while the nonlocal coupling induces a partial asynchronization among the out-of-phase synchronized oscillators at this onset. This leads to the manifestation of coexisting out-of-phase synchronized coherent domains interspersed by asynchronous incoherent domains elucidating the existence of a different type of chimera state. In addition to this, a rich variety of other collective behaviors such as clusters with phase-flip transition, conventional chimera, solitary state and complete synchronized state which have been reported using different coupling architectures are found to be induced by the employed couplings for appropriate coupling strengths. The robustness of the resulting dynamics is demonstrated in ensembles of two paradigmatic models, namely Rössler oscillators and Stuart-Landau oscillators.
Coupled Particle Transport and Pattern Formation in a Nonlinear Leaky-Box Model
NASA Technical Reports Server (NTRS)
Barghouty, A. F.; El-Nemr, K. W.; Baird, J. K.
2009-01-01
Effects of particle-particle coupling on particle characteristics in nonlinear leaky-box type descriptions of the acceleration and transport of energetic particles in space plasmas are examined in the framework of a simple two-particle model based on the Fokker-Planck equation in momentum space. In this model, the two particles are assumed coupled via a common nonlinear source term. In analogy with a prototypical mathematical system of diffusion-driven instability, this work demonstrates that steady-state patterns with strong dependence on the magnetic turbulence but a rather weak one on the coupled particles attributes can emerge in solutions of a nonlinearly coupled leaky-box model. The insight gained from this simple model may be of wider use and significance to nonlinearly coupled leaky-box type descriptions in general.
NASA Astrophysics Data System (ADS)
Malfense Fierro, Gian Piero; Meo, Michele
2018-03-01
Two non-contact methods were evaluated to address the reliability and reproducibility concerns affecting industry adoption of nonlinear ultrasound techniques for non-destructive testing and evaluation (NDT/E) purposes. A semi and a fully air-coupled linear and nonlinear ultrasound method was evaluated by testing for barely visible impact damage (BVID) in composite materials. Air coupled systems provide various advantages over contact driven systems; such as: ease of inspection, no contact and lubrication issues and a great potential for non-uniform geometry evaluation. The semi air-coupled setup used a suction attached piezoelectric transducer to excite the sample and an array of low-cost microphones to capture the signal over the inspection area, while the second method focused on a purely air-coupled setup, using an air-coupled transducer to excite the structure and capture the signal. One of the issues facing nonlinear and any air-coupled systems is transferring enough energy to stimulate wave propagation and in the case of nonlinear ultrasound; damage regions. Results for both methods provided nonlinear imaging (NIM) of damage regions using a sweep excitation methodology, with the semi aircoupled system providing clearer results.
Prediction and causal reasoning in planning
NASA Technical Reports Server (NTRS)
Dean, T.; Boddy, M.
1987-01-01
Nonlinear planners are often touted as having an efficiency advantage over linear planners. The reason usually given is that nonlinear planners, unlike their linear counterparts, are not forced to make arbitrary commitments to the order in which actions are to be performed. This ability to delay commitment enables nonlinear planners to solve certain problems with far less effort than would be required of linear planners. Here, it is argued that this advantage is bought with a significant reduction in the ability of a nonlinear planner to accurately predict the consequences of actions. Unfortunately, the general problem of predicting the consequences of a partially ordered set of actions is intractable. In gaining the predictive power of linear planners, nonlinear planners sacrifice their efficiency advantage. There are, however, other advantages to nonlinear planning (e.g., the ability to reason about partial orders and incomplete information) that make it well worth the effort needed to extend nonlinear methods. A framework is supplied for causal inference that supports reasoning about partially ordered events and actions whose effects depend upon the context in which they are executed. As an alternative to a complete but potentially exponential-time algorithm, researchers provide a provably sound polynomial-time algorithm for predicting the consequences of partially ordered events.
Vibration analysis of partially cracked plate submerged in fluid
NASA Astrophysics Data System (ADS)
Soni, Shashank; Jain, N. K.; Joshi, P. V.
2018-01-01
The present work proposes an analytical model for vibration analysis of partially cracked rectangular plates coupled with fluid medium. The governing equation of motion for the isotropic plate based on the classical plate theory is modified to accommodate a part through continuous line crack according to simplified line spring model. The influence of surrounding fluid medium is incorporated in the governing equation in the form of inertia effects based on velocity potential function and Bernoulli's equations. Both partially and totally submerged plate configurations are considered. The governing equation also considers the in-plane stretching due to lateral deflection in the form of in-plane forces which introduces geometric non-linearity into the system. The fundamental frequencies are evaluated by expressing the lateral deflection in terms of modal functions. The assessment of the present results is carried out for intact submerged plate as to the best of the author's knowledge the literature lacks in analytical results for submerged cracked plates. New results for fundamental frequencies are presented as affected by crack length, fluid level, fluid density and immersed depth of plate. By employing the method of multiple scales, the frequency response and peak amplitude of the cracked structure is analyzed. The non-linear frequency response curves show the phenomenon of bending hardening or softening and the effect of fluid dynamic pressure on the response of the cracked plate.
A Model for the Oxidation of C/SiC Composite Structures
NASA Technical Reports Server (NTRS)
Sullivan, Roy M.
2003-01-01
A mathematical theory and an accompanying numerical scheme have been developed for predicting the oxidation behavior of C/SiC composite structures. The theory is derived from the mechanics of the flow of ideal gases through a porous solid. Within the mathematical formulation, two diffusion mechanisms are possible: (1) the relative diffusion of one species with respect to the mixture, which is concentration gradient driven and (2) the diffusion associated with the average velocity of the gas mixture, which is total gas pressure gradient driven. The result of the theoretical formulation is a set of two coupled nonlinear differential equations written in terms of the oxidant and oxide partial pressures. The differential equations must be solved simultaneously to obtain the partial vapor pressures of the oxidant and oxides as a function of space and time. The local rate of carbon oxidation is determined as a function of space and time using the map of the local oxidant partial vapor pressure along with the Arrhenius rate equation. The nonlinear differential equations are cast into matrix equations by applying the Bubnov-Galerkin weighted residual method, allowing for the solution of the differential equations numerically. The end result is a numerical scheme capable of determining the variation of the local carbon oxidation rates as a function of space and time for any arbitrary C/SiC composite structures.
Non-linear duality invariant partially massless models?
Cherney, D.; Deser, S.; Waldron, A.; ...
2015-12-15
We present manifestly duality invariant, non-linear, equations of motion for maximal depth, partially massless higher spins. These are based on a first order, Maxwell-like formulation of the known partially massless systems. Lastly, our models mimic Dirac–Born–Infeld theory but it is unclear whether they are Lagrangian.
Inversion of geothermal heat flux in a thermomechanically coupled nonlinear Stokes ice sheet model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Hongyu; Petra, Noemi; Stadler, Georg
We address the inverse problem of inferring the basal geothermal heat flux from surface velocity observations using a steady-state thermomechanically coupled nonlinear Stokes ice flow model. This is a challenging inverse problem since the map from basal heat flux to surface velocity observables is indirect: the heat flux is a boundary condition for the thermal advection–diffusion equation, which couples to the nonlinear Stokes ice flow equations; together they determine the surface ice flow velocity. This multiphysics inverse problem is formulated as a nonlinear least-squares optimization problem with a cost functional that includes the data misfit between surface velocity observations andmore » model predictions. A Tikhonov regularization term is added to render the problem well posed. We derive adjoint-based gradient and Hessian expressions for the resulting partial differential equation (PDE)-constrained optimization problem and propose an inexact Newton method for its solution. As a consequence of the Petrov–Galerkin discretization of the energy equation, we show that discretization and differentiation do not commute; that is, the order in which we discretize the cost functional and differentiate it affects the correctness of the gradient. Using two- and three-dimensional model problems, we study the prospects for and limitations of the inference of the geothermal heat flux field from surface velocity observations. The results show that the reconstruction improves as the noise level in the observations decreases and that short-wavelength variations in the geothermal heat flux are difficult to recover. We analyze the ill-posedness of the inverse problem as a function of the number of observations by examining the spectrum of the Hessian of the cost functional. Motivated by the popularity of operator-split or staggered solvers for forward multiphysics problems – i.e., those that drop two-way coupling terms to yield a one-way coupled forward Jacobian – we study the effect on the inversion of a one-way coupling of the adjoint energy and Stokes equations. Here, we show that taking such a one-way coupled approach for the adjoint equations can lead to an incorrect gradient and premature termination of optimization iterations. This is due to loss of a descent direction stemming from inconsistency of the gradient with the contours of the cost functional. Nevertheless, one may still obtain a reasonable approximate inverse solution particularly if important features of the reconstructed solution emerge early in optimization iterations, before the premature termination.« less
Inversion of geothermal heat flux in a thermomechanically coupled nonlinear Stokes ice sheet model
Zhu, Hongyu; Petra, Noemi; Stadler, Georg; ...
2016-07-13
We address the inverse problem of inferring the basal geothermal heat flux from surface velocity observations using a steady-state thermomechanically coupled nonlinear Stokes ice flow model. This is a challenging inverse problem since the map from basal heat flux to surface velocity observables is indirect: the heat flux is a boundary condition for the thermal advection–diffusion equation, which couples to the nonlinear Stokes ice flow equations; together they determine the surface ice flow velocity. This multiphysics inverse problem is formulated as a nonlinear least-squares optimization problem with a cost functional that includes the data misfit between surface velocity observations andmore » model predictions. A Tikhonov regularization term is added to render the problem well posed. We derive adjoint-based gradient and Hessian expressions for the resulting partial differential equation (PDE)-constrained optimization problem and propose an inexact Newton method for its solution. As a consequence of the Petrov–Galerkin discretization of the energy equation, we show that discretization and differentiation do not commute; that is, the order in which we discretize the cost functional and differentiate it affects the correctness of the gradient. Using two- and three-dimensional model problems, we study the prospects for and limitations of the inference of the geothermal heat flux field from surface velocity observations. The results show that the reconstruction improves as the noise level in the observations decreases and that short-wavelength variations in the geothermal heat flux are difficult to recover. We analyze the ill-posedness of the inverse problem as a function of the number of observations by examining the spectrum of the Hessian of the cost functional. Motivated by the popularity of operator-split or staggered solvers for forward multiphysics problems – i.e., those that drop two-way coupling terms to yield a one-way coupled forward Jacobian – we study the effect on the inversion of a one-way coupling of the adjoint energy and Stokes equations. Here, we show that taking such a one-way coupled approach for the adjoint equations can lead to an incorrect gradient and premature termination of optimization iterations. This is due to loss of a descent direction stemming from inconsistency of the gradient with the contours of the cost functional. Nevertheless, one may still obtain a reasonable approximate inverse solution particularly if important features of the reconstructed solution emerge early in optimization iterations, before the premature termination.« less
Inversion of geothermal heat flux in a thermomechanically coupled nonlinear Stokes ice sheet model
NASA Astrophysics Data System (ADS)
Zhu, Hongyu; Petra, Noemi; Stadler, Georg; Isaac, Tobin; Hughes, Thomas J. R.; Ghattas, Omar
2016-07-01
We address the inverse problem of inferring the basal geothermal heat flux from surface velocity observations using a steady-state thermomechanically coupled nonlinear Stokes ice flow model. This is a challenging inverse problem since the map from basal heat flux to surface velocity observables is indirect: the heat flux is a boundary condition for the thermal advection-diffusion equation, which couples to the nonlinear Stokes ice flow equations; together they determine the surface ice flow velocity. This multiphysics inverse problem is formulated as a nonlinear least-squares optimization problem with a cost functional that includes the data misfit between surface velocity observations and model predictions. A Tikhonov regularization term is added to render the problem well posed. We derive adjoint-based gradient and Hessian expressions for the resulting partial differential equation (PDE)-constrained optimization problem and propose an inexact Newton method for its solution. As a consequence of the Petrov-Galerkin discretization of the energy equation, we show that discretization and differentiation do not commute; that is, the order in which we discretize the cost functional and differentiate it affects the correctness of the gradient. Using two- and three-dimensional model problems, we study the prospects for and limitations of the inference of the geothermal heat flux field from surface velocity observations. The results show that the reconstruction improves as the noise level in the observations decreases and that short-wavelength variations in the geothermal heat flux are difficult to recover. We analyze the ill-posedness of the inverse problem as a function of the number of observations by examining the spectrum of the Hessian of the cost functional. Motivated by the popularity of operator-split or staggered solvers for forward multiphysics problems - i.e., those that drop two-way coupling terms to yield a one-way coupled forward Jacobian - we study the effect on the inversion of a one-way coupling of the adjoint energy and Stokes equations. We show that taking such a one-way coupled approach for the adjoint equations can lead to an incorrect gradient and premature termination of optimization iterations. This is due to loss of a descent direction stemming from inconsistency of the gradient with the contours of the cost functional. Nevertheless, one may still obtain a reasonable approximate inverse solution particularly if important features of the reconstructed solution emerge early in optimization iterations, before the premature termination.
NASA Astrophysics Data System (ADS)
Dumeige, Yannick; Féron, Patrice
2011-10-01
Coupled nonlinear resonators have potential applications for the integration of multistable photonic devices. The dynamic properties of two coupled-mode nonlinear microcavities made of Kerr material are studied by linear stability analysis. Using a suitable combination of the modal coupling rate and the frequency detuning, it is possible to obtain configurations where a hysteresis loop is included inside other bistable cycles. We show that a single resonator with two modes both linearly and nonlinearly coupled via the cross-Kerr effect can have a multistable behavior. This could be implemented in semiconductor nonlinear whispering-gallery-mode microresonators under modal coupling for all optical signal processing or ternary optical logic applications.
Jeong, Bongwon; Cho, Hanna; Keum, Hohyun; Kim, Seok; Michael McFarland, D; Bergman, Lawrence A; King, William P; Vakakis, Alexander F
2014-11-21
Intentional utilization of geometric nonlinearity in micro/nanomechanical resonators provides a breakthrough to overcome the narrow bandwidth limitation of linear dynamic systems. In past works, implementation of intentional geometric nonlinearity to an otherwise linear nano/micromechanical resonator has been successfully achieved by local modification of the system through nonlinear attachments of nanoscale size, such as nanotubes and nanowires. However, the conventional fabrication method involving manual integration of nanoscale components produced a low yield rate in these systems. In the present work, we employed a transfer-printing assembly technique to reliably integrate a silicon nanomembrane as a nonlinear coupling component onto a linear dynamic system with two discrete microcantilevers. The dynamics of the developed system was modeled analytically and investigated experimentally as the coupling strength was finely tuned via FIB post-processing. The transition from the linear to the nonlinear dynamic regime with gradual change in the coupling strength was experimentally studied. In addition, we observed for the weakly coupled system that oscillation was asynchronous in the vicinity of the resonance, thus exhibiting a nonlinear complex mode. We conjectured that the emergence of this nonlinear complex mode could be attributed to the nonlinear damping arising from the attached nanomembrane.
Shafie, Suhaidi; Kawahito, Shoji; Halin, Izhal Abdul; Hasan, Wan Zuha Wan
2009-01-01
The partial charge transfer technique can expand the dynamic range of a CMOS image sensor by synthesizing two types of signal, namely the long and short accumulation time signals. However the short accumulation time signal obtained from partial transfer operation suffers of non-linearity with respect to the incident light. In this paper, an analysis of the non-linearity in partial charge transfer technique has been carried, and the relationship between dynamic range and the non-linearity is studied. The results show that the non-linearity is caused by two factors, namely the current diffusion, which has an exponential relation with the potential barrier, and the initial condition of photodiodes in which it shows that the error in the high illumination region increases as the ratio of the long to the short accumulation time raises. Moreover, the increment of the saturation level of photodiodes also increases the error in the high illumination region.
Entropy and convexity for nonlinear partial differential equations
Ball, John M.; Chen, Gui-Qiang G.
2013-01-01
Partial differential equations are ubiquitous in almost all applications of mathematics, where they provide a natural mathematical description of many phenomena involving change in physical, chemical, biological and social processes. The concept of entropy originated in thermodynamics and statistical physics during the nineteenth century to describe the heat exchanges that occur in the thermal processes in a thermodynamic system, while the original notion of convexity is for sets and functions in mathematics. Since then, entropy and convexity have become two of the most important concepts in mathematics. In particular, nonlinear methods via entropy and convexity have been playing an increasingly important role in the analysis of nonlinear partial differential equations in recent decades. This opening article of the Theme Issue is intended to provide an introduction to entropy, convexity and related nonlinear methods for the analysis of nonlinear partial differential equations. We also provide a brief discussion about the content and contributions of the papers that make up this Theme Issue. PMID:24249768
Entropy and convexity for nonlinear partial differential equations.
Ball, John M; Chen, Gui-Qiang G
2013-12-28
Partial differential equations are ubiquitous in almost all applications of mathematics, where they provide a natural mathematical description of many phenomena involving change in physical, chemical, biological and social processes. The concept of entropy originated in thermodynamics and statistical physics during the nineteenth century to describe the heat exchanges that occur in the thermal processes in a thermodynamic system, while the original notion of convexity is for sets and functions in mathematics. Since then, entropy and convexity have become two of the most important concepts in mathematics. In particular, nonlinear methods via entropy and convexity have been playing an increasingly important role in the analysis of nonlinear partial differential equations in recent decades. This opening article of the Theme Issue is intended to provide an introduction to entropy, convexity and related nonlinear methods for the analysis of nonlinear partial differential equations. We also provide a brief discussion about the content and contributions of the papers that make up this Theme Issue.
Active Control of Panel Vibrations Induced by a Boundary Layer Flow
NASA Technical Reports Server (NTRS)
Chow, Pao-Liu
1998-01-01
In recent years, active and passive control of sound and vibration in aeroelastic structures have received a great deal of attention due to many potential applications to aerospace and other industries. There exists a great deal of research work done in this area. Recent advances in the control of sound and vibration can be found in the several conference proceedings. In this report we will summarize our research findings supported by the NASA grant NAG-1-1175. The problems of active and passive control of sound and vibration has been investigated by many researchers for a number of years. However, few of the articles are concerned with the sound and vibration with flow-structure interaction. Experimental and numerical studies on the coupling between panel vibration and acoustic radiation due to flow excitation have been done by Maestrello and his associates at NASA/Langley Research Center. Since the coupled system of nonlinear partial differential equations is formidable, an analytical solution to the full problem seems impossible. For this reason, we have to simplify the problem to that of the nonlinear panel vibration induced by a uniform flow or a boundary-layer flow with a given wall pressure distribution. Based on this simplified model, we have been able to study the control and stabilization of the nonlinear panel vibration, which have not been treated satisfactorily by other authors. The vibration suppression will clearly reduce the sound radiation power from the panel. The major research findings will be presented in the next three sections. In Section II we shall describe our results on the boundary control of nonlinear panel vibration, with or without flow excitation. Section III is concerned with active control of the vibration and sound radiation from a nonlinear elastic panel. A detailed description of our work on the parametric vibrational control of nonlinear elastic panel will be presented in Section IV. This paper will be submitted to the Journal of Acoustic Society of America for publication.
NASA Astrophysics Data System (ADS)
Xueju, Shen; Chao, Lin; Xiao, Zou; Jianjun, Cai
2015-05-01
We present a nonlinear optical cryptosystem with multi-dimensional keys including phase, polarization and diffraction distance. To make full use of the degrees of freedom that optical processing offers, an elaborately designed vector wave with both a space-variant phase and locally linear polarization is generated with a common-path interferometer for illumination. The joint transform correlator in the Fresnel domain, implemented with a double optical wedge, is utilized as the encryption framework which provides an additional key known as the Fresnel diffraction distance. Two nonlinear operations imposed on the recorded joint Fresnel power distribution (JFPD) by a charge coupled device (CCD) are adopted. The first one is the division of power distribution of the reference window random function which is previously proposed by researchers and can improve the quality of the decrypted image. The second one is the recording of a hybrid JFPD using a micro-polarizers array with orthogonal and random transmissive axes attached to the CCD. Then the hybrid JFPD is further scrambled by substituting random noise for partial power distribution. The two nonlinear operations break the linearity of this cryptosystem and provide ultra security. We verify our proposal using a quick response code for noise-free recovery.
On the nonlinear stability of the unsteady, viscous flow of an incompressible fluid in a curved pipe
NASA Technical Reports Server (NTRS)
Shortis, Trudi A.; Hall, Philip
1995-01-01
The stability of the flow of an incompressible, viscous fluid through a pipe of circular cross-section curved about a central axis is investigated in a weakly nonlinear regime. A sinusoidal pressure gradient with zero mean is imposed, acting along the pipe. A WKBJ perturbation solution is constructed, taking into account the need for an inner solution in the vicinity of the outer bend, which is obtained by identifying the saddle point of the Taylor number in the complex plane of the cross-sectional angle co-ordinate. The equation governing the nonlinear evolution of the leading order vortex amplitude is thus determined. The stability analysis of this flow to periodic disturbances leads to a partial differential system dependent on three variables, and since the differential operators in this system are periodic in time, Floquet theory may be applied to reduce this system to a coupled infinite system of ordinary differential equations, together with homogeneous uncoupled boundary conditions. The eigenvalues of this system are calculated numerically to predict a critical Taylor number consistent with the analysis of Papageorgiou. A discussion of how nonlinear effects alter the linear stability analysis is also given, and the nature of the instability determined.
Coupling between plate vibration and acoustic radiation
NASA Technical Reports Server (NTRS)
Frendi, Abdelkader; Maestrello, Lucio; Bayliss, Alvin
1992-01-01
A detailed numerical investigation of the coupling between the vibration of a flexible plate and the acoustic radiation is performed. The nonlinear Euler equations are used to describe the acoustic fluid while the nonlinear plate equation is used to describe the plate vibration. Linear, nonlinear, and quasi-periodic or chaotic vibrations and the resultant acoustic radiation are analyzed. We find that for the linear plate response, acoustic coupling is negligible. However, for the nonlinear and chaotic responses, acoustic coupling has a significant effect on the vibration level as the loading increases. The radiated pressure from a plate undergoing nonlinear or chaotic vibrations is found to propagate nonlinearly into the far-field. However, the nonlinearity due to wave propagation is much weaker than that due to the plate vibrations. As the acoustic wave propagates into the far-field, the relative difference in level between the fundamental and its harmonics and subharmonics decreases with distance.
Numerical simulation of coupled electrochemical and transport processes in battery systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liaw, B.Y.; Gu, W.B.; Wang, C.Y.
1997-12-31
Advanced numerical modeling to simulate dynamic battery performance characteristics for several types of advanced batteries is being conducted using computational fluid dynamics (CFD) techniques. The CFD techniques provide efficient algorithms to solve a large set of highly nonlinear partial differential equations that represent the complex battery behavior governed by coupled electrochemical reactions and transport processes. The authors have recently successfully applied such techniques to model advanced lead-acid, Ni-Cd and Ni-MH cells. In this paper, the authors briefly discuss how the governing equations were numerically implemented, show some preliminary modeling results, and compare them with other modeling or experimental data reportedmore » in the literature. The authors describe the advantages and implications of using the CFD techniques and their capabilities in future battery applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dumeige, Yannick; Feron, Patrice
Coupled nonlinear resonators have potential applications for the integration of multistable photonic devices. The dynamic properties of two coupled-mode nonlinear microcavities made of Kerr material are studied by linear stability analysis. Using a suitable combination of the modal coupling rate and the frequency detuning, it is possible to obtain configurations where a hysteresis loop is included inside other bistable cycles. We show that a single resonator with two modes both linearly and nonlinearly coupled via the cross-Kerr effect can have a multistable behavior. This could be implemented in semiconductor nonlinear whispering-gallery-mode microresonators under modal coupling for all optical signal processingmore » or ternary optical logic applications.« less
Shah, A A; Xing, W W; Triantafyllidis, V
2017-04-01
In this paper, we develop reduced-order models for dynamic, parameter-dependent, linear and nonlinear partial differential equations using proper orthogonal decomposition (POD). The main challenges are to accurately and efficiently approximate the POD bases for new parameter values and, in the case of nonlinear problems, to efficiently handle the nonlinear terms. We use a Bayesian nonlinear regression approach to learn the snapshots of the solutions and the nonlinearities for new parameter values. Computational efficiency is ensured by using manifold learning to perform the emulation in a low-dimensional space. The accuracy of the method is demonstrated on a linear and a nonlinear example, with comparisons with a global basis approach.
Xing, W. W.; Triantafyllidis, V.
2017-01-01
In this paper, we develop reduced-order models for dynamic, parameter-dependent, linear and nonlinear partial differential equations using proper orthogonal decomposition (POD). The main challenges are to accurately and efficiently approximate the POD bases for new parameter values and, in the case of nonlinear problems, to efficiently handle the nonlinear terms. We use a Bayesian nonlinear regression approach to learn the snapshots of the solutions and the nonlinearities for new parameter values. Computational efficiency is ensured by using manifold learning to perform the emulation in a low-dimensional space. The accuracy of the method is demonstrated on a linear and a nonlinear example, with comparisons with a global basis approach. PMID:28484327
NASA Astrophysics Data System (ADS)
Sadovnikov, A. V.; Odintsov, S. A.; Beginin, E. N.; Sheshukova, S. E.; Sharaevskii, Yu. P.; Nikitov, S. A.
2017-10-01
We demonstrate that the nonlinear spin-wave transport in two laterally parallel magnetic stripes exhibit the intensity-dependent power exchange between the adjacent spin-wave channels. By the means of Brillouin light scattering technique, we investigate collective nonlinear spin-wave dynamics in the presence of magnetodipolar coupling. The nonlinear intensity-dependent effect reveals itself in the spin-wave mode transformation and differential nonlinear spin-wave phase shift in each adjacent magnetic stripe. The proposed analytical theory, based on the coupled Ginzburg-Landau equations, predicts the geometry design involving the reduction of power requirement to the all-magnonic switching. A very good agreement between calculation and experiment was found. In addition, a micromagnetic and finite-element approach has been independently used to study the nonlinear behavior of spin waves in adjacent stripes and the nonlinear transformation of spatial profiles of spin-wave modes. Our results show that the proposed spin-wave coupling mechanism provides the basis for nonlinear magnonic circuits and opens the perspectives for all-magnonic computing architecture.
UV Nano-Lights - Nonlinear Quantum Dot-Plasmon Coupling
2016-06-20
AFRL-AFOSR-JP-TR-2016-0072 UV Nano-Lights - Nonlinear Quantum Dot- Plasmon Coupling Eric Waclawik QUEENSLAND UNIVERSITY OF TECHNOLOGY Final Report 06...Final 3. DATES COVERED (From - To) 03 Feb 2014 to 02 Feb 2016 4. TITLE AND SUBTITLE UV Nano-Lights - Nonlinear Quantum Dot- Plasmon Coupling 5a...in the form of the localised surface plasmon resonance of the gold component of nanoparticle hybrids could enhance nonlinear emission by several
UV Nano Lights - Nonlinear Quantum Dot-Plasmon Coupling
2016-06-20
AFRL-AFOSR-JP-TR-2016-0072 UV Nano-Lights - Nonlinear Quantum Dot- Plasmon Coupling Eric Waclawik QUEENSLAND UNIVERSITY OF TECHNOLOGY Final Report 06...Final 3. DATES COVERED (From - To) 03 Feb 2014 to 02 Feb 2016 4. TITLE AND SUBTITLE UV Nano-Lights - Nonlinear Quantum Dot- Plasmon Coupling 5a...in the form of the localised surface plasmon resonance of the gold component of nanoparticle hybrids could enhance nonlinear emission by several
Nonlinear vibration of a coupled high- Tc superconducting levitation system
NASA Astrophysics Data System (ADS)
Sugiura, T.; Inoue, T.; Ura, H.
2004-10-01
High- Tc superconducting levitation can be applied to electro-mechanical systems, such as flywheel energy storage and linear-drive transportation. Such a system can be modeled as a magnetically coupled system of many permanent magnets and high- Tc superconducting bulks. It is a multi-degree-of-freedom dynamical system coupled by nonlinear interaction between levitated magnets and superconducting bulks. This nonlinearly coupled system, with small damping due to no contact support, can easily show complicated phenomena of nonlinear dynamics. In mechanical design, it is important to evaluate this nonlinear dynamics, though it has not been well studied so far. This research deals with forced vibration of a coupled superconducting levitation system. As a simple modeling of a coupled system, a permanent magnet levitated above a superconducting bulk is placed between two fixed permanent magnets without contact. Frequency response of the levitated magnet under excitation of one of the fixed magnets was examined theoretically. The results show typical nonlinear vibration, such as jump, hysteresis, and parametric resonance, which were confirmed in our numerical analyses and experiments.
NASA Astrophysics Data System (ADS)
Maghareh, Amin; Silva, Christian E.; Dyke, Shirley J.
2018-05-01
Hydraulic actuators play a key role in experimental structural dynamics. In a previous study, a physics-based model for a servo-hydraulic actuator coupled with a nonlinear physical system was developed. Later, this dynamical model was transformed into controllable canonical form for position tracking control purposes. For this study, a nonlinear device is designed and fabricated to exhibit various nonlinear force-displacement profiles depending on the initial condition and the type of materials used as replaceable coupons. Using this nonlinear system, the controllable canonical dynamical model is experimentally validated for a servo-hydraulic actuator coupled with a nonlinear physical system.
Nonlinear dynamics of magnetically coupled beams for multi-modal vibration energy harvesting
NASA Astrophysics Data System (ADS)
Abed, I.; Kacem, N.; Bouhaddi, N.; Bouazizi, M. L.
2016-04-01
We investigate the nonlinear dynamics of magnetically coupled beams for multi-modal vibration energy harvesting. A multi-physics model for the proposed device is developed taking into account geometric and magnetic nonlinearities. The coupled nonlinear equations of motion are solved using the Galerkin discretization coupled with the harmonic balance method and the asymptotic numerical method. Several numerical simulations have been performed showing that the expected performances of the proposed vibration energy harvester are significantly promising with up to 130 % in term of bandwidth and up to 60 μWcm-3g-2 in term of normalized harvested power.
Analysis and design of an ultrahigh temperature hydrogen-fueled MHD generator
NASA Technical Reports Server (NTRS)
Moder, Jeffrey P.; Myrabo, Leik N.; Kaminski, Deborah A.
1993-01-01
A coupled gas dynamics/radiative heat transfer analysis of partially ionized hydrogen, in local thermodynamic equilibrium, flowing through an ultrahigh temperature (10,000-20,000 K) magnetohydrodynamic (MHD) generator is performed. Gas dynamics are modeled by a set of quasi-one-dimensional, nonlinear differential equations which account for friction, convective and radiative heat transfer, and the interaction between the ionized gas and applied magnetic field. Radiative heat transfer is modeled using nongray, absorbing-emitting 2D and 3D P-1 approximations which permit an arbitrary variation of the spectral absorption coefficient with frequency. Gas dynamics and radiative heat transfer are coupled through the energy equation and through the temperature- and density-dependent absorption coefficient. The resulting nonlinear elliptic problem is solved by iterative methods. Design of such MHD generators as onboard, open-cycle, electric power supplies for a particular advanced airbreathing propulsion concept produced an efficient and compact 128-MWe generator characterized by an extraction ratio of 35.5 percent, a power density of 10,500 MWe/cu m, and a specific (extracted) energy of 324 MJe/kg of hydrogen. The maximum wall heat flux and total wall heat load were 453 MW/sq m and 62 MW, respectively.
Nonlinear grid error effects on numerical solution of partial differential equations
NASA Technical Reports Server (NTRS)
Dey, S. K.
1980-01-01
Finite difference solutions of nonlinear partial differential equations require discretizations and consequently grid errors are generated. These errors strongly affect stability and convergence properties of difference models. Previously such errors were analyzed by linearizing the difference equations for solutions. Properties of mappings of decadence were used to analyze nonlinear instabilities. Such an analysis is directly affected by initial/boundary conditions. An algorithm was developed, applied to nonlinear Burgers equations, and verified computationally. A preliminary test shows that Navier-Stokes equations may be treated similarly.
NASA Astrophysics Data System (ADS)
Nadeem, S.; Mehmood, Rashid; Akbar, Noreen Sher
2015-03-01
This study explores the collective effects of partial slip and transverse magnetic field on an oblique stagnation point flow of a rheological fluid. The prevailing momentum equations are designed by manipulating Casson fluid model. By applying the suitable similarity transformations, the governing system of equations is being transformed into coupled nonlinear ordinary differential equations. The resulting system is handled numerically through midpoint integration scheme together with Richardson's extrapolation. It is found that both normal and tangential velocity profiles decreases with an increase in magnetic field as well as slip parameter. Streamlines pattern are presented to study the actual impact of slip mechanism and magnetic field on the oblique flow. A suitable comparison with the previous literature is also provided to confirm the accuracy of present results for the limiting case.
NASA Astrophysics Data System (ADS)
Shao, H.; Huang, Y.; Kolditz, O.
2015-12-01
Multiphase flow problems are numerically difficult to solve, as it often contains nonlinear Phase transition phenomena A conventional technique is to introduce the complementarity constraints where fluid properties such as liquid saturations are confined within a physically reasonable range. Based on such constraints, the mathematical model can be reformulated into a system of nonlinear partial differential equations coupled with variational inequalities. They can be then numerically handled by optimization algorithms. In this work, two different approaches utilizing the complementarity constraints based on persistent primary variables formulation[4] are implemented and investigated. The first approach proposed by Marchand et.al[1] is using "local complementary constraints", i.e. coupling the constraints with the local constitutive equations. The second approach[2],[3] , namely the "global complementary constrains", applies the constraints globally with the mass conservation equation. We will discuss how these two approaches are applied to solve non-isothermal componential multiphase flow problem with the phase change phenomenon. Several benchmarks will be presented for investigating the overall numerical performance of different approaches. The advantages and disadvantages of different models will also be concluded. References[1] E.Marchand, T.Mueller and P.Knabner. Fully coupled generalized hybrid-mixed finite element approximation of two-phase two-component flow in porous media. Part I: formulation and properties of the mathematical model, Computational Geosciences 17(2): 431-442, (2013). [2] A. Lauser, C. Hager, R. Helmig, B. Wohlmuth. A new approach for phase transitions in miscible multi-phase flow in porous media. Water Resour., 34,(2011), 957-966. [3] J. Jaffré, and A. Sboui. Henry's Law and Gas Phase Disappearance. Transp. Porous Media. 82, (2010), 521-526. [4] A. Bourgeat, M. Jurak and F. Smaï. Two-phase partially miscible flow and transport modeling in porous media : application to gas migration in a nuclear waste repository, Comp.Geosciences. (2009), Volume 13, Number 1, 29-42.
Rashidi, Mohammad M.; Kavyani, Neda; Abelman, Shirley; Uddin, Mohammed J.; Freidoonimehr, Navid
2014-01-01
In this study combined heat and mass transfer by mixed convective flow along a moving vertical flat plate with hydrodynamic slip and thermal convective boundary condition is investigated. Using similarity variables, the governing nonlinear partial differential equations are converted into a system of coupled nonlinear ordinary differential equations. The transformed equations are then solved using a semi-numerical/analytical method called the differential transform method and results are compared with numerical results. Close agreement is found between the present method and the numerical method. Effects of the controlling parameters, including convective heat transfer, magnetic field, buoyancy ratio, hydrodynamic slip, mixed convective, Prandtl number and Schmidt number are investigated on the dimensionless velocity, temperature and concentration profiles. In addition effects of different parameters on the skin friction factor, , local Nusselt number, , and local Sherwood number are shown and explained through tables. PMID:25343360
NASA Astrophysics Data System (ADS)
Salahuddin, T.; Khan, Imad; Malik, M. Y.; Khan, Mair; Hussain, Arif; Awais, Muhammad
2017-05-01
The present work examines the internal resistance between fluid particles of tangent hyperbolic fluid flow due to a non-linear stretching sheet with heat generation. Using similarity transformations, the governing system of partial differential equations is transformed into a coupled non-linear ordinary differential system with variable coefficients. Unlike the current analytical works on the flow problems in the literature, the main concern here is to numerically work out and find the solution by using Runge-Kutta-Fehlberg coefficients improved by Cash and Karp (Naseer et al., Alexandria Eng. J. 53, 747 (2014)). To determine the relevant physical features of numerous mechanisms acting on the deliberated problem, it is sufficient to have the velocity profile and temperature field and also the drag force and heat transfer rate all as given in the current paper.
Monolithic multigrid methods for two-dimensional resistive magnetohydrodynamics
Adler, James H.; Benson, Thomas R.; Cyr, Eric C.; ...
2016-01-06
Magnetohydrodynamic (MHD) representations are used to model a wide range of plasma physics applications and are characterized by a nonlinear system of partial differential equations that strongly couples a charged fluid with the evolution of electromagnetic fields. The resulting linear systems that arise from discretization and linearization of the nonlinear problem are generally difficult to solve. In this paper, we investigate multigrid preconditioners for this system. We consider two well-known multigrid relaxation methods for incompressible fluid dynamics: Braess--Sarazin relaxation and Vanka relaxation. We first extend these to the context of steady-state one-fluid viscoresistive MHD. Then we compare the two relaxationmore » procedures within a multigrid-preconditioned GMRES method employed within Newton's method. To isolate the effects of the different relaxation methods, we use structured grids, inf-sup stable finite elements, and geometric interpolation. Furthermore, we present convergence and timing results for a two-dimensional, steady-state test problem.« less
Mixed convective stagnation point flow of nanofluid with Darcy-Fochheimer relation and partial slip
NASA Astrophysics Data System (ADS)
Hayat, Tasawar; Ijaz, Misbah; Qayyum, Sumaira; Ayub, Muhammad; Alsaedi, Ahmed
2018-06-01
Here axisymmetric mixed convective, stagnation point flow of electrically conducting nanofluid by a permeable cylinder is examined. Magnetic field in transverse direction is applied. The Darcy-Forchheimer relation is accounted to specify the flow nature in porous medium. Formulation of mathematical model is given by using Tiwari-Das nanofluid model. The velocity and thermal slip conditions.are taken. This whole communication comprises water as a base fluid with nano-sized particles (Aluminum oxide, Copper and Titanium Oxide). The nonlinear coupled ordinary differential equations are obtained after using appropriate transformations. The convergent series solution of nonlinear system is accomplished by homotopic approach. The nondimensional velocity and temperature curve are examined under the impact of physical parameters like the nanoparticle volume fraction, permeability parameter, curvature parameter, the magnetic parameter and the mixed convection parameter. Numeric values of coefficient of skin friction and Nusselt number are analyzed.
Quantum transport with long-range steps on Watts-Strogatz networks
NASA Astrophysics Data System (ADS)
Wang, Yan; Xu, Xin-Jian
2016-07-01
We study transport dynamics of quantum systems with long-range steps on the Watts-Strogatz network (WSN) which is generated by rewiring links of the regular ring. First, we probe physical systems modeled by the discrete nonlinear schrödinger (DNLS) equation. Using the localized initial condition, we compute the time-averaged occupation probability of the initial site, which is related to the nonlinearity, the long-range steps and rewiring links. Self-trapping transitions occur at large (small) nonlinear parameters for coupling ɛ=-1 (1), as long-range interactions are intensified. The structure disorder induced by random rewiring, however, has dual effects for ɛ=-1 and inhibits the self-trapping behavior for ɛ=1. Second, we investigate continuous-time quantum walks (CTQW) on the regular ring ruled by the discrete linear schrödinger (DLS) equation. It is found that only the presence of the long-range steps does not affect the efficiency of the coherent exciton transport, while only the allowance of random rewiring enhances the partial localization. If both factors are considered simultaneously, localization is greatly strengthened, and the transport becomes worse.
NASA Astrophysics Data System (ADS)
RamReddy, Ch.; Naveen, P.; Srinivasacharya, D.
2017-06-01
The objective of the present study is to investigate the effect of nonlinear variation of density with temperature and concentration on the mixed convective flow of a micropolar fluid over an inclined flat plate in a non-Darcy porous medium in the presence of the convective boundary condition. In order to analyze all the essential features, the governing non-dimensional partial differential equations are transformed into a system of ordinary differential equations using a local non-similarity procedure and then the resulting boundary value problem is solved using a successive linearisation method (SLM). By insisting the comparison between vertical, horizontal and inclined plates, the physical quantities of the flow and its characteristics are exhibited graphically and quantitatively with various parameters. An increase in the micropolar parameter and non-Darcy parameter tend to increase the skin friction and the reverse change is observed in wall couple stress, mass and heat transfer rates. The influence of the nonlinear concentration parameter is more prominent on all the physical characteristics of the present model, compared with that of nonlinear temperature parameter.
On Flexible Tubes Conveying Fluid: Geometric Nonlinear Theory, Stability and Dynamics
NASA Astrophysics Data System (ADS)
Gay-Balmaz, François; Putkaradze, Vakhtang
2015-08-01
We derive a fully three-dimensional, geometrically exact theory for flexible tubes conveying fluid. The theory also incorporates the change of the cross section available to the fluid motion during the dynamics. Our approach is based on the symmetry-reduced, exact geometric description for elastic rods, coupled with the fluid transport and subject to the volume conservation constraint for the fluid. We first derive the equations of motion directly, by using an Euler-Poincaré variational principle. We then justify this derivation with a more general theory elucidating the interesting mathematical concepts appearing in this problem, such as partial left (elastic) and right (fluid) invariance of the system, with the added holonomic constraint (volume). We analyze the fully nonlinear behavior of the model when the axis of the tube remains straight. We then proceed to the linear stability analysis and show that our theory introduces important corrections to previously derived results, both in the consistency at all wavelength and in the effects arising from the dynamical change of the cross section. Finally, we derive and analyze several analytical, fully nonlinear solutions of traveling wave type in two dimensions.
Optimal Variational Asymptotic Method for Nonlinear Fractional Partial Differential Equations.
Baranwal, Vipul K; Pandey, Ram K; Singh, Om P
2014-01-01
We propose optimal variational asymptotic method to solve time fractional nonlinear partial differential equations. In the proposed method, an arbitrary number of auxiliary parameters γ 0, γ 1, γ 2,… and auxiliary functions H 0(x), H 1(x), H 2(x),… are introduced in the correction functional of the standard variational iteration method. The optimal values of these parameters are obtained by minimizing the square residual error. To test the method, we apply it to solve two important classes of nonlinear partial differential equations: (1) the fractional advection-diffusion equation with nonlinear source term and (2) the fractional Swift-Hohenberg equation. Only few iterations are required to achieve fairly accurate solutions of both the first and second problems.
Awad, Faiz G; Motsa, Sandile; Khumalo, Melusi
2014-01-01
In this study, the Spectral Relaxation Method (SRM) is used to solve the coupled highly nonlinear system of partial differential equations due to an unsteady flow over a stretching surface in an incompressible rotating viscous fluid in presence of binary chemical reaction and Arrhenius activation energy. The velocity, temperature and concentration distributions as well as the skin-friction, heat and mass transfer coefficients have been obtained and discussed for various physical parametric values. The numerical results obtained by (SRM) are then presented graphically and discussed to highlight the physical implications of the simulations.
Awad, Faiz G.; Motsa, Sandile; Khumalo, Melusi
2014-01-01
In this study, the Spectral Relaxation Method (SRM) is used to solve the coupled highly nonlinear system of partial differential equations due to an unsteady flow over a stretching surface in an incompressible rotating viscous fluid in presence of binary chemical reaction and Arrhenius activation energy. The velocity, temperature and concentration distributions as well as the skin-friction, heat and mass transfer coefficients have been obtained and discussed for various physical parametric values. The numerical results obtained by (SRM) are then presented graphically and discussed to highlight the physical implications of the simulations. PMID:25250830
Nonlinear Dynamics and Strong Cavity Cooling of Levitated Nanoparticles.
Fonseca, P Z G; Aranas, E B; Millen, J; Monteiro, T S; Barker, P F
2016-10-21
Optomechanical systems explore and exploit the coupling between light and the mechanical motion of macroscopic matter. A nonlinear coupling offers rich new physics, in both quantum and classical regimes. We investigate a dynamic, as opposed to the usually studied static, nonlinear optomechanical system, comprising a nanosphere levitated in a hybrid electro-optical trap. The cavity offers readout of both linear-in-position and quadratic-in-position (nonlinear) light-matter coupling, while simultaneously cooling the nanosphere, for indefinite periods of time and in high vacuum. We observe the cooling dynamics via both linear and nonlinear coupling. As the background gas pressure was lowered, we observed a greater than 1000-fold reduction in temperature before temperatures fell below readout sensitivity in the present setup. This Letter opens the way to strongly coupled quantum dynamics between a cavity and a nanoparticle largely decoupled from its environment.
Nonlinear Dynamics and Strong Cavity Cooling of Levitated Nanoparticles
NASA Astrophysics Data System (ADS)
Fonseca, P. Z. G.; Aranas, E. B.; Millen, J.; Monteiro, T. S.; Barker, P. F.
2016-10-01
Optomechanical systems explore and exploit the coupling between light and the mechanical motion of macroscopic matter. A nonlinear coupling offers rich new physics, in both quantum and classical regimes. We investigate a dynamic, as opposed to the usually studied static, nonlinear optomechanical system, comprising a nanosphere levitated in a hybrid electro-optical trap. The cavity offers readout of both linear-in-position and quadratic-in-position (nonlinear) light-matter coupling, while simultaneously cooling the nanosphere, for indefinite periods of time and in high vacuum. We observe the cooling dynamics via both linear and nonlinear coupling. As the background gas pressure was lowered, we observed a greater than 1000-fold reduction in temperature before temperatures fell below readout sensitivity in the present setup. This Letter opens the way to strongly coupled quantum dynamics between a cavity and a nanoparticle largely decoupled from its environment.
Nonlinear propagation of electromagnetic waves in negative-refraction-index composite materials.
Kourakis, I; Shukla, P K
2005-07-01
We investigate the nonlinear propagation of electromagnetic waves in left-handed materials. For this purpose, we consider a set of coupled nonlinear Schrödinger (CNLS) equations, which govern the dynamics of coupled electric and magnetic field envelopes. The CNLS equations are used to obtain a nonlinear dispersion, which depicts the modulational stability profile of the coupled plane-wave solutions in left-handed materials. An exact (in)stability criterion for modulational interactions is derived, and analytical expressions for the instability growth rate are obtained.
Geng, Qi; Zhu, Ka-Di
2016-07-10
We have theoretically investigated a hybrid system that is composed of a traditional optomechanical component and an additional charge qubit (Cooper pair box) that induces a new nonlinear interaction. It is shown that the peak in optomechanically induced transparency has been split by the new nonlinear interaction, and the width of the splitting is proportional to the coupling coefficient of this nonlinear interaction. This may give a way to measure the nanomechanical oscillator-qubit coupling coefficient in hybrid quantum systems.
Partial Wave Analysis of Coupled Photonic Structures
NASA Technical Reports Server (NTRS)
Fuller, Kirk A.; Smith, David D.; Curreri, Peter A. (Technical Monitor)
2002-01-01
The very high quality factors sustained by microcavity optical resonators are relevant to applications in wavelength filtering, routing, switching, modulation, and multiplexing/demultiplexing. Increases in the density of photonic elements require that attention be paid to how electromagnetic (EM) coupling modifies their optical properties. This is especially true when cavity resonances are involved, in which case, their characteristics may be fundamentally altered. Understanding the optical properties of microcavities that are near or in contact with photonic elements---such as other microcavities, nanostructures, couplers, and substrates---can be expected to advance our understanding of the roles that these structures may play in VLSI photonics, biosensors and similar device technologies. Wc present results from recent theoretical studies of the effects of inter- and intracavity coupling on optical resonances in compound spherical particles. Concentrically stratified spheres and bispheres constituted from homogeneous and stratified spheres are subjects of this investigation. A new formulation is introduced for the absorption of light in an arbitrary layer of a multilayered sphere, which is based on multiple reflections of the spherical partial waves of the Lorenz-Mie solution for scattering by a sphere. Absorption efficiencies, which can be used to profile cavity resonances and to infer fluorescence yields or the onset of nonlinear optical processes in the microcavities, are presented. Splitting of resonances in these multisphere systems is paid particular attention, and consequences for photonic device development and possible performance enhancements through carefully designed architectures that exploit EM coupling are considered.
Li, Li; Yu, Fajun
2017-09-06
We investigate non-autonomous multi-rogue wave solutions in a three-component(spin-1) coupled nonlinear Gross-Pitaevskii(GP) equation with varying dispersions, higher nonlinearities, gain/loss and external potentials. The similarity transformation allows us to relate certain class of multi-rogue wave solutions of the spin-1 coupled nonlinear GP equation to the solutions of integrable coupled nonlinear Schrödinger(CNLS) equation. We study the effect of time-dependent quadratic potential on the profile and dynamic of non-autonomous rogue waves. With certain requirement on the backgrounds, some non-autonomous multi-rogue wave solutions exhibit the different shapes with two peaks and dip in bright-dark rogue waves. Then, the managements with external potential and dynamic behaviors of these solutions are investigated analytically. The results could be of interest in such diverse fields as Bose-Einstein condensates, nonlinear fibers and super-fluids.
Proposed solution methodology for the dynamically coupled nonlinear geared rotor mechanics equations
NASA Technical Reports Server (NTRS)
Mitchell, L. D.; David, J. W.
1983-01-01
The equations which describe the three-dimensional motion of an unbalanced rigid disk in a shaft system are nonlinear and contain dynamic-coupling terms. Traditionally, investigators have used an order analysis to justify ignoring the nonlinear terms in the equations of motion, producing a set of linear equations. This paper will show that, when gears are included in such a rotor system, the nonlinear dynamic-coupling terms are potentially as large as the linear terms. Because of this, one must attempt to solve the nonlinear rotor mechanics equations. A solution methodology is investigated to obtain approximate steady-state solutions to these equations. As an example of the use of the technique, a simpler set of equations is solved and the results compared to numerical simulations. These equations represent the forced, steady-state response of a spring-supported pendulum. These equations were chosen because they contain the type of nonlinear terms found in the dynamically-coupled nonlinear rotor equations. The numerical simulations indicate this method is reasonably accurate even when the nonlinearities are large.
NASA Astrophysics Data System (ADS)
Costiner, Sorin; Ta'asan, Shlomo
1995-07-01
Algorithms for nonlinear eigenvalue problems (EP's) often require solving self-consistently a large number of EP's. Convergence difficulties may occur if the solution is not sought in an appropriate region, if global constraints have to be satisfied, or if close or equal eigenvalues are present. Multigrid (MG) algorithms for nonlinear problems and for EP's obtained from discretizations of partial differential EP have often been shown to be more efficient than single level algorithms. This paper presents MG techniques and a MG algorithm for nonlinear Schrödinger Poisson EP's. The algorithm overcomes the above mentioned difficulties combining the following techniques: a MG simultaneous treatment of the eigenvectors and nonlinearity, and with the global constrains; MG stable subspace continuation techniques for the treatment of nonlinearity; and a MG projection coupled with backrotations for separation of solutions. These techniques keep the solutions in an appropriate region, where the algorithm converges fast, and reduce the large number of self-consistent iterations to only a few or one MG simultaneous iteration. The MG projection makes it possible to efficiently overcome difficulties related to clusters of close and equal eigenvalues. Computational examples for the nonlinear Schrödinger-Poisson EP in two and three dimensions, presenting special computational difficulties that are due to the nonlinearity and to the equal and closely clustered eigenvalues are demonstrated. For these cases, the algorithm requires O(qN) operations for the calculation of q eigenvectors of size N and for the corresponding eigenvalues. One MG simultaneous cycle per fine level was performed. The total computational cost is equivalent to only a few Gauss-Seidel relaxations per eigenvector. An asymptotic convergence rate of 0.15 per MG cycle is attained.
Guo, Zhenyuan; Yang, Shaofu; Wang, Jun
2016-12-01
This paper presents theoretical results on global exponential synchronization of multiple memristive neural networks in the presence of external noise by means of two types of distributed pinning control. The multiple memristive neural networks are coupled in a general structure via a nonlinear function, which consists of a linear diffusive term and a discontinuous sign term. A pinning impulsive control law is introduced in the coupled system to synchronize all neural networks. Sufficient conditions are derived for ascertaining global exponential synchronization in mean square. In addition, a pinning adaptive control law is developed to achieve global exponential synchronization in mean square. Both pinning control laws utilize only partial state information received from the neighborhood of the controlled neural network. Simulation results are presented to substantiate the theoretical results. Copyright © 2016 Elsevier Ltd. All rights reserved.
Computed tear film and osmolarity dynamics on an eye-shaped domain
Li, Longfei; Braun, Richard J.; Driscoll, Tobin A.; Henshaw, William D.; Banks, Jeffrey W.; King-Smith, P. Ewen
2016-01-01
The concentration of ions, or osmolarity, in the tear film is a key variable in understanding dry eye symptoms and disease. In this manuscript, we derive a mathematical model that couples osmolarity (treated as a single solute) and fluid dynamics within the tear film on a 2D eye-shaped domain. The model includes the physical effects of evaporation, surface tension, viscosity, ocular surface wettability, osmolarity, osmosis and tear fluid supply and drainage. The governing system of coupled non-linear partial differential equations is solved using the Overture computational framework, together with a hybrid time-stepping scheme, using a variable step backward differentiation formula and a Runge–Kutta–Chebyshev method that were added to the framework. The results of our numerical simulations provide new insight into the osmolarity distribution over the ocular surface during the interblink. PMID:25883248
Neuronal synchrony: Peculiarity and generality
Nowotny, Thomas; Huerta, Ramon; Rabinovich, Mikhail I.
