Sample records for coupled population dynamics

  1. Noise shaping in populations of coupled model neurons.

    PubMed

    Mar, D J; Chow, C C; Gerstner, W; Adams, R W; Collins, J J

    1999-08-31

    Biological information-processing systems, such as populations of sensory and motor neurons, may use correlations between the firings of individual elements to obtain lower noise levels and a systemwide performance improvement in the dynamic range or the signal-to-noise ratio. Here, we implement such correlations in networks of coupled integrate-and-fire neurons using inhibitory coupling and demonstrate that this can improve the system dynamic range and the signal-to-noise ratio in a population rate code. The improvement can surpass that expected for simple averaging of uncorrelated elements. A theory that predicts the resulting power spectrum is developed in terms of a stochastic point-process model in which the instantaneous population firing rate is modulated by the coupling between elements.

  2. Emergent patterns in interacting neuronal sub-populations

    NASA Astrophysics Data System (ADS)

    Kamal, Neeraj Kumar; Sinha, Sudeshna

    2015-05-01

    We investigate an ensemble of coupled model neurons, consisting of groups of varying sizes and intrinsic dynamics, ranging from periodic to chaotic, where the inter-group coupling interaction is effectively like a dynamic signal from a different sub-population. We observe that the minority group can significantly influence the majority group. For instance, when a small chaotic group is coupled to a large periodic group, the chaotic group de-synchronizes. However, counter-intuitively, when a small periodic group couples strongly to a large chaotic group, it leads to complete synchronization in the majority chaotic population, which also spikes at the frequency of the small periodic group. It then appears that the small group of periodic neurons can act like a pacemaker for the whole network. Further, we report the existence of varied clustering patterns, ranging from sets of synchronized clusters to anti-phase clusters, governed by the interplay of the relative sizes and dynamics of the sub-populations. So these results have relevance in understanding how a group can influence the synchrony of another group of dynamically different elements, reminiscent of event-related synchronization/de-synchronization in complex networks.

  3. Dynamics of a population of oscillatory and excitable elements.

    PubMed

    O'Keeffe, Kevin P; Strogatz, Steven H

    2016-06-01

    We analyze a variant of a model proposed by Kuramoto, Shinomoto, and Sakaguchi for a large population of coupled oscillatory and excitable elements. Using the Ott-Antonsen ansatz, we reduce the behavior of the population to a two-dimensional dynamical system with three parameters. We present the stability diagram and calculate several of its bifurcation curves analytically, for both excitatory and inhibitory coupling. Our main result is that when the coupling function is broad, the system can display bistability between steady states of constant high and low activity, whereas when the coupling function is narrow and inhibitory, one of the states in the bistable regime can show persistent pulsations in activity.

  4. Dynamical responses to external stimuli for both cases of excitatory and inhibitory synchronization in a complex neuronal network.

    PubMed

    Kim, Sang-Yoon; Lim, Woochang

    2017-10-01

    For studying how dynamical responses to external stimuli depend on the synaptic-coupling type, we consider two types of excitatory and inhibitory synchronization (i.e., synchronization via synaptic excitation and inhibition) in complex small-world networks of excitatory regular spiking (RS) pyramidal neurons and inhibitory fast spiking (FS) interneurons. For both cases of excitatory and inhibitory synchronization, effects of synaptic couplings on dynamical responses to external time-periodic stimuli S ( t ) (applied to a fraction of neurons) are investigated by varying the driving amplitude A of S ( t ). Stimulated neurons are phase-locked to external stimuli for both cases of excitatory and inhibitory couplings. On the other hand, the stimulation effect on non-stimulated neurons depends on the type of synaptic coupling. The external stimulus S ( t ) makes a constructive effect on excitatory non-stimulated RS neurons (i.e., it causes external phase lockings in the non-stimulated sub-population), while S ( t ) makes a destructive effect on inhibitory non-stimulated FS interneurons (i.e., it breaks up original inhibitory synchronization in the non-stimulated sub-population). As results of these different effects of S ( t ), the type and degree of dynamical response (e.g., synchronization enhancement or suppression), characterized by the dynamical response factor [Formula: see text] (given by the ratio of synchronization degree in the presence and absence of stimulus), are found to vary in a distinctly different way, depending on the synaptic-coupling type. Furthermore, we also measure the matching degree between the dynamics of the two sub-populations of stimulated and non-stimulated neurons in terms of a "cross-correlation" measure [Formula: see text]. With increasing A , based on [Formula: see text], we discuss the cross-correlations between the two sub-populations, affecting the dynamical responses to S ( t ).

  5. Predator-prey model for the self-organization of stochastic oscillators in dual populations

    NASA Astrophysics Data System (ADS)

    Moradi, Sara; Anderson, Johan; Gürcan, Ozgür D.

    2015-12-01

    A predator-prey model of dual populations with stochastic oscillators is presented. A linear cross-coupling between the two populations is introduced following the coupling between the motions of a Wilberforce pendulum in two dimensions: one in the longitudinal and the other in torsional plain. Within each population a Kuramoto-type competition between the phases is assumed. Thus, the synchronization state of the whole system is controlled by these two types of competitions. The results of the numerical simulations show that by adding the linear cross-coupling interactions predator-prey oscillations between the two populations appear, which results in self-regulation of the system by a transfer of synchrony between the two populations. The model represents several important features of the dynamical interplay between the drift wave and zonal flow turbulence in magnetically confined plasmas, and a novel interpretation of the coupled dynamics of drift wave-zonal flow turbulence using synchronization of stochastic oscillator is discussed.

  6. Dynamics of multi-frequency oscillator ensembles with resonant coupling

    NASA Astrophysics Data System (ADS)

    Lück, S.; Pikovsky, A.

    2011-07-01

    We study dynamics of populations of resonantly coupled oscillators having different frequencies. Starting from the coupled van der Pol equations we derive the Kuramoto-type phase model for the situation, where the natural frequencies of two interacting subpopulations are in relation 2:1. Depending on the parameter of coupling, ensembles can demonstrate fully synchronous clusters, partial synchrony (only one subpopulation synchronizes), or asynchrony in both subpopulations. Theoretical description of the dynamics based on the Watanabe-Strogatz approach is developed.

  7. Coupling population dynamics with earth system models: the POPEM model.

    PubMed

    Navarro, Andrés; Moreno, Raúl; Jiménez-Alcázar, Alfonso; Tapiador, Francisco J

    2017-09-16

    Precise modeling of CO 2 emissions is important for environmental research. This paper presents a new model of human population dynamics that can be embedded into ESMs (Earth System Models) to improve climate modeling. Through a system dynamics approach, we develop a cohort-component model that successfully simulates historical population dynamics with fine spatial resolution (about 1°×1°). The population projections are used to improve the estimates of CO 2 emissions, thus transcending the bulk approach of existing models and allowing more realistic non-linear effects to feature in the simulations. The module, dubbed POPEM (from Population Parameterization for Earth Models), is compared with current emission inventories and validated against UN aggregated data. Finally, it is shown that the module can be used to advance toward fully coupling the social and natural components of the Earth system, an emerging research path for environmental science and pollution research.

  8. New insights into the nonadiabatic state population dynamics of model proton-coupled electron transfer reactions from the mixed quantum-classical Liouville approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shakib, Farnaz A.; Hanna, Gabriel, E-mail: gabriel.hanna@ualberta.ca

    In a previous study [F. A. Shakib and G. Hanna, J. Chem. Phys. 141, 044122 (2014)], we investigated a model proton-coupled electron transfer (PCET) reaction via the mixed quantum-classical Liouville (MQCL) approach and found that the trajectories spend the majority of their time on the mean of two coherently coupled adiabatic potential energy surfaces. This suggested a need for mean surface evolution to accurately simulate observables related to ultrafast PCET processes. In this study, we simulate the time-dependent populations of the three lowest adiabatic states in the ET-PT (i.e., electron transfer preceding proton transfer) version of the same PCET modelmore » via the MQCL approach and compare them to the exact quantum results and those obtained via the fewest switches surface hopping (FSSH) approach. We find that the MQCL population profiles are in good agreement with the exact quantum results and show a significant improvement over the FSSH results. All of the mean surfaces are shown to play a direct role in the dynamics of the state populations. Interestingly, our results indicate that the population transfer to the second-excited state can be mediated by dynamics on the mean of the ground and second-excited state surfaces, as part of a sequence of nonadiabatic transitions that bypasses the first-excited state surface altogether. This is made possible through nonadiabatic transitions between different mean surfaces, which is the manifestation of coherence transfer in MQCL dynamics. We also investigate the effect of the strength of the coupling between the proton/electron and the solvent coordinate on the state population dynamics. Drastic changes in the population dynamics are observed, which can be understood in terms of the changes in the potential energy surfaces and the nonadiabatic couplings. Finally, we investigate the state population dynamics in the PT-ET (i.e., proton transfer preceding electron transfer) and concerted versions of the model. The PT-ET results confirm the participation of all of the mean surfaces, albeit in different proportions compared to the ET-PT case, while the concerted results indicate that the mean of the ground- and first-excited state surfaces only plays a role, due to the large energy gaps between the ground- and second-excited state surfaces.« less

  9. Dissipative dynamics at conical intersections: simulations with the hierarchy equations of motion method.

    PubMed

    Chen, Lipeng; Gelin, Maxim F; Chernyak, Vladimir Y; Domcke, Wolfgang; Zhao, Yang

    2016-12-16

    The effect of a dissipative environment on the ultrafast nonadiabatic dynamics at conical intersections is analyzed for a two-state two-mode model chosen to represent the S 2 (ππ*)-S 1 (nπ*) conical intersection in pyrazine (the system) which is bilinearly coupled to infinitely many harmonic oscillators in thermal equilibrium (the bath). The system-bath coupling is modeled by the Drude spectral function. The equation of motion for the reduced density matrix of the system is solved numerically exactly with the hierarchy equation of motion method using graphics-processor-unit (GPU) technology. The simulations are valid for arbitrary strength of the system-bath coupling and arbitrary bath memory relaxation time. The present computational studies overcome the limitations of weak system-bath coupling and short memory relaxation time inherent in previous simulations based on multi-level Redfield theory [A. Kühl and W. Domcke, J. Chem. Phys. 2002, 116, 263]. Time evolutions of electronic state populations and time-dependent reduced probability densities of the coupling and tuning modes of the conical intersection have been obtained. It is found that even weak coupling to the bath effectively suppresses the irregular fluctuations of the electronic populations of the isolated two-mode conical intersection. While the population of the upper adiabatic electronic state (S 2 ) is very efficiently quenched by the system-bath coupling, the population of the diabatic ππ* electronic state exhibits long-lived oscillations driven by coherent motion of the tuning mode. Counterintuitively, the coupling to the bath can lead to an enhanced lifetime of the coherence of the tuning mode as a result of effective damping of the highly excited coupling mode, which reduces the strong mode-mode coupling inherent to the conical intersection. The present results extend previous studies of the dissipative dynamics at conical intersections to the nonperturbative regime of system-bath coupling. They pave the way for future first-principles simulations of femtosecond time-resolved four-wave-mixing spectra of chromophores in condensed phases which are nonperturbative in the system dynamics, the system-bath coupling as well as the field-matter coupling.

  10. Heteroclinic dynamics of coupled semiconductor lasers with optoelectronic feedback.

    PubMed

    Shahin, S; Vallini, F; Monifi, F; Rabinovich, M; Fainman, Y

    2016-11-15

    Generalized Lotka-Volterra (GLV) equations are important equations used in various areas of science to describe competitive dynamics among a population of N interacting nodes in a network topology. In this Letter, we introduce a photonic network consisting of three optoelectronically cross-coupled semiconductor lasers to realize a GLV model. In such a network, the interaction of intensity and carrier inversion rates, as well as phases of laser oscillator nodes, result in various dynamics. We study the influence of asymmetric coupling strength and frequency detuning between semiconductor lasers and show that inhibitory asymmetric coupling is required to achieve consecutive amplitude oscillations of the laser nodes. These studies were motivated primarily by the dynamical models used to model brain cognitive activities and their correspondence with dynamics obtained among coupled laser oscillators.

  11. Accidental release of chlorine in Chicago: Coupling of an exposure model with a Computational Fluid Dynamics model

    NASA Astrophysics Data System (ADS)

    Sanchez, E. Y.; Colman Lerner, J. E.; Porta, A.; Jacovkis, P. M.

    2013-01-01

    The adverse health effects of the release of hazardous substances into the atmosphere continue being a matter of concern, especially in densely populated urban regions. Emergency responders need to have estimates of these adverse health effects in the local population to aid planning, emergency response, and recovery efforts. For this purpose, models that predict the transport and dispersion of hazardous materials are as necessary as those that estimate the adverse health effects in the population. In this paper, we present the results obtained by coupling a Computational Fluid Dynamics model, FLACS (FLame ACceleration Simulator), with an exposure model, DDC (Damage Differential Coupling). This coupled model system is applied to a scenario of hypothetical release of chlorine with obstacles, such as buildings, and the results show how it is capable of predicting the atmospheric dispersion of hazardous chemicals, and the adverse health effects in the exposed population, to support decision makers both in charge of emergency planning and in charge of real-time response. The results obtained show how knowing the influence of obstacles in the trajectory of the toxic cloud and in the diffusion of the pollutants transported, and obtaining dynamic information of the potentially affected population and of associated symptoms, contribute to improve the planning of the protection and response measures.

  12. Population Dynamics of Excited Atoms in Dissipative Cavities

    NASA Astrophysics Data System (ADS)

    Zou, Hong-Mei; Liu, Yu; Fang, Mao-Fa

    2016-10-01

    Population dynamics of excited atoms in dissipative cavities is investigated in this work. We present a method of controlling populations of excited atoms in dissipative cavities. For the initial state | e e> A B |00> a b , the repopulation of excited atoms can be obtained by using atom-cavity couplings and non-Markovian effects after the atomic excited energy decays to zero. For the initial state | g g> A B |11> a b , the two atoms can also be populated to the excited states from the initial ground states by using atom-cavity couplings and non-Markovian effects. And the stronger the atom-cavity coupling or the non-Markovian effect is, the larger the number of repopulation of excited atoms is. Particularly, when the atom-cavity coupling or the non-Markovian effect is very strong, the number of repopulation of excited atoms can be close to one in a short time and will tend to a steady value in a long time.

  13. Assessing spatial coupling in complex population dynamics using mutual prediction and continuity statistics

    USGS Publications Warehouse

    Nichols, J.M.; Moniz, L.; Nichols, J.D.; Pecora, L.M.; Cooch, E.

    2005-01-01

    A number of important questions in ecology involve the possibility of interactions or ?coupling? among potential components of ecological systems. The basic question of whether two components are coupled (exhibit dynamical interdependence) is relevant to investigations of movement of animals over space, population regulation, food webs and trophic interactions, and is also useful in the design of monitoring programs. For example, in spatially extended systems, coupling among populations in different locations implies the existence of redundant information in the system and the possibility of exploiting this redundancy in the development of spatial sampling designs. One approach to the identification of coupling involves study of the purported mechanisms linking system components. Another approach is based on time series of two potential components of the same system and, in previous ecological work, has relied on linear cross-correlation analysis. Here we present two different attractor-based approaches, continuity and mutual prediction, for determining the degree to which two population time series (e.g., at different spatial locations) are coupled. Both approaches are demonstrated on a one-dimensional predator?prey model system exhibiting complex dynamics. Of particular interest is the spatial asymmetry introduced into the model as linearly declining resource for the prey over the domain of the spatial coordinate. Results from these approaches are then compared to the more standard cross-correlation analysis. In contrast to cross-correlation, both continuity and mutual prediction are clearly able to discern the asymmetry in the flow of information through this system.

  14. Dynamics of a spin-boson model with structured spectral density

    NASA Astrophysics Data System (ADS)

    Kurt, Arzu; Eryigit, Resul

    2018-05-01

    We report the results of a study of the dynamics of a two-state system coupled to an environment with peaked spectral density. An exact analytical expression for the bath correlation function is obtained. Validity range of various approximations to the correlation function for calculating the population difference of the system is discussed as function of tunneling splitting, oscillator frequency, coupling constant, damping rate and the temperature of the bath. An exact expression for the population difference, for a limited range of parameters, is derived.

  15. Predator-prey model for the self-organization of stochastic oscillators in dual populations

    NASA Astrophysics Data System (ADS)

    Moradi, Sara; Anderson, Johan; Gürcan, Ozgur D.

    A predator-prey model of dual populations with stochastic oscillators is presented. A linear cross-coupling between the two populations is introduced that follows the coupling between the motions of a Wilberforce pendulum in two dimensions: one in the longitudinal and the other in torsional plain. Within each population a Kuramoto type competition between the phases is assumed. Thus, the synchronization state of the whole system is controlled by these two types of competitions. The results of the numerical simulations show that by adding the linear cross-coupling interactions predator-prey oscillations between the two populations appear which results in self-regulation of the system by a transfer of synchrony between the two populations. The model represents several important features of the dynamical interplay between the drift wave and zonal flow turbulence in magnetically confined plasmas, and a novel interpretation of the coupled dynamics of drift wave-zonal flow turbulence using synchronization of stochastic oscillator is discussed. Sara Moradi has benefited from a mobility grant funded by the Belgian Federal Science Policy Office and the MSCA of the European Commission (FP7-PEOPLE-COFUND-2008 nº 246540).

  16. An assessment of mean-field mixed semiclassical approaches: Equilibrium populations and algorithm stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bellonzi, Nicole; Jain, Amber; Subotnik, Joseph E.

    2016-04-21

    We study several recent mean-field semiclassical dynamics methods, focusing on the ability to recover detailed balance for long time (equilibrium) populations. We focus especially on Miller and Cotton’s [J. Phys. Chem. A 117, 7190 (2013)] suggestion to include both zero point electronic energy and windowing on top of Ehrenfest dynamics. We investigate three regimes: harmonic surfaces with weak electronic coupling, harmonic surfaces with strong electronic coupling, and anharmonic surfaces with weak electronic coupling. In most cases, recent additions to Ehrenfest dynamics are a strong improvement upon mean-field theory. However, for methods that include zero point electronic energy, we show thatmore » anharmonic potential energy surfaces often lead to numerical instabilities, as caused by negative populations and forces. We also show that, though the effect of negative forces can appear hidden in harmonic systems, the resulting equilibrium limits do remain dependent on any windowing and zero point energy parameters.« less

  17. Spiral wave chimera states in large populations of coupled chemical oscillators

    NASA Astrophysics Data System (ADS)

    Totz, Jan Frederik; Rode, Julian; Tinsley, Mark R.; Showalter, Kenneth; Engel, Harald

    2018-03-01

    The coexistence of coherent and incoherent dynamics in a population of identically coupled oscillators is known as a chimera state1,2. Discovered in 20023, this counterintuitive dynamical behaviour has inspired extensive theoretical and experimental activity4-15. The spiral wave chimera is a particularly remarkable chimera state, in which an ordered spiral wave rotates around a core consisting of asynchronous oscillators. Spiral wave chimeras were theoretically predicted in 200416 and numerically studied in a variety of systems17-23. Here, we report their experimental verification using large populations of nonlocally coupled Belousov-Zhabotinsky chemical oscillators10,18 in a two-dimensional array. We characterize previously unreported spatiotemporal dynamics, including erratic motion of the asynchronous spiral core, growth and splitting of the cores, as well as the transition from the chimera state to disordered behaviour. Spiral wave chimeras are likely to occur in other systems with long-range interactions, such as cortical tissues24, cilia carpets25, SQUID metamaterials26 and arrays of optomechanical oscillators9.

  18. How to analytically characterize the epidemic threshold within the coupled disease-behavior systems?. Comment on "Coupled disease-behavior dynamics on complex networks: A review" by Z. Wang et al.

    NASA Astrophysics Data System (ADS)

    Xia, Cheng-Yi; Ding, Shuai; Sun, Shi-Wen; Wang, Li; Gao, Zhong-Ke; Wang, Juan

    2015-12-01

    As is well known, outbreak of epidemics may drive the human population to take some necessary measures to protect themselves from not being infected by infective ones, these precautions in turn will also keep from the further spreading of infectious diseases among the population. Thus, to fully comprehend the epidemic spreading behavior within real-world systems, the interplay between disease dynamics and human behavioral and social dynamics needs to be considered simultaneously, such that some effective containment-measures can be successfully developed [1-3].

  19. Feedback between Population and Evolutionary Dynamics Determines the Fate of Social Microbial Populations

    PubMed Central

    Sanchez, Alvaro; Gore, Jeff

    2013-01-01

    The evolutionary spread of cheater strategies can destabilize populations engaging in social cooperative behaviors, thus demonstrating that evolutionary changes can have profound implications for population dynamics. At the same time, the relative fitness of cooperative traits often depends upon population density, thus leading to the potential for bi-directional coupling between population density and the evolution of a cooperative trait. Despite the potential importance of these eco-evolutionary feedback loops in social species, they have not yet been demonstrated experimentally and their ecological implications are poorly understood. Here, we demonstrate the presence of a strong feedback loop between population dynamics and the evolutionary dynamics of a social microbial gene, SUC2, in laboratory yeast populations whose cooperative growth is mediated by the SUC2 gene. We directly visualize eco-evolutionary trajectories of hundreds of populations over 50–100 generations, allowing us to characterize the phase space describing the interplay of evolution and ecology in this system. Small populations collapse despite continual evolution towards increased cooperative allele frequencies; large populations with a sufficient number of cooperators “spiral” to a stable state of coexistence between cooperator and cheater strategies. The presence of cheaters does not significantly affect the equilibrium population density, but it does reduce the resilience of the population as well as its ability to adapt to a rapidly deteriorating environment. Our results demonstrate the potential ecological importance of coupling between evolutionary dynamics and the population dynamics of cooperatively growing organisms, particularly in microbes. Our study suggests that this interaction may need to be considered in order to explain intraspecific variability in cooperative behaviors, and also that this feedback between evolution and ecology can critically affect the demographic fate of those species that rely on cooperation for their survival. PMID:23637571

  20. A coupled biophysical model for the distribution of the great scallop Pecten maximus in the English Channel

    NASA Astrophysics Data System (ADS)

    Le Goff, Clément; Lavaud, Romain; Cugier, Philippe; Jean, Fred; Flye-Sainte-Marie, Jonathan; Foucher, Eric; Desroy, Nicolas; Fifas, Spyros; Foveau, Aurélie

    2017-03-01

    In this paper we used a modelling approach integrating both physical and biological constraints to understand the biogeographical distribution of the great scallop Pecten maximus in the English Channel during its whole life cycle. A 3D bio-hydrodynamical model (ECO-MARS3D) providing environmental conditions was coupled to (i) a population dynamics model and (ii) an individual ecophysiological model (Dynamic Energy Budget model). We performed the coupling sequentially, which underlined the respective role of biological and physical factors in defining P. maximus distribution in the English Channel. Results show that larval dispersion by hydrodynamics explains most of the scallop distribution and enlighten the main known hotspots for the population, basically corresponding to the main fishing areas. The mechanistic description of individual bioenergetics shows that food availability and temperature control growth and reproduction and explain how populations may maintain themselves in particular locations. This last coupling leads to more realistic densities and distributions of adults in the English Channel. The results of this study improves our knowledge on the stock and distribution dynamics of P. maximus, and provides grounds for useful tools to support management strategies.

  1. Quorum Sensing in Populations of Spatially Extended Chaotic Oscillators Coupled Indirectly via a Heterogeneous Environment

    NASA Astrophysics Data System (ADS)

    Li, Bing-Wei; Cao, Xiao-Zhi; Fu, Chenbo

    2017-12-01

    Many biological and chemical systems could be modeled by a population of oscillators coupled indirectly via a dynamical environment. Essentially, the environment by which the individual element communicates with each other is heterogeneous. Nevertheless, most of previous works considered the homogeneous case only. Here we investigated the dynamical behaviors in a population of spatially distributed chaotic oscillators immersed in a heterogeneous environment. Various dynamical synchronization states (such as oscillation death, phase synchronization, and complete synchronized oscillation) as well as their transitions were explored. In particular, we uncovered a non-traditional quorum sensing transition: increasing the population density leaded to a transition from oscillation death to synchronized oscillation at first, but further increasing the density resulted in degeneration from complete synchronization to phase synchronization or even from phase synchronization to desynchronization. The underlying mechanism of this finding was attributed to the dual roles played by the population density. What's more, by treating the environment as another component of the oscillator, the full system was then effectively equivalent to a locally coupled system. This fact allowed us to utilize the master stability functions approach to predict the occurrence of complete synchronization oscillation, which agreed with that from the direct numerical integration of the system. The potential candidates for the experimental realization of our model were also discussed.

  2. An individual-based model of zebrafish population dynamics accounting for energy dynamics.

    PubMed

    Beaudouin, Rémy; Goussen, Benoit; Piccini, Benjamin; Augustine, Starrlight; Devillers, James; Brion, François; Péry, Alexandre R R

    2015-01-01

    Developing population dynamics models for zebrafish is crucial in order to extrapolate from toxicity data measured at the organism level to biological levels relevant to support and enhance ecological risk assessment. To achieve this, a dynamic energy budget for individual zebrafish (DEB model) was coupled to an individual based model of zebrafish population dynamics (IBM model). Next, we fitted the DEB model to new experimental data on zebrafish growth and reproduction thus improving existing models. We further analysed the DEB-model and DEB-IBM using a sensitivity analysis. Finally, the predictions of the DEB-IBM were compared to existing observations on natural zebrafish populations and the predicted population dynamics are realistic. While our zebrafish DEB-IBM model can still be improved by acquiring new experimental data on the most uncertain processes (e.g. survival or feeding), it can already serve to predict the impact of compounds at the population level.

  3. An Individual-Based Model of Zebrafish Population Dynamics Accounting for Energy Dynamics

    PubMed Central

    Beaudouin, Rémy; Goussen, Benoit; Piccini, Benjamin; Augustine, Starrlight; Devillers, James; Brion, François; Péry, Alexandre R. R.

    2015-01-01

    Developing population dynamics models for zebrafish is crucial in order to extrapolate from toxicity data measured at the organism level to biological levels relevant to support and enhance ecological risk assessment. To achieve this, a dynamic energy budget for individual zebrafish (DEB model) was coupled to an individual based model of zebrafish population dynamics (IBM model). Next, we fitted the DEB model to new experimental data on zebrafish growth and reproduction thus improving existing models. We further analysed the DEB-model and DEB-IBM using a sensitivity analysis. Finally, the predictions of the DEB-IBM were compared to existing observations on natural zebrafish populations and the predicted population dynamics are realistic. While our zebrafish DEB-IBM model can still be improved by acquiring new experimental data on the most uncertain processes (e.g. survival or feeding), it can already serve to predict the impact of compounds at the population level. PMID:25938409

  4. Evolutionary Game Theory in Growing Populations

    NASA Astrophysics Data System (ADS)

    Melbinger, Anna; Cremer, Jonas; Frey, Erwin

    2010-10-01

    Existing theoretical models of evolution focus on the relative fitness advantages of different mutants in a population while the dynamic behavior of the population size is mostly left unconsidered. We present here a generic stochastic model which combines the growth dynamics of the population and its internal evolution. Our model thereby accounts for the fact that both evolutionary and growth dynamics are based on individual reproduction events and hence are highly coupled and stochastic in nature. We exemplify our approach by studying the dilemma of cooperation in growing populations and show that genuinely stochastic events can ease the dilemma by leading to a transient but robust increase in cooperation.

  5. Emergence of a super-synchronized mobbing state in a large population of coupled chemical oscillators.

    PubMed

    Ghoshal, Gourab; Muñuzuri, Alberto P; Pérez-Mercader, Juan

    2016-01-12

    Oscillatory phenomena are ubiquitous in Nature. The ability of a large population of coupled oscillators to synchronize constitutes an important mechanism to express information and establish communication among members. To understand such phenomena, models and experimental realizations of globally coupled oscillators have proven to be invaluable in settings as varied as chemical, biological and physical systems. A variety of rich dynamical behavior has been uncovered, although usually in the context of a single state of synchronization or lack thereof. Through the experimental and numerical study of a large population of discrete chemical oscillators, here we report on the unexpected discovery of a new phenomenon revealing the existence of dynamically distinct synchronized states reflecting different degrees of communication. Specifically, we discover a novel large-amplitude super-synchronized state separated from the conventionally reported synchronized and quiescent states through an unusual sharp jump transition when sampling the strong coupling limit. Our results assume significance for further elucidating globally coherent phenomena, such as in neuropathologies, bacterial cell colonies, social systems and semiconductor lasers.

  6. Emergence of a super-synchronized mobbing state in a large population of coupled chemical oscillators

    NASA Astrophysics Data System (ADS)

    Ghoshal, Gourab; Muñuzuri, Alberto P.; Pérez-Mercader, Juan

    2016-01-01

    Oscillatory phenomena are ubiquitous in Nature. The ability of a large population of coupled oscillators to synchronize constitutes an important mechanism to express information and establish communication among members. To understand such phenomena, models and experimental realizations of globally coupled oscillators have proven to be invaluable in settings as varied as chemical, biological and physical systems. A variety of rich dynamical behavior has been uncovered, although usually in the context of a single state of synchronization or lack thereof. Through the experimental and numerical study of a large population of discrete chemical oscillators, here we report on the unexpected discovery of a new phenomenon revealing the existence of dynamically distinct synchronized states reflecting different degrees of communication. Specifically, we discover a novel large-amplitude super-synchronized state separated from the conventionally reported synchronized and quiescent states through an unusual sharp jump transition when sampling the strong coupling limit. Our results assume significance for further elucidating globally coherent phenomena, such as in neuropathologies, bacterial cell colonies, social systems and semiconductor lasers.

  7. Complex and unexpected dynamics in simple genetic regulatory networks

    NASA Astrophysics Data System (ADS)

    Borg, Yanika; Ullner, Ekkehard; Alagha, Afnan; Alsaedi, Ahmed; Nesbeth, Darren; Zaikin, Alexey

    2014-03-01

    One aim of synthetic biology is to construct increasingly complex genetic networks from interconnected simpler ones to address challenges in medicine and biotechnology. However, as systems increase in size and complexity, emergent properties lead to unexpected and complex dynamics due to nonlinear and nonequilibrium properties from component interactions. We focus on four different studies of biological systems which exhibit complex and unexpected dynamics. Using simple synthetic genetic networks, small and large populations of phase-coupled quorum sensing repressilators, Goodwin oscillators, and bistable switches, we review how coupled and stochastic components can result in clustering, chaos, noise-induced coherence and speed-dependent decision making. A system of repressilators exhibits oscillations, limit cycles, steady states or chaos depending on the nature and strength of the coupling mechanism. In large repressilator networks, rich dynamics can also be exhibited, such as clustering and chaos. In populations of Goodwin oscillators, noise can induce coherent oscillations. In bistable systems, the speed with which incoming external signals reach steady state can bias the network towards particular attractors. These studies showcase the range of dynamical behavior that simple synthetic genetic networks can exhibit. In addition, they demonstrate the ability of mathematical modeling to analyze nonlinearity and inhomogeneity within these systems.

  8. Phase synchronization motion and neural coding in dynamic transmission of neural information.

    PubMed

    Wang, Rubin; Zhang, Zhikang; Qu, Jingyi; Cao, Jianting

    2011-07-01

    In order to explore the dynamic characteristics of neural coding in the transmission of neural information in the brain, a model of neural network consisting of three neuronal populations is proposed in this paper using the theory of stochastic phase dynamics. Based on the model established, the neural phase synchronization motion and neural coding under spontaneous activity and stimulation are examined, for the case of varying network structure. Our analysis shows that, under the condition of spontaneous activity, the characteristics of phase neural coding are unrelated to the number of neurons participated in neural firing within the neuronal populations. The result of numerical simulation supports the existence of sparse coding within the brain, and verifies the crucial importance of the magnitudes of the coupling coefficients in neural information processing as well as the completely different information processing capability of neural information transmission in both serial and parallel couplings. The result also testifies that under external stimulation, the bigger the number of neurons in a neuronal population, the more the stimulation influences the phase synchronization motion and neural coding evolution in other neuronal populations. We verify numerically the experimental result in neurobiology that the reduction of the coupling coefficient between neuronal populations implies the enhancement of lateral inhibition function in neural networks, with the enhancement equivalent to depressing neuronal excitability threshold. Thus, the neuronal populations tend to have a stronger reaction under the same stimulation, and more neurons get excited, leading to more neurons participating in neural coding and phase synchronization motion.

  9. Simple deterministic models and applications. Comment on "Coupled disease-behavior dynamics on complex networks: A review" by Z. Wang et al.

    NASA Astrophysics Data System (ADS)

    Yang, Hyun Mo

    2015-12-01

    Currently, discrete modellings are largely accepted due to the access to computers with huge storage capacity and high performance processors and easy implementation of algorithms, allowing to develop and simulate increasingly sophisticated models. Wang et al. [7] present a review of dynamics in complex networks, focusing on the interaction between disease dynamics and human behavioral and social dynamics. By doing an extensive review regarding to the human behavior responding to disease dynamics, the authors briefly describe the complex dynamics found in the literature: well-mixed populations networks, where spatial structure can be neglected, and other networks considering heterogeneity on spatially distributed populations. As controlling mechanisms are implemented, such as social distancing due 'social contagion', quarantine, non-pharmaceutical interventions and vaccination, adaptive behavior can occur in human population, which can be easily taken into account in the dynamics formulated by networked populations.

  10. Dynamics of bright-bright solitons in Bose-Einstein condensate with Raman-induced one-dimensional spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Wen, Lin; Zhang, Xiao-Fei; Hu, Ai-Yuan; Zhou, Jing; Yu, Peng; Xia, Lei; Sun, Qing; Ji, An-Chun

    2018-03-01

    We investigate the dynamics of bright-bright solitons in one-dimensional two-component Bose-Einstein condensates with Raman-induced spin-orbit coupling, via the variational approximation and the numerical simulation of Gross-Pitaevskii equations. For the uniform system without trapping potential, we obtain two population balanced stationary solitons. By performing the linear stability analysis, we find a Goldstone eigenmode and an oscillation eigenmode around these stationary solitons. Moreover, we derive a general dynamical solution to describe the center-of-mass motion and spin evolution of the solitons under the action of spin-orbit coupling. The effects of a harmonic trap have also been discussed.

  11. Chimeralike states in two distinct groups of identical populations of coupled Stuart-Landau oscillators

    NASA Astrophysics Data System (ADS)

    Premalatha, K.; Chandrasekar, V. K.; Senthilvelan, M.; Lakshmanan, M.

    2017-02-01

    We show the existence of chimeralike states in two distinct groups of identical populations of globally coupled Stuart-Landau oscillators. The existence of chimeralike states occurs only for a small range of frequency difference between the two populations, and these states disappear for an increase of mismatch between the frequencies. Here the chimeralike states are characterized by the synchronized oscillations in one population and desynchronized oscillations in another population. We also find that such states observed in two distinct groups of identical populations of nonlocally coupled oscillators are different from the above case in which coexisting domains of synchronized and desynchronized oscillations are observed in one population and the second population exhibits synchronized oscillations for spatially prepared initial conditions. Perturbation from such spatially prepared initial condition leads to the existence of imperfectly synchronized states. An imperfectly synchronized state represents the existence of solitary oscillators which escape from the synchronized group in population I and synchronized oscillations in population II. Also the existence of chimera state is independent of the increase of frequency mismatch between the populations. We also find the coexistence of different dynamical states with respect to different initial conditions, which causes multistability in the globally coupled system. In the case of nonlocal coupling, the system does not show multistability except in the cluster state region.

  12. Phase coupling and synchrony in the spatiotemporal dynamics of muskrat and mink populations across Canada

    PubMed Central

    Haydon, D. T.; Stenseth, N. C.; Boyce, M. S.; Greenwood, P. E.

    2001-01-01

    Population ecologists have traditionally focused on the patterns and causes of population variation in the temporal domain for which a substantial body of practical analytic techniques have been developed. More recently, numerous studies have documented how populations may fluctuate synchronously over large spatial areas; analyses of such spatially extended time-series have started to provide additional clues regarding the causes of these population fluctuations and explanations for their synchronous occurrence. Here, we report on the development of a phase-based method for identifying coupling between temporally coincident but spatially distributed cyclic time-series, which we apply to the numbers of muskrat and mink recorded at 81 locations across Canada. The analysis reveals remarkable parallel clines in the strength of coupling between proximate populations of both species—declining from west to east—together with a corresponding increase in observed synchrony between these populations the further east they are located. PMID:11606729

  13. A mapping variable ring polymer molecular dynamics study of condensed phase proton-coupled electron transfer

    NASA Astrophysics Data System (ADS)

    Pierre, Sadrach; Duke, Jessica R.; Hele, Timothy J. H.; Ananth, Nandini

    2017-12-01

    We investigate the mechanisms of condensed phase proton-coupled electron transfer (PCET) using Mapping-Variable Ring Polymer Molecular Dynamics (MV-RPMD), a recently developed method that employs an ensemble of classical trajectories to simulate nonadiabatic excited state dynamics. Here, we construct a series of system-bath model Hamiltonians for the PCET, where four localized electron-proton states are coupled to a thermal bath via a single solvent mode, and we employ MV-RPMD to simulate state population dynamics. Specifically, for each model, we identify the dominant PCET mechanism, and by comparing against rate theory calculations, we verify that our simulations correctly distinguish between concerted PCET, where the electron and proton transfer together, and sequential PCET, where either the electron or the proton transfers first. This work represents a first application of MV-RPMD to multi-level condensed phase systems; we introduce a modified MV-RPMD expression that is derived using a symmetric rather than asymmetric Trotter discretization scheme and an initialization protocol that uses a recently derived population estimator to constrain trajectories to a dividing surface. We also demonstrate that, as expected, the PCET mechanisms predicted by our simulations are robust to an arbitrary choice of the initial dividing surface.

  14. Mathematical and Computational Aspects of Multiscale Materials Modeling, Mathematics-Numerical analysis, Section II.A.a.3.4, Conference and symposia organization II.A.2.a

    DTIC Science & Technology

    2015-02-04

    dislocation dynamics models ( DDD ), continuum representations). Coupling of these models is difficult. Coupling of atomistics and DDD models has been...explored to some extent, but the coupling between DDD and continuum models of the evolution of large populations of dislocations is essentially unexplored

  15. The Effect of Inhibitory Neuron on the Evolution Model of Higher-Order Coupling Neural Oscillator Population

    PubMed Central

    Qi, Yi; Wang, Rubin; Jiao, Xianfa; Du, Ying

    2014-01-01

    We proposed a higher-order coupling neural network model including the inhibitory neurons and examined the dynamical evolution of average number density and phase-neural coding under the spontaneous activity and external stimulating condition. The results indicated that increase of inhibitory coupling strength will cause decrease of average number density, whereas increase of excitatory coupling strength will cause increase of stable amplitude of average number density. Whether the neural oscillator population is able to enter the new synchronous oscillation or not is determined by excitatory and inhibitory coupling strength. In the presence of external stimulation, the evolution of the average number density is dependent upon the external stimulation and the coupling term in which the dominator will determine the final evolution. PMID:24516505

  16. Feedback coupling in dynamical systems

    NASA Astrophysics Data System (ADS)

    Trimper, Steffen; Zabrocki, Knud

    2003-05-01

    Different evolution models are considered with feedback-couplings. In particular, we study the Lotka-Volterra system under the influence of a cumulative term, the Ginzburg-Landau model with a convolution memory term and chemical rate equations with time delay. The memory leads to a modified dynamical behavior. In case of a positive coupling the generalized Lotka-Volterra system exhibits a maximum gain achieved after a finite time, but the population will die out in the long time limit. In the opposite case, the time evolution is terminated in a crash. Due to the nonlinear feedback coupling the two branches of a bistable model are controlled by the the strength and the sign of the memory. For a negative coupling the system is able to switch over between both branches of the stationary solution. The dynamics of the system is further controlled by the initial condition. The diffusion-limited reaction is likewise studied in case the reacting entities are not available simultaneously. Whereas for an external feedback the dynamics is altered, but the stationary solution remain unchanged, a self-organized internal feedback leads to a time persistent solution.

  17. Coupling between populations of copepod taxa within an estuarine ecosystem and the adjacent offshore regions

    NASA Astrophysics Data System (ADS)

    McGinty, N.; Johnson, M. P.; Power, A. M.

    2012-07-01

    Population dynamics in open systems are complicated by the interactions of local demography and local environmental forcing with processes occurring at larger scales. A local system such as an estuary or bay may contain a zooplankton population that effectively becomes independent of regional dynamics or the local dynamics may be closely coupled to a broader scale pattern. As an alternative, the details of migration and advection may mean that dynamics in a local system are coupled to other specific areas rather than tracking the overall dynamics at a larger scale. We used a reconstructed time series (1973-1987) for copepod taxa to examine the extent to which zooplankton dynamics in Galway Bay reflect processes in broader areas of the NE Atlantic. Continuous Plankton Recorder (CPR) counts were used to establish time series for nine offshore ecoregions, with the regions themselves defined using underlying patterns of chlorophyll variability. The open nature of Galway Bay was reflected in strong associations between bay zooplankton counts and offshore CPR data in a majority of cases (7/10). For each zooplankton taxon, there were large differences among regions in the degree of association with Galway Bay time series. Akaike weights indicated that one ecoregion tended to be the dominant link for each taxon. This indicates that the zooplankton of the Bay reflect more than the local modification of a regional signal and that different zooplankton in the bay may have separate source regions. The data from Galway Bay also fall within a 'sampling shadow' of the CPR. Later years of the time series showed evidence for changes in phenology, with spring zooplankton peaks generally occurring earlier in the year for smaller species.

  18. Collective Dynamics for Heterogeneous Networks of Theta Neurons

    NASA Astrophysics Data System (ADS)

    Luke, Tanushree

    Collective behavior in neural networks has often been used as an indicator of communication between different brain areas. These collective synchronization and desynchronization patterns are also considered an important feature in understanding normal and abnormal brain function. To understand the emergence of these collective patterns, I create an analytic model that identifies all such macroscopic steady-states attainable by a network of Type-I neurons. This network, whose basic unit is the model "theta'' neuron, contains a mixture of excitable and spiking neurons coupled via a smooth pulse-like synapse. Applying the Ott-Antonsen reduction method in the thermodynamic limit, I obtain a low-dimensional evolution equation that describes the asymptotic dynamics of the macroscopic mean field of the network. This model can be used as the basis in understanding more complicated neuronal networks when additional dynamical features are included. From this reduced dynamical equation for the mean field, I show that the network exhibits three collective attracting steady-states. The first two are equilibrium states that both reflect partial synchronization in the network, whereas the third is a limit cycle in which the degree of network synchronization oscillates in time. In addition to a comprehensive identification of all possible attracting macro-states, this analytic model permits a complete bifurcation analysis of the collective behavior of the network with respect to three key network features: the degree of excitability of the neurons, the heterogeneity of the population, and the overall coupling strength. The network typically tends towards the two macroscopic equilibrium states when the neuron's intrinsic dynamics and the network interactions reinforce each other. In contrast, the limit cycle state, bifurcations, and multistability tend to occur when there is competition between these network features. I also outline here an extension of the above model where the neurons' excitability now varies in time sinuosoidally, thus simulating a parabolic bursting network. This time-varying excitability can lead to the emergence of macroscopic chaos and multistability in the collective behavior of the network. Finally, I expand the single population model described above to examine a two-population neuronal network where each population has its own unique mixture of excitable and spiking neurons, as well as its own coupling strength (either excitatory or inhibitory in nature). Specifically, I consider the situation where the first population is only allowed to influence the second population without any feedback, thus effectively creating a feed-forward "driver-response" system. In this special arrangement, the driver's asymptotic macroscopic dynamics are fully explored in the comprehensive analysis of the single population. Then, in the presence of an influence from the driver, the modified dynamics of the second population, which now acts as a response population, can also be fully analyzed. As in the time-varying model, these modifications give rise to richer dynamics to the response population than those found from the single population formalism, including multi-periodicity and chaos.

  19. Ising-like patterns of spatial synchrony in population biology

    NASA Astrophysics Data System (ADS)

    Noble, Andrew; Hastings, Alan; Machta, Jon

    2014-03-01

    Systems of coupled dynamical oscillators can undergo a phase transition between synchronous and asynchronous phases. In the case of coupled map lattices, the spontaneous symmetry breaking of a temporal-phase order parameter is known to exhibit Ising-like critical behavior. Here, we investigate a noisy coupled map motivated by the study of spatial synchrony in ecological populations far from the extinction threshold. Ising-like patterns of criticality, as well as spinodal decomposition and homogeneous nucleation, emerge from the nonlinear interactions of environmental fluctuations in habitat quality, local density-dependence in reproduction, and dispersal. In the mean-field limit, the correspondence to the Ising model is exact: the fixed points of our dynamical system are given by the equation of state for Weiss mean-field theory under an appropriate mapping of parameters. We have strong evidence that a quantitative correspondence persists, both near and far from the critical point, in the presence of fluctuations. Our results provide a formal connection between equilibrium statistical physics and population biology. This work is supported by the National Science Foundation under Grant No. 1344187.

  20. Modeling mechanical interactions in growing populations of rod-shaped bacteria

    NASA Astrophysics Data System (ADS)

    Winkle, James J.; Igoshin, Oleg A.; Bennett, Matthew R.; Josić, Krešimir; Ott, William

    2017-10-01

    Advances in synthetic biology allow us to engineer bacterial collectives with pre-specified characteristics. However, the behavior of these collectives is difficult to understand, as cellular growth and division as well as extra-cellular fluid flow lead to complex, changing arrangements of cells within the population. To rationally engineer and control the behavior of cell collectives we need theoretical and computational tools to understand their emergent spatiotemporal dynamics. Here, we present an agent-based model that allows growing cells to detect and respond to mechanical interactions. Crucially, our model couples the dynamics of cell growth to the cell’s environment: Mechanical constraints can affect cellular growth rate and a cell may alter its behavior in response to these constraints. This coupling links the mechanical forces that influence cell growth and emergent behaviors in cell assemblies. We illustrate our approach by showing how mechanical interactions can impact the dynamics of bacterial collectives growing in microfluidic traps.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Ke-Wei; Division of Materials Science, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798; Fujihashi, Yuta

    A master equation approach based on an optimized polaron transformation is adopted for dynamics simulation with simultaneous diagonal and off-diagonal spin-boson coupling. Two types of bath spectral density functions are considered, the Ohmic and the sub-Ohmic. The off-diagonal coupling leads asymptotically to a thermal equilibrium with a nonzero population difference P{sub z}(t → ∞) ≠ 0, which implies localization of the system, and it also plays a role in restraining coherent dynamics for the sub-Ohmic case. Since the new method can extend to the stronger coupling regime, we can investigate the coherent-incoherent transition in the sub-Ohmic environment. Relevant phase diagramsmore » are obtained for different temperatures. It is found that the sub-Ohmic environment allows coherent dynamics at a higher temperature than the Ohmic environment.« less

  2. The finite state projection approach to analyze dynamics of heterogeneous populations

    NASA Astrophysics Data System (ADS)

    Johnson, Rob; Munsky, Brian

    2017-06-01

    Population modeling aims to capture and predict the dynamics of cell populations in constant or fluctuating environments. At the elementary level, population growth proceeds through sequential divisions of individual cells. Due to stochastic effects, populations of cells are inherently heterogeneous in phenotype, and some phenotypic variables have an effect on division or survival rates, as can be seen in partial drug resistance. Therefore, when modeling population dynamics where the control of growth and division is phenotype dependent, the corresponding model must take account of the underlying cellular heterogeneity. The finite state projection (FSP) approach has often been used to analyze the statistics of independent cells. Here, we extend the FSP analysis to explore the coupling of cell dynamics and biomolecule dynamics within a population. This extension allows a general framework with which to model the state occupations of a heterogeneous, isogenic population of dividing and expiring cells. The method is demonstrated with a simple model of cell-cycle progression, which we use to explore possible dynamics of drug resistance phenotypes in dividing cells. We use this method to show how stochastic single-cell behaviors affect population level efficacy of drug treatments, and we illustrate how slight modifications to treatment regimens may have dramatic effects on drug efficacy.

  3. Mid-IR Lasers: Challenges Imposed by the Population Dynamics of the Gain System

    DTIC Science & Technology

    2010-09-01

    MicroSystems (IOMS) Central-Field Approximation: Perturbations 1. a) Non-centrosymmetric splitting (Coulomb interaction) ⇒ total orbital angular momentum b...Accordingly: ⇒ total electron-spin momentum 2. Spin-orbit coupling (“LS” coupling) ⇒ total angular momentum lanthanides: intermediate coupling (LS / jj) 3...MicroSystems (IOMS) Luminescence Decay Curves Rate-equation for decay: Solution ( Bernoulli -Eq.): Linearized solution: T. Jensen, Ph.D. Thesis, Univ. Hamburg

  4. Experimental measurement of self-diffusion in a strongly coupled plasma

    DOE PAGES

    Strickler, Trevor S.; Langin, Thomas K.; McQuillen, Paul; ...

    2016-05-17

    Here, we present a study of the collisional relaxation of ion velocities in a strongly coupled, ultracold neutral plasma on short time scales compared to the inverse collision rate. The measured average velocity of a tagged population of ions is shown to be equivalent to the ion-velocity autocorrelation function. We thus gain access to fundamental aspects of the single-particle dynamics in strongly coupled plasmas and to the ion self-diffusion constant under conditions where experimental measurements have been lacking. Nonexponential decay towards equilibrium of the average velocity heralds non-Markovian dynamics that are not predicted by traditional descriptions of weakly coupled plasmas.more » This demonstrates the utility of ultracold neutral plasmas for studying the effects of strong coupling on collisional processes, which is of interest for dense laboratory and astrophysical plasmas.« less

  5. Chimera states in coupled Kuramoto oscillators with inertia.

    PubMed

    Olmi, Simona

    2015-12-01

    The dynamics of two symmetrically coupled populations of rotators is studied for different values of the inertia. The system is characterized by different types of solutions, which all coexist with the fully synchronized state. At small inertia, the system is no more chaotic and one observes mainly quasi-periodic chimeras, while the usual (stationary) chimera state is not anymore observable. At large inertia, one observes two different kind of chaotic solutions with broken symmetry: the intermittent chaotic chimera, characterized by a synchronized population and a population displaying a turbulent behaviour, and a second state where the two populations are both chaotic but whose dynamics adhere to two different macroscopic attractors. The intermittent chaotic chimeras are characterized by a finite life-time, whose duration increases as a power-law with the system size and the inertia value. Moreover, the chaotic population exhibits clear intermittent behavior, displaying a laminar phase where the two populations tend to synchronize, and a turbulent phase where the macroscopic motion of one population is definitely erratic. In the thermodynamic limit, these states survive for infinite time and the laminar regimes tends to disappear, thus giving rise to stationary chaotic solutions with broken symmetry contrary to what observed for chaotic chimeras on a ring geometry.

  6. Negotiating sexual safety in the era of biomedical HIV prevention: relationship dynamics among male couples using pre-exposure prophylaxis.

    PubMed

    Malone, Jowanna; Syvertsen, Jennifer L; Johnson, Blake E; Mimiaga, Matthew J; Mayer, Kenneth H; Bazzi, Angela R

    2018-06-01

    Up to two-thirds of new cases of HIV transmission between gay, bisexual and other men who have sex with men in the USA are attributed to primary relationships. Understanding the relationship dynamics and sexual agreements of male-male couples can provide insight into HIV transmission patterns and prevention needs in this population. The daily use of antiretroviral pre-exposure prophylaxis (PrEP) is highly effective in preventing HIV, but its negotiation and use within social and intimate relationship contexts remain understudied. We conducted semi-structured qualitative interviews with 20 male couples (n = 40 men) in which at least one partner was either using or in the process of initiating PrEP. Congruent with a theoretical focus on social theories of relationships and negotiated risk, couples were interviewed about relationship dynamics, trust, communication and sexual health practices, including their perception and use of PrEP. Overall, we found that couples showed heightened trust and communication when establishing open, sexual agreements and demonstrated high awareness of sexual risks and health practices in the context of PrEP use. This study demonstrates how understanding relationship dynamics can better inform HIV prevention and sexual health promotion efforts for male couples at risk of HIV.

  7. Strong optical field ionisation of solids

    NASA Astrophysics Data System (ADS)

    McDonald, C. R.; Ben Taher, A.; Brabec, T.

    2017-11-01

    Population transfer from the valence to conduction band in the presence of an intense laser field is explored theoretically in semiconductors and dielectrics. Experiments performed on dielectrics exposed to an intense laser field have divulged a population dynamics between valence and conduction band that differs from that observed in semiconductors. Our paper explores two aspects of ionisation in solids. (i) Contemporary ionisation theories do not take account of the coupling between the valence and conduction bands resulting in the absence the dynamic Stark shift. Our single-particle analysis identifies the absence of the dynamic Stark shift as a possible cause for the contrasting ionisation behaviours observed in dielectric and semiconductor materials. The dynamic Stark shift results in an increased bandgap as the laser intensity is increased. This suppresses ionisation to an extent where the main population dynamics results from virtual oscillations in the conduction band population. The dynamic Stark shift mainly affects larger bandgap materials which can be exposed to decidedly higher laser intensities. (ii) In the presence of laser dressed virtual population of the conduction band, elastic collisions potentially transmute virtual into real population resulting in ionisation. This process is explored in the context of the relaxation time approximation.

  8. Coherent fifth-order visible-infrared spectroscopies: ultrafast nonequilibrium vibrational dynamics in solution.

    PubMed

    Lynch, Michael S; Slenkamp, Karla M; Cheng, Mark; Khalil, Munira

    2012-07-05

    Obtaining a detailed description of photochemical reactions in solution requires measuring time-evolving structural dynamics of transient chemical species on ultrafast time scales. Time-resolved vibrational spectroscopies are sensitive probes of molecular structure and dynamics in solution. In this work, we develop doubly resonant fifth-order nonlinear visible-infrared spectroscopies to probe nonequilibrium vibrational dynamics among coupled high-frequency vibrations during an ultrafast charge transfer process using a heterodyne detection scheme. The method enables the simultaneous collection of third- and fifth-order signals, which respectively measure vibrational dynamics occurring on electronic ground and excited states on a femtosecond time scale. Our data collection and analysis strategy allows transient dispersed vibrational echo (t-DVE) and dispersed pump-probe (t-DPP) spectra to be extracted as a function of electronic and vibrational population periods with high signal-to-noise ratio (S/N > 25). We discuss how fifth-order experiments can measure (i) time-dependent anharmonic vibrational couplings, (ii) nonequilibrium frequency-frequency correlation functions, (iii) incoherent and coherent vibrational relaxation and transfer dynamics, and (iv) coherent vibrational and electronic (vibronic) coupling as a function of a photochemical reaction.

  9. The Anthropocene Generalized: Evolution of Exo-Civilizations and Their Planetary Feedback.

    PubMed

    Frank, A; Carroll-Nellenback, Jonathan; Alberti, M; Kleidon, A

    2018-05-01

    We present a framework for studying generic behaviors possible in the interaction between a resource-harvesting technological civilization (an exo-civilization) and the planetary environment in which it evolves. Using methods from dynamical systems theory, we introduce and analyze a suite of simple equations modeling a population which consumes resources for the purpose of running a technological civilization and the feedback those resources drive on the state of the host planet. The feedbacks can drive the planet away from the initial state the civilization originated in and into domains that are detrimental to its sustainability. Our models conceptualize the problem primarily in terms of feedbacks from the resource use onto the coupled planetary systems. In addition, we also model the population growth advantages gained via the harvesting of these resources. We present three models of increasing complexity: (1) Civilization-planetary interaction with a single resource; (2) Civilization-planetary interaction with two resources each of which has a different level of planetary system feedback; (3) Civilization-planetary interaction with two resources and nonlinear planetary feedback (i.e., runaways). All three models show distinct classes of exo-civilization trajectories. We find smooth entries into long-term, "sustainable" steady states. We also find population booms followed by various levels of "die-off." Finally, we also observe rapid "collapse" trajectories for which the population approaches n = 0. Our results are part of a program for developing an "Astrobiology of the Anthropocene" in which questions of sustainability, centered on the coupled Earth-system, can be seen in their proper astronomical/planetary context. We conclude by discussing the implications of our results for both the coupled Earth system and for the consideration of exo-civilizations across cosmic history. Key Words: Anthropocene-Astrobiology-Civilization-Dynamical system theory-Exoplanets-Population dynamics. Astrobiology 18, 503-518.

  10. Public health impact of disease-behavior dynamics. Comment on "Coupled disease-behavior dynamics on complex networks: A review" by Z. Wang et al.

    NASA Astrophysics Data System (ADS)

    Wells, Chad R.; Galvani, Alison P.

    2015-12-01

    In a loop of dynamic feedback, behavior such as the decision to vaccinate, hand washing, or avoidance influences the progression of the epidemic, yet behavior is driven by the individual's and population's perceived risk of infection during an outbreak. In what we believe will become a seminal paper that stimulates future research as well as an informative teaching aid, Wang et. al. comprehensively review methodological advances that have been used to incorporate human behavior into epidemiological models on the effects of coupling disease transmission and behavior on complex social networks [1]. As illustrated by the recent outbreaks of measles and Middle Eastern Respiratory Syndrome (MERS), here we highlight the importance of coupling behavior and disease transmission that Wang et al. address.

  11. Modeling the spatial and temporal dynamics of isolated emerald ash borer populations

    Treesearch

    Nathan W. Siegert; Andrew M. Liebhold; Deborah G. McCullough

    2008-01-01

    The ability to predict the distance and rate of emerald ash borer (EAB) spread in outlier populations is needed to continue development of effective management strategies for improved EAB control. We have developed a coupled map lattice model to estimate the spread and dispersal of isolated emerald ash borer populations. This model creates an artificial environment in...

  12. Dynamics of weakly inhomogeneous oscillator populations: perturbation theory on top of Watanabe-Strogatz integrability

    NASA Astrophysics Data System (ADS)

    Vlasov, Vladimir; Rosenblum, Michael; Pikovsky, Arkady

    2016-08-01

    As has been shown by Watanabe and Strogatz (WS) (1993 Phys. Rev. Lett. 70 2391), a population of identical phase oscillators, sine-coupled to a common field, is a partially integrable system: for any ensemble size its dynamics reduce to equations for three collective variables. Here we develop a perturbation approach for weakly nonidentical ensembles. We calculate corrections to the WS dynamics for two types of perturbations: those due to a distribution of natural frequencies and of forcing terms, and those due to small white noise. We demonstrate that in both cases, the complex mean field for which the dynamical equations are written is close to the Kuramoto order parameter, up to the leading order in the perturbation. This supports the validity of the dynamical reduction suggested by Ott and Antonsen (2008 Chaos 18 037113) for weakly inhomogeneous populations.

  13. Modelling the Effects of Electrical Coupling between Unmyelinated Axons of Brainstem Neurons Controlling Rhythmic Activity

    PubMed Central

    Hull, Michael J.; Soffe, Stephen R.; Willshaw, David J.; Roberts, Alan

    2015-01-01

    Gap junctions between fine unmyelinated axons can electrically couple groups of brain neurons to synchronise firing and contribute to rhythmic activity. To explore the distribution and significance of electrical coupling, we modelled a well analysed, small population of brainstem neurons which drive swimming in young frog tadpoles. A passive network of 30 multicompartmental neurons with unmyelinated axons was used to infer that: axon-axon gap junctions close to the soma gave the best match to experimentally measured coupling coefficients; axon diameter had a strong influence on coupling; most neurons were coupled indirectly via the axons of other neurons. When active channels were added, gap junctions could make action potential propagation along the thin axons unreliable. Increased sodium and decreased potassium channel densities in the initial axon segment improved action potential propagation. Modelling suggested that the single spike firing to step current injection observed in whole-cell recordings is not a cellular property but a dynamic consequence of shunting resulting from electrical coupling. Without electrical coupling, firing of the population during depolarising current was unsynchronised; with coupling, the population showed synchronous recruitment and rhythmic firing. When activated instead by increasing levels of modelled sensory pathway input, the population without electrical coupling was recruited incrementally to unpatterned activity. However, when coupled, the population was recruited all-or-none at threshold into a rhythmic swimming pattern: the tadpole “decided” to swim. Modelling emphasises uncertainties about fine unmyelinated axon physiology but, when informed by biological data, makes general predictions about gap junctions: locations close to the soma; relatively small numbers; many indirect connections between neurons; cause of action potential propagation failure in fine axons; misleading alteration of intrinsic firing properties. Modelling also indicates that electrical coupling within a population can synchronize recruitment of neurons and their pacemaker firing during rhythmic activity. PMID:25954930

  14. Synchronization Dynamics of Coupled Chemical Oscillators

    NASA Astrophysics Data System (ADS)

    Tompkins, Nathan

    The synchronization dynamics of complex networks have been extensively studied over the past few decades due to their ubiquity in the natural world. Prominent examples include cardiac rhythms, circadian rhythms, the flashing of fireflies, predator/prey population dynamics, mammalian gait, human applause, pendulum clocks, the electrical grid, and of the course the brain. Detailed experiments have been done to map the topology of many of these systems and significant advances have been made to describe the mathematics of these networks. Compared to these bodies of work relatively little has been done to directly test the role of topology in the synchronization dynamics of coupled oscillators. This Dissertation develops technology to examine the dynamics due to topology within networks of discrete oscillatory components. The oscillatory system used here consists of the photo-inhibitable Belousov-Zhabotinsky (BZ) reaction water-in-oil emulsion where the oscillatory drops are diffusively coupled to one another and the topology is defined by the geometry of the diffusive connections. Ring networks are created from a close-packed 2D array of drops using the Programmable Illumination Microscope (PIM) in order to test Turing's theory of morphogenesis directly. Further technology is developed to create custom planar networks of BZ drops in more complicated topologies which can be individually perturbed using illumination from the PIM. The work presented here establishes the validity of using the BZ emulsion system with a PIM to study the topology induced effects on the synchronization dynamics of coupled chemical oscillators, tests the successes and limitations of Turing's theory of morphogenesis, and develops new technology to further probe the effects of network topology on a system of coupled oscillators. Finally, this Dissertation concludes by describing ongoing experiments which utilize this new technology to examine topology induced transitions of synchronization dynamics of diffusively coupled chemical oscillators.

  15. Measles metapopulation dynamics: a gravity model for epidemiological coupling and dynamics.

    PubMed

    Xia, Yingcun; Bjørnstad, Ottar N; Grenfell, Bryan T

    2004-08-01

    Infectious diseases provide a particularly clear illustration of the spatiotemporal underpinnings of consumer-resource dynamics. The paradigm is provided by extremely contagious, acute, immunizing childhood infections. Partially synchronized, unstable oscillations are punctuated by local extinctions. This, in turn, can result in spatial differentiation in the timing of epidemics and, depending on the nature of spatial contagion, may result in traveling waves. Measles epidemics are one of a few systems documented well enough to reveal all of these properties and how they are affected by spatiotemporal variations in population structure and demography. On the basis of a gravity coupling model and a time series susceptible-infected-recovered (TSIR) model for local dynamics, we propose a metapopulation model for regional measles dynamics. The model can capture all the major spatiotemporal properties in prevaccination epidemics of measles in England and Wales.

  16. Whither countertransference in couples and family therapy: a systemic perspective.

    PubMed

    Kaslow, F W

    2001-08-01

    This study addresses various perspectives on transference and countertransference dynamics from the context of couples and family therapy. It considers the phenomena of countertransference in couple and family therapy and illustrates treatment with three specific kinds of patient populations: adult survivors of childhood incest who receive therapy with their partner; couples group therapy; and psychotherapists and their families. How supervisors help trainees recognize and deal with the transference and countertransference in clinical practice also is explored. These reciprocal phenomena are even more complex to identify and handle in couple and family treatment than in individual therapy.

  17. Modelling real disease dynamics with behaviourally adaptive complex networks. Comment on "Coupled disease-behavior dynamics on complex networks: A review" by Z. Wang et al.

    NASA Astrophysics Data System (ADS)

    Small, Michael

    2015-12-01

    Mean field compartmental models of disease transmission have been successfully applied to a host of different scenarios, and the Kermack-McKendrick equations are now a staple of mathematical biology text books. In Susceptible-Infected-Removed format these equations provide three coupled first order ordinary differential equations with a very mild nonlinearity and they are very well understood. However, underpinning these equations are two important assumptions: that the population is (a) homogeneous, and (b) well-mixed. These assumptions become closest to being true for diseases infecting a large portion of the population for which inevitable individual effects can be averaged away. Emerging infectious disease (such as, in recent times, SARS, avian influenza, swine flu and ebola) typically does not conform to this scenario. Individual contacts and peculiarities of the transmission network play a vital role in understanding the dynamics of such relatively rare infections - particularly during the early stages of an outbreak.

  18. Natural Selection in Large Populations

    NASA Astrophysics Data System (ADS)

    Desai, Michael

    2011-03-01

    I will discuss theoretical and experimental approaches to the evolutionary dynamics and population genetics of natural selection in large populations. In these populations, many mutations are often present simultaneously, and because recombination is limited, selection cannot act on them all independently. Rather, it can only affect whole combinations of mutations linked together on the same chromosome. Methods common in theoretical population genetics have been of limited utility in analyzing this coupling between the fates of different mutations. In the past few years it has become increasingly clear that this is a crucial gap in our understanding, as sequence data has begun to show that selection appears to act pervasively on many linked sites in a wide range of populations, including viruses, microbes, Drosophila, and humans. I will describe approaches that combine analytical tools drawn from statistical physics and dynamical systems with traditional methods in theoretical population genetics to address this problem, and describe how experiments in budding yeast can help us directly observe these evolutionary dynamics.

  19. Critical dynamics in population vaccinating behavior.

    PubMed

    Pananos, A Demetri; Bury, Thomas M; Wang, Clara; Schonfeld, Justin; Mohanty, Sharada P; Nyhan, Brendan; Salathé, Marcel; Bauch, Chris T

    2017-12-26

    Vaccine refusal can lead to renewed outbreaks of previously eliminated diseases and even delay global eradication. Vaccinating decisions exemplify a complex, coupled system where vaccinating behavior and disease dynamics influence one another. Such systems often exhibit critical phenomena-special dynamics close to a tipping point leading to a new dynamical regime. For instance, critical slowing down (declining rate of recovery from small perturbations) may emerge as a tipping point is approached. Here, we collected and geocoded tweets about measles-mumps-rubella vaccine and classified their sentiment using machine-learning algorithms. We also extracted data on measles-related Google searches. We find critical slowing down in the data at the level of California and the United States in the years before and after the 2014-2015 Disneyland, California measles outbreak. Critical slowing down starts growing appreciably several years before the Disneyland outbreak as vaccine uptake declines and the population approaches the tipping point. However, due to the adaptive nature of coupled behavior-disease systems, the population responds to the outbreak by moving away from the tipping point, causing "critical speeding up" whereby resilience to perturbations increases. A mathematical model of measles transmission and vaccine sentiment predicts the same qualitative patterns in the neighborhood of a tipping point to greatly reduced vaccine uptake and large epidemics. These results support the hypothesis that population vaccinating behavior near the disease elimination threshold is a critical phenomenon. Developing new analytical tools to detect these patterns in digital social data might help us identify populations at heightened risk of widespread vaccine refusal. Copyright © 2017 the Author(s). Published by PNAS.

  20. Critical dynamics in population vaccinating behavior

    PubMed Central

    Pananos, A. Demetri; Bury, Thomas M.; Wang, Clara; Schonfeld, Justin; Mohanty, Sharada P.; Nyhan, Brendan; Bauch, Chris T.

    2017-01-01

    Vaccine refusal can lead to renewed outbreaks of previously eliminated diseases and even delay global eradication. Vaccinating decisions exemplify a complex, coupled system where vaccinating behavior and disease dynamics influence one another. Such systems often exhibit critical phenomena—special dynamics close to a tipping point leading to a new dynamical regime. For instance, critical slowing down (declining rate of recovery from small perturbations) may emerge as a tipping point is approached. Here, we collected and geocoded tweets about measles–mumps–rubella vaccine and classified their sentiment using machine-learning algorithms. We also extracted data on measles-related Google searches. We find critical slowing down in the data at the level of California and the United States in the years before and after the 2014–2015 Disneyland, California measles outbreak. Critical slowing down starts growing appreciably several years before the Disneyland outbreak as vaccine uptake declines and the population approaches the tipping point. However, due to the adaptive nature of coupled behavior–disease systems, the population responds to the outbreak by moving away from the tipping point, causing “critical speeding up” whereby resilience to perturbations increases. A mathematical model of measles transmission and vaccine sentiment predicts the same qualitative patterns in the neighborhood of a tipping point to greatly reduced vaccine uptake and large epidemics. These results support the hypothesis that population vaccinating behavior near the disease elimination threshold is a critical phenomenon. Developing new analytical tools to detect these patterns in digital social data might help us identify populations at heightened risk of widespread vaccine refusal. PMID:29229821

  1. Theoretical study of dynamic electron-spin-polarization via the doublet-quartet quantum-mixed state and time-resolved ESR spectra of the quartet high-spin state.

    PubMed

    Teki, Yoshio; Matsumoto, Takafumi

    2011-04-07

    The mechanism of the unique dynamic electron polarization of the quartet (S = 3/2) high-spin state via a doublet-quartet quantum-mixed state and detail theoretical calculations of the population transfer are reported. By the photo-induced electron transfer, the quantum-mixed charge-separate state is generated in acceptor-donor-radical triad (A-D-R). This mechanism explains well the unique dynamic electron polarization of the quartet state of A-D-R. The generation of the selectively populated quantum-mixed state and its transfer to the strongly coupled pure quartet and doublet states have been treated both by a perturbation approach and by exact numerical calculations. The analytical solutions show that generation of the quantum-mixed states with the selective populations after de-coherence and/or accompanying the (complete) dephasing during the charge-recombination are essential for the unique dynamic electron polarization. Thus, the elimination of the quantum coherence (loss of the quantum information) is the key process for the population transfer from the quantum-mixed state to the quartet state. The generation of high-field polarization on the strongly coupled quartet state by the charge-recombination process can be explained by a polarization transfer from the quantum-mixed charge-separate state. Typical time-resolved ESR patterns of the quantum-mixed state and of the strongly coupled quartet state are simulated based on the generation mechanism of the dynamic electron polarization. The dependence of the spectral pattern of the quartet high-spin state has been clarified for the fine-structure tensor and the exchange interaction of the quantum-mixed state. The spectral pattern of the quartet state is not sensitive towards the fine-structure tensor of the quantum-mixed state, because this tensor contributes only as a perturbation in the population transfer to the spin-sublevels of the quartet state. Based on the stochastic Liouville equation, it is also discussed why the selective population in the quantum-mixed state is generated for the "finite field" spin-sublevels. The numerical calculations of the elimination of the quantum coherence (de-coherence and/or dephasing) are demonstrated. A new possibility of the enhanced intersystem crossing pathway in solution is also proposed.

  2. Recruitment dynamics in complex life cycles. [of organisms living in marine rocky zone

    NASA Technical Reports Server (NTRS)

    Roughgarden, Jonathan; Possingham, Hugh; Gaines, Steven

    1988-01-01

    Factors affecting marine population fluctuations are discussed with particular attention given to a common barnacle species of the Pacific coast of North America. It is shown how models combining larval circulation with adult interactions can potentially forecast population fluctuations. These findings demonstrate how processes in different ecological habitats are coupled.

  3. Controllable quantum dynamics of inhomogeneous nitrogen-vacancy center ensembles coupled to superconducting resonators

    PubMed Central

    Song, Wan-lu; Yang, Wan-li; Yin, Zhang-qi; Chen, Chang-yong; Feng, Mang

    2016-01-01

    We explore controllable quantum dynamics of a hybrid system, which consists of an array of mutually coupled superconducting resonators (SRs) with each containing a nitrogen-vacancy center spin ensemble (NVE) in the presence of inhomogeneous broadening. We focus on a three-site model, which compared with the two-site case, shows more complicated and richer dynamical behavior, and displays a series of damped oscillations under various experimental situations, reflecting the intricate balance and competition between the NVE-SR collective coupling and the adjacent-site photon hopping. Particularly, we find that the inhomogeneous broadening of the spin ensemble can suppress the population transfer between the SR and the local NVE. In this context, although the inhomogeneous broadening of the spin ensemble diminishes entanglement among the NVEs, optimal entanglement, characterized by averaging the lower bound of concurrence, could be achieved through accurately adjusting the tunable parameters. PMID:27627994

  4. Strategic behavior and governance challenges in self-organized coupled natural-human systems

    NASA Astrophysics Data System (ADS)

    Muneepeerakul, R.; Anderies, J. M.

    2017-12-01

    Successful and sustainable coupling of human societies and natural systems requires effective governance, which depends on the existence of proper infrastructure (both hard and soft). In recent decades, much attention has been paid to what has allowed many small-scale self-organized coupled natural-human systems around the world to persist for centuries, thanks to a large part to the work by Elinor Ostrom and colleagues. In this work, we mathematically operationalize a conceptual framework that is developed based on this body of work by way of a stylized model. The model captures the interplay between replicator dynamics within the population, dynamics of natural resources, and threshold characteristics of public infrastructure. The model analysis reveals conditions for long-term sustainability and collapse of the coupled systems as well as other tradeoffs and potential pitfalls in governing these systems.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Myeong H., E-mail: myeong.lee@warwick.ac.uk; Troisi, Alessandro

    Vibronic coupling between the electronic and vibrational degrees of freedom has been reported to play an important role in charge and exciton transport in organic photovoltaic materials, molecular aggregates, and light-harvesting complexes. Explicitly accounting for effective vibrational modes rather than treating them as a thermal environment has been shown to be crucial to describe the effect of vibronic coupling. We present a methodology to study dissipative quantum dynamics of vibronically coupled systems based on a surrogate Hamiltonian approach, which is in principle not limited by Markov approximation or weak system-bath interaction, using a vibronic basis. We apply vibronic surrogate Hamiltonianmore » method to a linear chain system and discuss how different types of relaxation process, intramolecular vibrational relaxation and intermolecular vibronic relaxation, influence population dynamics of dissipative vibronic systems.« less

  6. Sexually transmitted infections and the marriage problem

    NASA Astrophysics Data System (ADS)

    Bouzat, Sebastián; Zanette, Damián H.

    2009-08-01

    We study an SIS epidemiological model for a sexually transmitted infection in a monogamous population where the formation and breaking of couples is governed by individual preferences. The mechanism of couple recombination is based on the so-called bar dynamics for the marriage problem. We compare the results with those of random recombination - where no individual preferences exist - for which we calculate analytically the infection incidence and the endemic threshold. We find that individual preferences give rise to a large dispersion in the average duration of different couples, causing substantial changes in the incidence of the infection and in the endemic threshold. Our analysis yields also new results on the bar dynamics, that may be of interest beyond the field of epidemiological models.

  7. Desynchronization in an ensemble of globally coupled chaotic bursting neuronal oscillators by dynamic delayed feedback control

    NASA Astrophysics Data System (ADS)

    Che, Yanqiu; Yang, Tingting; Li, Ruixue; Li, Huiyan; Han, Chunxiao; Wang, Jiang; Wei, Xile

    2015-09-01

    In this paper, we propose a dynamic delayed feedback control approach or desynchronization of chaotic-bursting synchronous activities in an ensemble of globally coupled neuronal oscillators. We demonstrate that the difference signal between an ensemble's mean field and its time delayed state, filtered and fed back to the ensemble, can suppress the self-synchronization in the ensemble. These individual units are decoupled and stabilized at the desired desynchronized states while the stimulation signal reduces to the noise level. The effectiveness of the method is illustrated by examples of two different populations of globally coupled chaotic-bursting neurons. The proposed method has potential for mild, effective and demand-controlled therapy of neurological diseases characterized by pathological synchronization.

  8. Mathematical modeling in biological populations through branching processes. Application to salmonid populations.

    PubMed

    Molina, Manuel; Mota, Manuel; Ramos, Alfonso

    2015-01-01

    This work deals with mathematical modeling through branching processes. We consider sexually reproducing animal populations where, in each generation, the number of progenitor couples is determined in a non-predictable environment. By using a class of two-sex branching processes, we describe their demographic dynamics and provide several probabilistic and inferential contributions. They include results about the extinction of the population and the estimation of the offspring distribution and its main moments. We also present an application to salmonid populations.

  9. Deep Strong Coupling Regime of the Jaynes-Cummings Model

    NASA Astrophysics Data System (ADS)

    Casanova, J.; Romero, G.; Lizuain, I.; García-Ripoll, J. J.; Solano, E.

    2010-12-01

    We study the quantum dynamics of a two-level system interacting with a quantized harmonic oscillator in the deep strong coupling regime (DSC) of the Jaynes-Cummings model, that is, when the coupling strength g is comparable or larger than the oscillator frequency ω (g/ω≳1). In this case, the rotating-wave approximation cannot be applied or treated perturbatively in general. We propose an intuitive and predictive physical frame to describe the DSC regime where photon number wave packets bounce back and forth along parity chains of the Hilbert space, while producing collapse and revivals of the initial population. We exemplify our physical frame with numerical and analytical considerations in the qubit population, photon statistics, and Wigner phase space.

  10. Transient recovery dynamics of a predator-prey system under press and pulse disturbances.

    PubMed

    Karakoç, Canan; Singer, Alexander; Johst, Karin; Harms, Hauke; Chatzinotas, Antonis

    2017-04-04

    Species recovery after disturbances depends on the strength and duration of disturbance, on the species traits and on the biotic interactions with other species. In order to understand these complex relationships, it is essential to understand mechanistically the transient dynamics of interacting species during and after disturbances. We combined microcosm experiments with simulation modelling and studied the transient recovery dynamics of a simple microbial food web under pulse and press disturbances and under different predator couplings to an alternative resource. Our results reveal that although the disturbances affected predator and prey populations by the same mortality, predator populations suffered for a longer time. The resulting diminished predation stress caused a temporary phase of high prey population sizes (i.e. prey release) during and even after disturbances. Increasing duration and strength of disturbances significantly slowed down the recovery time of the predator prolonging the phase of prey release. However, the additional coupling of the predator to an alternative resource allowed the predator to recover faster after the disturbances thus shortening the phase of prey release. Our findings are not limited to the studied system and can be used to understand the dynamic response and recovery potential of many natural predator-prey or host-pathogen systems. They can be applied, for instance, in epidemiological and conservational contexts to regulate prey release or to avoid extinction risk of the top trophic levels under different types of disturbances.

  11. Machine Vision Within The Framework Of Collective Neural Assemblies

    NASA Astrophysics Data System (ADS)

    Gupta, Madan M.; Knopf, George K.

    1990-03-01

    The proposed mechanism for designing a robust machine vision system is based on the dynamic activity generated by the various neural populations embedded in nervous tissue. It is postulated that a hierarchy of anatomically distinct tissue regions are involved in visual sensory information processing. Each region may be represented as a planar sheet of densely interconnected neural circuits. Spatially localized aggregates of these circuits represent collective neural assemblies. Four dynamically coupled neural populations are assumed to exist within each assembly. In this paper we present a state-variable model for a tissue sheet derived from empirical studies of population dynamics. Each population is modelled as a nonlinear second-order system. It is possible to emulate certain observed physiological and psychophysiological phenomena of biological vision by properly programming the interconnective gains . Important early visual phenomena such as temporal and spatial noise insensitivity, contrast sensitivity and edge enhancement will be discussed for a one-dimensional tissue model.

  12. Modelling southern elephant seals Mirounga leonina using an individual-based model coupled with a dynamic energy budget

    PubMed Central

    Melbourne-Thomas, Jessica; Corney, Stuart P.; McMahon, Clive R.; Hindell, Mark A.

    2018-01-01

    Higher trophic-level species are an integral component of any marine ecosystem. Despite their importance, methods for representing these species in end-to-end ecosystem models often have limited representation of life histories, energetics and behaviour. We built an individual-based model coupled with a dynamic energy budget for female southern elephant seals Mirounga leonina to demonstrate a method for detailed representation of marine mammals. We aimed to develop a model which could i) simulate energy use and life histories, as well as breeding traits of southern elephant seals in an emergent manner, ii) project a stable population over time, and iii) have realistic population dynamics and structure based on emergent life history features (such as age at first breeding, lifespan, fecundity and (yearling) survival). We evaluated the model’s ability to represent a stable population over long time periods (>10 generations), including the sensitivity of the emergent properties to variations in key parameters. Analyses indicated that the model is sensitive to changes in resource availability and energy requirements for the transition from pup to juvenile, and juvenile to adult stage. This was particularly the case for breeding success and yearling survival. This model is suitable for use as a standalone tool for investigating the impacts of changes to behaviour and population responses of southern elephant seals. PMID:29596456

  13. Predicting extinction risks under climate change: coupling stochastic population models with dynamic bioclimatic habitat models.

    PubMed

    Keith, David A; Akçakaya, H Resit; Thuiller, Wilfried; Midgley, Guy F; Pearson, Richard G; Phillips, Steven J; Regan, Helen M; Araújo, Miguel B; Rebelo, Tony G

    2008-10-23

    Species responses to climate change may be influenced by changes in available habitat, as well as population processes, species interactions and interactions between demographic and landscape dynamics. Current methods for assessing these responses fail to provide an integrated view of these influences because they deal with habitat change or population dynamics, but rarely both. In this study, we linked a time series of habitat suitability models with spatially explicit stochastic population models to explore factors that influence the viability of plant species populations under stable and changing climate scenarios in South African fynbos, a global biodiversity hot spot. Results indicate that complex interactions between life history, disturbance regime and distribution pattern mediate species extinction risks under climate change. Our novel mechanistic approach allows more complete and direct appraisal of future biotic responses than do static bioclimatic habitat modelling approaches, and will ultimately support development of more effective conservation strategies to mitigate biodiversity losses due to climate change.

  14. The fundamental role of quantized vibrations in coherent light harvesting by cryptophyte algae

    NASA Astrophysics Data System (ADS)

    Kolli, Avinash; O'Reilly, Edward J.; Scholes, Gregory D.; Olaya-Castro, Alexandra

    2012-11-01

    The influence of fast vibrations on energy transfer and conversion in natural molecular aggregates is an issue of central interest. This article shows the important role of high-energy quantized vibrations and their non-equilibrium dynamics for energy transfer in photosynthetic systems with highly localized excitonic states. We consider the cryptophyte antennae protein phycoerythrin 545 and show that coupling to quantized vibrations, which are quasi-resonant with excitonic transitions is fundamental for biological function as it generates non-cascaded transport with rapid and wider spatial distribution of excitation energy. Our work also indicates that the non-equilibrium dynamics of such vibrations can manifest itself in ultrafast beating of both excitonic populations and coherences at room temperature, with time scales in agreement with those reported in experiments. Moreover, we show that mechanisms supporting coherent excitonic dynamics assist coupling to selected modes that channel energy to preferential sites in the complex. We therefore argue that, in the presence of strong coupling between electronic excitations and quantized vibrations, a concrete and important advantage of quantum coherent dynamics is precisely to tune resonances that promote fast and effective energy distribution.

  15. Relating coupled map lattices to integro-difference equations: dispersal-driven instabilities in coupled map lattices.

    PubMed

    White, Steven M; White, K A Jane

    2005-08-21

    Recently there has been a great deal of interest within the ecological community about the interactions of local populations that are coupled only by dispersal. Models have been developed to consider such scenarios but the theory needed to validate model outcomes has been somewhat lacking. In this paper, we present theory which can be used to understand these types of interaction when population exhibit discrete time dynamics. In particular, we consider a spatial extension to discrete-time models, known as coupled map lattices (CMLs) which are discrete in space. We introduce a general form of the CML and link this to integro-difference equations via a special redistribution kernel. General conditions are then derived for dispersal-driven instabilities. We then apply this theory to two discrete-time models; a predator-prey model and a host-pathogen model.

  16. Sustainability Indicators for Coupled Human-Earth Systems

    NASA Astrophysics Data System (ADS)

    Motesharrei, S.; Rivas, J. R.; Kalnay, E.

    2014-12-01

    Over the last two centuries, the Human System went from having a small impact on the Earth System (including the Climate System) to becoming dominant, because both population and per capita consumption have grown extremely fast, especially since about 1950. We therefore argue that Human System Models must be included into Earth System Models through bidirectional couplings with feedbacks. In particular, population should be modeled endogenously, rather than exogenously as done currently in most Integrated Assessment Models. The growth of the Human System threatens to overwhelm the Carrying Capacity of the Earth System, and may be leading to catastrophic climate change and collapse. We propose a set of Ecological and Economic "Sustainability Indicators" that can employ large data-sets for developing and assessing effective mitigation and adaptation policies. Using the Human and Nature Dynamical Model (HANDY) and Coupled Human-Climate-Water Model (COWA), we carry out experiments with this set of Sustainability Indicators and show that they are applicable to various coupled systems including Population, Climate, Water, Energy, Agriculture, and Economy. Impact of nonrenewable resources and fossil fuels could also be understood using these indicators. We demonstrate interconnections of Ecological and Economic Indicators. Coupled systems often include feedbacks and can thus display counterintuitive dynamics. This makes it difficult for even experts to see coming catastrophes from just the raw data for different variables. Sustainability Indicators boil down the raw data into a set of simple numbers that cross their sustainability thresholds with a large time-lag before variables enter their catastrophic regimes. Therefore, we argue that Sustainability Indicators constitute a powerful but simple set of tools that could be directly used for making policies for sustainability.

  17. Symmetry breaking in two interacting populations of quadratic integrate-and-fire neurons.

    PubMed

    Ratas, Irmantas; Pyragas, Kestutis

    2017-10-01

    We analyze the dynamics of two coupled identical populations of quadratic integrate-and-fire neurons, which represent the canonical model for class I neurons near the spiking threshold. The populations are heterogeneous; they include both inherently spiking and excitable neurons. The coupling within and between the populations is global via synapses that take into account the finite width of synaptic pulses. Using a recently developed reduction method based on the Lorentzian ansatz, we derive a closed system of equations for the neuron's firing rates and the mean membrane potentials in both populations. The reduced equations are exact in the infinite-size limit. The bifurcation analysis of the equations reveals a rich variety of nonsymmetric patterns, including a splay state, antiphase periodic oscillations, chimera-like states, and chaotic oscillations as well as bistabilities between various states. The validity of the reduced equations is confirmed by direct numerical simulations of the finite-size networks.

  18. Symmetry breaking in two interacting populations of quadratic integrate-and-fire neurons

    NASA Astrophysics Data System (ADS)

    Ratas, Irmantas; Pyragas, Kestutis

    2017-10-01

    We analyze the dynamics of two coupled identical populations of quadratic integrate-and-fire neurons, which represent the canonical model for class I neurons near the spiking threshold. The populations are heterogeneous; they include both inherently spiking and excitable neurons. The coupling within and between the populations is global via synapses that take into account the finite width of synaptic pulses. Using a recently developed reduction method based on the Lorentzian ansatz, we derive a closed system of equations for the neuron's firing rates and the mean membrane potentials in both populations. The reduced equations are exact in the infinite-size limit. The bifurcation analysis of the equations reveals a rich variety of nonsymmetric patterns, including a splay state, antiphase periodic oscillations, chimera-like states, and chaotic oscillations as well as bistabilities between various states. The validity of the reduced equations is confirmed by direct numerical simulations of the finite-size networks.

  19. Photon echo spectroscopy reveals structure-dynamics relationships in carotenoids

    NASA Astrophysics Data System (ADS)

    Christensson, N.; Polivka, T.; Yartsev, A.; Pullerits, T.

    2009-06-01

    Based on simultaneous analysis of the frequency-resolved transient grating, peak shift, and echo width signals, we present a model for the third-order optical response of carotenoids including population dynamics and system-bath interactions. Our frequency-resolved photon echo experiments show that the model needs to incorporate the excited-state absorption from both the S2 and the S1 states. We apply our model to analyze the experimental results on astaxanthin and lycopene, aiming to elucidate the relation between structure and system-bath interactions. Our analysis allows us to relate structural motifs to changes in the energy-gap correlation functions. We find that the terminal rings of astaxanthin lead to increased coupling between slow molecular motions and the electronic transition. We also find evidence for stronger coupling to higher frequency overdamped modes in astaxanthin, pointing to the importance of the functional groups in providing coupling to fluctuations influencing the dynamics in the passage through the conical intersection governing the S2-S1 relaxation.

  20. Ising universality describes emergent long-range synchronization of coupled ecological oscillators

    NASA Astrophysics Data System (ADS)

    Noble, Andrew

    Understanding the synchronization of oscillations across space is fundamentally important to many scientific disciplines. In ecology, long-range synchronization of oscillations in spatial populations may elevate extinction risk and signal an impending catastrophe. The prevailing assumption is that synchronization on distances longer than the dispersal scale can only be due to environmental correlation. By contrast, recent work shows how scale-invariant synchronization can emerge from locally coupled population dynamics. In particular, we have found that the transition from incoherence to long-range synchronization of coupled ecological two-cycles is described by the Ising universality class. I will discuss evidence that an Ising critical point describes long-range correlations found in data on the individual yields of female pistachio trees in a large orchard. NSF INSPIRE Grant No. 1344187.

  1. Transition from amplitude to oscillation death in a network of oscillators

    NASA Astrophysics Data System (ADS)

    Nandan, Mauparna; Hens, C. R.; Pal, Pinaki; Dana, Syamal K.