2008-01-01
Synchronization in neuronal systems is a new and intriguing application of dynamical systems theory. Why are neuronal systems different as a subject for synchronization? (1) Neurons in themselves are multidimensional nonlinear systems that are able to exhibit a wide variety of different activity patterns. Their “dynamical repertoire” includes regular or chaotic spiking, regular or chaotic bursting, multistability, and complex transient regimes. (2) Usually, neuronal oscillations are the result of the cooperative activity of many synaptically connected neurons (a neuronal circuit). Thus, it is necessary to consider synchronization between different neuronal circuits as well. (3) The synapses that implement the coupling between neurons are also dynamical elements and their intrinsic dynamics influences the process of synchronization or entrainment significantly. In this review we will focus on four new problems: (i) the synchronization in minimal neuronal networks with plastic synapses (synchronization with activity dependent coupling), (ii) synchronization of bursts that are generated by a group of nonsymmetrically coupled inhibitory neurons (heteroclinic synchronization), (iii) the coordination of activities of two coupled neuronal networks (partial synchronization of small composite structures), and (iv) coarse grained synchronization in larger systems (synchronization on a mesoscopic scale). PMID:19045493
Time delay in the Kuramoto model of coupled-phase oscillators
NASA Astrophysics Data System (ADS)
Yeung, Man Kit Stephen
1999-10-01
The Kuramoto model is a mean-field model of coupled phase oscillators with distributed natural frequencies. It was proposed to study collective synchronization in large systems of nonlinear oscillators. Here we generalize this model to allow time-delayed interactions. Despite the delay, synchronization is still possible. We derive exact stability conditions for the incoherent state, and for synchronized states and clustering states in the special case of noiseless identical oscillators. We also study the bifurcations of these states. We find that the incoherent state loses stability in a Hopf bifurcation. In the absence of noise, this leads to partial synchrony, where some oscillators are entrained to a common frequency. New phenomena caused by the delay include multistability among synchronization, incoherence, and clustering; and unsteady solutions with time-dependent order parameters. The experimental implications of the model are discussed for populations of chirping crickets, where the finite speed of sound causes communication delays, and for physical systems such as coupled phase- locked loops, lasers, and communication satellites.
NASA Astrophysics Data System (ADS)
Aksikas, I.; Moghadam, A. Alizadeh; Forbes, J. F.
2018-04-01
This paper deals with the design of an optimal state-feedback linear-quadratic (LQ) controller for a system of coupled parabolic-hypebolic non-autonomous partial differential equations (PDEs). The infinite-dimensional state space representation and the corresponding operator Riccati differential equation are used to solve the control problem. Dynamical properties of the coupled system of interest are analysed to guarantee the existence and uniqueness of the solution of the LQ-optimal control problem and also to guarantee the exponential stability of the closed-loop system. Thanks to the eigenvalues and eigenfunctions of the parabolic operator and also the fact that the hyperbolic-associated operator Riccati differential equation can be converted to a scalar Riccati PDE, an algorithm to solve the LQ control problem has been presented. The results are applied to a non-isothermal packed-bed catalytic reactor. The LQ optimal controller designed in the early portion of the paper is implemented for the original non-linear model. Numerical simulations are performed to show the controller performances.
NASA Technical Reports Server (NTRS)
Jarrah, Yousef Mohd
1989-01-01
The nonlinear interactions between a fundamental instability mode and both its harmonics and the changing mean flow are studied using the weakly nonlinear stability theory of Stuart and Watson, and numerical solutions of coupled nonlinear partial differential equations. The first part focuses on incompressible cold (or isothermal; constant temperature throughout) mixing layers, and for these, the first and second Landau constants are calculated as functions of wavenumber and Reynolds number. It is found that the dominant contribution to the Landau constants arises from the mean flow changes and not from the higher harmonics. In order to establish the range of validity of the weakly nonlinear theory, the weakly nonlinear and numerical solutions are compared and the limitation of each is discussed. At small amplitudes and at low-to-moderate Reynolds numbers, the two results compare well in describing the saturation of the fundamental, the distortion of the mean flow, and the initial stages of vorticity roll-up. At larger amplitudes, the interaction between the fundamental, second harmonic, and the mean flow is strongly nonlinear and the numerical solution predicts flow oscillations, whereas the weakly nonlinear theory yields saturation. In the second part, the weakly nonlinear theory is extended to heated (or nonisothermal; mean temperature distribution) subsonic round jets where quadratic and cubic nonlinear interactions are present, and the Landau constants also depend on jet temperature ratio, Mach number and azimuthal mode number. Under exponential growth and nonlinear saturation, it is found that heating and compressibility suppress the growth of instability waves, that the first azimuthal mode is the dominant instability mode, and that the weakly nonlinear solution describes the early stages of the roll-up of an axisymmetric shear layer. The receptivity of a typical jet flow to pulse type input disturbance is also studied by solving the initial value problem and then examining the behavior of the long-time solution.
Semi-abelian Z-theory: NLSM+ ϕ 3 from the open string
NASA Astrophysics Data System (ADS)
Carrasco, John Joseph M.; Mafra, Carlos R.; Schlotterer, Oliver
2017-08-01
We continue our investigation of Z-theory, the second double-copy component of open-string tree-level interactions besides super-Yang-Mills (sYM). We show that the amplitudes of the extended non-linear sigma model (NLSM) recently considered by Cachazo, Cha, and Mizera are reproduced by the leading α '-order of Z-theory amplitudes in the semi-abelian case. The extension refers to a coupling of NLSM pions to bi-adjoint scalars, and the semi-abelian case involves to a partial symmetrization over one of the color orderings that characterize the Z-theory amplitudes. Alternatively, the partial symmetrization corresponds to a mixed interaction among abelian and non-abelian states in the underlying open-superstring amplitude. We simplify these permutation sums via monodromy relations which greatly increase the efficiency in extracting the α '-expansion of these amplitudes. Their α '-corrections encode higher-derivative interactions between NLSM pions and bi-colored scalars all of which obey the duality between color and kinematics. Through double-copy, these results can be used to generate the predictions of supersymmetric Dirac-Born-Infeld-Volkov-Akulov theory coupled with sYM as well as a complete tower of higher-order α '-corrections.
NASA Astrophysics Data System (ADS)
Mostavi, Amir; Tehrani, N.; Kamali, N.; Ozevin, D.; Chi, S. W.; Indacochea, J. E.
2017-02-01
This article investigates water coupled nonlinear ultrasonic method to measure the dislocation density in aluminum 1100 specimens. The different levels of dislocation densities are introduced to the samples by applying different levels of plastic strains by tensile loading. The ultrasonic testing includes 2.25 MHz transducer as transmitter and 5.0 MHz transducer as receiver in an immersion tank. The results of immersion experiments are compared with oil-coupled experiments. While water has significant nonlinearity within itself, the immersion ultrasound results agree with the literature of oil coupled ultrasound results of the specimens that the nonlinearity coefficient increases with the increase of dislocation density in aluminum.
Jacobian projection reduced-order models for dynamic systems with contact nonlinearities
NASA Astrophysics Data System (ADS)
Gastaldi, Chiara; Zucca, Stefano; Epureanu, Bogdan I.
2018-02-01
In structural dynamics, the prediction of the response of systems with localized nonlinearities, such as friction dampers, is of particular interest. This task becomes especially cumbersome when high-resolution finite element models are used. While state-of-the-art techniques such as Craig-Bampton component mode synthesis are employed to generate reduced order models, the interface (nonlinear) degrees of freedom must still be solved in-full. For this reason, a new generation of specialized techniques capable of reducing linear and nonlinear degrees of freedom alike is emerging. This paper proposes a new technique that exploits spatial correlations in the dynamics to compute a reduction basis. The basis is composed of a set of vectors obtained using the Jacobian of partial derivatives of the contact forces with respect to nodal displacements. These basis vectors correspond to specifically chosen boundary conditions at the contacts over one cycle of vibration. The technique is shown to be effective in the reduction of several models studied using multiple harmonics with a coupled static solution. In addition, this paper addresses another challenge common to all reduction techniques: it presents and validates a novel a posteriori error estimate capable of evaluating the quality of the reduced-order solution without involving a comparison with the full-order solution.
Rogue waves driven by polarization instabilities in a long ring fiber oscillator
NASA Astrophysics Data System (ADS)
Kolpakov, S. A.; Kbashi, Hani; Sergeyev, Sergey
2017-05-01
We present an experimental and theoretical results of a study of a complex nonlinear polarization dynamics in a passively self-mode-locked erbium-doped fiber oscillator implemented in a ring configuration and operating near lasing threshold. The theoretical model consists of seven coupled non-linear equations and takes into account both orthogonal states of polarizations in the fiber. The experiment confirmed the existence of seven eigenfrequencies, predicted by the model due to polarization instability near lasing threshold. By adjusting the state of polarization of the pump and in-cavity birefringence we changed some eigenfrequencies from being different (non-degenerate state) to matching (degenerate state). The non-degenerate states of oscillator lead to the L-shaped probability distribution function and true rogue wave regime with a positive dominant Lyapunov exponent value between 1.4 and 2.6. Small detuning from partially degenerate case also leads to L-shaped probability distribution function with the tail trespassing eight standard deviations threshold, giving periodic patterns of pulses along with positive dominant Lyapunov exponent of a filtered signal between 0.6 and 3.2. The partial degeneration, in turn, guides to quasi-symmetric distribution and the value of dominant Lyapunov exponent of 42 which is a typical value for systems with a source of the strongly nonhomogeneous external noise.
Nonlinear coupling of left and right handed circularly polarized dispersive Alfvén wave
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, R. P., E-mail: rpsharma@ces.iitd.ac.in; Sharma, Swati, E-mail: swati.sharma704@gmail.com; Gaur, Nidhi, E-mail: nidhiphysics@gmail.com
2014-07-15
The nonlinear phenomena are of prominent interests in understanding the particle acceleration and transportation in the interplanetary space. The ponderomotive nonlinearity causing the filamentation of the parallel propagating circularly polarized dispersive Alfvén wave having a finite frequency may be one of the mechanisms that contribute to the heating of the plasmas. The contribution will be different of the left (L) handed mode, the right (R) handed mode, and the mix mode. The contribution also depends upon the finite frequency of the circularly polarized waves. In the present paper, we have investigated the effect of the nonlinear coupling of the Lmore » and R circularly polarized dispersive Alfvén wave on the localized structures formation and the respective power spectra. The dynamical equations are derived in the presence of the ponderomotive nonlinearity of the L and R pumps and then studied semi-analytically as well as numerically. The ponderomotive nonlinearity accounts for the nonlinear coupling between both the modes. In the presence of the adiabatic response of the density fluctuations, the nonlinear dynamical equations satisfy the modified nonlinear Schrödinger equation. The equations thus obtained are solved in solar wind regime to study the coupling effect on localization and the power spectra. The effect of coupling is also studied on Faraday rotation and ellipticity of the wave caused due to the difference in the localization of the left and the right modes with the distance of propagation.« less
Nonlinear vibrations analysis of rotating drum-disk coupling structure
NASA Astrophysics Data System (ADS)
Chaofeng, Li; Boqing, Miao; Qiansheng, Tang; Chenyang, Xi; Bangchun, Wen
2018-04-01
A dynamic model of a coupled rotating drum-disk system with elastic support is developed in this paper. By considering the effects of centrifugal and Coriolis forces as well as rotation-induced hoop stress, the governing differential equation of the drum-disk is derived by Donnell's shell theory. The nonlinear amplitude-frequency characteristics of coupled structure are studied. The results indicate that the natural characteristics of the coupling structure are sensitive to the supporting stiffness of the disk, and the sensitive range is affected by rotating speeds. The circumferential wave numbers can affect the characteristics of the drum-disk structure. If the circumferential wave number n = 1 , the vibration response of the drum keeps a stable value under an unbalanced load of the disk, there is no coupling effect if n ≠ 1 . Under the excitation, the nonlinear hardening characteristics of the forward traveling wave are more evident than that of the backward traveling wave. Moreover, because of the coupling effect of the drum and the disk, the supporting stiffness of the disk has certain effect on the nonlinear characteristics of the forward and backward traveling waves. In addition, small length-radius and thickness-radius ratios have a significant effect on the nonlinear characteristics of the coupled structure, which means nonlinear shell theory should be adopted to design rotating drum's parameter for its specific structural parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jammazi, Chaker
2009-03-05
The paper gives Lyapunov type sufficient conditions for partial finite-time and asymptotic stability in which some state variables converge to zero while the rest converge to constant values that possibly depend on the initial conditions. The paper then presents partially asymptotically stabilizing controllers for many nonlinear control systems for which continuous asymptotically stabilizing (in the usual sense) controllers are known not to exist.
Dynamic Nonlinear Elastic Stability of Helicopter Rotor Blades in Hover and in Forward Flight
NASA Technical Reports Server (NTRS)
Friedmann, P.; Tong, P.
1972-01-01
Equations for large coupled flap-lag motion of hingeless elastic helicopter blades are consistently derived. Only torsionally-rigid blades excited by quasi-steady aerodynamic loads are considered. The nonlinear equations of motion in the time and space variables are reduced to a system of coupled nonlinear ordinary differential equations with periodic coefficients, using Galerkin's method for the space variables. The nonlinearities present in the equations are those arising from the inclusion of moderately large deflections in the inertia and aerodynamic loading terms. The resulting system of nonlinear equations has been solved, using an asymptotic expansion procedure in multiple time scales. The stability boundaries, amplitudes of nonlinear response, and conditions for existence of limit cycles are obtained analytically. Thus, the different roles played by the forcing function, parametric excitation, and nonlinear coupling in affecting the solution can be easily identified, and the basic physical mechanism of coupled flap-lag response becomes clear. The effect of forward flight is obtained with the requirement of trimmed flight at fixed values of the thrust coefficient.
Optimal control of dissipative nonlinear dynamical systems with triggers of coupled singularities
NASA Astrophysics Data System (ADS)
Stevanović Hedrih, K.
2008-02-01
This paper analyses the controllability of motion of nonconservative nonlinear dynamical systems in which triggers of coupled singularities exist or appear. It is shown that the phase plane method is useful for the analysis of nonlinear dynamics of nonconservative systems with one degree of freedom of control strategies and also shows the way it can be used for controlling the relative motion in rheonomic systems having equivalent scleronomic conservative or nonconservative system For the system with one generalized coordinate described by nonlinear differential equation of nonlinear dynamics with trigger of coupled singularities, the functions of system potential energy and conservative force must satisfy some conditions defined by a Theorem on the existence of a trigger of coupled singularities and the separatrix in the form of "an open a spiral form" of number eight. Task of the defined dynamical nonconservative system optimal control is: by using controlling force acting to the system, transfer initial state of the nonlinear dynamics of the system into the final state of the nonlinear dynamics in the minimal time for that optimal control task
Nonlinear to Linear Elastic Code Coupling in 2-D Axisymmetric Media.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Preston, Leiph
Explosions within the earth nonlinearly deform the local media, but at typical seismological observation distances, the seismic waves can be considered linear. Although nonlinear algorithms can simulate explosions in the very near field well, these codes are computationally expensive and inaccurate at propagating these signals to great distances. A linearized wave propagation code, coupled to a nonlinear code, provides an efficient mechanism to both accurately simulate the explosion itself and to propagate these signals to distant receivers. To this end we have coupled Sandia's nonlinear simulation algorithm CTH to a linearized elastic wave propagation code for 2-D axisymmetric media (axiElasti)more » by passing information from the nonlinear to the linear code via time-varying boundary conditions. In this report, we first develop the 2-D axisymmetric elastic wave equations in cylindrical coordinates. Next we show how we design the time-varying boundary conditions passing information from CTH to axiElasti, and finally we demonstrate the coupling code via a simple study of the elastic radius.« less
Theoretical Advances in Sequential Data Assimilation for the Atmosphere and Oceans
NASA Astrophysics Data System (ADS)
Ghil, M.
2007-05-01
We concentrate here on two aspects of advanced Kalman--filter-related methods: (i) the stability of the forecast- assimilation cycle, and (ii) parameter estimation for the coupled ocean-atmosphere system. The nonlinear stability of a prediction-assimilation system guarantees the uniqueness of the sequentially estimated solutions in the presence of partial and inaccurate observations, distributed in space and time; this stability is shown to be a necessary condition for the convergence of the state estimates to the true evolution of the turbulent flow. The stability properties of the governing nonlinear equations and of several data assimilation systems are studied by computing the spectrum of the associated Lyapunov exponents. These ideas are applied to a simple and an intermediate model of atmospheric variability and we show that the degree of stabilization depends on the type and distribution of the observations, as well as on the data assimilation method. These results represent joint work with A. Carrassi, A. Trevisan and F. Uboldi. Much is known by now about the main physical mechanisms that give rise to and modulate the El-Nino/Southern- Oscillation (ENSO), but the values of several parameters that enter these mechanisms are an important unknown. We apply Extended Kalman Filtering (EKF) for both model state and parameter estimation in an intermediate, nonlinear, coupled ocean-atmosphere model of ENSO. Model behavior is very sensitive to two key parameters: (a) "mu", the ocean-atmosphere coupling coefficient between the sea-surface temperature (SST) and wind stress anomalies; and (b) "delta-s", the surface-layer coefficient. Previous work has shown that "delta- s" determines the period of the model's self-sustained oscillation, while "mu' measures the degree of nonlinearity. Depending on the values of these parameters, the spatio-temporal pattern of model solutions is either that of a delayed oscillator or of a westward propagating mode. Assimilation of SST data from the NCEP- NCAR Reanalysis-2 shows that the parameters can vary on fairly short time scales and switch between values that approximate the two distinct modes of ENSO behavior. Rapid adjustments of these parameters occur, in particular, during strong ENSO events. Ways to apply EKF parameter estimation efficiently to state-of-the-art coupled ocean-atmosphere GCMs will be discussed. These results arise from joint work with D. Kondrashov and C.-j. Sun.
Lifespan differences in nonlinear dynamics during rest and auditory oddball performance.
Müller, Viktor; Lindenberger, Ulman
2012-07-01
Electroencephalographic recordings (EEG) were used to assess age-associated differences in nonlinear brain dynamics during both rest and auditory oddball performance in children aged 9.0-12.8 years, younger adults, and older adults. We computed nonlinear coupling dynamics and dimensional complexity, and also determined spectral alpha power as an indicator of cortical reactivity. During rest, both nonlinear coupling and spectral alpha power decreased with age, whereas dimensional complexity increased. In contrast, when attending to the deviant stimulus, nonlinear coupling increased with age, and complexity decreased. Correlational analyses showed that nonlinear measures assessed during auditory oddball performance were reliably related to an independently assessed measure of perceptual speed. We conclude that cortical dynamics during rest and stimulus processing undergo substantial reorganization from childhood to old age, and propose that lifespan age differences in nonlinear dynamics during stimulus processing reflect lifespan changes in the functional organization of neuronal cell assemblies. © 2012 Blackwell Publishing Ltd.
Tunneling induced absorption with competing Nonlinearities.
Peng, Yandong; Yang, Aihong; Xu, Yan; Wang, Peng; Yu, Yang; Guo, Hongju; Ren, Tingqi
2016-12-13
We investigate tunneling induced nonlinear absorption phenomena in a coupled quantum-dot system. Resonant tunneling causes constructive interference in the nonlinear absorption that leads to an increase of more than an order of magnitude over the maximum absorption in a coupled quantum dot system without tunneling. Resonant tunneling also leads to a narrowing of the linewidth of the absorption peak to a sublinewidth level. Analytical expressions show that the enhanced nonlinear absorption is largely due to the fifth-order nonlinear term. Competition between third- and fifth-order nonlinearities leads to an anomalous dispersion of the total susceptibility.
Formulation of the aeroelastic stability and response problem of coupled rotor/support systems
NASA Technical Reports Server (NTRS)
Warmbrodt, W.; Friedmann, P.
1979-01-01
The consistent formulation of the governing nonlinear equations of motion for a coupled rotor/support system is presented. Rotor/support coupling is clearly documented by enforcing dynamic equilibrium between the rotor and the moving flexible support. The nonlinear periodic coefficient equations of motion are applicable to both coupled rotor/fuselage aeroelastic problems of helicopters in hover or forward flight and coupled rotor/tower dynamics of a large horizontal axis wind turbine (HAWT). Finally, the equations of motion are used to study the influence of flexible supports and nonlinear terms on rotor aeroelastic stability and response of a large two-bladed HAWT.
A procedure to construct exact solutions of nonlinear fractional differential equations.
Güner, Özkan; Cevikel, Adem C
2014-01-01
We use the fractional transformation to convert the nonlinear partial fractional differential equations with the nonlinear ordinary differential equations. The Exp-function method is extended to solve fractional partial differential equations in the sense of the modified Riemann-Liouville derivative. We apply the Exp-function method to the time fractional Sharma-Tasso-Olver equation, the space fractional Burgers equation, and the time fractional fmKdV equation. As a result, we obtain some new exact solutions.
NASA Technical Reports Server (NTRS)
David, J. W.; Mitchell, L. D.
1982-01-01
Difficulties in solution methodology to be used to deal with the potentially higher nonlinear rotor equations when dynamic coupling is included. A solution methodology is selected to solve the nonlinear differential equations. The selected method was verified to give good results even at large nonlinearity levels. The transfer matrix methodology is extended to the solution of nonlinear problems.
NASA Astrophysics Data System (ADS)
Sardesai, Chetan R.
The primary objective of this research is to explore the application of optimal control theory in nonlinear, unsteady, fluid dynamical settings. Two problems are considered: (1) control of unsteady boundary-layer separation, and (2) control of the Saltzman-Lorenz model. The unsteady boundary-layer equations are nonlinear partial differential equations that govern the eruptive events that arise when an adverse pressure gradient acts on a boundary layer at high Reynolds numbers. The Saltzman-Lorenz model consists of a coupled set of three nonlinear ordinary differential equations that govern the time-dependent coefficients in truncated Fourier expansions of Rayleigh-Renard convection and exhibit deterministic chaos. Variational methods are used to derive the nonlinear optimal control formulations based on cost functionals that define the control objective through a performance measure and a penalty function that penalizes the cost of control. The resulting formulation consists of the nonlinear state equations, which must be integrated forward in time, and the nonlinear control (adjoint) equations, which are integrated backward in time. Such coupled forward-backward time integrations are computationally demanding; therefore, the full optimal control problem for the Saltzman-Lorenz model is carried out, while the more complex unsteady boundary-layer case is solved using a sub-optimal approach. The latter is a quasi-steady technique in which the unsteady boundary-layer equations are integrated forward in time, and the steady control equation is solved at each time step. Both sub-optimal control of the unsteady boundary-layer equations and optimal control of the Saltzman-Lorenz model are found to be successful in meeting the control objectives for each problem. In the case of boundary-layer separation, the control results indicate that it is necessary to eliminate the recirculation region that is a precursor to the unsteady boundary-layer eruptions. In the case of the Saltzman-Lorenz model, it is possible to control the system about either of the two unstable equilibrium points representing clockwise and counterclockwise rotation of the convection roles in a parameter regime for which the uncontrolled solution would exhibit deterministic chaos.
Sliding mode control for a two-joint coupling nonlinear system based on extended state observer.
Zhao, Ling; Cheng, Haiyan; Wang, Tao
2018-02-01
A two-joint coupling nonlinear system driven by pneumatic artificial muscles is introduced in this paper. A sliding mode controller with extended state observer is proposed to cope with nonlinearities and disturbances for the two-joint coupling nonlinear system. In addition, convergence of the extended state observer is presented and stability analysis of the closed-loop system is also demonstrated with the sliding mode controller. Lastly, some experiments are carried out to show the reality effectiveness of the proposed method. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Matsuda, Nobuyuki; Kato, Takumi; Harada, Ken-Ichi; Takesue, Hiroki; Kuramochi, Eiichi; Taniyama, Hideaki; Notomi, Masaya
2011-10-10
We demonstrate highly enhanced optical nonlinearity in a coupled-resonator optical waveguide (CROW) in a four-wave mixing experiment. Using a CROW consisting of 200 coupled resonators based on width-modulated photonic crystal nanocavities in a line defect, we obtained an effective nonlinear constant exceeding 10,000 /W/m, thanks to slow light propagation combined with a strong spatial confinement of light achieved by the wavelength-sized cavities.
The Programming Language Python In Earth System Simulations
NASA Astrophysics Data System (ADS)
Gross, L.; Imranullah, A.; Mora, P.; Saez, E.; Smillie, J.; Wang, C.
2004-12-01
Mathematical models in earth sciences base on the solution of systems of coupled, non-linear, time-dependent partial differential equations (PDEs). The spatial and time-scale vary from a planetary scale and million years for convection problems to 100km and 10 years for fault systems simulations. Various techniques are in use to deal with the time dependency (e.g. Crank-Nicholson), with the non-linearity (e.g. Newton-Raphson) and weakly coupled equations (e.g. non-linear Gauss-Seidel). Besides these high-level solution algorithms discretization methods (e.g. finite element method (FEM), boundary element method (BEM)) are used to deal with spatial derivatives. Typically, large-scale, three dimensional meshes are required to resolve geometrical complexity (e.g. in the case of fault systems) or features in the solution (e.g. in mantel convection simulations). The modelling environment escript allows the rapid implementation of new physics as required for the development of simulation codes in earth sciences. Its main object is to provide a programming language, where the user can define new models and rapidly develop high-level solution algorithms. The current implementation is linked with the finite element package finley as a PDE solver. However, the design is open and other discretization technologies such as finite differences and boundary element methods could be included. escript is implemented as an extension of the interactive programming environment python (see www.python.org). Key concepts introduced are Data objects, which are holding values on nodes or elements of the finite element mesh, and linearPDE objects, which are defining linear partial differential equations to be solved by the underlying discretization technology. In this paper we will show the basic concepts of escript and will show how escript is used to implement a simulation code for interacting fault systems. We will show some results of large-scale, parallel simulations on an SGI Altix system. Acknowledgements: Project work is supported by Australian Commonwealth Government through the Australian Computational Earth Systems Simulator Major National Research Facility, Queensland State Government Smart State Research Facility Fund, The University of Queensland and SGI.
NASA Astrophysics Data System (ADS)
Duane, G. S.; Selten, F.
2016-12-01
Different models of climate and weather commonly give projections/predictions that differ widely in their details. While averaging of model outputs almost always improves results, nonlinearity implies that further improvement can be obtained from model interaction in run time, as has already been demonstrated with toy systems of ODEs and idealized quasigeostrophic models. In the supermodeling scheme, models effectively assimilate data from one another and partially synchronize with one another. Spread among models is manifest as a spread in possible inter-model connection coefficients, so that the models effectively "agree to disagree". Here, we construct a supermodel formed from variants of the SPEEDO model, a primitive-equation atmospheric model (SPEEDY) coupled to ocean and land. A suite of atmospheric models, coupled to the same ocean and land, is chosen to represent typical differences among climate models by varying model parameters. Connections are introduced between all pairs of corresponding independent variables at synoptic-scale intervals. Strengths of the inter-atmospheric connections can be considered to represent inverse inter-model observation error. Connection strengths are adapted based on an established procedure that extends the dynamical equations of a pair of synchronizing systems to synchronize parameters as well. The procedure is applied to synchronize the suite of SPEEDO models with another SPEEDO model regarded as "truth", adapting the inter-model connections along the way. The supermodel with trained connections gives marginally lower error in all fields than any weighted combination of the separate model outputs when used in "weather-prediction mode", i.e. with constant nudging to truth. Stronger results are obtained if a supermodel is used to predict the formation of coherent structures or the frequency of such. Partially synchronized SPEEDO models give a better representation of the blocked-zonal index cycle than does a weighted average of the constituent model outputs. We have thus shown that supermodeling and the synchronization-based procedure to adapt inter-model connections give results superior to output averaging not only with highly nonlinear toy systems, but with smaller nonlinearities as occur in climate models.
Cheng, Kung-Shan; Dewhirst, Mark W; Stauffer, Paul R; Das, Shiva
2010-03-01
This paper investigates overall theoretical requirements for reducing the times required for the iterative learning of a real-time image-guided adaptive control routine for multiple-source heat applicators, as used in hyperthermia and thermal ablative therapy for cancer. Methods for partial reconstruction of the physical system with and without model reduction to find solutions within a clinically practical timeframe were analyzed. A mathematical analysis based on the Fredholm alternative theorem (FAT) was used to compactly analyze the existence and uniqueness of the optimal heating vector under two fundamental situations: (1) noiseless partial reconstruction and (2) noisy partial reconstruction. These results were coupled with a method for further acceleration of the solution using virtual source (VS) model reduction. The matrix approximation theorem (MAT) was used to choose the optimal vectors spanning the reduced-order subspace to reduce the time for system reconstruction and to determine the associated approximation error. Numerical simulations of the adaptive control of hyperthermia using VS were also performed to test the predictions derived from the theoretical analysis. A thigh sarcoma patient model surrounded by a ten-antenna phased-array applicator was retained for this purpose. The impacts of the convective cooling from blood flow and the presence of sudden increase of perfusion in muscle and tumor were also simulated. By FAT, partial system reconstruction directly conducted in the full space of the physical variables such as phases and magnitudes of the heat sources cannot guarantee reconstructing the optimal system to determine the global optimal setting of the heat sources. A remedy for this limitation is to conduct the partial reconstruction within a reduced-order subspace spanned by the first few maximum eigenvectors of the true system matrix. By MAT, this VS subspace is the optimal one when the goal is to maximize the average tumor temperature. When more than 6 sources present, the steps required for a nonlinear learning scheme is theoretically fewer than that of a linear one, however, finite number of iterative corrections is necessary for a single learning step of a nonlinear algorithm. Thus, the actual computational workload for a nonlinear algorithm is not necessarily less than that required by a linear algorithm. Based on the analysis presented herein, obtaining a unique global optimal heating vector for a multiple-source applicator within the constraints of real-time clinical hyperthermia treatments and thermal ablative therapies appears attainable using partial reconstruction with minimum norm least-squares method with supplemental equations. One way to supplement equations is the inclusion of a method of model reduction.
Solving Nonlinear Coupled Differential Equations
NASA Technical Reports Server (NTRS)
Mitchell, L.; David, J.
1986-01-01
Harmonic balance method developed to obtain approximate steady-state solutions for nonlinear coupled ordinary differential equations. Method usable with transfer matrices commonly used to analyze shaft systems. Solution to nonlinear equation, with periodic forcing function represented as sum of series similar to Fourier series but with form of terms suggested by equation itself.
Thermodynamic aspect in using modified Boltzmann model as an acoustic probe for URu2Si2
NASA Astrophysics Data System (ADS)
Kwang-Hua, Chu Rainer
2018-05-01
The approximate system of equations describing ultrasonic attenuation propagating in many electrons of the heavy-fermion materials URu2Si2 under high magnetic fields were firstly derived and then calculated based on the modified Boltzmann model considering the microscopic contributions due to electronic fluids. A system of nonlinear partial differential coupled with integral equations were linearized firstly and approximately solved considering the perturbed thermodynamic equilibrium states. Our numerical data were compared with previous measurements using non-dimensional or normalized physical values. The rather good fit of our numerical calculations with experimental measurements confirms our present approach.
A numerical study of biofilm growth in a microgravity environment
NASA Astrophysics Data System (ADS)
Aristotelous, A. C.; Papanicolaou, N. C.
2017-10-01
A mathematical model is proposed to investigate the effect of microgravity on biofilm growth. We examine the case of biofilm suspended in a quiescent aqueous nutrient solution contained in a rectangular tank. The bacterial colony is assumed to follow logistic growth whereas nutrient absorption is assumed to follow Monod kinetics. The problem is modeled by a coupled system of nonlinear partial differential equations in two spatial dimensions solved using the Discontinuous Galerkin Finite Element method. Nutrient and biofilm concentrations are computed in microgravity and normal gravity conditions. A preliminary quantitative relationship between the biofilm concentration and the gravity field intensity is derived.
NASA Astrophysics Data System (ADS)
Kassem, M.
2006-03-01
The problem of heat and mass transfer in an unsteady free-convection flow over a continuous moving vertical sheet in an ambient fluid is investigated for constant heat flux using the group theoretical method. The nonlinear coupled partial differential equation governing the flow and the boundary conditions are transformed to a system of ordinary differential equations with appropriate boundary conditions. The obtained ordinary differential equations are solved numerically using the shooting method. The effect of Prandlt number on the velocity and temperature of the boundary-layer is plotted in curves. A comparison with previous work is presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dewhurst, J. M.; Hnat, B.; Dendy, R. O.
2009-07-15
The extended Hasegawa-Wakatani equations generate fully nonlinear self-consistent solutions for coupled density n and vorticity {nabla}{sup 2}{phi}, where {phi} is electrostatic potential, in a plasma with background density inhomogeneity {kappa}=-{partial_derivative} ln n{sub 0}/{partial_derivative}x and magnetic field strength inhomogeneity C=-{partial_derivative} ln B/{partial_derivative}x. Finite C introduces interchange effects and {nabla}B drifts into the framework of drift turbulence through compressibility of the ExB and diamagnetic drifts. This paper addresses the direct computation of the radial ExB density flux {gamma}{sub n}=-n{partial_derivative}{phi}/{partial_derivative}y, tracer particle transport, the statistical properties of the turbulent fluctuations that drive {gamma}{sub n} and tracer motion, and analytical underpinnings. Systematic trends emergemore » in the dependence on C of the skewness of the distribution of pointwise {gamma}{sub n} and in the relative phase of density-velocity and density-potential pairings. It is shown how these effects, together with conservation of potential vorticity {pi}={nabla}{sup 2}{phi}-n+({kappa}-C)x, account for much of the transport phenomenology. Simple analytical arguments yield a Fickian relation {gamma}{sub n}=({kappa}-C)D{sub x} between the radial density flux {gamma}{sub n} and the radial tracer diffusivity D{sub x}, which is shown to explain key trends in the simulations.« less
NASA Astrophysics Data System (ADS)
Malaeke, Hasan; Moeenfard, Hamid
2016-03-01
The objective of this paper is to study large amplitude flexural-extensional free vibration of non-uniform cantilever beams carrying a both transversely and axially eccentric tip mass. The effects of variable axial force is also taken into account. Hamilton's principle is utilized to obtain the partial differential equations governing the nonlinear vibration of the system as well as the corresponding boundary conditions. A numerical finite difference scheme is proposed to find the natural frequencies and mode shapes of the system which is validated specifically for a beam with linearly varying cross section. Using a single mode approximation in conjunction with the Lagrange method, the governing equations are reduced to a set of two nonlinear ordinary differential equations in terms of end displacement components of the beam which are coupled due to the presence of the transverse eccentricity. These temporal coupled equations are then solved analytically using the multiple time scales perturbation technique. The obtained analytical results are compared with the numerical ones and excellent agreement is observed. The qualitative and quantitative knowledge resulting from this research is expected to enable the study of the effects of eccentric tip mass and non-uniformity on the large amplitude flexural-extensional vibration of beams for improved dynamic performance.
Model coupling intraparticle diffusion/sorption, nonlinear sorption, and biodegradation processes
Karapanagioti, Hrissi K.; Gossard, Chris M.; Strevett, Keith A.; Kolar, Randall L.; Sabatini, David A.
2001-01-01
Diffusion, sorption and biodegradation are key processes impacting the efficiency of natural attenuation. While each process has been studied individually, limited information exists on the kinetic coupling of these processes. In this paper, a model is presented that couples nonlinear and nonequilibrium sorption (intraparticle diffusion) with biodegradation kinetics. Initially, these processes are studied independently (i.e., intraparticle diffusion, nonlinear sorption and biodegradation), with appropriate parameters determined from these independent studies. Then, the coupled processes are studied, with an initial data set used to determine biodegradation constants that were subsequently used to successfully predict the behavior of a second data set. The validated model is then used to conduct a sensitivity analysis, which reveals conditions where biodegradation becomes desorption rate-limited. If the chemical is not pre-equilibrated with the soil prior to the onset of biodegradation, then fast sorption will reduce aqueous concentrations and thus biodegradation rates. Another sensitivity analysis demonstrates the importance of including nonlinear sorption in a coupled diffusion/sorption and biodegradation model. While predictions based on linear sorption isotherms agree well with solution concentrations, for the conditions evaluated this approach overestimates the percentage of contaminant biodegraded by as much as 50%. This research demonstrates that nonlinear sorption should be coupled with diffusion/sorption and biodegradation models in order to accurately predict bioremediation and natural attenuation processes. To our knowledge this study is unique in studying nonlinear sorption coupled with intraparticle diffusion and biodegradation kinetics with natural media.
Elastohydrodynamic synchronization of adjacent beating flagella
NASA Astrophysics Data System (ADS)
Goldstein, Raymond E.; Lauga, Eric; Pesci, Adriana I.; Proctor, Michael R. E.
2016-11-01
It is now well established that nearby beating pairs of eukaryotic flagella or cilia typically synchronize in phase. A substantial body of evidence supports the hypothesis that hydrodynamic coupling between the active filaments, combined with waveform compliance, provides a robust mechanism for synchrony. This elastohydrodynamic mechanism has been incorporated into bead-spring models in which the beating flagella are represented by microspheres tethered by radial springs as they are driven about orbits by internal forces. While these low-dimensional models reproduce the phenomenon of synchrony, their parameters are not readily relatable to those of the filaments they represent. More realistic models, which reflect the underlying elasticity of the axonemes and the active force generation, take the form of fourth-order nonlinear partial differential equations (PDEs). While computational studies have shown the occurrence of synchrony, the effects of hydrodynamic coupling between nearby filaments governed by such continuum models have been examined theoretically only in the regime of interflagellar distances d large compared to flagellar length L . Yet in many biological situations d /L ≪1 . Here we present an asymptotic analysis of the hydrodynamic coupling between two extended filaments in the regime d /L ≪1 and find that the form of the coupling is independent of the microscopic details of the internal forces that govern the motion of the individual filaments. The analysis is analogous to that yielding the localized induction approximation for vortex filament motion, extended to the case of mutual induction. In order to understand how the elastohydrodynamic coupling mechanism leads to synchrony of extended objects, we introduce a heuristic model of flagellar beating. The model takes the form of a single fourth-order nonlinear PDE whose form is derived from symmetry considerations, the physics of elasticity, and the overdamped nature of the dynamics. Analytical and numerical studies of this model illustrate how synchrony between a pair of filaments is achieved through the asymptotic coupling.
Huang, W.; Zheng, Lingyun; Zhan, X.
2002-01-01
Accurate modelling of groundwater flow and transport with sharp moving fronts often involves high computational cost, when a fixed/uniform mesh is used. In this paper, we investigate the modelling of groundwater problems using a particular adaptive mesh method called the moving mesh partial differential equation approach. With this approach, the mesh is dynamically relocated through a partial differential equation to capture the evolving sharp fronts with a relatively small number of grid points. The mesh movement and physical system modelling are realized by solving the mesh movement and physical partial differential equations alternately. The method is applied to the modelling of a range of groundwater problems, including advection dominated chemical transport and reaction, non-linear infiltration in soil, and the coupling of density dependent flow and transport. Numerical results demonstrate that sharp moving fronts can be accurately and efficiently captured by the moving mesh approach. Also addressed are important implementation strategies, e.g. the construction of the monitor function based on the interpolation error, control of mesh concentration, and two-layer mesh movement. Copyright ?? 2002 John Wiley and Sons, Ltd.
NASA Astrophysics Data System (ADS)
Zhou, Shihua; Song, Guiqiu; Sun, Maojun; Ren, Zhaohui; Wen, Bangchun
2018-01-01
In order to analyze the nonlinear dynamics and stability of a novel design for the monowheel inclined vehicle-vibration platform coupled system (MIV-VPCS) with intermediate nonlinearity support subjected to a harmonic excitation, a multi-degree of freedom lumped parameter dynamic model taking into account the dynamic interaction of the MIV-VPCS with quadratic and cubic nonlinearities is presented. The dynamical equations of the coupled system are derived by applying the displacement relationship, interaction force relationship at the contact position and Lagrange's equation, which are further discretized into a set of nonlinear ordinary differential equations with coupled terms by Galerkin's truncation. Based on the mathematical model, the coupled multi-body nonlinear dynamics of the vibration system is investigated by numerical method, and the parameters influences of excitation amplitude, mass ratio and inclined angle on the dynamic characteristics are precisely analyzed and discussed by bifurcation diagram, Largest Lyapunov exponent and 3-D frequency spectrum. Depending on different ranges of system parameters, the results show that the different motions and jump discontinuity appear, and the coupled system enters into chaotic behavior through different routes (period-doubling bifurcation, inverse period-doubling bifurcation, saddle-node bifurcation and Hopf bifurcation), which are strongly attributed to the dynamic interaction of the MIV-VPCS. The decreasing excitation amplitude and inclined angle could reduce the higher order bifurcations, and effectively control the complicated nonlinear dynamic behaviors under the perturbation of low rotational speed. The first bifurcation and chaotic motion occur at lower value of inclined angle, and the chaotic behavior lasts for larger intervals with higher rotational speed. The investigation results could provide a better understanding of the nonlinear dynamic behaviors for the dynamic interaction of the MIV-VPCS.
Zhang, Guoqiang; Yan, Zhenya; Wen, Xiao-Yong
2017-07-01
The integrable coupled nonlinear Schrödinger equations with four-wave mixing are investigated. We first explore the conditions for modulational instability of continuous waves of this system. Secondly, based on the generalized N -fold Darboux transformation (DT), beak-shaped higher-order rogue waves (RWs) and beak-shaped higher-order rogue wave pairs are derived for the coupled model with attractive interaction in terms of simple determinants. Moreover, we derive the simple multi-dark-dark and kink-shaped multi-dark-dark solitons for the coupled model with repulsive interaction through the generalizing DT. We explore their dynamics and classifications by different kinds of spatial-temporal distribution structures including triangular, pentagonal, 'claw-like' and heptagonal patterns. Finally, we perform the numerical simulations to predict that some dark solitons and RWs are stable enough to develop within a short time. The results would enrich our understanding on nonlinear excitations in many coupled nonlinear wave systems with transition coupling effects.
Nonlinear resonance and synchronization in the ring of unidirectionally coupled Toda oscillators
NASA Astrophysics Data System (ADS)
Dvorak, Anton; Astakhov, Vladimir; Perlikowski, Przemyslaw; Kapitaniak, Tomasz
2016-11-01
In the ring of unidirectionally coupled Toda oscillators the nonlinear resonance and the synchronization are investigated. It is shown how the nonlinear resonance affects the structure of the main synchronization region. As a result of nonlinear resonance we observe the coexistence of two stable limit cycles near the resonant frequency, which leads to coexistence of periodic and quasi-periodic regimes within the synchronization region.
Genetic algorithms for multicriteria shape optimization of induction furnace
NASA Astrophysics Data System (ADS)
Kůs, Pavel; Mach, František; Karban, Pavel; Doležel, Ivo
2012-09-01
In this contribution we deal with a multi-criteria shape optimization of an induction furnace. We want to find shape parameters of the furnace in such a way, that two different criteria are optimized. Since they cannot be optimized simultaneously, instead of one optimum we find set of partially optimal designs, so called Pareto front. We compare two different approaches to the optimization, one using nonlinear conjugate gradient method and second using variation of genetic algorithm. As can be seen from the numerical results, genetic algorithm seems to be the right choice for this problem. Solution of direct problem (coupled problem consisting of magnetic and heat field) is done using our own code Agros2D. It uses finite elements of higher order leading to fast and accurate solution of relatively complicated coupled problem. It also provides advanced scripting support, allowing us to prepare parametric model of the furnace and simply incorporate various types of optimization algorithms.
Model Predictive Optimal Control of a Time-Delay Distributed-Parameter Systems
NASA Technical Reports Server (NTRS)
Nguyen, Nhan
2006-01-01
This paper presents an optimal control method for a class of distributed-parameter systems governed by first order, quasilinear hyperbolic partial differential equations that arise in many physical systems. Such systems are characterized by time delays since information is transported from one state to another by wave propagation. A general closed-loop hyperbolic transport model is controlled by a boundary control embedded in a periodic boundary condition. The boundary control is subject to a nonlinear differential equation constraint that models actuator dynamics of the system. The hyperbolic equation is thus coupled with the ordinary differential equation via the boundary condition. Optimality of this coupled system is investigated using variational principles to seek an adjoint formulation of the optimal control problem. The results are then applied to implement a model predictive control design for a wind tunnel to eliminate a transport delay effect that causes a poor Mach number regulation.
Nonlinear air-coupled emission: The signature to reveal and image microdamage in solid materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solodov, Igor; Busse, Gerd
2007-12-17
It is shown that low-frequency elastic vibrations of near-surface planar defects cause high-frequency ultrasonic radiation in surrounding air. The frequency conversion mechanism is concerned with contact nonlinearity of the defect vibrations and provides efficient generation of air-coupled higher-order ultraharmonics, ultrasubharmonics, and combination frequencies. The nonlinear air-coupled ultrasonic emission is applied for location and high-resolution imaging of damage-induced defects in a variety of solid materials.
A Procedure to Construct Exact Solutions of Nonlinear Fractional Differential Equations
Güner, Özkan; Cevikel, Adem C.
2014-01-01
We use the fractional transformation to convert the nonlinear partial fractional differential equations with the nonlinear ordinary differential equations. The Exp-function method is extended to solve fractional partial differential equations in the sense of the modified Riemann-Liouville derivative. We apply the Exp-function method to the time fractional Sharma-Tasso-Olver equation, the space fractional Burgers equation, and the time fractional fmKdV equation. As a result, we obtain some new exact solutions. PMID:24737972
The nonlinear chemo-mechanic coupled dynamics of the F 1 -ATPase molecular motor.
Xu, Lizhong; Liu, Fang
2012-03-01
The ATP synthase consists of two opposing rotary motors, F0 and F1, coupled to each other. When the F1 motor is not coupled to the F0 motor, it can work in the direction hydrolyzing ATP, as a nanomotor called F1-ATPase. It has been reported that the stiffness of the protein varies nonlinearly with increasing load. The nonlinearity has an important effect on the rotating rate of the F1-ATPase. Here, considering the nonlinearity of the γ shaft stiffness for the F1-ATPase, a nonlinear chemo-mechanical coupled dynamic model of F1 motor is proposed. Nonlinear vibration frequencies of the γ shaft and their changes along with the system parameters are investigated. The nonlinear stochastic response of the elastic γ shaft to thermal excitation is analyzed. The results show that the stiffness nonlinearity of the γ shaft causes an increase of the vibration frequency for the F1 motor, which increases the motor's rotation rate. When the concentration of ATP is relatively high and the load torque is small, the effects of the stiffness nonlinearity on the rotating rates of the F1 motor are obvious and should be considered. These results are useful for improving calculation of the rotating rate for the F1 motor and provide insight about the stochastic wave mechanics of F1-ATPase.
Spatiotemporal chaos of fractional order logistic equation in nonlinear coupled lattices
NASA Astrophysics Data System (ADS)
Zhang, Ying-Qian; Wang, Xing-Yuan; Liu, Li-Yan; He, Yi; Liu, Jia
2017-11-01
We investigate a new spatiotemporal dynamics with fractional order differential logistic map and spatial nonlinear coupling. The spatial nonlinear coupling features such as the higher percentage of lattices in chaotic behaviors for most of parameters and none periodic windows in bifurcation diagrams are held, which are more suitable for encryptions than the former adjacent coupled map lattices. Besides, the proposed model has new features such as the wider parameter range and wider range of state amplitude for ergodicity, which contributes a wider range of key space when applied in encryptions. The simulations and theoretical analyses are developed in this paper.
Tunneling induced absorption with competing Nonlinearities
Peng, Yandong; Yang, Aihong; Xu, Yan; Wang, Peng; Yu, Yang; Guo, Hongju; Ren, Tingqi
2016-01-01
We investigate tunneling induced nonlinear absorption phenomena in a coupled quantum-dot system. Resonant tunneling causes constructive interference in the nonlinear absorption that leads to an increase of more than an order of magnitude over the maximum absorption in a coupled quantum dot system without tunneling. Resonant tunneling also leads to a narrowing of the linewidth of the absorption peak to a sublinewidth level. Analytical expressions show that the enhanced nonlinear absorption is largely due to the fifth-order nonlinear term. Competition between third- and fifth-order nonlinearities leads to an anomalous dispersion of the total susceptibility. PMID:27958303
Lattice Boltzmann model for high-order nonlinear partial differential equations
NASA Astrophysics Data System (ADS)
Chai, Zhenhua; He, Nanzhong; Guo, Zhaoli; Shi, Baochang
2018-01-01
In this paper, a general lattice Boltzmann (LB) model is proposed for the high-order nonlinear partial differential equation with the form ∂tϕ +∑k=1mαk∂xkΠk(ϕ ) =0 (1 ≤k ≤m ≤6 ), αk are constant coefficients, Πk(ϕ ) are some known differential functions of ϕ . As some special cases of the high-order nonlinear partial differential equation, the classical (m)KdV equation, KdV-Burgers equation, K (n ,n ) -Burgers equation, Kuramoto-Sivashinsky equation, and Kawahara equation can be solved by the present LB model. Compared to the available LB models, the most distinct characteristic of the present model is to introduce some suitable auxiliary moments such that the correct moments of equilibrium distribution function can be achieved. In addition, we also conducted a detailed Chapman-Enskog analysis, and found that the high-order nonlinear partial differential equation can be correctly recovered from the proposed LB model. Finally, a large number of simulations are performed, and it is found that the numerical results agree with the analytical solutions, and usually the present model is also more accurate than the existing LB models [H. Lai and C. Ma, Sci. China Ser. G 52, 1053 (2009), 10.1007/s11433-009-0149-3; H. Lai and C. Ma, Phys. A (Amsterdam) 388, 1405 (2009), 10.1016/j.physa.2009.01.005] for high-order nonlinear partial differential equations.
Lattice Boltzmann model for high-order nonlinear partial differential equations.
Chai, Zhenhua; He, Nanzhong; Guo, Zhaoli; Shi, Baochang
2018-01-01
In this paper, a general lattice Boltzmann (LB) model is proposed for the high-order nonlinear partial differential equation with the form ∂_{t}ϕ+∑_{k=1}^{m}α_{k}∂_{x}^{k}Π_{k}(ϕ)=0 (1≤k≤m≤6), α_{k} are constant coefficients, Π_{k}(ϕ) are some known differential functions of ϕ. As some special cases of the high-order nonlinear partial differential equation, the classical (m)KdV equation, KdV-Burgers equation, K(n,n)-Burgers equation, Kuramoto-Sivashinsky equation, and Kawahara equation can be solved by the present LB model. Compared to the available LB models, the most distinct characteristic of the present model is to introduce some suitable auxiliary moments such that the correct moments of equilibrium distribution function can be achieved. In addition, we also conducted a detailed Chapman-Enskog analysis, and found that the high-order nonlinear partial differential equation can be correctly recovered from the proposed LB model. Finally, a large number of simulations are performed, and it is found that the numerical results agree with the analytical solutions, and usually the present model is also more accurate than the existing LB models [H. Lai and C. Ma, Sci. China Ser. G 52, 1053 (2009)1672-179910.1007/s11433-009-0149-3; H. Lai and C. Ma, Phys. A (Amsterdam) 388, 1405 (2009)PHYADX0378-437110.1016/j.physa.2009.01.005] for high-order nonlinear partial differential equations.
Generation mechanisms of fundamental rogue wave spatial-temporal structure.
Ling, Liming; Zhao, Li-Chen; Yang, Zhan-Ying; Guo, Boling
2017-08-01
We discuss the generation mechanism of fundamental rogue wave structures in N-component coupled systems, based on analytical solutions of the nonlinear Schrödinger equation and modulational instability analysis. Our analysis discloses that the pattern of a fundamental rogue wave is determined by the evolution energy and growth rate of the resonant perturbation that is responsible for forming the rogue wave. This finding allows one to predict the rogue wave pattern without the need to solve the N-component coupled nonlinear Schrödinger equation. Furthermore, our results show that N-component coupled nonlinear Schrödinger systems may possess N different fundamental rogue wave patterns at most. These results can be extended to evaluate the type and number of fundamental rogue wave structure in other coupled nonlinear systems.
Inertial Force Coupling to Nonlinear Aeroelasticity of Flexible Wing Aircraft
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.; Ting, Eric
2016-01-01
This paper investigates the inertial force effect on nonlinear aeroelasticity of flexible wing aircraft. The geometric are nonlinearity due to rotational and tension stiffening. The effect of large bending deflection will also be investigated. Flutter analysis will be conducted for a truss-braced wing aircraft concept with tension stiffening and inertial force coupling.
Study of solar wind spectra by nonlinear waves interaction
NASA Astrophysics Data System (ADS)
Dwivedi, Navin; Sharma, Rampal; Narita, Yasuhito
2014-05-01
The nature of small-scale turbulent fluctuations in the solar wind (SW) turbulence is a topic that is being investigated extensively nowadays, both theoretically and observationally. Although recent observations predict the evidence of the dominance of kinetic Alfvén waves (KAW) at sub-ion scales with frequency below than ion cyclotron frequency, while other studies suggest that the KAW mode cannot carry the turbulence cascade down to electron scales and that the whistler mode is more relevant. In the present work, nonlinear interaction of kinetic Alfvén wave with whistler wave is considered as one of the possible cause responsible for the solar wind turbulence. A set of coupled dimensionless equations are derived for the intermediate beta plasmas and the nonlinear interaction between these two wave modes has been studied. As a consequence of ponderomotive nonlinearity, the pump KAW becomes filamented when its power exceeds the threshold for the filamentation instability. Whistler is considered to be weak and thus doesn't have enough intensity to initiate its own localization. It gets localized while propagating through the density channel created by KAW localization. In addition, spectral scales of power spectra of KAW and whistler are also calculated. The steeper spectra are found with scaling greater than -5/3. This type of nonlinear interaction between different wave modes and steeper spectra is one of the reasons for the solar wind turbulence and particles acceleration. This work is partially supported by DST (India) and FP7/STORM (313038)
Spin-current emission governed by nonlinear spin dynamics.