    2014-12-01

    We report a transition from a homogeneous steady state (HSS) to inhomogeneous steady states (IHSSs) in a network of globally coupled identical oscillators. We perturb a synchronized population of oscillators in the network with a few local negative or repulsive mean field links. The whole population splits into two clusters for a certain number of repulsive mean field links and a range of coupling strength. For further increase of the strength of interaction, these clusters collapse into a HSS followed by a transition to IHSSs where all the oscillators populate either of the two stable steady states. We analytically determine the origin of HSS and its transition to IHSS in relation to the number of repulsive mean-field links and the strength of interaction using a reductionism approach to the model network. We verify the results with numerical examples of the paradigmatic Landau-Stuart limit cycle system and the chaotic Rössler oscillator as dynamical nodes. During the transition from HSS to IHSSs, the network follows the Turing type symmetry breaking pitchfork or transcritical bifurcation depending upon the system dynamics.

  2. Transition from amplitude to oscillation death in a network of oscillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nandan, Mauparna; Department of Mathematics, National Institute of Technology, Durgapur 713209; Hens, C. R.

    2014-12-01

    We report a transition from a homogeneous steady state (HSS) to inhomogeneous steady states (IHSSs) in a network of globally coupled identical oscillators. We perturb a synchronized population of oscillators in the network with a few local negative or repulsive mean field links. The whole population splits into two clusters for a certain number of repulsive mean field links and a range of coupling strength. For further increase of the strength of interaction, these clusters collapse into a HSS followed by a transition to IHSSs where all the oscillators populate either of the two stable steady states. We analytically determinemore » the origin of HSS and its transition to IHSS in relation to the number of repulsive mean-field links and the strength of interaction using a reductionism approach to the model network. We verify the results with numerical examples of the paradigmatic Landau-Stuart limit cycle system and the chaotic Rössler oscillator as dynamical nodes. During the transition from HSS to IHSSs, the network follows the Turing type symmetry breaking pitchfork or transcritical bifurcation depending upon the system dynamics.« less

  3. CFD modeling of particle dispersion and deposition coupled with particle dynamical models in a ventilated room

    NASA Astrophysics Data System (ADS)

    Xu, Guangping; Wang, Jiasong

    2017-10-01

    Two dynamical models, the traditional method of moments coupled model (MCM) and Taylor-series expansion method of moments coupled model (TECM) for particle dispersion distribution and gravitation deposition are developed in three-dimensional ventilated environments. The turbulent airflow field is modeled with the renormalization group (RNG) k-ε turbulence model. The particle number concentration distribution in a ventilated room is obtained by solving the population balance equation coupled with the airflow field. The coupled dynamical models are validated using experimental data. A good agreement between the numerical and experimental results can be achieved. Both models have a similar characteristic for the spatial distribution of particle concentration. Relative to the MCM model, the TECM model presents a more close result to the experimental data. The vortex structure existed in the air flow makes a relative large concentration difference at the center region and results in a spatial non-uniformity of concentration field. With larger inlet velocity, the mixing level of particles in the room is more uniform. In general, the new dynamical models coupled with computational fluid dynamics (CFD) in the current study provide a reasonable and accurate method for the temporal and spatial evolution of particles effected by the deposition and dispersion behaviors. In addition, two ventilation modes with different inlet velocities are proceeded to study the effect on the particle evolution. The results show that with the ceiling ventilation mode (CVM), the particles can be better mixed and the concentration level is also higher. On the contrast, with the side ceiling ventilation mode (SVM), the particle concentration has an obvious stratified distribution with a relative lower level and it makes a much better environment condition to the human exposure.

  4. Modeling of Nonlinear Dynamics and Synchronized Oscillations of Microbial Populations, Carbon and Oxygen Concentrations, Induced by Root Exudation in the Rhizosphere

    NASA Astrophysics Data System (ADS)

    Molz, F. J.; Faybishenko, B.; Jenkins, E. W.

    2012-12-01

    Mass and energy fluxes within the soil-plant-atmosphere continuum are highly coupled and inherently nonlinear. The main focus of this presentation is to demonstrate the results of numerical modeling of a system of 4 coupled, nonlinear ordinary differential equations (ODEs), which are used to describe the long-term, rhizosphere processes of soil microbial dynamics, including the competition between nitrogen-fixing bacteria and those unable to fix nitrogen, along with substrate concentration (nutrient supply) and oxygen concentration. Modeling results demonstrate the synchronized patterns of temporal oscillations of competing microbial populations, which are affected by carbon and oxygen concentrations. The temporal dynamics and amplitude of the root exudation process serve as a driving force for microbial and geochemical phenomena, and lead to the development of the Gompetzian dynamics, synchronized oscillations, and phase-space attractors of microbial populations and carbon and oxygen concentrations. The nonlinear dynamic analysis of time series concentrations from the solution of the ODEs was used to identify several types of phase-space attractors, which appear to be dependent on the parameters of the exudation function and Monod kinetic parameters. This phase space analysis was conducted by means of assessing the global and local embedding dimensions, correlation time, capacity and correlation dimensions, and Lyapunov exponents of the calculated model variables defining the phase space. Such results can be used for planning experimental and theoretical studies of biogeochemical processes in the fields of plant nutrition, phyto- and bio-remediation, and other ecological areas.

  5. Human seizures couple across spatial scales through travelling wave dynamics

    NASA Astrophysics Data System (ADS)

    Martinet, L.-E.; Fiddyment, G.; Madsen, J. R.; Eskandar, E. N.; Truccolo, W.; Eden, U. T.; Cash, S. S.; Kramer, M. A.

    2017-04-01

    Epilepsy--the propensity toward recurrent, unprovoked seizures--is a devastating disease affecting 65 million people worldwide. Understanding and treating this disease remains a challenge, as seizures manifest through mechanisms and features that span spatial and temporal scales. Here we address this challenge through the analysis and modelling of human brain voltage activity recorded simultaneously across microscopic and macroscopic spatial scales. We show that during seizure large-scale neural populations spanning centimetres of cortex coordinate with small neural groups spanning cortical columns, and provide evidence that rapidly propagating waves of activity underlie this increased inter-scale coupling. We develop a corresponding computational model to propose specific mechanisms--namely, the effects of an increased extracellular potassium concentration diffusing in space--that support the observed spatiotemporal dynamics. Understanding the multi-scale, spatiotemporal dynamics of human seizures--and connecting these dynamics to specific biological mechanisms--promises new insights to treat this devastating disease.

  6. Clinical study and numerical simulation of brain cancer dynamics under radiotherapy

    NASA Astrophysics Data System (ADS)

    Nawrocki, S.; Zubik-Kowal, B.

    2015-05-01

    We perform a clinical and numerical study of the progression of brain cancer tumor growth dynamics coupled with the effects of radiotherapy. We obtained clinical data from a sample of brain cancer patients undergoing radiotherapy and compare it to our numerical simulations to a mathematical model of brain tumor cell population growth influenced by radiation treatment. We model how the body biologically receives a physically delivered dose of radiation to the affected tumorous area in the form of a generalized LQ model, modified to account for the conversion process of sublethal lesions into lethal lesions at high radiation doses. We obtain good agreement between our clinical data and our numerical simulations of brain cancer progression given by the mathematical model, which couples tumor growth dynamics and the effect of irradiation. The correlation, spanning a wide dataset, demonstrates the potential of the mathematical model to describe the dynamics of brain tumor growth influenced by radiotherapy.

  7. Projected continent-wide declines of the emperor penguin under climate change

    NASA Astrophysics Data System (ADS)

    Jenouvrier, Stéphanie; Holland, Marika; Stroeve, Julienne; Serreze, Mark; Barbraud, Christophe; Weimerskirch, Henri; Caswell, Hal

    2014-08-01

    Climate change has been projected to affect species distribution and future trends of local populations, but projections of global population trends are rare. We analyse global population trends of the emperor penguin (Aptenodytes forsteri), an iconic Antarctic top predator, under the influence of sea ice conditions projected by coupled climate models assessed in the Intergovernmental Panel on Climate Change (IPCC) effort. We project the dynamics of all 45 known emperor penguin colonies by forcing a sea-ice-dependent demographic model with local, colony-specific, sea ice conditions projected through to the end of the twenty-first century. Dynamics differ among colonies, but by 2100 all populations are projected to be declining. At least two-thirds are projected to have declined by >50% from their current size. The global population is projected to have declined by at least 19%. Because criteria to classify species by their extinction risk are based on the global population dynamics, global analyses are critical for conservation. We discuss uncertainties arising in such global projections and the problems of defining conservation criteria for species endangered by future climate change.

  8. Robust state preparation in quantum simulations of Dirac dynamics

    NASA Astrophysics Data System (ADS)

    Song, Xue-Ke; Deng, Fu-Guo; Lamata, Lucas; Muga, J. G.

    2017-02-01

    A nonrelativistic system such as an ultracold trapped ion may perform a quantum simulation of a Dirac equation dynamics under specific conditions. The resulting Hamiltonian and dynamics are highly controllable, but the coupling between momentum and internal levels poses some difficulties to manipulate the internal states accurately in wave packets. We use invariants of motion to inverse engineer robust population inversion processes with a homogeneous, time-dependent simulated electric field. This exemplifies the usefulness of inverse-engineering techniques to improve the performance of quantum simulation protocols.

  9. First Results of Modeling Radiation Belt Electron Dynamics with the SAMI3 Plasmasphere Model

    NASA Astrophysics Data System (ADS)

    Komar, C. M.; Glocer, A.; Huba, J.; Fok, M. C. H.; Kang, S. B.; Buzulukova, N.

    2017-12-01

    The radiation belts were one of the first discoveries of the Space Age some sixty years ago and radiation belt models have been improving since the discovery of the radiation belts. The plasmasphere is one region that has been critically important to determining the dynamics of radiation belt populations. This region of space plays a critical role in describing the distribution of chorus and magnetospheric hiss waves throughout the inner magnetosphere. Both of these waves have been shown to interact with energetic electrons in the radiation belts and can result in the energization or loss of radiation belt electrons. However, radiation belt models have been historically limited in describing the distribution of cold plasmaspheric plasma and have relied on empirically determined plasmasphere models. Some plasmasphere models use an azimuthally symmetric distribution of the plasmasphere which can fail to capture important plasmaspheric dynamics such as the development of plasmaspheric drainage plumes. Previous work have coupled the kinetic bounce-averaged Comprehensive Inner Magnetosphere-Ionosphere (CIMI) model used to model ring current and radiation belt populations with the Block-adaptive Tree Solar wind Roe-type Upwind Scheme (BATSRUS) global magnetohydrodynamic model to self-consistently obtain the magnetospheric magnetic field and ionospheric potential. The present work will utilize this previous coupling and will additionally couple the SAMI3 plasmasphere model to better represent the dynamics on the plasmasphere and its role in determining the distribution of waves throughout the inner magnetosphere. First results on the relevance of chorus, hiss, and ultralow frequency waves on radiation belt electron dynamics will be discussed in context of the June 1st, 2013 storm-time dropout event.

  10. Four-electron model for singlet and triplet excitation energy transfers with inclusion of coherence memory, inelastic tunneling and nuclear quantum effects

    NASA Astrophysics Data System (ADS)

    Suzuki, Yosuke; Ebina, Kuniyoshi; Tanaka, Shigenori

    2016-08-01

    A computational scheme to describe the coherent dynamics of excitation energy transfer (EET) in molecular systems is proposed on the basis of generalized master equations with memory kernels. This formalism takes into account those physical effects in electron-bath coupling system such as the spin symmetry of excitons, the inelastic electron tunneling and the quantum features of nuclear motions, thus providing a theoretical framework to perform an ab initio description of EET through molecular simulations for evaluating the spectral density and the temporal correlation function of electronic coupling. Some test calculations have then been carried out to investigate the dependence of exciton population dynamics on coherence memory, inelastic tunneling correlation time, magnitude of electronic coupling, quantum correction to temporal correlation function, reorganization energy and energy gap.

  11. Response of an arctic predator guild to collapsing lemming cycles

    PubMed Central

    Schmidt, Niels M.; Ims, Rolf A.; Høye, Toke T.; Gilg, Olivier; Hansen, Lars H.; Hansen, Jannik; Lund, Magnus; Fuglei, Eva; Forchhammer, Mads C.; Sittler, Benoit

    2012-01-01

    Alpine and arctic lemming populations appear to be highly sensitive to climate change, and when faced with warmer and shorter winters, their well-known high-amplitude population cycles may collapse. Being keystone species in tundra ecosystems, changed lemming dynamics may convey significant knock-on effects on trophically linked species. Here, we analyse long-term (1988–2010), community-wide monitoring data from two sites in high-arctic Greenland and document how a collapse in collared lemming cyclicity affects the population dynamics of the predator guild. Dramatic changes were observed in two highly specialized lemming predators: snowy owl and stoat. Following the lemming cycle collapse, snowy owl fledgling production declined by 98 per cent, and there was indication of a severe population decline of stoats at one site. The less specialized long-tailed skua and the generalist arctic fox were more loosely coupled to the lemming dynamics. Still, the lemming collapse had noticeable effects on their reproductive performance. Predator responses differed somewhat between sites in all species and could arise from site-specific differences in lemming dynamics, intra-guild interactions or subsidies from other resources. Nevertheless, population extinctions and community restructuring of this arctic endemic predator guild are likely if the lemming dynamics are maintained at the current non-cyclic, low-density state. PMID:22977153

  12. Response of an arctic predator guild to collapsing lemming cycles.

    PubMed

    Schmidt, Niels M; Ims, Rolf A; Høye, Toke T; Gilg, Olivier; Hansen, Lars H; Hansen, Jannik; Lund, Magnus; Fuglei, Eva; Forchhammer, Mads C; Sittler, Benoit

    2012-11-07

    Alpine and arctic lemming populations appear to be highly sensitive to climate change, and when faced with warmer and shorter winters, their well-known high-amplitude population cycles may collapse. Being keystone species in tundra ecosystems, changed lemming dynamics may convey significant knock-on effects on trophically linked species. Here, we analyse long-term (1988-2010), community-wide monitoring data from two sites in high-arctic Greenland and document how a collapse in collared lemming cyclicity affects the population dynamics of the predator guild. Dramatic changes were observed in two highly specialized lemming predators: snowy owl and stoat. Following the lemming cycle collapse, snowy owl fledgling production declined by 98 per cent, and there was indication of a severe population decline of stoats at one site. The less specialized long-tailed skua and the generalist arctic fox were more loosely coupled to the lemming dynamics. Still, the lemming collapse had noticeable effects on their reproductive performance. Predator responses differed somewhat between sites in all species and could arise from site-specific differences in lemming dynamics, intra-guild interactions or subsidies from other resources. Nevertheless, population extinctions and community restructuring of this arctic endemic predator guild are likely if the lemming dynamics are maintained at the current non-cyclic, low-density state.

  13. Eco-evolutionary spatial dynamics in the Glanville fritillary butterfly.

    PubMed

    Hanski, Ilkka A

    2011-08-30

    Demographic population dynamics, gene flow, and local adaptation may influence each other and lead to coupling of ecological and evolutionary dynamics, especially in species inhabiting fragmented heterogeneous environments. Here, I review long-term research on eco-evolutionary spatial dynamics in the Glanville fritillary butterfly inhabiting a large network of approximately 4,000 meadows in Finland. The metapopulation persists in a balance between frequent local extinctions and recolonizations. The genetic spatial structure as defined by neutral markers is much more coarse-grained than the demographic spatial structure determined by the fragmented habitat, yet small-scale spatial structure has important consequences for the dynamics. I discuss three examples of eco-evolutionary spatial dynamics. (i) Extinction-colonization metapopulation dynamics influence allele frequency changes in the phosphoglucose isomerase (Pgi) gene, which leads to strong associations between genetic variation in Pgi and dispersal, recolonization, and local population dynamics. (ii) Inbreeding in local populations increases their risk for extinction, whereas reciprocal effects between inbreeding, population size, and emigration represent likely eco-evolutionary feedbacks. (iii) Genetically determined female oviposition preference for two host plant species exhibits a cline paralleling a gradient in host plant relative abundances, and host plant preference of dispersing females in relation to the host plant composition of habitat patches influences immigration (gene flow) and recolonization (founder events). Eco-evolutionary spatial dynamics in heterogeneous environments may not lead to directional evolutionary changes unless the environment itself changes, but eco-evolutionary dynamics may contribute to the maintenance of genetic variation attributable to fluctuating selection in space and time.

  14. Dynamic network communication as a unifying neural basis for cognition, development, aging, and disease.

    PubMed

    Voytek, Bradley; Knight, Robert T

    2015-06-15

    Perception, cognition, and social interaction depend upon coordinated neural activity. This coordination operates within noisy, overlapping, and distributed neural networks operating at multiple timescales. These networks are built upon a structural scaffolding with intrinsic neuroplasticity that changes with development, aging, disease, and personal experience. In this article, we begin from the perspective that successful interregional communication relies upon the transient synchronization between distinct low-frequency (<80 Hz) oscillations, allowing for brief windows of communication via phase-coordinated local neuronal spiking. From this, we construct a theoretical framework for dynamic network communication, arguing that these networks reflect a balance between oscillatory coupling and local population spiking activity and that these two levels of activity interact. We theorize that when oscillatory coupling is too strong, spike timing within the local neuronal population becomes too synchronous; when oscillatory coupling is too weak, spike timing is too disorganized. Each results in specific disruptions to neural communication. These alterations in communication dynamics may underlie cognitive changes associated with healthy development and aging, in addition to neurological and psychiatric disorders. A number of neurological and psychiatric disorders-including Parkinson's disease, autism, depression, schizophrenia, and anxiety-are associated with abnormalities in oscillatory activity. Although aging, psychiatric and neurological disease, and experience differ in the biological changes to structural gray or white matter, neurotransmission, and gene expression, our framework suggests that any resultant cognitive and behavioral changes in normal or disordered states or their treatment are a product of how these physical processes affect dynamic network communication. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  15. Free-energy landscape of intrinsically disordered proteins investigated by all-atom multicanonical molecular dynamics.

    PubMed

    Higo, Junichi; Umezawa, Koji

    2014-01-01

    We introduce computational studies on intrinsically disordered proteins (IDPs). Especially, we present our multicanonical molecular dynamics (McMD) simulations of two IDP-partner systems: NRSF-mSin3 and pKID-KIX. McMD is one of enhanced conformational sampling methods useful for conformational sampling of biomolecular systems. IDP adopts a specific tertiary structure upon binding to its partner molecule, although it is unstructured in the unbound state (i.e. the free state). This IDP-specific property is called "coupled folding and binding". The McMD simulation treats the biomolecules with an all-atom model immersed in an explicit solvent. In the initial configuration of simulation, IDP and its partner molecules are set to be distant from each other, and the IDP conformation is disordered. The computationally obtained free-energy landscape for coupled folding and binding has shown that native- and non-native-complex clusters distribute complicatedly in the conformational space. The all-atom simulation suggests that both of induced-folding and population-selection are coupled complicatedly in the coupled folding and binding. Further analyses have exemplified that the conformational fluctuations (dynamical flexibility) in the bound and unbound states are essentially important to characterize IDP functioning.

  16. Weed ecology and population dynamics

    USDA-ARS?s Scientific Manuscript database

    A global rise in herbicide resistant weed genotypes, coupled with a growing demand for food produced with minimal external synthetic inputs, is driving producer interest in reducing reliance on herbicides for weed management. An improved understanding of weed ecology can support the design of weed s...

  17. SmB6 electron-phonon coupling constant from time- and angle-resolved photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Sterzi, A.; Crepaldi, A.; Cilento, F.; Manzoni, G.; Frantzeskakis, E.; Zacchigna, M.; van Heumen, E.; Huang, Y. K.; Golden, M. S.; Parmigiani, F.

    2016-08-01

    SmB6 is a mixed valence Kondo system resulting from the hybridization between localized f electrons and delocalized d electrons. We have investigated its out-of-equilibrium electron dynamics by means of time- and angle-resolved photoelectron spectroscopy. The transient electronic population above the Fermi level can be described by a time-dependent Fermi-Dirac distribution. By solving a two-temperature model that well reproduces the relaxation dynamics of the effective electronic temperature, we estimate the electron-phonon coupling constant λ to range from 0.13 ±0.03 to 0.04 ±0.01 . These extremes are obtained assuming a coupling of the electrons with either a phonon mode at 10 or 19 meV. A realistic value of the average phonon energy will give an actual value of λ within this range. Our results provide an experimental report on the material electron-phonon coupling, contributing to both the electronic transport and the macroscopic thermodynamic properties of SmB6.

  18. Nodeless vibrational amplitudes and quantum nonadiabatic dynamics in the nested funnel for a pseudo Jahn-Teller molecule or homodimer

    NASA Astrophysics Data System (ADS)

    Peters, William K.; Tiwari, Vivek; Jonas, David M.

    2017-11-01

    The nonadiabatic states and dynamics are investigated for a linear vibronic coupling Hamiltonian with a static electronic splitting and weak off-diagonal Jahn-Teller coupling through a single vibration with a vibrational-electronic resonance. With a transformation of the electronic basis, this Hamiltonian is also applicable to the anti-correlated vibration in a symmetric homodimer with marginally strong constant off-diagonal coupling, where the non-adiabatic states and dynamics model electronic excitation energy transfer or self-exchange electron transfer. For parameters modeling a free-base naphthalocyanine, the nonadiabatic couplings are deeply quantum mechanical and depend on wavepacket width; scalar couplings are as important as the derivative couplings that are usually interpreted to depend on vibrational velocity in semiclassical curve crossing or surface hopping theories. A colored visualization scheme that fully characterizes the non-adiabatic states using the exact factorization is developed. The nonadiabatic states in this nested funnel have nodeless vibrational factors with strongly avoided zeroes in their vibrational probability densities. Vibronic dynamics are visualized through the vibrational coordinate dependent density of the time-dependent dipole moment in free induction decay. Vibrational motion is amplified by the nonadiabatic couplings, with asymmetric and anisotropic motions that depend upon the excitation polarization in the molecular frame and can be reversed by a change in polarization. This generates a vibrational quantum beat anisotropy in excess of 2/5. The amplitude of vibrational motion can be larger than that on the uncoupled potentials, and the electronic population transfer is maximized within one vibrational period. Most of these dynamics are missed by the adiabatic approximation, and some electronic and vibrational motions are completely suppressed by the Condon approximation of a coordinate-independent transition dipole between adiabatic states. For all initial conditions investigated, the initial nonadiabatic electronic motion is driven towards the lower adiabatic state, and criteria for this directed motion are discussed.

  19. Nodeless vibrational amplitudes and quantum nonadiabatic dynamics in the nested funnel for a pseudo Jahn-Teller molecule or homodimer.

    PubMed

    Peters, William K; Tiwari, Vivek; Jonas, David M

    2017-11-21

    The nonadiabatic states and dynamics are investigated for a linear vibronic coupling Hamiltonian with a static electronic splitting and weak off-diagonal Jahn-Teller coupling through a single vibration with a vibrational-electronic resonance. With a transformation of the electronic basis, this Hamiltonian is also applicable to the anti-correlated vibration in a symmetric homodimer with marginally strong constant off-diagonal coupling, where the non-adiabatic states and dynamics model electronic excitation energy transfer or self-exchange electron transfer. For parameters modeling a free-base naphthalocyanine, the nonadiabatic couplings are deeply quantum mechanical and depend on wavepacket width; scalar couplings are as important as the derivative couplings that are usually interpreted to depend on vibrational velocity in semiclassical curve crossing or surface hopping theories. A colored visualization scheme that fully characterizes the non-adiabatic states using the exact factorization is developed. The nonadiabatic states in this nested funnel have nodeless vibrational factors with strongly avoided zeroes in their vibrational probability densities. Vibronic dynamics are visualized through the vibrational coordinate dependent density of the time-dependent dipole moment in free induction decay. Vibrational motion is amplified by the nonadiabatic couplings, with asymmetric and anisotropic motions that depend upon the excitation polarization in the molecular frame and can be reversed by a change in polarization. This generates a vibrational quantum beat anisotropy in excess of 2/5. The amplitude of vibrational motion can be larger than that on the uncoupled potentials, and the electronic population transfer is maximized within one vibrational period. Most of these dynamics are missed by the adiabatic approximation, and some electronic and vibrational motions are completely suppressed by the Condon approximation of a coordinate-independent transition dipole between adiabatic states. For all initial conditions investigated, the initial nonadiabatic electronic motion is driven towards the lower adiabatic state, and criteria for this directed motion are discussed.

  20. Excitatory and Inhibitory Interactions in Localized Populations of Model Neurons

    PubMed Central

    Wilson, Hugh R.; Cowan, Jack D.

    1972-01-01

    Coupled nonlinear differential equations are derived for the dynamics of spatially localized populations containing both excitatory and inhibitory model neurons. Phase plane methods and numerical solutions are then used to investigate population responses to various types of stimuli. The results obtained show simple and multiple hysteresis phenomena and limit cycle activity. The latter is particularly interesting since the frequency of the limit cycle oscillation is found to be a monotonic function of stimulus intensity. Finally, it is proved that the existence of limit cycle dynamics in response to one class of stimuli implies the existence of multiple stable states and hysteresis in response to a different class of stimuli. The relation between these findings and a number of experiments is discussed. PMID:4332108

  1. Advances in global sensitivity analyses of demographic-based species distribution models to address uncertainties in dynamic landscapes.

    PubMed

    Naujokaitis-Lewis, Ilona; Curtis, Janelle M R

    2016-01-01

    Developing a rigorous understanding of multiple global threats to species persistence requires the use of integrated modeling methods that capture processes which influence species distributions. Species distribution models (SDMs) coupled with population dynamics models can incorporate relationships between changing environments and demographics and are increasingly used to quantify relative extinction risks associated with climate and land-use changes. Despite their appeal, uncertainties associated with complex models can undermine their usefulness for advancing predictive ecology and informing conservation management decisions. We developed a computationally-efficient and freely available tool (GRIP 2.0) that implements and automates a global sensitivity analysis of coupled SDM-population dynamics models for comparing the relative influence of demographic parameters and habitat attributes on predicted extinction risk. Advances over previous global sensitivity analyses include the ability to vary habitat suitability across gradients, as well as habitat amount and configuration of spatially-explicit suitability maps of real and simulated landscapes. Using GRIP 2.0, we carried out a multi-model global sensitivity analysis of a coupled SDM-population dynamics model of whitebark pine (Pinus albicaulis) in Mount Rainier National Park as a case study and quantified the relative influence of input parameters and their interactions on model predictions. Our results differed from the one-at-time analyses used in the original study, and we found that the most influential parameters included the total amount of suitable habitat within the landscape, survival rates, and effects of a prevalent disease, white pine blister rust. Strong interactions between habitat amount and survival rates of older trees suggests the importance of habitat in mediating the negative influences of white pine blister rust. Our results underscore the importance of considering habitat attributes along with demographic parameters in sensitivity routines. GRIP 2.0 is an important decision-support tool that can be used to prioritize research, identify habitat-based thresholds and management intervention points to improve probability of species persistence, and evaluate trade-offs of alternative management options.

  2. Advances in global sensitivity analyses of demographic-based species distribution models to address uncertainties in dynamic landscapes

    PubMed Central

    Curtis, Janelle M.R.

    2016-01-01

    Developing a rigorous understanding of multiple global threats to species persistence requires the use of integrated modeling methods that capture processes which influence species distributions. Species distribution models (SDMs) coupled with population dynamics models can incorporate relationships between changing environments and demographics and are increasingly used to quantify relative extinction risks associated with climate and land-use changes. Despite their appeal, uncertainties associated with complex models can undermine their usefulness for advancing predictive ecology and informing conservation management decisions. We developed a computationally-efficient and freely available tool (GRIP 2.0) that implements and automates a global sensitivity analysis of coupled SDM-population dynamics models for comparing the relative influence of demographic parameters and habitat attributes on predicted extinction risk. Advances over previous global sensitivity analyses include the ability to vary habitat suitability across gradients, as well as habitat amount and configuration of spatially-explicit suitability maps of real and simulated landscapes. Using GRIP 2.0, we carried out a multi-model global sensitivity analysis of a coupled SDM-population dynamics model of whitebark pine (Pinus albicaulis) in Mount Rainier National Park as a case study and quantified the relative influence of input parameters and their interactions on model predictions. Our results differed from the one-at-time analyses used in the original study, and we found that the most influential parameters included the total amount of suitable habitat within the landscape, survival rates, and effects of a prevalent disease, white pine blister rust. Strong interactions between habitat amount and survival rates of older trees suggests the importance of habitat in mediating the negative influences of white pine blister rust. Our results underscore the importance of considering habitat attributes along with demographic parameters in sensitivity routines. GRIP 2.0 is an important decision-support tool that can be used to prioritize research, identify habitat-based thresholds and management intervention points to improve probability of species persistence, and evaluate trade-offs of alternative management options. PMID:27547529

  3. Mouse Hair Cycle Expression Dynamics Modeled as Coupled Mesenchymal and Epithelial Oscillators

    PubMed Central

    Tasseff, Ryan; Bheda-Malge, Anjali; DiColandrea, Teresa; Bascom, Charles C.; Isfort, Robert J.; Gelinas, Richard

    2014-01-01

    The hair cycle is a dynamic process where follicles repeatedly move through phases of growth, retraction, and relative quiescence. This process is an example of temporal and spatial biological complexity. Understanding of the hair cycle and its regulation would shed light on many other complex systems relevant to biological and medical research. Currently, a systematic characterization of gene expression and summarization within the context of a mathematical model is not yet available. Given the cyclic nature of the hair cycle, we felt it was important to consider a subset of genes with periodic expression. To this end, we combined several mathematical approaches with high-throughput, whole mouse skin, mRNA expression data to characterize aspects of the dynamics and the possible cell populations corresponding to potentially periodic patterns. In particular two gene clusters, demonstrating properties of out-of-phase synchronized expression, were identified. A mean field, phase coupled oscillator model was shown to quantitatively recapitulate the synchronization observed in the data. Furthermore, we found only one configuration of positive-negative coupling to be dynamically stable, which provided insight on general features of the regulation. Subsequent bifurcation analysis was able to identify and describe alternate states based on perturbation of system parameters. A 2-population mixture model and cell type enrichment was used to associate the two gene clusters to features of background mesenchymal populations and rapidly expanding follicular epithelial cells. Distinct timing and localization of expression was also shown by RNA and protein imaging for representative genes. Taken together, the evidence suggests that synchronization between expanding epithelial and background mesenchymal cells may be maintained, in part, by inhibitory regulation, and potential mediators of this regulation were identified. Furthermore, the model suggests that impairing this negative regulation will drive a bifurcation which may represent transition into a pathological state such as hair miniaturization. PMID:25375120

  4. The effect of EIF dynamics on the cryopreservation process of a size distributed cell population.

    PubMed

    Fadda, S; Briesen, H; Cincotti, A

    2011-06-01

    Typical mathematical modeling of cryopreservation of cell suspensions assumes a thermodynamic equilibrium between the ice and liquid water in the extracellular solution. This work investigates the validity of this assumption by introducing a population balance approach for dynamic extracellular ice formation (EIF) in the absence of any cryo-protectant agent (CPA). The population balance model reflects nucleation and diffusion-limited growth in the suspending solution whose driving forces are evaluated in the relevant phase diagram. This population balance description of the extracellular compartment has been coupled to a model recently proposed in the literature [Fadda et al., AIChE Journal, 56, 2173-2185, (2010)], which is capable of quantitatively describing and predicting internal ice formation (IIF) inside the cells. The cells are characterized by a size distribution (i.e. through another population balance), thus overcoming the classic view of a population of identically sized cells. From the comparison of the system behavior in terms of the dynamics of the cell size distribution it can be concluded that the assumption of a thermodynamic equilibrium in the extracellular compartment is not always justified. Depending on the cooling rate, the dynamics of EIF needs to be considered. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Ultrafast Multi-Level Logic Gates with Spin-Valley Coupled Polarization Anisotropy in Monolayer MoS2

    PubMed Central

    Wang, Yu-Ting; Luo, Chih-Wei; Yabushita, Atsushi; Wu, Kaung-Hsiung; Kobayashi, Takayoshi; Chen, Chang-Hsiao; Li, Lain-Jong

    2015-01-01

    The inherent valley-contrasting optical selection rules for interband transitions at the K and K′ valleys in monolayer MoS2 have attracted extensive interest. Carriers in these two valleys can be selectively excited by circularly polarized optical fields. The comprehensive dynamics of spin valley coupled polarization and polarized exciton are completely resolved in this work. Here, we present a systematic study of the ultrafast dynamics of monolayer MoS2 including spin randomization, exciton dissociation, free carrier relaxation, and electron-hole recombination by helicity- and photon energy-resolved transient spectroscopy. The time constants for these processes are 60 fs, 1 ps, 25 ps, and ~300 ps, respectively. The ultrafast dynamics of spin polarization, valley population, and exciton dissociation provides the desired information about the mechanism of radiationless transitions in various applications of 2D transition metal dichalcogenides. For example, spin valley coupled polarization provides a promising way to build optically selective-driven ultrafast valleytronics at room temperature. Therefore, a full understanding of the ultrafast dynamics in MoS2 is expected to provide important fundamental and technological perspectives. PMID:25656222

  6. Solvable model for chimera states of coupled oscillators.

    PubMed

    Abrams, Daniel M; Mirollo, Rennie; Strogatz, Steven H; Wiley, Daniel A

    2008-08-22

    Networks of identical, symmetrically coupled oscillators can spontaneously split into synchronized and desynchronized subpopulations. Such chimera states were discovered in 2002, but are not well understood theoretically. Here we obtain the first exact results about the stability, dynamics, and bifurcations of chimera states by analyzing a minimal model consisting of two interacting populations of oscillators. Along with a completely synchronous state, the system displays stable chimeras, breathing chimeras, and saddle-node, Hopf, and homoclinic bifurcations of chimeras.

  7. Simulating anchovy's full life cycle in the northern Aegean Sea (eastern Mediterranean): A coupled hydro-biogeochemical-IBM model

    NASA Astrophysics Data System (ADS)

    Politikos, D.; Somarakis, S.; Tsiaras, K. P.; Giannoulaki, M.; Petihakis, G.; Machias, A.; Triantafyllou, G.

    2015-11-01

    A 3-D full life cycle population model for the North Aegean Sea (NAS) anchovy stock is presented. The model is two-way coupled with a hydrodynamic-biogeochemical model (POM-ERSEM). The anchovy life span is divided into seven life stages/age classes. Embryos and early larvae are passive particles, but subsequent stages exhibit active horizontal movements based on specific rules. A bioenergetics model simulates the growth in both the larval and juvenile/adult stages, while the microzooplankton and mesozooplankton fields of the biogeochemical model provide the food for fish consumption. The super-individual approach is adopted for the representation of the anchovy population. A dynamic egg production module, with an energy allocation algorithm, is embedded in the bioenergetics equation and produces eggs based on a new conceptual model for anchovy vitellogenesis. A model simulation for the period 2003-2006 with realistic initial conditions reproduced well the magnitude of population biomass and daily egg production estimated from acoustic and daily egg production method (DEPM) surveys, carried out in the NAS during June 2003-2006. Model simulated adult and egg habitats were also in good agreement with observed spatial distributions of acoustic biomass and egg abundance in June. Sensitivity simulations were performed to investigate the effect of different formulations adopted for key processes, such as reproduction and movement. The effect of the anchovy population on plankton dynamics was also investigated, by comparing simulations adopting a two-way or a one-way coupling of the fish with the biogeochemical model.

  8. A necessary condition for dispersal driven growth of populations with discrete patch dynamics.

    PubMed

    Guiver, Chris; Packman, David; Townley, Stuart

    2017-07-07

    We revisit the question of when can dispersal-induced coupling between discrete sink populations cause overall population growth? Such a phenomenon is called dispersal driven growth and provides a simple explanation of how dispersal can allow populations to persist across discrete, spatially heterogeneous, environments even when individual patches are adverse or unfavourable. For two classes of mathematical models, one linear and one non-linear, we provide necessary conditions for dispersal driven growth in terms of the non-existence of a common linear Lyapunov function, which we describe. Our approach draws heavily upon the underlying positive dynamical systems structure. Our results apply to both discrete- and continuous-time models. The theory is illustrated with examples and both biological and mathematical conclusions are drawn. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Beam quality improvement by population-dynamic-coupled combined guiding effect in end-pumped Nd:YVO4 laser oscillator

    NASA Astrophysics Data System (ADS)

    Shen, Yijie; Gong, Mali; Fu, Xing

    2018-05-01

    Beam quality improvement with pump power increasing in an end-pumped laser oscillator is experimentally realized for the first time, to the best of our knowledge. The phenomenon is caused by the population-dynamic-coupled combined guiding effect, a comprehensive theoretical model of which has been well established, in agreement with the experimental results. Based on an 888 nm in-band dual-end-pumped oscillator using four tandem Nd:YVO4 crystals, the output beam quality of M^2= 1.1/1.1 at the pump power of 25 W is degraded to M^2 = 2.5/1.8 at 75 W pumping and then improved to M^2= 1.8/1.3 at 150 W pumping. The near-TEM_{00} mode is obtained with the highest continuous-wave output power of 72.1 W and the optical-to-optical efficiency of 48.1%. This work demonstrates great potential to further scale the output power of end-pumped laser oscillator while keeping good beam quality.

  10. Coherent Dynamics of Open Quantum System in the Presence of Majorana Fermions

    NASA Astrophysics Data System (ADS)

    Assuncao, Maryzaura O.; Diniz, Ginetom S.; Vernek, Edson; Souza, Fabricio M.

    In recent years the research on quantum coherent dynamics of open systems has attracted great attention due to its relevance for future implementation of quantum computers. In the present study we apply the Kadanoff-Baym formalism to simulate the population dynamics of a double-dot molecular system attached to both a superconductor and fermionic reservoirs. We solve both analytically and numerically a set of coupled differential equations that account for crossed Andreev reflection (CAR), intramolecular hopping and tunneling. We pay particular attention on how Majorana bound states can affect the population dynamics of the molecule. We investigate on how initial state configuration affects the dynamics. For instance, if one dot is occupied and the other one is empty, the dynamics is dictated by the inter dot tunneling. On the other hand, for initially empty dots, the CAR dominates. We also investigate how the source and drain currents evolve in time. This work was supporte by FAPEMIG, CNPq and CAPES.

  11. Coupled disease-behavior dynamics on complex networks: A review

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Andrews, Michael A.; Wu, Zhi-Xi; Wang, Lin; Bauch, Chris T.

    2015-12-01

    It is increasingly recognized that a key component of successful infection control efforts is understanding the complex, two-way interaction between disease dynamics and human behavioral and social dynamics. Human behavior such as contact precautions and social distancing clearly influence disease prevalence, but disease prevalence can in turn alter human behavior, forming a coupled, nonlinear system. Moreover, in many cases, the spatial structure of the population cannot be ignored, such that social and behavioral processes and/or transmission of infection must be represented with complex networks. Research on studying coupled disease-behavior dynamics in complex networks in particular is growing rapidly, and frequently makes use of analysis methods and concepts from statistical physics. Here, we review some of the growing literature in this area. We contrast network-based approaches to homogeneous-mixing approaches, point out how their predictions differ, and describe the rich and often surprising behavior of disease-behavior dynamics on complex networks, and compare them to processes in statistical physics. We discuss how these models can capture the dynamics that characterize many real-world scenarios, thereby suggesting ways that policy makers can better design effective prevention strategies. We also describe the growing sources of digital data that are facilitating research in this area. Finally, we suggest pitfalls which might be faced by researchers in the field, and we suggest several ways in which the field could move forward in the coming years.

  12. Expansion Under Climate Change: The Genetic Consequences.

    PubMed

    Garnier, Jimmy; Lewis, Mark A

    2016-11-01

    Range expansion and range shifts are crucial population responses to climate change. Genetic consequences are not well understood but are clearly coupled to ecological dynamics that, in turn, are driven by shifting climate conditions. We model a population with a deterministic reaction-diffusion model coupled to a heterogeneous environment that develops in time due to climate change. We decompose the resulting travelling wave solution into neutral genetic components to analyse the spatio-temporal dynamics of its genetic structure. Our analysis shows that range expansions and range shifts under slow climate change preserve genetic diversity. This is because slow climate change creates range boundaries that promote spatial mixing of genetic components. Mathematically, the mixing leads to so-called pushed travelling wave solutions. This mixing phenomenon is not seen in spatially homogeneous environments, where range expansion reduces genetic diversity through gene surfing arising from pulled travelling wave solutions. However, the preservation of diversity is diminished when climate change occurs too quickly. Using diversity indices, we show that fast expansions and range shifts erode genetic diversity more than slow range expansions and range shifts. Our study provides analytical insight into the dynamics of travelling wave solutions in heterogeneous environments.

  13. Atomistic non-adiabatic dynamics of the LH2 complex with a GPU-accelerated ab initio exciton model.

    PubMed

    Sisto, Aaron; Stross, Clem; van der Kamp, Marc W; O'Connor, Michael; McIntosh-Smith, Simon; Johnson, Graham T; Hohenstein, Edward G; Manby, Fred R; Glowacki, David R; Martinez, Todd J

    2017-06-14

    We recently outlined an efficient multi-tiered parallel ab initio excitonic framework that utilizes time dependent density functional theory (TDDFT) to calculate ground and excited state energies and gradients of large supramolecular complexes in atomistic detail - enabling us to undertake non-adiabatic simulations which explicitly account for the coupled anharmonic vibrational motion of all the constituent atoms in a supramolecular system. Here we apply that framework to the 27 coupled bacterio-chlorophyll-a chromophores which make up the LH2 complex, using it to compute an on-the-fly nonadiabatic surface-hopping (SH) trajectory of electronically excited LH2. Part one of this article is focussed on calibrating our ab initio exciton Hamiltonian using two key parameters: a shift δ, which corrects for the error in TDDFT vertical excitation energies; and an effective dielectric constant ε, which describes the average screening of the transition-dipole coupling between chromophores. Using snapshots obtained from equilibrium molecular dynamics simulations (MD) of LH2, we tune the values of both δ and ε through fitting to the thermally broadened experimental absorption spectrum, giving a linear absorption spectrum that agrees reasonably well with experiment. In part two of this article, we construct a time-resolved picture of the coupled vibrational and excitation energy transfer (EET) dynamics in the sub-picosecond regime following photo-excitation. Assuming Franck-Condon excitation of a narrow eigenstate band centred at 800 nm, we use surface hopping to follow a single nonadiabatic dynamics trajectory within the full eigenstate manifold. Consistent with experimental data, this trajectory gives timescales for B800→B850 population transfer (τ B800→B850 ) between 650-1050 fs, and B800 population decay (τ 800→ ) between 10-50 fs. The dynamical picture that emerges is one of rapidly fluctuating LH2 eigenstates that are delocalized over multiple chromophores and undergo frequent crossing on a femtosecond timescale as a result of the atomic vibrations of the constituent chromophores. The eigenstate fluctuations arise from disorder that is driven by vibrational dynamics with multiple characteristic timescales. The scalability of our ab initio excitonic computational framework across massively parallel architectures opens up the possibility of addressing a wide range of questions, including how specific dynamical motions impact both the pathways and efficiency of electronic energy-transfer within large supramolecular systems.

  14. Analysis on Patterns of Globally Coupled Phase Oscillators with Attractive and Repulsive Interactions

    NASA Astrophysics Data System (ADS)

    Wang, Peng-Fei; Ruan, Xiao-Dong; Xu, Zhong-Bin; Fu, Xin

    2015-11-01

    The Hong-Strogatz (HS) model of globally coupled phase oscillators with attractive and repulsive interactions reflects the fact that each individual (oscillator) has its own attitude (attractive or repulsive) to the same environment (mean field). Previous studies on HS model focused mainly on the stable states on Ott-Antonsen (OA) manifold. In this paper, the eigenvalues of the Jacobi matrix of each fixed point in HS model are explicitly derived, with the aim to understand the local dynamics around each fixed point. Phase transitions are described according to relative population and coupling strength. Besides, the dynamics off OA manifold is studied. Supported by the National Basic Research Program of China under Grant No. 2015CB057301, the Applied Research Project of Public Welfare Technology of Zhejiang Province under Grant No. 201SC31109 and China Postdoctoral Science Foundation under Grant No. 2014M560483

  15. Precipitation Processes and their Modulation by Synoptic Conditions and Complex Terrain Observed during the GPM Ground Validation Olympic Mountains Experiment (OLYMPEX)

    NASA Astrophysics Data System (ADS)

    McMurdie, L. A.; Houze, R.; Zagrodnik, J.; Rowe, A.; DeHart, J.; Barnes, H.

    2016-12-01

    Successful and sustainable coupling of human societies and natural systems requires effective governance, which depends on the existence of proper infrastructure (both hard and soft). In recent decades, much attention has been paid to what has allowed many small-scale self-organized coupled natural-human systems around the world to persist for centuries, thanks to a large part to the work by Elinor Ostrom and colleagues. In this work, we mathematically operationalize a conceptual framework that is developed based on this body of work by way of a stylized model. The model captures the interplay between replicator dynamics within the population, dynamics of natural resources, and threshold characteristics of public infrastructure. The model analysis reveals conditions for long-term sustainability and collapse of the coupled systems as well as other tradeoffs and potential pitfalls in governing these systems.