Tashiro, Takaharu; Matsuura, Saki; Nomura, Akiyo; Watanabe, Shun; Kang, Keehoon; Sirringhaus, Henning; Ando, Kazuya
2015-10-16
Coupling between conduction electrons and localized magnetization is responsible for a variety of phenomena in spintronic devices. This coupling enables to generate spin currents from dynamical magnetization. Due to the nonlinearity of magnetization dynamics, the spin-current emission through the dynamical spin-exchange coupling offers a route for nonlinear generation of spin currents. Here, we demonstrate spin-current emission governed by nonlinear magnetization dynamics in a metal/magnetic insulator bilayer. The spin-current emission from the magnetic insulator is probed by the inverse spin Hall effect, which demonstrates nontrivial temperature and excitation power dependences of the voltage generation. The experimental results reveal that nonlinear magnetization dynamics and enhanced spin-current emission due to magnon scatterings are triggered by decreasing temperature. This result illustrates the crucial role of the nonlinear magnon interactions in the spin-current emission driven by dynamical magnetization, or nonequilibrium magnons, from magnetic insulators.
Spin-current emission governed by nonlinear spin dynamics
Tashiro, Takaharu; Matsuura, Saki; Nomura, Akiyo; Watanabe, Shun; Kang, Keehoon; Sirringhaus, Henning; Ando, Kazuya
2015-01-01
Coupling between conduction electrons and localized magnetization is responsible for a variety of phenomena in spintronic devices. This coupling enables to generate spin currents from dynamical magnetization. Due to the nonlinearity of magnetization dynamics, the spin-current emission through the dynamical spin-exchange coupling offers a route for nonlinear generation of spin currents. Here, we demonstrate spin-current emission governed by nonlinear magnetization dynamics in a metal/magnetic insulator bilayer. The spin-current emission from the magnetic insulator is probed by the inverse spin Hall effect, which demonstrates nontrivial temperature and excitation power dependences of the voltage generation. The experimental results reveal that nonlinear magnetization dynamics and enhanced spin-current emission due to magnon scatterings are triggered by decreasing temperature. This result illustrates the crucial role of the nonlinear magnon interactions in the spin-current emission driven by dynamical magnetization, or nonequilibrium magnons, from magnetic insulators. PMID:26472712
Nonlinear analysis of 0-3 polarized PLZT microplate based on the new modified couple stress theory
NASA Astrophysics Data System (ADS)
Wang, Liming; Zheng, Shijie
2018-02-01
In this study, based on the new modified couple stress theory, the size- dependent model for nonlinear bending analysis of a pure 0-3 polarized PLZT plate is developed for the first time. The equilibrium equations are derived from a variational formulation based on the potential energy principle and the new modified couple stress theory. The Galerkin method is adopted to derive the nonlinear algebraic equations from governing differential equations. And then the nonlinear algebraic equations are solved by using Newton-Raphson method. After simplification, the new model includes only a material length scale parameter. In addition, numerical examples are carried out to study the effect of material length scale parameter on the nonlinear bending of a simply supported pure 0-3 polarized PLZT plate subjected to light illumination and uniform distributed load. The results indicate the new model is able to capture the size effect and geometric nonlinearity.
Modulation of localized solutions in a system of two coupled nonlinear Schrödinger equations.
Cardoso, W B; Avelar, A T; Bazeia, D
2012-08-01
In this work we study localized solutions of a system of two coupled nonlinear Schrödinger equations, with the linear (potential) and nonlinear coefficients engendering spatial and temporal dependencies. Similarity transformations are used to convert the nonautonomous coupled equations into autonomous ones and we use the trial orbit method to help us solving them, presenting solutions in a general way. Numerical experiments are then used to verify the stability of the localized solutions.
Inference of Stochastic Nonlinear Oscillators with Applications to Physiological Problems
NASA Technical Reports Server (NTRS)
Smelyanskiy, Vadim N.; Luchinsky, Dmitry G.
2004-01-01
A new method of inferencing of coupled stochastic nonlinear oscillators is described. The technique does not require extensive global optimization, provides optimal compensation for noise-induced errors and is robust in a broad range of dynamical models. We illustrate the main ideas of the technique by inferencing a model of five globally and locally coupled noisy oscillators. Specific modifications of the technique for inferencing hidden degrees of freedom of coupled nonlinear oscillators is discussed in the context of physiological applications.
Non-linear optics of ultrastrongly coupled cavity polaritons
NASA Astrophysics Data System (ADS)
Crescimanno, Michael; Liu, Bin; McMaster, Michael; Singer, Kenneth
2016-05-01
Experiments at CWRU have developed organic cavity polaritons that display world-record vacuum Rabi splittings of more than an eV. This ultrastrongly coupled polaritonic matter is a new regime for exploring non-linear optical effects. We apply quantum optics theory to quantitatively determine various non-linear optical effects including types of low harmonic generation (SHG and THG) in single and double cavity polariton systems. Ultrastrongly coupled photon-matter systems such as these may be the foundation for technologies including low-power optical switching and computing.
NASA Astrophysics Data System (ADS)
Chen, Shuhong; Tan, Zhong
2007-11-01
In this paper, we consider the nonlinear elliptic systems under controllable growth condition. We use a new method introduced by Duzaar and Grotowski, for proving partial regularity for weak solutions, based on a generalization of the technique of harmonic approximation. We extend previous partial regularity results under the natural growth condition to the case of the controllable growth condition, and directly establishing the optimal Hölder exponent for the derivative of a weak solution.
Cao, Hui; Li, Yao-Jiang; Zhou, Yan; Wang, Yan-Xia
2014-11-01
To deal with nonlinear characteristics of spectra data for the thermal power plant flue, a nonlinear partial least square (PLS) analysis method with internal model based on neural network is adopted in the paper. The latent variables of the independent variables and the dependent variables are extracted by PLS regression firstly, and then they are used as the inputs and outputs of neural network respectively to build the nonlinear internal model by train process. For spectra data of flue gases of the thermal power plant, PLS, the nonlinear PLS with the internal model of back propagation neural network (BP-NPLS), the non-linear PLS with the internal model of radial basis function neural network (RBF-NPLS) and the nonlinear PLS with the internal model of adaptive fuzzy inference system (ANFIS-NPLS) are compared. The root mean square error of prediction (RMSEP) of sulfur dioxide of BP-NPLS, RBF-NPLS and ANFIS-NPLS are reduced by 16.96%, 16.60% and 19.55% than that of PLS, respectively. The RMSEP of nitric oxide of BP-NPLS, RBF-NPLS and ANFIS-NPLS are reduced by 8.60%, 8.47% and 10.09% than that of PLS, respectively. The RMSEP of nitrogen dioxide of BP-NPLS, RBF-NPLS and ANFIS-NPLS are reduced by 2.11%, 3.91% and 3.97% than that of PLS, respectively. Experimental results show that the nonlinear PLS is more suitable for the quantitative analysis of glue gas than PLS. Moreover, by using neural network function which can realize high approximation of nonlinear characteristics, the nonlinear partial least squares method with internal model mentioned in this paper have well predictive capabilities and robustness, and could deal with the limitations of nonlinear partial least squares method with other internal model such as polynomial and spline functions themselves under a certain extent. ANFIS-NPLS has the best performance with the internal model of adaptive fuzzy inference system having ability to learn more and reduce the residuals effectively. Hence, ANFIS-NPLS is an accurate and useful quantitative thermal power plant flue gas analysis method.
NASA Astrophysics Data System (ADS)
Biria, Saeid; Morim, Derek R.; An Tsao, Fu; Saravanamuttu, Kalaichelvi; Hosein, Ian D.
2017-10-01
Nonlinear optics and polymer systems are distinct fields that have been studied for decades. These two fields intersect with the observation of nonlinear wave propagation in photoreactive polymer systems. This has led to studies on the nonlinear dynamics of transmitted light in polymer media, particularly for optical self-trapping and optical modulation instability. The irreversibility of polymerization leads to permanent capture of nonlinear optical patterns in the polymer structure, which is a new synthetic route to complex structured soft materials. Over time more intricate polymer systems are employed, whereby nonlinear optical dynamics can couple to nonlinear chemical dynamics, opening opportunities for self-organization. This paper discusses the work to date on nonlinear optical pattern formation processes in polymers. A brief overview of nonlinear optical phenomenon is provided to set the stage for understanding their effects. We review the accomplishments of the field on studying nonlinear waveform propagation in photopolymerizable systems, then discuss our most recent progress in coupling nonlinear optical pattern formation to polymer blends and phase separation. To this end, perspectives on future directions and areas of sustained inquiry are provided. This review highlights the significant opportunity in exploiting nonlinear optical pattern formation in soft matter for the discovery of new light-directed and light-stimulated materials phenomenon, and in turn, soft matter provides a platform by which new nonlinear optical phenomenon may be discovered.
Rashidi, Mohammad M; Kavyani, Neda; Abelman, Shirley; Uddin, Mohammed J; Freidoonimehr, Navid
2014-01-01
In this study combined heat and mass transfer by mixed convective flow along a moving vertical flat plate with hydrodynamic slip and thermal convective boundary condition is investigated. Using similarity variables, the governing nonlinear partial differential equations are converted into a system of coupled nonlinear ordinary differential equations. The transformed equations are then solved using a semi-numerical/analytical method called the differential transform method and results are compared with numerical results. Close agreement is found between the present method and the numerical method. Effects of the controlling parameters, including convective heat transfer, magnetic field, buoyancy ratio, hydrodynamic slip, mixed convective, Prandtl number and Schmidt number are investigated on the dimensionless velocity, temperature and concentration profiles. In addition effects of different parameters on the skin friction factor, [Formula: see text], local Nusselt number, [Formula: see text], and local Sherwood number [Formula: see text] are shown and explained through tables.
Financial networks based on Granger causality: A case study
NASA Astrophysics Data System (ADS)
Papana, Angeliki; Kyrtsou, Catherine; Kugiumtzis, Dimitris; Diks, Cees
2017-09-01
Connectivity analysis is performed on a long financial record of 21 international stock indices employing a linear and a nonlinear causality measure, the conditional Granger causality index (CGCI) and the partial mutual information on mixed embedding (PMIME), respectively. Both measures aim to specify the direction of the interrelationships among the international stock indexes and portray the links of the resulting networks, by the presence of direct couplings between variables exploiting all available information. However, their differences are assessed due to the presence of nonlinearity. The weighted networks formed with respect to the causality measures are transformed to binary ones using a significance test. The financial networks are formed on sliding windows in order to examine the network characteristics and trace changes in the connectivity structure. Subsequently, two statistical network quantities are calculated; the average degree and the average shortest path length. The empirical findings reveal interesting time-varying properties of the constructed network, which are clearly dependent on the nature of the financial cycle.
Rotational dynamics of bases in the gene coding interferon alpha 17 (IFNA17).
Krasnobaeva, L A; Yakushevich, L V
2015-02-01
In the present work, rotational oscillations of nitrogenous bases in the DNA with the sequence of the gene coding interferon alpha 17 (IFNA17), are investigated. As a mathematical model simulating oscillations of the bases, we use a system of two coupled nonlinear partial differential equations that takes into account effects of dissipation, action of external fields and dependence of the equation coefficients on the sequence of bases. We apply the methods of the theory of oscillations to solve the equations in the linear approach and to construct the dispersive curves determining the dependence of the frequency of the plane waves (ω) on the wave vector (q). In the nonlinear case, the solutions in the form of kink are considered, and the main characteristics of the kink: the rest energy (E0), the rest mass (m0), the size (d) and sound velocity (C0), are calculated. With the help of the energetic method, the kink velocity (υ), the path (S), and the lifetime (τ) are also obtained.
NASA Astrophysics Data System (ADS)
Asadi, Reza; Ouyang, Zhengbiao
2018-03-01
A new mechanism for out-of-plane coupling into a waveguide is presented and numerically studied based on nonlinear scattering of a single nano-scale Graphene layer inside the waveguide. In this mechanism, the refractive index nonlinearity of Graphene and nonhomogeneous light intensity distribution occurred due to the interference between the out-of-plane incident pump light and the waveguide mode provide a virtual grating inside the waveguide, coupling the out-of-plane pump light into the waveguide. It has been shown that the coupling efficiency has two distinct values with high contrast around a threshold pump intensity, providing suitable condition for digital optical applications. The structure operates at a resonance mode due to band edge effect, which enhances the nonlinearity and decreases the required threshold intensity.
NASA Astrophysics Data System (ADS)
Moore, Keegan J.; Bunyan, Jonathan; Tawfick, Sameh; Gendelman, Oleg V.; Li, Shuangbao; Leamy, Michael; Vakakis, Alexander F.
2018-01-01
In linear time-invariant dynamical and acoustical systems, reciprocity holds by the Onsager-Casimir principle of microscopic reversibility, and this can be broken only by odd external biases, nonlinearities, or time-dependent properties. A concept is proposed in this work for breaking dynamic reciprocity based on irreversible nonlinear energy transfers from large to small scales in a system with nonlinear hierarchical internal structure, asymmetry, and intentional strong stiffness nonlinearity. The resulting nonreciprocal large-to-small scale energy transfers mimic analogous nonlinear energy transfer cascades that occur in nature (e.g., in turbulent flows), and are caused by the strong frequency-energy dependence of the essentially nonlinear small-scale components of the system considered. The theoretical part of this work is mainly based on action-angle transformations, followed by direct numerical simulations of the resulting system of nonlinear coupled oscillators. The experimental part considers a system with two scales—a linear large-scale oscillator coupled to a small scale by a nonlinear spring—and validates the theoretical findings demonstrating nonreciprocal large-to-small scale energy transfer. The proposed study promotes a paradigm for designing nonreciprocal acoustic materials harnessing strong nonlinearity, which in a future application will be implemented in designing lattices incorporating nonlinear hierarchical internal structures, asymmetry, and scale mixing.
Rogue waves for a system of coupled derivative nonlinear Schrödinger equations.
Chan, H N; Malomed, B A; Chow, K W; Ding, E
2016-01-01
Rogue waves (RWs) are unexpectedly strong excitations emerging from an otherwise tranquil background. The nonlinear Schrödinger equation (NLSE), a ubiquitous model with wide applications to fluid mechanics, optics, plasmas, etc., exhibits RWs only in the regime of modulation instability (MI) of the background. For a system of multiple waveguides, the governing coupled NLSEs can produce regimes of MI and RWs, even if each component has dispersion and cubic nonlinearity of opposite signs. A similar effect is demonstrated here for a system of coupled derivative NLSEs (DNLSEs) where the special feature is the nonlinear self-steepening of narrow pulses. More precisely, these additional regimes of MI and RWs for coupled DNLSEs depend on the mismatch in group velocities between the components, and the parameters for cubic nonlinearity and self-steepening. RWs considered in this paper differ from those of the NLSEs in terms of the amplification ratio and criteria of existence. Applications to optics and plasma physics are discussed.
NASA Astrophysics Data System (ADS)
Ali, Gul-e.; Ahmad, Ali; Masood, W.; Mirza, Arshad M.
2017-12-01
Linear and nonlinear coupling of drift and ion acoustic waves are studied in a nonuniform magnetized plasma comprising of Oxygen and Hydrogen ions with nonthermal distribution of electrons. It has been observed that different ratios of ion number densities and kappa and Cairns distributed electrons significantly modify the linear dispersion characteristics of coupled drift-ion acoustic waves. In the nonlinear regime, KdV (for pure drift waves) and KP (for coupled drift-ion acoustic waves) like equations have been derived to study the nonlinear evolution of drift solitary waves in one and two dimensions. The dependence of drift solitary structures on different ratios of ion number densities and nonthermal distribution of electrons has also been explored in detail. It has been found that the ratio of the diamagnetic drift velocity to the velocity of the nonlinear structure determines the existence regimes for the drift solitary waves. The present investigation may be beneficial to understand the formation of solitons in the ionospheric F-region.
NASA Astrophysics Data System (ADS)
Filimonov, M. Yu.
2017-12-01
The method of special series with recursively calculated coefficients is used to solve nonlinear partial differential equations. The recurrence of finding the coefficients of the series is achieved due to a special choice of functions, in powers of which the solution is expanded in a series. We obtain a sequence of linear partial differential equations to find the coefficients of the series constructed. In many cases, one can deal with a sequence of linear ordinary differential equations. We construct classes of solutions in the form of convergent series for a certain class of nonlinear evolution equations. A new class of solutions of generalized Boussinesque equation with an arbitrary function in the form of a convergent series is constructed.
Nonlinear Dynamics of Electroelastic Dielectric Elastomers
2018-01-30
research will significantly advance the basic science and fundamental understanding of how rate- dependent material response couples to large, nonlinear...experimental studies of constrained dielectric elastomer films, a transition in the surface instability mechanism depending on the elastocapillary number...fundamental understanding of how rate- dependent material response couples to large, nonlinear material deformation under applied electrostatic loading to
Synchronization between two coupled direct current glow discharge plasma sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chaubey, Neeraj; Mukherjee, S.; Sen, A.
2015-02-15
Experimental results on the nonlinear dynamics of two coupled glow discharge plasma sources are presented. A variety of nonlinear phenomena including frequency synchronization and frequency pulling are observed as the coupling strength is varied. Numerical solutions of a model representation of the experiment consisting of two coupled asymmetric Van der Pol type equations are found to be in good agreement with the observed results.
Fractional Order Spatiotemporal Chaos with Delay in Spatial Nonlinear Coupling
NASA Astrophysics Data System (ADS)
Zhang, Yingqian; Wang, Xingyuan; Liu, Liyan; Liu, Jia
We investigate the spatiotemporal dynamics with fractional order differential logistic map with delay under nonlinear chaotic maps for spatial coupling connections. Here, the coupling methods between lattices are the nonlinear chaotic map coupling of lattices. The fractional order differential logistic map with delay breaks the limits of the range of parameter μ ∈ [3.75, 4] in the classical logistic map for chaotic states. The Kolmogorov-Sinai entropy density and universality, and bifurcation diagrams are employed to investigate the chaotic behaviors of the proposed model in this paper. The proposed model can also be applied for cryptography, which is verified in a color image encryption scheme in this paper.
Regression of non-linear coupling of noise in LIGO detectors
NASA Astrophysics Data System (ADS)
Da Silva Costa, C. F.; Billman, C.; Effler, A.; Klimenko, S.; Cheng, H.-P.
2018-03-01
In 2015, after their upgrade, the advanced Laser Interferometer Gravitational-Wave Observatory (LIGO) detectors started acquiring data. The effort to improve their sensitivity has never stopped since then. The goal to achieve design sensitivity is challenging. Environmental and instrumental noise couple to the detector output with different, linear and non-linear, coupling mechanisms. The noise regression method we use is based on the Wiener–Kolmogorov filter, which uses witness channels to make noise predictions. We present here how this method helped to determine complex non-linear noise couplings in the output mode cleaner and in the mirror suspension system of the LIGO detector.
Theories of quantum dissipation and nonlinear coupling bath descriptors
NASA Astrophysics Data System (ADS)
Xu, Rui-Xue; Liu, Yang; Zhang, Hou-Dao; Yan, YiJing
2018-03-01
The quest of an exact and nonperturbative treatment of quantum dissipation in nonlinear coupling environments remains in general an intractable task. In this work, we address the key issues toward the solutions to the lowest nonlinear environment, a harmonic bath coupled both linearly and quadratically with an arbitrary system. To determine the bath coupling descriptors, we propose a physical mapping scheme, together with the prescription reference invariance requirement. We then adopt a recently developed dissipaton equation of motion theory [R. X. Xu et al., Chin. J. Chem. Phys. 30, 395 (2017)], with the underlying statistical quasi-particle ("dissipaton") algebra being extended to the quadratic bath coupling. We report the numerical results on a two-level system dynamics and absorption and emission line shapes.
NASA Astrophysics Data System (ADS)
Wang, Chao; Search, Christopher
2013-03-01
Optical gyroscopes based on the Sagnac effect are of great interest both theoretically and practically. Previously it has been suggested a nonlinear Kerr medium inserted into a ring resonator gyroscope can largely increase the rotation sensitivity due to an instability caused by the non-reciprocal self-phase and cross-phase modulations. Recently, coupled microresonator arrays such as Side-Coupled Integrated Spaced Sequence of Resonators (SCISSOR) and Coupled Resonator Optical Waveguides (CROW) have drawn interest as potential integrated gyroscopes due to the sensitivity enhancement resulting from distributed interference between resonators. Here we analyze a SCISSOR system, which consists of an array of microresonators evanescently coupled to two parallel bus waveguides in the presence of a strong intra-resonator Kerr nonlinearity. We show that the distributed interference in the waveguides combined with the nonlinearly enhanced Sagnac effect in the resonators can further improve the sensitivity compared with either a single resonator of equal footprint or SCISSOR without a Kerr nonlinearity. Numerical simulation shows that bistability in the SCISSOR occurs and the rotation sensitivity dIoutput/dω can go to infinity near the boundaries of the bistable region.
Talaei, Behzad; Jagannathan, Sarangapani; Singler, John
2018-04-01
In this paper, neurodynamic programming-based output feedback boundary control of distributed parameter systems governed by uncertain coupled semilinear parabolic partial differential equations (PDEs) under Neumann or Dirichlet boundary control conditions is introduced. First, Hamilton-Jacobi-Bellman (HJB) equation is formulated in the original PDE domain and the optimal control policy is derived using the value functional as the solution of the HJB equation. Subsequently, a novel observer is developed to estimate the system states given the uncertain nonlinearity in PDE dynamics and measured outputs. Consequently, the suboptimal boundary control policy is obtained by forward-in-time estimation of the value functional using a neural network (NN)-based online approximator and estimated state vector obtained from the NN observer. Novel adaptive tuning laws in continuous time are proposed for learning the value functional online to satisfy the HJB equation along system trajectories while ensuring the closed-loop stability. Local uniformly ultimate boundedness of the closed-loop system is verified by using Lyapunov theory. The performance of the proposed controller is verified via simulation on an unstable coupled diffusion reaction process.
Possible Quantum Absorber Effects in Cortical Synchronization
NASA Astrophysics Data System (ADS)
Kämpf, Uwe
The Wheeler-Feynman transactional "absorber" approach was proposed originally to account for anomalous resonance coupling between spatio-temporally distant measurement partners in entangled quantum states of so-called Einstein-Podolsky-Rosen paradoxes, e.g. of spatio-temporal non-locality, quantum teleportation, etc. Applied to quantum brain dynamics, however, this view provides an anticipative resonance coupling model for aspects of cortical synchronization and recurrent visual action control. It is proposed to consider the registered activation patterns of neuronal loops in so-called synfire chains not as a result of retarded brain communication processes, but rather as surface effects of a system of standing waves generated in the depth of visual processing. According to this view, they arise from a counterbalance between the actual input's delayed bottom-up data streams and top-down recurrent information-processing of advanced anticipative signals in a Wheeler-Feynman-type absorber mode. In the framework of a "time-loop" model, findings about mirror neurons in the brain cortex are suggested to be at least partially associated with temporal rather than spatial mirror functions of visual processing, similar to phase conjugate adaptive resonance-coupling in nonlinear optics.
Analysing coupling architecture in the cortical EEG of a patient with unilateral cerebral palsy
NASA Astrophysics Data System (ADS)
Kornilov, Maksim V.; Baas, C. Marjolein; van Rijn, Clementina M.; Sysoev, Ilya V.
2016-04-01
The detection of coupling presence and direction between cortical areas from the EEG is a popular approach in neuroscience. Granger causality method is promising for this task, since it allows to operate with short time series and to detect nonlinear coupling or coupling between nonlinear systems. In this study EEG multichannel data from adolescent children, suffering from unilateral cerebral palsy were investigated. Signals, obtained in rest and during motor activity of affected and less affected hand, were analysed. The changes in inter-hemispheric and intra-hemispheric interactions were studied over time with an interval of two months. The obtained results of coupling were tested for significance using surrogate times series. In the present proceeding paper we report the data of one patient. The modified nonlinear Granger causality is indeed able to reveal couplings within the human brain.
The production of phantom partials due to nonlinearities in the structural components of the piano.
Rokni, Eric; Neldner, Lauren M; Adkison, Camille; Moore, Thomas R
2017-10-01
Phantom partials are anomalous overtones in the spectrum of the piano sound that occur at sum and difference frequencies of the natural overtones of the string. Although they are commonly assumed to be produced by forced longitudinal waves in the string, analysis of the sound of a piano produced by mechanically vibrating the soundboard while all the strings are damped indicates that phantom partials can occur in the absence of string motion. The magnitude of the effect leads to the conclusion that nonlinearity in the non-string components may be responsible for some of the power in the phantom partials.
Nonlinear tunneling of optical soliton in 3 coupled NLS equation with symbolic computation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mani Rajan, M.S., E-mail: senthilmanirajanofc@gmail.com; Mahalingam, A.; Uthayakumar, A.
We investigated the soliton solution for N coupled nonlinear Schrödinger (CNLS) equations. These equations are coupled due to the cross-phase-modulation (CPM). Lax pair of this system is obtained via the Ablowitz–Kaup–Newell–Segur (AKNS) scheme and the corresponding Darboux transformation is constructed to derive the soliton solution. One and two soliton solutions are generated. Using two soliton solutions of 3 CNLS equation, nonlinear tunneling of soliton for both with and without exponential background has been discussed. Finally cascade compression of optical soliton through multi-nonlinear barrier has been discussed. The obtained results may have promising applications in all-optical devices based on optical solitons,more » study of soliton propagation in birefringence fiber systems and optical soliton with distributed dispersion and nonlinearity management. -- Highlights: •We consider the nonlinear tunneling of soliton in birefringence fiber. •3-coupled NLS (CNLS) equation with variable coefficients is considered. •Two soliton solutions are obtained via Darboux transformation using constructed Lax pair. •Soliton tunneling through dispersion barrier and well are investigated. •Finally, cascade compression of soliton has been achieved.« less
Vortex-induced vibrations mitigation through a nonlinear energy sink
NASA Astrophysics Data System (ADS)
Dai, H. L.; Abdelkefi, A.; Wang, L.
2017-01-01
The passive suppression mechanism of the vortex-induced vibrations (VIV) of the cylinder by means of an essentially nonlinear element, the nonlinear energy sink (NES) is investigated. The flow-induced loads on the cylinder are modeled using a prevalent van der Pol oscillator which is experimentally validated, coupling to the structural vibrations in the presence of the NES structure. Based on the coupled nonlinear governing equations of motion, the performed analysis indicates that the mass and damping of NES have significant effects on the coupled frequency and damping of the aero-elastic system, leading to the shift of synchronization region and mitigation of vibration responses. It is demonstrated that the coupled system of flow-cylinder-NES behaves resonant interactions, showing periodic, aperiodic, and multiple stable responses which depend on the values of the NES parameters. In addition, it is found that the occurrence of multiple stable responses can enhance the nonlinear energy pumping effect, resulting in the increment of transferring energy from the flow via the cylinder to the NES, which is related to the essential nonlinearity of the sink stiffness. This results in a significant reduction in the VIV amplitudes of the primary circular cylinder for appropriate NES parameter values.
Concatenons as the solutions for non-linear partial differential equations
NASA Astrophysics Data System (ADS)
Kudryashov, N. A.; Volkov, A. K.
2017-07-01
New class of solutions for nonlinear partial differential equations is introduced. We call them the concaten solutions. As an example we consider equations for the description of wave processes in the Fermi-Pasta-Ulam mass chain and construct the concatenon solutions for these equation. Stability of the concatenon-type solutions is investigated numerically. Interaction between the concatenon and solitons is discussed.
Two-dimensional solitary waves and periodic waves on coupled nonlinear electrical transmission lines
NASA Astrophysics Data System (ADS)
Wang, Heng; Zheng, Shuhua
2017-06-01
By using the dynamical system approach, the exact travelling wave solutions for a system of coupled nonlinear electrical transmission lines are studied. Based on this method, the bifurcations of phase portraits of a dynamical system are given. The two-dimensional solitary wave solutions and periodic wave solutions on coupled nonlinear transmission lines are obtained. With the aid of Maple, the numerical simulations are conducted for solitary wave solutions and periodic wave solutions to the model equation. The results presented in this paper improve upon previous studies.
Nonlinear modal resonances in low-gravity slosh-spacecraft systems
NASA Technical Reports Server (NTRS)
Peterson, Lee D.
1991-01-01
Nonlinear models of low gravity slosh, when coupled to spacecraft vibrations, predict intense nonlinear eigenfrequency shifts at zero gravity. These nonlinear frequency shifts are due to internal quadratic and cubic resonances between fluid slosh modes and spacecraft vibration modes. Their existence has been verified experimentally, and they cannot be correctly modeled by approximate, uncoupled nonlinear models, such as pendulum mechanical analogs. These predictions mean that linear slosh assumptions for spacecraft vibration models can be invalid, and may lead to degraded control system stability and performance. However, a complete nonlinear modal analysis will predict the correct dynamic behavior. This paper presents the analytical basis for these results, and discusses the effect of internal resonances on the nonlinear coupled response at zero gravity.
Nonlinear optics quantum computing with circuit QED.
Adhikari, Prabin; Hafezi, Mohammad; Taylor, J M
2013-02-08
One approach to quantum information processing is to use photons as quantum bits and rely on linear optical elements for most operations. However, some optical nonlinearity is necessary to enable universal quantum computing. Here, we suggest a circuit-QED approach to nonlinear optics quantum computing in the microwave regime, including a deterministic two-photon phase gate. Our specific example uses a hybrid quantum system comprising a LC resonator coupled to a superconducting flux qubit to implement a nonlinear coupling. Compared to the self-Kerr nonlinearity, we find that our approach has improved tolerance to noise in the qubit while maintaining fast operation.
Calculation of sheath and wake structure about a pillbox-shaped spacecraft in a flowing plasma
NASA Technical Reports Server (NTRS)
Parker, L. W.
1977-01-01
A computer program was used for studies of the disturbed zones around bodies in flowing plasmas, particularly spacecraft and their associated sheaths and wakes. The program solved a coupled Poisson-Vlasov system of nonlinear partial differential integral equations to obtain distributions of electric potential and ion and electron density about a finite length cylinder in a plasma flow at arbitrary ion Mach numbers. The approach was applicable to a larger range of parameters than other available approaches. In sample calculations, bodies up to 100 Debye lengths in radius were treated, that is, larger than any previously treated realistically. Applications were made to in-situ satellite experiments.
NASA Astrophysics Data System (ADS)
Kannan, R. M.; Pullepu, Bapuji; Immanuel, Y.
2018-04-01
A two dimensional mathematical model is formulated for the transient laminar free convective flow with heat transfer over an incompressible viscous fluid past a vertical cone with uniform surface heat flux with combined effects of viscous dissipation and radiation. The dimensionless boundary layer equations of the flow which are transient, coupled and nonlinear Partial differential equations are solved using the Network Simulation Method (NSM), a powerful numerical technique which demonstrates high efficiency and accuracy by employing the network simulator computer code Pspice. The velocity and temperature profiles have been investigated for various factors, namely viscous dissipation parameter ε, Prandtl number Pr and radiation Rd are analyzed graphically.
Electrets in soft materials: nonlinearity, size effects, and giant electromechanical coupling.
Deng, Qian; Liu, Liping; Sharma, Pradeep
2014-07-01
Development of soft electromechanical materials is critical for several tantalizing applications such as soft robots and stretchable electronics, among others. Soft nonpiezoelectric materials can be coaxed to behave like piezoelectrics by merely embedding charges and dipoles in their interior and assuring some elastic heterogeneity. Such so-called electret materials have been experimentally shown to exhibit very large electromechanical coupling. In this work, we derive rigorous nonlinear expressions that relate effective electromechanical coupling to the creation of electret materials. In contrast to the existing models, we are able to both qualitatively and quantitatively capture the known experimental results on the nonlinear response of electret materials. Furthermore, we show that the presence of another form of electromechanical coupling, flexoelectricity, leads to size effects that dramatically alter the electromechanical response at submicron feature sizes. One of our key conclusions is that nonlinear deformation (prevalent in soft materials) significantly enhances the flexoelectric response and hence the aforementioned size effects.
Modulational Instability in a Pair of Non-identical Coupled Nonlinear Electrical Transmission Lines
NASA Astrophysics Data System (ADS)
Eric, Tala-Tebue; Aurelien, Kenfack-Jiotsa; Marius Hervé, Tatchou-Ntemfack; Timoléon Crépin, Kofané
2013-07-01
In this work, we investigate the dynamics of modulated waves non-identical coupled nonlinear transmission lines. Traditional methods for avoiding mode mixing in identical coupled nonlinear electrical lines consist of adding the same number of linear inductors in each branch. Adding linear inductors in a single line leads to asymmetric coupled nonlinear electrical transmission lines which propagate the signal and the mode mixing. On one hand, the difference between the two lines induced the fission for only one mode of propagation. This fission is influenced by the amplitude of the signal and the amount of the input energy as well; it also narrows the width of the input pulse soliton, leading to a possible increasing of the bit rate. On the other hand, the dissymmetry of the two lines converts the network into a good amplifier for the ω_ mode which corresponds to the regime admitting low frequencies.
Nonlinear quantum Rabi model in trapped ions
NASA Astrophysics Data System (ADS)
Cheng, Xiao-Hang; Arrazola, Iñigo; Pedernales, Julen S.; Lamata, Lucas; Chen, Xi; Solano, Enrique
2018-02-01
We study the nonlinear dynamics of trapped-ion models far away from the Lamb-Dicke regime. This nonlinearity induces a blockade on the propagation of quantum information along the Hilbert space of the Jaynes-Cummings and quantum Rabi models. We propose to use this blockade as a resource for the dissipative generation of high-number Fock states. Also, we compare the linear and nonlinear cases of the quantum Rabi model in the ultrastrong and deep strong-coupling regimes. Moreover, we propose a scheme to simulate the nonlinear quantum Rabi model in all coupling regimes. This can be done via off-resonant nonlinear red- and blue-sideband interactions in a single trapped ion, yielding applications as a dynamical quantum filter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gotoh, Hideki, E-mail: gotoh.hideki@lab.ntt.co.jp; Sanada, Haruki; Yamaguchi, Hiroshi
2014-10-15
Optical nonlinear effects are examined using a two-color micro-photoluminescence (micro-PL) method in a coherently coupled exciton-biexciton system in a single quantum dot (QD). PL and photoluminescence excitation spectroscopy (PLE) are employed to measure the absorption spectra of the exciton and biexciton states. PLE for Stokes and anti-Stokes PL enables us to clarify the nonlinear optical absorption properties in the lowest exciton and biexciton states. The nonlinear absorption spectra for excitons exhibit asymmetric shapes with peak and dip structures, and provide a distinct contrast to the symmetric dip structures of conventional nonlinear spectra. Theoretical analyses with a density matrix method indicatemore » that the nonlinear spectra are caused not by a simple coherent interaction between the exciton and biexciton states but by coupling effects among exciton, biexciton and continuum states. These results indicate that Fano quantum interference effects appear in exciton-biexciton systems at QDs and offer important insights into their physics.« less
Macías-Díaz, J E; Macías, Siegfried; Medina-Ramírez, I E
2013-12-01
In this manuscript, we present a computational model to approximate the solutions of a partial differential equation which describes the growth dynamics of microbial films. The numerical technique reported in this work is an explicit, nonlinear finite-difference methodology which is computationally implemented using Newton's method. Our scheme is compared numerically against an implicit, linear finite-difference discretization of the same partial differential equation, whose computer coding requires an implementation of the stabilized bi-conjugate gradient method. Our numerical results evince that the nonlinear approach results in a more efficient approximation to the solutions of the biofilm model considered, and demands less computer memory. Moreover, the positivity of initial profiles is preserved in the practice by the nonlinear scheme proposed. Copyright © 2013 Elsevier Ltd. All rights reserved.
Wave excitation by nonlinear coupling among shear Alfvén waves in a mirror-confined plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ikezoe, R., E-mail: ikezoe@prc.tsukuba.ac.jp; Ichimura, M.; Okada, T.
2015-09-15
A shear Alfvén wave at slightly below the ion-cyclotron frequency overcomes the ion-cyclotron damping and grows because of the strong anisotropy of the ion temperature in the magnetic mirror configuration, and is called the Alfvén ion-cyclotron (AIC) wave. Density fluctuations caused by the AIC waves and the ion-cyclotron range of frequencies (ICRF) waves used for ion heating have been detected using a reflectometer in a wide radial region of the GAMMA 10 tandem mirror plasma. Various wave-wave couplings are clearly observed in the density fluctuations in the interior of the plasma, but these couplings are not so clear in themore » magnetic fluctuations at the plasma edge when measured using a pick-up coil. A radial dependence of the nonlinearity is found, particularly in waves with the difference frequencies of the AIC waves; bispectral analysis shows that such wave-wave coupling is significant near the core, but is not so evident at the periphery. In contrast, nonlinear coupling with the low-frequency background turbulence is quite distinct at the periphery. Nonlinear coupling associated with the AIC waves may play a significant role in the beta- and anisotropy-limits of a mirror-confined plasma through decay of the ICRF heating power and degradation of the plasma confinement by nonlinearly generated waves.« less
TerraFERMA: Harnessing Advanced Computational Libraries in Earth Science
NASA Astrophysics Data System (ADS)
Wilson, C. R.; Spiegelman, M.; van Keken, P.
2012-12-01
Many important problems in Earth sciences can be described by non-linear coupled systems of partial differential equations. These "multi-physics" problems include thermo-chemical convection in Earth and planetary interiors, interactions of fluids and magmas with the Earth's mantle and crust and coupled flow of water and ice. These problems are of interest to a large community of researchers but are complicated to model and understand. Much of this complexity stems from the nature of multi-physics where small changes in the coupling between variables or constitutive relations can lead to radical changes in behavior, which in turn affect critical computational choices such as discretizations, solvers and preconditioners. To make progress in understanding such coupled systems requires a computational framework where multi-physics problems can be described at a high-level while maintaining the flexibility to easily modify the solution algorithm. Fortunately, recent advances in computational science provide a basis for implementing such a framework. Here we present the Transparent Finite Element Rapid Model Assembler (TerraFERMA), which leverages several advanced open-source libraries for core functionality. FEniCS (fenicsproject.org) provides a high level language for describing the weak forms of coupled systems of equations, and an automatic code generator that produces finite element assembly code. PETSc (www.mcs.anl.gov/petsc) provides a wide range of scalable linear and non-linear solvers that can be composed into effective multi-physics preconditioners. SPuD (amcg.ese.ic.ac.uk/Spud) is an application neutral options system that provides both human and machine-readable interfaces based on a single xml schema. Our software integrates these libraries and provides the user with a framework for exploring multi-physics problems. A single options file fully describes the problem, including all equations, coefficients and solver options. Custom compiled applications are generated from this file but share an infrastructure for services common to all models, e.g. diagnostics, checkpointing and global non-linear convergence monitoring. This maximizes code reusability, reliability and longevity ensuring that scientific results and the methods used to acquire them are transparent and reproducible. TerraFERMA has been tested against many published geodynamic benchmarks including 2D/3D thermal convection problems, the subduction zone benchmarks and benchmarks for magmatic solitary waves. It is currently being used in the investigation of reactive cracking phenomena with applications to carbon sequestration, but we will principally discuss its use in modeling the migration of fluids in subduction zones. Subduction zones require an understanding of the highly nonlinear interactions of fluids with solids and thus provide an excellent scientific driver for the development of multi-physics software.
Coupled rotor and fuselage equations of motion
NASA Technical Reports Server (NTRS)
Warmbrodt, W.
1979-01-01
The governing equations of motion of a helicopter rotor coupled to a rigid body fuselage are derived. A consistent formulation is used to derive nonlinear periodic coefficient equations of motion which are used to study coupled rotor/fuselage dynamics in forward flight. Rotor/fuselage coupling is documented and the importance of an ordering scheme in deriving nonlinear equations of motion is reviewed. The nature of the final equations and the use of multiblade coordinates are discussed.
Optical analogue of relativistic Dirac solitons in binary waveguide arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tran, Truong X., E-mail: truong.tran@mpl.mpg.de; Max Planck Institute for the Science of Light, Günther-Scharowsky str. 1, 91058 Erlangen; Longhi, Stefano
2014-01-15
We study analytically and numerically an optical analogue of Dirac solitons in binary waveguide arrays in the presence of Kerr nonlinearity. Pseudo-relativistic soliton solutions of the coupled-mode equations describing dynamics in the array are analytically derived. We demonstrate that with the found soliton solutions, the coupled mode equations can be converted into the nonlinear relativistic 1D Dirac equation. This paves the way for using binary waveguide arrays as a classical simulator of quantum nonlinear effects arising from the Dirac equation, something that is thought to be impossible to achieve in conventional (i.e. linear) quantum field theory. -- Highlights: •An opticalmore » analogue of Dirac solitons in nonlinear binary waveguide arrays is suggested. •Analytical solutions to pseudo-relativistic solitons are presented. •A correspondence of optical coupled-mode equations with the nonlinear relativistic Dirac equation is established.« less
Partial slip effect on non-aligned stagnation point nanofluid over a stretching convective surface
NASA Astrophysics Data System (ADS)
Nadeem, S.; Rashid, Mehmood; Noreen Sher, Akbar
2015-01-01
The present study inspects the non-aligned stagnation point nano fluid over a convective surface in the presence of partial slip.Two types of base fluids namely water and kerosene are selected with Cu nanoparticles. The governing physical problem is presented and transformed into a system of coupled nonlinear differential equations using suitable similarity transformations. These equations are then solved numerically using midpoint integration scheme along with Richardson extrapolation via Maple. Impact of relevant physical parameters on the dimensionless velocity and temperature profiles are portrayed through graphs. Physical quantities such as local skin frictions co-efficient and Nusselt numbers are tabularized. It is detected from numerical computations that kerosene-based nano fluids have better heat transfer capability compared with water-based nanofluids. Moreover it is found that water-based nanofluids offer less resistance in terms of skin friction than kerosene-based fluid. In order to authenticate our present study, the calculated results are compared with the prevailing literature and a considerable agreement is perceived for the limiting case.
Exp-function method for solving fractional partial differential equations.
Zheng, Bin
2013-01-01
We extend the Exp-function method to fractional partial differential equations in the sense of modified Riemann-Liouville derivative based on nonlinear fractional complex transformation. For illustrating the validity of this method, we apply it to the space-time fractional Fokas equation and the nonlinear fractional Sharma-Tasso-Olver (STO) equation. As a result, some new exact solutions for them are successfully established.
NASA Astrophysics Data System (ADS)
Bin-Mohsin, Bandar; Ahmed, Naveed; Adnan; Khan, Umar; Tauseef Mohyud-Din, Syed
2017-04-01
This article deals with the bioconvection flow in a parallel-plate channel. The plates are parallel and the flowing fluid is saturated with nanoparticles, and water is considered as a base fluid because microorganisms can survive only in water. A highly nonlinear and coupled system of partial differential equations presenting the model of bioconvection flow between parallel plates is reduced to a nonlinear and coupled system (nondimensional bioconvection flow model) of ordinary differential equations with the help of feasible nondimensional variables. In order to find the convergent solution of the system, a semi-analytical technique is utilized called variation of parameters method (VPM). Numerical solution is also computed and the Runge-Kutta scheme of fourth order is employed for this purpose. Comparison between these solutions has been made on the domain of interest and found to be in excellent agreement. Also, influence of various parameters has been discussed for the nondimensional velocity, temperature, concentration and density of the motile microorganisms both for suction and injection cases. Almost inconsequential influence of thermophoretic and Brownian motion parameters on the temperature field is observed. An interesting variation are inspected for the density of the motile microorganisms due to the varying bioconvection parameter in suction and injection cases. At the end, we make some concluding remarks in the light of this article.
Data Assimilation on a Quantum Annealing Computer: Feasibility and Scalability
NASA Astrophysics Data System (ADS)
Nearing, G. S.; Halem, M.; Chapman, D. R.; Pelissier, C. S.
2014-12-01
Data assimilation is one of the ubiquitous and computationally hard problems in the Earth Sciences. In particular, ensemble-based methods require a large number of model evaluations to estimate the prior probability density over system states, and variational methods require adjoint calculations and iteration to locate the maximum a posteriori solution in the presence of nonlinear models and observation operators. Quantum annealing computers (QAC) like the new D-Wave housed at the NASA Ames Research Center can be used for optimization and sampling, and therefore offers a new possibility for efficiently solving hard data assimilation problems. Coding on the QAC is not straightforward: a problem must be posed as a Quadratic Unconstrained Binary Optimization (QUBO) and mapped to a spherical Chimera graph. We have developed a method for compiling nonlinear 4D-Var problems on the D-Wave that consists of five steps: Emulating the nonlinear model and/or observation function using radial basis functions (RBF) or Chebyshev polynomials. Truncating a Taylor series around each RBF kernel. Reducing the Taylor polynomial to a quadratic using ancilla gadgets. Mapping the real-valued quadratic to a fixed-precision binary quadratic. Mapping the fully coupled binary quadratic to a partially coupled spherical Chimera graph using ancilla gadgets. At present the D-Wave contains 512 qbits (with 1024 and 2048 qbit machines due in the next two years); this machine size allows us to estimate only 3 state variables at each satellite overpass. However, QAC's solve optimization problems using a physical (quantum) system, and therefore do not require iterations or calculation of model adjoints. This has the potential to revolutionize our ability to efficiently perform variational data assimilation, as the size of these computers grows in the coming years.
NASA Astrophysics Data System (ADS)
Chen, Lin-Jie; Ma, Chang-Feng
2010-01-01
This paper proposes a lattice Boltzmann model with an amending function for one-dimensional nonlinear partial differential equations (NPDEs) in the form ut + αuux + βunux + γuxx + δuxxx + ζuxxxx = 0. This model is different from existing models because it lets the time step be equivalent to the square of the space step and derives higher accuracy and nonlinear terms in NPDEs. With the Chapman-Enskog expansion, the governing evolution equation is recovered correctly from the continuous Boltzmann equation. The numerical results agree well with the analytical solutions.
An ansatz for solving nonlinear partial differential equations in mathematical physics.
Akbar, M Ali; Ali, Norhashidah Hj Mohd
2016-01-01
In this article, we introduce an ansatz involving exact traveling wave solutions to nonlinear partial differential equations. To obtain wave solutions using direct method, the choice of an appropriate ansatz is of great importance. We apply this ansatz to examine new and further general traveling wave solutions to the (1+1)-dimensional modified Benjamin-Bona-Mahony equation. Abundant traveling wave solutions are derived including solitons, singular solitons, periodic solutions and general solitary wave solutions. The solutions emphasize the nobility of this ansatz in providing distinct solutions to various tangible phenomena in nonlinear science and engineering. The ansatz could be more efficient tool to deal with higher dimensional nonlinear evolution equations which frequently arise in many real world physical problems.
Tseng, Jui-Pin
2017-02-01
This investigation establishes the global cluster synchronization of complex networks with a community structure based on an iterative approach. The units comprising the network are described by differential equations, and can be non-autonomous and involve time delays. In addition, units in the different communities can be governed by different equations. The coupling configuration of the network is rather general. The coupling terms can be non-diffusive, nonlinear, asymmetric, and with heterogeneous coupling delays. Based on this approach, both delay-dependent and delay-independent criteria for global cluster synchronization are derived. We implement the present approach for a nonlinearly coupled neural network with heterogeneous coupling delays. Two numerical examples are given to show that neural networks can behave in a variety of new collective ways under the synchronization criteria. These examples also demonstrate that neural networks remain synchronized in spite of coupling delays between neurons across different communities; however, they may lose synchrony if the coupling delays between the neurons within the same community are too large, such that the synchronization criteria are violated. Copyright © 2016 Elsevier Ltd. All rights reserved.
Self-synchronization in an ensemble of nonlinear oscillators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ostrovsky, L. A., E-mail: lev.ostrovsky@gmail.com; Galperin, Y. V.; Skirta, E. A.
2016-06-15
The paper describes the results of study of a system of coupled nonlinear, Duffing-type oscillators, from the viewpoint of their self-synchronization, i.e., generation of a coherent field (order parameter) via instability of an incoherent (random-phase) initial state. We consider both the cases of dissipative coupling (e.g., via the joint radiation) and reactive coupling in a Hamiltonian system.
General implementation of arbitrary nonlinear quadrature phase gates
NASA Astrophysics Data System (ADS)
Marek, Petr; Filip, Radim; Ogawa, Hisashi; Sakaguchi, Atsushi; Takeda, Shuntaro; Yoshikawa, Jun-ichi; Furusawa, Akira
2018-02-01
We propose general methodology of deterministic single-mode quantum interaction nonlinearly modifying single quadrature variable of a continuous-variable system. The methodology is based on linear coupling of the system to ancillary systems subsequently measured by quadrature detectors. The nonlinear interaction is obtained by using the data from the quadrature detection for dynamical manipulation of the coupling parameters. This measurement-induced methodology enables direct realization of arbitrary nonlinear quadrature interactions without the need to construct them from the lowest-order gates. Such nonlinear interactions are crucial for more practical and efficient manipulation of continuous quadrature variables as well as qubits encoded in continuous-variable systems.
On the effect of acoustic coupling on random and harmonic plate vibrations
NASA Technical Reports Server (NTRS)
Frendi, A.; Robinson, J. H.
1993-01-01
The effect of acoustic coupling on random and harmonic plate vibrations is studied using two numerical models. In the coupled model, the plate response is obtained by integration of the nonlinear plate equation coupled with the nonlinear Euler equations for the surrounding acoustic fluid. In the uncoupled model, the nonlinear plate equation with an equivalent linear viscous damping term is integrated to obtain the response of the plate subject to the same excitation field. For a low-level, narrow-band excitation, the two models predict the same plate response spectra. As the excitation level is increased, the response power spectrum predicted by the uncoupled model becomes broader and more shifted towards the high frequencies than that obtained by the coupled model. In addition, the difference in response between the coupled and uncoupled models at high frequencies becomes larger. When a high intensity harmonic excitation is used, causing a nonlinear plate response, both models predict the same frequency content of the response. However, the level of the harmonics and subharmonics are higher for the uncoupled model. Comparisons to earlier experimental and numerical results show that acoustic coupling has a significant effect on the plate response at high excitation levels. Its absence in previous models may explain the discrepancy between predicted and measured responses.
Spatiotemporal light-beam compression from nonlinear mode coupling
NASA Astrophysics Data System (ADS)
Krupa, Katarzyna; Tonello, Alessandro; Couderc, Vincent; Barthélémy, Alain; Millot, Guy; Modotto, Daniele; Wabnitz, Stefan
2018-04-01
We experimentally demonstrate simultaneous spatial and temporal compression in the propagation of light pulses in multimode nonlinear optical fibers. We reveal that the spatial beam self-cleaning recently discovered in graded-index multimode fibers is accompanied by significant temporal reshaping and up to fourfold shortening of the injected subnanosecond laser pulses. Since the nonlinear coupling among the modes strongly depends on the instantaneous power, we explore the entire range of the nonlinear dynamics with a single optical pulse, where the optical power is continuously varied across the pulse profile.
Philip, Bobby; Berrill, Mark A.; Allu, Srikanth; ...
2015-01-26
We describe an efficient and nonlinearly consistent parallel solution methodology for solving coupled nonlinear thermal transport problems that occur in nuclear reactor applications over hundreds of individual 3D physical subdomains. Efficiency is obtained by leveraging knowledge of the physical domains, the physics on individual domains, and the couplings between them for preconditioning within a Jacobian Free Newton Krylov method. Details of the computational infrastructure that enabled this work, namely the open source Advanced Multi-Physics (AMP) package developed by the authors are described. The details of verification and validation experiments, and parallel performance analysis in weak and strong scaling studies demonstratingmore » the achieved efficiency of the algorithm are presented. Moreover, numerical experiments demonstrate that the preconditioner developed is independent of the number of fuel subdomains in a fuel rod, which is particularly important when simulating different types of fuel rods. Finally, we demonstrate the power of the coupling methodology by considering problems with couplings between surface and volume physics and coupling of nonlinear thermal transport in fuel rods to an external radiation transport code.« less
Nonlinear cross-field coupling on the route to broadband turbulence
NASA Astrophysics Data System (ADS)
Brandt, Christian; Thakur, Saikat C.; Cui, Lang; Gosselin, Jordan J.; Negrete, Jose, Jr.; Holland, Chris; Tynan, George R.
2013-10-01
In the linear magnetized plasma device CSDX (Controlled Shear De-correlation eXperiment) drift interchange modes are studied coexisting on top of a weak turbulence driven azimuthally symmetric, radially sheared plasma flow. In helicon discharges (helicon antenna diameter 15 cm) with increasing magnetic field (B <= 0 . 24 T) the system can be driven to fully developed broadband turbulence. Fast imaging using a refractive telescope setup is applied to study the dynamics in the azimuthal-radial cross-section. The image data is supported by Langmuir probe measurements. In the present study we examine the development of nonlinear transfer as the fully developed turbulence emerges. Nonlinear cross-field coupling between eigenmodes at different radial positions is investigated using Fourier decomposition of azimuthal eigenmodes. The coupling strength between waves at different radial positions is inferred to radial profiles and cross-field transport between adjacent magnetic flux surfaces. Nonlinear effects like synchronization, phase slippages, phase pulling and periodic pulling are observed. The effects of mode coupling and the stability of modes is compared to the dynamics of a coupled chain of Kuramoto oscillators.