  16. Comparing Effects of Cluster-Coupled Patterns on Opinion Dynamics

    NASA Astrophysics Data System (ADS)

    Liu, Yun; Si, Xia-Meng; Zhang, Yan-Chao

    2012-07-01

    Community structure is another important feature besides small-world and scale-free property of complex networks. Communities can be coupled through specific fixed links between nodes, or occasional encounter behavior. We introduce a model for opinion evolution with multiple cluster-coupled patterns, in which the interconnectivity denotes the coupled degree of communities by fixed links, and encounter frequency controls the coupled degree of communities by encounter behaviors. Considering the complicated cognitive system of people, the CODA (continuous opinions and discrete actions) update rules are used to mimic how people update their decisions after interacting with someone. It is shown that, large interconnectivity and encounter frequency both can promote consensus, reduce competition between communities and propagate some opinion successfully across the whole population. Encounter frequency is better than interconnectivity at facilitating the consensus of decisions. When the degree of social cohesion is same, small interconnectivity has better effects on lessening the competence between communities than small encounter frequency does, while large encounter frequency can make the greater degree of agreement across the whole populations than large interconnectivity can.

  17. Simulation model of Skeletonema costatum population dynamics in northern San Francisco Bay, California

    USGS Publications Warehouse

    Cloern, J.E.; Cheng, R.T.

    1981-01-01

    A pseudo-two-dimensional model is developed to simulate population dynamics of one dominant phytoplankton species (Skeletonema costatum) in northern San Francisco Bay. The model is formulated around a conceptualization of this estuary as two distinct but coupled subsystems-a deep (10-20 m) central channel and lateral areas with shallow (<2 m) water and slow circulation. Algal growth rates are governed by solar irradiation, temperature and salinity, while population losses are assumed to result from grazing bycalanoid copepods. Consequences of estuarine gravitational circulation are approximated simply by reducing convective-dispersive transport in that section of the channel (null zone) where residual bottom currents are near zero, and lateral mixing is treated as a bulkexchange process between the channel and the shoals. Model output is consistent with the hypothesis that, because planktonic algae are light-limited, shallow areas are the sites of active population growth. Seasonal variation in the location of the null zone (a response to variable river discharge) is responsible for maintaining the spring bloom of neritic diatoms in the seaward reaches of the estuary (San Pablo Bay) and the summer bloom upstream (Suisun Bay). Model output suggests that these spring and summer blooms result from the same general process-establishment of populations over the shoals, where growth rates are rapid, coupled with reduced particulate transport due to estuarine gravitational circulation. It also suggests, however, that the relative importance of physical and biological processes to phytoplankton dynamics is different in San Pablo and Suisun Bays. Finally, the model has helped us determine those processes having sufficient importance to merit further refinement in the next generation of models, and it has given new direction to field studies. ?? 1981 Academic Press Inc. (London) Ltd.

  18. Age-dependent population dynamics of the bioenergy crop Miscanthus x giganteus in Illinois

    USDA-ARS?s Scientific Manuscript database

    Rising global demand for liquid fuels, coupled with new technologies for converting biomass to ethanol, have generated intense interest in the development of herbaceous perennial bioenergy crops. Some plant species being considered as biofeedstocks share traits with invasive species and have histori...

  19. Mass synchronization: Occurrence and its control with possible applications to brain dynamics

    NASA Astrophysics Data System (ADS)

    Chandrasekar, V. K.; Sheeba, Jane H.; Lakshmanan, M.

    2010-12-01

    Occurrence of strong or mass synchronization of a large number of neuronal populations in the brain characterizes its pathological states. In order to establish an understanding of the mechanism underlying such pathological synchronization, we present a model of coupled populations of phase oscillators representing the interacting neuronal populations. Through numerical analysis, we discuss the occurrence of mass synchronization in the model, where a source population which gets strongly synchronized drives the target populations onto mass synchronization. We hypothesize and identify a possible cause for the occurrence of such a synchronization, which is so far unknown: Pathological synchronization is caused not just because of the increase in the strength of coupling between the populations but also because of the strength of the strong synchronization of the drive population. We propose a demand controlled method to control this pathological synchronization by providing a delayed feedback where the strength and frequency of the synchronization determine the strength and the time delay of the feedback. We provide an analytical explanation for the occurrence of pathological synchronization and its control in the thermodynamic limit.

  20. Eco-evolutionary spatial dynamics in the Glanville fritillary butterfly

    PubMed Central

    Hanski, Ilkka A.

    2011-01-01

    Demographic population dynamics, gene flow, and local adaptation may influence each other and lead to coupling of ecological and evolutionary dynamics, especially in species inhabiting fragmented heterogeneous environments. Here, I review long-term research on eco-evolutionary spatial dynamics in the Glanville fritillary butterfly inhabiting a large network of approximately 4,000 meadows in Finland. The metapopulation persists in a balance between frequent local extinctions and recolonizations. The genetic spatial structure as defined by neutral markers is much more coarse-grained than the demographic spatial structure determined by the fragmented habitat, yet small-scale spatial structure has important consequences for the dynamics. I discuss three examples of eco-evolutionary spatial dynamics. (i) Extinction-colonization metapopulation dynamics influence allele frequency changes in the phosphoglucose isomerase (Pgi) gene, which leads to strong associations between genetic variation in Pgi and dispersal, recolonization, and local population dynamics. (ii) Inbreeding in local populations increases their risk for extinction, whereas reciprocal effects between inbreeding, population size, and emigration represent likely eco-evolutionary feedbacks. (iii) Genetically determined female oviposition preference for two host plant species exhibits a cline paralleling a gradient in host plant relative abundances, and host plant preference of dispersing females in relation to the host plant composition of habitat patches influences immigration (gene flow) and recolonization (founder events). Eco-evolutionary spatial dynamics in heterogeneous environments may not lead to directional evolutionary changes unless the environment itself changes, but eco-evolutionary dynamics may contribute to the maintenance of genetic variation attributable to fluctuating selection in space and time. PMID:21788506

  1. Spatially cascading effect of perturbations in experimental meta-ecosystems.

    PubMed

    Harvey, Eric; Gounand, Isabelle; Ganesanandamoorthy, Pravin; Altermatt, Florian

    2016-09-14

    Ecosystems are linked to neighbouring ecosystems not only by dispersal, but also by the movement of subsidy. Such subsidy couplings between ecosystems have important landscape-scale implications because perturbations in one ecosystem may affect community structure and functioning in neighbouring ecosystems via increased/decreased subsidies. Here, we combine a general theoretical approach based on harvesting theory and a two-patch protist meta-ecosystem experiment to test the effect of regional perturbations on local community dynamics. We first characterized the relationship between the perturbation regime and local population demography on detritus production using a mathematical model. We then experimentally simulated a perturbation gradient affecting connected ecosystems simultaneously, thus altering cross-ecosystem subsidy exchanges. We demonstrate that the perturbation regime can interact with local population dynamics to trigger unexpected temporal variations in subsidy pulses from one ecosystem to another. High perturbation intensity initially led to the highest level of subsidy flows; however, the level of perturbation interacted with population dynamics to generate a crash in subsidy exchange over time. Both theoretical and experimental results show that a perturbation regime interacting with local community dynamics can induce a collapse in population levels for recipient ecosystems. These results call for integrative management of human-altered landscapes that takes into account regional dynamics of both species and resource flows. © 2016 The Author(s).

  2. Interacting opinion and disease dynamics in multiplex networks: Discontinuous phase transition and nonmonotonic consensus times

    NASA Astrophysics Data System (ADS)

    Velásquez-Rojas, Fátima; Vazquez, Federico

    2017-05-01

    Opinion formation and disease spreading are among the most studied dynamical processes on complex networks. In real societies, it is expected that these two processes depend on and affect each other. However, little is known about the effects of opinion dynamics over disease dynamics and vice versa, since most studies treat them separately. In this work we study the dynamics of the voter model for opinion formation intertwined with that of the contact process for disease spreading, in a population of agents that interact via two types of connections, social and contact. These two interacting dynamics take place on two layers of networks, coupled through a fraction q of links present in both networks. The probability that an agent updates its state depends on both the opinion and disease states of the interacting partner. We find that the opinion dynamics has striking consequences on the statistical properties of disease spreading. The most important is that the smooth (continuous) transition from a healthy to an endemic phase observed in the contact process, as the infection probability increases beyond a threshold, becomes abrupt (discontinuous) in the two-layer system. Therefore, disregarding the effects of social dynamics on epidemics propagation may lead to a misestimation of the real magnitude of the spreading. Also, an endemic-healthy discontinuous transition is found when the coupling q overcomes a threshold value. Furthermore, we show that the disease dynamics delays the opinion consensus, leading to a consensus time that varies nonmonotonically with q in a large range of the model's parameters. A mean-field approach reveals that the coupled dynamics of opinions and disease can be approximately described by the dynamics of the voter model decoupled from that of the contact process, with effective probabilities of opinion and disease transmission.

  3. Relaxation dynamics and coherent energy exchange in coupled vibration-cavity polaritons (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Simpkins, Blake S.; Fears, Kenan P.; Dressick, Walter J.; Dunkelberger, Adam D.; Spann, Bryan T.; Owrutsky, Jeffrey C.

    2016-09-01

    Coherent coupling between an optical transition and confined optical mode have been investigated for electronic-state transitions, however, only very recently have vibrational transitions been considered. Here, we demonstrate both static and dynamic results for vibrational bands strongly coupled to optical cavities. We experimentally and numerically describe strong coupling between a Fabry-Pérot cavity and carbonyl stretch ( 1730 cm 1) in poly-methylmethacrylate and provide evidence that the mixed-states are immune to inhomogeneous broadening. We investigate strong and weak coupling regimes through examination of cavities loaded with varying concentrations of a urethane monomer. Rabi splittings are in excellent agreement with an analytical description using no fitting parameters. Ultrafast pump-probe measurements reveal transient absorption signals over a frequency range well-separated from the vibrational band, as well as drastically modified relaxation rates. We speculate these modified kinetics are a consequence of the energy proximity between the vibration-cavity polariton modes and excited state transitions and that polaritons offer an alternative relaxation path for vibrational excitations. Varying the polariton energies by angle-tuning yields transient results consistent with this hypothesis. Furthermore, Rabi oscillations, or quantum beats, are observed at early times and we see evidence that these coherent vibration-cavity polariton excitations impact excited state population through cavity losses. Together, these results indicate that cavity coupling may be used to influence both excitation and relaxation rates of vibrations. Opening the field of polaritonic coupling to vibrational species promises to be a rich arena amenable to a wide variety of infrared-active bonds that can be studied in steady state and dynamically.

  4. Dynamical ion transfer between coupled Coulomb crystals in a double-well potential.

    PubMed

    Klumpp, Andrea; Zampetaki, Alexandra; Schmelcher, Peter

    2017-09-01

    We investigate the nonequilibrium dynamics of coupled Coulomb crystals of different sizes trapped in a double well potential. The dynamics is induced by an instantaneous quench of the potential barrier separating the two crystals. Due to the intra- and intercrystal Coulomb interactions and the asymmetric population of the potential wells, we observe a complex reordering of ions within the two crystals as well as ion transfer processes from one well to the other. The study and analysis of the latter processes constitutes the main focus of this work. In particular, we examine the dependence of the observed ion transfers on the quench amplitude performing an analysis for different crystalline configurations ranging from one-dimensional ion chains via two-dimensional zigzag chains and ring structures to three-dimensional spherical structures. Such an analysis provides us with the means to extract the general principles governing the ion transfer dynamics and we gain some insight on the structural disorder caused by the quench of the barrier height.

  5. Coupled dynamics of body mass and population growth in response to environmental change.

    PubMed

    Ozgul, Arpat; Childs, Dylan Z; Oli, Madan K; Armitage, Kenneth B; Blumstein, Daniel T; Olson, Lucretia E; Tuljapurkar, Shripad; Coulson, Tim

    2010-07-22

    Environmental change has altered the phenology, morphological traits and population dynamics of many species. However, the links underlying these joint responses remain largely unknown owing to a paucity of long-term data and the lack of an appropriate analytical framework. Here we investigate the link between phenotypic and demographic responses to environmental change using a new methodology and a long-term (1976-2008) data set from a hibernating mammal (the yellow-bellied marmot) inhabiting a dynamic subalpine habitat. We demonstrate how earlier emergence from hibernation and earlier weaning of young has led to a longer growing season and larger body masses before hibernation. The resulting shift in both the phenotype and the relationship between phenotype and fitness components led to a decline in adult mortality, which in turn triggered an abrupt increase in population size in recent years. Direct and trait-mediated effects of environmental change made comparable contributions to the observed marked increase in population growth. Our results help explain how a shift in phenology can cause simultaneous phenotypic and demographic changes, and highlight the need for a theory integrating ecological and evolutionary dynamics in stochastic environments.

  6. Coupled dynamics of body mass and population growth in response to environmental change

    PubMed Central

    Ozgul, Arpat; Childs, Dylan Z.; Oli, Madan K.; Armitage, Kenneth B.; Blumstein, Daniel T.; Olson, Lucretia E.; Tuljapurkar, Shripad; Coulson, Tim

    2017-01-01

    Environmental change has altered the phenology, morphological traits and population dynamics of many species1,2. However, the links underlying these joint responses remain largely unknown due to a paucity of long-term data and the lack of an appropriate analytical framework3. Here, we investigate the link between phenotypic and demographic responses to environmental change using a novel methodology and an exceptional long-term (1976–2008) dataset from a hibernating mammal (the yellow-bellied marmot) inhabiting a dynamic subalpine habitat. We demonstrate how earlier emergence from hibernation and earlier weaning of young has led to a longer growing season and larger body masses prior to hibernation. The resulting shift in both the phenotype and the relationship between phenotype and fitness components led to a decline in adult mortality, which in turn triggered an abrupt increase in population size in recent years. Direct and trait-mediated effects of environmental change had comparable contributions to the observed dramatic increase in population growth. Our results help explain how a shift in phenology can cause simultaneous phenotypic and demographic changes, and highlight the need for a theory integrating ecological and evolutionary dynamics in stochastic environments4,5. PMID:20651690

  7. Emergence of a new pair-coherent phase in many-body quenches of repulsive bosons

    NASA Astrophysics Data System (ADS)

    Fischer, Uwe R.; Lee, Kang-Soo; Xiong, Bo

    2011-07-01

    We investigate the dynamical mode population statistics and associated first- and second-order coherence of an interacting bosonic two-mode model when the pair-exchange coupling is quenched from negative to positive values. It is shown that for moderately rapid second-order transitions, a new pair-coherent phase emerges on the positive coupling side in an excited state, which is not fragmented as the ground-state single-particle density matrix would prescribe it to be.

  8. Power-law Growth and Punctuated Equilibrium Dynamics in Water Resources Systems

    NASA Astrophysics Data System (ADS)

    Parolari, A.; Katul, G. G.; Porporato, A. M.

    2015-12-01

    The global rise in population-driven water scarcity and recent appreciation of strong dynamic coupling between human and natural systems has called for new approaches to predict the future sustainability of regional and global water resources systems. The dynamics of coupled human-water systems are driven by a complex set of social, environmental, and technological factors. Present projections of water resources systems range from a finite carrying capacity regulated by accessible freshwater, or `peak renewable water,' to punctuated evolution with new supplied and improved efficiency gained from technological and social innovation. However, these projections have yet to be quantified from observations or in a comprehensive theoretical framework. Using data on global water withdrawals and storage capacity of regional water supply systems, non-trivial dynamics are identified in water resources systems development over time, including power-law growth and punctuated equilibria. Two models are introduced to explain this behavior: (1) a delay differential equation and (2) a power-law with log-periodic oscillations, both of which rely on past conditions (or system memory) to describe the present rate of growth in the system. In addition, extension of the first model demonstrates how system delays and punctuated equilibria can emerge from coupling between human population growth and associated resource demands. Lastly, anecdotal evidence is used to demonstrate the likelihood of power-law growth in global water use from the agricultural revolution 3000 BC to the present. In a practical sense, the presence of these patterns in models with delayed oscillations suggests that current decision-making related to water resources development results from the historical accumulation of resource use decisions, technological and social changes, and their consequences.

  9. Dynamically rich, yet parameter-sparse models for spatial epidemiology. Comment on "Coupled disease-behavior dynamics on complex networks: A review" by Z. Wang et al.

    NASA Astrophysics Data System (ADS)

    Jusup, Marko; Iwami, Shingo; Podobnik, Boris; Stanley, H. Eugene

    2015-12-01

    Since the very inception of mathematical modeling in epidemiology, scientists exploited the simplicity ingrained in the assumption of a well-mixed population. For example, perhaps the earliest susceptible-infectious-recovered (SIR) model developed by L. Reed and W.H. Frost in the 1920s [1], included the well-mixed assumption such that any two individuals in the population could meet each other. The problem was that, unlike many other simplifying assumptions used in epidemiological modeling whose validity holds in one situation or the other, well-mixed populations are almost non-existent in reality because the nature of human socio-economic interactions is, for the most part, highly heterogeneous (e.g. [2-6]).

  10. Simulation of aerosolized oil droplets capture in a range hood exhaust using coupled CFD-population balance method

    NASA Astrophysics Data System (ADS)

    Liu, Shuyuan; Zhang, Yong; Feng, Yu; Shi, Changbin; Cao, Yong; Yuan, Wei

    2018-02-01

    A coupled population balance sectional method (PBSM) coupled with computational fluid dynamics (CFD) is presented to simulate the capture of aerosolized oil droplets (AODs) in a range hood exhaust. The homogeneous nucleation and coagulation processes are modeled and simulated with this CFD-PBSM method. With the design angle, α of the range hood exhaust varying from 60° to 30°, the AODs capture increases meanwhile the pressure drop between the inlet and the outlet of the range hood also increases from 8.38Pa to 175.75Pa. The increasing inlet flow velocities also result in less AODs capture although the total suction increases due to higher flow rates to the range hood. Therefore, the CFD-PBSM method provides an insight into the formation and capture of AODs as well as their impact on the operation and design of the range hood exhaust.

  11. Green's Functions from Real-Time Bold-Line Monte Carlo Calculations: Spectral Properties of the Nonequilibrium Anderson Impurity Model

    NASA Astrophysics Data System (ADS)

    Cohen, Guy; Gull, Emanuel; Reichman, David R.; Millis, Andrew J.

    2014-04-01

    The nonequilibrium spectral properties of the Anderson impurity model with a chemical potential bias are investigated within a numerically exact real-time quantum Monte Carlo formalism. The two-time correlation function is computed in a form suitable for nonequilibrium dynamical mean field calculations. Additionally, the evolution of the model's spectral properties are simulated in an alternative representation, defined by a hypothetical but experimentally realizable weakly coupled auxiliary lead. The voltage splitting of the Kondo peak is confirmed and the dynamics of its formation after a coupling or gate quench are studied. This representation is shown to contain additional information about the dot's population dynamics. Further, we show that the voltage-dependent differential conductance gives a reasonable qualitative estimate of the equilibrium spectral function, but significant qualitative differences are found including incorrect trends and spurious temperature dependent effects.

  12. Theoretical study of the initial non-radiative 1 Bu → 2 Ag transition in the fluorescence quenching of s-trans-butadiene: Electronic structure methods and quantum dynamics

    NASA Astrophysics Data System (ADS)

    Komainda, A.; Lefrancois, D.; Dreuw, A.; Köppel, H.

    2017-01-01

    The photodynamics of s-trans-butadiene in the 6 eV excitation energy range is investigated by ab initio quantum dynamical methods, paying particular attention to the nonadiabatic coupling between the 1Bu and 2Ag singlet excited states. The existence of a conical intersection between their potential energy surfaces is confirmed. Key parameters of the system, like the energy gap between the interacting states and their coupling strength, are critically assessed. Up to eight nuclear degrees of freedom are considered in the dynamical treatment and are shown to lead to a more realistic description of the interactions. The gas phase (jet) UV absorption spectrum is well reproduced. The related ultrafast nonradiative population transfer from 1Bu to 2Ag is the initial processes leading to fluorescence quenching of trans-butadiene.

  13. Order parameter analysis of synchronization transitions on star networks

    NASA Astrophysics Data System (ADS)

    Chen, Hong-Bin; Sun, Yu-Ting; Gao, Jian; Xu, Can; Zheng, Zhi-Gang

    2017-12-01

    The collective behaviors of populations of coupled oscillators have attracted significant attention in recent years. In this paper, an order parameter approach is proposed to study the low-dimensional dynamical mechanism of collective synchronizations, by adopting the star-topology of coupled oscillators as a prototype system. The order parameter equation of star-linked phase oscillators can be obtained in terms of the Watanabe-Strogatz transformation, Ott-Antonsen ansatz, and the ensemble order parameter approach. Different solutions of the order parameter equation correspond to the diverse collective states, and different bifurcations reveal various transitions among these collective states. The properties of various transitions in the star-network model are revealed by using tools of nonlinear dynamics such as time reversibility analysis and linear stability analysis.

  14. Dynamic properties in the four-state haploid coupled discrete-time mutation-selection model with an infinite population limit

    NASA Astrophysics Data System (ADS)

    Lee, Kyu Sang; Gill, Wonpyong

    2017-11-01

    The dynamic properties, such as the crossing time and time-dependence of the relative density of the four-state haploid coupled discrete-time mutation-selection model, were calculated with the assumption that μ ij = μ ji , where μ ij denotes the mutation rate between the sequence elements, i and j. The crossing time for s = 0 and r 23 = r 42 = 1 in the four-state model became saturated at a large fitness parameter when r 12 > 1, was scaled as a power law in the fitness parameter when r 12 = 1, and diverged when the fitness parameter approached the critical fitness parameter when r 12 < 1, where r ij = μ ij / μ 14.

  15. Simulating Population Dynamics in an Ecosystem Context Using Coupled Eulerian-Lagrangian Hybrid Models (CEL HYBRID Models)

    DTIC Science & Technology

    2000-04-01

    natural systems (King 1993). Population modelers have used certain difference equations, sometimes called the Lotka - Volterra system of equations...environment 28 Step 5 - Simulate the hydraulic and/or water quality field 29 Step 6 - Generate biota response data for decision support 29 Step 7...Quality and Contaminant Modeling Branch (WQCMB), and Mr. R. Andrew Goodwin, contract student, WQCMB, under the general supervision of Dr. Mark S. Dortch

  16. Inferences about ungulate population dynamics derived from age ratios

    USGS Publications Warehouse

    Harris, N.C.; Kauffman, M.J.; Mills, L.S.

    2008-01-01

    Age ratios (e.g., calf:cow for elk and fawn:doe for deer) are used regularly to monitor ungulate populations. However, it remains unclear what inferences are appropriate from this index because multiple vital rate changes can influence the observed ratio. We used modeling based on elk (Cervus elaphus) life-history to evaluate both how age ratios are influenced by stage-specific fecundity and survival and how well age ratios track population dynamics. Although all vital rates have the potential to influence calf:adult female ratios (i.e., calf:xow ratios), calf survival explained the vast majority of variation in calf:adult female ratios due to its temporal variation compared to other vital rates. Calf:adult female ratios were positively correlated with population growth rate (??) and often successfully indicated population trajectories. However, calf:adult female ratios performed poorly at detecting imposed declines in calf survival, suggesting that only the most severe declines would be rapidly detected. Our analyses clarify that managers can use accurate, unbiased age ratios to monitor arguably the most important components contributing to sustainable ungulate populations, survival rate of young and ??. However, age ratios are not useful for detecting gradual declines in survival of young or making inferences about fecundity or adult survival in ungulate populations. Therefore, age ratios coupled with independent estimates of population growth or population size are necessary to monitor ungulate population demography and dynamics closely through time.

  17. Agent-based Model for the Coupled Human-Climate System

    NASA Astrophysics Data System (ADS)

    Zvoleff, A.; Werner, B.

    2006-12-01

    Integrated assessment models have been used to predict the outcome of coupled economic growth, resource use, greenhouse gas emissions and climate change, both for scientific and policy purposes. These models generally have employed significant simplifications that suppress nonlinearities and the possibility of multiple equilibria in both their economic (DeCanio, 2005) and climate (Schneider and Kuntz-Duriseti, 2002) components. As one step toward exploring general features of the nonlinear dynamics of the coupled system, we have developed a series of variations on the well studied RICE and DICE models, which employ different forms of agent-based market dynamics and "climate surprises." Markets are introduced through the replacement of the production function of the DICE/RICE models with an agent-based market modeling the interactions of producers, policymakers, and consumer agents. Technological change and population growth are treated endogenously. Climate surprises are representations of positive (for example, ice sheet collapse) or negative (for example, increased aerosols from desertification) feedbacks that are turned on with probability depending on warming. Initial results point toward the possibility of large amplitude instabilities in the coupled human-climate system owing to the mismatch between short outlook market dynamics and long term climate responses. Implications for predictability of future climate will be discussed. Supported by the Andrew W Mellon Foundation and the UC Academic Senate.

  18. Maintenance of algal endosymbionts in Paramecium bursaria: a simple model based on population dynamics.

    PubMed

    Iwai, Sosuke; Fujiwara, Kenji; Tamura, Takuro

    2016-09-01

    Algal endosymbiosis is widely distributed in eukaryotes including many protists and metazoans, and plays important roles in aquatic ecosystems, combining phagotrophy and phototrophy. To maintain a stable symbiotic relationship, endosymbiont population size in the host must be properly regulated and maintained at a constant level; however, the mechanisms underlying the maintenance of algal endosymbionts are still largely unknown. Here we investigate the population dynamics of the unicellular ciliate Paramecium bursaria and its Chlorella-like algal endosymbiont under various experimental conditions in a simple culture system. Our results suggest that endosymbiont population size in P. bursaria was not regulated by active processes such as cell division coupling between the two organisms, or partitioning of the endosymbionts at host cell division. Regardless, endosymbiont population size was eventually adjusted to a nearly constant level once cells were grown with light and nutrients. To explain this apparent regulation of population size, we propose a simple mechanism based on the different growth properties (specifically the nutrient requirements) of the two organisms, and based from this develop a mathematical model to describe the population dynamics of host and endosymbiont. The proposed mechanism and model may provide a basis for understanding the maintenance of algal endosymbionts. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  19. Disorder-induced localization of excitability in an array of coupled lasers

    NASA Astrophysics Data System (ADS)

    Lamperti, M.; Perego, A. M.

    2017-10-01

    We report on the localization of excitability induced by disorder in an array of coupled semiconductor lasers with a saturable absorber. Through numerical simulations we show that the exponential localization of excitable waves occurs if a certain critical amount of randomness is present in the coupling coefficients among the lasers. The results presented in this Rapid Communication demonstrate that disorder can induce localization in lattices of excitable nonlinear oscillators, and can be of interest in the study of photonics-based random networks, neuromorphic systems, and, by analogy, in biology, in particular, in the investigation of the collective dynamics of neuronal cell populations.

  20. Dynamics of Coupled Electron-Boson Systems with the Multiple Davydov D1 Ansatz and the Generalized Coherent State.

    PubMed

    Chen, Lipeng; Borrelli, Raffaele; Zhao, Yang

    2017-11-22

    The dynamics of a coupled electron-boson system is investigated by employing a multitude of the Davydov D 1 trial states, also known as the multi-D 1 Ansatz, and a second trial state based on a superposition of the time-dependent generalized coherent state (GCS Ansatz). The two Ansätze are applied to study population dynamics in the spin-boson model and the Holstein molecular crystal model, and a detailed comparison with numerically exact results obtained by the (multilayer) multiconfiguration time-dependent Hartree method and the hierarchy equations of motion approach is drawn. It is found that the two methodologies proposed here have significantly improved over that with the single D 1 Ansatz, yielding quantitatively accurate results even in the critical cases of large energy biases and large transfer integrals. The two methodologies provide new effective tools for accurate, efficient simulation of many-body quantum dynamics thanks to a relatively small number of parameters which characterize the electron-nuclear wave functions. The wave-function-based approaches are capable of tracking explicitly detailed bosonic dynamics, which is absent by construct in approaches based on the reduced density matrix. The efficiency and flexibility of our methods are also advantages as compared with numerically exact approaches such as QUAPI and HEOM, especially at low temperatures and in the strong coupling regime.

  1. Probabilistic models for neural populations that naturally capture global coupling and criticality

    PubMed Central

    2017-01-01

    Advances in multi-unit recordings pave the way for statistical modeling of activity patterns in large neural populations. Recent studies have shown that the summed activity of all neurons strongly shapes the population response. A separate recent finding has been that neural populations also exhibit criticality, an anomalously large dynamic range for the probabilities of different population activity patterns. Motivated by these two observations, we introduce a class of probabilistic models which takes into account the prior knowledge that the neural population could be globally coupled and close to critical. These models consist of an energy function which parametrizes interactions between small groups of neurons, and an arbitrary positive, strictly increasing, and twice differentiable function which maps the energy of a population pattern to its probability. We show that: 1) augmenting a pairwise Ising model with a nonlinearity yields an accurate description of the activity of retinal ganglion cells which outperforms previous models based on the summed activity of neurons; 2) prior knowledge that the population is critical translates to prior expectations about the shape of the nonlinearity; 3) the nonlinearity admits an interpretation in terms of a continuous latent variable globally coupling the system whose distribution we can infer from data. Our method is independent of the underlying system’s state space; hence, it can be applied to other systems such as natural scenes or amino acid sequences of proteins which are also known to exhibit criticality. PMID:28926564

  2. Synchrony and entrainment properties of robust circadian oscillators

    PubMed Central

    Bagheri, Neda; Taylor, Stephanie R.; Meeker, Kirsten; Petzold, Linda R.; Doyle, Francis J.

    2008-01-01

    Systems theoretic tools (i.e. mathematical modelling, control, and feedback design) advance the understanding of robust performance in complex biological networks. We highlight phase entrainment as a key performance measure used to investigate dynamics of a single deterministic circadian oscillator for the purpose of generating insight into the behaviour of a population of (synchronized) oscillators. More specifically, the analysis of phase characteristics may facilitate the identification of appropriate coupling mechanisms for the ensemble of noisy (stochastic) circadian clocks. Phase also serves as a critical control objective to correct mismatch between the biological clock and its environment. Thus, we introduce methods of investigating synchrony and entrainment in both stochastic and deterministic frameworks, and as a property of a single oscillator or population of coupled oscillators. PMID:18426774

  3. Discrete and continuum links to a nonlinear coupled transport problem of interacting populations

    NASA Astrophysics Data System (ADS)

    Duong, M. H.; Muntean, A.; Richardson, O. M.

    2017-07-01

    We are interested in exploring interacting particle systems that can be seen as microscopic models for a particular structure of coupled transport flux arising when different populations are jointly evolving. The scenarios we have in mind are inspired by the dynamics of pedestrian flows in open spaces and are intimately connected to cross-diffusion and thermo-diffusion problems holding a variational structure. The tools we use include a suitable structure of the relative entropy controlling TV-norms, the construction of Lyapunov functionals and particular closed-form solutions to nonlinear transport equations, a hydrodynamics limiting procedure due to Philipowski, as well as the construction of numerical approximates to both the continuum limit problem in 2D and to the original interacting particle systems.

  4. Role of Alternative Food in Controlling Chaotic Dynamics in a Predator-Prey Model with Disease in the Predator

    NASA Astrophysics Data System (ADS)

    Das, Krishna Pada; Bairagi, Nandadulal; Sen, Prabir

    It is generally, but not always, accepted that alternative food plays a stabilizing role in predator-prey interaction. Parasites, on the other hand, have the ability to change both the qualitative and quantitative dynamics of its host population. In recent times, researchers are showing growing interest in formulating models that integrate both the ecological and epidemiological aspects. The present paper deals with the effect of alternative food on a predator-prey system with disease in the predator population. We show that the system, in the absence of alternative food, exhibits different dynamics viz. stable coexistence, limit cycle oscillations, period-doubling bifurcation and chaos when infection rate is gradually increased. However, when predator consumes alternative food coupled with its focal prey, the system returns to regular oscillatory state from chaotic state through period-halving bifurcations. Our study shows that alternative food may have larger impact on the community structure and may increase population persistence.

  5. Decipher the dynamic coordination between enzymatic activity and structural modulation at focal adhesions in living cells

    NASA Astrophysics Data System (ADS)

    Lu, Shaoying; Seong, Jihye; Wang, Yi; Chang, Shiou-Chi; Eichorst, John Paul; Ouyang, Mingxing; Li, Julie Y.-S.; Chien, Shu; Wang, Yingxiao

    2014-07-01

    Focal adhesions (FAs) are dynamic subcellular structures crucial for cell adhesion, migration and differentiation. It remains an enigma how enzymatic activities in these local complexes regulate their structural remodeling in live cells. Utilizing biosensors based on fluorescence resonance energy transfer (FRET), we developed a correlative FRET imaging microscopy (CFIM) approach to quantitatively analyze the subcellular coordination between the enzymatic Src activation and the structural FA disassembly. CFIM reveals that the Src kinase activity only within the microdomain of lipid rafts at the plasma membrane is coupled with FA dynamics. FA disassembly at cell periphery was linearly dependent on this raft-localized Src activity, although cells displayed heterogeneous levels of response to stimulation. Within lipid rafts, the time delay between Src activation and FA disassembly was 1.2 min in cells seeded on low fibronectin concentration ([FN]) and 4.3 min in cells on high [FN]. CFIM further showed that the level of Src-FA coupling, as well as the time delay, was regulated by cell-matrix interactions, as a tight enzyme-structure coupling occurred in FA populations mediated by integrin αvβ3, but not in those by integrin α5β1. Therefore, different FA subpopulations have distinctive regulation mechanisms between their local kinase activity and structural FA dynamics.

  6. Coupled disease-behavior dynamics on complex networks: A review.

    PubMed

    Wang, Zhen; Andrews, Michael A; Wu, Zhi-Xi; Wang, Lin; Bauch, Chris T

    2015-12-01

    It is increasingly recognized that a key component of successful infection control efforts is understanding the complex, two-way interaction between disease dynamics and human behavioral and social dynamics. Human behavior such as contact precautions and social distancing clearly influence disease prevalence, but disease prevalence can in turn alter human behavior, forming a coupled, nonlinear system. Moreover, in many cases, the spatial structure of the population cannot be ignored, such that social and behavioral processes and/or transmission of infection must be represented with complex networks. Research on studying coupled disease-behavior dynamics in complex networks in particular is growing rapidly, and frequently makes use of analysis methods and concepts from statistical physics. Here, we review some of the growing literature in this area. We contrast network-based approaches to homogeneous-mixing approaches, point out how their predictions differ, and describe the rich and often surprising behavior of disease-behavior dynamics on complex networks, and compare them to processes in statistical physics. We discuss how these models can capture the dynamics that characterize many real-world scenarios, thereby suggesting ways that policy makers can better design effective prevention strategies. We also describe the growing sources of digital data that are facilitating research in this area. Finally, we suggest pitfalls which might be faced by researchers in the field, and we suggest several ways in which the field could move forward in the coming years. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. A coupled human-water system from a systems dynamics perspective

    NASA Astrophysics Data System (ADS)

    Kuil, Linda; Blöschl, Günter; Carr, Gemma

    2013-04-01

    Traditionally, models used in hydrological studies have frequently assumed stationarity. Moreover, human-induced water resources management activities are often included as external forcings in water cycle dynamics. However, considering humans' current impact on the water cycle in terms of a growing population, river basins increasingly being managed and a climate considerably changing, it has recently been questioned whether this is still correct. Furthermore, research directed at the evolution of water resources and society has shown that the components constituting the human-water system are changing interdependently. Goal of this study is therefore to approach water cycle dynamics from an integrated perspective in which humans are considered as endogenous forces to the system. The method used to model a coupled, urban human-water system is system dynamics. In system dynamics, particular emphasis is placed on feedback loops resulting in dynamic behavior. Time delays and non-linearity can relatively easily be included, making the method appropriate for studying complex systems that change over time. The approach of this study is as follows. First, a conceptual model is created incorporating the key components of the urban human-water system. Subsequently, only those components are selected that are both relevant and show causal loop behavior. Lastly, the causal narratives are translated into mathematical relationships. The outcome will be a simple model that shows only those characteristics with which we are able to explore the two-way coupling between the societal behavior and the water system we depend on.

  8. Time-resolved photoelectron spectroscopy of IR-driven electron dynamics in a charge transfer model system.

    PubMed

    Falge, Mirjam; Fröbel, Friedrich Georg; Engel, Volker; Gräfe, Stefanie

    2017-08-02

    If the adiabatic approximation is valid, electrons smoothly adapt to molecular geometry changes. In contrast, as a characteristic of diabatic dynamics, the electron density does not follow the nuclear motion. Recently, we have shown that the asymmetry in time-resolved photoelectron spectra serves as a tool to distinguish between these dynamics [Falge et al., J. Phys. Chem. Lett., 2012, 3, 2617]. Here, we investigate the influence of an additional, moderately intense infrared (IR) laser field, as often applied in attosecond time-resolved experiments, on such asymmetries. This is done using a simple model for coupled electronic-nuclear motion. We calculate time-resolved photoelectron spectra and their asymmetries and demonstrate that the spectra directly map the bound electron-nuclear dynamics. From the asymmetries, we can trace the IR field-induced population transfer and both the field-driven and intrinsic (non-)adiabatic dynamics. This holds true when considering superposition states accompanied by electronic coherences. The latter are observable in the asymmetries for sufficiently short XUV pulses to coherently probe the coupled states. It is thus documented that the asymmetry is a measure for phases in bound electron wave packets and non-adiabatic dynamics.

  9. Influence of Coherent Tunneling and Incoherent Hopping on the Charge Transfer Mechanism in Linear Donor-Bridge-Acceptor Systems.

    PubMed

    Li, Guangqi; Govind, Niranjan; Ratner, Mark A; Cramer, Christopher J; Gagliardi, Laura

    2015-12-17

    The mechanism of charge transfer has been observed to change from tunneling to hopping with increasing numbers of DNA base pairs in polynucleotides and with the length of molecular wires. The aim of this paper is to investigate this transition by examining the population dynamics using a tight-binding Hamiltonian with model parameters to describe a linear donor-bridge-acceptor (D-B-A) system. The model includes a primary vibration and an electron-vibration coupling at each site. A further coupling of the primary vibration with a secondary phonon bath allows the system to dissipate energy to the environment and reach a steady state. We apply the quantum master equation (QME) approach, based on second-order perturbation theory in a quantum dissipative system, to examine the dynamical processes involved in charge-transfer and follow the population transfer rate at the acceptor, ka, to shed light on the transition from tunneling to hopping. With a small tunneling parameter, V, the on-site population tends to localize and form polarons, and the hopping mechanism dominates the transfer process. With increasing V, the population tends to be delocalized and the tunneling mechanism dominates. The competition between incoherent hopping and coherent tunneling governs the mechanism of charge transfer. By varying V and the total number of sites, we also examine the onset of the transition from tunneling to hopping with increasing length.

  10. Monte Carlo simulation for kinetic chemotaxis model: An application to the traveling population wave

    NASA Astrophysics Data System (ADS)

    Yasuda, Shugo

    2017-02-01

    A Monte Carlo simulation of chemotactic bacteria is developed on the basis of the kinetic model and is applied to a one-dimensional traveling population wave in a microchannel. In this simulation, the Monte Carlo method, which calculates the run-and-tumble motions of bacteria, is coupled with a finite volume method to calculate the macroscopic transport of the chemical cues in the environment. The simulation method can successfully reproduce the traveling population wave of bacteria that was observed experimentally and reveal the microscopic dynamics of bacterium coupled with the macroscopic transports of the chemical cues and bacteria population density. The results obtained by the Monte Carlo method are also compared with the asymptotic solution derived from the kinetic chemotaxis equation in the continuum limit, where the Knudsen number, which is defined by the ratio of the mean free path of bacterium to the characteristic length of the system, vanishes. The validity of the Monte Carlo method in the asymptotic behaviors for small Knudsen numbers is numerically verified.

  11. Building New Bridges between In Vitro and In Vivo in Early Drug Discovery: Where Molecular Modeling Meets Systems Biology.

    PubMed

    Pearlstein, Robert A; McKay, Daniel J J; Hornak, Viktor; Dickson, Callum; Golosov, Andrei; Harrison, Tyler; Velez-Vega, Camilo; Duca, José

    2017-01-01

    Cellular drug targets exist within networked function-generating systems whose constituent molecular species undergo dynamic interdependent non-equilibrium state transitions in response to specific perturbations (i.e.. inputs). Cellular phenotypic behaviors are manifested through the integrated behaviors of such networks. However, in vitro data are frequently measured and/or interpreted with empirical equilibrium or steady state models (e.g. Hill, Michaelis-Menten, Briggs-Haldane) relevant to isolated target populations. We propose that cells act as analog computers, "solving" sets of coupled "molecular differential equations" (i.e. represented by populations of interacting species)via "integration" of the dynamic state probability distributions among those populations. Disconnects between biochemical and functional/phenotypic assays (cellular/in vivo) may arise with targetcontaining systems that operate far from equilibrium, and/or when coupled contributions (including target-cognate partner binding and drug pharmacokinetics) are neglected in the analysis of biochemical results. The transformation of drug discovery from a trial-and-error endeavor to one based on reliable design criteria depends on improved understanding of the dynamic mechanisms powering cellular function/dysfunction at the systems level. Here, we address the general mechanisms of molecular and cellular function and pharmacological modulation thereof. We outline a first principles theory on the mechanisms by which free energy is stored and transduced into biological function, and by which biological function is modulated by drug-target binding. We propose that cellular function depends on dynamic counter-balanced molecular systems necessitated by the exponential behavior of molecular state transitions under non-equilibrium conditions, including positive versus negative mass action kinetics and solute-induced perturbations to the hydrogen bonds of solvating water versus kT. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. Hydrologic Predictions in the Anthropocene: Exploration with Co-evolutionary Socio-hydrologic Models

    NASA Astrophysics Data System (ADS)

    Sivapalan, Murugesu; Tian, Fuqiang; Liu, Dengfeng

    2013-04-01

    Socio-hydrology studies the co-evolution and self-organization of humans in the hydrologic landscape, which requires a thorough understanding of the complex interactions between humans and water. On the one hand, the nature of water availability greatly impacts the development of society. On the other hand, humans can significantly alter the spatio-temporal distribution of water and in this way provide feedback to the society itself. The human-water system functions underlying such complex human-water interactions are not well understood. Exploratory models with the appropriate level of simplification in any given area can be valuable to understand these functions and the self-organization associated with socio-hydrology. In this study, a simple coupled modeling framework for socio-hydrology co-evolution is developed, and is used to illustrate the explanatory power of such models. In the Tarim River, humans depend heavily on agricultural production (other industries can be ignored for a start), and the social processes can be described principally by two variables, i.e., irrigated-area and human population. The eco-hydrological processes are expressed in terms of area under natural vegetation and stream discharge. The study area is the middle and the lower reaches of the Tarim River, which is divided into two modeling units, i.e. middle reach and lower reach. In each modeling unit, four ordinary differential equations are used to simulate the dynamics of the hydrological system represented by stream discharge, ecological system represented by area under natural vegetation, the economic system represented by irrigated area under agriculture and social system represented by human population. The four dominant variables are coupled together by several internal variables. For example, the stream discharge is coupled to irrigated area by the colonization rate and mortality rate of the irrigated area in the middle reach and the irrigated area is coupled to stream discharge by water used for irrigation. In a similar way, the stream discharge and natural vegetation are coupled together. The irrigated area is coupled to population by the colonization rate and mortality rate of the population. The discharge of the lower reach is determined by the discharge from the middle reach. The natural vegetation area in the lower reach is coupled to the discharge in the middle reach by water resources management policy. The co-evolution of the Tarim socio-hydrological system is then analyzed within this modeling framework to gain insights into the overall system dynamics and sensitivity to the external drivers and internal system variables.

  13. Isotropy of Angular Frequencies and Weak Chimeras with Broken Symmetry

    NASA Astrophysics Data System (ADS)

    Bick, Christian

    2017-04-01

    The notion of a weak chimeras provides a tractable definition for chimera states in networks of finitely many phase oscillators. Here, we generalize the definition of a weak chimera to a more general class of equivariant dynamical systems by characterizing solutions in terms of the isotropy of their angular frequency vector—for coupled phase oscillators the angular frequency vector is given by the average of the vector field along a trajectory. Symmetries of solutions automatically imply angular frequency synchronization. We show that the presence of such symmetries is not necessary by giving a result for the existence of weak chimeras without instantaneous or setwise symmetries for coupled phase oscillators. Moreover, we construct a coupling function that gives rise to chaotic weak chimeras without symmetry in weakly coupled populations of phase oscillators with generalized coupling.

  14. Chimeralike states in a network of oscillators under attractive and repulsive global coupling.

    PubMed

    Mishra, Arindam; Hens, Chittaranjan; Bose, Mridul; Roy, Prodyot K; Dana, Syamal K

    2015-12-01

    We report chimeralike states in an ensemble of oscillators using a type of global coupling consisting of two components: attractive and repulsive mean-field feedback. We identify the existence of two types of chimeralike states in a bistable Liénard system; in one type, both the coherent and the incoherent populations are in chaotic states (which we refer to as chaos-chaos chimeralike states) and, in another type, the incoherent population is in periodic state while the coherent population has irregular small oscillation. We find a metastable state in a parameter regime of the Liénard system where the coherent and noncoherent states migrate in time from one to another subpopulation. The relative size of the incoherent subpopulation, in the chimeralike states, remains almost stable with increasing size of the network. The generality of the coupling configuration in the origin of the chimeralike states is tested, using a second example of bistable system, the van der Pol-Duffing oscillator where the chimeralike states emerge as weakly chaotic in the coherent subpopulation and chaotic in the incoherent subpopulation. Furthermore, we apply the coupling, in a simplified form, to form a network of the chaotic Rössler system where both the noncoherent and the coherent subpopulations show chaotic dynamics.

  15. Control of tunneling in a double-well potential with chirped laser pulses

    NASA Astrophysics Data System (ADS)

    Vatasescu, Mihaela

    2012-11-01

    We investigate the use of chirped laser pulses to control the tunneling dynamics in the 0g-(6s,6p3/2) double well of Cs2 coupled with other electronic surfaces. The possibility to manipulate the tunneling dynamics appears in a pump-dump scheme designed to form deeply bound cold molecules by photoassociation of two cold cesium atoms in the 0g-(6s,6p3/2) electronic state coupled with a3Σu+ (6s,6s) electronic state. The dump pulse is acting on the 0g-(6s,6p3/2) barrier and can be used to control the tunneling and to capture population in the inner well in deep vibrational levels out of tunneling resonances.

  16. A reanalysis of "Two types of asynchronous activity in networks of excitatory and inhibitory spiking neurons".

    PubMed

    Engelken, Rainer; Farkhooi, Farzad; Hansel, David; van Vreeswijk, Carl; Wolf, Fred

    2016-01-01

    Neuronal activity in the central nervous system varies strongly in time and across neuronal populations. It is a longstanding proposal that such fluctuations generically arise from chaotic network dynamics. Various theoretical studies predict that the rich dynamics of rate models operating in the chaotic regime can subserve circuit computation and learning. Neurons in the brain, however, communicate via spikes and it is a theoretical challenge to obtain similar rate fluctuations in networks of spiking neuron models. A recent study investigated spiking balanced networks of leaky integrate and fire (LIF) neurons and compared their dynamics to a matched rate network with identical topology, where single unit input-output functions were chosen from isolated LIF neurons receiving Gaussian white noise input. A mathematical analogy between the chaotic instability in networks of rate units and the spiking network dynamics was proposed. Here we revisit the behavior of the spiking LIF networks and these matched rate networks. We find expected hallmarks of a chaotic instability in the rate network: For supercritical coupling strength near the transition point, the autocorrelation time diverges. For subcritical coupling strengths, we observe critical slowing down in response to small external perturbations. In the spiking network, we found in contrast that the timescale of the autocorrelations is insensitive to the coupling strength and that rate deviations resulting from small input perturbations rapidly decay. The decay speed even accelerates for increasing coupling strength. In conclusion, our reanalysis demonstrates fundamental differences between the behavior of pulse-coupled spiking LIF networks and rate networks with matched topology and input-output function. In particular there is no indication of a corresponding chaotic instability in the spiking network.

  17. Atomistic non-adiabatic dynamics of the LH2 complex with a GPU-accelerated ab initio exciton model

    DOE PAGES

    Sisto, Aaron; Stross, Clem; van der Kamp, Marc W.; ...

    2017-03-28

    We recently outlined an efficient multi-tiered parallel ab initio excitonic framework that utilizes time dependent density functional theory (TDDFT) to calculate ground and excited state energies and gradients of large supramolecular complexes in atomistic detail – enabling us to undertake non-adiabatic simulations which explicitly account for the coupled anharmonic vibrational motion of all the constituent atoms in a supramolecular system. Here we apply that framework to the 27 coupled bacterio-chlorophyll-a chromophores which make up the LH2 complex, using it to compute an on-the-fly nonadiabatic surface-hopping (SH) trajectory of electronically excited LH2. Part one of this article is focussed on calibratingmore » our ab initio exciton Hamiltonian using two key parameters: a shift δ, which corrects for the error in TDDFT vertical excitation energies; and an effective dielectric constant ε, which describes the average screening of the transition-dipole coupling between chromophores. Using snapshots obtained from equilibrium molecular dynamics simulations (MD) of LH2, we tune the values of both δ and ε through fitting to the thermally broadened experimental absorption spectrum, giving a linear absorption spectrum that agrees reasonably well with experiment. In part two of this article, we construct a time-resolved picture of the coupled vibrational and excitation energy transfer (EET) dynamics in the sub-picosecond regime following photo-excitation. Assuming Franck–Condon excitation of a narrow eigenstate band centred at 800 nm, we use surface hopping to follow a single nonadiabatic dynamics trajectory within the full eigenstate manifold. Consistent with experimental data, this trajectory gives timescales for B800→B850 population transfer (τ B800→B850) between 650–1050 fs, and B800 population decay (τ 800→) between 10–50 fs. The dynamical picture that emerges is one of rapidly fluctuating LH2 eigenstates that are delocalized over multiple chromophores and undergo frequent crossing on a femtosecond timescale as a result of the atomic vibrations of the constituent chromophores. The eigenstate fluctuations arise from disorder that is driven by vibrational dynamics with multiple characteristic timescales. The scalability of our ab initio excitonic computational framework across massively parallel architectures opens up the possibility of addressing a wide range of questions, including how specific dynamical motions impact both the pathways and efficiency of electronic energy-transfer within large supramolecular systems.« less

  18. Phase diagram for the Winfree model of coupled nonlinear oscillators.

    PubMed

    Ariaratnam, J T; Strogatz, S H

    2001-05-07

    In 1967 Winfree proposed a mean-field model for the spontaneous synchronization of chorusing crickets, flashing fireflies, circadian pacemaker cells, or other large populations of biological oscillators. Here we give the first bifurcation analysis of the model, for a tractable special case. The system displays rich collective dynamics as a function of the coupling strength and the spread of natural frequencies. Besides incoherence, frequency locking, and oscillator death, there exist hybrid solutions that combine two or more of these states. We present the phase diagram and derive several of the stability boundaries analytically.

  19. Phase Diagram for the Winfree Model of Coupled Nonlinear Oscillators

    NASA Astrophysics Data System (ADS)

    Ariaratnam, Joel T.; Strogatz, Steven H.

    2001-05-01

    In 1967 Winfree proposed a mean-field model for the spontaneous synchronization of chorusing crickets, flashing fireflies, circadian pacemaker cells, or other large populations of biological oscillators. Here we give the first bifurcation analysis of the model, for a tractable special case. The system displays rich collective dynamics as a function of the coupling strength and the spread of natural frequencies. Besides incoherence, frequency locking, and oscillator death, there exist hybrid solutions that combine two or more of these states. We present the phase diagram and derive several of the stability boundaries analytically.

  20. Chaos enhancing tunneling in a coupled Bose-Einstein condensate with a double driving.

    PubMed

    Rong, Shiguang; Hai, Wenhua; Xie, Qiongtao; Zhu, Qianquan

    2009-09-01

    We study the effects of chaotic dynamics on atomic tunneling between two weakly coupled Bose-Einstein condensates driven by a double-frequency periodic field. Under the Melnikov's chaos criterion, we divide the parameter space into three parts of different types, regular region, low-chaoticity region, and high-chaoticity region, and give the accurate boundaries between the different regions. It is found that the atomic tunneling can be enhanced in the presence of chaos. Particularly, in the high-chaoticity regions, the chaos-induced inversion of the population imbalance is observed numerically.

  1. Physical Illness in Gay, Lesbian, and Heterosexual Marriages: Gendered Dyadic Experiences.

    PubMed

    Umberson, Debra; Thomeer, Mieke Beth; Reczek, Corinne; Donnelly, Rachel

    2016-12-01

    The inclusion of same-sex married couples can illuminate and challenge assumptions about gender that are routinely taken for granted in studies of physical illness. We analyze gender dynamics in gay, lesbian, and heterosexual marriages with in-depth interview data from 90 spouses (45 couples) to consider how spouses co-construct illness experiences in ways that shape relationship dynamics. Overall, findings indicate that men tend to downplay illness and thus provide minimal care work, whereas women tend to construct illness as immersive and involving intensive care work-in both same-sex and different-sex marriages. Yet same-sex spouses describe similar constructions of illness much more so than different-sex couples, and as such, same-sex spouses describe less illness-related disagreement and stress. These findings help inform policies to support the health of gay and lesbian, as well as heterosexual, patients and their spouses, an important goal given health disparities of gay and lesbian populations. © American Sociological Association 2016.

  2. Divergences of Two Coupled Human and Natural Systems on the Mongolian Plateau

    NASA Astrophysics Data System (ADS)

    Chen, J.

    2014-12-01

    Central to the concept of coupled natural and human (CNH) systems is that humans and nature are organized in interacting sub-systems that make a cohesive whole at multiple spatial and temporal scales. Following an overview of the challenges in implementing the CNH concept at the regional level, we used widely available measures of states in the social, economic, and ecological systems, including gross domestic product, population size, net primary productivity, and livestock and their ratios, to examine the CNH dynamics on the Mongolian Plateau during 1981-2010. Our cross-border analysis of the coupled dynamics over the past three decades demonstrated striking contrasts between Inner Mongolia (IM) and Mongolia (MG), with policies playing shifting roles on the above measures. For prioritizing future research on the CNH concept, we propose the hypothesis that while the divergence of IM and MG for 1981-2010 was largely driven by market economic reforms, the importance of socioeconomic forces relative to climate changes will gradually decrease in IM while they remain important in MG.

  3. Modeling the spatial and temporal population dynamics of the copepod Centropages typicus in the northwestern Mediterranean Sea during the year 2001 using a 3D ecosystem model

    NASA Astrophysics Data System (ADS)

    Carlotti, F.; Eisenhauer, L.; Campbell, R.; Diaz, F.

    2014-07-01

    The spatio-temporal dynamics of a simulated Centropages typicus (Kröyer) population during the year 2001 at the regional scale of the northwestern Mediterranean Sea are addressed using a 3D coupled physical-biogeochemical model. The setup of the coupled biological model comprises a pelagic plankton ecosystem model and a stage-structured population model forced by the 3D velocity and temperature fields provided by an eddy-resolving regional circulation model. The population model for C. typicus (C. t. below) represents demographic processes through five groups of developmental stages, which depend on underlying individual growth and development processes and are forced by both biotic (prey and predator fields) and abiotic (temperature, advection) factors from the coupled physical-biogeochemical model. The objective is to characterize C. t. ontogenic habitats driven by physical and trophic processes. The annual dynamics are presented for two of the main oceanographic stations in the Gulf of Lions, which are representative of shelf and open sea conditions, while the spatial distributions over the whole area are presented for three dates during the year, in early and late spring and in winter. The simulated spatial patterns of C. t. developmental stages are closely related to mesoscale hydrodynamic features and circulation patterns. The seasonal and spatial distributions on the Gulf of Lions shelf depend on the seasonal interplay between the Rhône river plume, the mesoscale eddies on the shelf and the Northern Current acting as either as a dynamic barrier between the shelf and the open sea or allowing cross-shelf exchanges. In the central gyre of the northwestern Mediterranean Sea, the patchiness of plankton is tightly linked to mesoscale frontal systems, surface eddies and filaments and deep gradients. Due to its flexibility in terms of its diet, C. t. succeeds in maintaining its population in both coastal and offshore areas year round. The simulations suggest that the winte-spring food conditions are more favorable on the shelf for C. t., whereas in late summer and fall, the offshore depth-integrated food biomasses represent a larger resource for C. t., particularly when mesoscale structures and vertical discontinuities increase food patchiness. The development and reproduction of C. t. depend on the prey field within the mesoscale structures that induce a contrasting spatial distribution of successive developmental stages on a given observation date. In late fall and winter, the results of the model suggest the existence of three refuge areas where the population maintains winter generations near the coast and within the Rhone River plume, or offshore within canyons within the shelf break, or in the frontal system related to the Northern Current. The simulated spatial and temporal distributions as well as the life cycle and physiological features of C. t. are discussed in light of recent reviews on the dynamics of C. t. in the northwestern Mediterranean Sea.

  4. Endogenous technological and population change under increasing water scarcity

    NASA Astrophysics Data System (ADS)

    Pande, S.; Ertsen, M.; Sivapalan, M.

    2014-08-01

    Ancient civilizations may have dispersed or collapsed under extreme dry conditions. There are indications that the same may hold for modern societies. However, hydroclimatic change cannot be the sole predictor of the fate of contemporary societies in water-scarce regions. This paper focuses on technological change as a factor that may ameliorate the effects of increasing water scarcity and as such counter the effects of hydroclimatic changes. We study the role of technological change on the dynamics of coupled human-water systems, and model technological change as an endogenous process that depends on many factors intrinsic to coupled human-water dynamics. We do not treat technology as an exogenous random sequence of events, but assume that it results from societal actions. While the proposed model is a rather simple model of a coupled human-water system, it is shown to be capable of replicating patterns of technological, population, production and consumption per capita changes. The model demonstrates that technological change may indeed ameliorate the effects of increasing water scarcity, but typically it does so only to a certain extent. In general we find that endogenous technology change under increasing water scarcity helps to delay the peak of population size before it inevitably starts to decline. We also analyze the case when water remains constant over time and find that co-evolutionary trajectories can never grow at a constant rate; rather the rate itself grows with time. Thus our model does not predict a co-evolutionary trajectory of a socio-hydrological system where technological innovation harmoniously provides for a growing population. It allows either for an explosion or an eventual dispersal of population. The latter occurs only under increasing water scarcity. As a result, we draw the conclusion that declining consumption per capita despite technological advancement and increase in aggregate production may serve as a useful predictor of upcoming decline in contemporary societies in water-scarce basins.

  5. Sexual communication self-efficacy, hegemonic masculine norms and condom use among heterosexual couples in South Africa.

    PubMed

    Leddy, Anna; Chakravarty, Deepalika; Dladla, Sibongile; de Bruyn, Guy; Darbes, Lynae

    2016-01-01

    Hegemonic masculine norms (HMN), which promote sexual risk-taking among males and the subordination of women, are believed to play a key role in the HIV epidemic among heterosexual couples in South Africa (SA). Sexual communication self-efficacy (SCSE) (i.e., a couple's confidence in their ability to communicate about HIV prevention) may be a key leverage point for increasing HIV prevention behaviors among this population. We interviewed 163 sexually active heterosexual couples in Soweto, SA to investigate the association between SCSE, HMN, and consistent condom use. We collected information on demographics, relationship dynamics, and sexual activity. We utilized the SCSE scale to measure couples' SCSE, and a subscale of the Gender Equitable Men scale to measure HMN among males. We performed bivariate and multivariable analyses to determine the association of consistent condom use with couples' SCSE as well as the male partner's endorsement of HMN. We found that couples with higher SCSE have greater odds of consistent condom use (adjusted odds ratio [AOR] = 1.30, 95% CI: 1.15-1.47). Furthermore, male endorsement of HMN was found to be negatively associated with consistent condom use among couples (AOR = 0.47, 95% CI: 0.24-0.89). Joint HIV serostatus was not significantly associated with the outcome. Future interventions that equip heterosexual couples with sexual communication skills, while simultaneously promoting more gender equitable norms, may increase consistent condom use and thereby reduce the transmission of HIV among this at-risk population.

  6. Dynamics of Bacterial Gene Regulatory Networks.

    PubMed

    Shis, David L; Bennett, Matthew R; Igoshin, Oleg A

    2018-05-20

    The ability of bacterial cells to adjust their gene expression program in response to environmental perturbation is often critical for their survival. Recent experimental advances allowing us to quantitatively record gene expression dynamics in single cells and in populations coupled with mathematical modeling enable mechanistic understanding on how these responses are shaped by the underlying regulatory networks. Here, we review how the combination of local and global factors affect dynamical responses of gene regulatory networks. Our goal is to discuss the general principles that allow extrapolation from a few model bacteria to less understood microbes. We emphasize that, in addition to well-studied effects of network architecture, network dynamics are shaped by global pleiotropic effects and cell physiology.

  7. Analytical solutions by squeezing to the anisotropic Rabi model in the nonperturbative deep-strong-coupling regime

    NASA Astrophysics Data System (ADS)

    Zhang, Yu-Yu; Chen, Xiang-You

    2017-12-01

    An unexplored nonperturbative deep strong coupling (npDSC) achieved in superconducting circuits has been studied in the anisotropic Rabi model by the generalized squeezing rotating-wave approximation. Energy levels are evaluated analytically from the reformulated Hamiltonian and agree well with numerical ones in a wide range of coupling strength. Such improvement ascribes to deformation effects in the displaced-squeezed state presented by the squeezed momentum variance, which are omitted in previous displaced states. The atom population dynamics confirms the validity of our approach for the npDSC strength. Our approach offers the possibility to explore interesting phenomena analytically in the npDSC regime in qubit-oscillator experiments.

  8. Climatic and evolutionary drivers of phase shifts in the plague epidemics of colonial India.

    PubMed

    Lewnard, Joseph A; Townsend, Jeffrey P

    2016-12-20

    Immune heterogeneity in wild host populations indicates that disease-mediated selection is common in nature. However, the underlying dynamic feedbacks involving the ecology of disease transmission, evolutionary processes, and their interaction with environmental drivers have proven challenging to characterize. Plague presents an optimal system for interrogating such couplings: Yersinia pestis transmission exerts intense selective pressure driving the local persistence of disease resistance among its wildlife hosts in endemic areas. Investigations undertaken in colonial India after the introduction of plague in 1896 suggest that, only a decade after plague arrived, a heritable, plague-resistant phenotype had become prevalent among commensal rats of cities undergoing severe plague epidemics. To understand the possible evolutionary basis of these observations, we developed a mathematical model coupling environmentally forced plague dynamics with evolutionary selection of rats, capitalizing on extensive archival data from Indian Plague Commission investigations. Incorporating increased plague resistance among rats as a consequence of intense natural selection permits the model to reproduce observed changes in seasonal epidemic patterns in several cities and capture experimentally observed associations between climate and flea population dynamics in India. Our model results substantiate Victorian era claims of host evolution based on experimental observations of plague resistance and reveal the buffering effect of such evolution against environmental drivers of transmission. Our analysis shows that historical datasets can yield powerful insights into the transmission dynamics of reemerging disease agents with which we have limited contemporary experience to guide quantitative modeling and inference.

  9. Climatic and evolutionary drivers of phase shifts in the plague epidemics of colonial India

    PubMed Central

    Lewnard, Joseph A.

    2016-01-01

    Immune heterogeneity in wild host populations indicates that disease-mediated selection is common in nature. However, the underlying dynamic feedbacks involving the ecology of disease transmission, evolutionary processes, and their interaction with environmental drivers have proven challenging to characterize. Plague presents an optimal system for interrogating such couplings: Yersinia pestis transmission exerts intense selective pressure driving the local persistence of disease resistance among its wildlife hosts in endemic areas. Investigations undertaken in colonial India after the introduction of plague in 1896 suggest that, only a decade after plague arrived, a heritable, plague-resistant phenotype had become prevalent among commensal rats of cities undergoing severe plague epidemics. To understand the possible evolutionary basis of these observations, we developed a mathematical model coupling environmentally forced plague dynamics with evolutionary selection of rats, capitalizing on extensive archival data from Indian Plague Commission investigations. Incorporating increased plague resistance among rats as a consequence of intense natural selection permits the model to reproduce observed changes in seasonal epidemic patterns in several cities and capture experimentally observed associations between climate and flea population dynamics in India. Our model results substantiate Victorian era claims of host evolution based on experimental observations of plague resistance and reveal the buffering effect of such evolution against environmental drivers of transmission. Our analysis shows that historical datasets can yield powerful insights into the transmission dynamics of reemerging disease agents with which we have limited contemporary experience to guide quantitative modeling and inference. PMID:27791071

  10. Exploring the History of Time in an Integrated System: the Ramifications for Water

    NASA Astrophysics Data System (ADS)

    Green, M. B.; Adams, L. E.; Allen, T. L.; Arrigo, J. S.; Bain, D. J.; Bray, E. N.; Duncan, J. M.; Hermans, C. M.; Pastore, C.; Schlosser, C. A.; Vorosmarty, C. J.; Witherell, B. B.; Wollheim, W. M.; Wreschnig, A. J.

    2009-12-01

    Characteristic time scales are useful and simple descriptors of geophysical and socio-economic system dynamics. Focusing on the integrative nature of the hydrologic cycle, new insights into system couplings can be gained by compiling characteristic time scales of important processes driving these systems. There are many examples of changing characteristic time scales. Human life expectancy has increased over the recent history of medical advancement. The transport time of goods has decreased with the progression from horse to rail to car to plane. The transport time of information changed with the progression from letter to telegraph to telephone to networked computing. Soil residence time (pedogenesis to estuary deposition) has been influenced by changing agricultural technology, urbanization, and forest practices. Surface water residence times have varied as beaver dams have disappeared and been replaced with modern reservoirs, flood control works, and channelization. These dynamics raise the question of how these types of time scales interact with each other to form integrated Earth system dynamics? Here we explore the coupling of geophysical and socio-economic systems in the northeast United States over the 1600 to 2010 period by examining characteristic time scales. This visualization of many time scales serves as an exploratory analysis, producing new hypotheses about how the integrated system dynamics have evolved over the last 400 years. Specifically, exponential population growth and the evolving strategies to maintain that population appears as fundamental to many of the time scales.

  11. Using multitype branching processes to quantify statistics of disease outbreaks in zoonotic epidemics

    NASA Astrophysics Data System (ADS)

    Singh, Sarabjeet; Schneider, David J.; Myers, Christopher R.

    2014-03-01

    Branching processes have served as a model for chemical reactions, biological growth processes, and contagion (of disease, information, or fads). Through this connection, these seemingly different physical processes share some common universalities that can be elucidated by analyzing the underlying branching process. In this work we focus on coupled branching processes as a model of infectious diseases spreading from one population to another. An exceedingly important example of such coupled outbreaks are zoonotic infections that spill over from animal populations to humans. We derive several statistical quantities characterizing the first spillover event from animals to humans, including the probability of spillover, the first passage time distribution for human infection, and disease prevalence in the animal population at spillover. Large stochastic fluctuations in those quantities can make inference of the state of the system at the time of spillover difficult. Focusing on outbreaks in the human population, we then characterize the critical threshold for a large outbreak, the distribution of outbreak sizes, and associated scaling laws. These all show a strong dependence on the basic reproduction number in the animal population and indicate the existence of a novel multicritical point with altered scaling behavior. The coupling of animal and human infection dynamics has crucial implications, most importantly allowing for the possibility of large human outbreaks even when human-to-human transmission is subcritical.

  12. Mapping momentum-dependent electron-phonon coupling and nonequilibrium phonon dynamics with ultrafast electron diffuse scattering

    NASA Astrophysics Data System (ADS)

    Stern, Mark J.; René de Cotret, Laurent P.; Otto, Martin R.; Chatelain, Robert P.; Boisvert, Jean-Philippe; Sutton, Mark; Siwick, Bradley J.

    2018-04-01

    Despite their fundamental role in determining material properties, detailed momentum-dependent information on the strength of electron-phonon and phonon-phonon coupling (EPC and PPC, respectively) across the entire Brillouin zone has remained elusive. Here we demonstrate that ultrafast electron diffuse scattering (UEDS) directly provides such information. By exploiting symmetry-based selection rules and time resolution, scattering from different phonon branches can be distinguished even without energy resolution. Using graphite as a model system, we show that UEDS patterns map the relative EPC and PPC strength through their profound sensitivity to photoinduced changes in phonon populations. We measure strong EPC to the K -point TO phonon of A1' symmetry (K -A1' ) and along the entire TO branch between Γ -K , not only to the Γ -E2 g phonon. We also determine that the subsequent phonon relaxation of these strongly coupled optical phonons involve three stages: decay via several identifiable channels to TA and LA phonons (1 -2 ps), intraband thermalization of the non-equilibrium TA/LA phonon populations (30 -40 ps) and interband relaxation of the TA/LA modes (115 ps). Combining UEDS with ultrafast angle-resolved photoelectron spectroscopy will yield a complete picture of the dynamics within and between electron and phonon subsystems, helping to unravel complex phases in which the intertwined nature of these systems has a strong influence on emergent properties.

  13. Characterizing complex networks through statistics of Möbius transformations

    NASA Astrophysics Data System (ADS)

    Jaćimović, Vladimir; Crnkić, Aladin

    2017-04-01

    It is well-known now that dynamics of large populations of globally (all-to-all) coupled oscillators can be reduced to low-dimensional submanifolds (WS transformation and OA ansatz). Marvel et al. (2009) described an intriguing algebraic structure standing behind this reduction: oscillators evolve by the action of the group of Möbius transformations. Of course, dynamics in complex networks of coupled oscillators is highly complex and not reducible. Still, closer look unveils that even in complex networks some (possibly overlapping) groups of oscillators evolve by Möbius transformations. In this paper, we study properties of the network by identifying Möbius transformations in the dynamics of oscillators. This enables us to introduce some new (statistical) concepts that characterize the network. In particular, the notion of coherence of the network (or subnetwork) is proposed. This conceptual approach is meaningful for the broad class of networks, including those with time-delayed, noisy or mixed interactions. In this paper, several simple (random) graphs are studied illustrating the meaning of the concepts introduced in the paper.

  14. Propagating gene expression fronts in a one-dimensional coupled system of artificial cells

    NASA Astrophysics Data System (ADS)

    Tayar, Alexandra M.; Karzbrun, Eyal; Noireaux, Vincent; Bar-Ziv, Roy H.

    2015-12-01

    Living systems employ front propagation and spatiotemporal patterns encoded in biochemical reactions for communication, self-organization and computation. Emulating such dynamics in minimal systems is important for understanding physical principles in living cells and in vitro. Here, we report a one-dimensional array of DNA compartments in a silicon chip as a coupled system of artificial cells, offering the means to implement reaction-diffusion dynamics by integrated genetic circuits and chip geometry. Using a bistable circuit we programmed a front of protein synthesis propagating in the array as a cascade of signal amplification and short-range diffusion. The front velocity is maximal at a saddle-node bifurcation from a bistable regime with travelling fronts to a monostable regime that is spatially homogeneous. Near the bifurcation the system exhibits large variability between compartments, providing a possible mechanism for population diversity. This demonstrates that on-chip integrated gene circuits are dynamical systems driving spatiotemporal patterns, cellular variability and symmetry breaking.

  15. Environmental controls, oceanography and population dynamics of pathogens and harmful algal blooms: connecting sources to human exposure.

    PubMed

    Dyble, Julianne; Bienfang, Paul; Dusek, Eva; Hitchcock, Gary; Holland, Fred; Laws, Ed; Lerczak, James; McGillicuddy, Dennis J; Minnett, Peter; Moore, Stephanie K; O'Kelly, Charles; Solo-Gabriele, Helena; Wang, John D

    2008-11-07

    Coupled physical-biological models are capable of linking the complex interactions between environmental factors and physical hydrodynamics to simulate the growth, toxicity and transport of infectious pathogens and harmful algal blooms (HABs). Such simulations can be used to assess and predict the impact of pathogens and HABs on human health. Given the widespread and increasing reliance of coastal communities on aquatic systems for drinking water, seafood and recreation, such predictions are critical for making informed resource management decisions. Here we identify three challenges to making this connection between pathogens/HABs and human health: predicting concentrations and toxicity; identifying the spatial and temporal scales of population and ecosystem interactions; and applying the understanding of population dynamics of pathogens/HABs to management strategies. We elaborate on the need to meet each of these challenges, describe how modeling approaches can be used and discuss strategies for moving forward in addressing these challenges.

  16. A Biologically Informed, Mechanistic Model of Desert Shrub Population Dynamics Bearing on Arid Landscape Evolution

    NASA Astrophysics Data System (ADS)

    Worman, Stacey; Furbish, David; Fathel, Siobhan

    2014-05-01

    In arid landscapes, desert shrubs individually and collectively modify how sediment is transported (e.g by wind, overland-flow, and rain-splash). Addressing how desert shrubs modify landscapes on geomorphic timescales therefore necessitates spanning multiple shrub lifetimes and accounting for how processes affecting shrub dynamics on these longer timescales (e.g. fire, grazing, drought, and climate change) may in turn impact sediment transport. To fulfill this need, we present a mechanistic model of the spatiotemporal dynamics of a desert-shrub population that uses a simple accounting framework and tracks individual shrubs as they enter, age, and exit the population (via recruitment, growth, and mortality). Our model is novel insomuch as it (1) features a strong biophysical foundation, (2) mimics well-documented aspects of how shrub populations respond to changes in precipitation, and (3) possesses the process granularity appropriate for use in geomorphic simulations. In a complimentary abstract (Fathel et al. 2014), we demonstrate the potential of this biological model by coupling it to a physical model of rain-splash sediment transport: We mechanistically reproduce the empirical observation that the erosion rate of a hillslope decreases as its vegetation coverage increases and we predict erosion rates under different climate-change scenarios.

  17. Accommodating environmental variation in population models: metaphysiological biomass loss accounting.

    PubMed

    Owen-Smith, Norman

    2011-07-01

    1. There is a pressing need for population models that can reliably predict responses to changing environmental conditions and diagnose the causes of variation in abundance in space as well as through time. In this 'how to' article, it is outlined how standard population models can be modified to accommodate environmental variation in a heuristically conducive way. This approach is based on metaphysiological modelling concepts linking populations within food web contexts and underlying behaviour governing resource selection. Using population biomass as the currency, population changes can be considered at fine temporal scales taking into account seasonal variation. Density feedbacks are generated through the seasonal depression of resources even in the absence of interference competition. 2. Examples described include (i) metaphysiological modifications of Lotka-Volterra equations for coupled consumer-resource dynamics, accommodating seasonal variation in resource quality as well as availability, resource-dependent mortality and additive predation, (ii) spatial variation in habitat suitability evident from the population abundance attained, taking into account resource heterogeneity and consumer choice using empirical data, (iii) accommodating population structure through the variable sensitivity of life-history stages to resource deficiencies, affecting susceptibility to oscillatory dynamics and (iv) expansion of density-dependent equations to accommodate various biomass losses reducing population growth rate below its potential, including reductions in reproductive outputs. Supporting computational code and parameter values are provided. 3. The essential features of metaphysiological population models include (i) the biomass currency enabling within-year dynamics to be represented appropriately, (ii) distinguishing various processes reducing population growth below its potential, (iii) structural consistency in the representation of interacting populations and (iv) capacity to accommodate environmental variation in space as well as through time. Biomass dynamics provide a common currency linking behavioural, population and food web ecology. 4. Metaphysiological biomass loss accounting provides a conceptual framework more conducive for projecting and interpreting the population consequences of climatic shifts and human transformations of habitats than standard modelling approaches. © 2011 The Author. Journal of Animal Ecology © 2011 British Ecological Society.

  18. Time-dependent view of an isotope effect in electron-nuclear nonequilibrium dynamics with applications to N2.

    PubMed

    Ajay, Jayanth S; Komarova, Ksenia G; Remacle, Francoise; Levine, R D

    2018-06-05

    Isotopic fractionation in the photodissociation of N 2 could explain the considerable variation in the 14 N/ 15 N ratio in different regions of our galaxy. We previously proposed that such an isotope effect is due to coupling of photoexcited bound valence and Rydberg electronic states in the frequency range where there is strong state mixing. We here identify features of the role of the mass in the dynamics through a time-dependent quantum-mechanical simulation. The photoexcitation of N 2 is by an ultrashort pulse so that the process has a sharply defined origin in time and so that we can monitor the isolated molecule dynamics in time. An ultrafast pulse is necessarily broad in frequency and spans several excited electronic states. Each excited molecule is therefore not in a given electronic state but in a superposition state. A short time after excitation, there is a fairly sharp onset of a mass-dependent large population transfer when wave packets on two different electronic states in the same molecule overlap. This coherent overlap of the wave packets on different electronic states in the region of strong coupling allows an effective transfer of population that is very mass dependent. The extent of the transfer depends on the product of the populations on the two different electronic states and on their relative phase. It is as if two molecules collide but the process occurs within one molecule, a molecule that is simultaneously in both states. An analytical toy model recovers the (strong) mass and energy dependence.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharyya, Swarnendu, E-mail: swarnendu.bhattacharyya@ch.tum.de; Domcke, Wolfgang, E-mail: wolfgang.domcke@ch.tum.de; Dai, Zuyang

    A diabatic three-sheeted six-dimensional potential-energy surface has been constructed for the ground state and the lowest excited state of the PH{sub 3}{sup +} cation. Coupling terms of Jahn-Teller and pseudo-Jahn-Teller origin up to eighth order had to be included to describe the pronounced anharmonicity of the surface due to multiple conical intersections. The parameters of the diabatic Hamiltonian have been optimized by fitting the eigenvalues of the potential-energy matrix to ab initio data calculated at the CASSCF/MRCI level employing the correlation-consistent triple-ζ basis. The theoretical photoelectron spectrum of phosphine and the non-adiabatic nuclear dynamics of the phosphine cation have beenmore » computed by propagating nuclear wave packets with the multiconfiguration time-dependent Hartree method. The theoretical photoelectron bands obtained by Fourier transformation of the autocorrelation function agree well with the experimental results. It is shown that the ultrafast non-radiative decay dynamics of the first excited state of PH{sub 3}{sup +} is dominated by the exceptionally strong Jahn-Teller coupling of the asymmetric bending vibrational mode together with a hyperline of conical intersections with the electronic ground state induced by the umbrella mode. Time-dependent population probabilities have been computed for the three adiabatic electronic states. The non-adiabatic Jahn-Teller dynamics within the excited state takes place within ≈5 fs. Almost 80% of the excited-state population decay to the ground state within about 10 fs. The wave packets become highly complex and delocalized after 20 fs and no further significant transfer of electronic population seems to occur up to 100 fs propagation time.« less

  20. Charge carrier dynamics of GaAs/AlGaAs asymmetric double quantum wells at room temperature studied by optical pump terahertz probe spectroscopy

    NASA Astrophysics Data System (ADS)

    Afalla, Jessica; Ohta, Kaoru; Tokonami, Shunrou; Prieto, Elizabeth Ann; Catindig, Gerald Angelo; Cedric Gonzales, Karl; Jaculbia, Rafael; Vasquez, John Daniel; Somintac, Armando; Salvador, Arnel; Estacio, Elmer; Tani, Masahiko; Tominaga, Keisuke

    2017-11-01

    Two asymmetric double quantum wells of different coupling strengths (barrier widths) were grown via molecular beam epitaxy, both samples allowing tunneling. Photoluminescence was measured at 10 and 300 K to provide evidence of tunneling, barrier dependence, and structural uniformity. Carrier dynamics at room temperature was investigated by optical pump terahertz probe (OPTP) spectroscopy. Carrier population decay rates were obtained and photoconductivity spectra were analyzed using the Drude model. This work demonstrates that carrier, and possibly tunneling dynamics in asymmetric double quantum well structures may be studied at room temperature through OPTP spectroscopy.

  1. Mathematical modelling of vector-borne diseases and insecticide resistance evolution.

    PubMed

    Gabriel Kuniyoshi, Maria Laura; Pio Dos Santos, Fernando Luiz

    2017-01-01

    Vector-borne diseases are important public health issues and, consequently, in silico models that simulate them can be useful. The susceptible-infected-recovered (SIR) model simulates the population dynamics of an epidemic and can be easily adapted to vector-borne diseases, whereas the Hardy-Weinberg model simulates allele frequencies and can be used to study insecticide resistance evolution. The aim of the present study is to develop a coupled system that unifies both models, therefore enabling the analysis of the effects of vector population genetics on the population dynamics of an epidemic. Our model consists of an ordinary differential equation system. We considered the populations of susceptible, infected and recovered humans, as well as susceptible and infected vectors. Concerning these vectors, we considered a pair of alleles, with complete dominance interaction that determined the rate of mortality induced by insecticides. Thus, we were able to separate the vectors according to the genotype. We performed three numerical simulations of the model. In simulation one, both alleles conferred the same mortality rate values, therefore there was no resistant strain. In simulations two and three, the recessive and dominant alleles, respectively, conferred a lower mortality. Our numerical results show that the genetic composition of the vector population affects the dynamics of human diseases. We found that the absolute number of vectors and the proportion of infected vectors are smaller when there is no resistant strain, whilst the ratio of infected people is larger in the presence of insecticide-resistant vectors. The dynamics observed for infected humans in all simulations has a very similar shape to real epidemiological data. The population genetics of vectors can affect epidemiological dynamics, and the presence of insecticide-resistant strains can increase the number of infected people. Based on the present results, the model is a basis for development of other models and for investigating population dynamics.

  2. Modeling the Ebola zoonotic dynamics: Interplay between enviroclimatic factors and bat ecology

    PubMed Central

    Johnson, Kaylynn

    2017-01-01

    Understanding Ebola necessarily requires the characterization of the ecology of its main enzootic reservoir, i.e. bats, and its interplay with seasonal and enviroclimatic factors. Here we present a SIR compartmental model where we implement a bidirectional coupling between the available resources and the dynamics of the bat population in order to understand their migration patterns. Our compartmental modeling approach and simulations include transport terms to account for bats mobility and spatiotemporal climate variability. We hypothesize that environmental pressure is the main driving force for bats’ migration and our results reveal the appearance of sustained migratory waves of Ebola virus infected bats coupled to resources availability. Ultimately, our study can be relevant to predict hot spots of Ebola outbreaks in space and time and suggest conservation policies to mitigate the risk of spillovers. PMID:28604813

  3. Zeno effect in quantum Newton's cradle

    NASA Astrophysics Data System (ADS)

    Barros Hito, C. M.; Silva, M. B. E.; Bosco de Magalhães, A. R.

    2018-04-01

    We describe a chain of quantum oscillators which behaves analogously to Newton's cradle. The energy swings between the ends of the chain with very low population in its interior. Moreover, the oscillators at the ends can entangle with each other with negligible entanglement with the intermediate oscillators that mediate the process. Up to a certain number of oscillators, the system evolves in a manner similar to two coupled oscillators. The conditions for such behavior and the characteristic periods are analyzed. When that number exceeds a threshold, the dynamical regime changes to virtually freezing. In the oscillatory regime, Zeno effect can be observed. The parallelism between the Zeno dynamics in quantum Newton's cradle and in two coupled oscillators is highlighted. Promising platforms to observe such phenomena in the laboratory are cavities in photonic-band-gap material and trapped ions.

  4. A coupled modeling framework of the co-evolution of humans and water: case study of Tarim River Basin, western China

    NASA Astrophysics Data System (ADS)

    Liu, D.; Tian, F.; Lin, M.; Sivapalan, M.

    2014-04-01

    The complex interactions and feedbacks between humans and water are very essential issues but are poorly understood in the newly proposed discipline of socio-hydrology (Sivapalan et al., 2012). An exploratory model with the appropriate level of simplification can be valuable to improve our understanding of the co-evolution and self-organization of socio-hydrological systems driven by interactions and feedbacks operating at different scales. In this study, a simple coupled modeling framework for socio-hydrology co-evolution is developed for the Tarim River Basin in Western China, and is used to illustrate the explanatory power of such a model. The study area is the mainstream of the Tarim River, which is divided into two modeling units. The socio-hydrological system is composed of four parts, i.e. social sub-system, economic sub-system, ecological sub-system, and hydrological sub-system. In each modeling unit, four coupled ordinary differential equations are used to simulate the dynamics of the social sub-system represented by human population, the economic sub-system represented by irrigated crop area, the ecological sub-system represented by natural vegetation cover and the hydrological sub-system represented by stream discharge. The coupling and feedback processes of the four dominant sub-systems (and correspondingly four state variables) are integrated into several internal system characteristics interactively and jointly determined by themselves and by other coupled systems. For example, the stream discharge is coupled to the irrigated crop area by the colonization rate and mortality rate of the irrigated crop area in the upper reach and the irrigated area is coupled to stream discharge through irrigation water consumption. In a similar way, the stream discharge and natural vegetation cover are coupled together. The irrigated crop area is coupled to human population by the colonization rate and mortality rate of the population. The inflow of the lower reach is determined by the outflow from the upper reach. The natural vegetation cover in the lower reach is coupled to the outflow from the upper reach and governed by regional water resources management policy. The co-evolution of the Tarim socio-hydrological system is then analyzed within this modeling framework to gain insights into the overall system dynamics and its sensitivity to the external drivers and internal system variables. In the modeling framework, the state of each subsystem is holistically described by one state variable and the framework is flexible enough to comprise more processes and constitutive relationships if they are needed to illustrate the interaction and feedback mechanisms of the human-water system.

  5. Modeling the resilience of urban water supply using the capital portfolio approach

    NASA Astrophysics Data System (ADS)

    Krueger, E. H.; Klammler, H.; Borchardt, D.; Frank, K.; Jawitz, J. W.; Rao, P. S.

    2017-12-01

    The dynamics of global change challenge the resilience of cities in a multitude of ways, including pressures resulting from population and consumption changes, production patterns, climate and landuse change, as well as environmental hazards. Responses to these challenges aim to improve urban resilience, but lack an adequate understanding of 1) the elements and processes that lead to the resilience of coupled natural-human-engineered systems, 2) the complex dynamics emerging from the interaction of these elements, including the availability of natural resources, infrastructure, and social capital, which may lead to 3) unintended consequences resulting from management responses. We propose a new model that simulates the coupled dynamics of five types of capitals (water resources, infrastructure, finances, political capital /management, and social adaptive capacity) that are necessary for the provision of water supply to urban residents. We parameterize the model based on data for a case study city, which is limited by constraints in water availability, financial resources, and faced with degrading infrastructure, as well as population increase, which challenge the urban management institutions. Our model analyzes the stability of the coupled system, and produces time series of the capital dynamics to quantify its resilience as a result of the portfolio of capitals available to usher adaptive capacity and to secure water supply subjected to multiple recurring shocks. We apply our model to one real urban water supply system located in an arid environment, as well as a wide range of hypothetical case studies, which demonstrates its applicability to various types of cities, and its ability to quantify and compare water supply resilience. The analysis of a range of urban water systems provides valuable insights into guiding more sustainable responses for maintaining the resilience of urban water supply around the globe, by showing how unsustainable responses risk the loss of resilience. We suggest that the same model can be generalized to represent other types of urban infrastructure service systems with different parameterizations.

  6. Coupled dynamic systems and Le Chatelier's principle in noise control

    NASA Astrophysics Data System (ADS)

    Maidanik, G.; Becker, K. J.

    2004-05-01

    Investigation of coupling an externally driven dynamic system-a master dynamic system-to a passive one-an adjunct dynamic system-reveals that the response of the adjunct dynamic system affects the precoupled response of the master dynamic system. The responses, in the two dynamic systems when coupled, are estimated by the stored energies (Es) and (E0), respectively. Since the adjunct dynamic system, prior to coupling, was with zero (0) stored energy, E0s=0, the precoupled stored energy (E00) in the master dynamic system is expected to be reduced to (E0) when coupling is instituted; i.e., one expects E0

  7. Interrogation of inhibitor of nuclear factor κB α/nuclear factor κB (IκBα/NF-κB) negative feedback loop dynamics: from single cells to live animals in vivo.

    PubMed

    Moss, Britney L; Elhammali, Adnan; Fowlkes, Tiffanie; Gross, Shimon; Vinjamoori, Anant; Contag, Christopher H; Piwnica-Worms, David

    2012-09-07

    Full understanding of the biological significance of negative feedback processes requires interrogation at multiple scales as follows: in single cells, cell populations, and live animals in vivo. The transcriptionally coupled IκBα/NF-κB negative feedback loop, a pivotal regulatory node of innate immunity and inflammation, represents a model system for multiscalar reporters. Using a κB(5)→IκBα-FLuc bioluminescent reporter, we rigorously evaluated the dynamics of ΙκBα degradation and subsequent NF-κB transcriptional activity in response to diverse modes of TNFα stimulation. Modulating TNFα concentration or pulse duration yielded complex, reproducible, and differential ΙκBα dynamics in both cell populations and live single cells. Tremendous heterogeneity in the transcriptional amplitudes of individual responding cells was observed, which was greater than the heterogeneity in the transcriptional kinetics of responsive cells. Furthermore, administration of various TNFα doses in vivo generated ΙκBα dynamic profiles in the liver resembling those observed in single cells and populations of cells stimulated with TNFα pulses. This suggested that dose modulation of circulating TNFα was perceived by hepatocytes in vivo as pulses of increasing duration. Thus, a robust bioluminescent reporter strategy enabled rigorous quantitation of NF-κB/ΙκBα dynamics in both live single cells and cell populations and furthermore, revealed reproducible behaviors that informed interpretation of in vivo studies.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olmi, Simona, E-mail: simona.olmi@fi.isc.cnr.it; INFN Sez. Firenze, via Sansone, 1 - I-50019 Sesto Fiorentino

    The dynamics of two symmetrically coupled populations of rotators is studied for different values of the inertia. The system is characterized by different types of solutions, which all coexist with the fully synchronized state. At small inertia, the system is no more chaotic and one observes mainly quasi-periodic chimeras, while the usual (stationary) chimera state is not anymore observable. At large inertia, one observes two different kind of chaotic solutions with broken symmetry: the intermittent chaotic chimera, characterized by a synchronized population and a population displaying a turbulent behaviour, and a second state where the two populations are both chaoticmore » but whose dynamics adhere to two different macroscopic attractors. The intermittent chaotic chimeras are characterized by a finite life-time, whose duration increases as a power-law with the system size and the inertia value. Moreover, the chaotic population exhibits clear intermittent behavior, displaying a laminar phase where the two populations tend to synchronize, and a turbulent phase where the macroscopic motion of one population is definitely erratic. In the thermodynamic limit, these states survive for infinite time and the laminar regimes tends to disappear, thus giving rise to stationary chaotic solutions with broken symmetry contrary to what observed for chaotic chimeras on a ring geometry.« less

  9. Electron-nuclear corellations for photoinduced dynamics in molecular dimers

    NASA Astrophysics Data System (ADS)

    Kilin, Dmitri S.; Pereversev, Yuryi V.; Prezhdo, Oleg V.