In, Visarath; Longhini, Patrick; Kho, Andy; Neff, Joseph D; Leung, Daniel; Liu, Norman; Meadows, Brian K; Gordon, Frank; Bulsara, Adi R; Palacios, Antonio
2012-12-01
The nonlinear channelizer is an integrated circuit made up of large parallel arrays of analog nonlinear oscillators, which, collectively, serve as a broad-spectrum analyzer with the ability to receive complex signals containing multiple frequencies and instantaneously lock-on or respond to a received signal in a few oscillation cycles. The concept is based on the generation of internal oscillations in coupled nonlinear systems that do not normally oscillate in the absence of coupling. In particular, the system consists of unidirectionally coupled bistable nonlinear elements, where the frequency and other dynamical characteristics of the emergent oscillations depend on the system's internal parameters and the received signal. These properties and characteristics are being employed to develop a system capable of locking onto any arbitrary input radio frequency signal. The system is efficient by eliminating the need for high-speed, high-accuracy analog-to-digital converters, and compact by making use of nonlinear coupled systems to act as a channelizer (frequency binning and channeling), a low noise amplifier, and a frequency down-converter in a single step which, in turn, will reduce the size, weight, power, and cost of the entire communication system. This paper covers the theory, numerical simulations, and some engineering details that validate the concept at the frequency band of 1-4 GHz.
Non-linear Frequency Shifts, Mode Couplings, and Decay Instability of Plasma Waves
NASA Astrophysics Data System (ADS)
Affolter, Mathew; Anderegg, F.; Driscoll, C. F.; Valentini, F.
2015-11-01
We present experiments and theory for non-linear plasma wave decay to longer wavelengths, in both the oscillatory coupling and exponential decay regimes. The experiments are conducted on non-neutral plasmas in cylindrical Penning-Malmberg traps, θ-symmetric standing plasma waves have near acoustic dispersion ω (kz) ~kz - αkz2 , discretized by kz =mz (π /Lp) . Large amplitude waves exhibit non-linear frequency shifts δf / f ~A2 and Fourier harmonic content, both of which are increased as the plasma dispersion is reduced. Non-linear coupling rates are measured between large amplitude mz = 2 waves and small amplitude mz = 1 waves, which have a small detuning Δω = 2ω1 -ω2 . At small excitation amplitudes, this detuning causes the mz = 1 mode amplitude to ``bounce'' at rate Δω , with amplitude excursions ΔA1 ~ δn2 /n0 consistent with cold fluid theory and Vlasov simulations. At larger excitation amplitudes, where the non-linear coupling exceeds the dispersion, phase-locked exponential growth of the mz = 1 mode is observed, in qualitative agreement with simple 3-wave instability theory. However, significant variations are observed experimentally, and N-wave theory gives stunningly divergent predictions that depend sensitively on the dispersion-moderated harmonic content. Measurements on higher temperature Langmuir waves and the unusual ``EAW'' (KEEN) waves are being conducted to investigate the effects of wave-particle kinetics on the non-linear coupling rates. Department of Energy Grants DE-SC0002451and DE-SC0008693.
Lump solutions to nonlinear partial differential equations via Hirota bilinear forms
NASA Astrophysics Data System (ADS)
Ma, Wen-Xiu; Zhou, Yuan
2018-02-01
Lump solutions are analytical rational function solutions localized in all directions in space. We analyze a class of lump solutions, generated from quadratic functions, to nonlinear partial differential equations. The basis of success is the Hirota bilinear formulation and the primary object is the class of positive multivariate quadratic functions. A complete determination of quadratic functions positive in space and time is given, and positive quadratic functions are characterized as sums of squares of linear functions. Necessary and sufficient conditions for positive quadratic functions to solve Hirota bilinear equations are presented, and such polynomial solutions yield lump solutions to nonlinear partial differential equations under the dependent variable transformations u = 2(ln f) x and u = 2(ln f) xx, where x is one spatial variable. Applications are made for a few generalized KP and BKP equations.
NASA Astrophysics Data System (ADS)
Iqbal, Z.; Azhar, Ehtsham; Maraj, E. N.
2017-12-01
In this study, we analyzed the induced magnetic field effect on stagnation-point flow of a Al2O3-Ag/water hybrid nanofluid over a stretching sheet. Hybrid nanofluid, a new type of conventional fluid has been used for enhancement of heat transfer within boundary layer flow. It is notable here that only 1% to 5% contribution of nanoparticles enhance thermal conductivity of water. Nonlinear governing equations are simplified into boundary layer equations under boundary layer approximation assumption. A coupled system of nonlinear partial differential equation is transformed into a nonlinear system of ordinary differential equation by implementing suitable similarity conversions. Numerical analysis is performed by means of Keller box scheme. Effects of different non-dimensional governing parameters on velocity, induced magnetic field and temperature profiles, along with skinfriction coefficient and local Nusselt number, are discussed and presented through graphs and tables. Hybrid nanofluid is considered by keeping the 0.1% volumetric fraction of silver. From this study it is observed that the heat transfer rate of hybrid nanofluid (Al2O3-Ag/water) is higher than nanofluid (Ag/water). Novel results computed are useful in academic studies of hybrid nanofluids in engineering and industry.
An efficient strongly coupled immersed boundary method for deforming bodies
NASA Astrophysics Data System (ADS)
Goza, Andres; Colonius, Tim
2016-11-01
Immersed boundary methods treat the fluid and immersed solid with separate domains. As a result, a nonlinear interface constraint must be satisfied when these methods are applied to flow-structure interaction problems. This typically results in a large nonlinear system of equations that is difficult to solve efficiently. Often, this system is solved with a block Gauss-Seidel procedure, which is easy to implement but can require many iterations to converge for small solid-to-fluid mass ratios. Alternatively, a Newton-Raphson procedure can be used to solve the nonlinear system. This typically leads to convergence in a small number of iterations for arbitrary mass ratios, but involves the use of large Jacobian matrices. We present an immersed boundary formulation that, like the Newton-Raphson approach, uses a linearization of the system to perform iterations. It therefore inherits the same favorable convergence behavior. However, we avoid large Jacobian matrices by using a block LU factorization of the linearized system. We derive our method for general deforming surfaces and perform verification on 2D test problems of flow past beams. These test problems involve large amplitude flapping and a wide range of mass ratios. This work was partially supported by the Jet Propulsion Laboratory and Air Force Office of Scientific Research.
A Jacobi collocation approximation for nonlinear coupled viscous Burgers' equation
NASA Astrophysics Data System (ADS)
Doha, Eid H.; Bhrawy, Ali H.; Abdelkawy, Mohamed A.; Hafez, Ramy M.
2014-02-01
This article presents a numerical approximation of the initial-boundary nonlinear coupled viscous Burgers' equation based on spectral methods. A Jacobi-Gauss-Lobatto collocation (J-GL-C) scheme in combination with the implicit Runge-Kutta-Nyström (IRKN) scheme are employed to obtain highly accurate approximations to the mentioned problem. This J-GL-C method, based on Jacobi polynomials and Gauss-Lobatto quadrature integration, reduces solving the nonlinear coupled viscous Burgers' equation to a system of nonlinear ordinary differential equation which is far easier to solve. The given examples show, by selecting relatively few J-GL-C points, the accuracy of the approximations and the utility of the approach over other analytical or numerical methods. The illustrative examples demonstrate the accuracy, efficiency, and versatility of the proposed algorithm.
NASA Technical Reports Server (NTRS)
Banks, H. T.; Kunisch, K.
1982-01-01
Approximation results from linear semigroup theory are used to develop a general framework for convergence of approximation schemes in parameter estimation and optimal control problems for nonlinear partial differential equations. These ideas are used to establish theoretical convergence results for parameter identification using modal (eigenfunction) approximation techniques. Results from numerical investigations of these schemes for both hyperbolic and parabolic systems are given.
New insights on the matter-gravity coupling paradigm.
Delsate, Térence; Steinhoff, Jan
2012-07-13
The coupling between matter and gravity in general relativity is given by a proportionality relation between the stress tensor and the geometry. This is an oriented assumption driven by the fact that both the stress tensor and the Einstein tensor are divergenceless. However, general relativity is in essence a nonlinear theory, so there is no obvious reason why the coupling to matter should be linear. On another hand, modified theories of gravity usually affect the vacuum dynamics, yet keep the coupling to matter linear. In this Letter, we address the implications of consistent nonlinear gravity-matter coupling. The Eddington-inspired Born-Infeld theory recently introduced by Bañados and Ferreira provides an enlightening realization of such coupling modifications. We find that this theory coupled to a perfect fluid reduces to general relativity coupled to a nonlinearly modified perfect fluid, leading to an ambiguity between modified coupling and modified equation of state. We discuss observational consequences of this degeneracy and argue that such a completion of general relativity is viable from both an experimental and theoretical point of view through energy conditions, consistency, and singularity-avoidance perspectives. We use these results to discuss the impact of changing the coupling paradigm.
Modeling and simulation of deformation of hydrogels responding to electric stimulus.
Li, Hua; Luo, Rongmo; Lam, K Y
2007-01-01
A model for simulation of pH-sensitive hydrogels is refined in this paper to extend its application to electric-sensitive hydrogels, termed the refined multi-effect-coupling electric-stimulus (rMECe) model. By reformulation of the fixed-charge density and consideration of finite deformation, the rMECe model is able to predict the responsive deformations of the hydrogels when they are immersed in a bath solution subject to externally applied electric field. The rMECe model consists of nonlinear partial differential governing equations with chemo-electro-mechanical coupling effects and the fixed-charge density with electric-field effect. By comparison between simulation and experiment extracted from literature, the model is verified to be accurate and stable. The rMECe model performs quantitatively for deformation analysis of the electric-sensitive hydrogels. The influences of several physical parameters, including the externally applied electric voltage, initial fixed-charge density, hydrogel strip thickness, ionic strength and valence of surrounding solution, are discussed in detail on the displacement and average curvature of the hydrogels.
NASA Astrophysics Data System (ADS)
Faugeras, Blaise; Blum, Jacques; Heumann, Holger; Boulbe, Cédric
2017-08-01
The modelization of polarimetry Faraday rotation measurements commonly used in tokamak plasma equilibrium reconstruction codes is an approximation to the Stokes model. This approximation is not valid for the foreseen ITER scenarios where high current and electron density plasma regimes are expected. In this work a method enabling the consistent resolution of the inverse equilibrium reconstruction problem in the framework of non-linear free-boundary equilibrium coupled to the Stokes model equation for polarimetry is provided. Using optimal control theory we derive the optimality system for this inverse problem. A sequential quadratic programming (SQP) method is proposed for its numerical resolution. Numerical experiments with noisy synthetic measurements in the ITER tokamak configuration for two test cases, the second of which is an H-mode plasma, show that the method is efficient and that the accuracy of the identification of the unknown profile functions is improved compared to the use of classical Faraday measurements.
Seitner, Maximilian J; Abdi, Mehdi; Ridolfo, Alessandro; Hartmann, Michael J; Weig, Eva M
2017-06-23
We study locking phenomena of two strongly coupled, high quality factor nanomechanical resonator modes to a common parametric drive at a single drive frequency in different parametric driving regimes. By controlled dielectric gradient forces we tune the resonance frequencies of the flexural in-plane and out-of-plane oscillation of the high stress silicon nitride string through their mutual avoided crossing. For the case of the strong common parametric drive signal-idler generation via nondegenerate parametric two-mode oscillation is observed. Broadband frequency tuning of the very narrow linewidth signal and idler resonances is demonstrated. When the resonance frequencies of the signal and idler get closer to each other, partial injection locking, injection pulling, and complete injection locking to half of the drive frequency occurs depending on the pump strength. Furthermore, satellite resonances, symmetrically offset from the signal and idler by their beat note, are observed, which can be attributed to degenerate four-wave mixing in the highly nonlinear mechanical oscillations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boubendir, Yassine; Mendez, Vicenc; Rotstein, Horacio G.
2010-09-15
We study the evolution of fronts in a bistable equation with time-delayed global feedback in the fast reaction and slow diffusion regime. This equation generalizes the Hodgkin-Grafstein and Allen-Cahn equations. We derive a nonlinear equation governing the motion of fronts, which includes a term with delay. In the one-dimensional case this equation is linear. We study the motion of one- and two-dimensional fronts, finding a much richer dynamics than for the previously studied cases (without time-delayed global feedback). We explain the mechanism by which localized fronts created by inhibitory global coupling loose stability in a Hopf bifurcation as the delaymore » time increases. We show that for certain delay times, the prevailing phase is different from that corresponding to the system in the absence of global coupling. Numerical simulations of the partial differential equation are in agreement with the analytical predictions.« less
NASA Astrophysics Data System (ADS)
Uzzal, R. U. A.; Ahmed, A. K. W.; Bhat, R. B.
2013-11-01
This paper presents dynamic contact loads at wheel-rail contact point in a three-dimensional railway vehicle-track model as well as dynamic response at vehicle-track component levels in the presence of wheel flats. The 17-degrees of freedom lumped mass vehicle is modelled as a full car body, two bogies and four wheelsets, whereas the railway track is modelled as two parallel Timoshenko beams periodically supported by lumped masses representing the sleepers. The rail beam is also supported by nonlinear spring and damper elements representing the railpad and ballast. In order to ensure the interactions between the railpads, a shear parameter beneath the rail beams has also been considered into the model. The wheel-rail contact is modelled using nonlinear Hertzian contact theory. In order to solve the coupled partial and ordinary differential equations of the vehicle-track system, modal analysis method is employed. Idealised Haversine wheel flats with the rounded corner are included in the wheel-rail contact model. The developed model is validated with the existing measured and analytical data available in the literature. The nonlinear model is then employed to investigate the wheel-rail impact forces that arise in the wheel-rail interface due to the presence of wheel flats. The validated model is further employed to investigate the dynamic responses of vehicle and track components in terms of displacement, velocity, and acceleration in the presence of single wheel flat.
Fu, Haijin; Wang, Yue; Tan, Jiubin; Fan, Zhigang
2018-01-01
Even after the Heydemann correction, residual nonlinear errors, ranging from hundreds of picometers to several nanometers, are still found in heterodyne laser interferometers. This is a crucial factor impeding the realization of picometer level metrology, but its source and mechanism have barely been investigated. To study this problem, a novel nonlinear model based on optical mixing and coupling with ghost reflection is proposed and then verified by experiments. After intense investigation of this new model’s influence, results indicate that new additional high-order and negative-order nonlinear harmonics, arising from ghost reflection and its coupling with optical mixing, have only a negligible contribution to the overall nonlinear error. In real applications, any effect on the Lissajous trajectory might be invisible due to the small ghost reflectance. However, even a tiny ghost reflection can significantly worsen the effectiveness of the Heydemann correction, or even make this correction completely ineffective, i.e., compensation makes the error larger rather than smaller. Moreover, the residual nonlinear error after correction is dominated only by ghost reflectance. PMID:29498685
Micro-/nanoscale multi-field coupling in nonlinear photonic devices
NASA Astrophysics Data System (ADS)
Yang, Qing; Wang, Yubo; Tang, Mingwei; Xu, Pengfei; Xu, Yingke; Liu, Xu
2017-08-01
The coupling of mechanics/electronics/photonics may improve the performance of nanophotonic devices not only in the linear region but also in the nonlinear region. This review letter mainly presents the recent advances on multi-field coupling in nonlinear photonic devices. The nonlinear piezoelectric effect and piezo-phototronic effects in quantum wells and fibers show that large second-order nonlinear susceptibilities can be achieved, and second harmonic generation and electro-optic modulation can be enhanced and modulated. Strain engineering can tune the lattice structures and induce second order susceptibilities in central symmetry semiconductors. By combining the absorption-based photoacoustic effect and intensity-dependent photobleaching effect, subdiffraction imaging can be achieved. This review will also discuss possible future applications of these novel effects and the perspective of their research. The review can help us develop a deeper knowledge of the substance of photon-electron-phonon interaction in a micro-/nano- system. Moreover, it can benefit the design of nonlinear optical sensors and imaging devices with a faster response rate, higher efficiency, more sensitivity and higher spatial resolution which could be applied in environmental detection, bio-sensors, medical imaging and so on.
Modal Substructuring of Geometrically Nonlinear Finite-Element Models
Kuether, Robert J.; Allen, Matthew S.; Hollkamp, Joseph J.
2015-12-21
The efficiency of a modal substructuring method depends on the component modes used to reduce each subcomponent model. Methods such as Craig–Bampton have been used extensively to reduce linear finite-element models with thousands or even millions of degrees of freedom down orders of magnitude while maintaining acceptable accuracy. A novel reduction method is proposed here for geometrically nonlinear finite-element models using the fixed-interface and constraint modes of the linearized system to reduce each subcomponent model. The geometric nonlinearity requires an additional cubic and quadratic polynomial function in the modal equations, and the nonlinear stiffness coefficients are determined by applying amore » series of static loads and using the finite-element code to compute the response. The geometrically nonlinear, reduced modal equations for each subcomponent are then coupled by satisfying compatibility and force equilibrium. This modal substructuring approach is an extension of the Craig–Bampton method and is readily applied to geometrically nonlinear models built directly within commercial finite-element packages. The efficiency of this new approach is demonstrated on two example problems: one that couples two geometrically nonlinear beams at a shared rotational degree of freedom, and another that couples an axial spring element to the axial degree of freedom of a geometrically nonlinear beam. The nonlinear normal modes of the assembled models are compared with those of a truth model to assess the accuracy of the novel modal substructuring approach.« less
Modal Substructuring of Geometrically Nonlinear Finite-Element Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuether, Robert J.; Allen, Matthew S.; Hollkamp, Joseph J.
The efficiency of a modal substructuring method depends on the component modes used to reduce each subcomponent model. Methods such as Craig–Bampton have been used extensively to reduce linear finite-element models with thousands or even millions of degrees of freedom down orders of magnitude while maintaining acceptable accuracy. A novel reduction method is proposed here for geometrically nonlinear finite-element models using the fixed-interface and constraint modes of the linearized system to reduce each subcomponent model. The geometric nonlinearity requires an additional cubic and quadratic polynomial function in the modal equations, and the nonlinear stiffness coefficients are determined by applying amore » series of static loads and using the finite-element code to compute the response. The geometrically nonlinear, reduced modal equations for each subcomponent are then coupled by satisfying compatibility and force equilibrium. This modal substructuring approach is an extension of the Craig–Bampton method and is readily applied to geometrically nonlinear models built directly within commercial finite-element packages. The efficiency of this new approach is demonstrated on two example problems: one that couples two geometrically nonlinear beams at a shared rotational degree of freedom, and another that couples an axial spring element to the axial degree of freedom of a geometrically nonlinear beam. The nonlinear normal modes of the assembled models are compared with those of a truth model to assess the accuracy of the novel modal substructuring approach.« less
Deterministic quantum nonlinear optics with single atoms and virtual photons
NASA Astrophysics Data System (ADS)
Kockum, Anton Frisk; Miranowicz, Adam; Macrı, Vincenzo; Savasta, Salvatore; Nori, Franco
2017-06-01
We show how analogs of a large number of well-known nonlinear-optics phenomena can be realized with one or more two-level atoms coupled to one or more resonator modes. Through higher-order processes, where virtual photons are created and annihilated, an effective deterministic coupling between two states of such a system can be created. In this way, analogs of three-wave mixing, four-wave mixing, higher-harmonic and -subharmonic generation (i.e., up- and down-conversion), multiphoton absorption, parametric amplification, Raman and hyper-Raman scattering, the Kerr effect, and other nonlinear processes can be realized. In contrast to most conventional implementations of nonlinear optics, these analogs can reach unit efficiency, only use a minimal number of photons (they do not require any strong external drive), and do not require more than two atomic levels. The strength of the effective coupling in our proposed setups becomes weaker the more intermediate transition steps are needed. However, given the recent experimental progress in ultrastrong light-matter coupling and improvement of coherence times for engineered quantum systems, especially in the field of circuit quantum electrodynamics, we estimate that many of these nonlinear-optics analogs can be realized with currently available technology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Da-Guang; Li, Meng-Han; Zhou, Hao-Miao, E-mail: zhouhm@cjlu.edu.cn
2015-10-15
For magnetostrictive rods under combined axial pre-stress and magnetic field, a general one-dimension nonlinear magneto-elastic coupled constitutive model was built in this paper. First, the elastic Gibbs free energy was expanded into polynomial, and the relationship between stress and strain and the relationship between magnetization and magnetic field with the polynomial form were obtained with the help of thermodynamic relations. Then according to microscopic magneto-elastic coupling mechanism and some physical facts of magnetostrictive materials, a nonlinear magneto-elastic constitutive with concise form was obtained when the relations of nonlinear strain and magnetization in the polynomial constitutive were instead with transcendental functions.more » The comparisons between the prediction and the experimental data of different magnetostrictive materials, such as Terfenol-D, Metglas and Ni showed that the predicted magnetostrictive strain and magnetization curves were consistent with experimental results under different pre-stresses whether in the region of low and moderate field or high field. Moreover, the model can fully reflect the nonlinear magneto-mechanical coupling characteristics between magnetic, magnetostriction and elasticity, and it can effectively predict the changes of material parameters with pre-stress and bias field, which is useful in practical applications.« less
Non-linear dynamics of compound sawteeth in tokamaks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahn, J.-H., E-mail: jae-heon.ahn@polytechnique.edu; Garbet, X.; Sabot, R.
2016-05-15
Compound sawteeth is studied with the XTOR-2F code. Non-linear full 3D magnetohydrodynamic simulations show that the plasma hot core is radially displaced and rotates during the partial crash, but is not fully expelled out of the q = 1 surface. Partial crashes occur when the radius of the q = 1 surface exceeds a critical value, at fixed poloidal beta. This critical value depends on the plasma elongation. The partial crash time is larger than the collapse time of an ordinary sawtooth, likely due to a weaker diamagnetic stabilization. This suggests that partial crashes result from a competition between destabilizing effects such as themore » q = 1 radius and diamagnetic stabilization.« less
Measurement of nonlinear refractive index and ionization rates in air using a wavefront sensor.
Schwarz, Jens; Rambo, Patrick; Kimmel, Mark; Atherton, Briggs
2012-04-09
A wavefront sensor has been used to measure the Kerr nonlinear focal shift of a high intensity ultrashort pulse beam in a focusing beam geometry while accounting for the effects of plasma-defocusing. It is shown that plasma-defocusing plays a major role in the nonlinear focusing dynamics and that measurements of Kerr nonlinearity and ionization are coupled. Furthermore, this coupled effect leads to a novel way that measures the laser ionization rates in air under atmospheric conditions as well as Kerr nonlinearity. The measured nonlinear index n₂ compares well with values found in the literature and the measured ionization rates could be successfully benchmarked to the model developed by Perelomov, Popov, and Terentev (PPT model) [Sov. Phys. JETP 50, 1393 (1966)].
Nonlinear observer designs for fuel cell power systems
NASA Astrophysics Data System (ADS)
Gorgun, Haluk
A fuel cell is an electrochemical device that combines hydrogen and oxygen, with the aid of electro-catalysts, to produce electricity. A fuel cell consists of a negatively charged anode, a positively charged cathode and an electrolyte, which transports protons or ions. A low temperature fuel cell has an electrical potential of about 0.7 Volt when generating a current density of 300--500 mA/cm2. Practical fuel cell power systems will require a combination of several cells in series (a stack) to satisfy the voltage requirements of specific applications. Fuel cells are suitable for a potentially wide variety of applications, from stationary power generation in the range of hundreds of megawatts to portable electronics in the range of a couple of watts. Efficient operation of a fuel cell system requires advanced feedback control designs. Reliable measurements from the system are necessary to implement such designs. However, most of the commercially available sensors do not operate properly in the reformate and humidified gas streams in fuel cell systems. Sensors working varying degrees of success are too big and costly, and sensors that are potentially low cost are not reliable or do not have the required life time [28]. Observer designs would eliminate sensor needs for measurements, and make feedback control implementable. Since the fuel cell system dynamics are highly nonlinear, observer design is not an easy task. In this study we aim to develop nonlinear observer design methods applicable to fuel cell systems. In part I of the thesis we design an observer to estimate the hydrogen partial pressure in the anode channel. We treat inlet partial pressure as an unknown slowly varying parameter and develop an adaptive observer that employs a nonlinear voltage injection term. However in this design Fuel Processing System (FPS) dynamics are not modelled, and their effect on the anode dynamics are treated as plant uncertainty. In part II of the thesis we study the FPS dynamics, and estimate not only hydrogen but also all other species in its reactors. We design nonlinear observers for the Catalytic Partial Oxidation (CPO), Water Gas Shift (WGS), and Preferential Oxidation (PROX), reactors in the FPS. The observers make use of temperature measurements (and possibly one more variable, such as pressure) to estimate the mole fractions of each species in the reactors. An advantage of these designs is that they are based on reaction invariants and do not rely on knowledge of reaction rate expressions. Finally, in part III, we illustrate how the designs of parts I and II can be incorporated in fault detection and estimation algorithms for common failures encountered in fuel cells, such as the cathode blower failure and the anode valve failure. For this task, we combine geometric tools with our observers.
Kernel Partial Least Squares for Nonlinear Regression and Discrimination
NASA Technical Reports Server (NTRS)
Rosipal, Roman; Clancy, Daniel (Technical Monitor)
2002-01-01
This paper summarizes recent results on applying the method of partial least squares (PLS) in a reproducing kernel Hilbert space (RKHS). A previously proposed kernel PLS regression model was proven to be competitive with other regularized regression methods in RKHS. The family of nonlinear kernel-based PLS models is extended by considering the kernel PLS method for discrimination. Theoretical and experimental results on a two-class discrimination problem indicate usefulness of the method.
Nonlinear Vibrational Spectroscopy: a Method to Study Vibrational Self-Trapping
NASA Astrophysics Data System (ADS)
Hamm, Peter; Edler, Julian
We review the capability of nonlinear vibrational spectroscopy to study vibrational self-trapping in hydrogen-bonded molecular crystals. For that purpose, the two relevant coupling mechanisms, excitonic coupling and nonlinear exciton-phonon coupling, are first introduced separately using appropriately chosen molecular systems as examples. Both coupling mechanisms are subsequently combined, yielding vibrational selftrapping. The experiments unambiguously prove that both the N-H and the C=O band of crystalline acetanilide (ACN), a model system for proteins, show vibrational self-trapping. The C=O band is self-trapped only at low enough temperature, while thermally induced disorder destroys the mechanism at room temperature. The binding energy of the N-H band, on the other hand, is considerably larger and self-trapping survives thermal fluctuations even at room temperature.
Recent developments in bimetric theory
NASA Astrophysics Data System (ADS)
Schmidt-May, Angnis; von Strauss, Mikael
2016-05-01
This review is dedicated to recent progress in the field of classical, interacting, massive spin-2 theories, with a focus on ghost-free bimetric theory. We will outline its history and its development as a nontrivial extension and generalisation of nonlinear massive gravity. We present a detailed discussion of the consistency proofs of both theories, before we review Einstein solutions to the bimetric equations of motion in vacuum as well as the resulting mass spectrum. We introduce couplings to matter and then discuss the general relativity and massive gravity limits of bimetric theory, which correspond to decoupling the massive or the massless spin-2 field from the matter sector, respectively. More general classical solutions are reviewed and the present status of bimetric cosmology is summarised. An interesting corner in the bimetric parameter space which could potentially give rise to a nonlinear theory for partially massless spin-2 fields is also discussed. Relations to higher-curvature theories of gravity are explained and finally we give an overview of possible extensions of the theory and review its formulation in terms of vielbeins.
A new arrangement with nonlinear sidewalls for tanker ship storage panels
NASA Astrophysics Data System (ADS)
Ketabdari, M. J.; Saghi, H.
2013-03-01
Sloshing phenomenon in a moving container is a complicated free surface flow problem. It has a wide range of engineering applications, especially in tanker ships and Liquefied Natural Gas (LNG) carriers. When the tank in these vehicles is partially filled, it is essential to be able to evaluate the fluid dynamic loads on tank perimeter. Different geometric shapes such as rectangular, cylindrical, elliptical, spherical and circular conical have been suggested for ship storage tanks by previous researchers. In this paper a numerical model is developed based on incompressible and inviscid fluid motion for the liquid sloshing phenomenon. The coupled BEM-FEM is used to solve the governing equations and nonlinear free surface boundary conditions. The results are validated for rectangular container using data obtained for a horizontal periodic sway motion. Using the results of this model a new arrangement of trapezoidal shapes with quadratic sidewalls is suggested for tanker ship storage panels. The suggested geometric shape not only has a maximum surrounded tank volume to the constant available volume, but also reduces the sloshing effects more efficiently than the existing geometric shapes.
A theory of post-stall transients in axial compression systems. I - Development of equations
NASA Technical Reports Server (NTRS)
Moore, F. K.; Greitzer, E. M.
1985-01-01
An approximate theory is presented for post-stall transients in multistage axial compression systems. The theory leads to a set of three simultaneous nonlinear third-order partial differential equations for pressure rise, and average and disturbed values of flow coefficient, as functions of time and angle around the compressor. By a Galerkin procedure, angular dependence is averaged, and the equations become first order in time. These final equations are capable of describing the growth and possible decay of a rotating-stall cell during a compressor mass-flow transient. It is shown how rotating-stall-like and surgelike motions are coupled through these equations, and also how the instantaneous compressor pumping characteristic changes during the transient stall process.
NASA Astrophysics Data System (ADS)
Prasad, D. V. V. Krishna; Chaitanya, G. S. Krishna; Raju, R. Srinivasa
2018-05-01
The nature of Casson fluid on MHD free convective flow of over an impulsively started infinite vertically inclined plate in presence of thermal diffusion (Soret), thermal radiation, heat and mass transfer effects is studied. The basic governing nonlinear coupled partial differential equations are solved numerically using finite element method. The relevant physical parameters appearing in velocity, temperature and concentration profiles are analyzed and discussed through graphs. Finally, the results for velocity profiles and the reduced Nusselt and Sherwood numbers are obtained and compared with previous results in the literature and are found to be in excellent agreement. Applications of the present study would be useful in magnetic material processing and chemical engineering systems.
NASA Astrophysics Data System (ADS)
Harmon, Michael; Gamba, Irene M.; Ren, Kui
2016-12-01
This work concerns the numerical solution of a coupled system of self-consistent reaction-drift-diffusion-Poisson equations that describes the macroscopic dynamics of charge transport in photoelectrochemical (PEC) solar cells with reactive semiconductor and electrolyte interfaces. We present three numerical algorithms, mainly based on a mixed finite element and a local discontinuous Galerkin method for spatial discretization, with carefully chosen numerical fluxes, and implicit-explicit time stepping techniques, for solving the time-dependent nonlinear systems of partial differential equations. We perform computational simulations under various model parameters to demonstrate the performance of the proposed numerical algorithms as well as the impact of these parameters on the solution to the model.
Boundary control for a constrained two-link rigid-flexible manipulator with prescribed performance
NASA Astrophysics Data System (ADS)
Cao, Fangfei; Liu, Jinkun
2018-05-01
In this paper, we consider a boundary control problem for a constrained two-link rigid-flexible manipulator. The nonlinear system is described by hybrid ordinary differential equation-partial differential equation (ODE-PDE) dynamic model. Based on the coupled ODE-PDE model, boundary control is proposed to regulate the joint positions and eliminate the elastic vibration simultaneously. With the help of prescribed performance functions, the tracking error can converge to an arbitrarily small residual set and the convergence rate is no less than a certain pre-specified value. Asymptotic stability of the closed-loop system is rigorously proved by the LaSalle's Invariance Principle extended to infinite-dimensional system. Numerical simulations are provided to demonstrate the effectiveness of the proposed controller.
Remote sensing applied to numerical modelling. [water resources pollution
NASA Technical Reports Server (NTRS)
Sengupta, S.; Lee, S. S.; Veziroglu, T. N.; Bland, R.
1975-01-01
Progress and remaining difficulties in the construction of predictive mathematical models of large bodies of water as ecosystems are reviewed. Surface temperature is at present the only variable than can be measured accurately and reliably by remote sensing techniques, but satellite infrared data are of sufficient resolution for macro-scale modeling of oceans and large lakes, and airborne radiometers are useful in meso-scale analysis (of lakes, bays, and thermal plumes). Finite-element and finite-difference techniques applied to the solution of relevant coupled time-dependent nonlinear partial differential equations are compared, and the specific problem of the Biscayne Bay and environs ecosystem is tackled in a finite-differences treatment using the rigid-lid model and a rigid-line grid system.
Modeling methods of MEMS micro-speaker with electrostatic working principle
NASA Astrophysics Data System (ADS)
Tumpold, D.; Kaltenbacher, M.; Glacer, C.; Nawaz, M.; Dehé, A.
2013-05-01
The market for mobile devices like tablets, laptops or mobile phones is increasing rapidly. Device housings get thinner and energy efficiency is more and more important. Micro-Electro-Mechanical-System (MEMS) loudspeakers, fabricated in complementary metal oxide semiconductor (CMOS) compatible technology merge energy efficient driving technology with cost economical fabrication processes. In most cases, the fabrication of such devices within the design process is a lengthy and costly task. Therefore, the need for computer modeling tools capable of precisely simulating the multi-field interactions is increasing. The accurate modeling of such MEMS devices results in a system of coupled partial differential equations (PDEs) describing the interaction between the electric, mechanical and acoustic field. For the efficient and accurate solution we apply the Finite Element (FE) method. Thereby, we fully take the nonlinear effects into account: electrostatic force, charged moving body (loaded membrane) in an electric field, geometric nonlinearities and mechanical contact during the snap-in case between loaded membrane and stator. To efficiently handle the coupling between the mechanical and acoustic fields, we apply Mortar FE techniques, which allow different grid sizes along the coupling interface. Furthermore, we present a recently developed PML (Perfectly Matched Layer) technique, which allows limiting the acoustic computational domain even in the near field without getting spurious reflections. For computations towards the acoustic far field we us a Kirchhoff Helmholtz integral (e.g, to compute the directivity pattern). We will present simulations of a MEMS speaker system based on a single sided driving mechanism as well as an outlook on MEMS speakers using double stator systems (pull-pull-system), and discuss their efficiency (SPL) and quality (THD) towards the generated acoustic sound.
Chimera states in two-dimensional networks of locally coupled oscillators
NASA Astrophysics Data System (ADS)
Kundu, Srilena; Majhi, Soumen; Bera, Bidesh K.; Ghosh, Dibakar; Lakshmanan, M.
2018-02-01
Chimera state is defined as a mixed type of collective state in which synchronized and desynchronized subpopulations of a network of coupled oscillators coexist and the appearance of such anomalous behavior has strong connection to diverse neuronal developments. Most of the previous studies on chimera states are not extensively done in two-dimensional ensembles of coupled oscillators by taking neuronal systems with nonlinear coupling function into account while such ensembles of oscillators are more realistic from a neurobiological point of view. In this paper, we report the emergence and existence of chimera states by considering locally coupled two-dimensional networks of identical oscillators where each node is interacting through nonlinear coupling function. This is in contrast with the existence of chimera states in two-dimensional nonlocally coupled oscillators with rectangular kernel in the coupling function. We find that the presence of nonlinearity in the coupling function plays a key role to produce chimera states in two-dimensional locally coupled oscillators. We analytically verify explicitly in the case of a network of coupled Stuart-Landau oscillators in two dimensions that the obtained results using Ott-Antonsen approach and our analytical finding very well matches with the numerical results. Next, we consider another type of important nonlinear coupling function which exists in neuronal systems, namely chemical synaptic function, through which the nearest-neighbor (locally coupled) neurons interact with each other. It is shown that such synaptic interacting function promotes the emergence of chimera states in two-dimensional lattices of locally coupled neuronal oscillators. In numerical simulations, we consider two paradigmatic neuronal oscillators, namely Hindmarsh-Rose neuron model and Rulkov map for each node which exhibit bursting dynamics. By associating various spatiotemporal behaviors and snapshots at particular times, we study the chimera states in detail over a large range of coupling parameter. The existence of chimera states is confirmed by instantaneous angular frequency, order parameter and strength of incoherence.
Chimera states in two-dimensional networks of locally coupled oscillators.
Kundu, Srilena; Majhi, Soumen; Bera, Bidesh K; Ghosh, Dibakar; Lakshmanan, M
2018-02-01
Chimera state is defined as a mixed type of collective state in which synchronized and desynchronized subpopulations of a network of coupled oscillators coexist and the appearance of such anomalous behavior has strong connection to diverse neuronal developments. Most of the previous studies on chimera states are not extensively done in two-dimensional ensembles of coupled oscillators by taking neuronal systems with nonlinear coupling function into account while such ensembles of oscillators are more realistic from a neurobiological point of view. In this paper, we report the emergence and existence of chimera states by considering locally coupled two-dimensional networks of identical oscillators where each node is interacting through nonlinear coupling function. This is in contrast with the existence of chimera states in two-dimensional nonlocally coupled oscillators with rectangular kernel in the coupling function. We find that the presence of nonlinearity in the coupling function plays a key role to produce chimera states in two-dimensional locally coupled oscillators. We analytically verify explicitly in the case of a network of coupled Stuart-Landau oscillators in two dimensions that the obtained results using Ott-Antonsen approach and our analytical finding very well matches with the numerical results. Next, we consider another type of important nonlinear coupling function which exists in neuronal systems, namely chemical synaptic function, through which the nearest-neighbor (locally coupled) neurons interact with each other. It is shown that such synaptic interacting function promotes the emergence of chimera states in two-dimensional lattices of locally coupled neuronal oscillators. In numerical simulations, we consider two paradigmatic neuronal oscillators, namely Hindmarsh-Rose neuron model and Rulkov map for each node which exhibit bursting dynamics. By associating various spatiotemporal behaviors and snapshots at particular times, we study the chimera states in detail over a large range of coupling parameter. The existence of chimera states is confirmed by instantaneous angular frequency, order parameter and strength of incoherence.
NASA Astrophysics Data System (ADS)
Saiidi, M.
1982-07-01
The equivalent of a single degree of freedom (SDOF) nonlinear model, the Q-model-13, was examined. The study intended to: (1) determine the seismic response of a torsionally coupled building based on the multidegree of freedom (MDOF) and (SDOF) nonlinear models; and (2) develop a simple SDOF nonlinear model to calculate displacement history of structures with eccentric centers of mass and stiffness. It is shown that planar models are able to yield qualitative estimates of the response of the building. The model is used to estimate the response of a hypothetical six-story frame wall reinforced concrete building with torsional coupling, using two different earthquake intensities. It is shown that the Q-Model-13 can lead to a satisfactory estimate of the response of the structure in both cases.
Inflation from a nonlinear magnetic monopole field nonminimally coupled to curvature
NASA Astrophysics Data System (ADS)
Otalora, Giovanni; Övgün, Ali; Saavedra, Joel; Videla, Nelson
2018-06-01
In the context of nonminimally coupled f(R) gravity theories, we study early inflation driven by a nonlinear monopole magnetic field which is nonminimally coupled to curvature. In order to isolate the effects of the nonminimal coupling between matter and curvature we assume the pure gravitational sector to have the Einstein-Hilbert form. Thus, we study the most simple model with a nonminimal coupling function which is linear in the Ricci scalar. From an effective fluid description, we show the existence of an early exponential expansion regime of the Universe, followed by a transition to a radiation-dominated era. In particular, by applying the most recent results of the Planck collaboration we set the limits on the parameter of the nonminimal coupling, and the quotient of the nonminimal coupling and the nonlinear monopole magnetic scales. We found that these parameters must take large values in order to satisfy the observational constraints. Furthermore, by obtaining the relation for the graviton mass, we show the consistency of our results with the recent gravitational wave data GW170817 of LIGO and Virgo.
Two-Photon Raman Gain in a Laser Driven Potassium Vapor
1996-02-01
between light and matter becomes highly nonlinear and the light and matter strongly couple, the systems become much more difficult to understand both...theoretically and experimentally. One example of a strongly coupled, highly nonlinear system is the two-photon laser that is based on the two-photon
NASA Astrophysics Data System (ADS)
D'Ambra, Pasqua; Tartaglione, Gaetano
2015-04-01
Image segmentation addresses the problem to partition a given image into its constituent objects and then to identify the boundaries of the objects. This problem can be formulated in terms of a variational model aimed to find optimal approximations of a bounded function by piecewise-smooth functions, minimizing a given functional. The corresponding Euler-Lagrange equations are a set of two coupled elliptic partial differential equations with varying coefficients. Numerical solution of the above system often relies on alternating minimization techniques involving descent methods coupled with explicit or semi-implicit finite-difference discretization schemes, which are slowly convergent and poorly scalable with respect to image size. In this work we focus on generalized relaxation methods also coupled with multigrid linear solvers, when a finite-difference discretization is applied to the Euler-Lagrange equations of Ambrosio-Tortorelli model. We show that non-linear Gauss-Seidel, accelerated by inner linear iterations, is an effective method for large-scale image analysis as those arising from high-throughput screening platforms for stem cells targeted differentiation, where one of the main goal is segmentation of thousand of images to analyze cell colonies morphology.
Solution of Ambrosio-Tortorelli model for image segmentation by generalized relaxation method
NASA Astrophysics Data System (ADS)
D'Ambra, Pasqua; Tartaglione, Gaetano
2015-03-01
Image segmentation addresses the problem to partition a given image into its constituent objects and then to identify the boundaries of the objects. This problem can be formulated in terms of a variational model aimed to find optimal approximations of a bounded function by piecewise-smooth functions, minimizing a given functional. The corresponding Euler-Lagrange equations are a set of two coupled elliptic partial differential equations with varying coefficients. Numerical solution of the above system often relies on alternating minimization techniques involving descent methods coupled with explicit or semi-implicit finite-difference discretization schemes, which are slowly convergent and poorly scalable with respect to image size. In this work we focus on generalized relaxation methods also coupled with multigrid linear solvers, when a finite-difference discretization is applied to the Euler-Lagrange equations of Ambrosio-Tortorelli model. We show that non-linear Gauss-Seidel, accelerated by inner linear iterations, is an effective method for large-scale image analysis as those arising from high-throughput screening platforms for stem cells targeted differentiation, where one of the main goal is segmentation of thousand of images to analyze cell colonies morphology.
Schulz, Steffen; Haueisen, Jens; Bär, Karl-Juergen; Voss, Andreas
2018-06-22
The new interdisciplinary field of network physiology is getting more and more into the focus of interest in medicine. The autonomic nervous system (ANS) dysfunction is well described in schizophrenia (SZO). However, the linear and nonlinear coupling between the ANS and central nervous system (CNS) is only partly addressed until now. This coupling can be assumed as a feedback-feedforward network, reacting with flexible and adaptive responses to internal and external factors. Approach: For the first time, in this study, we investigated linear and nonlinear short-term central-cardiorespiratory couplings of 17 patients suffering from paranoid schizophrenia (SZO) in comparison to 17 age-gender matched healthy subjects (CON) analyzing heart rate (HR), respiration (RESP) and the power of frontal EEG activity (PEEG). The objective is to determine how the different regulatory aspects of the CNS-ANS compose the central-cardiorespiratory network (CCRN). To quantify these couplings within the CCRN the normalized short time partial directed coherence (NSTPDC) and the new multivariate high-resolution joint symbolic dynamics (mHRJSD) were applied. Main results: We found that the CCRN in SZO is characterized as a bidirectional one, with stronger central driving mechanisms (PEEG→HR) towards HR regulation than vice versa, and with stronger respiratory influence (RESP→PEEG) on central activity than vice versa. This suggests that the central-cardiorespiratory process (closed-loop) is mainly focusing on adapting the HR via the sinoatrial node than focusing on respiratory regulation. On the other side, the feedback-loop from ANS to CNS is strongly dominated via respiratory activity. Significance: We could demonstrate a considerably significantly different central-cardiorespiratory network structure in schizophrenia with strong central influence on the cardiac system and a strong respiratory influence on the central nervous system. Moreover, this study provides a more in-depth understanding of the interplay of the central and autonomic regulatory network in healthy subjects and schizophrenic patients. . © 2018 Institute of Physics and Engineering in Medicine.
NASA Astrophysics Data System (ADS)
Badia, Santiago; Martín, Alberto F.; Planas, Ramon
2014-10-01
The thermally coupled incompressible inductionless magnetohydrodynamics (MHD) problem models the flow of an electrically charged fluid under the influence of an external electromagnetic field with thermal coupling. This system of partial differential equations is strongly coupled and highly nonlinear for real cases of interest. Therefore, fully implicit time integration schemes are very desirable in order to capture the different physical scales of the problem at hand. However, solving the multiphysics linear systems of equations resulting from such algorithms is a very challenging task which requires efficient and scalable preconditioners. In this work, a new family of recursive block LU preconditioners is designed and tested for solving the thermally coupled inductionless MHD equations. These preconditioners are obtained after splitting the fully coupled matrix into one-physics problems for every variable (velocity, pressure, current density, electric potential and temperature) that can be optimally solved, e.g., using preconditioned domain decomposition algorithms. The main idea is to arrange the original matrix into an (arbitrary) 2 × 2 block matrix, and consider an LU preconditioner obtained by approximating the corresponding Schur complement. For every one of the diagonal blocks in the LU preconditioner, if it involves more than one type of unknowns, we proceed the same way in a recursive fashion. This approach is stated in an abstract way, and can be straightforwardly applied to other multiphysics problems. Further, we precisely explain a flexible and general software design for the code implementation of this type of preconditioners.
Data-driven non-Markovian closure models
NASA Astrophysics Data System (ADS)
Kondrashov, Dmitri; Chekroun, Mickaël D.; Ghil, Michael
2015-03-01
This paper has two interrelated foci: (i) obtaining stable and efficient data-driven closure models by using a multivariate time series of partial observations from a large-dimensional system; and (ii) comparing these closure models with the optimal closures predicted by the Mori-Zwanzig (MZ) formalism of statistical physics. Multilayer stochastic models (MSMs) are introduced as both a generalization and a time-continuous limit of existing multilevel, regression-based approaches to closure in a data-driven setting; these approaches include empirical model reduction (EMR), as well as more recent multi-layer modeling. It is shown that the multilayer structure of MSMs can provide a natural Markov approximation to the generalized Langevin equation (GLE) of the MZ formalism. A simple correlation-based stopping criterion for an EMR-MSM model is derived to assess how well it approximates the GLE solution. Sufficient conditions are derived on the structure of the nonlinear cross-interactions between the constitutive layers of a given MSM to guarantee the existence of a global random attractor. This existence ensures that no blow-up can occur for a broad class of MSM applications, a class that includes non-polynomial predictors and nonlinearities that do not necessarily preserve quadratic energy invariants. The EMR-MSM methodology is first applied to a conceptual, nonlinear, stochastic climate model of coupled slow and fast variables, in which only slow variables are observed. It is shown that the resulting closure model with energy-conserving nonlinearities efficiently captures the main statistical features of the slow variables, even when there is no formal scale separation and the fast variables are quite energetic. Second, an MSM is shown to successfully reproduce the statistics of a partially observed, generalized Lotka-Volterra model of population dynamics in its chaotic regime. The challenges here include the rarity of strange attractors in the model's parameter space and the existence of multiple attractor basins with fractal boundaries. The positivity constraint on the solutions' components replaces here the quadratic-energy-preserving constraint of fluid-flow problems and it successfully prevents blow-up.
Experimental feedback linearisation of a vibrating system with a non-smooth nonlinearity
NASA Astrophysics Data System (ADS)
Lisitano, D.; Jiffri, S.; Bonisoli, E.; Mottershead, J. E.
2018-03-01
Input-output partial feedback linearisation is demonstrated experimentally for the first time on a system with non-smooth nonlinearity, a laboratory three degrees of freedom lumped mass system with a piecewise-linear spring. The output degree of freedom is located away from the nonlinearity so that the partial feedback linearisation possesses nonlinear internal dynamics. The dynamic behaviour of the linearised part is specified by eigenvalue assignment and an investigation of the zero dynamics is carried out to confirm stability of the overall system. A tuned numerical model is developed for use in the controller and to produce numerical outputs for comparison with experimental closed-loop results. A new limitation of the feedback linearisation method is discovered in the case of lumped mass systems - that the input and output must share the same degrees of freedom.
Enhanced directional second harmonic radiation via nonlinear interference in 1D metamaterials
NASA Astrophysics Data System (ADS)
Guo, B. S.; Loo, Y. L.; Zhao, Q.; Ong, C. K.
2018-06-01
By using a one-dimensional nonlinear metamaterial in the experiment, we achieve a directional second harmonic radiation via nonlinear interference at approximately 2.5 GHz. Each meta-atom has the structure of coupled split-ring resonators and two varactors arranged parallel (symmetric) or antiparallel (antisymmetric) to each other. With an incident power of approximately ‑2.7 dBm, the power of the emitted directional wave from the sample is at the scale of nanowatt. This relatively high magnitude of directional nonlinear power is the result of the 1D metamaterial abilities in exhibiting nonlinear magnetoelectric coupling, as well as supporting an electric dipole or magnetic dipole resonance within a narrow second harmonic frequency range.
Synchronization of Heterogeneous Oscillators by Noninvasive Time-Delayed Cross Coupling.
Jüngling, Thomas; Fischer, Ingo; Schöll, Eckehard; Just, Wolfram
2015-11-06
We demonstrate that nonidentical systems, in particular, nonlinear oscillators with different time scales, can be synchronized if a mutual coupling via time-delayed control signals is implemented. Each oscillator settles on an unstable state, say a fixed point or an unstable periodic orbit, with a coupling force which vanishes in the long time limit. We present the underlying theoretical considerations and numerical simulations, and, moreover, demonstrate the concept experimentally in nonlinear electronic oscillators.
Shukla, P K
2004-04-01
It is shown that zonal magnetic fields can be parametrically excited by low-frequency dispersive driftlike compressional electromagnetic (DDCEM) modes in a nonuniform dusty magnetoplasma. For this purpose, we derive a pair of coupled equations which exhibits the nonlinear coupling between DDCEM modes and zonal magnetic fields. The coupled mode equations are Fourier analyzed to derive a nonlinear dispersion relation. The latter depicts that zonal magnetic fields are nonlinearly generated at the expense of the low-frequency DDCEM wave energy. The relevance of our investigation to the transfer of energy from short scale DDCEM waves to long scale zonal magnetic field structures in dark molecular clouds is discussed.
Relationships between nonlinear normal modes and response to random inputs
NASA Astrophysics Data System (ADS)
Schoneman, Joseph D.; Allen, Matthew S.; Kuether, Robert J.
2017-02-01
The ability to model nonlinear structures subject to random excitation is of key importance in designing hypersonic aircraft and other advanced aerospace vehicles. When a structure is linear, superposition can be used to construct its response to a known spectrum in terms of its linear modes. Superposition does not hold for a nonlinear system, but several works have shown that a system's dynamics can still be understood qualitatively in terms of its nonlinear normal modes (NNMs). This work investigates the connection between a structure's undamped nonlinear normal modes and the spectrum of its response to high amplitude random forcing. Two examples are investigated: a spring-mass system and a clamped-clamped beam modeled within a geometrically nonlinear finite element package. In both cases, an intimate connection is observed between the smeared peaks in the response spectrum and the frequency-energy dependence of the nonlinear normal modes. In order to understand the role of coupling between the underlying linear modes, reduced order models with and without modal coupling terms are used to separate the effect of each NNM's backbone from the nonlinear couplings that give rise to internal resonances. In the cases shown here, uncoupled, single-degree-of-freedom nonlinear models are found to predict major features in the response with reasonable accuracy; a highly inexpensive approximation such as this could be useful in design and optimization studies. More importantly, the results show that a reduced order model can be expected to give accurate results only if it is also capable of accurately predicting the frequency-energy dependence of the nonlinear modes that are excited.
Nozzle flow with vibrational nonequilibrium
NASA Technical Reports Server (NTRS)
Heinbockel, J. H.; Landry, J. G.
1995-01-01
This research concerns the modeling and numerical solutions of the coupled system of compressible Navier-Stokes equations in cylindrical coordinates under conditions of equilibrium and nonequilibrium thermodynamics. The problem considered was the modeling of a high temperature diatomic gas N2 flowing through a converging-diverging high expansion nozzle. The problem was modeled in two ways. The first model uses a single temperature with variable specific heats as functions of this temperature. For the second model we assume that the various degrees of freedom all have a Boltzmann distribution and that there is a continuous redistribution of energy among the various degrees of freedom as the gas passes through the nozzle. Each degree of freedom is assumed to have its own temperature and, consequently, each system state can be characterized by these temperatures. This suggests that formulation of a second model with a vibrational degree of freedom along with a rotational-translation degree of freedom, each degree of freedom having its own temperature. Initially the vibrational degree of freedom is excited by heating the gas to a high temperature. As the high temperature gas passes through the nozzle throat there is a sudden drop in temperature along with a relaxation time for the vibrational degree of freedom to achieve equilibrium with the rotational-translation degree of freedom. That is, we assume that the temperature change upon passing through the throat is so great that the changes in the vibrational degree of freedom occur at a much slower pace and consequently lags behind the rotational-translational energy changes. This lag results in a finite relaxation time. In this context the term nonequilibrium is used to denote the fact that the energy content of the various degrees of freedom are characterized by two temperatures. We neglect any chemical reactions which could also add nonequilibrium effects. We develop the energy equations for the nonequilibrium model from first principles. The resulting equations, which model the nozzle flow, can be expressed in various forms. In most forms the resulting equations are coupled systems of nonlinear partial differential equations subject to certain boundary conditions. To solve the resulting coupled system of nonlinear partial differential equations, several numerical techniques were investigated: (1) the explicit MacCormack method, (2) the explicit-implicit MacCormack method, (3) the method of operator splitting, (4) factorization schemes, and (5) the Steger-Warming scheme.
Zhang, Guoqiang; Yan, Zhenya; Wen, Xiao-Yong; Chen, Yong
2017-04-01
We investigate the defocusing coupled nonlinear Schrödinger equations from a 3×3 Lax pair. The Darboux transformations with the nonzero plane-wave solutions are presented to derive the newly localized wave solutions including dark-dark and bright-dark solitons, breather-breather solutions, and different types of new vector rogue wave solutions, as well as interactions between distinct types of localized wave solutions. Moreover, we analyze these solutions by means of parameters modulation. Finally, the perturbed wave propagations of some obtained solutions are explored by means of systematic simulations, which demonstrates that nearly stable and strongly unstable solutions. Our research results could constitute a significant contribution to explore the distinct nonlinear waves (e.g., dark solitons, breather solutions, and rogue wave solutions) dynamics of the coupled system in related fields such as nonlinear optics, plasma physics, oceanography, and Bose-Einstein condensates.
Yan, Zheng; Wang, Jun
2014-03-01
This paper presents a neural network approach to robust model predictive control (MPC) for constrained discrete-time nonlinear systems with unmodeled dynamics affected by bounded uncertainties. The exact nonlinear model of underlying process is not precisely known, but a partially known nominal model is available. This partially known nonlinear model is first decomposed to an affine term plus an unknown high-order term via Jacobian linearization. The linearization residue combined with unmodeled dynamics is then modeled using an extreme learning machine via supervised learning. The minimax methodology is exploited to deal with bounded uncertainties. The minimax optimization problem is reformulated as a convex minimization problem and is iteratively solved by a two-layer recurrent neural network. The proposed neurodynamic approach to nonlinear MPC improves the computational efficiency and sheds a light for real-time implementability of MPC technology. Simulation results are provided to substantiate the effectiveness and characteristics of the proposed approach.
Period of vibration of axially vibrating truly nonlinear rod
NASA Astrophysics Data System (ADS)
Cveticanin, L.
2016-07-01
In this paper the axial vibration of a muscle whose fibers are parallel to the direction of muscle compression is investigated. The model is a clamped-free rod with a strongly nonlinear elastic property. Axial vibration is described by a nonlinear partial differential equation. A solution of the equation is constructed for special initial conditions by using the method of separation of variables. The partial differential equation is separated into two uncoupled strongly nonlinear second order differential equations. Both equations, with displacement function and with time function are exactly determined. Exact solutions are given in the form of inverse incomplete and inverse complete Beta function. Using boundary and initial conditions, the frequency of vibration is obtained. It has to be mentioned that the determined frequency represents the exact analytic description for the axially vibrating truly nonlinear clamped-free rod. The procedure suggested in this paper is applied for calculation of the frequency of the longissimus dorsi muscle of a cow. The influence of elasticity order and elasticity coefficient on the frequency property is tested.
Multi-fluid Approach to High-frequency Waves in Plasmas. III. Nonlinear Regime and Plasma Heating
NASA Astrophysics Data System (ADS)
Martínez-Gómez, David; Soler, Roberto; Terradas, Jaume
2018-03-01
The multi-fluid modeling of high-frequency waves in partially ionized plasmas has shown that the behavior of magnetohydrodynamic waves in the linear regime is heavily influenced by the collisional interaction between the different species that form the plasma. Here, we go beyond linear theory and study large-amplitude waves in partially ionized plasmas using a nonlinear multi-fluid code. It is known that in fully ionized plasmas, nonlinear Alfvén waves generate density and pressure perturbations. Those nonlinear effects are more pronounced for standing oscillations than for propagating waves. By means of numerical simulations and analytical approximations, we examine how the collisional interaction between ions and neutrals affects the nonlinear evolution. The friction due to collisions dissipates a fraction of the wave energy, which is transformed into heat and consequently raises the temperature of the plasma. As an application, we investigate frictional heating in a plasma with physical conditions akin to those in a quiescent solar prominence.
NASA Astrophysics Data System (ADS)
Charlemagne, S.; Ture Savadkoohi, A.; Lamarque, C.-H.
2018-07-01
The continuous approximation is used in this work to describe the dynamics of a nonlinear chain of light oscillators coupled to a linear main system. A general methodology is applied to an example where the chain has local nonlinear restoring forces. The slow invariant manifold is detected at fast time scale. At slow time scale, equilibrium and singular points are sought around this manifold in order to predict periodic regimes and strongly modulated responses of the system. Analytical predictions are in good accordance with numerical results and represent a potent tool for designing nonlinear chains for passive control purposes.
Energy transfer in mesoscopic vibrational systems enabled by eigenfrequency fluctuations
NASA Astrophysics Data System (ADS)
Atalaya, Juan
Energy transfer between low-frequency vibrational modes can be achieved by means of nonlinear coupling if their eigenfrequencies fulfill certain nonlinear resonance conditions. Because of the discreteness of the vibrational spectrum at low frequencies, such conditions may be difficult to satisfy for most low-frequency modes in typical mesoscopic vibrational systems. Fluctuations of the vibrational eigenfrequencies can also be relatively strong in such systems. We show that energy transfer between modes can occur in the absence of nonlinear resonance if frequency fluctuations are allowed. The case of three modes with cubic nonlinear coupling and no damping is particularly interesting. It is found that the system has a non-thermal equilibrium state which depends only on the initial conditions. The rate at which the system approaches to such state is determined by the parameters such as the noise strength and correlation time, the nonlinearity strength and the detuning from exact nonlinear resonance. We also discuss the case of many weakly coupled modes. Our results shed light on the problem of energy relaxation of low-frequency vibrational modes into the continuum of high-frequency vibrational modes. The results have been obtained with Mark Dykman. Alternative email: jatalaya2012@gmail.com.
Modified Method of Simplest Equation Applied to the Nonlinear Schrödinger Equation
NASA Astrophysics Data System (ADS)
Vitanov, Nikolay K.; Dimitrova, Zlatinka I.
2018-03-01
We consider an extension of the methodology of the modified method of simplest equation to the case of use of two simplest equations. The extended methodology is applied for obtaining exact solutions of model nonlinear partial differential equations for deep water waves: the nonlinear Schrödinger equation. It is shown that the methodology works also for other equations of the nonlinear Schrödinger kind.
Fitting and forecasting coupled dark energy in the non-linear regime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casas, Santiago; Amendola, Luca; Pettorino, Valeria
2016-01-01
We consider cosmological models in which dark matter feels a fifth force mediated by the dark energy scalar field, also known as coupled dark energy. Our interest resides in estimating forecasts for future surveys like Euclid when we take into account non-linear effects, relying on new fitting functions that reproduce the non-linear matter power spectrum obtained from N-body simulations. We obtain fitting functions for models in which the dark matter-dark energy coupling is constant. Their validity is demonstrated for all available simulations in the redshift range 0z=–1.6 and wave modes below 0k=1 h/Mpc. These fitting formulas can be used tomore » test the predictions of the model in the non-linear regime without the need for additional computing-intensive N-body simulations. We then use these fitting functions to perform forecasts on the constraining power that future galaxy-redshift surveys like Euclid will have on the coupling parameter, using the Fisher matrix method for galaxy clustering (GC) and weak lensing (WL). We find that by using information in the non-linear power spectrum, and combining the GC and WL probes, we can constrain the dark matter-dark energy coupling constant squared, β{sup 2}, with precision smaller than 4% and all other cosmological parameters better than 1%, which is a considerable improvement of more than an order of magnitude compared to corresponding linear power spectrum forecasts with the same survey specifications.« less
NASA Astrophysics Data System (ADS)
Rings, Thorsten; Lehnertz, Klaus
2016-09-01
We investigate the relative merit of phase-based methods for inferring directional couplings in complex networks of weakly interacting dynamical systems from multivariate time-series data. We compare the evolution map approach and its partialized extension to each other with respect to their ability to correctly infer the network topology in the presence of indirect directional couplings for various simulated experimental situations using coupled model systems. In addition, we investigate whether the partialized approach allows for additional or complementary indications of directional interactions in evolving epileptic brain networks using intracranial electroencephalographic recordings from an epilepsy patient. For such networks, both direct and indirect directional couplings can be expected, given the brain's connection structure and effects that may arise from limitations inherent to the recording technique. Our findings indicate that particularly in larger networks (number of nodes ≫10 ), the partialized approach does not provide information about directional couplings extending the information gained with the evolution map approach.
A homotopy analysis method for the nonlinear partial differential equations arising in engineering
NASA Astrophysics Data System (ADS)
Hariharan, G.
2017-05-01
In this article, we have established the homotopy analysis method (HAM) for solving a few partial differential equations arising in engineering. This technique provides the solutions in rapid convergence series with computable terms for the problems with high degree of nonlinear terms appearing in the governing differential equations. The convergence analysis of the proposed method is also discussed. Finally, we have given some illustrative examples to demonstrate the validity and applicability of the proposed method.
Ene, Remus-Daniel; Marinca, Vasile; Marinca, Bogdan
2016-01-01
Analytic approximate solutions using Optimal Homotopy Perturbation Method (OHPM) are given for steady boundary layer flow over a nonlinearly stretching wall in presence of partial slip at the boundary. The governing equations are reduced to nonlinear ordinary differential equation by means of similarity transformations. Some examples are considered and the effects of different parameters are shown. OHPM is a very efficient procedure, ensuring a very rapid convergence of the solutions after only two iterations.
Manafian Heris, Jalil; Lakestani, Mehrdad
2014-01-01
We establish exact solutions including periodic wave and solitary wave solutions for the integrable sixth-order Drinfeld-Sokolov-Satsuma-Hirota system. We employ this system by using a generalized (G'/G)-expansion and the generalized tanh-coth methods. These methods are developed for searching exact travelling wave solutions of nonlinear partial differential equations. It is shown that these methods, with the help of symbolic computation, provide a straightforward and powerful mathematical tool for solving nonlinear partial differential equations.
On implicit abstract neutral nonlinear differential equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hernández, Eduardo, E-mail: lalohm@ffclrp.usp.br; O’Regan, Donal, E-mail: donal.oregan@nuigalway.ie
2016-04-15
In this paper we continue our developments in Hernández and O’Regan (J Funct Anal 261:3457–3481, 2011) on the existence of solutions for abstract neutral differential equations. In particular we extend the results in Hernández and O’Regan (J Funct Anal 261:3457–3481, 2011) for the case of implicit nonlinear neutral equations and we focus on applications to partial “nonlinear” neutral differential equations. Some applications involving partial neutral differential equations are presented.
Ene, Remus-Daniel; Marinca, Vasile; Marinca, Bogdan
2016-01-01
Analytic approximate solutions using Optimal Homotopy Perturbation Method (OHPM) are given for steady boundary layer flow over a nonlinearly stretching wall in presence of partial slip at the boundary. The governing equations are reduced to nonlinear ordinary differential equation by means of similarity transformations. Some examples are considered and the effects of different parameters are shown. OHPM is a very efficient procedure, ensuring a very rapid convergence of the solutions after only two iterations. PMID:27031232
Spatiotemporal chaos in mixed linear-nonlinear two-dimensional coupled logistic map lattice
NASA Astrophysics Data System (ADS)
Zhang, Ying-Qian; He, Yi; Wang, Xing-Yuan
2018-01-01
We investigate a new spatiotemporal dynamics with mixing degrees of nonlinear chaotic maps for spatial coupling connections based on 2DCML. Here, the coupling methods are including with linear neighborhood coupling and the nonlinear chaotic map coupling of lattices, and the former 2DCML system is only a special case in the proposed system. In this paper the criteria such Kolmogorov-Sinai entropy density and universality, bifurcation diagrams, space-amplitude and snapshot pattern diagrams are provided in order to investigate the chaotic behaviors of the proposed system. Furthermore, we also investigate the parameter ranges of the proposed system which holds those features in comparisons with those of the 2DCML system and the MLNCML system. Theoretical analysis and computer simulation indicate that the proposed system contains features such as the higher percentage of lattices in chaotic behaviors for most of parameters, less periodic windows in bifurcation diagrams and the larger range of parameters for chaotic behaviors, which is more suitable for cryptography.
Stochastic bifurcations in the nonlinear parallel Ising model.
Bagnoli, Franco; Rechtman, Raúl
2016-11-01
We investigate the phase transitions of a nonlinear, parallel version of the Ising model, characterized by an antiferromagnetic linear coupling and ferromagnetic nonlinear one. This model arises in problems of opinion formation. The mean-field approximation shows chaotic oscillations, by changing the couplings or the connectivity. The spatial model shows bifurcations in the average magnetization, similar to that seen in the mean-field approximation, induced by the change of the topology, after rewiring short-range to long-range connection, as predicted by the small-world effect. These coherent periodic and chaotic oscillations of the magnetization reflect a certain degree of synchronization of the spins, induced by long-range couplings. Similar bifurcations may be induced in the randomly connected model by changing the couplings or the connectivity and also the dilution (degree of asynchronism) of the updating. We also examined the effects of inhomogeneity, mixing ferromagnetic and antiferromagnetic coupling, which induces an unexpected bifurcation diagram with a "bubbling" behavior, as also happens for dilution.
Approximate analytical solutions of a pair of coupled anharmonic oscillators
NASA Astrophysics Data System (ADS)
Alam, Nasir; Mandal, Swapan; Öhberg, Patrik
2015-02-01
The Hamiltonian and the corresponding equations of motion involving the field operators of two quartic anharmonic oscillators indirectly coupled via a linear oscillator are constructed. The approximate analytical solutions of the coupled differential equations involving the non-commuting field operators are solved up to the second order in the anharmonic coupling. In the absence of nonlinearity these solutions are used to calculate the second order variances and hence the squeezing in pure and in mixed modes. The higher order quadrature squeezing and the amplitude squared squeezing of various field modes are also investigated where the squeezing in pure and in mixed modes are found to be suppressed. Moreover, the absence of a nonlinearity prohibits the higher order quadrature and higher ordered amplitude squeezing of the input coherent states. It is established that the mere coupling of two oscillators through a third one is unable to produce any squeezing effects of input coherent light, but the presence of a nonlinear interaction may provide squeezed states and other nonclassical phenomena.
Numerical solution of the general coupled nonlinear Schrödinger equations on unbounded domains.
Li, Hongwei; Guo, Yue
2017-12-01
The numerical solution of the general coupled nonlinear Schrödinger equations on unbounded domains is considered by applying the artificial boundary method in this paper. In order to design the local absorbing boundary conditions for the coupled nonlinear Schrödinger equations, we generalize the unified approach previously proposed [J. Zhang et al., Phys. Rev. E 78, 026709 (2008)PLEEE81539-375510.1103/PhysRevE.78.026709]. Based on the methodology underlying the unified approach, the original problem is split into two parts, linear and nonlinear terms, and we then achieve a one-way operator to approximate the linear term to make the wave out-going, and finally we combine the one-way operator with the nonlinear term to derive the local absorbing boundary conditions. Then we reduce the original problem into an initial boundary value problem on the bounded domain, which can be solved by the finite difference method. The stability of the reduced problem is also analyzed by introducing some auxiliary variables. Ample numerical examples are presented to verify the accuracy and effectiveness of our proposed method.
Modulational instability and discrete breathers in a nonlinear helicoidal lattice model
NASA Astrophysics Data System (ADS)
Ding, Jinmin; Wu, Tianle; Chang, Xia; Tang, Bing
2018-06-01
We investigate the problem on the discrete modulation instability of plane waves and discrete breather modes in a nonlinear helicoidal lattice model, which is described by a discrete nonlinear Schrödinger equation with the first-, second-, and third-neighbor coupling. By means of the linear stability analysis, we present an analytical expression of the instability growth rate and identify the regions of modulational instability of plane waves. It is shown that the introduction of the third-neighbor coupling will affect the shape of the areas of modulational instability significantly. Based on the results obtained by the modulational instability analysis, we predict the existence conditions for the stationary breather modes. Otherwise, by making use of the semidiscrete multiple-scale method, we obtain analytical solutions of discrete breather modes and analyze their properties for different types of nonlinearities. Our results show that the discrete breathers obtained are stable for a long time only when the system exhibits the repulsive nonlinearity. In addition, it is found that the existence of the stable bright discrete breather closely relates to the presence of the third-neighbor coupling.
NASA Astrophysics Data System (ADS)
Yuan, Yu-Qiang; Tian, Bo; Liu, Lei; Chai, Han-Peng
2017-11-01
In this paper, we investigate the coupled cubic-quintic nonlinear Schrödinger equations, which can describe the effects of quintic nonlinearity on the ultrashort optical soliton pulse propagation in a twin-core nonlinear optical fiber. Through the Kadomtsev-Petviashvili hierarchy reduction, we present the bright-dark and dark-dark soliton solutions in terms of the Grammian for such equations. With the help of analytic and graphic analysis, head-on and overtaking elastic interactions between the two solitons are presented, as well as the bound-state solitons. Particularly, we find the inelastic interaction between the bright-dark two solitons. One of the electromagnetic fields presents the V-shape profile, while the other one presents the Y-shape profile.
Current interactions from the one-form sector of nonlinear higher-spin equations
NASA Astrophysics Data System (ADS)
Gelfond, O. A.; Vasiliev, M. A.
2018-06-01
The form of higher-spin current interactions in the sector of one-forms is derived from the nonlinear higher-spin equations in AdS4. Quadratic corrections to higher-spin equations are shown to be independent of the phase of the parameter η = exp iφ in the full nonlinear higher-spin equations. The current deformation resulting from the nonlinear higher-spin equations is represented in the canonical form with the minimal number of space-time derivatives. The non-zero spin-dependent coupling constants of the resulting currents are determined in terms of the higher-spin coupling constant η η bar . Our results confirm the conjecture that (anti-)self-dual nonlinear higher-spin equations result from the full system at (η = 0) η bar = 0.
Data-based Non-Markovian Model Inference
NASA Astrophysics Data System (ADS)
Ghil, Michael
2015-04-01
This talk concentrates on obtaining stable and efficient data-based models for simulation and prediction in the geosciences and life sciences. The proposed model derivation relies on using a multivariate time series of partial observations from a large-dimensional system, and the resulting low-order models are compared with the optimal closures predicted by the non-Markovian Mori-Zwanzig formalism of statistical physics. Multilayer stochastic models (MSMs) are introduced as both a very broad generalization and a time-continuous limit of existing multilevel, regression-based approaches to data-based closure, in particular of empirical model reduction (EMR). We show that the multilayer structure of MSMs can provide a natural Markov approximation to the generalized Langevin equation (GLE) of the Mori-Zwanzig formalism. A simple correlation-based stopping criterion for an EMR-MSM model is derived to assess how well it approximates the GLE solution. Sufficient conditions are given for the nonlinear cross-interactions between the constitutive layers of a given MSM to guarantee the existence of a global random attractor. This existence ensures that no blow-up can occur for a very broad class of MSM applications. The EMR-MSM methodology is first applied to a conceptual, nonlinear, stochastic climate model of coupled slow and fast variables, in which only slow variables are observed. The resulting reduced model with energy-conserving nonlinearities captures the main statistical features of the slow variables, even when there is no formal scale separation and the fast variables are quite energetic. Second, an MSM is shown to successfully reproduce the statistics of a partially observed, generalized Lokta-Volterra model of population dynamics in its chaotic regime. The positivity constraint on the solutions' components replaces here the quadratic-energy-preserving constraint of fluid-flow problems and it successfully prevents blow-up. This work is based on a close collaboration with M.D. Chekroun, D. Kondrashov, S. Kravtsov and A.W. Robertson.
Roshid, Harun-Or; Kabir, Md Rashed; Bhowmik, Rajandra Chadra; Datta, Bimal Kumar
2014-01-01
In this paper, we have described two dreadfully important methods to solve nonlinear partial differential equations which are known as exp-function and the exp(-ϕ(ξ)) -expansion method. Recently, there are several methods to use for finding analytical solutions of the nonlinear partial differential equations. The methods are diverse and useful for solving the nonlinear evolution equations. With the help of these methods, we are investigated the exact travelling wave solutions of the Vakhnenko- Parkes equation. The obtaining soliton solutions of this equation are described many physical phenomena for weakly nonlinear surface and internal waves in a rotating ocean. Further, three-dimensional plots of the solutions such as solitons, singular solitons, bell type solitary wave i.e. non-topological solitons solutions and periodic solutions are also given to visualize the dynamics of the equation.
A nonlinear quality-related fault detection approach based on modified kernel partial least squares.
Jiao, Jianfang; Zhao, Ning; Wang, Guang; Yin, Shen
2017-01-01
In this paper, a new nonlinear quality-related fault detection method is proposed based on kernel partial least squares (KPLS) model. To deal with the nonlinear characteristics among process variables, the proposed method maps these original variables into feature space in which the linear relationship between kernel matrix and output matrix is realized by means of KPLS. Then the kernel matrix is decomposed into two orthogonal parts by singular value decomposition (SVD) and the statistics for each part are determined appropriately for the purpose of quality-related fault detection. Compared with relevant existing nonlinear approaches, the proposed method has the advantages of simple diagnosis logic and stable performance. A widely used literature example and an industrial process are used for the performance evaluation for the proposed method. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
A new perturbative approach to nonlinear partial differential equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bender, C.M.; Boettcher, S.; Milton, K.A.
1991-11-01
This paper shows how to solve some nonlinear wave equations as perturbation expansions in powers of a parameter that expresses the degree of nonlinearity. For the case of the Burgers equation {ital u}{sub {ital t}}+{ital uu}{sub {ital x}}={ital u}{sub {ital xx}}, the general nonlinear equation {ital u}{sub {ital t}}+{ital u}{sup {delta}}{ital u}{sub {ital x}}={ital u}{sub {ital xx}} is considered and expanded in powers of {delta}. The coefficients of the {delta} series to sixth order in powers of {delta} is determined and Pade summation is used to evaluate the perturbation series for large values of {delta}. The numerical results are accuratemore » and the method is very general; it applies to other well-studied partial differential equations such as the Korteweg--de Vries equation, {ital u}{sub {ital t}}+{ital uu}{sub {ital x}} ={ital u}{sub {ital xxx}}.« less
Differences in postural tremor dynamics with age and neurological disease.
Morrison, Steven; Newell, Karl M; Kavanagh, Justin J
2017-06-01
The overlap of dominant tremor frequencies and similarly amplified tremor observed for Parkinson's disease (PD) and essential tremor (ET) means differentiating between these pathologies is often difficult. As tremor exhibits non-linear properties, employing both linear and non-linear analyses may help distinguish between the tremor dynamics of aging, PD and ET. This study was designed to examine postural tremor in healthy older adults, PD and ET using standard linear and non-linear metrics. Hand and finger postural tremor was recorded in 15 healthy older adults (64 ± 6 years), 15 older individuals with PD (63 ± 6 years), and 10 persons with ET (68 ± 7 years). Linear measures of amplitude, frequency, and between-limb coupling (coherence) were performed. Non-linear measures of regularity (ApEn) and coupling (Cross-ApEn) were also used. Additionally, receiver operating characteristic analyses were performed for those measures that were significantly different between all groups. The results revealed that the linear measures only showed significant differences between the healthy adults and ET/PD persons, but no differences between the two neurological groups. Coherence showed higher bilateral coupling for ET but no differences in inter-limb coupling between PD and healthy subjects. However, ApEn values for finger tremor revealed significant differences between all groups, with tremor for ET persons being more regular (lower ApEn) overall. Similarly, Cross-ApEn results also showed differences between all groups, with ET persons showing strongest inter-limb coupling followed by PD and elderly. Overall, our findings point to the diagnostic potential for non-linear measures of coupling and tremor structure as biomarkers for discriminating between ET, PD and healthy persons.
Experimental characterization and modeling of non-linear coupling of the LHCD power on Tore Supra
DOE Office of Scientific and Technical Information (OSTI.GOV)
Preynas, M.; Goniche, M.; Hillairet, J.
2014-02-12
To achieve steady state operation on future tokamaks, in particular on ITER, the unique capability of a LHCD system to efficiently drive off-axis non-inductive current is needed. In this context, it is of prime importance to study and master the coupling of LH wave to the core plasma at high power density (tens of MW/m{sup 2}). In some specific conditions, deleterious effects on the LHCD coupling are sometimes observed on Tore Supra. At high power the waves may modify the edge parameters that change the wave coupling properties in a non-linear manner. In this way, dedicated LHCD experiments have beenmore » performed using the LHCD system of Tore Supra, composed of two different conceptual designs of launcher: the Fully Active Multijunction (FAM) and the new Passive Active Multijunction (PAM) antennas. A nonlinear interaction between the electron density and the electric field has been characterized in a thin plasma layer in front of the two LHCD antennas. The resulting dependence of the power reflection coefficient with the LHCD power, leading occasionally to trips in the output power, is not predicted by the standard linear theory of the LH wave coupling. Therefore, it is important to investigate and understand the possible origin of such non-linear effects in order to avoid their possible deleterious consequences. The PICCOLO-2D code, which self-consistently treats the wave propagation in the antenna vicinity and its interaction with the local edge plasma density, is used to simulate Tore Supra discharges. The simulation reproduces very well the occurrence of a non-linear behavior in the coupling observed in the LHCD experiments. The important differences and trends between the FAM and the PAM antennas, especially a larger increase in RC for the FAM, are also reproduced by the PICCOLO-2D simulation. The working hypothesis of the contribution of the ponderomotive effect in the non-linear observations of LHCD coupling is therefore validated through this comprehensive modeling for the first time on the FAM and PAM antennas on Tore Supra.« less
Development of a rotorcraft. Propulsion dynamics interface analysis, volume 2
NASA Technical Reports Server (NTRS)
Hull, R.
1982-01-01
A study was conducted to establish a coupled rotor/propulsion analysis that would be applicable to a wide range of rotorcraft systems. The effort included the following tasks: (1) development of a model structure suitable for simulating a wide range of rotorcraft configurations; (2) defined a methodology for parameterizing the model structure to represent a particular rotorcraft; (3) constructing a nonlinear coupled rotor/propulsion model as a test case to use in analyzing coupled system dynamics; and (4) an attempt to develop a mostly linear coupled model derived from the complete nonlinear simulations. Documentation of the computer models developed is presented.
NASA Astrophysics Data System (ADS)
Pérez Daroca, Diego; Roura-Bas, Pablo; Aligia, Armando A.
2018-04-01
We study the low-temperature properties of the differential response of the current to a temperature gradient at finite voltage in a single-level quantum dot including electron-electron interaction, nonsymmetric couplings to the leads, and nonlinear effects. The calculated response is significantly enhanced in setups with large asymmetries between the tunnel couplings. In the investigated range of voltages and temperatures with corresponding energies up to several times the Kondo energy scale, the maximum response is enhanced nearly an order of magnitude with respect to symmetric coupling to the leads.
ERIC Educational Resources Information Center
Butner, Jonathan; Amazeen, Polemnia G.; Mulvey, Genna M.
2005-01-01
The authors present a dynamical multilevel model that captures changes over time in the bidirectional, potentially asymmetric influence of 2 cyclical processes. S. M. Boker and J. Graham's (1998) differential structural equation modeling approach was expanded to the case of a nonlinear coupled oscillator that is common in bimanual coordination…
Bifurcation and chaos analysis of a nonlinear electromechanical coupling relative rotation system
NASA Astrophysics Data System (ADS)
Liu, Shuang; Zhao, Shuang-Shuang; Sun, Bao-Ping; Zhang, Wen-Ming
2014-09-01
Hopf bifurcation and chaos of a nonlinear electromechanical coupling relative rotation system are studied in this paper. Considering the energy in air-gap field of AC motor, the dynamical equation of nonlinear electromechanical coupling relative rotation system is deduced by using the dissipation Lagrange equation. Choosing the electromagnetic stiffness as a bifurcation parameter, the necessary and sufficient conditions of Hopf bifurcation are given, and the bifurcation characteristics are studied. The mechanism and conditions of system parameters for chaotic motions are investigated rigorously based on the Silnikov method, and the homoclinic orbit is found by using the undetermined coefficient method. Therefore, Smale horseshoe chaos occurs when electromagnetic stiffness changes. Numerical simulations are also given, which confirm the analytical results.
On controlling networks of limit-cycle oscillators
NASA Astrophysics Data System (ADS)
Skardal, Per Sebastian; Arenas, Alex
2016-09-01
The control of network-coupled nonlinear dynamical systems is an active area of research in the nonlinear science community. Coupled oscillator networks represent a particularly important family of nonlinear systems, with applications ranging from the power grid to cardiac excitation. Here, we study the control of network-coupled limit cycle oscillators, extending the previous work that focused on phase oscillators. Based on stabilizing a target fixed point, our method aims to attain complete frequency synchronization, i.e., consensus, by applying control to as few oscillators as possible. We develop two types of controls. The first type directs oscillators towards larger amplitudes, while the second does not. We present numerical examples of both control types and comment on the potential failures of the method.
Cao, Hui; Yan, Xingyu; Li, Yaojiang; Wang, Yanxia; Zhou, Yan; Yang, Sanchun
2014-01-01
Quantitative analysis for the flue gas of natural gas-fired generator is significant for energy conservation and emission reduction. The traditional partial least squares method may not deal with the nonlinear problems effectively. In the paper, a nonlinear partial least squares method with extended input based on radial basis function neural network (RBFNN) is used for components prediction of flue gas. For the proposed method, the original independent input matrix is the input of RBFNN and the outputs of hidden layer nodes of RBFNN are the extension term of the original independent input matrix. Then, the partial least squares regression is performed on the extended input matrix and the output matrix to establish the components prediction model of flue gas. A near-infrared spectral dataset of flue gas of natural gas combustion is used for estimating the effectiveness of the proposed method compared with PLS. The experiments results show that the root-mean-square errors of prediction values of the proposed method for methane, carbon monoxide, and carbon dioxide are, respectively, reduced by 4.74%, 21.76%, and 5.32% compared to those of PLS. Hence, the proposed method has higher predictive capabilities and better robustness.
Applications of singular value analysis and partial-step algorithm for nonlinear orbit determination
NASA Technical Reports Server (NTRS)
Ryne, Mark S.; Wang, Tseng-Chan
1991-01-01
An adaptive method in which cruise and nonlinear orbit determination problems can be solved using a single program is presented. It involves singular value decomposition augmented with an extended partial step algorithm. The extended partial step algorithm constrains the size of the correction to the spacecraft state and other solve-for parameters. The correction is controlled by an a priori covariance and a user-supplied bounds parameter. The extended partial step method is an extension of the update portion of the singular value decomposition algorithm. It thus preserves the numerical stability of the singular value decomposition method, while extending the region over which it converges. In linear cases, this method reduces to the singular value decomposition algorithm with the full rank solution. Two examples are presented to illustrate the method's utility.
Relationships between nonlinear normal modes and response to random inputs
Schoneman, Joseph D.; Allen, Matthew S.; Kuether, Robert J.
2016-07-25
The ability to model nonlinear structures subject to random excitation is of key importance in designing hypersonic aircraft and other advanced aerospace vehicles. When a structure is linear, superposition can be used to construct its response to a known spectrum in terms of its linear modes. Superposition does not hold for a nonlinear system, but several works have shown that a system's dynamics can still be understood qualitatively in terms of its nonlinear normal modes (NNMs). Here, this work investigates the connection between a structure's undamped nonlinear normal modes and the spectrum of its response to high amplitude random forcing.more » Two examples are investigated: a spring-mass system and a clamped-clamped beam modeled within a geometrically nonlinear finite element package. In both cases, an intimate connection is observed between the smeared peaks in the response spectrum and the frequency-energy dependence of the nonlinear normal modes. In order to understand the role of coupling between the underlying linear modes, reduced order models with and without modal coupling terms are used to separate the effect of each NNM's backbone from the nonlinear couplings that give rise to internal resonances. In the cases shown here, uncoupled, single-degree-of-freedom nonlinear models are found to predict major features in the response with reasonable accuracy; a highly inexpensive approximation such as this could be useful in design and optimization studies. More importantly, the results show that a reduced order model can be expected to give accurate results only if it is also capable of accurately predicting the frequency-energy dependence of the nonlinear modes that are excited.« less
Heise, M; Hoffmann, Ch; Abshagen, J; Pinter, A; Pfister, G; Lücke, M
2008-02-15
We present a new mechanism that allows the stable existence of domain walls between oppositely traveling waves in pattern-forming systems far from onset. It involves a nonlinear mode coupling that results directly from the nonlinearities in the underlying momentum balance. Our work provides the first observation and explanation of such strongly nonlinearly driven domain walls that separate structured states by a phase generating or annihilating defect. Furthermore, the influence of a symmetry breaking externally imposed flow on the wave domains and the domain walls is studied. The results are obtained for vortex waves in the Taylor-Couette system by combining numerical simulations of the full Navier-Stokes equations and experimental measurements.
NASA Astrophysics Data System (ADS)
Nath, Debraj; Gao, Yali; Babu Mareeswaran, R.; Kanna, T.; Roy, Barnana
2017-12-01
We explore different nonlinear coherent structures, namely, bright-dark (BD) and dark-dark (DD) solitons in a coupled nonlinear Schrödinger/Gross-Pitaevskii equation with defocusing/repulsive nonlinearity coefficients featuring parity-time ( P T )-symmetric potentials. Especially, for two choices of P T -symmetric potentials, we obtain the exact solutions for BD and DD solitons. We perform the linear stability analysis of the obtained coherent structures. The results of this linear stability analysis are well corroborated by direct numerical simulation incorporating small random noise. It has been found that there exists a parameter regime which can support stable BD and DD solitons.
Nonlinear layered lattice model and generalized solitary waves in imperfectly bonded structures.
Khusnutdinova, Karima R; Samsonov, Alexander M; Zakharov, Alexey S
2009-05-01
We study nonlinear waves in a two-layered imperfectly bonded structure using a nonlinear lattice model. The key element of the model is an anharmonic chain of oscillating dipoles, which can be viewed as a basic lattice analog of a one-dimensional macroscopic waveguide. Long nonlinear longitudinal waves in a layered lattice with a soft middle (or bonding) layer are governed by a system of coupled Boussinesq-type equations. For this system we find conservation laws and show that pure solitary waves, which exist in a single equation and can exist in the coupled system in the symmetric case, are structurally unstable and are replaced with generalized solitary waves.
Mid-infrared supercontinuum generation in multimode step index chalcogenide fiber
NASA Astrophysics Data System (ADS)
Ben Khalifa, Ameni; Ben Salem, Amine; Cherif, Rim; Zghal, Mourad
2016-09-01
In this paper, we propose a design of a high numerical aperture multimode hybrid step-index fiber for mid-infrared (mid- IR) supercontinuum generation (SCG) where two chalcogenide glass compositions As40Se60 and Ge10As23.4Se66.6 for the core and the cladding are selected, respectively. Aiming to get accurate modeling of the SCG by the fundamental mode, we solve the multimode generalized nonlinear Schrödinger equations and demonstrate nonlinear coupling and energy transfer between high order modes. The proposed study points out the impact of nonlinear mode coupling that should be taken into account in order to successfully predict the mid-infrared supercontinuum generation in highly nonlinear multimode fibers.
Tuning group-velocity dispersion by optical force.
Jiang, Wei C; Lin, Qiang
2013-07-15
We propose an optomechanical approach for dispersion dynamic tuning and microengineering by taking advantage of the optical force in nano-optomechanical structures. Simulations of a suspended coupled silicon waveguide show that the zero-dispersion wavelength can be tuned by 40 nm by an optical pump power of 3 mW. Our approach exhibits great potential for broad applications in dispersion-sensitive processes, which not only offers a new root toward versatile tunable nonlinear photonics but may also open up a great avenue toward a new regime of nonlinear dynamics coupling between nonlinear optical and optomechanical effects.
Nonlinear electron-phonon coupling in doped manganites
Esposito, Vincent; Fechner, M.; Mankowsky, R.; ...
2017-06-15
Here, we employ time-resolved resonant x-ray diffraction to study the melting of charge order and the associated insulator-to-metal transition in the doped manganite Pr 0.5Ca 0.5MnO 3 after resonant excitation of a high-frequency infrared-active lattice mode. We find that the charge order reduces promptly and highly nonlinearly as function of excitation fluence. Density-functional theory calculations suggest that direct anharmonic coupling between the excited lattice mode and the electronic structure drives these dynamics, highlighting a new avenue of nonlinear phonon control.
NASA Technical Reports Server (NTRS)
Young, J. W.; Schy, A. A.; Johnson, K. G.
1977-01-01
An analytical method has been developed for predicting critical control inputs for which nonlinear rotational coupling may cause sudden jumps in aircraft response. The analysis includes the effect of aerodynamics which are nonlinear in angle of attack. The method involves the simultaneous solution of two polynomials in roll rate, whose coefficients are functions of angle of attack and the control inputs. Results obtained using this procedure are compared with calculated time histories to verify the validity of the method for predicting jump-like instabilities.
Nonlinear Electron-Phonon Coupling in Doped Manganites.
Esposito, V; Fechner, M; Mankowsky, R; Lemke, H; Chollet, M; Glownia, J M; Nakamura, M; Kawasaki, M; Tokura, Y; Staub, U; Beaud, P; Först, M
2017-06-16
We employ time-resolved resonant x-ray diffraction to study the melting of charge order and the associated insulator-to-metal transition in the doped manganite Pr_{0.5}Ca_{0.5}MnO_{3} after resonant excitation of a high-frequency infrared-active lattice mode. We find that the charge order reduces promptly and highly nonlinearly as function of excitation fluence. Density-functional theory calculations suggest that direct anharmonic coupling between the excited lattice mode and the electronic structure drives these dynamics, highlighting a new avenue of nonlinear phonon control.
Nakamura, Yoshinori; Kanbara, Ryo; Ochiai, Kent T; Tanaka, Yoshinobu
2014-10-01
The mechanical evaluation of the function of partial removable dental prostheses with 3-dimensional finite element modeling requires the accurate assessment and incorporation of soft tissue behavior. The differential behaviors of the residual ridge mucosa and periodontal ligament tissues have been shown to exhibit nonlinear displacement. The mathematic incorporation of known values simulating nonlinear soft tissue behavior has not been investigated previously via 3-dimensional finite element modeling evaluation to demonstrate the effect of prosthesis design on the supporting tissues. The purpose of this comparative study was to evaluate the functional differences of 3 different partial removable dental prosthesis designs with 3-dimensional finite element analysis modeling and a simulated patient model incorporating known viscoelastic, nonlinear soft tissue properties. Three different designs of distal extension removable partial dental prostheses were analyzed. The stress distributions to the supporting abutments and soft tissue displacements of the designs tested were calculated and mechanically compared. Among the 3 dental designs evaluated, the RPI prosthesis demonstrated the lowest stress concentrations on the tissue supporting the tooth abutment and also provided wide mucosa-borne areas of support, thereby demonstrating a mechanical advantage and efficacy over the other designs evaluated. The data and results obtained from this study confirmed that the functional behavior of partial dental prostheses with supporting abutments and soft tissues are consistent with the conventional theories of design and clinical experience. The validity and usefulness of this testing method for future applications and testing protocols are shown. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
The relative degree enhancement problem for MIMO nonlinear systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schoenwald, D.A.; Oezguener, Ue.
1995-07-01
The authors present a result for linearizing a nonlinear MIMO system by employing partial feedback - feedback at all but one input-output channel such that the SISO feedback linearization problem is solvable at the remaining input-output channel. The partial feedback effectively enhances the relative degree at the open input-output channel provided the feedback functions are chosen to satisfy relative degree requirements. The method is useful for nonlinear systems that are not feedback linearizable in a MIMO sense. Several examples are presented to show how these feedback functions can be computed. This strategy can be combined with decentralized observers for amore » completely decentralized feedback linearization result for at least one input-output channel.« less
NASA Astrophysics Data System (ADS)
Wei, Xinjiang; Sun, Shixiang
2018-03-01
An elegant anti-disturbance control (EADC) strategy for a class of discrete-time stochastic systems with both nonlinearity and multiple disturbances, which include the disturbance with partially known information and a sequence of random vectors, is proposed in this paper. A stochastic disturbance observer is constructed to estimate the disturbance with partially known information, based on which, an EADC scheme is proposed by combining pole placement and linear matrix inequality methods. It is proved that the two different disturbances can be rejected and attenuated, and the corresponding desired performances can be guaranteed for discrete-time stochastic systems with known and unknown nonlinear dynamics, respectively. Simulation examples are given to demonstrate the effectiveness of the proposed schemes compared with some existing results.
Superposition of elliptic functions as solutions for a large number of nonlinear equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khare, Avinash; Saxena, Avadh
2014-03-15
For a large number of nonlinear equations, both discrete and continuum, we demonstrate a kind of linear superposition. We show that whenever a nonlinear equation admits solutions in terms of both Jacobi elliptic functions cn(x, m) and dn(x, m) with modulus m, then it also admits solutions in terms of their sum as well as difference. We have checked this in the case of several nonlinear equations such as the nonlinear Schrödinger equation, MKdV, a mixed KdV-MKdV system, a mixed quadratic-cubic nonlinear Schrödinger equation, the Ablowitz-Ladik equation, the saturable nonlinear Schrödinger equation, λϕ{sup 4}, the discrete MKdV as well asmore » for several coupled field equations. Further, for a large number of nonlinear equations, we show that whenever a nonlinear equation admits a periodic solution in terms of dn{sup 2}(x, m), it also admits solutions in terms of dn {sup 2}(x,m)±√(m) cn (x,m) dn (x,m), even though cn(x, m)dn(x, m) is not a solution of these nonlinear equations. Finally, we also obtain superposed solutions of various forms for several coupled nonlinear equations.« less
NASA Astrophysics Data System (ADS)
Kannan, Rohit; Tangirala, Arun K.
2014-06-01
Identification of directional influences in multivariate systems is of prime importance in several applications of engineering and sciences such as plant topology reconstruction, fault detection and diagnosis, and neurosciences. A spectrum of related directionality measures, ranging from linear measures such as partial directed coherence (PDC) to nonlinear measures such as transfer entropy, have emerged over the past two decades. The PDC-based technique is simple and effective, but being a linear directionality measure has limited applicability. On the other hand, transfer entropy, despite being a robust nonlinear measure, is computationally intensive and practically implementable only for bivariate processes. The objective of this work is to develop a nonlinear directionality measure, termed as KPDC, that possesses the simplicity of PDC but is still applicable to nonlinear processes. The technique is founded on a nonlinear measure called correntropy, a recently proposed generalized correlation measure. The proposed method is equivalent to constructing PDC in a kernel space where the PDC is estimated using a vector autoregressive model built on correntropy. A consistent estimator of the KPDC is developed and important theoretical results are established. A permutation scheme combined with the sequential Bonferroni procedure is proposed for testing hypothesis on absence of causality. It is demonstrated through several case studies that the proposed methodology effectively detects Granger causality in nonlinear processes.
FRF decoupling of nonlinear systems
NASA Astrophysics Data System (ADS)
Kalaycıoğlu, Taner; Özgüven, H. Nevzat
2018-03-01
Structural decoupling problem, i.e. predicting dynamic behavior of a particular substructure from the knowledge of the dynamics of the coupled structure and the other substructure, has been well investigated for three decades and led to several decoupling methods. In spite of the inherent nonlinearities in a structural system in various forms such as clearances, friction and nonlinear stiffness, all decoupling studies are for linear systems. In this study, decoupling problem for nonlinear systems is addressed for the first time. A method, named as FRF Decoupling Method for Nonlinear Systems (FDM-NS), is proposed for calculating FRFs of a substructure decoupled from a coupled nonlinear structure where nonlinearity can be modeled as a single nonlinear element. Depending on where nonlinear element is, i.e., either in the known or unknown subsystem, or at the connection point, the formulation differs. The method requires relative displacement information between two end points of the nonlinear element, in addition to point and transfer FRFs at some points of the known subsystem. However, it is not necessary to excite the system from the unknown subsystem even when the nonlinear element is in that subsystem. The validation of FDM-NS is demonstrated with two different case studies using nonlinear lumped parameter systems. Finally, a nonlinear experimental test structure is used in order to show the real-life application and accuracy of FDM-NS.
Automated reverse engineering of nonlinear dynamical systems
Bongard, Josh; Lipson, Hod
2007-01-01
Complex nonlinear dynamics arise in many fields of science and engineering, but uncovering the underlying differential equations directly from observations poses a challenging task. The ability to symbolically model complex networked systems is key to understanding them, an open problem in many disciplines. Here we introduce for the first time a method that can automatically generate symbolic equations for a nonlinear coupled dynamical system directly from time series data. This method is applicable to any system that can be described using sets of ordinary nonlinear differential equations, and assumes that the (possibly noisy) time series of all variables are observable. Previous automated symbolic modeling approaches of coupled physical systems produced linear models or required a nonlinear model to be provided manually. The advance presented here is made possible by allowing the method to model each (possibly coupled) variable separately, intelligently perturbing and destabilizing the system to extract its less observable characteristics, and automatically simplifying the equations during modeling. We demonstrate this method on four simulated and two real systems spanning mechanics, ecology, and systems biology. Unlike numerical models, symbolic models have explanatory value, suggesting that automated “reverse engineering” approaches for model-free symbolic nonlinear system identification may play an increasing role in our ability to understand progressively more complex systems in the future. PMID:17553966
Nonlinear coupling of flow harmonics: Hexagonal flow and beyond
NASA Astrophysics Data System (ADS)
Giacalone, Giuliano; Yan, Li; Ollitrault, Jean-Yves
2018-05-01
Higher Fourier harmonics of anisotropic flow (v4 and beyond) get large contributions induced by elliptic and triangular flow through nonlinear response. We present a general framework of nonlinear hydrodynamic response which encompasses the existing one and allows us to take into account the mutual correlation between the nonlinear couplings affecting Fourier harmonics of any order. Using Large Hadron Collider data on Pb+Pb collisions at
Nonlinear Wave Chaos and the Random Coupling Model
NASA Astrophysics Data System (ADS)
Zhou, Min; Ott, Edward; Antonsen, Thomas M.; Anlage, Steven
The Random Coupling Model (RCM) has been shown to successfully predict the statistical properties of linear wave chaotic cavities in the highly over-moded regime. It is of interest to extend the RCM to strongly nonlinear systems. To introduce nonlinearity, an active nonlinear circuit is connected to two ports of the wave chaotic 1/4-bowtie cavity. The active nonlinear circuit consists of a frequency multiplier, an amplifier and several passive filters. It acts to double the input frequency in the range from 3.5 GHz to 5 GHz, and operates for microwaves going in only one direction. Measurements are taken between two additional ports of the cavity and we measure the statistics of the second harmonic voltage over an ensemble of realizations of the scattering system. We developed an RCM-based model of this system as two chaotic cavities coupled by means of a nonlinear transfer function. The harmonics received at the output are predicted to be the product of three statistical quantities that describe the three elements correspondingly. Statistical results from simulation, RCM-based modeling, and direct experimental measurements will be compared. ONR under Grant No. N000141512134, AFOSR under COE Grant FA9550-15-1-0171,0 and the Maryland Center for Nanophysics and Advanced Materials.
Automated reverse engineering of nonlinear dynamical systems.
Bongard, Josh; Lipson, Hod
2007-06-12
Complex nonlinear dynamics arise in many fields of science and engineering, but uncovering the underlying differential equations directly from observations poses a challenging task. The ability to symbolically model complex networked systems is key to understanding them, an open problem in many disciplines. Here we introduce for the first time a method that can automatically generate symbolic equations for a nonlinear coupled dynamical system directly from time series data. This method is applicable to any system that can be described using sets of ordinary nonlinear differential equations, and assumes that the (possibly noisy) time series of all variables are observable. Previous automated symbolic modeling approaches of coupled physical systems produced linear models or required a nonlinear model to be provided manually. The advance presented here is made possible by allowing the method to model each (possibly coupled) variable separately, intelligently perturbing and destabilizing the system to extract its less observable characteristics, and automatically simplifying the equations during modeling. We demonstrate this method on four simulated and two real systems spanning mechanics, ecology, and systems biology. Unlike numerical models, symbolic models have explanatory value, suggesting that automated "reverse engineering" approaches for model-free symbolic nonlinear system identification may play an increasing role in our ability to understand progressively more complex systems in the future.
NASA Astrophysics Data System (ADS)
Preynas, M.; Goniche, M.; Hillairet, J.; Litaudon, X.; Ekedahl, A.; Colas, L.
2013-01-01
To achieve steady-state operation on future fusion devices, in particular on ITER, the coupling of the lower hybrid wave must be optimized on a wide range of edge conditions. However, under some specific conditions, deleterious effects on the lower hybrid current drive (LHCD) coupling are sometimes observed on Tore Supra. In this way, dedicated LHCD experiments have been performed using the LHCD system of Tore Supra, composed of two different conceptual designs of launcher: the fully active multi-junction (FAM) and the new passive active multi-junction (PAM) antennas. A non-linear interaction between the electron density and the electric field has been characterized in a thin plasma layer in front of the two LHCD antennas. The resulting dependence of the power reflection coefficient (RC) with the LHCD power is not predicted by the standard linear theory of the LH wave coupling. A theoretical model is suggested to describe the non-linear wave-plasma interaction induced by the ponderomotive effect and implemented in a new full wave LHCD code, PICCOLO-2D (ponderomotive effect in a coupling code of lower hybrid wave-2D). The code self-consistently treats the wave propagation in the antenna vicinity and its interaction with the local edge plasma density. The simulation reproduces very well the occurrence of a non-linear behaviour in the coupling observed in the LHCD experiments. The important differences and trends between the FAM and the PAM antennas, especially a larger increase in RC for the FAM, are also reproduced by the PICCOLO-2D simulation. The working hypothesis of the contribution of the ponderomotive effect in the non-linear observations of LHCD coupling is therefore validated through this comprehensive modelling for the first time on the FAM and PAM antennas on Tore Supra.
Boltzmann sampling from the Ising model using quantum heating of coupled nonlinear oscillators.
Goto, Hayato; Lin, Zhirong; Nakamura, Yasunobu
2018-05-08
A network of Kerr-nonlinear parametric oscillators without dissipation has recently been proposed for solving combinatorial optimization problems via quantum adiabatic evolution through its bifurcation point. Here we investigate the behavior of the quantum bifurcation machine (QbM) in the presence of dissipation. Our numerical study suggests that the output probability distribution of the dissipative QbM is Boltzmann-like, where the energy in the Boltzmann distribution corresponds to the cost function of the optimization problem. We explain the Boltzmann distribution by generalizing the concept of quantum heating in a single nonlinear oscillator to the case of multiple coupled nonlinear oscillators. The present result also suggests that such driven dissipative nonlinear oscillator networks can be applied to Boltzmann sampling, which is used, e.g., for Boltzmann machine learning in the field of artificial intelligence.
Enhanced photon-phonon cross-Kerr nonlinearity with two-photon driving.
Yin, Tai-Shuang; Lü, Xin-You; Wan, Liang-Liang; Bin, Shang-Wu; Wu, Ying
2018-05-01
We propose a scheme to significantly enhance the cross-Kerr (CK) nonlinearity between photons and phonons in a quadratically coupled optomechanical system (OMS) with two-photon driving. This CK nonlinear enhancement originates from the parametric-driving-induced squeezing and the underlying nonlinear optomechanical interaction. Moreover, the noise of the squeezed mode can be suppressed completely by introducing a squeezed vacuum reservoir. As a result of this dramatic nonlinear enhancement and the suppressed noise, we demonstrate the feasibility of the quantum nondemolition measurement of the phonon number in an originally weak coupled OMS. In addition, the photon-phonon blockade phenomenon is also investigated in this regime, which allows for performing manipulations between photons and phonons. This Letter offers a promising route towards the potential application for the OMS in quantum information processing and quantum networks.
Fourier imaging of non-linear structure formation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brandbyge, Jacob; Hannestad, Steen, E-mail: jacobb@phys.au.dk, E-mail: sth@phys.au.dk
We perform a Fourier space decomposition of the dynamics of non-linear cosmological structure formation in ΛCDM models. From N -body simulations involving only cold dark matter we calculate 3-dimensional non-linear density, velocity divergence and vorticity Fourier realizations, and use these to calculate the fully non-linear mode coupling integrals in the corresponding fluid equations. Our approach allows for a reconstruction of the amount of mode coupling between any two wavenumbers as a function of redshift. With our Fourier decomposition method we identify the transfer of power from larger to smaller scales, the stable clustering regime, the scale where vorticity becomes important,more » and the suppression of the non-linear divergence power spectrum as compared to linear theory. Our results can be used to improve and calibrate semi-analytical structure formation models.« less
Nonlinear deformation of composites with consideration of the effect of couple-stresses
NASA Astrophysics Data System (ADS)
Lagzdiņš, A.; Teters, G.; Zilaucs, A.
1998-09-01
Nonlinear deformation of spatially reinforced composites under active loading (without unloading) is considered. All the theoretical constructions are based on the experimental data on unidirectional and ±π/4 cross-ply epoxy plastics reinforced with glass fibers. Based on the elastic properties of the fibers and EDT-10 epoxy binder, the linear elastic characteristics of a transversely isotropic unidirectionally reinforced fiberglass plastic are found, whereas the nonlinear characteristics are obtained from experiments. For calculating the deformation properties of the ±π/4 cross-ply plastic, a refined version of the Voigt method is applied taking into account also the couple-stresses arising in the composite due to relative rotation of the reinforcement fibers. In addition, a fourth-rank damage tensor is introduced in order to account for the impact of fracture caused by the couple-stresses. The unknown constants are found from the experimental uniaxial tension curve for the cross-ply composite. The comparison between the computed curves and experimental data for other loading paths shows that the description of the nonlinear behavior of composites can be improved by considering the effect of couple-stresses generated by rotations of the reinforcing fibers.
Photon blockade in optomechanical systems with a position-modulated Kerr-type nonlinear coupling
NASA Astrophysics Data System (ADS)
Zhang, X. Y.; Zhou, Y. H.; Guo, Y. Q.; Yi, X. X.
2018-03-01
We explore the photon blockade in optomechanical systems with a position-modulated Kerr-type nonlinear coupling, i.e. H_int˜\\hat{a}\\dagger2\\hat{a}^2(\\hat{b}_1^\\dagger+\\hat{b}_1) . We find that the Kerr-type nonlinear coupling can enhance the photon blockade greatly. We evaluate the equal-time second-order correlation function of the cavity photons and find that the optimal photon blockade does not happen at the single photon resonance. By working within the few-photon subspace, we get an approximate analytical expression for the correlation function and the condition for the optimal photon blockade. We also find that the photon blockade effect is not always enhanced as the Kerr-type nonlinear coupling strength g 2 increases. At some values of g 2, the photon blockade is even weakened. For the system we considered here, the second-order correlation function can be smaller than 1 even in the unresolved sideband regime. By numerically simulating the master equation of the system, we also find that the thermal noise of the mechanical environment can enhance the photon blockade. We give out an explanation for this counter-intuitive phenomenon qualitatively.