    2003-03-01

    Ultrafast photoinduced dynamics of electronic excitation in molecular dimers is drastically affected by dynamic reorganization of of inter- and intra- molecular nuclear configuration modelled by quantized nuclear degree of freedom [1]. The dynamics of the electronic population and nuclear coherence is analyzed with help of both numerical solution of the chain of coupled differential equations for mean coordinate, population inversion, electronic-vibrational correlation etc.[2] and by propagating the Gaussian wavepackets in relevant adiabatic potentials. Intriguing results were obtained in the approximation of small energy difference and small change of nuclear equilibrium configuration for excited electronic states. In the limiting case of resonance between electronic states energy difference and frequency of the nuclear mode these results have been justified by comparison to exactly solvable Jaynes-Cummings model. It has been found that the photoinduced processes in dimer are arranged according to their time scales:(i) fast scale of nuclear motion,(ii) intermediate scale of dynamical redistribution of electronic population between excited states as well as growth and dynamics of electronic -nuclear correlation,(iii) slow scale of electronic population approaching to the quasiequilibrium distribution, decay of electronic-nuclear correlation, and diminishing the amplitude of mean coordinate oscillations, accompanied by essential growth of the nuclear coordinate dispersion associated with the overall nuclear wavepacket width. Demonstrated quantum-relaxational features of photoinduced vibronic dinamical processess in molecular dimers are obtained by simple method, applicable to large biological systems with many degrees of freedom. [1] J. A. Cina, D. S. Kilin, T. S. Humble, J. Chem. Phys. (2003) in press. [2] O. V. Prezhdo, J. Chem. Phys. 117, 2995 (2002).

  10. Sudden transitions in coupled opinion and epidemic dynamics with vaccination

    NASA Astrophysics Data System (ADS)

    Pires, Marcelo A.; Oestereich, André L.; Crokidakis, Nuno

    2018-05-01

    This work consists of an epidemic model with vaccination coupled with an opinion dynamics. Our objective was to study how disease risk perception can influence opinions about vaccination and therefore the spreading of the disease. Differently from previous works we have considered continuous opinions. The epidemic spreading is governed by an SIS-like model with an extra vaccinated state. In our model individuals vaccinate with a probability proportional to their opinions. The opinions change due to peer influence in pairwise interactions. The epidemic feedback to the opinion dynamics acts as an external field increasing the vaccination probability. We performed Monte Carlo simulations in fully-connected populations. Interestingly we observed the emergence of a first-order phase transition, besides the usual active-absorbing phase transition presented in the SIS model. Our simulations also show that with a certain combination of parameters, an increment in the initial fraction of the population that is pro-vaccine has a twofold effect: it can lead to smaller epidemic outbreaks in the short term, but it also contributes to the survival of the chain of infections in the long term. Our results also suggest that it is possible that more effective vaccines can decrease the long-term vaccine coverage. This is a counterintuitive outcome, but it is in line with empirical observations that vaccines can become a victim of their own success.

  11. Bivalves: From individual to population modelling

    NASA Astrophysics Data System (ADS)

    Saraiva, S.; van der Meer, J.; Kooijman, S. A. L. M.; Ruardij, P.

    2014-11-01

    An individual based population model for bivalves was designed, built and tested in a 0D approach, to simulate the population dynamics of a mussel bed located in an intertidal area. The processes at the individual level were simulated following the dynamic energy budget theory, whereas initial egg mortality, background mortality, food competition, and predation (including cannibalism) were additional population processes. Model properties were studied through the analysis of theoretical scenarios and by simulation of different mortality parameter combinations in a realistic setup, imposing environmental measurements. Realistic criteria were applied to narrow down the possible combination of parameter values. Field observations obtained in the long-term and multi-station monitoring program were compared with the model scenarios. The realistically selected modeling scenarios were able to reproduce reasonably the timing of some peaks in the individual abundances in the mussel bed and its size distribution but the number of individuals was not well predicted. The results suggest that the mortality in the early life stages (egg and larvae) plays an important role in population dynamics, either by initial egg mortality, larvae dispersion, settlement failure or shrimp predation. Future steps include the coupling of the population model with a hydrodynamic and biogeochemical model to improve the simulation of egg/larvae dispersion, settlement probability, food transport and also to simulate the feedback of the organisms' activity on the water column properties, which will result in an improvement of the food quantity and quality characterization.

  12. Stochastic seasonality and nonlinear density-dependent factors regulate population size in an African rodent

    USGS Publications Warehouse

    Leirs, H.; Stenseth, N.C.; Nichols, J.D.; Hines, J.E.; Verhagen, R.; Verheyen, W.

    1997-01-01

    Ecology has long been troubled by the controversy over how populations are regulated. Some ecologists focus on the role of environmental effects, whereas others argue that density-dependent feedback mechanisms are central. The relative importance of both processes is still hotly debated, but clear examples of both processes acting in the same population are rare. Keyfactor analysis (regression of population changes on possible causal factors) and time-series analysis are often used to investigate the presence of density dependence, but such approaches may be biased and provide no information on actual demographic rates. Here we report on both density-dependent and density-independent effects in a murid rodent pest species, the multimammate rat Mastomys natalensis (Smith, 1834), using statistical capture-recapture models. Both effects occur simultaneously, but we also demonstrate that they do not affect all demographic rates in the same way. We have incorporated the obtained estimates of demographic rates in a population dynamics model and show that the observed dynamics are affected by stabilizing nonlinear density-dependent components coupled with strong deterministic and stochastic seasonal components.

  13. Relation between the Electromagnetic Processes in the Near-Earth Space and Dynamics of the Biological Resources in Russian Arctic

    NASA Astrophysics Data System (ADS)

    Makarova, L. N.; Shirochkov, A. V.

    It is a well-established fact that the electromagnetic processes of different kind occurring in the near- Earth space produce significant effects in the Earth's atmosphere at all altitudes including the ground surface. There are some indications that these processes could influence at least indirectly the human health conditions. In this study we explore relation between perturbations in the solar wind (dynamics of its density, velocity, intensity of the interplanetary magnetic field) and long- term changes in population of some species of Arctic fauna (lemmings, polar foxes, deers, wolves, elks etc.) It was found out that the best statistical coupling between various Space Weather parameters and the changes in populations of the Arctic fauna species appears when the solar wind dynamic pressure magnitude is taken as one of these parameters. It was shown that the secular variations of the solar UV radiation expressed as the Total Solar Irradiance appears to be a space parameter, showing the best correlation with the changes in population of the Arctic fauna species. Such high correlation coefficients as 0.8 are obtained. It is premature now to discuss exact physical mechanisms, which could explain the obtained relations. A possible mutual dependence of some climatic factors and fauna population in Arctic on the Space Weather parameters is discussed in this connection. Conclusion is made that the electromagnetic fields of space origin is an important factor determining dynamics of population of the Arctic fauna species.

  14. Ecological drivers of guanaco recruitment: variable carrying capacity and density dependence.

    PubMed

    Marino, Andrea; Pascual, Miguel; Baldi, Ricardo

    2014-08-01

    Ungulates living in predator-free reserves offer the opportunity to study the influence of food limitation on population dynamics without the potentially confounding effects of top-down regulation or livestock competition. We assessed the influence of relative forage availability and population density on guanaco recruitment in two predator-free reserves in eastern Patagonia, with contrasting scenarios of population density. We also explored the relative contribution of the observed recruitment to population growth using a deterministic linear model to test the assumption that the studied populations were closed units. The observed densities increased twice as fast as our theoretical populations, indicating that marked immigration has taken place during the recovery phase experienced by both populations, thus we rejected the closed-population assumption. Regarding the factors driving variation in recruitment, in the low- to medium-density setting, we found a positive linear relationship between recruitment and surrogates of annual primary production, whereas no density dependence was detected. In contrast, in the high-density scenario, both annual primary production and population density showed marked effects, indicating a positive relationship between recruitment and per capita food availability above a food-limitation threshold. Our results support the idea that environmental carrying capacity fluctuates in response to climatic variation, and that these fluctuations have relevant consequences for herbivore dynamics, such as amplifying density dependence in drier years. We conclude that including the coupling between environmental variability in resources and density dependence is crucial to model ungulate population dynamics; to overlook temporal changes in carrying capacity may even mask density dependence as well as other important processes.

  15. Maximizing entanglement in bosonic Josephson junctions using shortcuts to adiabaticity and optimal control

    NASA Astrophysics Data System (ADS)

    Stefanatos, Dionisis; Paspalakis, Emmanuel

    2018-05-01

    In this article we consider a bosonic Josephson junction, a model system composed by two coupled nonlinear quantum oscillators which can be implemented in various physical contexts, initially prepared in a product of weakly populated coherent states. We quantify the maximum achievable entanglement between the modes of the junction and then use shortcuts to adiabaticity, a method developed to speed up adiabatic quantum dynamics, as well as numerical optimization, to find time-dependent controls (the nonlinearity and the coupling of the junction) which bring the system to a maximally entangled state.

  16. Fixation probabilities of evolutionary coordination games on two coupled populations

    NASA Astrophysics Data System (ADS)

    Zhang, Liye; Ying, Limin; Zhou, Jie; Guan, Shuguang; Zou, Yong

    2016-09-01

    Evolutionary forces resulted from competitions between different populations are common, which change the evolutionary behavior of a single population. In an isolated population of coordination games of two strategies (e.g., s1 and s2), the previous studies focused on determining the fixation probability that the system is occupied by only one strategy (s1) and their expectation times, given an initial mixture of two strategies. In this work, we propose a model of two interdependent populations, disclosing the effects of the interaction strength on fixation probabilities. In the well-mixing limit, a detailed linear stability analysis is performed, which allows us to find and to classify the different equilibria, yielding a clear picture of the bifurcation patterns in phase space. We demonstrate that the interactions between populations crucially alter the dynamic behavior. More specifically, if the coupling strength is larger than some threshold value, the critical initial density of one strategy (s1) that corresponds to fixation is significantly delayed. Instead, the two populations evolve to the opposite state of all (s2) strategy, which are in favor of the red queen hypothesis. We delineate the extinction time of strategy (s1) explicitly, which is an exponential form. These results are validated by systematic numerical simulations.

  17. Mathematical and Computational Challenges in Population Biology and Ecosystems Science

    NASA Technical Reports Server (NTRS)

    Levin, Simon A.; Grenfell, Bryan; Hastings, Alan; Perelson, Alan S.

    1997-01-01

    Mathematical and computational approaches provide powerful tools in the study of problems in population biology and ecosystems science. The subject has a rich history intertwined with the development of statistics and dynamical systems theory, but recent analytical advances, coupled with the enhanced potential of high-speed computation, have opened up new vistas and presented new challenges. Key challenges involve ways to deal with the collective dynamics of heterogeneous ensembles of individuals, and to scale from small spatial regions to large ones. The central issues-understanding how detail at one scale makes its signature felt at other scales, and how to relate phenomena across scales-cut across scientific disciplines and go to the heart of algorithmic development of approaches to high-speed computation. Examples are given from ecology, genetics, epidemiology, and immunology.

  18. Robust synchronization control scheme of a population of nonlinear stochastic synthetic genetic oscillators under intrinsic and extrinsic molecular noise via quorum sensing.

    PubMed

    Chen, Bor-Sen; Hsu, Chih-Yuan

    2012-10-26

    Collective rhythms of gene regulatory networks have been a subject of considerable interest for biologists and theoreticians, in particular the synchronization of dynamic cells mediated by intercellular communication. Synchronization of a population of synthetic genetic oscillators is an important design in practical applications, because such a population distributed over different host cells needs to exploit molecular phenomena simultaneously in order to emerge a biological phenomenon. However, this synchronization may be corrupted by intrinsic kinetic parameter fluctuations and extrinsic environmental molecular noise. Therefore, robust synchronization is an important design topic in nonlinear stochastic coupled synthetic genetic oscillators with intrinsic kinetic parameter fluctuations and extrinsic molecular noise. Initially, the condition for robust synchronization of synthetic genetic oscillators was derived based on Hamilton Jacobi inequality (HJI). We found that if the synchronization robustness can confer enough intrinsic robustness to tolerate intrinsic parameter fluctuation and extrinsic robustness to filter the environmental noise, then robust synchronization of coupled synthetic genetic oscillators is guaranteed. If the synchronization robustness of a population of nonlinear stochastic coupled synthetic genetic oscillators distributed over different host cells could not be maintained, then robust synchronization could be enhanced by external control input through quorum sensing molecules. In order to simplify the analysis and design of robust synchronization of nonlinear stochastic synthetic genetic oscillators, the fuzzy interpolation method was employed to interpolate several local linear stochastic coupled systems to approximate the nonlinear stochastic coupled system so that the HJI-based synchronization design problem could be replaced by a simple linear matrix inequality (LMI)-based design problem, which could be solved with the help of LMI toolbox in MATLAB easily. If the synchronization robustness criterion, i.e. the synchronization robustness ≥ intrinsic robustness + extrinsic robustness, then the stochastic coupled synthetic oscillators can be robustly synchronized in spite of intrinsic parameter fluctuation and extrinsic noise. If the synchronization robustness criterion is violated, external control scheme by adding inducer can be designed to improve synchronization robustness of coupled synthetic genetic oscillators. The investigated robust synchronization criteria and proposed external control method are useful for a population of coupled synthetic networks with emergent synchronization behavior, especially for multi-cellular, engineered networks.

  19. Robust synchronization control scheme of a population of nonlinear stochastic synthetic genetic oscillators under intrinsic and extrinsic molecular noise via quorum sensing

    PubMed Central

    2012-01-01

    Background Collective rhythms of gene regulatory networks have been a subject of considerable interest for biologists and theoreticians, in particular the synchronization of dynamic cells mediated by intercellular communication. Synchronization of a population of synthetic genetic oscillators is an important design in practical applications, because such a population distributed over different host cells needs to exploit molecular phenomena simultaneously in order to emerge a biological phenomenon. However, this synchronization may be corrupted by intrinsic kinetic parameter fluctuations and extrinsic environmental molecular noise. Therefore, robust synchronization is an important design topic in nonlinear stochastic coupled synthetic genetic oscillators with intrinsic kinetic parameter fluctuations and extrinsic molecular noise. Results Initially, the condition for robust synchronization of synthetic genetic oscillators was derived based on Hamilton Jacobi inequality (HJI). We found that if the synchronization robustness can confer enough intrinsic robustness to tolerate intrinsic parameter fluctuation and extrinsic robustness to filter the environmental noise, then robust synchronization of coupled synthetic genetic oscillators is guaranteed. If the synchronization robustness of a population of nonlinear stochastic coupled synthetic genetic oscillators distributed over different host cells could not be maintained, then robust synchronization could be enhanced by external control input through quorum sensing molecules. In order to simplify the analysis and design of robust synchronization of nonlinear stochastic synthetic genetic oscillators, the fuzzy interpolation method was employed to interpolate several local linear stochastic coupled systems to approximate the nonlinear stochastic coupled system so that the HJI-based synchronization design problem could be replaced by a simple linear matrix inequality (LMI)-based design problem, which could be solved with the help of LMI toolbox in MATLAB easily. Conclusion If the synchronization robustness criterion, i.e. the synchronization robustness ≥ intrinsic robustness + extrinsic robustness, then the stochastic coupled synthetic oscillators can be robustly synchronized in spite of intrinsic parameter fluctuation and extrinsic noise. If the synchronization robustness criterion is violated, external control scheme by adding inducer can be designed to improve synchronization robustness of coupled synthetic genetic oscillators. The investigated robust synchronization criteria and proposed external control method are useful for a population of coupled synthetic networks with emergent synchronization behavior, especially for multi-cellular, engineered networks. PMID:23101662

  20. Mapping human temporal and parietal neuronal population activity and functional coupling during mathematical cognition

    PubMed Central

    Daitch, Amy L.; Foster, Brett L.; Schrouff, Jessica; Rangarajan, Vinitha; Kaşikçi, Itır; Gattas, Sandra; Parvizi, Josef

    2016-01-01

    Brain areas within the lateral parietal cortex (LPC) and ventral temporal cortex (VTC) have been shown to code for abstract quantity representations and for symbolic numerical representations, respectively. To explore the fast dynamics of activity within each region and the interaction between them, we used electrocorticography recordings from 16 neurosurgical subjects implanted with grids of electrodes over these two regions and tracked the activity within and between the regions as subjects performed three different numerical tasks. Although our results reconfirm the presence of math-selective hubs within the VTC and LPC, we report here a remarkable heterogeneity of neural responses within each region at both millimeter and millisecond scales. Moreover, we show that the heterogeneity of response profiles within each hub mirrors the distinct patterns of functional coupling between them. Our results support the existence of multiple bidirectional functional loops operating between discrete populations of neurons within the VTC and LPC during the visual processing of numerals and the performance of arithmetic functions. These findings reveal information about the dynamics of numerical processing in the brain and also provide insight into the fine-grained functional architecture and connectivity within the human brain. PMID:27821758

  1. The transition between immune and disease states in a cellular automaton model of clonal immune response

    NASA Astrophysics Data System (ADS)

    Bezzi, Michele; Celada, Franco; Ruffo, Stefano; Seiden, Philip E.

    1997-02-01

    In this paper we extend the Celada-Seiden (CS) model of the humoral immune response to include infections virus and killer T cells (cellular response). The model represents molecules and cells with bitstrings. The response of the system to virus involves a competition between the ability of the virus to kill the host cells and the host's ability to eliminate the virus. We find two basins of attraction in the dynamics of this system, one is identified with disease and the other with the immune state. There is also an oscillating state that exists on the border of these two stable states. Fluctuations in the population of virus or antibody can end the oscillation and drive the system into one of the stable states. The introduction of mechanisms of cross-regulation between the two responses can bias the system towards one of them. We also study a mean field model, based on coupled maps, to investigate virus-like infections. This simple model reproduces the attractors for average populations observed in the cellular automaton. All the dynamical behavior connected to spatial extension is lost, as is the oscillating feature. Thus the mean field approximation introduced with coupled maps destroys oscillations.

  2. Metamodels for Transdisciplinary Analysis of Wildlife Population Dynamics

    PubMed Central

    Lacy, Robert C.; Miller, Philip S.; Nyhus, Philip J.; Pollak, J. P.; Raboy, Becky E.; Zeigler, Sara L.

    2013-01-01

    Wildlife population models have been criticized for their narrow disciplinary perspective when analyzing complexity in coupled biological – physical – human systems. We describe a “metamodel” approach to species risk assessment when diverse threats act at different spatiotemporal scales, interact in non-linear ways, and are addressed by distinct disciplines. A metamodel links discrete, individual models that depict components of a complex system, governing the flow of information among models and the sequence of simulated events. Each model simulates processes specific to its disciplinary realm while being informed of changes in other metamodel components by accessing common descriptors of the system, populations, and individuals. Interactions among models are revealed as emergent properties of the system. We introduce a new metamodel platform, both to further explain key elements of the metamodel approach and as an example that we hope will facilitate the development of other platforms for implementing metamodels in population biology, species risk assessments, and conservation planning. We present two examples – one exploring the interactions of dispersal in metapopulations and the spread of infectious disease, the other examining predator-prey dynamics – to illustrate how metamodels can reveal complex processes and unexpected patterns when population dynamics are linked to additional extrinsic factors. Metamodels provide a flexible, extensible method for expanding population viability analyses beyond models of isolated population demographics into more complete representations of the external and intrinsic threats that must be understood and managed for species conservation. PMID:24349567

  3. Fluorescence recovery after photobleaching reveals regulation and distribution of connexin36 gap junction coupling within mouse islets of Langerhans

    PubMed Central

    Farnsworth, Nikki L; Hemmati, Alireza; Pozzoli, Marina; Benninger, Richard K P

    2014-01-01

    The pancreatic islets are central to the maintenance of glucose homeostasis through insulin secretion. Glucose-stimulated insulin secretion is tightly linked to electrical activity in β cells within the islet. Gap junctions, composed of connexin36 (Cx36), form intercellular channels between β cells, synchronizing electrical activity and insulin secretion. Loss of gap junction coupling leads to altered insulin secretion dynamics and disrupted glucose homeostasis. Gap junction coupling is known to be disrupted in mouse models of pre-diabetes. Although approaches to measure gap junction coupling have been devised, they either lack cell specificity, suitable quantification of coupling or spatial resolution, or are invasive. The purpose of this study was to develop fluorescence recovery after photobleaching (FRAP) as a technique to accurately and robustly measure gap junction coupling in the islet. The cationic dye Rhodamine 123 was used with FRAP to quantify dye diffusion between islet β cells as a measure of Cx36 gap junction coupling. Measurements in islets with reduced Cx36 verified the accuracy of this technique in distinguishing between distinct levels of gap junction coupling. Analysis of individual cells revealed that the distribution of coupling across the islet is highly heterogeneous. Analysis of several modulators of gap junction coupling revealed glucose- and cAMP-dependent modulation of gap junction coupling in islets. Finally, FRAP was used to determine cell population specific coupling, where no functional gap junction coupling was observed between α cells and β cells in the islet. The results of this study show FRAP to be a robust technique which provides the cellular resolution to quantify the distribution and regulation of Cx36 gap junction coupling in specific cell populations within the islet. Future studies utilizing this technique may elucidate the role of gap junction coupling in the progression of diabetes and identify mechanisms of gap junction regulation for potential therapies. PMID:25172942

  4. Fluorescence recovery after photobleaching reveals regulation and distribution of connexin36 gap junction coupling within mouse islets of Langerhans.

    PubMed

    Farnsworth, Nikki L; Hemmati, Alireza; Pozzoli, Marina; Benninger, Richard K P

    2014-10-15

    The pancreatic islets are central to the maintenance of glucose homeostasis through insulin secretion. Glucose‐stimulated insulin secretion is tightly linked to electrical activity in β cells within the islet. Gap junctions, composed of connexin36 (Cx36), form intercellular channels between β cells, synchronizing electrical activity and insulin secretion. Loss of gap junction coupling leads to altered insulin secretion dynamics and disrupted glucose homeostasis. Gap junction coupling is known to be disrupted in mouse models of pre‐diabetes. Although approaches to measure gap junction coupling have been devised, they either lack cell specificity, suitable quantification of coupling or spatial resolution, or are invasive. The purpose of this study was to develop fluorescence recovery after photobleaching (FRAP) as a technique to accurately and robustly measure gap junction coupling in the islet. The cationic dye Rhodamine 123 was used with FRAP to quantify dye diffusion between islet β cells as a measure of Cx36 gap junction coupling. Measurements in islets with reduced Cx36 verified the accuracy of this technique in distinguishing between distinct levels of gap junction coupling. Analysis of individual cells revealed that the distribution of coupling across the islet is highly heterogeneous. Analysis of several modulators of gap junction coupling revealed glucose‐ and cAMP‐dependent modulation of gap junction coupling in islets. Finally, FRAP was used to determine cell population specific coupling, where no functional gap junction coupling was observed between α cells and β cells in the islet. The results of this study show FRAP to be a robust technique which provides the cellular resolution to quantify the distribution and regulation of Cx36 gap junction coupling in specific cell populations within the islet. Future studies utilizing this technique may elucidate the role of gap junction coupling in the progression of diabetes and identify mechanisms of gap junction regulation for potential therapies.

  5. The emergence of cooperation from a single cooperative mutant

    NASA Astrophysics Data System (ADS)

    Cremer, Jonas; Melbinger, Anna; Frey, Erwin

    2012-02-01

    Population structure is one central condition which promotes the stability of cooperation: If cooperators more likely interact with other cooperators (positive assortment), they keep most of their benefit for themselves and are less exploited by non-cooperators. However, positive assortment can only act successfully if cooperation is already well established in the population such that cooperative individuals can successfully assort. But how can cooperation emerge when starting with a single cooperative mutant? Here we study this issue for a generic situation of microbial systems where microbes regularly form new colonies and show strong population growth. We show how and when the dynamical interplay between colony formation, population growth and evolution within colonies can provoke the emergence of cooperation. In particular, the probability for a single cooperative mutant to succeed is robustly large when colony-formation is fast or comparable to the time-scale of growth within colonies; growth supports cooperation.[4pt] [1] A. Melbinger, J. Cremer, and E. Frey, Evolutionary game theory in growing populations, Phys. Rev. Lett. 105, 178101 (2010)[0pt] [2] J. Cremer, A. Melbinger, and E. Frey, Evolutionary and population dynamics: a coupled approach, arXiv:1108.2604

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdel-Khalek, S., E-mail: sayedquantum@yahoo.co.uk; The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, Miramare-Trieste; Berrada, K.

    The dynamics of a superconducting (SC) qubit interacting with a field under decoherence with and without time-dependent coupling effect is analyzed. Quantum features like the collapse–revivals for the dynamics of population inversion, sudden birth and sudden death of entanglement, and statistical properties are investigated under the phase damping effect. Analytic results for certain parametric conditions are obtained. We analyze the influence of decoherence on the negativity and Wehrl entropy for different values of the physical parameters. We also explore an interesting relation between the SC-field entanglement and Wehrl entropy behavior during the time evolution. We show that the amount ofmore » SC-field entanglement can be enhanced as the field tends to be more classical. The studied model of SC-field system with the time-dependent coupling has high practical importance due to their experimental accessibility which may open new perspectives in different tasks of quantum formation processing.« less

  7. Conformists and contrarians in a Kuramoto model with identical natural frequencies

    NASA Astrophysics Data System (ADS)

    Hong, Hyunsuk; Strogatz, Steven H.

    2011-10-01

    We consider a variant of the Kuramoto model in which all the oscillators are now assumed to have the same natural frequency, but some of them are negatively coupled to the mean field. These contrarian oscillators tend to align in antiphase with the mean field, whereas, the positively coupled conformist oscillators favor an in-phase relationship. The interplay between these effects can lead to rich dynamics. In addition to a splitting of the population into two diametrically opposed factions, the system can also display traveling waves, complete incoherence, and a blurred version of the two-faction state. Exact solutions for these states and their bifurcations are obtained by means of the Watanabe-Strogatz transformation and the Ott-Antonsen ansatz. Curiously, this system of oscillators with identical frequencies turns out to exhibit more complicated dynamics than its counterpart with heterogeneous natural frequencies.

  8. Conformists and contrarians in a Kuramoto model with identical natural frequencies.

    PubMed

    Hong, Hyunsuk; Strogatz, Steven H

    2011-10-01

    We consider a variant of the Kuramoto model in which all the oscillators are now assumed to have the same natural frequency, but some of them are negatively coupled to the mean field. These contrarian oscillators tend to align in antiphase with the mean field, whereas, the positively coupled conformist oscillators favor an in-phase relationship. The interplay between these effects can lead to rich dynamics. In addition to a splitting of the population into two diametrically opposed factions, the system can also display traveling waves, complete incoherence, and a blurred version of the two-faction state. Exact solutions for these states and their bifurcations are obtained by means of the Watanabe-Strogatz transformation and the Ott-Antonsen ansatz. Curiously, this system of oscillators with identical frequencies turns out to exhibit more complicated dynamics than its counterpart with heterogeneous natural frequencies.

  9. Dynamics of the Earth's Inner Magnetosphere and its Connection to the Ionosphere: Current Understanding and Challenges

    NASA Technical Reports Server (NTRS)

    Zheng, Yihua

    2010-01-01

    The Earth's inner magnetosphere, a vast volume in space spanning from 1.5 Re (Earth radii) to 10 Re, is a host to a variety of plasma populations (with energy from 1 eV to few MeV) and physical processes where most of which involve plasma and field coupling. As a gigantic particle accelerator, the inner magnetosphere includes three overlapping regions: the plasmasphere, the ring current, and the Van Allen radiation belt. The complex structures and dynamics of these regions are externally driven by solar activities and internally modulated by intricate interactions and coupling. As a major constituent of Space Weather, the inner magnetosphere is both scientifically intriguing and practically important to our society. In this presentation, I will discuss our recent results from the Comprehensive Ring Current Model, in the context of our current understanding of the inner magnetosphere in general and challenges ahead in making further progresses.

  10. Dynamics of the Earth's Inner Magnetosphere and Its Connection to the Ionosphere: Current Understanding and Challenges

    NASA Technical Reports Server (NTRS)

    Zheng, Yihua

    2011-01-01

    The Earth's inner magnetosphere, a vast volume in space spanning from 1.5 Re (Earth radii) to 10 Re, is a host to a variety of plasma populations (with energy from 1 eV to few MeV) and physical processes where most of which involve plasma and field coupling. As a gigantic particle accelerator, the inner magnetosphere includes three overlapping regions: the plasmasphere, the ring current, and the Van Allen radiation belt. The complex structures and dynamics of these regions are externally driven by solar activities and internally modulated by intricate interactions and coupling. As a major constituent of Space Weather, the inner magnetosphere is both scientifically intriguing and practically important to our society. In this presentation, I will discuss our recent results from the Comprehensive Ring Current Model, in the context of our current understanding of the inner magnetosphere in general and challenges ahead in making further progresses.

  11. Dimensionality and entropy of spontaneous and evoked rate activity

    NASA Astrophysics Data System (ADS)

    Engelken, Rainer; Wolf, Fred

    Cortical circuits exhibit complex activity patterns both spontaneously and evoked by external stimuli. Finding low-dimensional structure in population activity is a challenge. What is the diversity of the collective neural activity and how is it affected by an external stimulus? Using concepts from ergodic theory, we calculate the attractor dimensionality and dynamical entropy production of these networks. We obtain these two canonical measures of the collective network dynamics from the full set of Lyapunov exponents. We consider a randomly-wired firing-rate network that exhibits chaotic rate fluctuations for sufficiently strong synaptic weights. We show that dynamical entropy scales logarithmically with synaptic coupling strength, while the attractor dimensionality saturates. Thus, despite the increasing uncertainty, the diversity of collective activity saturates for strong coupling. We find that a time-varying external stimulus drastically reduces both entropy and dimensionality. Finally, we analytically approximate the full Lyapunov spectrum in several limiting cases by random matrix theory. Our study opens a novel avenue to characterize the complex dynamics of rate networks and the geometric structure of the corresponding high-dimensional chaotic attractor. received funding from Evangelisches Studienwerk Villigst, DFG through CRC 889 and Volkswagen Foundation.

  12. Modeling Sustainability: Population, Inequality, Consumption, and Bidirectional Coupling of the Earth and Human Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Motesharrei, Safa; Rivas, Jorge; Kalnay, Eugenia

    Over the last two centuries, the impact of the Human System has grown dramatically, becoming strongly dominant within the Earth System in many different ways. Consumption, inequality, and population have increased extremely fast, especially since about 1950, threatening to overwhelm the many critical functions and ecosystems of the Earth System. Changes in the Earth System, in turn, have important feedback effects on the Human System, with costly and potentially serious consequences. However, current models do not incorporate these critical feedbacks. Here, we argue that in order to understand the dynamics of either system, Earth System Models must be coupled withmore » Human System Models through bidirectional couplings representing the positive, negative, and delayed feedbacks that exist in the real systems. In particular, key Human System variables, such as demographics, inequality, economic growth, and migration, are not coupled with the Earth System but are instead driven by exogenous estimates, such as United Nations population projections.This makes current models likely to miss important feedbacks in the real Earth–Human system, especially those that may result in unexpected or counterintuitive outcomes, and thus requiring different policy interventions from current models. Lastly, the importance and imminence of sustainability challenges, the dominant role of the Human System in the Earth System, and the essential roles the Earth System plays for the Human System, all call for collaboration of natural scientists, social scientists, and engineers in multidisciplinary research and modeling to develop coupled Earth–Human system models for devising effective science-based policies and measures to benefit current and future generations.« less

  13. Modeling Sustainability: Population, Inequality, Consumption, and Bidirectional Coupling of the Earth and Human Systems

    NASA Technical Reports Server (NTRS)

    Motesharrei, Safa; Rivas, Jorge; Kalnay, Eugenia; Asrar, Ghassem R.; Busalacchi, Antonio J.; Cahalan, Robert F.; Cane, Mark A.; Colwell, Rita R.; Feng, Kuishuang; Franklin, Rachel S.; hide

    2016-01-01

    Over the last two centuries, the impact of the Human System has grown dramatically, becoming strongly dominant within the Earth System in many different ways. Consumption, inequality, and population have increased extremely fast, especially since about 1950, threatening to overwhelm the many critical functions and ecosystems of the Earth System. Changes in the Earth System, in turn, have important feedback effects on the Human System, with costly and potentially serious consequences. However, current models do not incorporate these critical feedbacks. We argue that in order to understand the dynamics of either system, Earth System Models must be coupled with Human System Models through bidirectional couplings representing the positive, negative, and delayed feedbacks that exist in the real systems. In particular, key Human System variables, such as demographics, inequality, economic growth, and migration, are not coupled with the Earth System but are instead driven by exogenous estimates, such as UN population projections. This makes current models likely to miss important feedbacks in the real Earth-Human system, especially those that may result in unexpected or counterintuitive outcomes, and thus requiring different policy interventions from current models. The importance and imminence of sustainability challenges, the dominant role of the Human System in the Earth System, and the essential roles the Earth System plays for the Human System, all call for collaboration of natural scientists, social scientists, and engineers in multidisciplinary research and modeling to develop coupled Earth-Human system models for devising effective science-based policies and measures to benefit current and future generations.

  14. Modeling Sustainability: Population, Inequality, Consumption, and Bidirectional Coupling of the Earth and Human Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Motesharrei, Safa; Rivas, Jorge; Kalnay, Eugenia

    Over the last two centuries, the impact of the Human System has grown dramatically, becoming strongly dominant within the Earth System in many different ways. Consumption, inequality, and population have increased extremely fast, especially since about 1950, threatening to overwhelm the many critical functions and ecosystems of the Earth System. Changes in the Earth System, in turn, have important feedback effects on the Human System, with costly and potentially serious consequences. However, current models do not incorporate these critical feedbacks. We argue that in order to understand the dynamics of either system, Earth System Models must be coupled with Humanmore » System Models through bidirectional couplings representing the positive, negative, and delayed feedbacks that exist in the real systems. In particular, key Human System variables, such as demographics, inequality, economic growth, and migration, are not coupled with the Earth System but are instead driven by exogenous estimates, such as United Nations population projections. This makes current models likely to miss important feedbacks in the real Earth–Human system, especially those that may result in unexpected or counterintuitive outcomes, and thus requiring different policy interventions from current models. The importance and imminence of sustainability challenges, the dominant role of the Human System in the Earth System, and the essential roles the Earth System plays for the Human System, all call for collaboration of natural scientists, social scientists, and engineers in multidisciplinary research and modeling to develop coupled Earth–Human system models for devising effective science-based policies and measures to benefit current and future generations.« less

  15. Modeling Sustainability: Population, Inequality, Consumption, and Bidirectional Coupling of the Earth and Human Systems

    DOE PAGES

    Motesharrei, Safa; Rivas, Jorge; Kalnay, Eugenia; ...

    2016-12-11

    Over the last two centuries, the impact of the Human System has grown dramatically, becoming strongly dominant within the Earth System in many different ways. Consumption, inequality, and population have increased extremely fast, especially since about 1950, threatening to overwhelm the many critical functions and ecosystems of the Earth System. Changes in the Earth System, in turn, have important feedback effects on the Human System, with costly and potentially serious consequences. However, current models do not incorporate these critical feedbacks. Here, we argue that in order to understand the dynamics of either system, Earth System Models must be coupled withmore » Human System Models through bidirectional couplings representing the positive, negative, and delayed feedbacks that exist in the real systems. In particular, key Human System variables, such as demographics, inequality, economic growth, and migration, are not coupled with the Earth System but are instead driven by exogenous estimates, such as United Nations population projections.This makes current models likely to miss important feedbacks in the real Earth–Human system, especially those that may result in unexpected or counterintuitive outcomes, and thus requiring different policy interventions from current models. Lastly, the importance and imminence of sustainability challenges, the dominant role of the Human System in the Earth System, and the essential roles the Earth System plays for the Human System, all call for collaboration of natural scientists, social scientists, and engineers in multidisciplinary research and modeling to develop coupled Earth–Human system models for devising effective science-based policies and measures to benefit current and future generations.« less

  16. Dynamics and couplings of N-H stretching excitations of guanosine-cytidine base pairs in solution.

    PubMed

    Yang, Ming; Szyc, Łukasz; Röttger, Katharina; Fidder, Henk; Nibbering, Erik T J; Elsaesser, Thomas; Temps, Friedrich

    2011-05-12

    N-H stretching vibrations of hydrogen-bonded guanosine-cytidine (G·C) base pairs in chloroform solution are studied with linear and ultrafast nonlinear infrared (IR) spectroscopy. Assignment of the IR-active bands in the linear spectrum is made possible by combining structural information on the hydrogen bonds in G·C base pairs with literature results of density functional theory calculations, and empirical relations connecting frequency shifts and intensity of the IR-active vibrations. A local mode representation of N-H stretching vibrations is adopted, consisting of ν(G)(NH(2))(f) and ν(C)(NH(2))(f) modes for free NH groups of G and C, and of ν(G)(NH(2))(b), ν(G)(NH), and ν(C)(NH(2))(b) modes associated with N-H stretching motions of hydrogen-bonded NH groups. The couplings and relaxation dynamics of the N-H stretching excitations are studied with femtosecond mid-infrared two-dimensional (2D) and pump-probe spectroscopy. The N-H stretching vibrations of the free NH groups of G and C have an average population lifetime of 2.4 ps. Besides a vibrational population lifetime shortening to subpicosecond values observed for the hydrogen-bonded N-H stretching vibrations, the 2D spectra reveal vibrational excitation transfer from the ν(G)(NH(2))(b) mode to the ν(G)(NH) and/or ν(C)(NH(2))(b) modes. The underlying intermode vibrational couplings are on the order of 10 cm(-1).

  17. Human population and atmospheric carbon dioxide growth dynamics: Diagnostics for the future

    NASA Astrophysics Data System (ADS)

    Hüsler, A. D.; Sornette, D.

    2014-10-01

    We analyze the growth rates of human population and of atmospheric carbon dioxide by comparing the relative merits of two benchmark models, the exponential law and the finite-time-singular (FTS) power law. The later results from positive feedbacks, either direct or mediated by other dynamical variables, as shown in our presentation of a simple endogenous macroeconomic dynamical growth model describing the growth dynamics of coupled processes involving human population (labor in economic terms), capital and technology (proxies by CO2 emissions). Human population in the context of our energy intensive economies constitutes arguably the most important underlying driving variable of the content of carbon dioxide in the atmosphere. Using some of the best databases available, we perform empirical analyses confirming that the human population on Earth has been growing super-exponentially until the mid-1960s, followed by a decelerated sub-exponential growth, with a tendency to plateau at just an exponential growth in the last decade with an average growth rate of 1.0% per year. In contrast, we find that the content of carbon dioxide in the atmosphere has continued to accelerate super-exponentially until 1990, with a transition to a progressive deceleration since then, with an average growth rate of approximately 2% per year in the last decade. To go back to CO2 atmosphere contents equal to or smaller than the level of 1990 as has been the broadly advertised goals of international treaties since 1990 requires herculean changes: from a dynamical point of view, the approximately exponential growth must not only turn to negative acceleration but also negative velocity to reverse the trend.

  18. Neuro-cognitive mechanisms of decision making in joint action: a human-robot interaction study.

    PubMed

    Bicho, Estela; Erlhagen, Wolfram; Louro, Luis; e Silva, Eliana Costa

    2011-10-01

    In this paper we present a model for action preparation and decision making in cooperative tasks that is inspired by recent experimental findings about the neuro-cognitive mechanisms supporting joint action in humans. It implements the coordination of actions and goals among the partners as a dynamic process that integrates contextual cues, shared task knowledge and predicted outcome of others' motor behavior. The control architecture is formalized by a system of coupled dynamic neural fields representing a distributed network of local but connected neural populations. Different pools of neurons encode task-relevant information about action means, task goals and context in the form of self-sustained activation patterns. These patterns are triggered by input from connected populations and evolve continuously in time under the influence of recurrent interactions. The dynamic model of joint action is evaluated in a task in which a robot and a human jointly construct a toy object. We show that the highly context sensitive mapping from action observation onto appropriate complementary actions allows coping with dynamically changing joint action situations. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. In silico synergism and antagonism of an anti-tumour system intervened by coupling immunotherapy and chemotherapy: a mathematical modelling approach.

    PubMed

    Hu, Wen-Yong; Zhong, Wei-Rong; Wang, Feng-Hua; Li, Li; Shao, Yuan-Zhi

    2012-02-01

    Based on the logistic growth law for a tumour derived from enzymatic dynamics, we address from a physical point of view the phenomena of synergism, additivity and antagonism in an avascular anti-tumour system regulated externally by dual coupling periodic interventions, and propose a theoretical model to simulate the combinational administration of chemotherapy and immunotherapy. The in silico results of our modelling approach reveal that the tumour population density of an anti-tumour system, which is subject to the combinational attack of chemotherapeutical as well as immune intervention, depends on four parameters as below: the therapy intensities D, the coupling intensity I, the coupling coherence R and the phase-shifts Φ between two combinational interventions. In relation to the intensity and nature (synergism, additivity and antagonism) of coupling as well as the phase-shift between two therapeutic interventions, the administration sequence of two periodic interventions makes a difference to the curative efficacy of an anti-tumour system. The isobologram established from our model maintains a considerable consistency with that of the well-established Loewe Additivity model (Tallarida, Pharmacology 319(1):1-7, 2006). Our study discloses the general dynamic feature of an anti-tumour system regulated by two periodic coupling interventions, and the results may serve as a supplement to previous models of drug administration in combination and provide a type of heuristic approach for preclinical pharmacokinetic investigation.

  20. Inheritance of Cell-Cycle Duration in the Presence of Periodic Forcing

    NASA Astrophysics Data System (ADS)

    Mosheiff, Noga; Martins, Bruno M. C.; Pearl-Mizrahi, Sivan; Grünberger, Alexander; Helfrich, Stefan; Mihalcescu, Irina; Kohlheyer, Dietrich; Locke, James C. W.; Glass, Leon; Balaban, Nathalie Q.

    2018-04-01

    Periodic forcing of nonlinear oscillators leads to a large number of dynamic behaviors. The coupling of the cell cycle to the circadian clock provides a biological realization of such forcing. A previous model of forcing leads to nontrivial relations between correlations along cell lineages. Here, we present a simplified two-dimensional nonlinear map for the periodic forcing of the cell cycle. Using high-throughput single-cell microscopy, we have studied the correlations between cell-cycle duration in discrete lineages of several different organisms, including those with known coupling to a circadian clock and those without known coupling to a circadian clock. The model reproduces the paradoxical correlations and predicts new features that can be compared with the experimental data. By fitting the model to the data, we extract the important parameters that govern the dynamics. Interestingly, the model reproduces bimodal distributions for cell-cycle duration, as well as the gating of cell division by the phase of the clock, without having been explicitly fed into the model. In addition, the model predicts that circadian coupling may increase cell-to-cell variability in a clonal population of cells. In agreement with this prediction, deletion of the circadian clock reduces variability. Our results show that simple correlations can identify systems under periodic forcing and that studies of nonlinear coupling of biological oscillators provide insight into basic cellular processes of growth.

  1. Extending Integrate-and-Fire Model Neurons to Account for the Effects of Weak Electric Fields and Input Filtering Mediated by the Dendrite.