Mathematical Methods in Wave Propagation: Part 2--Non-Linear Wave Front Analysis
ERIC Educational Resources Information Center
Jeffrey, Alan
1971-01-01
The paper presents applications and methods of analysis for non-linear hyperbolic partial differential equations. The paper is concluded by an account of wave front analysis as applied to the piston problem of gas dynamics. (JG)
NASA Astrophysics Data System (ADS)
Liang, Hong-Qin; Liu, Bin; Hu, Jin-Feng; He, Xing-Dao
2018-05-01
An all-optical plasmonic diode, comprising a metal-insulator-metal waveguide coupled with a stub cavity, is proposed based on a nonlinear Fano structure. The key technique used is to break structural spatial symmetry by a simple reflector layer in the waveguide. The spatial asymmetry of the structure gives rise to the nonreciprocity of coupling efficiencies between the Fano cavity and waveguides on both sides of the reflector layer, leading to a nonreciprocal nonlinear response. Transmission properties and dynamic responses are numerically simulated and investigated by the nonlinear finite-difference time-domain method. In the proposed structure, high-efficiency nonreciprocal transmission can be achieved with a low power threshold and an ultrafast response time (subpicosecond level). A high maximum transmittance of 89.3% and an ultra-high transmission contrast ratio of 99.6% can also be obtained. The device can be flexibly adjusted for working wavebands by altering the stub cavity length.
Numerical simulation of magmatic hydrothermal systems
Ingebritsen, S.E.; Geiger, S.; Hurwitz, S.; Driesner, T.
2010-01-01
The dynamic behavior of magmatic hydrothermal systems entails coupled and nonlinear multiphase flow, heat and solute transport, and deformation in highly heterogeneous media. Thus, quantitative analysis of these systems depends mainly on numerical solution of coupled partial differential equations and complementary equations of state (EOS). The past 2 decades have seen steady growth of computational power and the development of numerical models that have eliminated or minimized the need for various simplifying assumptions. Considerable heuristic insight has been gained from process-oriented numerical modeling. Recent modeling efforts employing relatively complete EOS and accurate transport calculations have revealed dynamic behavior that was damped by linearized, less accurate models, including fluid property control of hydrothermal plume temperatures and three-dimensional geometries. Other recent modeling results have further elucidated the controlling role of permeability structure and revealed the potential for significant hydrothermally driven deformation. Key areas for future reSearch include incorporation of accurate EOS for the complete H2O-NaCl-CO2 system, more realistic treatment of material heterogeneity in space and time, realistic description of large-scale relative permeability behavior, and intercode benchmarking comparisons. Copyright 2010 by the American Geophysical Union.
Graph partitions and cluster synchronization in networks of oscillators
Schaub, Michael T.; O’Clery, Neave; Billeh, Yazan N.; Delvenne, Jean-Charles; Lambiotte, Renaud; Barahona, Mauricio
2017-01-01
Synchronization over networks depends strongly on the structure of the coupling between the oscillators. When the coupling presents certain regularities, the dynamics can be coarse-grained into clusters by means of External Equitable Partitions of the network graph and their associated quotient graphs. We exploit this graph-theoretical concept to study the phenomenon of cluster synchronization, in which different groups of nodes converge to distinct behaviors. We derive conditions and properties of networks in which such clustered behavior emerges, and show that the ensuing dynamics is the result of the localization of the eigenvectors of the associated graph Laplacians linked to the existence of invariant subspaces. The framework is applied to both linear and non-linear models, first for the standard case of networks with positive edges, before being generalized to the case of signed networks with both positive and negative interactions. We illustrate our results with examples of both signed and unsigned graphs for consensus dynamics and for partial synchronization of oscillator networks under the master stability function as well as Kuramoto oscillators. PMID:27781454
Jain, Preeti
2014-01-01
An analysis study is presented to study the effects of Hall current and Soret effect on unsteady hydromagnetic natural convection of a micropolar fluid in a rotating frame of reference with slip-flow regime. A uniform magnetic field acts perpendicularly to the porous surface which absorbs the micropolar fluid with variable suction velocity. The effects of heat absorption, chemical reaction, and thermal radiation are discussed and for this Rosseland approximation is used to describe the radiative heat flux in energy equation. The entire system rotates with uniform angular velocity Ω about an axis normal to the plate. The nonlinear coupled partial differential equations are solved by perturbation techniques. In order to get physical insight, the numerical results of translational velocity, microrotation, fluid temperature, and species concentration for different physical parameters entering into the analysis are discussed and explained graphically. Also, the results of the skin-friction coefficient, the couple stress coefficient, Nusselt number, and Sherwood number are discussed with the help of figures for various values of flow pertinent flow parameters. PMID:27350957
NASA Astrophysics Data System (ADS)
Huang, Chien-Jung; Huang, Shao-Ching; White, Susan M.; Mallya, Sanjay M.; Eldredge, Jeff D.
2016-04-01
Obstructive sleep apnea (OSA) is a medical condition characterized by repetitive partial or complete occlusion of the airway during sleep. The soft tissues in the airway of OSA patients are prone to collapse under the low-pressure loads incurred during breathing. This paper describes efforts toward the development of a numerical tool for simulation of air-tissue interactions in the upper airway of patients with sleep apnea. A procedure by which patient-specific airway geometries are segmented and processed from dental cone-beam CT scans into signed distance fields is presented. A sharp-interface embedded boundary method based on the signed distance field is used on Cartesian grids for resolving the airflow in the airway geometries. For simulation of structure mechanics with large expected displacements, a cut-cell finite element method with nonlinear Green strains is used. The fluid and structure solvers are strongly coupled with a partitioned iterative algorithm. Preliminary results are shown for flow simulation inside the three-dimensional rigid upper airway of patients with obstructive sleep apnea. Two validation cases for the fluid-structure coupling problem are also presented.
NASA Astrophysics Data System (ADS)
Castillo, Andrés; Delgado, Rafael L.; Dobado, Antonio; Llanes-Estrada, Felipe J.
2017-07-01
By considering a non-linear electroweak chiral Lagrangian, including the Higgs, coupled to heavy quarks, and the equivalence theorem, we compute the one-loop scattering amplitudes W^+W^-→ t\\bar{t}, ZZ→ t\\bar{t} and hh→ t\\bar{t} (in the regime M_t^2/v^2≪ √{s}M_t/v^2≪ s/v^2 and to NLO in the effective theory). We calculate the scalar partial-wave helicity amplitudes which allow us to check unitarity at the perturbative level in both M_t/v and s/ v. As with growing energy perturbative unitarity deteriorates, we also introduce a new unitarization method with the right analytical behavior on the complex s-plane and that can support poles on the second Riemann sheet to describe resonances in terms of the Lagrangian couplings. Thus we have achieved a consistent phenomenological description of any resonant t\\bar{t} production that may be enhanced by a possible strongly interacting electroweak symmetry breaking sector.
Attitude tracking control of flexible spacecraft with large amplitude slosh
NASA Astrophysics Data System (ADS)
Deng, Mingle; Yue, Baozeng
2017-12-01
This paper is focused on attitude tracking control of a spacecraft that is equipped with flexible appendage and partially filled liquid propellant tank. The large amplitude liquid slosh is included by using a moving pulsating ball model that is further improved to estimate the settling location of liquid in microgravity or a zero-g environment. The flexible appendage is modelled as a three-dimensional Bernoulli-Euler beam, and the assumed modal method is employed. A hybrid controller that combines sliding mode control with an adaptive algorithm is designed for spacecraft to perform attitude tracking. The proposed controller has proved to be asymptotically stable. A nonlinear model for the overall coupled system including spacecraft attitude dynamics, liquid slosh, structural vibration and control action is established. Numerical simulation results are presented to show the dynamic behaviors of the coupled system and to verify the effectiveness of the control approach when the spacecraft undergoes the disturbance produced by large amplitude slosh and appendage vibration. Lastly, the designed adaptive algorithm is found to be effective to improve the precision of attitude tracking.
Prolongation structures of nonlinear evolution equations
NASA Technical Reports Server (NTRS)
Wahlquist, H. D.; Estabrook, F. B.
1975-01-01
A technique is developed for systematically deriving a 'prolongation structure' - a set of interrelated potentials and pseudopotentials - for nonlinear partial differential equations in two independent variables. When this is applied to the Korteweg-de Vries equation, a new infinite set of conserved quantities is obtained. Known solution techniques are shown to result from the discovery of such a structure: related partial differential equations for the potential functions, linear 'inverse scattering' equations for auxiliary functions, Backlund transformations. Generalizations of these techniques will result from the use of irreducible matrix representations of the prolongation structure.
Vibronic coupling simulations for linear and nonlinear optical processes: Simulation results
NASA Astrophysics Data System (ADS)
Silverstein, Daniel W.; Jensen, Lasse
2012-02-01
A vibronic coupling model based on time-dependent wavepacket approach is applied to simulate linear optical processes, such as one-photon absorbance and resonance Raman scattering, and nonlinear optical processes, such as two-photon absorbance and resonance hyper-Raman scattering, on a series of small molecules. Simulations employing both the long-range corrected approach in density functional theory and coupled cluster are compared and also examined based on available experimental data. Although many of the small molecules are prone to anharmonicity in their potential energy surfaces, the harmonic approach performs adequately. A detailed discussion of the non-Condon effects is illustrated by the molecules presented in this work. Linear and nonlinear Raman scattering simulations allow for the quantification of interference between the Franck-Condon and Herzberg-Teller terms for different molecules.
Spurious cross-frequency amplitude-amplitude coupling in nonstationary, nonlinear signals
NASA Astrophysics Data System (ADS)
Yeh, Chien-Hung; Lo, Men-Tzung; Hu, Kun
2016-07-01
Recent studies of brain activities show that cross-frequency coupling (CFC) plays an important role in memory and learning. Many measures have been proposed to investigate the CFC phenomenon, including the correlation between the amplitude envelopes of two brain waves at different frequencies - cross-frequency amplitude-amplitude coupling (AAC). In this short communication, we describe how nonstationary, nonlinear oscillatory signals may produce spurious cross-frequency AAC. Utilizing the empirical mode decomposition, we also propose a new method for assessment of AAC that can potentially reduce the effects of nonlinearity and nonstationarity and, thus, help to avoid the detection of artificial AACs. We compare the performances of this new method and the traditional Fourier-based AAC method. We also discuss the strategies to identify potential spurious AACs.
Nonlinear Inference in Partially Observed Physical Systems and Deep Neural Networks
NASA Astrophysics Data System (ADS)
Rozdeba, Paul J.
The problem of model state and parameter estimation is a significant challenge in nonlinear systems. Due to practical considerations of experimental design, it is often the case that physical systems are partially observed, meaning that data is only available for a subset of the degrees of freedom required to fully model the observed system's behaviors and, ultimately, predict future observations. Estimation in this context is highly complicated by the presence of chaos, stochasticity, and measurement noise in dynamical systems. One of the aims of this dissertation is to simultaneously analyze state and parameter estimation in as a regularized inverse problem, where the introduction of a model makes it possible to reverse the forward problem of partial, noisy observation; and as a statistical inference problem using data assimilation to transfer information from measurements to the model states and parameters. Ultimately these two formulations achieve the same goal. Similar aspects that appear in both are highlighted as a means for better understanding the structure of the nonlinear inference problem. An alternative approach to data assimilation that uses model reduction is then examined as a way to eliminate unresolved nonlinear gating variables from neuron models. In this formulation, only measured variables enter into the model, and the resulting errors are themselves modeled by nonlinear stochastic processes with memory. Finally, variational annealing, a data assimilation method previously applied to dynamical systems, is introduced as a potentially useful tool for understanding deep neural network training in machine learning by exploiting similarities between the two problems.
Bologna; Tsallis; Grigolini
2000-08-01
We consider the d=1 nonlinear Fokker-Planck-like equation with fractional derivatives ( partial differential/ partial differentialt)P(x,t)=D( partial differential(gamma)/ partial differentialx(gamma))[P(x,t)](nu). Exact time-dependent solutions are found for nu=(2-gamma)/(1+gamma)(-infinity
NASA Astrophysics Data System (ADS)
Talebpour, Zahra; Tavallaie, Roya; Ahmadi, Seyyed Hamid; Abdollahpour, Assem
2010-09-01
In this study, a new method for the simultaneous determination of penicillin G salts in pharmaceutical mixture via FT-IR spectroscopy combined with chemometrics was investigated. The mixture of penicillin G salts is a complex system due to similar analytical characteristics of components. Partial least squares (PLS) and radial basis function-partial least squares (RBF-PLS) were used to develop the linear and nonlinear relation between spectra and components, respectively. The orthogonal signal correction (OSC) preprocessing method was used to correct unexpected information, such as spectral overlapping and scattering effects. In order to compare the influence of OSC on PLS and RBF-PLS models, the optimal linear (PLS) and nonlinear (RBF-PLS) models based on conventional and OSC preprocessed spectra were established and compared. The obtained results demonstrated that OSC clearly enhanced the performance of both RBF-PLS and PLS calibration models. Also in the case of some nonlinear relation between spectra and component, OSC-RBF-PLS gave satisfactory results than OSC-PLS model which indicated that the OSC was helpful to remove extrinsic deviations from linearity without elimination of nonlinear information related to component. The chemometric models were tested on an external dataset and finally applied to the analysis commercialized injection product of penicillin G salts.
Performance evaluation of nonlinear energy harvesting with magnetically coupled dual beams
NASA Astrophysics Data System (ADS)
Lan, Chunbo; Tang, Lihua; Qin, Weiyang
2017-04-01
To enhance the output power and broaden the operation bandwidth of vibration energy harvesters (VEH), nonlinear two degree-of-freedom (DOF) energy harvesters have attracted wide attention recently. In this paper, we investigate the performance of a nonlinear VEH with magnetically coupled dual beams and compare it with the typical Duffing-type VEH to find the advantages and drawbacks of this nonlinear 2-DOF VEH. First, based on the lumped parameter model, the characteristics of potential energy shapes and static equilibriums are analyzed. It is noted that the dual beam configuration is much easy to be transformed from a mono-stable state into a bi-stable state when the repulsive magnet force increases. Based on the equilibrium positions and different kinds of nonlinearities, four nonlinearity regimes are determined. Second, the performance of 1-DOF and 2-DOF configurations are compared respectively in these four nonlinearity regimes by simulating the forward sweep responses of these two nonlinear VEHs under different acceleration levels. Several meaningful conclusions are obtained. First, the main alternative to enlarge the operation bandwidth for dual-beam configuration is chaotic oscillation, in which two beams jump between two stable positions chaotically. However, the large-amplitude periodic oscillations, such as inter-well oscillation, cannot take place in both piezoelectric and parasitic beams at the same time. Generally speaking, both of the magnetically coupled dual-beam energy harvester and Duffingtype energy harvester, have their own advantages and disadvantages, while given a large enough base excitation, the maximum voltages of these two systems are almost the same in all these four regimes.
Theory of cavitons in complex plasmas.
Shukla, P K; Eliasson, B; Sandberg, I
2003-08-15
Nonlinear coupling between Langmuir waves with finite amplitude dispersive dust acoustic perturbations is considered. It is shown that the interaction is governed by a pair of coupled nonlinear differential equations. Numerical results reveal the formation of Langmuir envelope solitons composed of the dust density depression created by the ponderomotive force of bell-shaped Langmuir wave envelops. The associated ambipolar potential is positive. The present nonlinear theory should be able to account for the trapping of large amplitude Langmuir waves in finite amplitude dust density holes. This scenario may appear in Saturn's dense rings, and the Cassini spacecraft should be able to observe fully nonlinear cavitons, as presented herein. Furthermore, we propose that new electron-beam plasma experiments should be conducted to verify our theoretical prediction.
Nonlinear dynamics and cavity cooling of levitated nanoparticles
NASA Astrophysics Data System (ADS)
Fonseca, P. Z. G.; Aranas, E. B.; Millen, J.; Monteiro, T. S.; Barker, P. F.
2016-09-01
We investigate a dynamic nonlinear optomechanical system, comprising a nanosphere levitated in a hybrid electro-optical trap. An optical cavity offers readout of both linear-in-position and quadratic-in-position (nonlinear) light-matter coupling, whilst simultaneously cooling the nanosphere, for indefinite periods of time and in high vacuum. Through the rich sideband structure displayed by the cavity output we can observe cooling of the linear and non-linear particle's motion. Here we present an experimental setup which allows full control over the cavity resonant frequencies, and shows cooling of the particle's motion as a function of the detuning. This work paves the way to strong-coupled quantum dynamics between a cavity and a mesoscopic object largely decoupled from its environment.
NASA Astrophysics Data System (ADS)
Bel'dyugin, Igor'M.; Alimin, D. D.; Zolotarev, M. V.
1991-03-01
A theoretical investigation is made of the phase locking of a laser array in the case of different types of multibeam intracavity interaction in nonlinear media. The conditions are found under which a long-range coupling of the "all with all" type is established between the lasers and also when only the nearest neighbors interact (short-range coupling). The influence of the number of lasers, frequency offsets of their resonators, and of the coupling coefficients on the phase-locking band is considered. Expressions are obtained for determination of the threshold values of the gain and of the frequency characteristics of cophasal and noncophasal operation of a laser array under long-range and short-range coupling conditions. A study is made of the influence of the parameters of a resonantly absorbing medium on phase locking of a set of lasers and it is shown that in the case of the optimal long-range coupling the phase-locking band is independent of the number of lasers.
A coupling method for a cardiovascular simulation model which includes the Kalman filter.
Hasegawa, Yuki; Shimayoshi, Takao; Amano, Akira; Matsuda, Tetsuya
2012-01-01
Multi-scale models of the cardiovascular system provide new insight that was unavailable with in vivo and in vitro experiments. For the cardiovascular system, multi-scale simulations provide a valuable perspective in analyzing the interaction of three phenomenons occurring at different spatial scales: circulatory hemodynamics, ventricular structural dynamics, and myocardial excitation-contraction. In order to simulate these interactions, multiscale cardiovascular simulation systems couple models that simulate different phenomena. However, coupling methods require a significant amount of calculation, since a system of non-linear equations must be solved for each timestep. Therefore, we proposed a coupling method which decreases the amount of calculation by using the Kalman filter. In our method, the Kalman filter calculates approximations for the solution to the system of non-linear equations at each timestep. The approximations are then used as initial values for solving the system of non-linear equations. The proposed method decreases the number of iterations required by 94.0% compared to the conventional strong coupling method. When compared with a smoothing spline predictor, the proposed method required 49.4% fewer iterations.
NASA Astrophysics Data System (ADS)
Li, Jiahua; Zhang, Suzhen; Yu, Rong; Zhang, Duo; Wu, Ying
2014-11-01
Based on a single atom coupled to a fiber-coupled, chip-based microresonator [B. Dayan et al., Science 319, 1062 (2008), 10.1126/science.1152261], we put forward a scheme to generate optical frequency combs at driving laser powers as low as a few nanowatts. Using state-of-the-art experimental parameters, we investigate in detail the influences of different atomic positions and taper-resonator coupling regimes on optical-frequency-comb generation. In addition to numerical simulations demonstrating this effect, a physical explanation of the underlying mechanism is presented. We find that the combination of the atom and the resonator can induce a large third-order nonlinearity which is significantly stronger than Kerr nonlinearity in Kerr frequency combs. Such enhanced nonlinearity can be used to generate optical frequency combs if driven with two continuous-wave control and probe lasers and significantly reduce the threshold of nonlinear optical processes. The comb spacing can be well tuned by changing the frequency beating between the driving control and probe lasers. The proposed method is versatile and can be adopted to different types of resonators, such as microdisks, microspheres, microtoroids or microrings.
NASA Astrophysics Data System (ADS)
Kim, Gun; Kim, Jin-Yeon; Kurtis, Kimberly E.; Jacobs, Laurence J.
2015-03-01
This research experimentally investigates the sensitivity of the acoustic nonlinearity parameter to microcracks in cement-based materials. Based on the second harmonic generation (SHG) technique, an experimental setup using non-contact, air-coupled detection is used to receive the consistent Rayleigh surface waves. To induce variations in the extent of microscale cracking in two types of specimens (concrete and mortar), shrinkage reducing admixture (SRA), is used in one set, while a companion specimen is prepared without SRA. A 50 kHz wedge transducer and a 100 kHz air-coupled transducer are implemented for the generation and detection of nonlinear Rayleigh waves. It is shown that the air-coupled detection method provides more repeatable fundamental and second harmonic amplitudes of the propagating Rayleigh waves. The obtained amplitudes are then used to calculate the relative nonlinearity parameter βre, the ratio of the second harmonic amplitude to the square of the fundamental amplitude. The experimental results clearly demonstrate that the nonlinearity parameter (βre) is highly sensitive to the microstructural changes in cement-based materials than the Rayleigh phase velocity and attenuation and that SRA has great potential to avoid shrinkage cracking in cement-based materials.
Dynamics from a mathematical model of a two-state gas laser
NASA Astrophysics Data System (ADS)
Kleanthous, Antigoni; Hua, Tianshu; Manai, Alexandre; Yawar, Kamran; Van Gorder, Robert A.
2018-05-01
Motivated by recent work in the area, we consider the behavior of solutions to a nonlinear PDE model of a two-state gas laser. We first review the derivation of the two-state gas laser model, before deriving a non-dimensional model given in terms of coupled nonlinear partial differential equations. We then classify the steady states of this system, in order to determine the possible long-time asymptotic solutions to this model, as well as corresponding stability results, showing that the only uniform steady state (the zero motion state) is unstable, while a linear profile in space is stable. We then provide numerical simulations for the full unsteady model. We show for a wide variety of initial conditions that the solutions tend toward the stable linear steady state profiles. We also consider traveling wave solutions, and determine the unique wave speed (in terms of the other model parameters) which allows wave-like solutions to exist. Despite some similarities between the model and the inviscid Burger's equation, the solutions we obtain are much more regular than the solutions to the inviscid Burger's equation, with no evidence of shock formation or loss of regularity.
Hopf bifurcation in a nonlocal nonlinear transport equation stemming from stochastic neural dynamics
NASA Astrophysics Data System (ADS)
Drogoul, Audric; Veltz, Romain
2017-02-01
In this work, we provide three different numerical evidences for the occurrence of a Hopf bifurcation in a recently derived [De Masi et al., J. Stat. Phys. 158, 866-902 (2015) and Fournier and löcherbach, Ann. Inst. H. Poincaré Probab. Stat. 52, 1844-1876 (2016)] mean field limit of a stochastic network of excitatory spiking neurons. The mean field limit is a challenging nonlocal nonlinear transport equation with boundary conditions. The first evidence relies on the computation of the spectrum of the linearized equation. The second stems from the simulation of the full mean field. Finally, the last evidence comes from the simulation of the network for a large number of neurons. We provide a "recipe" to find such bifurcation which nicely complements the works in De Masi et al. [J. Stat. Phys. 158, 866-902 (2015)] and Fournier and löcherbach [Ann. Inst. H. Poincaré Probab. Stat. 52, 1844-1876 (2016)]. This suggests in return to revisit theoretically these mean field equations from a dynamical point of view. Finally, this work shows how the noise level impacts the transition from asynchronous activity to partial synchronization in excitatory globally pulse-coupled networks.
Multilevel Iterative Methods in Nonlinear Computational Plasma Physics
NASA Astrophysics Data System (ADS)
Knoll, D. A.; Finn, J. M.
1997-11-01
Many applications in computational plasma physics involve the implicit numerical solution of coupled systems of nonlinear partial differential equations or integro-differential equations. Such problems arise in MHD, systems of Vlasov-Fokker-Planck equations, edge plasma fluid equations. We have been developing matrix-free Newton-Krylov algorithms for such problems and have applied these algorithms to the edge plasma fluid equations [1,2] and to the Vlasov-Fokker-Planck equation [3]. Recently we have found that with increasing grid refinement, the number of Krylov iterations required per Newton iteration has grown unmanageable [4]. This has led us to the study of multigrid methods as a means of preconditioning matrix-free Newton-Krylov methods. In this poster we will give details of the general multigrid preconditioned Newton-Krylov algorithm, as well as algorithm performance details on problems of interest in the areas of magnetohydrodynamics and edge plasma physics. Work supported by US DoE 1. Knoll and McHugh, J. Comput. Phys., 116, pg. 281 (1995) 2. Knoll and McHugh, Comput. Phys. Comm., 88, pg. 141 (1995) 3. Mousseau and Knoll, J. Comput. Phys. (1997) (to appear) 4. Knoll and McHugh, SIAM J. Sci. Comput. 19, (1998) (to appear)
NASA Astrophysics Data System (ADS)
Xu, Hao; Pei, Yongmao; Li, Faxin; Fang, Daining
2018-05-01
The magnetic, electric and mechanical behaviors are strongly coupled in magnetoelectric (ME) materials, making them great promising in the application of functional devices. In this paper, the magneto-electro-mechanical fully coupled constitutive behaviors of ME laminates are systematically studied both theoretically and experimentally. A new probabilistic domain switching function considering the surface ferromagnetic anisotropy and the interface charge-mediated effect is proposed. Then a multi-scale multi-field coupling nonlinear constitutive model for layered ME composites is developed with physical measureable parameters. The experiments were performed to compare the theoretical predictions with the experimental data. The theoretical predictions have a good agreement with experimental results. The proposed constitutive relation can be used to describe the nonlinear multi-field coupling properties of both ME laminates and thin films. Several novel coupling experimental phenomena such as the electric-field control of magnetization, and the magnetic-field tuning of polarization are observed and analyzed. Furthermore, the size-effect of the electric tuning behavior of magnetization is predicted, which demonstrates a competition mechanism between the interface strain-mediated effect and the charge-driven effect. Our study offers deep insight into the coupling microscopic mechanism and macroscopic properties of ME layered composites, which is benefit for the design of electromagnetic functional devices.
Reference Models for Multi-Layer Tissue Structures
2016-09-01
simulation, finite element analysis 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON USAMRMC...Physiologically realistic, fully specimen-specific, nonlinear reference models. Tasks. Finite element analysis of non-linear mechanics of cadaver...models. Tasks. Finite element analysis of non-linear mechanics of multi-layer tissue regions of human subjects. Deliverables. Partially subject- and
Vibronic coupling simulations for linear and nonlinear optical processes: Theory
NASA Astrophysics Data System (ADS)
Silverstein, Daniel W.; Jensen, Lasse
2012-02-01
A comprehensive vibronic coupling model based on the time-dependent wavepacket approach is derived to simulate linear optical processes, such as one-photon absorbance and resonance Raman scattering, and nonlinear optical processes, such as two-photon absorbance and resonance hyper-Raman scattering. This approach is particularly well suited for combination with first-principles calculations. Expressions for the Franck-Condon terms, and non-Condon effects via the Herzberg-Teller coupling approach in the independent-mode displaced harmonic oscillator model are presented. The significance of each contribution to the different spectral types is discussed briefly.
Multiple positive solutions to a coupled systems of nonlinear fractional differential equations.
Shah, Kamal; Khan, Rahmat Ali
2016-01-01
In this article, we study existence, uniqueness and nonexistence of positive solution to a highly nonlinear coupled system of fractional order differential equations. Necessary and sufficient conditions for the existence and uniqueness of positive solution are developed by using Perov's fixed point theorem for the considered problem. Further, we also established sufficient conditions for existence of multiplicity results for positive solutions. Also, we developed some conditions under which the considered coupled system of fractional order differential equations has no positive solution. Appropriate examples are also provided which demonstrate our results.
High-order rogue waves in vector nonlinear Schrödinger equations.
Ling, Liming; Guo, Boling; Zhao, Li-Chen
2014-04-01
We study the dynamics of high-order rogue waves (RWs) in two-component coupled nonlinear Schrödinger equations. We find that four fundamental rogue waves can emerge from second-order vector RWs in the coupled system, in contrast to the high-order ones in single-component systems. The distribution shape can be quadrilateral, triangle, and line structures by varying the proper initial excitations given by the exact analytical solutions. The distribution pattern for vector RWs is more abundant than that for scalar rogue waves. Possibilities to observe these new patterns for rogue waves are discussed for a nonlinear fiber.
Zhong, Wei-Ping; Belić, Milivoj
2010-10-01
Exact traveling wave and soliton solutions, including the bright-bright and dark-dark soliton pairs, are found for the system of two coupled nonlinear Schrödinger equations with harmonic potential and variable coefficients, by employing the homogeneous balance principle and the F-expansion technique. A kind of shape-changing soliton collision is identified in the system. The collision is essentially elastic between the two solitons with opposite velocities. Our results demonstrate that the dynamics of solitons can be controlled by selecting the diffraction, nonlinearity, and gain coefficients.
Synchronization and information processing by an on-off coupling
NASA Astrophysics Data System (ADS)
Wei, G. W.; Zhao, Shan
2002-05-01
This paper proposes an on-off coupling process for chaos synchronization and information processing. An in depth analysis for the net effect of a conventional coupling is performed. The stability of the process is studied. We show that the proposed controlled coupling process can locally minimize the smoothness and the fidelity of dynamical data. A digital filter expression for the on-off coupling process is derived and a connection is made to the Hanning filter. The utility and robustness of the proposed approach is demonstrated by chaos synchronization in Duffing oscillators, the spatiotemporal synchronization of noisy nonlinear oscillators, the estimation of the trend of a time series, and restoration of the contaminated solution of the nonlinear Schrödinger equation.
Attitude dynamics and control of spacecraft with a partially filled liquid tank and flexible panels
NASA Astrophysics Data System (ADS)
Liu, Feng; Yue, Baozeng; Zhao, Liangyu
2018-02-01
A liquid-filled flexible spacecraft is essentially a time-variant fully-coupled system, whose dynamics characteristics are closely associated with its motion features. This paper focuses on the mathematical modelling and attitude control of the spacecraft coupled with fuel sloshing dynamics and flexible solar panels vibration. The slosh motion is represented by a spherical pendulum, whose motion description method is improved by using split variable operation. Benefiting from this improvement, the nonlinear lateral sloshing and the rotary sloshing as well as the rigid motion of a liquid respect to the spacecraft can be approximately described. The assumed modes discretization method has been adopted to approximate the elastic displacements of the attached panels, and the coupled dynamics is derived by using the Lagrangian formulation. A variable substitution method is proposed to obtain the apparently-uncoupled mathematical model of the rigid-flexible-liquid spacecraft. After linearization, this model can be directly used for designing Lyapunov output-feedback attitude controller (OFAC). With only torque actuators, and attitude and rate sensors installed, this kind of attitude controller, as simulation results show, is capable of not only bringing the spacecraft to the desired orientation, but also suppressing the effect of flex and slosh on the attitude motion of the spacecraft.
Nonlinear anomalous diffusion equation and fractal dimension: exact generalized Gaussian solution.
Pedron, I T; Mendes, R S; Malacarne, L C; Lenzi, E K
2002-04-01
In this work we incorporate, in a unified way, two anomalous behaviors, the power law and stretched exponential ones, by considering the radial dependence of the N-dimensional nonlinear diffusion equation partial differential rho/ partial differential t=nabla.(Knablarho(nu))-nabla.(muFrho)-alpharho, where K=Dr(-theta), nu, theta, mu, and D are real parameters, F is the external force, and alpha is a time-dependent source. This equation unifies the O'Shaughnessy-Procaccia anomalous diffusion equation on fractals (nu=1) and the spherical anomalous diffusion for porous media (theta=0). An exact spherical symmetric solution of this nonlinear Fokker-Planck equation is obtained, leading to a large class of anomalous behaviors. Stationary solutions for this Fokker-Planck-like equation are also discussed by introducing an effective potential.
A unified perspective on robot control - The energy Lyapunov function approach
NASA Technical Reports Server (NTRS)
Wen, John T.
1990-01-01
A unified framework for the stability analysis of robot tracking control is presented. By using an energy-motivated Lyapunov function candidate, the closed-loop stability is shown for a large family of control laws sharing a common structure of proportional and derivative feedback and a model-based feedforward. The feedforward can be zero, partial or complete linearized dynamics, partial or complete nonlinear dynamics, or linearized or nonlinear dynamics with parameter adaptation. As result, the dichotomous approaches to the robot control problem based on the open-loop linearization and nonlinear Lyapunov analysis are both included in this treatment. Furthermore, quantitative estimates of the trade-offs between different schemes in terms of the tracking performance, steady state error, domain of convergence, realtime computation load and required a prior model information are derived.
Isostable reduction with applications to time-dependent partial differential equations.
Wilson, Dan; Moehlis, Jeff
2016-07-01
Isostables and isostable reduction, analogous to isochrons and phase reduction for oscillatory systems, are useful in the study of nonlinear equations which asymptotically approach a stationary solution. In this work, we present a general method for isostable reduction of partial differential equations, with the potential power to reduce the dimensionality of a nonlinear system from infinity to 1. We illustrate the utility of this reduction by applying it to two different models with biological relevance. In the first example, isostable reduction of the Fokker-Planck equation provides the necessary framework to design a simple control strategy to desynchronize a population of pathologically synchronized oscillatory neurons, as might be relevant to Parkinson's disease. Another example analyzes a nonlinear reaction-diffusion equation with relevance to action potential propagation in a cardiac system.
Nonlinear fractional waves at elastic interfaces
NASA Astrophysics Data System (ADS)
Kappler, Julian; Shrivastava, Shamit; Schneider, Matthias F.; Netz, Roland R.
2017-11-01
We derive the nonlinear fractional surface wave equation that governs compression waves at an elastic interface that is coupled to a viscous bulk medium. The fractional character of the differential equation comes from the fact that the effective thickness of the bulk layer that is coupled to the interface is frequency dependent. The nonlinearity arises from the nonlinear dependence of the interface compressibility on the local compression, which is obtained from experimental measurements and reflects a phase transition at the interface. Numerical solutions of our nonlinear fractional theory reproduce several experimental key features of surface waves in phospholipid monolayers at the air-water interface without freely adjustable fitting parameters. In particular, the propagation distance of the surface wave abruptly increases at a threshold excitation amplitude. The wave velocity is found to be of the order of 40 cm/s in both experiments and theory and slightly increases as a function of the excitation amplitude. Nonlinear acoustic switching effects in membranes are thus shown to arise purely based on intrinsic membrane properties, namely, the presence of compressibility nonlinearities that accompany phase transitions at the interface.
Estimation of Sonic Fatigue by Reduced-Order Finite Element Based Analyses
NASA Technical Reports Server (NTRS)
Rizzi, Stephen A.; Przekop, Adam
2006-01-01
A computationally efficient, reduced-order method is presented for prediction of sonic fatigue of structures exhibiting geometrically nonlinear response. A procedure to determine the nonlinear modal stiffness using commercial finite element codes allows the coupled nonlinear equations of motion in physical degrees of freedom to be transformed to a smaller coupled system of equations in modal coordinates. The nonlinear modal system is first solved using a computationally light equivalent linearization solution to determine if the structure responds to the applied loading in a nonlinear fashion. If so, a higher fidelity numerical simulation in modal coordinates is undertaken to more accurately determine the nonlinear response. Comparisons of displacement and stress response obtained from the reduced-order analyses are made with results obtained from numerical simulation in physical degrees-of-freedom. Fatigue life predictions from nonlinear modal and physical simulations are made using the rainflow cycle counting method in a linear cumulative damage analysis. Results computed for a simple beam structure under a random acoustic loading demonstrate the effectiveness of the approach and compare favorably with results obtained from the solution in physical degrees-of-freedom.
NASA Astrophysics Data System (ADS)
Shen, Yujia; Wen, Zichao; Yan, Zhenya; Hang, Chao
2018-04-01
We study the three-wave interaction that couples an electromagnetic pump wave to two frequency down-converted daughter waves in a quadratic optical crystal and P T -symmetric potentials. P T symmetric potentials are shown to modulate stably nonlinear modes in two kinds of three-wave interaction models. The first one is a spatially extended three-wave interaction system with odd gain-and-loss distribution in the channel. Modulated by the P T -symmetric single-well or multi-well Scarf-II potentials, the system is numerically shown to possess stable soliton solutions. Via adiabatical change of system parameters, numerical simulations for the excitation and evolution of nonlinear modes are also performed. The second one is a combination of P T -symmetric models which are coupled via three-wave interactions. Families of nonlinear modes are found with some particular choices of parameters. Stable and unstable nonlinear modes are shown in distinct families by means of numerical simulations. These results will be useful to further investigate nonlinear modes in three-wave interaction models.
Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides.
Shin, Heedeuk; Qiu, Wenjun; Jarecki, Robert; Cox, Jonathan A; Olsson, Roy H; Starbuck, Andrew; Wang, Zheng; Rakich, Peter T
2013-01-01
Nanoscale modal confinement is known to radically enhance the effect of intrinsic Kerr and Raman nonlinearities within nanophotonic silicon waveguides. By contrast, stimulated Brillouin-scattering nonlinearities, which involve coherent coupling between guided photon and phonon modes, are stifled in conventional nanophotonics, preventing the realization of a host of Brillouin-based signal-processing technologies in silicon. Here we demonstrate stimulated Brillouin scattering in silicon waveguides, for the first time, through a new class of hybrid photonic-phononic waveguides. Tailorable travelling-wave forward-stimulated Brillouin scattering is realized-with over 1,000 times larger nonlinearity than reported in previous systems-yielding strong Brillouin coupling to phonons from 1 to 18 GHz. Experiments show that radiation pressures, produced by subwavelength modal confinement, yield enhancement of Brillouin nonlinearity beyond those of material nonlinearity alone. In addition, such enhanced and wideband coherent phonon emission paves the way towards the hybridization of silicon photonics, microelectromechanical systems and CMOS signal-processing technologies on chip.
Nonlinear wave chaos: statistics of second harmonic fields.
Zhou, Min; Ott, Edward; Antonsen, Thomas M; Anlage, Steven M
2017-10-01
Concepts from the field of wave chaos have been shown to successfully predict the statistical properties of linear electromagnetic fields in electrically large enclosures. The Random Coupling Model (RCM) describes these properties by incorporating both universal features described by Random Matrix Theory and the system-specific features of particular system realizations. In an effort to extend this approach to the nonlinear domain, we add an active nonlinear frequency-doubling circuit to an otherwise linear wave chaotic system, and we measure the statistical properties of the resulting second harmonic fields. We develop an RCM-based model of this system as two linear chaotic cavities coupled by means of a nonlinear transfer function. The harmonic field strengths are predicted to be the product of two statistical quantities and the nonlinearity characteristics. Statistical results from measurement-based calculation, RCM-based simulation, and direct experimental measurements are compared and show good agreement over many decades of power.
An efficient model for coupling structural vibrations with acoustic radiation
NASA Technical Reports Server (NTRS)
Frendi, Abdelkader; Maestrello, Lucio; Ting, LU
1993-01-01
The scattering of an incident wave by a flexible panel is studied. The panel vibration is governed by the nonlinear plate equations while the loading on the panel, which is the pressure difference across the panel, depends on the reflected and transmitted waves. Two models are used to calculate this structural-acoustic interaction problem. One solves the three dimensional nonlinear Euler equations for the flow-field coupled with the plate equations (the fully coupled model). The second uses the linear wave equation for the acoustic field and expresses the load as a double integral involving the panel oscillation (the decoupled model). The panel oscillation governed by a system of integro-differential equations is solved numerically and the acoustic field is then defined by an explicit formula. Numerical results are obtained using the two models for linear and nonlinear panel vibrations. The predictions given by these two models are in good agreement but the computational time needed for the 'fully coupled model' is 60 times longer than that for 'the decoupled model'.
Deng, Zhenhua; Shang, Jing; Nian, Xiaohong
2015-11-01
In this paper, two coupling permanent magnet synchronous motors system with nonlinear constraints is studied. First of all, the mathematical model of the system is established according to the engineering practices, in which the dynamic model of motor and the nonlinear coupling effect between two motors are considered. In order to keep the two motors synchronization, a synchronization controller based on load observer is designed via cross-coupling idea and interval matrix. Moreover, speed, position and current signals of two motor all are taken as self-feedback signal as well as cross-feedback signal in the proposed controller, which is conducive to improving the dynamical performance and the synchronization performance of the system. The proposed control strategy is verified by simulation via Matlab/Simulink program. The simulation results show that the proposed control method has a better control performance, especially synchronization performance, than that of the conventional PI controller. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Perturbation solutions of combustion instability problems
NASA Technical Reports Server (NTRS)
Googerdy, A.; Peddieson, J., Jr.; Ventrice, M.
1979-01-01
A method involving approximate modal analysis using the Galerkin method followed by an approximate solution of the resulting modal-amplitude equations by the two-variable perturbation method (method of multiple scales) is applied to two problems of pressure-sensitive nonlinear combustion instability in liquid-fuel rocket motors. One problem exhibits self-coupled instability while the other exhibits mode-coupled instability. In both cases it is possible to carry out the entire linear stability analysis and significant portions of the nonlinear stability analysis in closed form. In the problem of self-coupled instability the nonlinear stability boundary and approximate forms of the limit-cycle amplitudes and growth and decay rates are determined in closed form while the exact limit-cycle amplitudes and growth and decay rates are found numerically. In the problem of mode-coupled instability the limit-cycle amplitudes are found in closed form while the growth and decay rates are found numerically. The behavior of the solutions found by the perturbation method are in agreement with solutions obtained using complex numerical methods.
NASA Astrophysics Data System (ADS)
Zhang, J.; Gao, Q.; Tan, S. J.; Zhong, W. X.
2012-10-01
A new method is proposed as a solution for the large-scale coupled vehicle-track dynamic model with nonlinear wheel-rail contact. The vehicle is simplified as a multi-rigid-body model, and the track is treated as a three-layer beam model. In the track model, the rail is assumed to be an Euler-Bernoulli beam supported by discrete sleepers. The vehicle model and the track model are coupled using Hertzian nonlinear contact theory, and the contact forces of the vehicle subsystem and the track subsystem are approximated by the Lagrange interpolation polynomial. The response of the large-scale coupled vehicle-track model is calculated using the precise integration method. A more efficient algorithm based on the periodic property of the track is applied to calculate the exponential matrix and certain matrices related to the solution of the track subsystem. Numerical examples demonstrate the computational accuracy and efficiency of the proposed method.
Trajectory Control for Very Flexible Aircraft
2006-10-30
aircraft are coupled with the aeroelastic equations that govern the geometrically nonlinear structural response of the vehicle. A low -order strain...nonlinear structural formulation, the finite state aerodynamic model, and the nonlinear rigid body equations together provide a low -order complete...nonlinear aircraft analysis tool. Due to the inherent flexibility of the aircraft modeling, the low order structural fre- quencies are of the same order
Local classification: Locally weighted-partial least squares-discriminant analysis (LW-PLS-DA).
Bevilacqua, Marta; Marini, Federico
2014-08-01
The possibility of devising a simple, flexible and accurate non-linear classification method, by extending the locally weighted partial least squares (LW-PLS) approach to the cases where the algorithm is used in a discriminant way (partial least squares discriminant analysis, PLS-DA), is presented. In particular, to assess which category an unknown sample belongs to, the proposed algorithm operates by identifying which training objects are most similar to the one to be predicted and building a PLS-DA model using these calibration samples only. Moreover, the influence of the selected training samples on the local model can be further modulated by adopting a not uniform distance-based weighting scheme which allows the farthest calibration objects to have less impact than the closest ones. The performances of the proposed locally weighted-partial least squares-discriminant analysis (LW-PLS-DA) algorithm have been tested on three simulated data sets characterized by a varying degree of non-linearity: in all cases, a classification accuracy higher than 99% on external validation samples was achieved. Moreover, when also applied to a real data set (classification of rice varieties), characterized by a high extent of non-linearity, the proposed method provided an average correct classification rate of about 93% on the test set. By the preliminary results, showed in this paper, the performances of the proposed LW-PLS-DA approach have proved to be comparable and in some cases better than those obtained by other non-linear methods (k nearest neighbors, kernel-PLS-DA and, in the case of rice, counterpropagation neural networks). Copyright © 2014 Elsevier B.V. All rights reserved.
Role of orbital filling on nonlinear ionic Raman scattering in perovskite titanates
NASA Astrophysics Data System (ADS)
Gu, Mingqiang; Rondinelli, James M.
2017-01-01
The linear and nonlinear phononic interactions between an optically excited infrared (IR) or hyper-Raman mode and a driven Raman mode are computed for the d0 (CaTiO3) and d1 (LaTiO3) titanates within a first-principles density functional framework. We calculate the potential energy surface expanded in terms of the Ag or B1 g mode amplitudes coupled to the Au or the B3 u mode and determine the coupling coefficients for these multimode interactions. We find that the linear-quadratic coupling dominates the anharmonicities over the quadratic-quadratic interaction in the perovskite titanates. The IR and Raman modes both modify the electronic structure with the former being more significant but occurring on a different time scale; furthermore, the coupled-mode interactions lead to sizable perturbations to the valence bandwidth (˜100 meV ) and band gap (˜50 meV). By comparing the coupling coefficients of undoped CaTiO3 and LaTiO3 to those for electron-doped (CaTiO3) and hole-doped (LaTiO3) titanates, we isolate the role of orbital filling in the nonlinear coupling process. We find that with increasing occupancy of the d manifold, the linear-quadratic interaction decreases by approximately 30% with minor changes induced by the cation chemistry (that mainly affect the phonon mode frequencies) or by electron correlation. We identify the importance of the Ti-O bond stiffness, which depends on the orbital filling, in governing the lattice anharmonicitiy. This microscopic understanding can be used to increase the nonlinear coupling coefficient to facilitate more facile access of nonequilibrium structures and properties through ionic Raman scattering processes.
Strongly nonlinear parabolic variational inequalities.
Browder, F E; Brézis, H
1980-02-01
An existence and uniqueness result is established for a general class of variational inequalities for parabolic partial differential equations of the form partial differentialu/ partial differentialt + A(u) + g(u) = f with g nondecreasing but satisfying no growth condition. The proof is based upon a type of compactness result for solutions of variational inequalities that should find a variety of other applications.
NASA Astrophysics Data System (ADS)
Zia, Haider
2017-06-01
This paper describes an updated exponential Fourier based split-step method that can be applied to a greater class of partial differential equations than previous methods would allow. These equations arise in physics and engineering, a notable example being the generalized derivative non-linear Schrödinger equation that arises in non-linear optics with self-steepening terms. These differential equations feature terms that were previously inaccessible to model accurately with low computational resources. The new method maintains a 3rd order error even with these additional terms and models the equation in all three spatial dimensions and time. The class of non-linear differential equations that this method applies to is shown. The method is fully derived and implementation of the method in the split-step architecture is shown. This paper lays the mathematical ground work for an upcoming paper employing this method in white-light generation simulations in bulk material.
Initial-value problem for the Gardner equation applied to nonlinear internal waves
NASA Astrophysics Data System (ADS)
Rouvinskaya, Ekaterina; Kurkina, Oxana; Kurkin, Andrey; Talipova, Tatiana; Pelinovsky, Efim
2017-04-01
The Gardner equation is a fundamental mathematical model for the description of weakly nonlinear weakly dispersive internal waves, when cubic nonlinearity cannot be neglected. Within this model coefficients of quadratic and cubic nonlinearity can both be positive as well as negative, depending on background conditions of the medium, where waves propagate (sea water density stratification, shear flow profile) [Rouvinskaya et al., 2014, Kurkina et al., 2011, 2015]. For the investigation of weakly dispersive behavior in the framework of nondimensional Gardner equation with fixed (positive) sign of quadratic nonlinearity and positive or negative cubic nonlinearity {eq1} partial η/partial t+6η( {1± η} )partial η/partial x+partial ^3η/partial x^3=0, } the series of numerical experiments of initial-value problem was carried out for evolution of a bell-shaped impulse of negative polarity (opposite to the sign of quadratic nonlinear coefficient): {eq2} η(x,t=0)=-asech2 ( {x/x0 } ), for which amplitude a and width x0 was varied. Similar initial-value problem was considered in the paper [Trillo et al., 2016] for the Korteweg - de Vries equation. For the Gardner equation with different signs of cubic nonlinearity the initial-value problem for piece-wise constant initial condition was considered in detail in [Grimshaw et al., 2002, 2010]. It is widely known, for example, [Pelinovsky et al., 2007], that the Gardner equation (1) with negative cubic nonlinearity has a family of classic solitary wave solutions with only positive polarity,and with limiting amplitude equal to 1. Therefore evolution of impulses (2) of negative polarity (whose amplitudes a were varied from 0.1 to 3, and widths at the level of a/2 were equal to triple width of solitons with the same amplitude for a 1) was going on a universal scenario with the generation of nonlinear Airy wave. For the Gardner equation (1) with the positive cubic nonlinearity coefficient there exist two one-parametric families of solitons (family with positive polarity, and family with negative polarity bounded below by the amplitude of 2) and two-parametric family of breathers (oscillatory wave packets). In this case varying amplitude and width of bell-shaped initial impulse leads to plenty of different evolutionary scenarios with the generation of solitary waves, breathers, solibores and nonlinear Airy wave in their various combinations. Statistical analysis of the wave field in time shows almost permanent substantial exceedance of the level of the significant wave height in some position in spatial coordinate. Evolution of Fourier spectrum of the wave field is also analyzed, and its behavior after a long time of initial wave evolution demonstrates the power asymptotic for small wave numbers and exponential asymptotic for large wave numbers. The presented results of research are obtained with the support of the grant of the President of the Russian Federation for state support of the young Russian scientists - Candidates of Sciences (MK-5208.2016.5) and Russian Foundation for Basic Research grant 16-05-00049. References: Grimshaw R., Pelinovsky D., Pelinovsky E and Slunyaev A. Generation of large-amplitude solitons in the extended Korteweg-de Vries equation // Chaos, 2002. - V.12. - No 4. - 1070-1076. Grimshaw, R., Slunyaev, A., and Pelinovsky, E. Generation of solitons and breathers in the extended Korteweg-de Vries equation with positive cubic nonlinearity //Chaos, 2010. - vol. 20.-013102. Kurkina O.E., Kurkin A.A., Soomere T., Pelinovsky E.N., Rouvinskaya E.A. Higher-order (2+4) Korteweg-de Vries - like equation for interfacial waves in a symmetric three-layer fluid // Physics of Fluids, 2011. - Volume 23. - Issue 11. - p.116602--1--13. Kurkina O., Rouvinskaya E., Talipova T., Kurkin A., Pelinovsky E. Nonlinear disintegration of sine wave in the framework of the Gardner equation // Physica D: Nonlinear Phenomena, 2015. - doi:10.1016/j.physd.2015.12.007. Pelinovsky E., Polukhina O., Slunyaev A., Talipova T. Internal solitary waves // Chapter 4 in the book ``Solitary Waves in Fluids''. WIT Press. Southampton, Boston. 2007. P. 85 - 110. Rouvinskaya E., Kurkina O., Kurkin A. Dynamics of nonlinear internal gravity waves in layered fluids // NNSTU n.a. R.E. Alekseev Press - Nizhny Novgorod, 2014 - 160 p. [In Russian] Trillo S., Klein M., Clauss G., Onorato M. Observation of dispersive shock waves developing from initial depressions in shallow water // Physica D, 2016. - http://dx.doi.org/10.1016/j.physd.2016.01.007.
Sigalov, G; Gendelman, O V; AL-Shudeifat, M A; Manevitch, L I; Vakakis, A F; Bergman, L A
2012-03-01
We show that nonlinear inertial coupling between a linear oscillator and an eccentric rotator can lead to very interesting interchanges between regular and chaotic dynamical behavior. Indeed, we show that this model demonstrates rather unusual behavior from the viewpoint of nonlinear dynamics. Specifically, at a discrete set of values of the total energy, the Hamiltonian system exhibits non-conventional nonlinear normal modes, whose shape is determined by phase locking of rotatory and oscillatory motions of the rotator at integer ratios of characteristic frequencies. Considering the weakly damped system, resonance capture of the dynamics into the vicinity of these modes brings about regular motion of the system. For energy levels far from these discrete values, the motion of the system is chaotic. Thus, the succession of resonance captures and escapes by a discrete set of the normal modes causes a sequence of transitions between regular and chaotic behavior, provided that the damping is sufficiently small. We begin from the Hamiltonian system and present a series of Poincaré sections manifesting the complex structure of the phase space of the considered system with inertial nonlinear coupling. Then an approximate analytical description is presented for the non-conventional nonlinear normal modes. We confirm the analytical results by numerical simulation and demonstrate the alternate transitions between regular and chaotic dynamics mentioned above. The origin of the chaotic behavior is also discussed.
Nonlinear integrable model of Frenkel-like excitations on a ribbon of triangular lattice
NASA Astrophysics Data System (ADS)
Vakhnenko, Oleksiy O.
2015-03-01
Following the considerable progress in nanoribbon technology, we propose to model the nonlinear Frenkel-like excitations on a triangular-lattice ribbon by the integrable nonlinear ladder system with the background-controlled intersite resonant coupling. The system of interest arises as a proper reduction of first general semidiscrete integrable system from an infinite hierarchy. The most significant local conservation laws related to the first general integrable system are found explicitly in the framework of generalized recursive approach. The obtained general local densities are equally applicable to any general semidiscrete integrable system from the respective infinite hierarchy. Using the recovered second densities, the Hamiltonian formulation of integrable nonlinear ladder system with background-controlled intersite resonant coupling is presented. In doing so, the relevant Poisson structure turns out to be essentially nontrivial. The Darboux transformation scheme as applied to the first general semidiscrete system is developed and the key role of Bäcklund transformation in justification of its self-consistency is pointed out. The spectral properties of Darboux matrix allow to restore the whole Darboux matrix thus ensuring generation one more soliton as compared with a priori known seed solution of integrable nonlinear system. The power of Darboux-dressing method is explicitly demonstrated in generating the multicomponent one-soliton solution to the integrable nonlinear ladder system with background-controlled intersite resonant coupling.