    PubMed

    Aspart, Florian; Ladenbauer, Josef; Obermayer, Klaus

    2016-11-01

    Transcranial brain stimulation and evidence of ephaptic coupling have recently sparked strong interests in understanding the effects of weak electric fields on the dynamics of brain networks and of coupled populations of neurons. The collective dynamics of large neuronal populations can be efficiently studied using single-compartment (point) model neurons of the integrate-and-fire (IF) type as their elements. These models, however, lack the dendritic morphology required to biophysically describe the effect of an extracellular electric field on the neuronal membrane voltage. Here, we extend the IF point neuron models to accurately reflect morphology dependent electric field effects extracted from a canonical spatial "ball-and-stick" (BS) neuron model. Even in the absence of an extracellular field, neuronal morphology by itself strongly affects the cellular response properties. We, therefore, derive additional components for leaky and nonlinear IF neuron models to reproduce the subthreshold voltage and spiking dynamics of the BS model exposed to both fluctuating somatic and dendritic inputs and an extracellular electric field. We show that an oscillatory electric field causes spike rate resonance, or equivalently, pronounced spike to field coherence. Its resonance frequency depends on the location of the synaptic background inputs. For somatic inputs the resonance appears in the beta and gamma frequency range, whereas for distal dendritic inputs it is shifted to even higher frequencies. Irrespective of an external electric field, the presence of a dendritic cable attenuates the subthreshold response at the soma to slowly-varying somatic inputs while implementing a low-pass filter for distal dendritic inputs. Our point neuron model extension is straightforward to implement and is computationally much more efficient compared to the original BS model. It is well suited for studying the dynamics of large populations of neurons with heterogeneous dendritic morphology with (and without) the influence of weak external electric fields.

  2. Extending Integrate-and-Fire Model Neurons to Account for the Effects of Weak Electric Fields and Input Filtering Mediated by the Dendrite

    PubMed Central

    Obermayer, Klaus

    2016-01-01

    Transcranial brain stimulation and evidence of ephaptic coupling have recently sparked strong interests in understanding the effects of weak electric fields on the dynamics of brain networks and of coupled populations of neurons. The collective dynamics of large neuronal populations can be efficiently studied using single-compartment (point) model neurons of the integrate-and-fire (IF) type as their elements. These models, however, lack the dendritic morphology required to biophysically describe the effect of an extracellular electric field on the neuronal membrane voltage. Here, we extend the IF point neuron models to accurately reflect morphology dependent electric field effects extracted from a canonical spatial “ball-and-stick” (BS) neuron model. Even in the absence of an extracellular field, neuronal morphology by itself strongly affects the cellular response properties. We, therefore, derive additional components for leaky and nonlinear IF neuron models to reproduce the subthreshold voltage and spiking dynamics of the BS model exposed to both fluctuating somatic and dendritic inputs and an extracellular electric field. We show that an oscillatory electric field causes spike rate resonance, or equivalently, pronounced spike to field coherence. Its resonance frequency depends on the location of the synaptic background inputs. For somatic inputs the resonance appears in the beta and gamma frequency range, whereas for distal dendritic inputs it is shifted to even higher frequencies. Irrespective of an external electric field, the presence of a dendritic cable attenuates the subthreshold response at the soma to slowly-varying somatic inputs while implementing a low-pass filter for distal dendritic inputs. Our point neuron model extension is straightforward to implement and is computationally much more efficient compared to the original BS model. It is well suited for studying the dynamics of large populations of neurons with heterogeneous dendritic morphology with (and without) the influence of weak external electric fields. PMID:27893786

  3. Peru: population and policy.

    PubMed

    Sobrevilla, L A

    1987-06-01

    Peru's 1985 Population Policy Law states as its second objective that individuals and couples should be well informed and provided with the education and health services that will assist them in making responsible decisions about the number and spacing of their children. Thus, the law establishes a firm basis for IEC programs. With regard to population education, the purpose of the law is to create awareness through all educational channels of the reciprocal influence of population dynamics and socioeconomic development and to promote positive attitudes toward small family size. The law promotes the use of the communications media to educate and inform about population issues. The National Population Council, which coordinates and supervises the IEC activities of public sector agencies, has issued publications and audiovisual materials, conducted meetings with government officials and opinion leaders, and promoted awareness of population policy as a key part of development planning. In 1984, the Council organized the First National Seminar on Communication and Population to review activities, set the basis for intersectoral coordination, unify criteria, and review population policy concepts and language. The Ministry of Health carries out IEC activities as part of its family planning services program. In addition, the Ministry of Education has organized a national population education program that aims to revise school curricula to include a greater emphasis on population dynamics and family life education. The activities of a number of private institutions complement the IEC work public sector organizations.

  4. Emergent properties of interacting populations of spiking neurons.

    PubMed

    Cardanobile, Stefano; Rotter, Stefan

    2011-01-01

    Dynamic neuronal networks are a key paradigm of increasing importance in brain research, concerned with the functional analysis of biological neuronal networks and, at the same time, with the synthesis of artificial brain-like systems. In this context, neuronal network models serve as mathematical tools to understand the function of brains, but they might as well develop into future tools for enhancing certain functions of our nervous system. Here, we present and discuss our recent achievements in developing multiplicative point processes into a viable mathematical framework for spiking network modeling. The perspective is that the dynamic behavior of these neuronal networks is faithfully reflected by a set of non-linear rate equations, describing all interactions on the population level. These equations are similar in structure to Lotka-Volterra equations, well known by their use in modeling predator-prey relations in population biology, but abundant applications to economic theory have also been described. We present a number of biologically relevant examples for spiking network function, which can be studied with the help of the aforementioned correspondence between spike trains and specific systems of non-linear coupled ordinary differential equations. We claim that, enabled by the use of multiplicative point processes, we can make essential contributions to a more thorough understanding of the dynamical properties of interacting neuronal populations.

  5. Emergent Properties of Interacting Populations of Spiking Neurons

    PubMed Central

    Cardanobile, Stefano; Rotter, Stefan

    2011-01-01

    Dynamic neuronal networks are a key paradigm of increasing importance in brain research, concerned with the functional analysis of biological neuronal networks and, at the same time, with the synthesis of artificial brain-like systems. In this context, neuronal network models serve as mathematical tools to understand the function of brains, but they might as well develop into future tools for enhancing certain functions of our nervous system. Here, we present and discuss our recent achievements in developing multiplicative point processes into a viable mathematical framework for spiking network modeling. The perspective is that the dynamic behavior of these neuronal networks is faithfully reflected by a set of non-linear rate equations, describing all interactions on the population level. These equations are similar in structure to Lotka-Volterra equations, well known by their use in modeling predator-prey relations in population biology, but abundant applications to economic theory have also been described. We present a number of biologically relevant examples for spiking network function, which can be studied with the help of the aforementioned correspondence between spike trains and specific systems of non-linear coupled ordinary differential equations. We claim that, enabled by the use of multiplicative point processes, we can make essential contributions to a more thorough understanding of the dynamical properties of interacting neuronal populations. PMID:22207844

  6. Modeling of Inner Magnetosphere Coupling Processes

    NASA Technical Reports Server (NTRS)

    Khazanov, George V.

    2011-01-01

    The Ring Current (RC) is the biggest energy player in the inner magnetosphere. It is the source of free energy for Electromagnetic Ion Cyclotron (EMIC) wave excitation provided by a temperature anisotropy of RC ions, which develops naturally during inward E B convection from the plasmasheet. The cold plasmasphere, which is under the strong influence of the magnetospheric electric field, strongly mediates the RC-EMIC wave-particle-coupling process and ultimately becomes part of the particle and energy interplay. On the other hand, there is a strong influence of the RC on the inner magnetospheric electric and magnetic field configurations and these configurations, in turn, are important to RC dynamics. Therefore, one of the biggest needs for inner magnetospheric research is the continued progression toward a coupled, interconnected system with the inclusion of nonlinear feedback mechanisms between the plasma populations, the electric and magnetic fields, and plasma waves. As we clearly demonstrated in our studies, EMIC waves strongly interact with electrons and ions of energies ranging from approx.1 eV to approx.10 MeV, and that these waves strongly affect the dynamics of resonant RC ions, thermal electrons and ions, and the outer RB relativistic electrons. As we found, the rate of ion and electron scattering/heating in the Earth's magnetosphere is not only controlled by the wave intensity-spatial-temporal distribution but also strongly depends on the spectral distribution of the wave power. The latter is also a function of the plasmaspheric heavy ion content, and the plasma density and temperature distributions along the magnetic field lines. The above discussion places RC-EMIC wave coupling dynamics in context with inner magnetospheric coupling processes and, ultimately, relates RC studies with plasmaspheric and Superthermal Electrons formation processes as well as with outer RB physics.

  7. Interpretation of gypsy moth frontal advance using meteorology in a conditional algorithm.

    PubMed

    Frank, K L; Tobin, P C; Thistle, H W; Kalkstein, Laurence S

    2013-05-01

    The gypsy moth, Lymantria dispar, is a non-native species that continues to invade areas in North America. It spreads generally through stratified dispersal where local growth and diffusive spread are coupled with long-distance jumps ahead of the leading edge. Long-distance jumps due to anthropogenic movement of life stages is a well-documented spread mechanism. Another mechanism is the atmospheric transport of early instars and adult males, believed to occur over short distances. However, empirical gypsy moth population data continue to support the possibility of alternative methods of long-range dispersal. Such dispersal events seemed to have occurred in the mid- to late-1990s with spread across Lake Michigan to Wisconsin. Such dispersal would be against the prevailing wind flow for the area and would have crossed a significant physical barrier (Lake Michigan). The climatology of the region shows that vigorous cyclones can result in strong easterly winds in the area at the time when early instars are present. It is hypothesized that these storms would enable individuals to be blown across the Lake and explain the appearance of new population centers observed at several locations on the western shore of Lake Michigan nearly simultaneously. A synoptic climatology model coupled with population dynamics data from the area was parameterized to show an association between transport events and population spread from 1996 to 2007. This work highlights the importance of atmospheric transport events relative to the invasion dynamics of the gypsy moth, and serves as a model for understanding this mechanism of spread in other related biological invasions.

  8. Is the Voter Model a Model for Voters?

    NASA Astrophysics Data System (ADS)

    Fernández-Gracia, Juan; Suchecki, Krzysztof; Ramasco, José J.; San Miguel, Maxi; Eguíluz, Víctor M.

    2014-04-01

    The voter model has been studied extensively as a paradigmatic opinion dynamics model. However, its ability to model real opinion dynamics has not been addressed. We introduce a noisy voter model (accounting for social influence) with recurrent mobility of agents (as a proxy for social context), where the spatial and population diversity are taken as inputs to the model. We show that the dynamics can be described as a noisy diffusive process that contains the proper anisotropic coupling topology given by population and mobility heterogeneity. The model captures statistical features of U.S. presidential elections as the stationary vote-share fluctuations across counties and the long-range spatial correlations that decay logarithmically with the distance. Furthermore, it recovers the behavior of these properties when the geographical space is coarse grained at different scales—from the county level through congressional districts, and up to states. Finally, we analyze the role of the mobility range and the randomness in decision making, which are consistent with the empirical observations.

  9. The importance of accurately modelling human interactions. Comment on "Coupled disease-behavior dynamics on complex networks: A review" by Z. Wang et al.

    NASA Astrophysics Data System (ADS)

    Rosati, Dora P.; Molina, Chai; Earn, David J. D.

    2015-12-01

    Human behaviour and disease dynamics can greatly influence each other. In particular, people often engage in self-protective behaviours that affect epidemic patterns (e.g., vaccination, use of barrier precautions, isolation, etc.). Self-protective measures usually have a mitigating effect on an epidemic [16], but can in principle have negative impacts at the population level [12,15,18]. The structure of underlying social and biological contact networks can significantly influence the specific ways in which population-level effects are manifested. Using a different contact network in a disease dynamics model-keeping all else equal-can yield very different epidemic patterns. For example, it has been shown that when individuals imitate their neighbours' vaccination decisions with some probability, this can lead to herd immunity in some networks [9], yet for other networks it can preserve clusters of susceptible individuals that can drive further outbreaks of infectious disease [12].

  10. Correlated electron-nuclear dissociation dynamics: classical versus quantum motion

    NASA Astrophysics Data System (ADS)

    Schaupp, Thomas; Albert, Julian; Engel, Volker

    2017-01-01

    We investigate the coupled electron-nuclear dynamics in a model system which undergoes dissociation. In choosing different initial conditions, the cases of adiabatic and non-adiabatic dissociation are realized. We treat the coupled electronic and nuclear motion in the complete configuration space so that classically, no surface hopping procedures have to be incorporated in the case that more than a single adiabatic electronic state is populated during the fragmentation. Due to the anharmonic interaction potential, it is expected that classical mechanics substantially deviate from quantum mechanics. However, we provide examples where the densities and fragmentation yields obtained from the two treatments are in astonishingly strong agreement in the case that one starts in the electronic ground state initially. As expected, larger deviations are found if one starts in electronically excited states where trajectories are sampled from the more spatially extended electronic wave function. In that case, higher initial energies are accessed, and the motion proceeds in regions with increasing degree of anharmonicity. Contribution to the Topical Issue "Dynamics of Molecular Systems (MOLEC 2016)", edited by Alberto Garcia-Vela, Luis Banares and Maria Luisa Senent.

  11. Robust Weak Chimeras in Oscillator Networks with Delayed Linear and Quadratic Interactions

    NASA Astrophysics Data System (ADS)

    Bick, Christian; Sebek, Michael; Kiss, István Z.

    2017-10-01

    We present an approach to generate chimera dynamics (localized frequency synchrony) in oscillator networks with two populations of (at least) two elements using a general method based on a delayed interaction with linear and quadratic terms. The coupling design yields robust chimeras through a phase-model-based design of the delay and the ratio of linear and quadratic components of the interactions. We demonstrate the method in the Brusselator model and experiments with electrochemical oscillators. The technique opens the way to directly bridge chimera dynamics in phase models and real-world oscillator networks.

  12. A Stress Model for Couples Parenting Children With Autism Spectrum Disorders and the Introduction of a Mindfulness Intervention

    PubMed Central

    Bluth, Karen; Roberson, Patricia N. E.; Billen, Rhett M.; Sams, Juli M.

    2013-01-01

    Parents of children with autism spectrum disorders (ASD) are at an increased risk for acute and chronic stress compared to parents of children with other developmental disabilities and parents of children without disabilities. It is plausible that the stressors of having a child with ASD affect the couple relationship; however, few researchers have focused on this dynamic within these families. In this article, we seek to develop a model for how stress operates in families with children with ASD. In developing this new stress model, we describe the characteristics of ASD, discuss stressors that are pronounced in families of children with ASD as supported by the literature, and highlight the limitations of Perry’s (2004) model in application to this population. Our expanded stress model includes the addition of parenting couple resources and parenting couple outcomes. Finally, we demonstrate how to apply the model using a mindfulness intervention to promote positive outcomes and strengthen the couple relationship. PMID:24795780

  13. Strong Coupling and Entanglement of Quantum Emitters Embedded in a Nanoantenna-Enhanced Plasmonic Cavity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hensen, Matthias; Heilpern, Tal; Gray, Stephen K.

    Establishing strong coupling between spatially separated and thus selectively addressable quantum emitters is a key ingredient to complex quantum optical schemes in future technologies. Insofar as many plasmonic nanostructures are concerned, however, the energy transfer and mutual interaction strength between distant quantum emitters can fail to provide strong coupling. Here, based on mode hybridization, the longevity and waveguide character of an elliptical plasmon cavity are combined with intense and highly localized field modes of suitably designed nanoantennas. Based on FDTD simulations a quantum emitter-plasmon coupling strength hg = 16.7 meV is reached while simultaneously keeping a small plasmon resonance linemore » width h gamma(s) = 33 meV. This facilitates strong coupling, and quantum dynamical simulations reveal an oscillatory exchange of excited state population arid a notable degree of entanglement between the quantum emitters spatially separated by 1.8 mu m, i.e., about twice the operating wavelength.« less

  14. Hidden from view: coupled dark sector physics and small scales

    NASA Astrophysics Data System (ADS)

    Elahi, Pascal J.; Lewis, Geraint F.; Power, Chris; Carlesi, Edoardo; Knebe, Alexander

    2015-09-01

    We study cluster mass dark matter (DM) haloes, their progenitors and surroundings in a coupled dark matter-dark energy (DE) model and compare it to quintessence and Λ cold dark matter (ΛCDM) models with adiabatic zoom simulations. When comparing cosmologies with different expansions histories, growth functions and power spectra, care must be taken to identify unambiguous signatures of alternative cosmologies. Shared cosmological parameters, such as σ8, need not be the same for optimal fits to observational data. We choose to set our parameters to ΛCDM z = 0 values. We find that in coupled models, where DM decays into DE, haloes appear remarkably similar to ΛCDM haloes despite DM experiencing an additional frictional force. Density profiles are not systematically different and the subhalo populations have similar mass, spin, and spatial distributions, although (sub)haloes are less concentrated on average in coupled cosmologies. However, given the scatter in related observables (V_max,R_{V_max}), this difference is unlikely to distinguish between coupled and uncoupled DM. Observations of satellites of Milky Way and M31 indicate a significant subpopulation reside in a plane. Coupled models do produce planar arrangements of satellites of higher statistical significance than ΛCDM models; however, in all models these planes are dynamically unstable. In general, the non-linear dynamics within and near large haloes masks the effects of a coupled dark sector. The sole environmental signature we find is that small haloes residing in the outskirts are more deficient in baryons than their ΛCDM counterparts. The lack of a pronounced signal for a coupled dark sector strongly suggests that such a phenomena would be effectively hidden from view.

  15. Richards-like two species population dynamics model.

    PubMed

    Ribeiro, Fabiano; Cabella, Brenno Caetano Troca; Martinez, Alexandre Souto

    2014-12-01

    The two-species population dynamics model is the simplest paradigm of inter- and intra-species interaction. Here, we present a generalized Lotka-Volterra model with intraspecific competition, which retrieves as particular cases, some well-known models. The generalization parameter is related to the species habitat dimensionality and their interaction range. Contrary to standard models, the species coupling parameters are general, not restricted to non-negative values. Therefore, they may represent different ecological regimes, which are derived from the asymptotic solution stability analysis and are represented in a phase diagram. In this diagram, we have identified a forbidden region in the mutualism regime, and a survival/extinction transition with dependence on initial conditions for the competition regime. Also, we shed light on two types of predation and competition: weak, if there are species coexistence, or strong, if at least one species is extinguished.

  16. Environmental controls, oceanography and population dynamics of pathogens and harmful algal blooms: connecting sources to human exposure

    PubMed Central

    Dyble, Julianne; Bienfang, Paul; Dusek, Eva; Hitchcock, Gary; Holland, Fred; Laws, Ed; Lerczak, James; McGillicuddy, Dennis J; Minnett, Peter; Moore, Stephanie K; O'Kelly, Charles; Solo-Gabriele, Helena; Wang, John D

    2008-01-01

    Coupled physical-biological models are capable of linking the complex interactions between environmental factors and physical hydrodynamics to simulate the growth, toxicity and transport of infectious pathogens and harmful algal blooms (HABs). Such simulations can be used to assess and predict the impact of pathogens and HABs on human health. Given the widespread and increasing reliance of coastal communities on aquatic systems for drinking water, seafood and recreation, such predictions are critical for making informed resource management decisions. Here we identify three challenges to making this connection between pathogens/HABs and human health: predicting concentrations and toxicity; identifying the spatial and temporal scales of population and ecosystem interactions; and applying the understanding of population dynamics of pathogens/HABs to management strategies. We elaborate on the need to meet each of these challenges, describe how modeling approaches can be used and discuss strategies for moving forward in addressing these challenges. PMID:19025676

  17. Patterns of population genetic variation in sympatric chiltoniid amphipods within a calcrete aquifer reveal a dynamic subterranean environment

    PubMed Central

    Bradford, T M; Adams, M; Guzik, M T; Humphreys, W F; Austin, A D; Cooper, S JB

    2013-01-01

    Calcrete aquifers from the Yilgarn region of arid central Western Australia contain an assemblage of obligate groundwater invertebrate species that are each endemic to single aquifers. Fine-scale phylogeographic and population genetic analyses of three sympatric and independently derived species of amphipod (Chiltoniidae) were carried out to determine whether there were common patterns of population genetic structure or evidence for past geographic isolation of populations within a single calcrete aquifer. Genetic diversity in amphipod mitochondrial DNA (cytochrome c oxidase subunit I gene) and allozymes were examined across a 3.5 km2 region of the Sturt Meadows calcrete, which contains a grid of 115 bore holes (=wells). Stygobiont amphipods were found to have high levels of mitochondrial haplotype diversity coupled with low nucleotide diversity. Mitochondrial phylogeographic structuring was found between haplogroups for one of the chiltoniid species, which also showed population structuring for nuclear markers. Signatures of population expansion in two of the three species, match previous findings for diving beetles at the same site, indicating that the system is dynamic. We propose isolation of populations in refugia within the calcrete, followed by expansion events, as the most likely source of intraspecific genetic diversity, due to changes in water level influencing gene flow across the calcrete. PMID:23549336

  18. An age-structured model for the coupled dynamics of HIV and HSV-2.

    PubMed

    Kapitanov, Georgi; Alvey, Christina; Vogt-Geisse, Katia; Feng, Zhilan

    2015-08-01

    Evidence suggests a strong correlation between the prevalence of HSV-2 (genital herpes) and the perseverance of the HIV epidemic. HSV-2 is an incurable viral infection, characterized by periodic reactivation. We construct a model of the co-infection dynamics between the two diseases by incorporating a time-since-infection variable to track the alternating periods of infectiousness of HSV-2. The model considers only heterosexual relationships and distinguishes three population groups: males, general population females, and female sex workers. We calculate the basic reproduction numbers for each disease that provide threshold conditions, which determine whether a disease dies out or becomes endemic in the absence of the other disease. We also derive the invasion reproduction numbers that determine whether or not a disease can invade into a population in which the other disease is endemic. The calculations of the invasion reproduction numbers suggest a new aspect in their interpretation - the class from which the initial disease carrier arises is important for understanding the invasion dynamics and biological interpretation of the expressions of the reproduction numbers. Sensitivity analysis is conducted to examine the role of model parameters in influencing the model outcomes. The results are discussed in the last section.

  19. Restoration of rhythmicity in diffusively coupled dynamical networks.

    PubMed

    Zou, Wei; Senthilkumar, D V; Nagao, Raphael; Kiss, István Z; Tang, Yang; Koseska, Aneta; Duan, Jinqiao; Kurths, Jürgen

    2015-07-15

    Oscillatory behaviour is essential for proper functioning of various physical and biological processes. However, diffusive coupling is capable of suppressing intrinsic oscillations due to the manifestation of the phenomena of amplitude and oscillation deaths. Here we present a scheme to revoke these quenching states in diffusively coupled dynamical networks, and demonstrate the approach in experiments with an oscillatory chemical reaction. By introducing a simple feedback factor in the diffusive coupling, we show that the stable (in)homogeneous steady states can be effectively destabilized to restore dynamic behaviours of coupled systems. Even a feeble deviation from the normal diffusive coupling drastically shrinks the death regions in the parameter space. The generality of our method is corroborated in diverse non-linear systems of diffusively coupled paradigmatic models with various death scenarios. Our study provides a general framework to strengthen the robustness of dynamic activity in diffusively coupled dynamical networks.

  20. Resilience and reactivity of global food security.

    PubMed

    Suweis, Samir; Carr, Joel A; Maritan, Amos; Rinaldo, Andrea; D'Odorico, Paolo

    2015-06-02

    The escalating food demand by a growing and increasingly affluent global population is placing unprecedented pressure on the limited land and water resources of the planet, underpinning concerns over global food security and its sensitivity to shocks arising from environmental fluctuations, trade policies, and market volatility. Here, we use country-specific demographic records along with food production and trade data for the past 25 y to evaluate the stability and reactivity of the relationship between population dynamics and food availability. We develop a framework for the assessment of the resilience and the reactivity of the coupled population-food system and suggest that over the past two decades both its sensitivity to external perturbations and susceptibility to instability have increased.

  1. Tracer-aided modelling to explore non-linearities in flow paths, hydrological connectivity and faecal contamination risk

    NASA Astrophysics Data System (ADS)

    Neill, A. J.; Tetzlaff, D.; Strachan, N.; Soulsby, C.

    2016-12-01

    The non-linearities of runoff generation processes are strongly influenced by the connectivity of hillslopes and channel networks, particularly where overland flow is an important runoff mechanism. Despite major advances in understanding hydrological connectivity and runoff generation, the role of connectivity in the contamination of potable water supplies by faecal pathogens from grazing animals remains unclear. This is a water quality issue with serious implications for public health. Here, we sought to understand the dynamics of hydrological connectivity, flow paths and linked faecal pathogen transport in a montane catchment in Scotland with high deer populations. We firstly calibrated, within an uncertainty framework, a parsimonious tracer-aided hydrological model to daily discharge and stream isotope data. The model, developed on the basis of past empirical and tracer studies, conceptualises the catchment as three interacting hydrological source areas (dynamic saturation zone, dynamic hillslope, and groundwater) for which water fluxes, water ages and storage-based connectivity can be simulated. We next coupled several faecal indicator organism (FIO; a common indicator of faecal pathogen contamination) behaviour and transport schemes to the robust hydrological models. A further calibration was then undertaken based on the ability of each coupled model to simulate daily FIO concentrations. This gave us a final set of coupled behavioural models from which we explored how in-stream FIO dynamics could be related to the changing connectivity between the three hydrological source areas, flow paths, water ages and consequent dominant runoff generation processes. We found that high levels of FIOs were transient and episodic, and strongly correlated with periods of high connectivity through overland flow. This non-linearity in connectivity and FIO flux was successfully captured within our dynamic, tracer-aided hydrological model.

  2. Decoherence in models for hard-core bosons coupled to optical phonons

    NASA Astrophysics Data System (ADS)

    Dey, A.; Lone, M. Q.; Yarlagadda, S.

    2015-09-01

    Understanding coherent dynamics of excitons, spins, or hard-core bosons (HCBs) has tremendous scientific and technological implications for quantum computation. Here, we study decay of excited-state population and decoherence in two models for HCBs, namely, a two-site HCB model with site-dependent strong potentials and subject to non-Markovian dynamics and an infinite-range HCB model governed by Markovian dynamics. Both models are investigated in the regimes of antiadiabaticity and strong HCB-phonon coupling with each site providing a different local optical phonon environment; furthermore, the HCB systems in both models are taken to be initially uncorrelated with the environment in the polaronic frame of reference. In the case of the two-site HCB model, we show clearly that the degree of decoherence and decay of excited state are enhanced by the proximity of the site-energy difference to the eigenenergy of phonons and are most pronounced when the site-energy difference is at resonance with twice the polaronic energy; additionally, the decoherence and the decay effects are reduced when the strength of HCB-phonon coupling is increased. For the infinite-range model, when the site energies are the same, we derive an effective many-body Hamiltonian that commutes with the long-range system Hamiltonian and thus has the same set of eigenstates; consequently, a quantum-master-equation approach shows that the quantum states of the system do not decohere.

  3. Coupled superconducting qudit-resonator system: Energy spectrum, state population, and state transition under microwave drive

    NASA Astrophysics Data System (ADS)

    Liu, W. Y.; Xu, H. K.; Su, F. F.; Li, Z. Y.; Tian, Ye; Han, Siyuan; Zhao, S. P.

    2018-03-01

    Superconducting quantum multilevel systems coupled to resonators have recently been considered in some applications such as microwave lasing and high-fidelity quantum logical gates. In this work, using an rf-SQUID type phase qudit coupled to a microwave coplanar waveguide resonator, we study both theoretically and experimentally the energy spectrum of the system when the qudit level spacings are varied around the resonator frequency by changing the magnetic flux applied to the qudit loop. We show that the experimental result can be well described by a theoretical model that extends from the usual two-level Jaynes-Cummings system to the present four-level system. It is also shown that due to the small anharmonicity of the phase device a simplified model capturing the leading state interactions fits the experimental spectra very well. Furthermore we use the Lindblad master equation containing various relaxation and dephasing processes to calculate the level populations in the simpler qutrit-resonator system, which allows a clear understanding of the dynamics of the system under the microwave drive. Our results help to better understand and perform the experiments of coupled multilevel and resonator systems and can be applied in the case of transmon or Xmon qudits having similar anharmonicity to the present phase device.

  4. A reduction for spiking integrate-and-fire network dynamics ranging from homogeneity to synchrony.

    PubMed

    Zhang, J W; Rangan, A V

    2015-04-01

    In this paper we provide a general methodology for systematically reducing the dynamics of a class of integrate-and-fire networks down to an augmented 4-dimensional system of ordinary-differential-equations. The class of integrate-and-fire networks we focus on are homogeneously-structured, strongly coupled, and fluctuation-driven. Our reduction succeeds where most current firing-rate and population-dynamics models fail because we account for the emergence of 'multiple-firing-events' involving the semi-synchronous firing of many neurons. These multiple-firing-events are largely responsible for the fluctuations generated by the network and, as a result, our reduction faithfully describes many dynamic regimes ranging from homogeneous to synchronous. Our reduction is based on first principles, and provides an analyzable link between the integrate-and-fire network parameters and the relatively low-dimensional dynamics underlying the 4-dimensional augmented ODE.

  5. Dynamics of epidemic spreading with vaccination: Impact of social pressure and engagement

    NASA Astrophysics Data System (ADS)

    Pires, Marcelo A.; Crokidakis, Nuno

    2017-02-01

    In this work we consider a model of epidemic spreading coupled with an opinion dynamics in a fully-connected population. Regarding the opinion dynamics, the individuals may be in two distinct states, namely in favor or against a vaccination campaign. Individuals against the vaccination follow a standard SIS model, whereas the pro-vaccine individuals can also be in a third compartment, namely Vaccinated. In addition, the opinions change according to the majority-rule dynamics in groups with three individuals. We also consider that the vaccine can give permanent or temporary immunization to the individuals. By means of analytical calculations and computer simulations, we show that the opinion dynamics can drastically affect the disease propagation, and that the engagement of the pro-vaccine individuals can be crucial for stopping the epidemic spreading. The full numerical code for simulating the model is available from the authors' webpage.

  6. Coupled effects of vertical mixing and benthic grazing on phytoplankton populations in shallow, turbid estuaries

    USGS Publications Warehouse

    Koseff, Jeffrey R.; Holen, Jacqueline K.; Monismith, Stephen G.; Cloern, James E.

    1993-01-01

    Coastal ocean waters tend to have very different patterns of phytoplankton biomass variability from the open ocean, and the connections between physical variability and phytoplankton bloom dynamics are less well established for these shallow systems. Predictions of biological responses to physical variability in these environments is inherently difficult because the recurrent seasonal patterns of mixing are complicated by aperiodic fluctuations in river discharge and the high-frequency components of tidal variability. We might expect, then, less predictable and more complex bloom dynamics in these shallow coastal systems compared with the open ocean. Given this complex and dynamic physical environment, can we develop a quantitative framework to define the physical regimes necessary for bloom inception, and can we identify the important mechanisms of physical-biological coupling that lead to the initiation and termination of blooms in estuaries and shallow coastal waters? Numerical modeling provides one approach to address these questions. Here we present results of simulation experiments with a refined version of Cloern's (1991) model in which mixing processes are treated more realistically to reflect the dynamic nature of turbulence generation in estuaries. We investigated several simple models for the turbulent mixing coefficient. We found that the addition of diurnal tidal variation to Cloern's model greatly reduces biomass growth indicating that variations of mixing on the time scale of hours are crucial. Furthermore, we found that for conditions representative of South San Francisco Bay, numerical simulations only allowed for bloom development when the water column was stratified and when minimal mixing was prescribed in the upper layer. Stratification, however, itself is not sufficient to ensure that a bloom will develop: minimal wind stirring is a further prerequisite to bloom development in shallow turbid estuaries with abundant populations of benthic suspension feeders.

  7. Resummed memory kernels in generalized system-bath master equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mavros, Michael G.; Van Voorhis, Troy, E-mail: tvan@mit.edu

    2014-08-07

    Generalized master equations provide a concise formalism for studying reduced population dynamics. Usually, these master equations require a perturbative expansion of the memory kernels governing the dynamics; in order to prevent divergences, these expansions must be resummed. Resummation techniques of perturbation series are ubiquitous in physics, but they have not been readily studied for the time-dependent memory kernels used in generalized master equations. In this paper, we present a comparison of different resummation techniques for such memory kernels up to fourth order. We study specifically the spin-boson Hamiltonian as a model system bath Hamiltonian, treating the diabatic coupling between themore » two states as a perturbation. A novel derivation of the fourth-order memory kernel for the spin-boson problem is presented; then, the second- and fourth-order kernels are evaluated numerically for a variety of spin-boson parameter regimes. We find that resumming the kernels through fourth order using a Padé approximant results in divergent populations in the strong electronic coupling regime due to a singularity introduced by the nature of the resummation, and thus recommend a non-divergent exponential resummation (the “Landau-Zener resummation” of previous work). The inclusion of fourth-order effects in a Landau-Zener-resummed kernel is shown to improve both the dephasing rate and the obedience of detailed balance over simpler prescriptions like the non-interacting blip approximation, showing a relatively quick convergence on the exact answer. The results suggest that including higher-order contributions to the memory kernel of a generalized master equation and performing an appropriate resummation can provide a numerically-exact solution to system-bath dynamics for a general spectral density, opening the way to a new class of methods for treating system-bath dynamics.« less

  8. Recombination dynamics of optically excited charge carriers in bulk MoS2

    NASA Astrophysics Data System (ADS)

    Völzer, Tim; Lütgens, Matthias; Fennel, Franziska; Lochbrunner, Stefan

    2017-10-01

    Transition metal dichalcogenides (TMDCs), such as MoS2, are promising candidates for optoelectronic or catalytic applications. On that account, a detailed characterization of the electronic dynamics in these materials is of pivotal importance. Here, we investigate the temporal evolution of an excited carrier population by all-optical pump-probe spectroscopy. On the sub-picosecond time scale we observe thermal relaxation of the excited carriers by electron-phonon coupling. The dynamics on the nanosecond time scale can be understood in terms of defect-assisted Auger recombination over a broad carrier density regime spanning more than one order of magnitude. Hence, our results emphasize the importance of defect states for electronic processes in TMDCs at room temperature.

  9. Coarse-graining and hybrid methods for efficient simulation of stochastic multi-scale models of tumour growth.

    PubMed

    de la Cruz, Roberto; Guerrero, Pilar; Calvo, Juan; Alarcón, Tomás

    2017-12-01

    The development of hybrid methodologies is of current interest in both multi-scale modelling and stochastic reaction-diffusion systems regarding their applications to biology. We formulate a hybrid method for stochastic multi-scale models of cells populations that extends the remit of existing hybrid methods for reaction-diffusion systems. Such method is developed for a stochastic multi-scale model of tumour growth, i.e. population-dynamical models which account for the effects of intrinsic noise affecting both the number of cells and the intracellular dynamics. In order to formulate this method, we develop a coarse-grained approximation for both the full stochastic model and its mean-field limit. Such approximation involves averaging out the age-structure (which accounts for the multi-scale nature of the model) by assuming that the age distribution of the population settles onto equilibrium very fast. We then couple the coarse-grained mean-field model to the full stochastic multi-scale model. By doing so, within the mean-field region, we are neglecting noise in both cell numbers (population) and their birth rates (structure). This implies that, in addition to the issues that arise in stochastic-reaction diffusion systems, we need to account for the age-structure of the population when attempting to couple both descriptions. We exploit our coarse-graining model so that, within the mean-field region, the age-distribution is in equilibrium and we know its explicit form. This allows us to couple both domains consistently, as upon transference of cells from the mean-field to the stochastic region, we sample the equilibrium age distribution. Furthermore, our method allows us to investigate the effects of intracellular noise, i.e. fluctuations of the birth rate, on collective properties such as travelling wave velocity. We show that the combination of population and birth-rate noise gives rise to large fluctuations of the birth rate in the region at the leading edge of front, which cannot be accounted for by the coarse-grained model. Such fluctuations have non-trivial effects on the wave velocity. Beyond the development of a new hybrid method, we thus conclude that birth-rate fluctuations are central to a quantitatively accurate description of invasive phenomena such as tumour growth.

  10. Coarse-graining and hybrid methods for efficient simulation of stochastic multi-scale models of tumour growth

    NASA Astrophysics Data System (ADS)

    de la Cruz, Roberto; Guerrero, Pilar; Calvo, Juan; Alarcón, Tomás

    2017-12-01

    The development of hybrid methodologies is of current interest in both multi-scale modelling and stochastic reaction-diffusion systems regarding their applications to biology. We formulate a hybrid method for stochastic multi-scale models of cells populations that extends the remit of existing hybrid methods for reaction-diffusion systems. Such method is developed for a stochastic multi-scale model of tumour growth, i.e. population-dynamical models which account for the effects of intrinsic noise affecting both the number of cells and the intracellular dynamics. In order to formulate this method, we develop a coarse-grained approximation for both the full stochastic model and its mean-field limit. Such approximation involves averaging out the age-structure (which accounts for the multi-scale nature of the model) by assuming that the age distribution of the population settles onto equilibrium very fast. We then couple the coarse-grained mean-field model to the full stochastic multi-scale model. By doing so, within the mean-field region, we are neglecting noise in both cell numbers (population) and their birth rates (structure). This implies that, in addition to the issues that arise in stochastic-reaction diffusion systems, we need to account for the age-structure of the population when attempting to couple both descriptions. We exploit our coarse-graining model so that, within the mean-field region, the age-distribution is in equilibrium and we know its explicit form. This allows us to couple both domains consistently, as upon transference of cells from the mean-field to the stochastic region, we sample the equilibrium age distribution. Furthermore, our method allows us to investigate the effects of intracellular noise, i.e. fluctuations of the birth rate, on collective properties such as travelling wave velocity. We show that the combination of population and birth-rate noise gives rise to large fluctuations of the birth rate in the region at the leading edge of front, which cannot be accounted for by the coarse-grained model. Such fluctuations have non-trivial effects on the wave velocity. Beyond the development of a new hybrid method, we thus conclude that birth-rate fluctuations are central to a quantitatively accurate description of invasive phenomena such as tumour growth.

  11. Ionization-potential depression and other dense plasma statistical property studies - Application to spectroscopic diagnostics.

    NASA Astrophysics Data System (ADS)

    Calisti, Annette; Ferri, Sandrine; Mossé, Caroline; Talin, Bernard

    2017-02-01

    The radiative properties of an emitter surrounded by a plasma, are modified through various mechanisms. For instance the line shapes emitted by bound-bound transitions are broadened and carry useful information for plasma diagnostics. Depending on plasma conditions the electrons occupying the upper quantum levels of radiators no longer exist as they belong to the plasma free electron population. All the charges present in the radiator environment contribute to the lowering of the energy required to free an electron in the fundamental state. This mechanism is known as ionization potential depression (IPD). The knowledge of IPD is useful as it affects both the radiative properties of the various ionic states and their populations. Its evaluation deals with highly complex n-body coupled systems, involving particles with different dynamics and attractive ion-electron forces. A classical molecular dynamics (MD) code, the BinGo-TCP code, has been recently developed to simulate neutral multi-component (various charge state ions and electrons) plasma accounting for all the charge correlations. In the present work, results on IPD and other dense plasma statistical properties obtained using the BinGo-TCP code are presented. The study focuses on aluminum plasmas for different densities and several temperatures in order to explore different plasma coupling conditions.

  12. Transient exposure to oxygen or nitrate reveals ecophysiology of fermentative and sulfate‐reducing benthic microbial populations

    PubMed Central

    Saad, Sainab; Bhatnagar, Srijak; Tegetmeyer, Halina E.; Geelhoed, Jeanine S.; Strous, Marc

    2017-01-01

    Summary For the anaerobic remineralization of organic matter in marine sediments, sulfate reduction coupled to fermentation plays a key role. Here, we enriched sulfate‐reducing/fermentative communities from intertidal sediments under defined conditions in continuous culture. We transiently exposed the cultures to oxygen or nitrate twice daily and investigated the community response. Chemical measurements, provisional genomes and transcriptomic profiles revealed trophic networks of microbial populations. Sulfate reducers coexisted with facultative nitrate reducers or aerobes enabling the community to adjust to nitrate or oxygen pulses. Exposure to oxygen and nitrate impacted the community structure, but did not suppress fermentation or sulfate reduction as community functions, highlighting their stability under dynamic conditions. The most abundant sulfate reducer in all cultures, related to Desulfotignum balticum, appeared to have coupled both acetate‐ and hydrogen oxidation to sulfate reduction. We describe a novel representative of the widespread uncultured candidate phylum Fermentibacteria (formerly candidate division Hyd24‐12). For this strictly anaerobic, obligate fermentative bacterium, we propose the name ‘USabulitectum silens’ and identify it as a partner of sulfate reducers in marine sediments. Overall, we provide insights into the function of fermentative, as well as sulfate‐reducing microbial communities and their adaptation to a dynamic environment. PMID:28836729

  13. Building-Scale Atmospheric Modeling for Understanding and Anticipating Environmental Risks to Urban Populations

    NASA Astrophysics Data System (ADS)

    Warner, T. T.; Swerdlin, S. P.; Chen, F.; Hayden, M.

    2009-05-01

    The innovative use of Computational Fluid-Dynamics (CFD) models to define the building- and street-scale atmospheric environment in urban areas can benefit society in a number of ways. Design criteria used by architectural climatologists, who help plan the livable cities of the future, require information about air movement within street canyons for different seasons and weather regimes. Understanding indoor urban air- quality problems and their mitigation, especially for older buildings, requires data on air movement and associated dynamic pressures near buildings. Learning how heat waves and anthropogenic forcing in cities collectively affect the health of vulnerable residents is a problem in building thermodynamics, human behavior, and neighborhood-scale and street-canyon-scale atmospheric sciences. And, predicting the movement of plumes of hazardous material released in urban industrial or transportation accidents requires detailed information about vertical and horizontal air motions in the street canyons. These challenges are closer to being addressed because of advances in CFD modeling, the coupling of CFD models with models of indoor air motion and air quality, and the coupling of CFD models with mesoscale weather-prediction models. This paper will review some of the new knowledge and technologies that are being developed to meet these atmospheric-environment needs of our growing urban populations.

  14. Modelling Pseudocalanus elongatus stage-structured population dynamics embedded in a water column ecosystem model for the northern North Sea

    NASA Astrophysics Data System (ADS)

    Moll, Andreas; Stegert, Christoph

    2007-01-01

    This paper outlines an approach to couple a structured zooplankton population model with state variables for eggs, nauplii, two copepodites stages and adults adapted to Pseudocalanus elongatus into the complex marine ecosystem model ECOHAM2 with 13 state variables resolving the carbon and nitrogen cycle. Different temperature and food scenarios derived from laboratory culture studies were examined to improve the process parameterisation for copepod stage dependent development processes. To study annual cycles under realistic weather and hydrographic conditions, the coupled ecosystem-zooplankton model is applied to a water column in the northern North Sea. The main ecosystem state variables were validated against observed monthly mean values. Then vertical profiles of selected state variables were compared to the physical forcing to study differences between zooplankton as one biomass state variable or partitioned into five population state variables. Simulated generation times are more affected by temperature than food conditions except during the spring phytoplankton bloom. Up to six generations within the annual cycle can be discerned in the simulation.

  15. Nonlinear Fano interferences in open quantum systems: An exactly solvable model

    NASA Astrophysics Data System (ADS)

    Finkelstein-Shapiro, Daniel; Calatayud, Monica; Atabek, Osman; Mujica, Vladimiro; Keller, Arne

    2016-06-01

    We obtain an explicit solution for the stationary-state populations of a dissipative Fano model, where a discrete excited state is coupled to a continuum set of states; both excited sets of states are reachable by photoexcitation from the ground state. The dissipative dynamic is described by a Liouville equation in Lindblad form and the field intensity can take arbitrary values within the model. We show that the population of the continuum states as a function of laser frequency can always be expressed as a Fano profile plus a Lorentzian function with effective parameters whose explicit expressions are given in the case of a closed system coupled to a bath as well as for the original Fano scattering framework. Although the solution is intricate, it can be elegantly expressed as a linear transformation of the kernel of a 4 ×4 matrix which has the meaning of an effective Liouvillian. We unveil key notable processes related to the optical nonlinearity and which had not been reported to date: electromagnetic-induced transparency, population inversions, power narrowing and broadening, as well as an effective reduction of the Fano asymmetry parameter.