NASA Astrophysics Data System (ADS)
Döring, D.; Solodov, I.; Busse, G.
Sound and ultrasound in air are the products of a multitude of different processes and thus can be favorable or undesirable phenomena. Development of experimental tools for non-invasive measurements and imaging of airborne sound fields is of importance for linear and nonlinear nondestructive material testing as well as noise control in industrial or civil engineering applications. One possible solution is based on acousto-optic interaction, like light diffraction imaging. The diffraction approach usually requires a sophisticated setup with fine optical alignment barely applicable in industrial environment. This paper focuses on the application of the robust experimental tool of scanning laser vibrometry, which utilizes commercial off-the-shelf equipment. The imaging technique of air-coupled vibrometry (ACV) is based on the modulation of the optical path length by the acoustic pressure of the sound wave. The theoretical considerations focus on the analysis of acousto-optical phase modulation. The sensitivity of the ACV in detecting vibration velocity was estimated as ~1 mm/s. The ACV applications to imaging of linear airborne fields are demonstrated for leaky wave propagation and measurements of ultrasonic air-coupled transducers. For higher-intensity ultrasound, the classical nonlinear effect of the second harmonic generation was measured in air. Another nonlinear application includes a direct observation of the nonlinear air-coupled emission (NACE) from the damaged areas in solid materials. The source of the NACE is shown to be strongly localized around the damage and proposed as a nonlinear "tag" to discern and image the defects.
Nonlinear analysis of pupillary dynamics.
Onorati, Francesco; Mainardi, Luca Tommaso; Sirca, Fabiola; Russo, Vincenzo; Barbieri, Riccardo
2016-02-01
Pupil size reflects autonomic response to different environmental and behavioral stimuli, and its dynamics have been linked to other autonomic correlates such as cardiac and respiratory rhythms. The aim of this study is to assess the nonlinear characteristics of pupil size of 25 normal subjects who participated in a psychophysiological experimental protocol with four experimental conditions, namely “baseline”, “anger”, “joy”, and “sadness”. Nonlinear measures, such as sample entropy, correlation dimension, and largest Lyapunov exponent, were computed on reconstructed signals of spontaneous fluctuations of pupil dilation. Nonparametric statistical tests were performed on surrogate data to verify that the nonlinear measures are an intrinsic characteristic of the signals. We then developed and applied a piecewise linear regression model to detrended fluctuation analysis (DFA). Two joinpoints and three scaling intervals were identified: slope α0, at slow time scales, represents a persistent nonstationary long-range correlation, whereas α1 and α2, at middle and fast time scales, respectively, represent long-range power-law correlations, similarly to DFA applied to heart rate variability signals. Of the computed complexity measures, α0 showed statistically significant differences among experimental conditions (p<0.001). Our results suggest that (a) pupil size at constant light condition is characterized by nonlinear dynamics, (b) three well-defined and distinct long-memory processes exist at different time scales, and (c) autonomic stimulation is partially reflected in nonlinear dynamics. (c) autonomic stimulation is partially reflected in nonlinear dynamics.
Johnson, Brent A
2009-10-01
We consider estimation and variable selection in the partial linear model for censored data. The partial linear model for censored data is a direct extension of the accelerated failure time model, the latter of which is a very important alternative model to the proportional hazards model. We extend rank-based lasso-type estimators to a model that may contain nonlinear effects. Variable selection in such partial linear model has direct application to high-dimensional survival analyses that attempt to adjust for clinical predictors. In the microarray setting, previous methods can adjust for other clinical predictors by assuming that clinical and gene expression data enter the model linearly in the same fashion. Here, we select important variables after adjusting for prognostic clinical variables but the clinical effects are assumed nonlinear. Our estimator is based on stratification and can be extended naturally to account for multiple nonlinear effects. We illustrate the utility of our method through simulation studies and application to the Wisconsin prognostic breast cancer data set.
Revival of oscillations from deaths in diffusively coupled nonlinear systems: Theory and experiment
NASA Astrophysics Data System (ADS)
Zou, Wei; Sebek, Michael; Kiss, István Z.; Kurths, Jürgen
2017-06-01
Amplitude death (AD) and oscillation death (OD) are two structurally different oscillation quenching phenomena in coupled nonlinear systems. As a reverse issue of AD and OD, revival of oscillations from deaths attracts an increasing attention recently. In this paper, we clearly disclose that a time delay in the self-feedback component of the coupling destabilizes not only AD but also OD, and even the AD to OD transition in paradigmatic models of coupled Stuart-Landau oscillators under diverse death configurations. Using a rigorous analysis, the effectiveness of this self-feedback delay in revoking AD is theoretically proved to be valid in an arbitrary network of coupled Stuart-Landau oscillators with generally distributed propagation delays. Moreover, the role of self-feedback delay in reviving oscillations from AD is experimentally verified in two delay-coupled electrochemical reactions.
Revival of oscillations from deaths in diffusively coupled nonlinear systems: Theory and experiment.
Zou, Wei; Sebek, Michael; Kiss, István Z; Kurths, Jürgen
2017-06-01
Amplitude death (AD) and oscillation death (OD) are two structurally different oscillation quenching phenomena in coupled nonlinear systems. As a reverse issue of AD and OD, revival of oscillations from deaths attracts an increasing attention recently. In this paper, we clearly disclose that a time delay in the self-feedback component of the coupling destabilizes not only AD but also OD, and even the AD to OD transition in paradigmatic models of coupled Stuart-Landau oscillators under diverse death configurations. Using a rigorous analysis, the effectiveness of this self-feedback delay in revoking AD is theoretically proved to be valid in an arbitrary network of coupled Stuart-Landau oscillators with generally distributed propagation delays. Moreover, the role of self-feedback delay in reviving oscillations from AD is experimentally verified in two delay-coupled electrochemical reactions.
A tightly-coupled domain-decomposition approach for highly nonlinear stochastic multiphysics systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taverniers, Søren; Tartakovsky, Daniel M., E-mail: dmt@ucsd.edu
2017-02-01
Multiphysics simulations often involve nonlinear components that are driven by internally generated or externally imposed random fluctuations. When used with a domain-decomposition (DD) algorithm, such components have to be coupled in a way that both accurately propagates the noise between the subdomains and lends itself to a stable and cost-effective temporal integration. We develop a conservative DD approach in which tight coupling is obtained by using a Jacobian-free Newton–Krylov (JfNK) method with a generalized minimum residual iterative linear solver. This strategy is tested on a coupled nonlinear diffusion system forced by a truncated Gaussian noise at the boundary. Enforcement ofmore » path-wise continuity of the state variable and its flux, as opposed to continuity in the mean, at interfaces between subdomains enables the DD algorithm to correctly propagate boundary fluctuations throughout the computational domain. Reliance on a single Newton iteration (explicit coupling), rather than on the fully converged JfNK (implicit) coupling, may increase the solution error by an order of magnitude. Increase in communication frequency between the DD components reduces the explicit coupling's error, but makes it less efficient than the implicit coupling at comparable error levels for all noise strengths considered. Finally, the DD algorithm with the implicit JfNK coupling resolves temporally-correlated fluctuations of the boundary noise when the correlation time of the latter exceeds some multiple of an appropriately defined characteristic diffusion time.« less
Modeling of Nonlinear Optical Response in Gaseous Media and Its Comparison with Experiment
NASA Astrophysics Data System (ADS)
Xia, Yi
This thesis demonstrates the model and application of nonlinear optical response with Metastable Electronic State Approach (MESA) in ultrashort laser propagation and verifies accuracy of MESA through extensive comparison with experimental data. The MESA is developed from quantum mechanics to describe the nonlinear off-resonant optical response together with strong-field ionization in gaseous medium. The conventional light-matter interaction models are based on a piece-wise approach where Kerr effect and multi-photon ionization are treated as independent nonlinear responses. In contrast, MESA is self-consistent as the response from freed electrons and bound electrons are microscopically linked. It also can be easily coupled to the Unidirectional Pulse Propagation Equations (UPPE) for large scale simulation of experiments. This work tests the implementation of MESA model in simulation of nonlinear phase transients of ultrashort pulse propagation in a gaseous medium. The phase transient has been measured through Single-Shot Supercontinuum Spectral Interferometry. This technique can achieve high temporal resolution (10 fs) and spatial resolution (5 mum). Our comparison between simulation and experiment gives a quantitive test of MESA model including post-adiabatic corrections. This is the first time such a comparison was achieved for a theory suitable for large scale numerical simulation of modern nonlinear-optics experiments. In more than one respect, ours is a first-of-a-kind achievement. In particular, • Large amount of data are compared. We compare the data of nonlinear response induced by different pump intensity in Ar and Nitrogen. The data sets are three dimensions including two transverse spacial dimensions and one axial temporal dimension which reflect the whole structure of nonlinear response including the interplay between Kerr and plasma-induced effects. The resolutions of spatial and temporal dimension are about a few micrometer and several femtosecond. • The regime of light-matter interaction investigated here is between the strong and perturbative, where the pulse intensity can induce nonlinear refractive index change and partial ionization of dielectric medium. Obviously, such regimes are difficult to study both experimentally and theoretically. • MESA is a quantum based model, but it retains the same computation complexity as conventional light-matter interaction model. MESA contains the response from both bound and continuum states in a single self-consistent "Package". So, it is fair to say that this experiment-theory comparison sets a new standard for nonlinear light-matter interaction models and their verification in the area of extreme nonlinear optics.
NASA Astrophysics Data System (ADS)
Sun, P. J.; Li, Y. D.; Ren, Y.; Zhang, X. D.; Wu, G. J.; Xu, L. Q.; Chen, R.; Li, Q.; Zhao, H. L.; Zhang, J. Z.; Shi, T. H.; Wang, Y. M.; Lyu, B.; Hu, L. Q.; Li, J.; The EAST Team
2018-01-01
In this paper, we present clear experimental evidence of core region nonlinear coupling between (intermediate, small)-scale microturbulence and an magnetohydrodynamics (MHD) mode during the current ramp-down phase in a set of L-mode plasma discharges in the experimental advanced superconducting tokamak (EAST, Wan et al (2006 Plasma Sci. Technol. 8 253)). Density fluctuations of broadband microturbulence (k\\perpρi˜2{-}5.2 ) and the MHD mode (toroidal mode number m = -1 , poloidal mode number n = 1 ) are measured simultaneously, using a four-channel tangential CO2 laser collective scattering diagnostic in core plasmas. The nonlinear coupling between the broadband microturbulence and the MHD mode is directly demonstrated by showing a statistically significant bicoherence and modulation of turbulent density fluctuation amplitude by the MHD mode.
NASA Astrophysics Data System (ADS)
Sun, S. S.; Yildirim, T.; Wu, Jichu; Yang, J.; Du, H.; Zhang, S. W.; Li, W. H.
2017-09-01
In this work, a hybrid nonlinear magnetorheological elastomer (MRE) vibration absorber has been designed, theoretically investigated and experimentally verified. The proposed nonlinear MRE absorber has the dual advantages of a nonlinear force-displacement relationship and variable stiffness technology; the purpose for coupling these two technologies is to achieve a large broadband vibration absorber with controllable capability. To achieve a nonlinear stiffness in the device, two pairs of magnets move at a rotary angle against each other, and the theoretical nonlinear force-displacement relationship has been theoretically calculated. For the experimental investigation, the effects of base excitation, variable currents applied to the device (i.e. variable stiffness of the MRE) and semi-active control have been conducted to determine the enhanced broadband performance of the designed device. It was observed the device was able to change resonance frequency with the applied current; moreover, the hybrid nonlinear MRE absorber displayed a softening-type nonlinear response with clear discontinuous bifurcations observed. Furthermore, the performance of the device under a semi-active control algorithm displayed the optimal performance in attenuating the vibration from a primary system to the absorber over a large frequency bandwidth from 4 to 12 Hz. By coupling nonlinear stiffness attributes with variable stiffness MRE technology, the performance of a vibration absorber is substantially improved.
Control of amplitude chimeras by time delay in oscillator networks
NASA Astrophysics Data System (ADS)
Gjurchinovski, Aleksandar; Schöll, Eckehard; Zakharova, Anna
2017-04-01
We investigate the influence of time-delayed coupling in a ring network of nonlocally coupled Stuart-Landau oscillators upon chimera states, i.e., space-time patterns with coexisting partially coherent and partially incoherent domains. We focus on amplitude chimeras, which exhibit incoherent behavior with respect to the amplitude rather than the phase and are transient patterns, and we show that their lifetime can be significantly enhanced by coupling delay. To characterize their transition to phase-lag synchronization (coherent traveling waves) and other coherent structures, we generalize the Kuramoto order parameter. Contrasting the results for instantaneous coupling with those for constant coupling delay, for time-varying delay, and for distributed-delay coupling, we demonstrate that the lifetime of amplitude chimera states and related partially incoherent states can be controlled, i.e., deliberately reduced or increased, depending upon the type of coupling delay.
Solving coupled groundwater flow systems using a Jacobian Free Newton Krylov method
NASA Astrophysics Data System (ADS)
Mehl, S.
2012-12-01
Jacobian Free Newton Kyrlov (JFNK) methods can have several advantages for simulating coupled groundwater flow processes versus conventional methods. Conventional methods are defined here as those based on an iterative coupling (rather than a direct coupling) and/or that use Picard iteration rather than Newton iteration. In an iterative coupling, the systems are solved separately, coupling information is updated and exchanged between the systems, and the systems are re-solved, etc., until convergence is achieved. Trusted simulators, such as Modflow, are based on these conventional methods of coupling and work well in many cases. An advantage of the JFNK method is that it only requires calculation of the residual vector of the system of equations and thus can make use of existing simulators regardless of how the equations are formulated. This opens the possibility of coupling different process models via augmentation of a residual vector by each separate process, which often requires substantially fewer changes to the existing source code than if the processes were directly coupled. However, appropriate perturbation sizes need to be determined for accurate approximations of the Frechet derivative, which is not always straightforward. Furthermore, preconditioning is necessary for reasonable convergence of the linear solution required at each Kyrlov iteration. Existing preconditioners can be used and applied separately to each process which maximizes use of existing code and robust preconditioners. In this work, iteratively coupled parent-child local grid refinement models of groundwater flow and groundwater flow models with nonlinear exchanges to streams are used to demonstrate the utility of the JFNK approach for Modflow models. Use of incomplete Cholesky preconditioners with various levels of fill are examined on a suite of nonlinear and linear models to analyze the effect of the preconditioner. Comparisons of convergence and computer simulation time are made using conventional iteratively coupled methods and those based on Picard iteration to those formulated with JFNK to gain insights on the types of nonlinearities and system features that make one approach advantageous. Results indicate that nonlinearities associated with stream/aquifer exchanges are more problematic than those resulting from unconfined flow.
Nonlinear transient waves in coupled phase oscillators with inertia.
Jörg, David J
2015-05-01
Like the inertia of a physical body describes its tendency to resist changes of its state of motion, inertia of an oscillator describes its tendency to resist changes of its frequency. Here, we show that finite inertia of individual oscillators enables nonlinear phase waves in spatially extended coupled systems. Using a discrete model of coupled phase oscillators with inertia, we investigate these wave phenomena numerically, complemented by a continuum approximation that permits the analytical description of the key features of wave propagation in the long-wavelength limit. The ability to exhibit traveling waves is a generic feature of systems with finite inertia and is independent of the details of the coupling function.
Shpielberg, O; Akkermans, E
2016-06-17
A stability analysis is presented for boundary-driven and out-of-equilibrium systems in the framework of the hydrodynamic macroscopic fluctuation theory. A Hamiltonian description is proposed which allows us to thermodynamically interpret the additivity principle. A necessary and sufficient condition for the validity of the additivity principle is obtained as an extension of the Le Chatelier principle. These stability conditions result from a diagonal quadratic form obtained using the cumulant generating function. This approach allows us to provide a proof for the stability of the weakly asymmetric exclusion process and to reduce the search for stability to the solution of two coupled linear ordinary differential equations instead of nonlinear partial differential equations. Additional potential applications of these results are discussed in the realm of classical and quantum systems.
NASA Astrophysics Data System (ADS)
Shpielberg, O.; Akkermans, E.
2016-06-01
A stability analysis is presented for boundary-driven and out-of-equilibrium systems in the framework of the hydrodynamic macroscopic fluctuation theory. A Hamiltonian description is proposed which allows us to thermodynamically interpret the additivity principle. A necessary and sufficient condition for the validity of the additivity principle is obtained as an extension of the Le Chatelier principle. These stability conditions result from a diagonal quadratic form obtained using the cumulant generating function. This approach allows us to provide a proof for the stability of the weakly asymmetric exclusion process and to reduce the search for stability to the solution of two coupled linear ordinary differential equations instead of nonlinear partial differential equations. Additional potential applications of these results are discussed in the realm of classical and quantum systems.
NASA Astrophysics Data System (ADS)
Immanuel, Y.; Pullepu, Bapuji; Sambath, P.
2018-04-01
A two dimensional mathematical model is formulated for the transitive laminar free convective, incompressible viscous fluid flow over vertical cone with variable surface heat flux combined with the effects of heat generation and absorption is considered . using a powerful computational method based on thermoelectric analogy called Network Simulation Method (NSM0, the solutions of governing nondimensionl coupled, unsteady and nonlinear partial differential conservation equations of the flow that are obtained. The numerical technique is always stable and convergent which establish high efficiency and accuracy by employing network simulator computer code Pspice. The effects of velocity and temperature profiles have been analyzed for various factors, namely Prandtl number Pr, heat flux power law exponent n and heat generation/absorption parameter Δ are analyzed graphically.
Mathematical and computational aspects of nonuniform frictional slip modeling
NASA Astrophysics Data System (ADS)
Gorbatikh, Larissa
2004-07-01
A mechanics-based model of non-uniform frictional sliding is studied from the mathematical/computational analysis point of view. This problem is of a key importance for a number of applications (particularly geomechanical ones), where materials interfaces undergo partial frictional sliding under compression and shear. We show that the problem is reduced to Dirichlet's problem for monotonic loading and to Riemman's problem for cyclic loading. The problem may look like a traditional crack interaction problem, however, it is confounded by the fact that locations of n sliding intervals are not known. They are to be determined from the condition for the stress intensity factors: KII=0 at the ends of the sliding zones. Computationally, it reduces to solving a system of 2n coupled non-linear algebraic equations involving singular integrals with unknown limits of integration.
Nitzan, Sarah H.; Zega, Valentina; Li, Mo; Ahn, Chae H.; Corigliano, Alberto; Kenny, Thomas W.; Horsley, David A.
2015-01-01
Parametric amplification, resulting from intentionally varying a parameter in a resonator at twice its resonant frequency, has been successfully employed to increase the sensitivity of many micro- and nano-scale sensors. Here, we introduce the concept of self-induced parametric amplification, which arises naturally from nonlinear elastic coupling between the degenerate vibration modes in a micromechanical disk-resonator, and is not externally applied. The device functions as a gyroscope wherein angular rotation is detected from Coriolis coupling of elastic vibration energy from a driven vibration mode into a second degenerate sensing mode. While nonlinear elasticity in silicon resonators is extremely weak, in this high quality-factor device, ppm-level nonlinear elastic effects result in an order-of-magnitude increase in the observed sensitivity to Coriolis force relative to linear theory. Perfect degeneracy of the primary and secondary vibration modes is achieved through electrostatic frequency tuning, which also enables the phase and frequency of the parametric coupling to be varied, and we show that the resulting phase and frequency dependence of the amplification follow the theory of parametric resonance. We expect that this phenomenon will be useful for both fundamental studies of dynamic systems with low dissipation and for increasing signal-to-noise ratio in practical applications such as gyroscopes. PMID:25762243
Nitzan, Sarah H; Zega, Valentina; Li, Mo; Ahn, Chae H; Corigliano, Alberto; Kenny, Thomas W; Horsley, David A
2015-03-12
Parametric amplification, resulting from intentionally varying a parameter in a resonator at twice its resonant frequency, has been successfully employed to increase the sensitivity of many micro- and nano-scale sensors. Here, we introduce the concept of self-induced parametric amplification, which arises naturally from nonlinear elastic coupling between the degenerate vibration modes in a micromechanical disk-resonator, and is not externally applied. The device functions as a gyroscope wherein angular rotation is detected from Coriolis coupling of elastic vibration energy from a driven vibration mode into a second degenerate sensing mode. While nonlinear elasticity in silicon resonators is extremely weak, in this high quality-factor device, ppm-level nonlinear elastic effects result in an order-of-magnitude increase in the observed sensitivity to Coriolis force relative to linear theory. Perfect degeneracy of the primary and secondary vibration modes is achieved through electrostatic frequency tuning, which also enables the phase and frequency of the parametric coupling to be varied, and we show that the resulting phase and frequency dependence of the amplification follow the theory of parametric resonance. We expect that this phenomenon will be useful for both fundamental studies of dynamic systems with low dissipation and for increasing signal-to-noise ratio in practical applications such as gyroscopes.
Analytical solution of the nonlinear diffusion equation
NASA Astrophysics Data System (ADS)
Shanker Dubey, Ravi; Goswami, Pranay
2018-05-01
In the present paper, we derive the solution of the nonlinear fractional partial differential equations using an efficient approach based on the q -homotopy analysis transform method ( q -HATM). The fractional diffusion equations derivatives are considered in Caputo sense. The derived results are graphically demonstrated as well.
NASA Technical Reports Server (NTRS)
Abarbanel, Saul; Gottlieb, David; Carpenter, Mark H.
1994-01-01
It has been previously shown that the temporal integration of hyperbolic partial differential equations (PDE's) may, because of boundary conditions, lead to deterioration of accuracy of the solution. A procedure for removal of this error in the linear case has been established previously. In the present paper we consider hyperbolic (PDE's) (linear and non-linear) whose boundary treatment is done via the SAT-procedure. A methodology is present for recovery of the full order of accuracy, and has been applied to the case of a 4th order explicit finite difference scheme.
Cubic nonlinearity in shear wave beams with different polarizations
Wochner, Mark S.; Hamilton, Mark F.; Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.
2008-01-01
A coupled pair of nonlinear parabolic equations is derived for the two components of the particle motion perpendicular to the axis of a shear wave beam in an isotropic elastic medium. The equations account for both quadratic and cubic nonlinearity. The present paper investigates, analytically and numerically, effects of cubic nonlinearity in shear wave beams for several polarizations: linear, elliptical, circular, and azimuthal. Comparisons are made with effects of quadratic nonlinearity in compressional wave beams. PMID:18529167
NASA Astrophysics Data System (ADS)
Remick, Kevin; Dane Quinn, D.; Michael McFarland, D.; Bergman, Lawrence; Vakakis, Alexander
2016-05-01
The authors investigate a vibration-based energy harvesting system utilizing essential (nonlinearizable) nonlinearities and electromagnetic coupling elements. The system consists of a grounded, weakly damped linear oscillator (primary system) subjected to a single impulsive load. This primary system is coupled to a lightweight, damped oscillating attachment (denoted as nonlinear energy sink, NES) via a neodymium magnet and an inductance coil, and a piano wire, which generates an essential geometric cubic stiffness nonlinearity. Under impulsive input, the transient damped dynamics of this system exhibit transient resonance captures (TRCs) causing intentional large-amplitude and high-frequency instabilities in the response of the NES. These TRCs result in strong energy transfer from the directly excited primary system to the light-weight attachment. The energy is harvested by the electromagnetic elements in the coupling and, in the present case, dissipated in a resistive element in the electrical circuit. The primary goal of this work is to numerically, analytically, and experimentally demonstrate the efficacy of employing this type of intentional high-frequency dynamic instability to achieve enhanced vibration energy harvesting under impulsive excitation.
NASA Astrophysics Data System (ADS)
Zhang, Jinggui
2018-06-01
In this paper, we investigate the dynamical behaviors of the modulation instability (MI) of copropagating optical beams in fractional coupled nonlinear Schrödinger equations (NLSE) with the aim of revealing some novel properties different from those in the conventional coupled NLSE. By applying the standard linear stability method, we first derive an expression for the gain resulting from the instability induced by cross-phase modulation (CPM) in the presence of the Lévy indexes related to fractional effects. It is found that the modulation instability of copropagating optical beams still occurs even in the fractional NLSE with self-defocusing nonlinearity. Then, the analysis of our results further reveals that such Lévy indexes increase the fastest growth frequency and the bandwidth of conventional instability not only for the self-focusing case but also for the self-defocusing case, but do not influence the corresponding maximum gain. Numerical simulations are performed to confirm theoretical predictions. These findings suggest that the novel fractional physical settings may open up new possibilities for the manipulation of MI and nonlinear waves.
NASA Technical Reports Server (NTRS)
Gray, Carl E., Jr.
1988-01-01
Using the Newtonian method, the equations of motion are developed for the coupled bending-torsion steady-state response of beams rotating at constant angular velocity in a fixed plane. The resulting equations are valid to first order strain-displacement relationships for a long beam with all other nonlinear terms retained. In addition, the equations are valid for beams with the mass centroidal axis offset (eccentric) from the elastic axis, nonuniform mass and section properties, and variable twist. The solution of these coupled, nonlinear, nonhomogeneous, differential equations is obtained by modifying a Hunter linear second-order transfer-matrix solution procedure to solve the nonlinear differential equations and programming the solution for a desk-top personal computer. The modified transfer-matrix method was verified by comparing the solution for a rotating beam with a geometric, nonlinear, finite-element computer code solution; and for a simple rotating beam problem, the modified method demonstrated a significant advantage over the finite-element solution in accuracy, ease of solution, and actual computer processing time required to effect a solution.
Khan, Kamruzzaman; Akbar, M Ali; Islam, S M Rayhanul
2014-01-01
In this work, recently developed modified simple equation (MSE) method is applied to find exact traveling wave solutions of nonlinear evolution equations (NLEEs). To do so, we consider the (1 + 1)-dimensional nonlinear dispersive modified Benjamin-Bona-Mahony (DMBBM) equation and coupled Klein-Gordon (cKG) equations. Two classes of explicit exact solutions-hyperbolic and trigonometric solutions of the associated equations are characterized with some free parameters. Then these exact solutions correspond to solitary waves for particular values of the parameters. 02.30.Jr; 02.70.Wz; 05.45.Yv; 94.05.Fg.
Nonlinear time dependence of dark current in charge-coupled devices
NASA Astrophysics Data System (ADS)
Dunlap, Justin C.; Bodegom, Erik; Widenhorn, Ralf
2011-03-01
It is generally assumed that charge-coupled device (CCD) imagers produce a linear response of dark current versus exposure time except near saturation. We found a large number of pixels with nonlinear dark current response to exposure time to be present in two scientific CCD imagers. These pixels are found to exhibit distinguishable behavior with other analogous pixels and therefore can be characterized in groupings. Data from two Kodak CCD sensors are presented for exposure times from a few seconds up to two hours. Linear behavior is traditionally taken for granted when carrying out dark current correction and as a result, pixels with nonlinear behavior will be corrected inaccurately.
Nonlinear mode coupling theory of the lower-hybrid-drift instability
NASA Technical Reports Server (NTRS)
Drake, J. F.; Guzdar, P. N.; Hassam, A. B.; Huba, J. D.
1984-01-01
A nonlinear mode coupling theory of the lower-hybrid-drift instability is presented. A two-dimensional nonlinear wave equation is derived which describes lower-hybrid drift wave turbulence in the plane transverse to B (k.B = 0), and which is valid for finite beta, collisional and collisionless plasmas. The instability saturates by transferring energy from growing, long wavelength modes to damped, short wavelength modes. Detailed numerical results are presented which compare favorably to both recent computer simulations and experimental observations. Applications of this theory to space plasmas, the earth's magnetotail and the equatorial F region ionosphere, are discussed. Previously announced in STAR as N84-17734
Amplification of a seed pumped by a chirped laser in the strong coupling Brillouin regime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schluck, F.; Lehmann, G.; Spatschek, K. H.
Seed amplification via Brillouin backscattering of a long pump laser-pulse is considered. The interaction takes place in the so called strong coupling regime. Pump chirping is applied to mitigate spontaneous Raman backscattering of the pump before interacting with the seed. The strong coupling regime facilitates stronger exponential growth and narrower seeds compared to the so called weak coupling regime, although in the latter the scaling with pump amplitude is stronger. Strong coupling is achieved when the pump laser amplitude exceeds a certain threshold. It is shown how the chirp influences both the linear as well as the nonlinear amplification process.more » First, linear amplification as well as the seed profiles are determined in dependence of the chirping rate. In contrast to the weak coupling situation, the evolution is not symmetric with respect to the sign of the chirping rate. In the nonlinear stage of the amplification, we find an intrinsic chirp of the seed pulse even for an un-chirped pump. We show that chirping the pump may have a strong influence on the shape of the seed in the nonlinear amplification phase. Also, the influence of pump chirp on the efficiency of Brillouin seed amplification is discussed.« less
Why do large and small scales couple in a turbulent boundary layer?
NASA Astrophysics Data System (ADS)
Bandyopadhyay, Promode R.
2011-11-01
Correlation measurement, which is not definitive, suggests that large and small scales in a turbulent boundary layer (TBL) couple. A TBL is modeled as a jungle of interacting nonlinear oscillators to explore the origin of the coupling. These oscillators have the inherent property of self-sustainability, disturbance rejection, and of self-referential phase reset whereby several oscillators can phase align (or have constant phase difference between them) when an ``external'' impulse is applied. Consequently, these properties of a TBL are accounted for: self-sustainability, return of the wake component after a disturbance is removed, and the formation of the 18o large structures, which are composed of a sequential train of hairpin vortices. The nonlinear ordinary differential equations of the oscillators are solved using an analog circuit for rapid solution. The post-bifurcation limit cycles are determined. A small scale and a large scale are akin to two different oscillators. The state variables from the two disparate interacting oscillators are shown to couple and the small scales appear at certain regions of the phase of the large scale. The coupling is a consequence of the nonlinear oscillatory behavior. Although state planes exist where the disparate scales appear de-superposed, all scales in a TBL are in fact coupled and they cannot be monochromatically isolated.
Prediction of jump phenomena in roll-coupled maneuvers of airplanes
NASA Technical Reports Server (NTRS)
Schy, A. A.; Hannah, M. E.
1976-01-01
An easily computerized analytical method is developed for identifying critical airplane maneuvers in which nonlinear rotational coupling effects may cause sudden jumps in the response to pilot's control inputs. Fifth and ninth degree polynomials for predicting multiple pseudo-steady states of roll-coupled maneuvers are derived. The program calculates the pseudo-steady solutions and their stability. The occurrence of jump-like responses for several airplanes and a variety of maneuvers is shown to correlate well with the appearance of multiple stable solutions for critical control combinations. The analysis is extended to include aerodynamics nonlinear in angle of attack.
The cardiorespiratory interaction: a nonlinear stochastic model and its synchronization properties
NASA Astrophysics Data System (ADS)
Bahraminasab, A.; Kenwright, D.; Stefanovska, A.; McClintock, P. V. E.
2007-06-01
We address the problem of interactions between the phase of cardiac and respiration oscillatory components. The coupling between these two quantities is experimentally investigated by the theory of stochastic Markovian processes. The so-called Markov analysis allows us to derive nonlinear stochastic equations for the reconstruction of the cardiorespiratory signals. The properties of these equations provide interesting new insights into the strength and direction of coupling which enable us to divide the couplings to two parts: deterministic and stochastic. It is shown that the synchronization behaviors of the reconstructed signals are statistically identical with original one.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong QIn, Ronald Davidson
2011-07-18
The Courant-Snyder (CS) theory and the Kapchinskij-Vladimirskij (KV) distribution for high-intensity beams in a uncoupled focusing lattice are generalized to the case of coupled transverse dynamics. The envelope function is generalized to an envelope matrix, and the envelope equation becomes a matrix envelope equation with matrix operations that are non-commutative. In an uncoupled lattice, the KV distribution function, first analyzed in 1959, is the only known exact solution of the nonlinear Vlasov-Maxwell equations for high-intensity beams including self-fields in a self-consistent manner. The KV solution is generalized to high-intensity beams in a coupled transverse lattice using the generalized CS invariant.more » This solution projects to a rotating, pulsating elliptical beam in transverse configuration space. The fully self-consistent solution reduces the nonlinear Vlasov-Maxwell equations to a nonlinear matrix ordinary differential equation for the envelope matrix, which determines the geometry of the pulsating and rotating beam ellipse. These results provide us with a new theoretical tool to investigate the dynamics of high-intensity beams in a coupled transverse lattice. A strongly coupled lattice, a so-called N-rolling lattice, is studied as an example. It is found that strong coupling does not deteriorate the beam quality. Instead, the coupling induces beam rotation, and reduces beam pulsation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qin Hong; Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026; Davidson, Ronald C.
2011-05-15
The Courant-Snyder (CS) theory and the Kapchinskij-Vladimirskij (KV) distribution for high-intensity beams in an uncoupled focusing lattice are generalized to the case of coupled transverse dynamics. The envelope function is generalized to an envelope matrix, and the envelope equation becomes a matrix envelope equation with matrix operations that are noncommutative. In an uncoupled lattice, the KV distribution function, first analyzed in 1959, is the only known exact solution of the nonlinear Vlasov-Maxwell equations for high-intensity beams including self-fields in a self-consistent manner. The KV solution is generalized to high-intensity beams in a coupled transverse lattice using the generalized CS invariant.more » This solution projects to a rotating, pulsating elliptical beam in transverse configuration space. The fully self-consistent solution reduces the nonlinear Vlasov-Maxwell equations to a nonlinear matrix ordinary differential equation for the envelope matrix, which determines the geometry of the pulsating and rotating beam ellipse. These results provide us with a new theoretical tool to investigate the dynamics of high-intensity beams in a coupled transverse lattice. A strongly coupled lattice, a so-called N-rolling lattice, is studied as an example. It is found that strong coupling does not deteriorate the beam quality. Instead, the coupling induces beam rotation and reduces beam pulsation.« less
Asymptotically (A)dS dilaton black holes with nonlinear electrodynamics
NASA Astrophysics Data System (ADS)
Hajkhalili, S.; Sheykhi, A.
It is well known that with an appropriate combination of three Liouville-type dilaton potentials, one can construct charged dilaton black holes in an (anti)-de Sitter [(A)dS] spaces in the presence of linear Maxwell field. However, asymptotically (A)dS dilaton black holes coupled to nonlinear gauge field have not been found. In this paper, we construct, for the first time, three new classes of dilaton black hole solutions in the presence of three types of nonlinear electrodynamics, namely Born-Infeld (BI), Logarithmic (LN) and Exponential nonlinear (EN) electrodynamics. All these solutions are asymptotically (A)dS and in the linear regime reduce to the Einstein-Maxwell-dilaton (EMd) black holes in (A)dS spaces. We investigate physical properties and the causal structure, as well as asymptotic behavior of the obtained solutions, and show that depending on the values of the metric parameters, the singularity can be covered by various horizons. We also calculate conserved and thermodynamic quantities of the obtained solutions. Interestingly enough, we find that the coupling of dilaton field and nonlinear gauge field in the background of (A)dS spaces leads to a strange behavior for the electric field. We observe that the electric field is zero at singularity and increases smoothly until reaches a maximum value, then it decreases smoothly until goes to zero as r →∞. The maximum value of the electric field increases with increasing the nonlinear parameter β or decreasing the dilaton coupling α and is shifted to the singularity in the absence of either dilaton field (α = 0) or nonlinear gauge field (β →∞).
SIERRA Multimechanics Module: Aria User Manual Version 4.44
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sierra Thermal /Fluid Team
2017-04-01
Aria is a Galerkin fnite element based program for solving coupled-physics problems described by systems of PDEs and is capable of solving nonlinear, implicit, transient and direct-to-steady state problems in two and three dimensions on parallel architectures. The suite of physics currently supported by Aria includes thermal energy transport, species transport, and electrostatics as well as generalized scalar, vector and tensor transport equations. Additionally, Aria includes support for manufacturing process fows via the incompressible Navier-Stokes equations specialized to a low Reynolds number ( %3C 1 ) regime. Enhanced modeling support of manufacturing processing is made possible through use of eithermore » arbitrary Lagrangian- Eulerian (ALE) and level set based free and moving boundary tracking in conjunction with quasi-static nonlinear elastic solid mechanics for mesh control. Coupled physics problems are solved in several ways including fully-coupled Newton's method with analytic or numerical sensitivities, fully-coupled Newton- Krylov methods and a loosely-coupled nonlinear iteration about subsets of the system that are solved using combinations of the aforementioned methods. Error estimation, uniform and dynamic h -adaptivity and dynamic load balancing are some of Aria's more advanced capabilities. Aria is based upon the Sierra Framework.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sierra Thermal/Fluid Team
Aria is a Galerkin fnite element based program for solving coupled-physics problems described by systems of PDEs and is capable of solving nonlinear, implicit, transient and direct-to-steady state problems in two and three dimensions on parallel architectures. The suite of physics currently supported by Aria includes thermal energy transport, species transport, and electrostatics as well as generalized scalar, vector and tensor transport equations. Additionally, Aria includes support for manufacturing process fows via the incompressible Navier-Stokes equations specialized to a low Reynolds number ( %3C 1 ) regime. Enhanced modeling support of manufacturing processing is made possible through use of eithermore » arbitrary Lagrangian- Eulerian (ALE) and level set based free and moving boundary tracking in conjunction with quasi-static nonlinear elastic solid mechanics for mesh control. Coupled physics problems are solved in several ways including fully-coupled Newton's method with analytic or numerical sensitivities, fully-coupled Newton- Krylov methods and a loosely-coupled nonlinear iteration about subsets of the system that are solved using combinations of the aforementioned methods. Error estimation, uniform and dynamic h -adaptivity and dynamic load balancing are some of Aria's more advanced capabilities. Aria is based upon the Sierra Framework.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sierra Thermal /Fluid Team
Aria is a Galerkin finite element based program for solving coupled-physics problems described by systems of PDEs and is capable of solving nonlinear, implicit, transient and direct-to-steady state problems in two and three dimensions on parallel architectures. The suite of physics currently supported by Aria includes thermal energy transport, species transport, and electrostatics as well as generalized scalar, vector and tensor transport equations. Additionally, Aria includes support for manufacturing process flows via the incompressible Navier-Stokes equations specialized to a low Reynolds number (Re %3C 1) regime. Enhanced modeling support of manufacturing processing is made possible through use of either arbitrarymore » Lagrangian- Eulerian (ALE) and level set based free and moving boundary tracking in conjunction with quasi-static nonlinear elastic solid mechanics for mesh control. Coupled physics problems are solved in several ways including fully-coupled Newton's method with analytic or numerical sensitivities, fully-coupled Newton- Krylov methods and a loosely-coupled nonlinear iteration about subsets of the system that are solved using combinations of the aforementioned methods. Error estimation, uniform and dynamic h-adaptivity and dynamic load balancing are some of Aria's more advanced capabilities. Aria is based upon the Sierra Framework.« less
Kling, Ralf C.; Tschammer, Nuska; Lanig, Harald; Clark, Timothy; Gmeiner, Peter
2014-01-01
Partial agonists exhibit a submaximal capacity to enhance the coupling of one receptor to an intracellular binding partner. Although a multitude of studies have reported different ligand-specific conformations for a given receptor, little is known about the mechanism by which different receptor conformations are connected to the capacity to activate the coupling to G-proteins. We have now performed molecular-dynamics simulations employing our recently described active-state homology model of the dopamine D2 receptor-Gαi protein-complex coupled to the partial agonists aripiprazole and FAUC350, in order to understand the structural determinants of partial agonism better. We have compared our findings with our model of the D2R-Gαi-complex in the presence of the full agonist dopamine. The two partial agonists are capable of inducing different conformations of important structural motifs, including the extracellular loop regions, the binding pocket and, in particular, intracellular G-protein-binding domains. As G-protein-coupling to certain intracellular epitopes of the receptor is considered the key step of allosterically triggered nucleotide-exchange, it is tempting to assume that impaired coupling between the receptor and the G-protein caused by distinct ligand-specific conformations is a major determinant of partial agonist efficacy. PMID:24932547
NASA Astrophysics Data System (ADS)
Al-Islam, Najja Shakir
In this Dissertation, the existence of pseudo almost periodic solutions to some systems of nonlinear hyperbolic second-order partial differential equations is established. For that, (Al-Islam [4]) is first studied and then obtained under some suitable assumptions. That is, the existence of pseudo almost periodic solutions to a hyperbolic second-order partial differential equation with delay. The second-order partial differential equation (1) represents a mathematical model for the dynamics of gas absorption, given by uxt+a x,tux=Cx,t,u x,t , u0,t=4 t, 1 where a : [0, L] x RR , C : [0, L] x R x RR , and ϕ : RR are (jointly) continuous functions ( t being the greatest integer function) and L > 0. The results in this Dissertation generalize those of Poorkarimi and Wiener [22]. Secondly, a generalization of the above-mentioned system consisting of the non-linear hyperbolic second-order partial differential equation uxt+a x,tux+bx,t ut+cx,tu=f x,t,u, x∈ 0,L,t∈ R, 2 equipped with the boundary conditions ux,0 =40x, u0,t=u 0t, uxx,0=y 0x, x∈0,L, t∈R, 3 where a, b, c : [0, L ] x RR and f : [0, L] x R x RR are (jointly) continuous functions is studied. Under some suitable assumptions, the existence and uniqueness of pseudo almost periodic solutions to particular cases, as well as the general case of the second-order hyperbolic partial differential equation (2) are studied. The results of all studies contained within this text extend those obtained by Aziz and Meyers [6] in the periodic setting.
FAST TRACK COMMUNICATION Quasi self-adjoint nonlinear wave equations
NASA Astrophysics Data System (ADS)
Ibragimov, N. H.; Torrisi, M.; Tracinà, R.
2010-11-01
In this paper we generalize the classification of self-adjoint second-order linear partial differential equation to a family of nonlinear wave equations with two independent variables. We find a class of quasi self-adjoint nonlinear equations which includes the self-adjoint linear equations as a particular case. The property of a differential equation to be quasi self-adjoint is important, e.g. for constructing conservation laws associated with symmetries of the differential equation.
Feedback linearization for control of air breathing engines
NASA Technical Reports Server (NTRS)
Phillips, Stephen; Mattern, Duane
1991-01-01
The method of feedback linearization for control of the nonlinear nozzle and compressor components of an air breathing engine is presented. This method overcomes the need for a large number of scheduling variables and operating points to accurately model highly nonlinear plants. Feedback linearization also results in linear closed loop system performance simplifying subsequent control design. Feedback linearization is used for the nonlinear partial engine model and performance is verified through simulation.
Generalizing the transition from amplitude to oscillation death in coupled oscillators.
Zou, Wei; Senthilkumar, D V; Koseska, Aneta; Kurths, Jürgen
2013-11-01
Amplitude death (AD) and oscillation death (OD) are two structurally different oscillation quenching types in coupled nonlinear oscillators. The transition from AD to OD has been recently realized due to the interplay between heterogeneity and coupling strength [A. Koseska et al., Phys. Rev. Lett. 111, 024103 (2013)]. We identify here the transition from AD to OD in nonlinear oscillators with couplings of distinct natures. It is demonstrated that the presence of time delay in the coupling cannot induce such a transition in identical oscillators, but it can indeed facilitate its occurrence with a low degree of heterogeneity. Moreover, it is further shown that the AD to OD transition is reliably observed in identical oscillators with dynamic and conjugate couplings. The coexistence of AD and OD and rich stable OD configurations after the transition are revealed, which are of great significance for potential applications in physics, biology, and control studies.
Performance of the hybrid MLPNN based VE (hMLPNN-VE) for the nonlinear PMR channels
NASA Astrophysics Data System (ADS)
Wongsathan, Rati; Phakphisut, Watid; Supnithi, Pornchai
2018-05-01
This paper proposes a hybrid of multilayer perceptron neural network (MLPNN) and Volterra equalizer (VE) denoted hMLPNN-VE in nonlinear perpendicular magnetic recording (PMR) channels. The proposed detector integrates the nonlinear product terms of the delayed readback signals generated from the VE into the nonlinear processing of the MLPNN. The detection performance comparison is evaluated in terms of the tradeoff between the bit error rate (BER), complexity and reliability for a nonlinear Volterra channel at high normalized recording density. The proposed hMLPNN-VE outperforms MLPNN based equalizer (MLPNNE), VE and the conventional partial response maximum likelihood (PRML) detector.
Predictor-based control for an inverted pendulum subject to networked time delay.
Ghommam, J; Mnif, F
2017-03-01
The inverted pendulum is considered as a special class of underactuated mechanical systems with two degrees of freedom and a single control input. This mechanical configuration allows to transform the underactuated system into a nonlinear system that is referred to as the normal form, whose control design techniques for stabilization are well known. In the presence of time delays, these control techniques may result in inadequate behavior and may even cause finite escape time in the controlled system. In this paper, a constructive method is presented to design a controller for an inverted pendulum characterized by a time-delayed balance control. First, the partial feedback linearization control for the inverted pendulum is modified and coupled with a state predictor to compensate for the delay. Several coordinate transformations are processed to transform the estimated partial linearized system into an upper-triangular form. Second, nested saturation and backstepping techniques are combined to derive the control law of the transformed system that would complete the design of the whole control input. The effectiveness of the proposed technique is illustrated by numerical simulations. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
The evolving cobweb of relations among partially rational investors
DiMeglio, Anna; Garofalo, Franco; Lo Iudice, Francesco
2017-01-01
To overcome the limitations of neoclassical economics, researchers have leveraged tools of statistical physics to build novel theories. The idea was to elucidate the macroscopic features of financial markets from the interaction of its microscopic constituents, the investors. In this framework, the model of the financial agents has been kept separate from that of their interaction. Here, instead, we explore the possibility of letting the interaction topology emerge from the model of the agents’ behavior. Then, we investigate how the emerging cobweb of relationship affects the overall market dynamics. To this aim, we leverage tools from complex systems analysis and nonlinear dynamics, and model the network of mutual influence as the output of a dynamical system describing the edge evolution. In this work, the driver of the link evolution is the relative reputation between possibly coupled agents. The reputation is built differently depending on the extent of rationality of the investors. The continuous edge activation or deactivation induces the emergence of leaders and of peculiar network structures, typical of real influence networks. The subsequent impact on the market dynamics is investigated through extensive numerical simulations in selected scenarios populated by partially rational investors. PMID:28196144
The evolving cobweb of relations among partially rational investors.
DeLellis, Pietro; DiMeglio, Anna; Garofalo, Franco; Lo Iudice, Francesco
2017-01-01
To overcome the limitations of neoclassical economics, researchers have leveraged tools of statistical physics to build novel theories. The idea was to elucidate the macroscopic features of financial markets from the interaction of its microscopic constituents, the investors. In this framework, the model of the financial agents has been kept separate from that of their interaction. Here, instead, we explore the possibility of letting the interaction topology emerge from the model of the agents' behavior. Then, we investigate how the emerging cobweb of relationship affects the overall market dynamics. To this aim, we leverage tools from complex systems analysis and nonlinear dynamics, and model the network of mutual influence as the output of a dynamical system describing the edge evolution. In this work, the driver of the link evolution is the relative reputation between possibly coupled agents. The reputation is built differently depending on the extent of rationality of the investors. The continuous edge activation or deactivation induces the emergence of leaders and of peculiar network structures, typical of real influence networks. The subsequent impact on the market dynamics is investigated through extensive numerical simulations in selected scenarios populated by partially rational investors.
Tunable, high-sensitive measurement of inter-dot transition via tunneling induced absorption
NASA Astrophysics Data System (ADS)
Peng, Yandong; Yang, Aihong; Chen, Bing; Li, Lei; Liu, Shande; Guo, Hongju
2016-10-01
A tunable, narrow absorption spectrum induced by resonant tunneling is demonstrated and proposed for measuring interdot tunneling. Tunneling-induced absorption (TIA) arises from constructive interference between different transition paths, and the large nonlinear TIA significantly enhances the total absorption. The narrow nonlinear TIA spectrum is sensitive to inter-dot tunneling, and its sensor characteristics, including sensitivity and bandwidth, are investigated in weak-coupling and strong-coupling regimes, respectively.
NASA Technical Reports Server (NTRS)
Harstad, K. G.; Strand, L. D.
1987-01-01
An exact analytical solution is given to the problem of long-time propellant thermal response to a specified pressure oscillation. Coupling to the gas phase is made using the quasisteady Zeldovich-Novozhilov approximation. Explicit linear and lowest order (quadratic) nonlinear expressions for propellant response are obtained from the implicit nonlinear solutions. Using these expressions, response curves are presented for an ammonium perchlorate composite propellant and HMX monopropellant.
Mode localization in a class of multidegree-of-freedom nonlinear systems with cyclic symmetry
NASA Astrophysics Data System (ADS)
Vakakis, Alexander F.; Cetinkaya, Cetin
1993-02-01
The free oscillations of n-degree-of-freedom (DOF) nonlinear systems with cyclic symmetry and weak coupling between substructures are examined. An asymptotic methodology is used to detect localized nonsimilar normal modes, i.e., free periodic motions spatially confined to only a limited number of substructures of the cyclic system. It is shown that nonlinear mode localization occurs in the perfectly symmetric, weakly coupled structure, in contrast to linear mode localization, which exists only in the presence of substructure 'mistuning'. In addition to the localized modes, nonlocalized modes are also found in the weakly coupled system. The stability of the identified modes is investigated by means of an approximate two-timing averaging mothodology, and the general theory is applied to the case of a cyclic system with three-DOF. The theoretical results are then verified by direct numerical integrations of the equations of motion.
Mechanical-magnetic-electric coupled behaviors for stress-driven Terfenol-D energy harvester
NASA Astrophysics Data System (ADS)
Cao, Shuying; Zheng, Jiaju; Wang, Bowen; Pan, Ruzheng; Zhao, Ran; Weng, Ling; Sun, Ying; Liu, Chengcheng
2017-05-01
The stress-driven Terfernol-D energy harvester exhibits the nonlinear mechanical-magnetic-electric coupled (MMEC) behaviors and the eddy current effects. To analyze and design the device, it is necessary to establish an accurate model of the device. Based on the effective magnetic field expression, the constitutive equations with eddy currents and variable coefficients, and the dynamic equations, a nonlinear dynamic MMEC model for the device is founded. Comparisons between the measured and calculated results show that the model can describe the nonlinear coupled curves of magnetization versus stress and strain versus stress under different bias fields, and can provide the reasonable data trends of piezomagnetic coefficients, Young's modulus and relative permeability for Terfenol-D. Moreover, the calculated power results show that the model can determine the optimal bias conditions, optimal resistance, suitable proof mass, suitable slices for the maximum energy extraction of the device under broad stress amplitude and broad frequency.
Dynamical processes and epidemic threshold on nonlinear coupled multiplex networks
NASA Astrophysics Data System (ADS)
Gao, Chao; Tang, Shaoting; Li, Weihua; Yang, Yaqian; Zheng, Zhiming
2018-04-01
Recently, the interplay between epidemic spreading and awareness diffusion has aroused the interest of many researchers, who have studied models mainly based on linear coupling relations between information and epidemic layers. However, in real-world networks the relation between two layers may be closely correlated with the property of individual nodes and exhibits nonlinear dynamical features. Here we propose a nonlinear coupled information-epidemic model (I-E model) and present a comprehensive analysis in a more generalized scenario where the upload rate differs from node to node, deletion rate varies between susceptible and infected states, and infection rate changes between unaware and aware states. In particular, we develop a theoretical framework of the intra- and inter-layer dynamical processes with a microscopic Markov chain approach (MMCA), and derive an analytic epidemic threshold. Our results suggest that the change of upload and deletion rate has little effect on the diffusion dynamics in the epidemic layer.
Lifespan Differences in Nonlinear Dynamics during Rest and Auditory Oddball Performance
ERIC Educational Resources Information Center
Muller, Viktor; Lindenberger, Ulman
2012-01-01
Electroencephalographic recordings (EEG) were used to assess age-associated differences in nonlinear brain dynamics during both rest and auditory oddball performance in children aged 9.0-12.8 years, younger adults, and older adults. We computed nonlinear coupling dynamics and dimensional complexity, and also determined spectral alpha power as an…
Charalampidis, E G; Kevrekidis, P G; Frantzeskakis, D J; Malomed, B A
2016-08-01
We consider a two-component, two-dimensional nonlinear Schrödinger system with unequal dispersion coefficients and self-defocusing nonlinearities, chiefly with equal strengths of the self- and cross-interactions. In this setting, a natural waveform with a nonvanishing background in one component is a vortex, which induces an effective potential well in the second component, via the nonlinear coupling of the two components. We show that the potential well may support not only the fundamental bound state, but also multiring excited radial state complexes for suitable ranges of values of the dispersion coefficient of the second component. We systematically explore the existence, stability, and nonlinear dynamics of these states. The complexes involving the excited radial states are weakly unstable, with a growth rate depending on the dispersion of the second component. Their evolution leads to transformation of the multiring complexes into stable vortex-bright solitons ones with the fundamental state in the second component. The excited states may be stabilized by a harmonic-oscillator trapping potential, as well as by unequal strengths of the self- and cross-repulsive nonlinearities.
Numerical study of bandwidth effect on stimulated Raman backscattering in nonlinear regime
NASA Astrophysics Data System (ADS)
Zhou, H. Y.; Xiao, C. Z.; Zou, D. B.; Li, X. Z.; Yin, Y.; Shao, F. Q.; Zhuo, H. B.
2018-06-01
Nonlinear behaviors of stimulated Raman scattering driven by finite bandwidth pumps are studied by one dimensional particle-in-cell simulations. The broad spectral feature of plasma waves and backscattered light reveals the different coupling and growth mechanisms, which lead to the suppression effect before the deep nonlinear stage. It causes nonperiodic plasma wave packets and reduces packet and etching velocities. Based on the negative frequency shift and electron energy distribution, the long-time evolution of instability can be divided into two stages by the relaxation time. It is a critical time after which the alleviation effects of nonlinear frequency shift and hot electrons are replaced by enhancement. Thus, the broadband pump suppresses instability at early time. However, it aggravates in the deep nonlinear stage by lifting the saturation level due to the coupling of the incident pump with each frequency shifted plasma wave. Our simulation results show that the nonlinear effects are valid in a bandwidth range from 2.25% to 3.0%, and the physics are similar within a nearby parameter space.
NASA Astrophysics Data System (ADS)
Tan, D.; Erturk, A.
2018-03-01
For bio-inspired, fish-like robotic propulsion, the Macro-Fiber Composite (MFC) piezoelectric technology offers noiseless actuation with a balance between actuation force and velocity response. However, internal nonlinear- ities within the MFCs, such as piezoelectric softening, geometric hardening, inertial softening, and nonlinear dissipation, couple with the hydrodynamic loading on the structure from the surrounding fluid. In the present work, we explore nonlinear actuation of MFC cantilevers underwater and develop a mathematical framework for modeling and analysis. In vacuo resonant actuation experiments are conducted for a set of MFC cantilevers of varying length to width aspect ratios to validate the structural model in the absence of fluid loading. These MFC cantilevers are then subjected to underwater resonant actuation experiments, and model simulations are compared with nonlinear experimental frequency response functions. It is observed that semi-empirical hydro- dynamic loads obtained from quasilinear experiments have to be modified to account for amplitude dependent added mass, and additional nonlinear hydrodynamic effects might be present, yielding qualitative differences in the resulting underwater frequency respones curves with increased excitation amplitude.
Modelling of a bridge-shaped nonlinear piezoelectric energy harvester
NASA Astrophysics Data System (ADS)
Gafforelli, G.; Xu, R.; Corigliano, A.; Kim, S. G.
2013-12-01
Piezoelectric MicroElectroMechanical Systems (MEMS) energy harvesting is an attractive technology for harvesting small magnitudes of energy from ambient vibrations. Increasing the operating frequency bandwidth of such devices is one of the major issues for real world applications. A MEMS-scale doubly clamped nonlinear beam resonator is designed and developed to demonstrate very wide bandwidth and high power density. In this paper a first complete theoretical discussion of nonlinear resonating piezoelectric energy harvesting is provided. The sectional behaviour of the beam is studied through the Classical Lamination Theory (CLT) specifically modified to introduce the piezoelectric coupling and nonlinear Green-Lagrange strain tensor. A lumped parameter model is built through Rayleigh-Ritz Method and the resulting nonlinear coupled equations are solved in the frequency domain through the Harmonic Balance Method (HBM). Finally, the influence of external load resistance on the dynamic behaviour is studied. The theoretical model shows that nonlinear resonant harvesters have much wider power bandwidth than that of linear resonators but their maximum power is still bounded by the mechanical damping as is the case for linear resonating harvesters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dell'Anno, Fabio; De Siena, Silvio; Illuminati, Fabrizio
2004-03-01
Extending the scheme developed for a single mode of the electromagnetic field in the preceding paper [F. Dell'Anno, S. De Siena, and F. Illuminati, Phys. Rev. A 69, 033812 (2004)], we introduce two-mode nonlinear canonical transformations depending on two heterodyne mixing angles. They are defined in terms of Hermitian nonlinear functions that realize heterodyne superpositions of conjugate quadratures of bipartite systems. The canonical transformations diagonalize a class of Hamiltonians describing nondegenerate and degenerate multiphoton processes. We determine the coherent states associated with the canonical transformations, which generalize the nondegenerate two-photon squeezed states. Such heterodyne multiphoton squeezed states are defined asmore » the simultaneous eigenstates of the transformed, coupled annihilation operators. They are generated by nonlinear unitary evolutions acting on two-mode squeezed states. They are non-Gaussian, highly nonclassical, entangled states. For a quadratic nonlinearity the heterodyne multiphoton squeezed states define two-mode cubic phase states. The statistical properties of these states can be widely adjusted by tuning the heterodyne mixing angles, the phases of the nonlinear couplings, as well as the strength of the nonlinearity. For quadratic nonlinearity, we study the higher-order contributions to the susceptibility in nonlinear media and we suggest possible experimental realizations of multiphoton conversion processes generating the cubic-phase heterodyne squeezed states.« less
NASA Astrophysics Data System (ADS)
dell'Anno, Fabio; de Siena, Silvio; Illuminati, Fabrizio
2004-03-01
Extending the scheme developed for a single mode of the electromagnetic field in the preceding paper [
NASA Astrophysics Data System (ADS)
Wu, L. Z.; Selvadurai, A. P. S.; Zhang, L. M.; Huang, R. Q.; Huang, Jinsong
2016-12-01
Rainfall-induced landslides are a common occurrence in terrain with steep topography and soils that have degradable strength. Rainfall infiltration into a partially saturated slope of infinite extent can lead to either a decrease or complete elimination of soil suction, compromising the slopes' stability. In this research the rainfall infiltration coupled with deformation of a partially saturated soil slope during rainfall infiltration is analyzed. The limit equilibrium conditions and the shear strength relationship of a partially saturated soil are employed to develop an analytical solution for calculating the stability of an infinite partially saturated slope due to rainfall infiltration. The analytical solutions are able to consider the influence of the coupled effects on the stability of the slope. The factors that affect the safety of a partially saturated slope of infinite extent are discussed. The results indicate that the poro-mechanical coupling of water infiltration and deformation has an important effect on the stability of the infinite unsaturated slope.
Chen, Bor-Sen; Hsu, Chih-Yuan
2012-10-26
Collective rhythms of gene regulatory networks have been a subject of considerable interest for biologists and theoreticians, in particular the synchronization of dynamic cells mediated by intercellular communication. Synchronization of a population of synthetic genetic oscillators is an important design in practical applications, because such a population distributed over different host cells needs to exploit molecular phenomena simultaneously in order to emerge a biological phenomenon. However, this synchronization may be corrupted by intrinsic kinetic parameter fluctuations and extrinsic environmental molecular noise. Therefore, robust synchronization is an important design topic in nonlinear stochastic coupled synthetic genetic oscillators with intrinsic kinetic parameter fluctuations and extrinsic molecular noise. Initially, the condition for robust synchronization of synthetic genetic oscillators was derived based on Hamilton Jacobi inequality (HJI). We found that if the synchronization robustness can confer enough intrinsic robustness to tolerate intrinsic parameter fluctuation and extrinsic robustness to filter the environmental noise, then robust synchronization of coupled synthetic genetic oscillators is guaranteed. If the synchronization robustness of a population of nonlinear stochastic coupled synthetic genetic oscillators distributed over different host cells could not be maintained, then robust synchronization could be enhanced by external control input through quorum sensing molecules. In order to simplify the analysis and design of robust synchronization of nonlinear stochastic synthetic genetic oscillators, the fuzzy interpolation method was employed to interpolate several local linear stochastic coupled systems to approximate the nonlinear stochastic coupled system so that the HJI-based synchronization design problem could be replaced by a simple linear matrix inequality (LMI)-based design problem, which could be solved with the help of LMI toolbox in MATLAB easily. If the synchronization robustness criterion, i.e. the synchronization robustness ≥ intrinsic robustness + extrinsic robustness, then the stochastic coupled synthetic oscillators can be robustly synchronized in spite of intrinsic parameter fluctuation and extrinsic noise. If the synchronization robustness criterion is violated, external control scheme by adding inducer can be designed to improve synchronization robustness of coupled synthetic genetic oscillators. The investigated robust synchronization criteria and proposed external control method are useful for a population of coupled synthetic networks with emergent synchronization behavior, especially for multi-cellular, engineered networks.
2012-01-01
Background Collective rhythms of gene regulatory networks have been a subject of considerable interest for biologists and theoreticians, in particular the synchronization of dynamic cells mediated by intercellular communication. Synchronization of a population of synthetic genetic oscillators is an important design in practical applications, because such a population distributed over different host cells needs to exploit molecular phenomena simultaneously in order to emerge a biological phenomenon. However, this synchronization may be corrupted by intrinsic kinetic parameter fluctuations and extrinsic environmental molecular noise. Therefore, robust synchronization is an important design topic in nonlinear stochastic coupled synthetic genetic oscillators with intrinsic kinetic parameter fluctuations and extrinsic molecular noise. Results Initially, the condition for robust synchronization of synthetic genetic oscillators was derived based on Hamilton Jacobi inequality (HJI). We found that if the synchronization robustness can confer enough intrinsic robustness to tolerate intrinsic parameter fluctuation and extrinsic robustness to filter the environmental noise, then robust synchronization of coupled synthetic genetic oscillators is guaranteed. If the synchronization robustness of a population of nonlinear stochastic coupled synthetic genetic oscillators distributed over different host cells could not be maintained, then robust synchronization could be enhanced by external control input through quorum sensing molecules. In order to simplify the analysis and design of robust synchronization of nonlinear stochastic synthetic genetic oscillators, the fuzzy interpolation method was employed to interpolate several local linear stochastic coupled systems to approximate the nonlinear stochastic coupled system so that the HJI-based synchronization design problem could be replaced by a simple linear matrix inequality (LMI)-based design problem, which could be solved with the help of LMI toolbox in MATLAB easily. Conclusion If the synchronization robustness criterion, i.e. the synchronization robustness ≥ intrinsic robustness + extrinsic robustness, then the stochastic coupled synthetic oscillators can be robustly synchronized in spite of intrinsic parameter fluctuation and extrinsic noise. If the synchronization robustness criterion is violated, external control scheme by adding inducer can be designed to improve synchronization robustness of coupled synthetic genetic oscillators. The investigated robust synchronization criteria and proposed external control method are useful for a population of coupled synthetic networks with emergent synchronization behavior, especially for multi-cellular, engineered networks. PMID:23101662
NASA Astrophysics Data System (ADS)
Tiercelin, Nicolas; Preobrazhensky, Vladimir; BouMatar, Olivier; Talbi, Abdelkrim; Giordano, Stefano; Dusch, Yannick; Klimov, Alexey; Mathurin, Théo.; Elmazria, Omar; Hehn, Michel; Pernod, Philippe
2017-09-01
The interaction of a strongly nonlinear spin system with a crystalline lattice through magnetoelastic coupling results in significant modifications of the acoustic properties of magnetic materials, especially in the vicinity of magnetic instabilities associated with the spin-reorientation transition (SRT). The magnetoelastic coupling transfers the critical properties of the magnetic subsystem to the elastic one, which leads to a strong decrease of the sound velocity in the vicinity of the SRT, and allows a large control over acoustic nonlinearities. The general principles of the non-linear magneto-acoustics (NMA) will be introduced and illustrated in `bulk' applications such as acoustic wave phase conjugation, multi-phonon coupling, explosive instability of magneto-elastic vibrations, etc. The concept of the SRT coupled to magnetoelastic interaction has been transferred into nanostructured magnetoelastic multilayers with uni-axial anisotropy. The high sensitivity and the non-linear properties have been demonstrated in cantilever type actuators, and phenomena such as magneto-mechanical RF demodulation have been observed. The combination of the magnetic layers with piezoelectric materials also led to stress-mediated magnetoelectric (ME) composites with high ME coefficients, thanks to the SRT. The magnetoacoustic effects of the SRT have also been studied for surface acoustic waves propagating in the magnetoelastic layers and found to be promising for highly sensitive magnetic field sensors working at room temperature. On the other hand, mechanical stress is a very efficient way to control the magnetic subsystem. The principle of a very energy efficient stress-mediated magnetoelectric writing and reading in a magnetic memory is described.
Nonlinear modes of the tensor Dirac equation and CPT violation
NASA Technical Reports Server (NTRS)
Reifler, Frank J.; Morris, Randall D.
1993-01-01
Recently, it has been shown that Dirac's bispinor equation can be expressed, in an equivalent tensor form, as a constrained Yang-Mills equation in the limit of an infinitely large coupling constant. It was also shown that the free tensor Dirac equation is a completely integrable Hamiltonian system with Lie algebra type Poisson brackets, from which Fermi quantization can be derived directly without using bispinors. The Yang-Mills equation for a finite coupling constant is investigated. It is shown that the nonlinear Yang-Mills equation has exact plane wave solutions in one-to-one correspondence with the plane wave solutions of Dirac's bispinor equation. The theory of nonlinear dispersive waves is applied to establish the existence of wave packets. The CPT violation of these nonlinear wave packets, which could lead to new observable effects consistent with current experimental bounds, is investigated.
Ultra-low-power hybrid light–matter solitons
Walker, P. M.; Tinkler, L.; Skryabin, D. V.; Yulin, A.; Royall, B.; Farrer, I.; Ritchie, D. A.; Skolnick, M. S.; Krizhanovskii, D. N.
2015-01-01
New functionalities in nonlinear optics will require systems with giant optical nonlinearity as well as compatibility with photonic circuit fabrication techniques. Here we introduce a platform based on strong light–matter coupling between waveguide photons and quantum-well excitons. On a sub-millimetre length scale we generate picosecond bright temporal solitons at a pulse energy of only 0.5 pJ. From this we deduce a nonlinear refractive index three orders of magnitude larger than in any other ultrafast system. We study both temporal and spatio-temporal nonlinear effects and observe dark–bright spatio-temporal polariton solitons. Theoretical modelling of soliton formation in the strongly coupled system confirms the experimental observations. These results show the promise of our system as a high speed, low power, integrated platform for physics and devices based on strong interactions between photons. PMID:26400748
Ultra-low-power hybrid light-matter solitons.
Walker, P M; Tinkler, L; Skryabin, D V; Yulin, A; Royall, B; Farrer, I; Ritchie, D A; Skolnick, M S; Krizhanovskii, D N
2015-09-24
New functionalities in nonlinear optics will require systems with giant optical nonlinearity as well as compatibility with photonic circuit fabrication techniques. Here we introduce a platform based on strong light-matter coupling between waveguide photons and quantum-well excitons. On a sub-millimetre length scale we generate picosecond bright temporal solitons at a pulse energy of only 0.5 pJ. From this we deduce a nonlinear refractive index three orders of magnitude larger than in any other ultrafast system. We study both temporal and spatio-temporal nonlinear effects and observe dark-bright spatio-temporal polariton solitons. Theoretical modelling of soliton formation in the strongly coupled system confirms the experimental observations. These results show the promise of our system as a high speed, low power, integrated platform for physics and devices based on strong interactions between photons.
Cross-conditional entropy and coherence analysis of pharmaco-EEG changes induced by alprazolam.
Alonso, J F; Mañanas, M A; Romero, S; Rojas-Martínez, M; Riba, J
2012-06-01
Quantitative analysis of electroencephalographic signals (EEG) and their interpretation constitute a helpful tool in the assessment of the bioavailability of psychoactive drugs in the brain. Furthermore, psychotropic drug groups have typical signatures which relate biochemical mechanisms with specific EEG changes. To analyze the pharmacological effect of a dose of alprazolam on the connectivity of the brain during wakefulness by means of linear and nonlinear approaches. EEG signals were recorded after alprazolam administration in a placebo-controlled crossover clinical trial. Nonlinear couplings assessed by means of corrected cross-conditional entropy were compared to linear couplings measured with the classical magnitude squared coherence. Linear variables evidenced a statistically significant drug-induced decrease, whereas nonlinear variables showed significant increases. All changes were highly correlated to drug plasma concentrations. The spatial distribution of the observed connectivity changes clearly differed from a previous study: changes before and after the maximum drug effect were mainly observed over the anterior half of the scalp. Additionally, a new variable with very low computational cost was defined to evaluate nonlinear coupling. This is particularly interesting when all pairs of EEG channels are assessed as in this study. Results showed that alprazolam induced changes in terms of uncoupling between regions of the scalp, with opposite trends depending on the variables: decrease in linear ones and increase in nonlinear features. Maps provided consistent information about the way brain changed in terms of connectivity being definitely necessary to evaluate separately linear and nonlinear interactions.
Finite elements of nonlinear continua.
NASA Technical Reports Server (NTRS)
Oden, J. T.
1972-01-01
The finite element method is extended to a broad class of practical nonlinear problems, treating both theory and applications from a general and unifying point of view. The thermomechanical principles of continuous media and the properties of the finite element method are outlined, and are brought together to produce discrete physical models of nonlinear continua. The mathematical properties of the models are analyzed, and the numerical solution of the equations governing the discrete models is examined. The application of the models to nonlinear problems in finite elasticity, viscoelasticity, heat conduction, and thermoviscoelasticity is discussed. Other specific topics include the topological properties of finite element models, applications to linear and nonlinear boundary value problems, convergence, continuum thermodynamics, finite elasticity, solutions to nonlinear partial differential equations, and discrete models of the nonlinear thermomechanical behavior of dissipative media.
Pattern formation based on complex coupling mechanism in dielectric barrier discharge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Weibo; College of Aeronautical Engineering, Binzhou University, Binzhou 256603; Dong, Lifang, E-mail: donglfhbu@163.com, E-mail: pyy1616@163.com
2016-08-15
The pattern formation of cinque-dice square superlattice pattern (CDSSP) is investigated based on the complex coupling mechanism in a dielectric barrier discharge (DBD) system. The spatio-temporal structure of CDSSP obtained by using an intensified-charge coupled device indicates that CDSSP is an interleaving of two kinds of subpatterns (mixture of rectangle and square, and dot-line square) which discharge twice in one half voltage, respectively. Selected by the complex coupling of two subpatterns, the CDSSP can be formed and shows good stability. This investigation based on gas discharge theory together with nonlinear theory may provide a deeper understanding for the nonlinear characteristicsmore » and even the formation mechanism of patterns in DBD.« less
Use of the dynamic stiffness method to interpret experimental data from a nonlinear system
NASA Astrophysics Data System (ADS)
Tang, Bin; Brennan, M. J.; Gatti, G.
2018-05-01
The interpretation of experimental data from nonlinear structures is challenging, primarily because of dependency on types and levels of excitation, and coupling issues with test equipment. In this paper, the use of the dynamic stiffness method, which is commonly used in the analysis of linear systems, is used to interpret the data from a vibration test of a controllable compressed beam structure coupled to a test shaker. For a single mode of the system, this method facilitates the separation of mass, stiffness and damping effects, including nonlinear stiffness effects. It also allows the separation of the dynamics of the shaker from the structure under test. The approach needs to be used with care, and is only suitable if the nonlinear system has a response that is predominantly at the excitation frequency. For the structure under test, the raw experimental data revealed little about the underlying causes of the dynamic behaviour. However, the dynamic stiffness approach allowed the effects due to the nonlinear stiffness to be easily determined.
Domingue, Scott R.; Bartels, Randy A.
2014-12-04
Here, we demonstrate 1250 nm pulses generated in dual-zero dispersion photonic crystal fiber capable of three-photon excitation fluorescence microscopy. The total power conversion efficiency from the 28 fs seed pulse centered at 1075 nm to pulses at 1250 nm, including coupling losses from the nonlinear fiber, is 35%, with up to 67% power conversion efficiency of the fiber coupled light. Frequency-resolved optical gating measurements characterize 1250 nm pulses at 0.6 nJ and 2 nJ, illustrating the change in nonlinear spectral phase accumulation with pulse energy even for nonlinear fiber lengths < 50 mm. The 0.6 nJ pulse has a 26more » fs duration and is the shortest nonlinear fiber derived 1250 nm pulse yet reported (to the best of our knowledge). The short pulse durations and energies make these pulses a viable route to producing light at 1250 nm for multiphoton microscopy, which we we demonstrate here, via a three-photon excitation fluorescence microscope.« less
Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides
Shin, Heedeuk; Qiu, Wenjun; Jarecki, Robert; Cox, Jonathan A.; Olsson, Roy H.; Starbuck, Andrew; Wang, Zheng; Rakich, Peter T.
2013-01-01
Nanoscale modal confinement is known to radically enhance the effect of intrinsic Kerr and Raman nonlinearities within nanophotonic silicon waveguides. By contrast, stimulated Brillouin-scattering nonlinearities, which involve coherent coupling between guided photon and phonon modes, are stifled in conventional nanophotonics, preventing the realization of a host of Brillouin-based signal-processing technologies in silicon. Here we demonstrate stimulated Brillouin scattering in silicon waveguides, for the first time, through a new class of hybrid photonic–phononic waveguides. Tailorable travelling-wave forward-stimulated Brillouin scattering is realized—with over 1,000 times larger nonlinearity than reported in previous systems—yielding strong Brillouin coupling to phonons from 1 to 18 GHz. Experiments show that radiation pressures, produced by subwavelength modal confinement, yield enhancement of Brillouin nonlinearity beyond those of material nonlinearity alone. In addition, such enhanced and wideband coherent phonon emission paves the way towards the hybridization of silicon photonics, microelectromechanical systems and CMOS signal-processing technologies on chip. PMID:23739586
Yao, Yu-Qin; Li, Ji; Han, Wei; Wang, Deng-Shan; Liu, Wu-Ming
2016-01-01
The intrinsic nonlinearity is the most remarkable characteristic of the Bose-Einstein condensates (BECs) systems. Many studies have been done on atomic BECs with time- and space- modulated nonlinearities, while there is few work considering the atomic-molecular BECs with space-modulated nonlinearities. Here, we obtain two kinds of Jacobi elliptic solutions and a family of rational solutions of the atomic-molecular BECs with trapping potential and space-modulated nonlinearity and consider the effect of three-body interaction on the localized matter wave solutions. The topological properties of the localized nonlinear matter wave for no coupling are analysed: the parity of nonlinear matter wave functions depends only on the principal quantum number n, and the numbers of the density packets for each quantum state depend on both the principal quantum number n and the secondary quantum number l. When the coupling is not zero, the localized nonlinear matter waves given by the rational function, their topological properties are independent of the principal quantum number n, only depend on the secondary quantum number l. The Raman detuning and the chemical potential can change the number and the shape of the density packets. The stability of the Jacobi elliptic solutions depends on the principal quantum number n, while the stability of the rational solutions depends on the chemical potential and Raman detuning. PMID:27403634
A new solution procedure for a nonlinear infinite beam equation of motion
NASA Astrophysics Data System (ADS)
Jang, T. S.
2016-10-01
Our goal of this paper is of a purely theoretical question, however which would be fundamental in computational partial differential equations: Can a linear solution-structure for the equation of motion for an infinite nonlinear beam be directly manipulated for constructing its nonlinear solution? Here, the equation of motion is modeled as mathematically a fourth-order nonlinear partial differential equation. To answer the question, a pseudo-parameter is firstly introduced to modify the equation of motion. And then, an integral formalism for the modified equation is found here, being taken as a linear solution-structure. It enables us to formulate a nonlinear integral equation of second kind, equivalent to the original equation of motion. The fixed point approach, applied to the integral equation, results in proposing a new iterative solution procedure for constructing the nonlinear solution of the original beam equation of motion, which consists luckily of just the simple regular numerical integration for its iterative process; i.e., it appears to be fairly simple as well as straightforward to apply. A mathematical analysis is carried out on both natures of convergence and uniqueness of the iterative procedure by proving a contractive character of a nonlinear operator. It follows conclusively,therefore, that it would be one of the useful nonlinear strategies for integrating the equation of motion for a nonlinear infinite beam, whereby the preceding question may be answered. In addition, it may be worth noticing that the pseudo-parameter introduced here has double roles; firstly, it connects the original beam equation of motion with the integral equation, second, it is related with the convergence of the iterative method proposed here.
NASA Astrophysics Data System (ADS)
Cai, Yangjian
2011-03-01
Partially coherent beams, such as Gaussian Schell-model beam, partially coherent dark hollow beam, partially coherent flat-topped beam and electromagnetic Gaussian Schell-model beam, have important applications in free space optical communications, optical imaging, optical trapping, inertial confinement fusion and nonlinear optics. In this paper, experimental generations of various partially coherent beams are introduced. Furthermore, with the help of a tensor method, analytical formulae for such beams propagating in turbulent atmosphere are derived, and the propagation properties of such beams in turbulent atmosphere are reviewed.
NASA Astrophysics Data System (ADS)
Fendzi-Donfack, Emmanuel; Nguenang, Jean Pierre; Nana, Laurent
2018-02-01
We use the fractional complex transform with the modified Riemann-Liouville derivative operator to establish the exact and generalized solutions of two fractional partial differential equations. We determine the solutions of fractional nonlinear electrical transmission lines (NETL) and the perturbed nonlinear Schroedinger (NLS) equation with the Kerr law nonlinearity term. The solutions are obtained for the parameters in the range (0<α≤1) of the derivative operator and we found the traditional solutions for the limiting case of α =1. We show that according to the modified Riemann-Liouville derivative, the solutions found can describe physical systems with memory effect, transient effects in electrical systems and nonlinear transmission lines, and other systems such as optical fiber.
Liang, Zhenhu; Liang, Shujuan; Wang, Yinghua; Ouyang, Gaoxiang; Li, Xiaoli
2015-02-01
Coupling in multiple electroencephalogram (EEG) signals provides a perspective tool to understand the mechanism of brain communication. In this study, we propose a method based on permutation cross-mutual information (PCMI) to investigate whether or not the coupling between EEG series can be used to quantify the effect of specific anesthetic drugs (isoflurane and remifentanil) on brain activities. A Rössler-Lorenz system and surrogate analysis was first employed to compare histogram-based mutual information (HMI) and PCMI for estimating the coupling of two nonlinear systems. Then, the HMI and the PCMI indices of EEG recordings from two sides of the forehead of 12 patients undergoing combined remifentanil and isoflurane anesthesia were demonstrated for tracking the effect of drug on the coupling of brain activities. Performance of all indices was assessed by the correlation coefficients (Rij) and relative coefficient of variation (CV). The PCMI can track the coupling strength of two nonlinear systems, and it is sensitive to the phase change of the coupling systems. Compared to the HMI, the PCMI has a better correlation with the coupling strength in nonlinear systems. The PCMI could track the effect of anesthesia and distinguish the consciousness state from the unconsciousness state. Moreover, at the embedding dimension m=4 and lag τ=1, the PCMI had a better performance than HMI in tracking the effect of anesthesia drugs on brain activities. As a measure of coupling, the PCMI was able to reflect the state of consciousness from two EEG recordings. The PCMI is a promising new coupling measure for estimating the effect of isoflurane and remifentanil anesthetic drugs on the brain activity. Copyright © 2014 International Federation of Clinical Neurophysiology. All rights reserved.
Nonlinear Constitutive Modeling of Piezoelectric Ceramics
NASA Astrophysics Data System (ADS)
Xu, Jia; Li, Chao; Wang, Haibo; Zhu, Zhiwen
2017-12-01
Nonlinear constitutive modeling of piezoelectric ceramics is discussed in this paper. Van der Pol item is introduced to explain the simple hysteretic curve. Improved nonlinear difference items are used to interpret the hysteresis phenomena of piezoelectric ceramics. The fitting effect of the model on experimental data is proved by the partial least-square regression method. The results show that this method can describe the real curve well. The results of this paper are helpful to piezoelectric ceramics constitutive modeling.
Propagation of transition fronts in nonlinear chains with non-degenerate on-site potentials
NASA Astrophysics Data System (ADS)
Shiroky, I. B.; Gendelman, O. V.
2018-02-01
We address the problem of transition front propagation in chains with a bi-stable nondegenerate on-site potential and a nonlinear gradient coupling. For generic nonlinear coupling, one encounters a special regime of transitions, characterized by extremely narrow fronts, far supersonic velocities of the front propagation, and long waves in the oscillatory tail. This regime can be qualitatively associated with a shock wave. The front propagation can be described with the help of a simple reduced-order model; the latter delivers a kinetic law, which is almost not sensitive to the fine details of the on-site potential. Besides, it is possible to predict all main characteristics of the transition front, including its velocity, as well as the frequency and the amplitude of the oscillatory tail. Numerical results are in good agreement with the analytical predictions. The suggested approach allows one to consider the effects of an external pre-load, the next-nearest-neighbor coupling and the on-site damping. When the damping is moderate, it is possible to consider the shock propagation in the damped chain as a perturbation of the undamped dynamics. This approach yields reasonable predictions. When the damping is high, the transition front enters a completely different asymptotic regime of a subsonic kink. The gradient nonlinearity generically turns negligible, and the propagating front converges to the regime described by a simple exact solution for a continuous model with linear coupling.
Partial and total actuator faults accommodation for input-affine nonlinear process plants.
Mihankhah, Amin; Salmasi, Farzad R; Salahshoor, Karim
2013-05-01
In this paper, a new fault-tolerant control system is proposed for input-affine nonlinear plants based on Model Reference Adaptive System (MRAS) structure. The proposed method has the capability to accommodate both partial and total actuator failures along with bounded external disturbances. In this methodology, the conventional MRAS control law is modified by augmenting two compensating terms. One of these terms is added to eliminate the nonlinear dynamic, while the other is reinforced to compensate the distractive effects of the total actuator faults and external disturbances. In addition, no Fault Detection and Diagnosis (FDD) unit is needed in the proposed method. Moreover, the control structure has good robustness capability against the parameter variation. The performance of this scheme is evaluated using a CSTR system and the results were satisfactory. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
Zhang, Yang; Chong, Edwin K. P.; Hannig, Jan; ...
2013-01-01
We inmore » troduce a continuum modeling method to approximate a class of large wireless networks by nonlinear partial differential equations (PDEs). This method is based on the convergence of a sequence of underlying Markov chains of the network indexed by N , the number of nodes in the network. As N goes to infinity, the sequence converges to a continuum limit, which is the solution of a certain nonlinear PDE. We first describe PDE models for networks with uniformly located nodes and then generalize to networks with nonuniformly located, and possibly mobile, nodes. Based on the PDE models, we develop a method to control the transmissions in nonuniform networks so that the continuum limit is invariant under perturbations in node locations. This enables the networks to maintain stable global characteristics in the presence of varying node locations.« less
NASA Astrophysics Data System (ADS)
Whiteley, J. P.
2017-10-01
Large, incompressible elastic deformations are governed by a system of nonlinear partial differential equations. The finite element discretisation of these partial differential equations yields a system of nonlinear algebraic equations that are usually solved using Newton's method. On each iteration of Newton's method, a linear system must be solved. We exploit the structure of the Jacobian matrix to propose a preconditioner, comprising two steps. The first step is the solution of a relatively small, symmetric, positive definite linear system using the preconditioned conjugate gradient method. This is followed by a small number of multigrid V-cycles for a larger linear system. Through the use of exemplar elastic deformations, the preconditioner is demonstrated to facilitate the iterative solution of the linear systems arising. The number of GMRES iterations required has only a very weak dependence on the number of degrees of freedom of the linear systems.
Xu, Si-Liu; Zhao, Guo-Peng; Belić, Milivoj R; He, Jun-Rong; Xue, Li
2017-04-17
We analyze three-dimensional (3D) vector solitary waves in a system of coupled nonlinear Schrödinger equations with spatially modulated diffraction and nonlinearity, under action of a composite self-consistent trapping potential. Exact vector solitary waves, or light bullets (LBs), are found using the self-similarity method. The stability of vortex 3D LB pairs is examined by direct numerical simulations; the results show that only low-order vortex soliton pairs with the mode parameter values n ≤ 1, l ≤ 1 and m = 0 can be supported by the spatially modulated interaction in the composite trap. Higher-order LBs are found unstable over prolonged distances.
Single-Cycle Terahertz Pulse Generation from OH1 Crystal via Cherenkov Phase Matching
NASA Astrophysics Data System (ADS)
Uchida, Hirohisa; Oota, Kengo; Okimura, Koutarou; Kawase, Kodo; Takeya, Kei
2018-06-01
OH1 crystal is an organic nonlinear optical crystal with a large nonlinear optical constant. However, it has dispersion of refractive indices in the terahertz (THz) frequency. This limits the frequencies that satisfy the phase matching conditions for THz wave generation. In this study, we addressed the phase matching conditions for THz wave generation by combining an OH1 crystal with prism-coupled Cherenkov phase matching. We observed the generation of single-cycle THz pulses with a spectrum covering a frequency range of 3 THz. These results prove that combining prism-coupled Cherenkov phase matching with nonlinear optical crystals yields a THz wave generation method that is insusceptible to crystal dispersion.
Single-Cycle Terahertz Pulse Generation from OH1 Crystal via Cherenkov Phase Matching
NASA Astrophysics Data System (ADS)
Uchida, Hirohisa; Oota, Kengo; Okimura, Koutarou; Kawase, Kodo; Takeya, Kei
2018-03-01
OH1 crystal is an organic nonlinear optical crystal with a large nonlinear optical constant. However, it has dispersion of refractive indices in the terahertz (THz) frequency. This limits the frequencies that satisfy the phase matching conditions for THz wave generation. In this study, we addressed the phase matching conditions for THz wave generation by combining an OH1 crystal with prism-coupled Cherenkov phase matching. We observed the generation of single-cycle THz pulses with a spectrum covering a frequency range of 3 THz. These results prove that combining prism-coupled Cherenkov phase matching with nonlinear optical crystals yields a THz wave generation method that is insusceptible to crystal dispersion.
CW all optical self switching in nonlinear chalcogenide nano plasmonic directional coupler
NASA Astrophysics Data System (ADS)
Motamed-Jahromi, Leila; Hatami, Mohsen
2018-04-01
In this paper we obtain the coupling coefficient of plasmonic directional coupler (PDC) made up of two parallel monolayer waveguides filled with high nonlinear chalcogenide material for TM mode in continues wave (CW) regime. In addition, we assume each waveguides acts as a perturbation to other waveguide. Four nonlinear-coupled equations are derived. Transfer distances are numerically calculated and used for deriving length of all optical switch. The length of designed switch is in the range of 10-1000 μm, and the switching power is in the range of 1-100 W/m. Obtained values are suitable for designing all optical elements in the integrated optical circuits.
Quantum Nonlinear Optics without Photons
NASA Astrophysics Data System (ADS)
Macrı, Vincenzo
Here we propose a physical process analogous to spontaneous parametric down-conversion, where one excited atom directly transfers its excitation to a couple of spatially separated atoms with probability approaching one. The interaction is mediated by the exchange of virtual rather than real photons. This nonlinear optical process is coherent and reversible, so that the couple of excited atoms can transfer back the excitation to the first one: the analogous for atoms of sum-frequency generation. The parameters used here correspond to experimentally-demonstrated values in circuit QED. This approach can be expanded to consider other nonlinear inter-atomic processes as the four-qubit mixing and is an attractive architecture for the realization of quantum devices on a chip.
Response of MDOF strongly nonlinear systems to fractional Gaussian noises.
Deng, Mao-Lin; Zhu, Wei-Qiu
2016-08-01
In the present paper, multi-degree-of-freedom strongly nonlinear systems are modeled as quasi-Hamiltonian systems and the stochastic averaging method for quasi-Hamiltonian systems (including quasi-non-integrable, completely integrable and non-resonant, completely integrable and resonant, partially integrable and non-resonant, and partially integrable and resonant Hamiltonian systems) driven by fractional Gaussian noise is introduced. The averaged fractional stochastic differential equations (SDEs) are derived. The simulation results for some examples show that the averaged SDEs can be used to predict the response of the original systems and the simulation time for the averaged SDEs is less than that for the original systems.
Note: Nonpolar solute partial molar volume response to attractive interactions with water.
Williams, Steven M; Ashbaugh, Henry S
2014-01-07
The impact of attractive interactions on the partial molar volumes of methane-like solutes in water is characterized using molecular simulations. Attractions account for a significant 20% volume drop between a repulsive Weeks-Chandler-Andersen and full Lennard-Jones description of methane interactions. The response of the volume to interaction perturbations is characterized by linear fits to our simulations and a rigorous statistical thermodynamic expression for the derivative of the volume to increasing attractions. While a weak non-linear response is observed, an average effective slope accurately captures the volume decrease. This response, however, is anticipated to become more non-linear with increasing solute size.
Response of MDOF strongly nonlinear systems to fractional Gaussian noises
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Mao-Lin; Zhu, Wei-Qiu, E-mail: wqzhu@zju.edu.cn
2016-08-15
In the present paper, multi-degree-of-freedom strongly nonlinear systems are modeled as quasi-Hamiltonian systems and the stochastic averaging method for quasi-Hamiltonian systems (including quasi-non-integrable, completely integrable and non-resonant, completely integrable and resonant, partially integrable and non-resonant, and partially integrable and resonant Hamiltonian systems) driven by fractional Gaussian noise is introduced. The averaged fractional stochastic differential equations (SDEs) are derived. The simulation results for some examples show that the averaged SDEs can be used to predict the response of the original systems and the simulation time for the averaged SDEs is less than that for the original systems.
Note: Nonpolar solute partial molar volume response to attractive interactions with water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Steven M.; Ashbaugh, Henry S., E-mail: hanka@tulane.edu
2014-01-07
The impact of attractive interactions on the partial molar volumes of methane-like solutes in water is characterized using molecular simulations. Attractions account for a significant 20% volume drop between a repulsive Weeks-Chandler-Andersen and full Lennard-Jones description of methane interactions. The response of the volume to interaction perturbations is characterized by linear fits to our simulations and a rigorous statistical thermodynamic expression for the derivative of the volume to increasing attractions. While a weak non-linear response is observed, an average effective slope accurately captures the volume decrease. This response, however, is anticipated to become more non-linear with increasing solute size.
Raman-Suppressing Coupling for Optical Parametric Oscillator
NASA Technical Reports Server (NTRS)
Savchenkov, Anatoliy; Maleki, Lute; Matsko, Andrey; Rubiola, Enrico
2007-01-01
A Raman-scattering-suppressing input/ output coupling scheme has been devised for a whispering-gallery-mode optical resonator that is used as a four-wave-mixing device to effect an all-optical parametric oscillator. Raman scattering is undesired in such a device because (1) it is a nonlinear process that competes with the desired nonlinear four-wave conversion process involved in optical parametric oscillation and (2) as such, it reduces the power of the desired oscillation and contributes to output noise. The essence of the present input/output coupling scheme is to reduce output loading of the desired resonator modes while increasing output loading of the undesired ones.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsui, H.Y.W.; Rypdal, K.; Ritz, C.P.
1993-04-26
Bispectral analysis of Langmuir probe data indicates that coherent nonlinear coupling, in addition to the noncoherent turbulent interactions, exists in the edge plasma of the tokamak TEXT. Not all the modes involved reside within the spectral region of the usual broadband turbulence. At a major resonant surface the small-scale turbulent activity interacts [ital coherently] with a localized long-wavelength mode; a signature of regular or coherent structure. By the observed coupling to the transport related turbulence, the long-wavelength mode can influence plasma confinement indirectly. These observations signify the influence of low-order resonant surfaces on the edge turbulence in tokamaks.
Optimisation of the vibrational response of ultrasonic cutting systems
NASA Astrophysics Data System (ADS)
Cartmell, M. P.; Lim, F. C. N.; Cardoni, A.; Lucas, M.
2005-10-01
This paper provides an account of an investigation into possible dynamic interactions between two coupled non-linear sub-systems, each possessing opposing non-linear overhang characteristics in the frequency domain in terms of positive and negative cubic stiffnesses. This system is a two-degree-of-freedom Duffing oscillator in which certain non-linear effects can be advantageously neutralised under specific conditions. This theoretical vehicle has been used as a preliminary methodology for understanding the interactive behaviour within typical industrial ultrasonic cutting components. Ultrasonic energy is generated within a piezoelectric exciter, which is inherently non-linear, and which is coupled to a bar- or block-horn, and to one or more material cutting blades, for example. The horn/blade configurations are also non-linear, and within the whole system there are response features which are strongly reminiscent of positive and negative cubic stiffness effects. The two-degree-of-freedom model is analysed and it is shown that a practically useful mitigating effect on the overall non-linear response of the system can be created under certain conditions when one of the cubic stiffnesses is varied. It has also been shown experimentally that coupling of ultrasonic components with different non-linear characteristics can strongly influence the performance of the system and that the general behaviour of the hypothetical theoretical model is indeed borne out in practice. Further experiments have shown that a multiple horn/blade configuration can, under certain circumstances, display autoparametric responses based on the forced response of the desired longitudinal mode parametrically exciting an undesired lateral mode. Typical autoparametric response phenomena have been observed and are presented at the end of the paper.
Non-Gaussian lineshapes and dynamics of time-resolved linear and nonlinear (correlation) spectra.
Dinpajooh, Mohammadhasan; Matyushov, Dmitry V
2014-07-17
Signatures of nonlinear and non-Gaussian dynamics in time-resolved linear and nonlinear (correlation) 2D spectra are analyzed in a model considering a linear plus quadratic dependence of the spectroscopic transition frequency on a Gaussian nuclear coordinate of the thermal bath (quadratic coupling). This new model is contrasted to the commonly assumed linear dependence of the transition frequency on the medium nuclear coordinates (linear coupling). The linear coupling model predicts equality between the Stokes shift and equilibrium correlation functions of the transition frequency and time-independent spectral width. Both predictions are often violated, and we are asking here the question of whether a nonlinear solvent response and/or non-Gaussian dynamics are required to explain these observations. We find that correlation functions of spectroscopic observables calculated in the quadratic coupling model depend on the chromophore's electronic state and the spectral width gains time dependence, all in violation of the predictions of the linear coupling models. Lineshape functions of 2D spectra are derived assuming Ornstein-Uhlenbeck dynamics of the bath nuclear modes. The model predicts asymmetry of 2D correlation plots and bending of the center line. The latter is often used to extract two-point correlation functions from 2D spectra. The dynamics of the transition frequency are non-Gaussian. However, the effect of non-Gaussian dynamics is limited to the third-order (skewness) time correlation function, without affecting the time correlation functions of higher order. The theory is tested against molecular dynamics simulations of a model polar-polarizable chromophore dissolved in a force field water.
On solutions of the fifth-order dispersive equations with porous medium type non-linearity
NASA Astrophysics Data System (ADS)
Kocak, Huseyin; Pinar, Zehra
2018-07-01
In this work, we focus on obtaining the exact solutions of the fifth-order semi-linear and non-linear dispersive partial differential equations, which have the second-order diffusion-like (porous-type) non-linearity. The proposed equations were not studied in the literature in the sense of the exact solutions. We reveal solutions of the proposed equations using the classical Riccati equations method. The obtained exact solutions, which can play a key role to simulate non-linear waves in the medium with dispersion and diffusion, are illustrated and discussed in details.
Spinor Field Nonlinearity and Space-Time Geometry
NASA Astrophysics Data System (ADS)
Saha, Bijan
2018-03-01
Within the scope of Bianchi type VI,VI0,V, III, I, LRSBI and FRW cosmological models we have studied the role of nonlinear spinor field on the evolution of the Universe and the spinor field itself. It was found that due to the presence of non-trivial non-diagonal components of the energy-momentum tensor of the spinor field in the anisotropic space-time, there occur some severe restrictions both on the metric functions and on the components of the spinor field. In this report we have considered a polynomial nonlinearity which is a function of invariants constructed from the bilinear spinor forms. It is found that in case of a Bianchi type-VI space-time, depending of the sign of self-coupling constants, the model allows either late time acceleration or oscillatory mode of evolution. In case of a Bianchi VI 0 type space-time due to the specific behavior of the spinor field we have two different scenarios. In one case the invariants constructed from bilinear spinor forms become trivial, thus giving rise to a massless and linear spinor field Lagrangian. This case is equivalent to the vacuum solution of the Bianchi VI 0 type space-time. The second case allows non-vanishing massive and nonlinear terms and depending on the sign of coupling constants gives rise to accelerating mode of expansion or the one that after obtaining some maximum value contracts and ends in big crunch, consequently generating space-time singularity. In case of a Bianchi type-V model there occur two possibilities. In one case we found that the metric functions are similar to each other. In this case the Universe expands with acceleration if the self-coupling constant is taken to be a positive one, whereas a negative coupling constant gives rise to a cyclic or periodic solution. In the second case the spinor mass and the spinor field nonlinearity vanish and the Universe expands linearly in time. In case of a Bianchi type-III model the space-time remains locally rotationally symmetric all the time, though the isotropy of space-time can be attained for a large proportionality constant. As far as evolution is concerned, depending on the sign of coupling constant the model allows both accelerated and oscillatory mode of expansion. A negative coupling constant leads to an oscillatory mode of expansion, whereas a positive coupling constant generates expanding Universe with late time acceleration. Both deceleration parameter and EoS parameter in this case vary with time and are in agreement with modern concept of space-time evolution. In case of a Bianchi type-I space-time the non-diagonal components lead to three different possibilities. In case of a full BI space-time we find that the spinor field nonlinearity and the massive term vanish, hence the spinor field Lagrangian becomes massless and linear. In two other cases the space-time evolves into either LRSBI or FRW Universe. If we consider a locally rotationally symmetric BI( LRSBI) model, neither the mass term nor the spinor field nonlinearity vanishes. In this case depending on the sign of coupling constant we have either late time accelerated mode of expansion or oscillatory mode of evolution. In this case for an expanding Universe we have asymptotical isotropization. Finally, in case of a FRW model neither the mass term nor the spinor field nonlinearity vanishes. Like in LRSBI case we have either late time acceleration or cyclic mode of evolution. These findings allow us to conclude that the spinor field is very sensitive to the gravitational one.
NASA Astrophysics Data System (ADS)
Huang, Chien-Jung; White, Susan M.; Huang, Shao-Ching; Mallya, Sanjay; Eldredge, Jeff D.
2014-11-01
Obstructive sleep apnea(OSA) is a medical condition characterized by repetitive partial or complete occlusion of the airway during sleep. The soft tissues in the airway of OSA patients are prone to collapse under the low pressure loads incurred during breathing. The numerical simulation with patient-specific upper airway model can provide assistance for diagnosis and treatment assessment. The eventual goal of this research is the development of numerical tool for air-tissue interactions in the upper airway of patients with OSA. This tool is expected to capture collapse of the airway in respiratory flow conditions, as well as the effects of various treatment protocols. Here, we present our ongoing progress toward this goal. A sharp-interface embedded boundary method is used on Cartesian grids for resolving the air-tissue interface in the complex patient-specific airway geometries. For the structure simulation, a cut-cell FEM is used. Non-linear Green strains are used for properly resolving the large tissue displacements in the soft palate structures. The fluid and structure solvers are strongly coupled. Preliminary results will be shown, including flow simulation inside the 3D rigid upper airway of patients with OSA, and several validation problem for the fluid-structure coupling.
NASA Astrophysics Data System (ADS)
McLaughlin, David W.
1995-08-01
The principal investigator, together with a post-doctoral fellows Tetsuji Ueda and Xiao Wang, several graduate students, and colleagues, has applied the modern mathematical theory of nonlinear waves to problems in nonlinear optics and to equations directly relevant to nonlinear optics. Projects included the interaction of laser light with nematic liquid crystals and chaotic, homoclinic, small dispersive, and random behavior of solutions of the nonlinear Schroedinger equation. In project 1, the extremely strong nonlinear response of a continuous wave laser beam in a nematic liquid crystal medium has produced striking undulation and filamentation of the laser beam which has been observed experimentally and explained theoretically. In project 2, qualitative properties of the nonlinear Schroedinger equation (which is the fundamental equation for nonlinear optics) have been identified and studied. These properties include optical shocking behavior in the limit of very small dispersion, chaotic and homoclinic behavior in discretizations of the partial differential equation, and random behavior.
An approximation theory for the identification of nonlinear distributed parameter systems
NASA Technical Reports Server (NTRS)
Banks, H. T.; Reich, Simeon; Rosen, I. G.
1988-01-01
An abstract approximation framework for the identification of nonlinear distributed parameter systems is developed. Inverse problems for nonlinear systems governed by strongly maximal monotone operators (satisfying a mild continuous dependence condition with respect to the unknown parameters to be identified) are treated. Convergence of Galerkin approximations and the corresponding solutions of finite dimensional approximating identification problems to a solution of the original finite dimensional identification problem is demonstrated using the theory of nonlinear evolution systems and a nonlinear analog of the Trotter-Kato approximation result for semigroups of bounded linear operators. The nonlinear theory developed here is shown to subsume an existing linear theory as a special case. It is also shown to be applicable to a broad class of nonlinear elliptic operators and the corresponding nonlinear parabolic partial differential equations to which they lead. An application of the theory to a quasilinear model for heat conduction or mass transfer is discussed.
NASA Astrophysics Data System (ADS)
Ghil, M.; Zaliapin, I.; Thompson, S.
2008-05-01
We consider a delay differential equation (DDE) model for El-Niño Southern Oscillation (ENSO) variability. The model combines two key mechanisms that participate in ENSO dynamics: delayed negative feedback and seasonal forcing. We perform stability analyses of the model in the three-dimensional space of its physically relevant parameters. Our results illustrate the role of these three parameters: strength of seasonal forcing b, atmosphere-ocean coupling κ, and propagation period τ of oceanic waves across the Tropical Pacific. Two regimes of variability, stable and unstable, are separated by a sharp neutral curve in the (b, τ) plane at constant κ. The detailed structure of the neutral curve becomes very irregular and possibly fractal, while individual trajectories within the unstable region become highly complex and possibly chaotic, as the atmosphere-ocean coupling κ increases. In the unstable regime, spontaneous transitions occur in the mean "temperature" (i.e., thermocline depth), period, and extreme annual values, for purely periodic, seasonal forcing. The model reproduces the Devil's bleachers characterizing other ENSO models, such as nonlinear, coupled systems of partial differential equations; some of the features of this behavior have been documented in general circulation models, as well as in observations. We expect, therefore, similar behavior in much more detailed and realistic models, where it is harder to describe its causes as completely.
Brader, J M; Siebenbürger, M; Ballauff, M; Reinheimer, K; Wilhelm, M; Frey, S J; Weysser, F; Fuchs, M
2010-12-01
Using a combination of theory, experiment, and simulation we investigate the nonlinear response of dense colloidal suspensions to large amplitude oscillatory shear flow. The time-dependent stress response is calculated using a recently developed schematic mode-coupling-type theory describing colloidal suspensions under externally applied flow. For finite strain amplitudes the theory generates a nonlinear response, characterized by significant higher harmonic contributions. An important feature of the theory is the prediction of an ideal glass transition at sufficiently strong coupling, which is accompanied by the discontinuous appearance of a dynamic yield stress. For the oscillatory shear flow under consideration we find that the yield stress plays an important role in determining the nonlinearity of the time-dependent stress response. Our theoretical findings are strongly supported by both large amplitude oscillatory experiments (with Fourier transform rheology analysis) on suspensions of thermosensitive core-shell particles dispersed in water and Brownian dynamics simulations performed on a two-dimensional binary hard-disk mixture. In particular, theory predicts nontrivial values of the exponents governing the final decay of the storage and loss moduli as a function of strain amplitude which are in good agreement with both simulation and experiment. A consistent set of parameters in the presented schematic model achieves to jointly describe linear moduli, nonlinear flow curves, and large amplitude oscillatory spectroscopy.
Results of including geometric nonlinearities in an aeroelastic model of an F/A-18
NASA Technical Reports Server (NTRS)
Buttrill, Carey S.
1989-01-01
An integrated, nonlinear simulation model suitable for aeroelastic modeling of fixed-wing aircraft has been developed. While the author realizes that the subject of modeling rotating, elastic structures is not closed, it is believed that the equations of motion developed and applied herein are correct to second order and are suitable for use with typical aircraft structures. The equations are not suitable for large elastic deformation. In addition, the modeling framework generalizes both the methods and terminology of non-linear rigid-body airplane simulation and traditional linear aeroelastic modeling. Concerning the importance of angular/elastic inertial coupling in the dynamic analysis of fixed-wing aircraft, the following may be said. The rigorous inclusion of said coupling is not without peril and must be approached with care. In keeping with the same engineering judgment that guided the development of the traditional aeroelastic equations, the effect of non-linear inertial effects for most airplane applications is expected to be small. A parameter does not tell the whole story, however, and modes flagged by the parameter as significant also need to be checked to see if the coupling is not a one-way path, i.e., the inertially affected modes can influence other modes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Purohit, Gunjan, E-mail: gunjan75@gmail.com; Rawat, Priyanka; Gauniyal, Rakhi
2016-01-15
The effect of self focused hollow Gaussian laser beam (HGLB) (carrying null intensity in center) on the excitation of electron plasma wave (EPW) and second harmonic generation (SHG) has been investigated in collisionless plasma, where relativistic-ponderomotive and only relativistic nonlinearities are operative. The relativistic change of electron mass and the modification of the background electron density due to ponderomotive nonlinearity lead to self-focusing of HGLB in plasma. Paraxial ray theory has been used to derive coupled equations for the self focusing of HGLB in plasma, generation of EPW, and second harmonic. These coupled equations are solved analytically and numerically tomore » study the laser intensity in the plasma, electric field associated with the excited EPW, and the power of SHG. Second harmonic emission is generated due to nonlinear coupling between incident HGLB and EPW satisfying the proper phase matching conditions. The results show that the effect of including the ponderomotive nonlinearity is significant on the generation of EPW and second harmonic. The electric field associated with EPW and the power of SHG are found to be highly sensitive to the order of the hollow Gaussian beam.« less
Investigation of Adhesive Bond Cure Conditions using Nonlinear Ultrasonic Methods
NASA Technical Reports Server (NTRS)
Berndt, Tobias P.; Green, Robert E., Jr.
1999-01-01
The objective of this presentation is to investigate various cure conditions of adhesive bonds using nonlinear ultrasonic methods with water coupling. Several samples were used to obtain normal incidence, oblique incidence, and wave mixing.