  16. Modeling oscillations and spiral waves in Dictyostelium populations

    NASA Astrophysics Data System (ADS)

    Noorbakhsh, Javad; Schwab, David J.; Sgro, Allyson E.; Gregor, Thomas; Mehta, Pankaj

    2015-06-01

    Unicellular organisms exhibit elaborate collective behaviors in response to environmental cues. These behaviors are controlled by complex biochemical networks within individual cells and coordinated through cell-to-cell communication. Describing these behaviors requires new mathematical models that can bridge scales—from biochemical networks within individual cells to spatially structured cellular populations. Here we present a family of "multiscale" models for the emergence of spiral waves in the social amoeba Dictyostelium discoideum. Our models exploit new experimental advances that allow for the direct measurement and manipulation of the small signaling molecule cyclic adenosine monophosphate (cAMP) used by Dictyostelium cells to coordinate behavior in cellular populations. Inspired by recent experiments, we model the Dictyostelium signaling network as an excitable system coupled to various preprocessing modules. We use this family of models to study spatially unstructured populations of "fixed" cells by constructing phase diagrams that relate the properties of population-level oscillations to parameters in the underlying biochemical network. We then briefly discuss an extension of our model that includes spatial structure and show how this naturally gives rise to spiral waves. Our models exhibit a wide range of novel phenomena. including a density-dependent frequency change, bistability, and dynamic death due to slow cAMP dynamics. Our modeling approach provides a powerful tool for bridging scales in modeling of Dictyostelium populations.

  17. A model for cross-cultural reciprocal interactions through mass media.

    PubMed

    González-Avella, Juan Carlos; Cosenza, Mario G; San Miguel, Maxi

    2012-01-01

    We investigate the problem of cross-cultural interactions through mass media in a model where two populations of social agents, each with its own internal dynamics, get information about each other through reciprocal global interactions. As the agent dynamics, we employ Axelrod's model for social influence. The global interaction fields correspond to the statistical mode of the states of the agents and represent mass media messages on the cultural trend originating in each population. Several phases are found in the collective behavior of either population depending on parameter values: two homogeneous phases, one having the state of the global field acting on that population, and the other consisting of a state different from that reached by the applied global field; and a disordered phase. In addition, the system displays nontrivial effects: (i) the emergence of a largest minority group of appreciable size sharing a state different from that of the applied global field; (ii) the appearance of localized ordered states for some values of parameters when the entire system is observed, consisting of one population in a homogeneous state and the other in a disordered state. This last situation can be considered as a social analogue to a chimera state arising in globally coupled populations of oscillators.

  18. Understanding climate impacts on recruitment and spatial dynamics of Atlantic cod in the Gulf of Maine: Integration of observations and modeling

    NASA Astrophysics Data System (ADS)

    Runge, Jeffrey A.; Kovach, Adrienne I.; Churchill, James H.; Kerr, Lisa A.; Morrison, John R.; Beardsley, Robert C.; Berlinsky, David L.; Chen, Changsheng; Cadrin, Steven X.; Davis, Cabell S.; Ford, Kathryn H.; Grabowski, Jonathan H.; Howell, W. Huntting; Ji, Rubao; Jones, Rebecca J.; Pershing, Andrew J.; Record, Nicholas R.; Thomas, Andrew C.; Sherwood, Graham D.; Tallack, Shelly M. L.; Townsend, David W.

    2010-10-01

    We put forward a combined observing and modeling strategy for evaluating effects of environmental forcing on the dynamics of spatially structured cod populations spawning in the western Gulf of Maine. Recent work indicates at least two genetically differentiated complexes in this region: a late spring spawning, coastal population centered in Ipswich Bay, and a population that spawns in winter inshore and on nearshore banks in the Gulf of Maine and off southern New England. The two populations likely differ in trophic interactions and in physiological and behavioral responses to different winter and spring environments. Coupled physical-biological modeling has advanced to the point where within-decade forecasting of environmental conditions for recruitment to each of the two populations is feasible. However, the modeling needs to be supported by hydrographic, primary production and zooplankton data collected by buoys, and by data from remote sensing and fixed station sampling. Forecasts of environmentally driven dispersal and growth of planktonic early life stages, combined with an understanding of possible population-specific predator fields, usage of coastal habitat by juveniles and adult resident and migratory patterns, can be used to develop scenarios for spatially explicit population responses to multiple forcings, including climate change, anthropogenic impacts on nearshore juvenile habitat, connectivity among populations and management interventions such as regional fisheries closures.

  19. Modeling tradeoffs in avian life history traits and consequences for population growth

    USGS Publications Warehouse

    Clark, M.E.; Martin, T.E.

    2007-01-01

    Variation in population dynamics is inherently related to life history characteristics of species, which vary markedly even within phylogenetic groups such as passerine birds. We computed the finite rate of population change (??) from a matrix projection model and from mark-recapture observations for 23 bird species breeding in northern Arizona. We used sensitivity analyses and a simulation model to separate contributions of different life history traits to population growth rate. In particular we focused on contrasting effects of components of reproduction (nest success, clutch size, number of clutches, and juvenile survival) versus adult survival on ??. We explored how changes in nest success or adult survival coupled to costs in other life history parameters affected ?? over a life history gradient provided by our 23 Arizona species, as well as a broader sample of 121 North American passerine species. We further examined these effects for more than 200 passeriform and piciform populations breeding across North America. Model simulations indicate nest success and juvenile survival exert the largest effects on population growth in species with moderate to high reproductive output, whereas adult survival contributed more to population growth in long-lived species. Our simulations suggest that monitoring breeding success in populations across a broad geographic area provides an important index for identifying neotropical migratory populations at risk of serious population declines and a potential method for identifying large-scale mechanisms regulating population dynamics. ?? 2007 Elsevier B.V. All rights reserved.

  20. Local disturbance cycles and the maintenance of heterogeneity across scales in marine metapopulations.

    PubMed

    Gouhier, Tarik C; Guichard, Frédéric

    2007-03-01

    In marine systems, the occurrence and implications of disturbance-recovery cycles have been revealed at the landscape level, but only in demographically open or closed systems where landscape-level dynamics are assumed to have no feedback effect on regional dynamics. We present a mussel metapopulation model to elucidate the role of landscape-level disturbance cycles for regional response of mussel populations to onshore productivity and larval transport. Landscape dynamics are generated through spatially explicit rules, and each landscape is connected to its neighbor through unidirectional larval dispersal. The role of landscape disturbance cycles in the regional system behavior is elucidated (1) in demographically open vs. demographically coupled systems, in relation to (2) onshore reproductive output and (3) the temporal scale of landscape disturbance dynamics. By controlling for spatial structure at the landscape and metapopulation levels, we first demonstrate the interaction between landscape and oceanographic connectivity. The temporal scale of disturbance cycles, as controlled by mussel colonization rate, plays a critical role in the regional behavior of the system. Indeed, fast disturbance cycles are responsible for regional synchrony in relation to onshore reproductive output. Slow disturbance cycles, however, lead to increased robustness to changes in productivity and to demographic coupling. These testable predictions indicate that the occurrence and temporal scale of local disturbance-recovery dynamics can drive large-scale variability in demographically open systems, and the response of metapopulations to changes in nearshore productivity.

  1. Circuit-Host Coupling Induces Multifaceted Behavioral Modulations of a Gene Switch.

    PubMed

    Blanchard, Andrew E; Liao, Chen; Lu, Ting

    2018-02-06

    Quantitative modeling of gene circuits is fundamentally important to synthetic biology, as it offers the potential to transform circuit engineering from trial-and-error construction to rational design and, hence, facilitates the advance of the field. Currently, typical models regard gene circuits as isolated entities and focus only on the biochemical processes within the circuits. However, such a standard paradigm is getting challenged by increasing experimental evidence suggesting that circuits and their host are intimately connected, and their interactions can potentially impact circuit behaviors. Here we systematically examined the roles of circuit-host coupling in shaping circuit dynamics by using a self-activating gene switch as a model circuit. Through a combination of deterministic modeling, stochastic simulation, and Fokker-Planck equation formalism, we found that circuit-host coupling alters switch behaviors across multiple scales. At the single-cell level, it slows the switch dynamics in the high protein production regime and enlarges the difference between stable steady-state values. At the population level, it favors cells with low protein production through differential growth amplification. Together, the two-level coupling effects induce both quantitative and qualitative modulations of the switch, with the primary component of the effects determined by the circuit's architectural parameters. This study illustrates the complexity and importance of circuit-host coupling in modulating circuit behaviors, demonstrating the need for a new paradigm-integrated modeling of the circuit-host system-for quantitative understanding of engineered gene networks. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  2. The Challenges to Coupling Dynamic Geospatial Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldstein, N

    2006-06-23

    Many applications of modeling spatial dynamic systems focus on a single system and a single process, ignoring the geographic and systemic context of the processes being modeled. A solution to this problem is the coupled modeling of spatial dynamic systems. Coupled modeling is challenging for both technical reasons, as well as conceptual reasons. This paper explores the benefits and challenges to coupling or linking spatial dynamic models, from loose coupling, where information transfer between models is done by hand, to tight coupling, where two (or more) models are merged as one. To illustrate the challenges, a coupled model of Urbanizationmore » and Wildfire Risk is presented. This model, called Vesta, was applied to the Santa Barbara, California region (using real geospatial data), where Urbanization and Wildfires occur and recur, respectively. The preliminary results of the model coupling illustrate that coupled modeling can lead to insight into the consequences of processes acting on their own.« less

  3. Synchronization and chaotic dynamics of coupled mechanical metronomes

    NASA Astrophysics Data System (ADS)

    Ulrichs, Henning; Mann, Andreas; Parlitz, Ulrich

    2009-12-01

    Synchronization scenarios of coupled mechanical metronomes are studied by means of numerical simulations showing the onset of synchronization for two, three, and 100 globally coupled metronomes in terms of Arnol'd tongues in parameter space and a Kuramoto transition as a function of coupling strength. Furthermore, we study the dynamics of metronomes where overturning is possible. In this case hyperchaotic dynamics associated with some diffusion process in configuration space is observed, indicating the potential complexity of metronome dynamics.

  4. Experimental observation of chimera and cluster states in a minimal globally coupled network

    NASA Astrophysics Data System (ADS)

    Hart, Joseph D.; Bansal, Kanika; Murphy, Thomas E.; Roy, Rajarshi

    2016-09-01

    A "chimera state" is a dynamical pattern that occurs in a network of coupled identical oscillators when the symmetry of the oscillator population is broken into synchronous and asynchronous parts. We report the experimental observation of chimera and cluster states in a network of four globally coupled chaotic opto-electronic oscillators. This is the minimal network that can support chimera states, and our study provides new insight into the fundamental mechanisms underlying their formation. We use a unified approach to determine the stability of all the observed partially synchronous patterns, highlighting the close relationship between chimera and cluster states as belonging to the broader phenomenon of partial synchronization. Our approach is general in terms of network size and connectivity. We also find that chimera states often appear in regions of multistability between global, cluster, and desynchronized states.

  5. Equation-free modeling unravels the behavior of complex ecological systems

    USGS Publications Warehouse

    DeAngelis, Donald L.; Yurek, Simeon

    2015-01-01

    Ye et al. (1) address a critical problem confronting the management of natural ecosystems: How can we make forecasts of possible future changes in populations to help guide management actions? This problem is especially acute for marine and anadromous fisheries, where the large interannual fluctuations of populations, arising from complex nonlinear interactions among species and with varying environmental factors, have defied prediction over even short time scales. The empirical dynamic modeling (EDM) described in Ye et al.’s report, the latest in a series of papers by Sugihara and his colleagues, offers a promising quantitative approach to building models using time series to successfully project dynamics into the future. With the term “equation-free” in the article title, Ye et al. (1) are suggesting broader implications of their approach, considering the centrality of equations in modern science. From the 1700s on, nature has been increasingly described by mathematical equations, with differential or difference equations forming the basic framework for describing dynamics. The use of mathematical equations for ecological systems came much later, pioneered by Lotka and Volterra, who showed that population cycles might be described in terms of simple coupled nonlinear differential equations. It took decades for Lotka–Volterra-type models to become established, but the development of appropriate differential equations is now routine in modeling ecological dynamics. There is no question that the injection of mathematical equations, by forcing “clarity and precision into conjecture” (2), has led to increased understanding of population and community dynamics. As in science in general, in ecology equations are a key method of communication and of framing hypotheses. These equations serve as compact representations of an enormous amount of empirical data and can be analyzed by the powerful methods of mathematics.

  6. Coupled Socio-Environmental Changes Triggered Indigenous Aymara Depopulation of the Semiarid Andes of Tarapacá-Chile during the Late 19th-20th Centuries.

    PubMed

    Lima, Mauricio; Christie, Duncan A; Santoro, M Calogero; Latorre, Claudio

    2016-01-01

    Socio-economic and environmental changes are well known causes of demographic collapse of agrarian cultures. The collapse of human societies is a complex phenomenon where historical and cultural dimensions play a key role, and they may interact with the environmental context. However, the importance of the interaction between socio-economic and climatic factors in explaining possible breakdowns in Native American societies has been poorly explored. The aim of this study is to test the role of socio-economic causes and rainfall variability in the collapse suffered by the Aymara people of the semiarid Andean region of Tarapacá during the period 1820-1970. Our motivation is to demonstrate that simple population dynamic models can be helpful in understanding the causes and relative importance of population changes in Andean agro-pastoral societies in responses to socio-environmental variability. Simple logistic models that combine the effects of external socio-economic causes and past rainfall variability (inferred from Gross Domestic Product [GDP] and tree-rings, respectively) were quite accurate in predicting the sustained population decline of the Aymara people. Our results suggest that the depopulation in the semiarid Tarapacá province was caused by the interaction among external socio-economic pressures given by the economic growth of the lowlands and demands for labor coupled with a persistent decline in rainfall. This study constitutes an example of how applied ecological knowledge, in particular the application of the logistic equation and theories pertaining to nonlinear population dynamics and exogenous perturbations, can be used to better understand major demographic changes in human societies.

  7. Coupled Socio-Environmental Changes Triggered Indigenous Aymara Depopulation of the Semiarid Andes of Tarapacá-Chile during the Late 19th-20th Centuries

    PubMed Central

    Lima, Mauricio; Christie, Duncan A.; Santoro, M. Calogero; Latorre, Claudio

    2016-01-01

    Socio-economic and environmental changes are well known causes of demographic collapse of agrarian cultures. The collapse of human societies is a complex phenomenon where historical and cultural dimensions play a key role, and they may interact with the environmental context. However, the importance of the interaction between socio-economic and climatic factors in explaining possible breakdowns in Native American societies has been poorly explored. The aim of this study is to test the role of socio-economic causes and rainfall variability in the collapse suffered by the Aymara people of the semiarid Andean region of Tarapacá during the period 1820–1970. Our motivation is to demonstrate that simple population dynamic models can be helpful in understanding the causes and relative importance of population changes in Andean agro-pastoral societies in responses to socio-environmental variability. Simple logistic models that combine the effects of external socio-economic causes and past rainfall variability (inferred from Gross Domestic Product [GDP] and tree-rings, respectively) were quite accurate in predicting the sustained population decline of the Aymara people. Our results suggest that the depopulation in the semiarid Tarapacá province was caused by the interaction among external socio-economic pressures given by the economic growth of the lowlands and demands for labor coupled with a persistent decline in rainfall. This study constitutes an example of how applied ecological knowledge, in particular the application of the logistic equation and theories pertaining to nonlinear population dynamics and exogenous perturbations, can be used to better understand major demographic changes in human societies. PMID:27560499

  8. On the estimation of dispersal and movement of birds

    USGS Publications Warehouse

    Kendall, W.L.; Nichols, J.D.

    2004-01-01

    The estimation of dispersal and movement is important to evolutionary and population ecologists, as well as to wildlife managers. We review statistical methodology available to estimate movement probabilities. We begin with cases where individual birds can be marked and their movements estimated with the use of multisite capture-recapture methods. Movements can be monitored either directly, using telemetry, or by accounting for detection probability when conventional marks are used. When one or more sites are unobservable, telemetry, band recoveries, incidental observations, a closed- or open-population robust design, or partial determinism in movements can be used to estimate movement. When individuals cannot be marked, presence-absence data can be used to model changes in occupancy over time, providing indirect inferences about movement. Where abundance estimates over time are available for multiple sites, potential coupling of their dynamics can be investigated using linear cross-correlation or nonlinear dynamic tools.

  9. Epidemic spread in coupled populations with seasonally varying migration rates

    NASA Astrophysics Data System (ADS)

    Muzyczyn, Adam; Shaw, Leah B.

    2009-03-01

    The H5N1 strain of avian influenza has spread worldwide, and this spread may be due to seasonal migration of birds and mixing of birds from different regions in the wintering grounds. We studied a multipatch model for avian influenza with seasonally varying migration rates. The bird population was divided into two spatially distinct patches, or subpopulations. Within each patch, the disease followed the SIR (susceptible-infected-recovered) model for epidemic spread. Migration rates were varied periodically, with a net flux toward the breeding grounds during the spring and towards the wintering grounds during the fall. The case of two symmetric patches reduced to single-patch SIR dynamics. However, asymmetry in the birth and contact rates in the breeding grounds and wintering grounds led to bifurcations to longer period orbits and chaotic dynamics. We studied the bifurcation structure of the model and the phase relationships between outbreaks in the two patches.

  10. Self-organized sorting limits behavioral variability in swarms

    PubMed Central

    Copenhagen, Katherine; Quint, David A.; Gopinathan, Ajay

    2016-01-01

    Swarming is a phenomenon where collective motion arises from simple local interactions between typically identical individuals. Here, we investigate the effects of variability in behavior among the agents in finite swarms with both alignment and cohesive interactions. We show that swarming is abolished above a critical fraction of non-aligners who do not participate in alignment. In certain regimes, however, swarms above the critical threshold can dynamically reorganize and sort out excess non-aligners to maintain the average fraction close to the critical value. This persists even in swarms with a distribution of alignment interactions, suggesting a simple, robust and efficient mechanism that allows heterogeneously mixed populations to naturally regulate their composition and remain in a collective swarming state or even differentiate among behavioral phenotypes. We show that, for evolving swarms, this self-organized sorting behavior can couple to the evolutionary dynamics leading to new evolutionarily stable equilibrium populations set by the physical swarm parameters. PMID:27550316

  11. Ultrafast Dynamics in DNA and RNA Derivatives Monitored by Broadband Transient Absorption Spectrscopy

    NASA Astrophysics Data System (ADS)

    Brister, Matthew M.; Crespo-Hernández, Carlos E.

    2015-06-01

    The ultrafast dynamics of nucleic acids have been under scrutiny for the past couple of decades because of the role that the high-energy electronic states play in mutagenesis and carcinogenesis. Kinetic models have been proposed, based on both experimental and theoretical discoveries. Direct experimental evidence of the intersystem crossing rate and population of the triplet state for most nucleic acid bases has yet to be reported, even though the triplet state is thought to be the most reactive species. Utilizing broadband femtosecond transient absorption spectroscopy, we reveal the time scale at which singlet-to-triplet population transfer occurs in several nucleic acid derivatives in the condensed phase. The implication of these results to the current understanding of the DNA and RNA photochemistry will be discussed. The authors acknowledge the CAREER program of the National Science Foundation (Grant No. CHE-1255084) for financial support.

  12. Self-organized sorting limits behavioral variability in swarms

    NASA Astrophysics Data System (ADS)

    Copenhagen, Katherine; Quint, David A.; Gopinathan, Ajay

    2016-08-01

    Swarming is a phenomenon where collective motion arises from simple local interactions between typically identical individuals. Here, we investigate the effects of variability in behavior among the agents in finite swarms with both alignment and cohesive interactions. We show that swarming is abolished above a critical fraction of non-aligners who do not participate in alignment. In certain regimes, however, swarms above the critical threshold can dynamically reorganize and sort out excess non-aligners to maintain the average fraction close to the critical value. This persists even in swarms with a distribution of alignment interactions, suggesting a simple, robust and efficient mechanism that allows heterogeneously mixed populations to naturally regulate their composition and remain in a collective swarming state or even differentiate among behavioral phenotypes. We show that, for evolving swarms, this self-organized sorting behavior can couple to the evolutionary dynamics leading to new evolutionarily stable equilibrium populations set by the physical swarm parameters.

  13. New science from the phase space of old stellar systems

    NASA Astrophysics Data System (ADS)

    Varri, Anna Lisa; Breen, Philip G.; Heggie, Douglas C.; Tiongco, Maria; Vesperini, Enrico

    2017-06-01

    Our traditional interpretative picture of the internal dynamics of globular clusters has been recently revolutionized by a series of discoveries about their chemical, structural, and kinematic properties. The empirical evidence that their velocity space is much more complex than usually expected encourages us to use them as refreshingly novel phase space laboratories for some long-forgotten aspects of collisional gravitational dynamics. Such a realization, coupled with the discovery that the stars in clusters were not all born at once in a single population, makes them new, challenging chemodynamical puzzles.Thanks to the proper motions of thousands of stars that will be available from the Gaia mission, we are about to enter a new ''golden age'' for the study of the dynamics of this class of stellar systems, as the full phase space of several Galactic globular clusters will be soon unlocked for the first time. In this context, I will present the highlights of a more realistic dynamical paradigm for these intriguing stellar systems, with emphasis on the role of angular momentum, velocity anisotropy and external tidal field. Such a fundamental understanding of the emerging phase space complexity of globulars will allow us to address many open questions about their rich dynamical evolution, their elusive stellar populations and putative black holes, and their role within the history of our Galaxy.

  14. Dynamical Models for Sloshing Dynamics of Helium 2 Under Low-G Conditions

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Long, Y. T.

    1997-01-01

    Coupling of sloshing dynamics within a partially filled rotating dewar of superfluid helium 2 with spacecraft dynamics are investigated in response to the realistic environmental disturbance forces and torques acting on the spacecraft during normal operation. This study investigates: (1) the rotating bubble of superfluid helium 2 reacting to combined environmental disturbances, including gravity gradient, aerodynamic, and magnetic forces and torques; (2) characteristics of slosh reaction forces and torques coupling with spacecraft dynamics; (3) the contribution of slosh dynamics to over-all spacecraft dynamics; and (4) activating of attitude and translation control system. The numerical computation of sloshing dynamics is based on the rotational frame, while the spacecraft dynamics is associated with non-rotational frame. Results show that the contributions of spacecraft dynamics are driven by the environmental disturbances coupling with slosh dynamics. Without considering the effects of environmental disturbances-driven slosh dynamics acting on spacecraft coupling with the spacecraft dynamics may lead to the wrong results for the development of spacecraft system guidance and attitude control techniques.

  15. Monitoring microbial metabolites using an inductively coupled resonance circuit

    NASA Astrophysics Data System (ADS)

    Karnaushenko, Daniil; Baraban, Larysa; Ye, Dan; Uguz, Ilke; Mendes, Rafael G.; Rümmeli, Mark H.; de Visser, J. Arjan G. M.; Schmidt, Oliver G.; Cuniberti, Gianaurelio; Makarov, Denys

    2015-08-01

    We present a new approach to monitor microbial population dynamics in emulsion droplets via changes in metabolite composition, using an inductively coupled LC resonance circuit. The signal measured by such resonance detector provides information on the magnetic field interaction with the bacterial culture, which is complementary to the information accessible by other detection means, based on electric field interaction, i.e. capacitive or resistive, as well as optical techniques. Several charge-related factors, including pH and ammonia concentrations, were identified as possible contributors to the characteristic of resonance detector profile. The setup enables probing the ionic byproducts of microbial metabolic activity at later stages of cell growth, where conventional optical detection methods have no discriminating power.

  16. Superlinearly scalable noise robustness of redundant coupled dynamical systems.

    PubMed

    Kohar, Vivek; Kia, Behnam; Lindner, John F; Ditto, William L

    2016-03-01

    We illustrate through theory and numerical simulations that redundant coupled dynamical systems can be extremely robust against local noise in comparison to uncoupled dynamical systems evolving in the same noisy environment. Previous studies have shown that the noise robustness of redundant coupled dynamical systems is linearly scalable and deviations due to noise can be minimized by increasing the number of coupled units. Here, we demonstrate that the noise robustness can actually be scaled superlinearly if some conditions are met and very high noise robustness can be realized with very few coupled units. We discuss these conditions and show that this superlinear scalability depends on the nonlinearity of the individual dynamical units. The phenomenon is demonstrated in discrete as well as continuous dynamical systems. This superlinear scalability not only provides us an opportunity to exploit the nonlinearity of physical systems without being bogged down by noise but may also help us in understanding the functional role of coupled redundancy found in many biological systems. Moreover, engineers can exploit superlinear noise suppression by starting a coupled system near (not necessarily at) the appropriate initial condition.

  17. Spin-orbit-torque-induced skyrmion dynamics for different types of spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Lee, Seung-Jae; Kim, Kyoung-Whan; Lee, Hyun-Woo; Lee, Kyung-Jin

    2018-06-01

    We investigate current-induced skyrmion dynamics in the presence of Dzyaloshinskii-Moriya interaction and spin-orbit spin-transfer torque corresponding to various types of spin-orbit coupling. We determine the symmetries of Dzyaloshinskii-Moriya interaction and spin-orbit spin-transfer torque based on linear spin-orbit coupling model. We find that like interfacial Dzyaloshinskii-Moriya interaction (Rashba spin-orbit coupling) and bulk Dzyaloshinskii-Moriya interaction (Weyl spin-orbit coupling), Dresselhaus spin-orbit coupling also has a possibility for stabilizing skyrmion and current-induced skyrmion dynamics.

  18. Communication: Probing non-equilibrium vibrational relaxation pathways of highly excited C≡N stretching modes following ultrafast back-electron transfer.

    PubMed

    Lynch, Michael S; Slenkamp, Karla M; Khalil, Munira

    2012-06-28

    Fifth-order nonlinear visible-infrared spectroscopy is used to probe coherent and incoherent vibrational energy relaxation dynamics of highly excited vibrational modes indirectly populated via ultrafast photoinduced back-electron transfer in a trinuclear cyano-bridged mixed-valence complex. The flow of excess energy deposited into four C≡N stretching (ν(CN)) modes of the molecule is monitored by performing an IR pump-probe experiment as a function of the photochemical reaction (τ(vis)). Our results provide experimental evidence that the nuclear motions of the molecule are both coherently and incoherently coupled to the electronic charge transfer process. We observe that intramolecular vibrational relaxation dynamics among the highly excited ν(CN) modes change significantly en route to equilibrium. The experiment also measures a 7 cm(-1) shift in the frequency of a ∼57 cm(-1) oscillation reflecting a modulation of the coupling between the probed high-frequency ν(CN) modes for τ(vis) < 500 fs.

  19. Average activity of excitatory and inhibitory neural populations

    NASA Astrophysics Data System (ADS)

    Roulet, Javier; Mindlin, Gabriel B.

    2016-09-01

    We develop an extension of the Ott-Antonsen method [E. Ott and T. M. Antonsen, Chaos 18(3), 037113 (2008)] that allows obtaining the mean activity (spiking rate) of a population of excitable units. By means of the Ott-Antonsen method, equations for the dynamics of the order parameters of coupled excitatory and inhibitory populations of excitable units are obtained, and their mean activities are computed. Two different excitable systems are studied: Adler units and theta neurons. The resulting bifurcation diagrams are compared with those obtained from studying the phenomenological Wilson-Cowan model in some regions of the parameter space. Compatible behaviors, as well as higher dimensional chaotic solutions, are observed. We study numerical simulations to further validate the equations.

  20. Average activity of excitatory and inhibitory neural populations

    PubMed Central

    Mindlin, Gabriel B.

    2016-01-01

    We develop an extension of the Ott-Antonsen method [E. Ott and T. M. Antonsen, Chaos 18(3), 037113 (2008)] that allows obtaining the mean activity (spiking rate) of a population of excitable units. By means of the Ott-Antonsen method, equations for the dynamics of the order parameters of coupled excitatory and inhibitory populations of excitable units are obtained, and their mean activities are computed. Two different excitable systems are studied: Adler units and theta neurons. The resulting bifurcation diagrams are compared with those obtained from studying the phenomenological Wilson-Cowan model in some regions of the parameter space. Compatible behaviors, as well as higher dimensional chaotic solutions, are observed. We study numerical simulations to further validate the equations. PMID:27781447

  1. Localized coherence in two interacting populations of social agents

    NASA Astrophysics Data System (ADS)

    González-Avella, J. C.; Cosenza, M. G.; San Miguel, M.

    2014-04-01

    We investigate the emergence of localized coherent behavior in systems consisting of two populations of social agents possessing a condition for non-interacting states, mutually coupled through global interaction fields. We employ two examples of such dynamics: (i) Axelrod’s model for social influence, and (ii) a discrete version of a bounded confidence model for opinion formation. In each case, the global interaction fields correspond to the statistical mode of the states of the agents in each population. In both systems we find localized coherent states for some values of parameters, consisting of one population in a homogeneous state and the other in a disordered state. This situation can be considered as a social analogue to a chimera state arising in two interacting populations of oscillators. In addition, other asymptotic collective behaviors appear in both systems depending on parameter values: a common homogeneous state, where both populations reach the same state; different homogeneous states, where both population reach homogeneous states different from each other; and a disordered state, where both populations reach inhomogeneous states.

  2. Multiple mortality events in bats: a global review

    USGS Publications Warehouse

    O'Shea, Thomas J.; Cryan, Paul; Hayman, David TH; Plowright, Raina K.; Streicker, Daniel G.

    2016-01-01

    Collectively, over half of all reported MMEs were of anthropogenic origin. The documented occurrence of MMEs in bats due to abiotic factors such as intense storms, flooding, heat waves, and drought is likely to increase in the future with climate change. Coupled with the chronic threats of roosting and foraging habitat loss, increasing mortality through MMEs is unlikely to be compensated for, given the need for high survival in the dynamics of bat populations.

  3. Dynamic portrait of the region occupied by the Hungaria Asteroids: The influence of Mars

    NASA Astrophysics Data System (ADS)

    Correa-Otto, J. A.; Cañada-Assandri, M.

    2018-06-01

    The region occupied by the Hungaria asteroids has a high dynamical complexity. In this paper, we analyse the main dynamic structures and their influence on the known asteroids through the construction of maps of initial conditions. We evolve a set of test particles placed on a perfectly rectangular grid of initial conditions during 3 Myr under the gravitational influence of the Sun and eight planets, from Mercury to Neptune. Moreover, we use the method MEGNO in order to obtain a complete dynamical portrait of the region. A comparison of our maps with the distribution of real objects allows us to detect the main dynamical mechanisms acting in the domain under study such as mean-motion and secular resonances. Our main results is the existence of a small area inside a stable region where are placed the Hungaria asteroids. We found that the influence of Mars has an important role for the dynamic structure of the region, defining the limits for this population of asteroids. Our result is in agreement with previous studies, which have indicated the importance of the eccentricity of Mars for the stability of Hungaria asteroids. However, we found that the secular resonance resulting from the precession of perihelion due to a coupling with that of Jupiter proposed as limit for the Hungaria region could not be determinant for this population of asteroids.

  4. Dynamical Response of Networks Under External Perturbations: Exact Results

    NASA Astrophysics Data System (ADS)

    Chinellato, David D.; Epstein, Irving R.; Braha, Dan; Bar-Yam, Yaneer; de Aguiar, Marcus A. M.

    2015-04-01

    We give exact statistical distributions for the dynamic response of influence networks subjected to external perturbations. We consider networks whose nodes have two internal states labeled 0 and 1. We let nodes be frozen in state 0, in state 1, and the remaining nodes change by adopting the state of a connected node with a fixed probability per time step. The frozen nodes can be interpreted as external perturbations to the subnetwork of free nodes. Analytically extending and to be smaller than 1 enables modeling the case of weak coupling. We solve the dynamical equations exactly for fully connected networks, obtaining the equilibrium distribution, transition probabilities between any two states and the characteristic time to equilibration. Our exact results are excellent approximations for other topologies, including random, regular lattice, scale-free and small world networks, when the numbers of fixed nodes are adjusted to take account of the effect of topology on coupling to the environment. This model can describe a variety of complex systems, from magnetic spins to social networks to population genetics, and was recently applied as a framework for early warning signals for real-world self-organized economic market crises.

  5. A locomotive-track coupled vertical dynamics model with gear transmissions

    NASA Astrophysics Data System (ADS)

    Chen, Zaigang; Zhai, Wanming; Wang, Kaiyun

    2017-02-01

    A gear transmission system is a key element in a locomotive for the transmission of traction or braking forces between the motor and the wheel-rail interface. Its dynamic performance has a direct effect on the operational reliability of the locomotive and its components. This paper proposes a comprehensive locomotive-track coupled vertical dynamics model, in which the locomotive is driven by axle-hung motors. In this coupled dynamics model, the dynamic interactions between the gear transmission system and the other components, e.g. motor and wheelset, are considered based on the detailed analysis of its structural properties and working mechanism. Thus, the mechanical transmission system for power delivery from the motor to the wheelset via gear transmission is coupled with a traditional locomotive-track dynamics system via the wheel-rail contact interface and the gear mesh interface. This developed dynamics model enables investigations of the dynamic performance of the entire dynamics system under the excitations from the wheel-rail contact interface and/or the gear mesh interface. Dynamic interactions are demonstrated by numerical simulations using this dynamics model. The results indicate that both of the excitations from the wheel-rail contact interface and the gear mesh interface have a significant effect on the dynamic responses of the components in this coupled dynamics system.

  6. The Effects of Mortality on Fertility: Population Dynamics After a Natural Disaster

    PubMed Central

    Nobles, Jenna; Frankenberg, Elizabeth; Thomas, Duncan

    2015-01-01

    Understanding how mortality and fertility are linked is essential to the study of population dynamics. We investigate the fertility response to an unanticipated mortality shock that resulted from the 2004 Indian Ocean tsunami, which killed large shares of the residents of some Indonesian communities but caused no deaths in neighboring communities. Using population-representative multilevel longitudinal data, we identify a behavioral fertility response to mortality exposure, both at the level of a couple and in the broader community. We observe a sustained fertility increase at the aggregate level following the tsunami, which was driven by two behavioral responses to mortality exposure. First, mothers who lost one or more children in the disaster were significantly more likely to bear additional children after the tsunami. This response explains about 13 % of the aggregate increase in fertility. Second, women without children before the tsunami initiated family-building earlier in communities where tsunami-related mortality rates were higher, indicating that the fertility of these women is an important route to rebuilding the population in the aftermath of a mortality shock. Such community-level effects have received little attention in demographic scholarship. PMID:25585644

  7. Modeling population dynamics of mitochondria in mammalian cells

    NASA Astrophysics Data System (ADS)

    Kornick, Kellianne; Das, Moumita

    Mitochondria are organelles located inside eukaryotic cells and are essential for several key cellular processes such as energy (ATP) production, cell signaling, differentiation, and apoptosis. All organisms are believed to have low levels of variation in mitochondrial DNA (mtDNA), and alterations in mtDNA are connected to a range of human health conditions, including epilepsy, heart failure, Parkinsons disease, diabetes, and multiple sclerosis. Therefore, understanding how changes in mtDNA accumulate over time and are correlated to changes in mitochondrial function and cell properties can have a profound impact on our understanding of cell physiology and the origins of some diseases. Motivated by this, we develop and study a mathematical model to determine which cellular parameters have the largest impact on mtDNA population dynamics. The model consists of coupled ODEs to describe subpopulations of healthy and dysfunctional mitochondria subject to mitochondrial fission, fusion, autophagy, and mutation. We study the time evolution and stability of each sub-population under specific selection biases and pressures by tuning specific terms in our model. Our results may provide insights into how sub-populations of mitochondria survive and evolve under different selection pressures. This work was supported by a Grant from the Moore Foundation.

  8. Larval connectivity of pearl oyster through biophysical modelling; evidence of food limitation and broodstock effect

    NASA Astrophysics Data System (ADS)

    Thomas, Yoann; Dumas, Franck; Andréfouët, Serge

    2016-12-01

    The black-lip pearl oyster (Pinctada margaritifera) is cultured extensively to produce black pearls, especially in French Polynesia atoll lagoons. This aquaculture relies on spat collection, a process that experiences spatial and temporal variability and needs to be optimized by understanding which factors influence recruitment. Here, we investigate the sensitivity of P. margaritifera larval dispersal to both physical and biological factors in the lagoon of Ahe atoll. Coupling a validated 3D larval dispersal model, a bioenergetics larval growth model following the Dynamic Energy Budget (DEB) theory, and a population dynamics model, the variability of lagoon-scale connectivity patterns and recruitment potential is investigated. The relative contribution of reared and wild broodstock to the lagoon-scale recruitment potential is also investigated. Sensitivity analyses pointed out the major effect of the broodstock population structure as well as the sensitivity to larval mortality rate and inter-individual growth variability to larval supply and to the subsequent settlement potential. The application of the growth model clarifies how trophic conditions determine the larval supply and connectivity patterns. These results provide new cues to understand the dynamics of bottom-dwelling populations in atoll lagoons, their recruitment, and discuss how to take advantage of these findings and numerical models for pearl oyster management.

  9. Spreading of nonmotile bacteria on a hard agar plate: Comparison between agent-based and stochastic simulations

    NASA Astrophysics Data System (ADS)

    Rana, Navdeep; Ghosh, Pushpita; Perlekar, Prasad

    2017-11-01

    We study spreading of a nonmotile bacteria colony on a hard agar plate by using agent-based and continuum models. We show that the spreading dynamics depends on the initial nutrient concentration, the motility, and the inherent demographic noise. Population fluctuations are inherent in an agent-based model, whereas for the continuum model we model them by using a stochastic Langevin equation. We show that the intrinsic population fluctuations coupled with nonlinear diffusivity lead to a transition from a diffusion limited aggregation type of morphology to an Eden-like morphology on decreasing the initial nutrient concentration.

  10. Vehicle systems: coupled and interactive dynamics analysis

    NASA Astrophysics Data System (ADS)

    Vantsevich, Vladimir V.

    2014-11-01

    This article formulates a new direction in vehicle dynamics, described as coupled and interactive vehicle system dynamics. Formalised procedures and analysis of case studies are presented. An analytical consideration, which explains the physics of coupled system dynamics and its consequences for dynamics of a vehicle, is given for several sets of systems including: (i) driveline and suspension of a 6×6 truck, (ii) a brake mechanism and a limited slip differential of a drive axle and (iii) a 4×4 vehicle steering system and driveline system. The article introduces a formal procedure to turn coupled system dynamics into interactive dynamics of systems. A new research direction in interactive dynamics of an active steering and a hybrid-electric power transmitting unit is presented and analysed to control power distribution between the drive axles of a 4×4 vehicle. A control strategy integrates energy efficiency and lateral dynamics by decoupling dynamics of the two systems thus forming their interactive dynamics.

  11. A Complex-Valued Firing-Rate Model That Approximates the Dynamics of Spiking Networks

    PubMed Central

    Schaffer, Evan S.; Ostojic, Srdjan; Abbott, L. F.

    2013-01-01

    Firing-rate models provide an attractive approach for studying large neural networks because they can be simulated rapidly and are amenable to mathematical analysis. Traditional firing-rate models assume a simple form in which the dynamics are governed by a single time constant. These models fail to replicate certain dynamic features of populations of spiking neurons, especially those involving synchronization. We present a complex-valued firing-rate model derived from an eigenfunction expansion of the Fokker-Planck equation and apply it to the linear, quadratic and exponential integrate-and-fire models. Despite being almost as simple as a traditional firing-rate description, this model can reproduce firing-rate dynamics due to partial synchronization of the action potentials in a spiking model, and it successfully predicts the transition to spike synchronization in networks of coupled excitatory and inhibitory neurons. PMID:24204236

  12. The Radiation Belt Storm Probes (RBSP) Energetic Particle, Composition, and Thermal plasma (ECT) Suite: Upcoming Opportunties for Testing Radiation Belt Acceleration Mechanisms

    NASA Astrophysics Data System (ADS)

    Spence, Harlan; Reeves, Geoffrey

    2012-07-01

    The Radiation Belt Storm Probes (RBSP) mission will launch in late summer 2012 and begin its exploration of acceleration and dynamics of energetic particles in the inner magnetosphere. In this presentation, we discuss opportunities afforded by the RBSP Energetic Particle, Composition, and Thermal plasma (ECT) instrument suite to advance our understanding of acceleration processes in the radiation belts. The RBSP-ECT instrument suite comprehensively measures the electron and major ion populations of the inner magnetosphere, from the lowest thermal plasmas of the plasmasphere, to the hot plasma of the ring current, to the relativistic populations of the radiation belts. Collectively, the ECT measurements will reveal the complex cross-energy coupling of these colocated particle populations, which along with concurrent RBSP wave measurements, will permit various wave-particle acceleration mechanisms to be tested. We review the measurement capabilities of the RBSP-ECT instrument suite, and demonstrate several examples of how these measurements will be used to explore candidate acceleration mechanisms and dynamics of radiation belt particles.

  13. Traveling waves in a coupled reaction-diffusion and difference model of hematopoiesis

    NASA Astrophysics Data System (ADS)

    Adimy, M.; Chekroun, A.; Kazmierczak, B.

    2017-04-01

    The formation and development of blood cells is a very complex process, called hematopoiesis. This process involves a small population of cells called hematopoietic stem cells (HSCs). The HSCs are undifferentiated cells, located in the bone marrow before they become mature blood cells and enter the blood stream. They have a unique ability to produce either similar cells (self-renewal), or cells engaged in one of different lineages of blood cells: red blood cells, white cells and platelets (differentiation). The HSCs can be either in a proliferating or in a quiescent phase. In this paper, we distinguish between dividing cells that enter directly to the quiescent phase and dividing cells that return to the proliferating phase to divide again. We propose a mathematical model describing the dynamics of HSC population, taking into account their spatial distribution. The resulting model is a coupled reaction-diffusion equation and difference equation with delay. We study the existence of monotone traveling wave fronts and the asymptotic speed of spread.

  14. The role of population inertia in predicting the outcome of stage-structured biological invasions.

    PubMed

    Guiver, Chris; Dreiwi, Hanan; Filannino, Donna-Maria; Hodgson, Dave; Lloyd, Stephanie; Townley, Stuart

    2015-07-01

    Deterministic dynamic models for coupled resident and invader populations are considered with the purpose of finding quantities that are effective at predicting when the invasive population will become established asymptotically. A key feature of the models considered is the stage-structure, meaning that the populations are described by vectors of discrete developmental stage- or age-classes. The vector structure permits exotic transient behaviour-phenomena not encountered in scalar models. Analysis using a linear Lyapunov function demonstrates that for the class of population models considered, a large so-called population inertia is indicative of successful invasion. Population inertia is an indicator of transient growth or decline. Furthermore, for the class of models considered, we find that the so-called invasion exponent, an existing index used in models for invasion, is not always a reliable comparative indicator of successful invasion. We highlight these findings through numerical examples and a biological interpretation of why this might be the case is discussed. Copyright © 2015. Published by Elsevier Inc.

  15. Nonlinear absorption dynamics using field-induced surface hopping: zinc porphyrin in water.

    PubMed

    Röhr, Merle I S; Petersen, Jens; Wohlgemuth, Matthias; Bonačić-Koutecký, Vlasta; Mitrić, Roland

    2013-05-10

    We wish to present the application of our field-induced surface-hopping (FISH) method to simulate nonlinear absorption dynamics induced by strong nonresonant laser fields. We provide a systematic comparison of the FISH approach with exact quantum dynamics simulations on a multistate model system and demonstrate that FISH allows for accurate simulations of nonlinear excitation processes including multiphoton electronic transitions. In particular, two different approaches for simulating two-photon transitions are compared. The first approach is essentially exact and involves the solution of the time-dependent Schrödinger equation in an extended manifold of excited states, while in the second one only transiently populated nonessential states are replaced by an effective quadratic coupling term, and dynamics is performed in a considerably smaller manifold of states. We illustrate the applicability of our method to complex molecular systems by simulating the linear and nonlinear laser-driven dynamics in zinc (Zn) porphyrin in the gas phase and in water. For this purpose, the FISH approach is connected with the quantum mechanical-molecular mechanical approach (QM/MM) which is generally applicable to large classes of complex systems. Our findings that multiphoton absorption and dynamics increase the population of higher excited states of Zn porphyrin in the nonlinear regime, in particular in solution, provides a means for manipulating excited-state properties, such as transient absorption dynamics and electronic relaxation. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Experimental observation of chimera and cluster states in a minimal globally coupled network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, Joseph D.; Department of Physics, University of Maryland, College Park, Maryland 20742; Bansal, Kanika

    A “chimera state” is a dynamical pattern that occurs in a network of coupled identical oscillators when the symmetry of the oscillator population is broken into synchronous and asynchronous parts. We report the experimental observation of chimera and cluster states in a network of four globally coupled chaotic opto-electronic oscillators. This is the minimal network that can support chimera states, and our study provides new insight into the fundamental mechanisms underlying their formation. We use a unified approach to determine the stability of all the observed partially synchronous patterns, highlighting the close relationship between chimera and cluster states as belongingmore » to the broader phenomenon of partial synchronization. Our approach is general in terms of network size and connectivity. We also find that chimera states often appear in regions of multistability between global, cluster, and desynchronized states.« less

  17. Crossover from polariton lasing to exciton lasing in a strongly coupled ZnO microcavity.

    PubMed

    Lai, Ying-Yu; Chou, Yu-Hsun; Lan, Yu-Pin; Lu, Tien-Chang; Wang, Shing-Chung; Yamamoto, Yoshihisa

    2016-02-03

    Unlike conventional photon lasing, in which the threshold is limited by the population inversion of the electron-hole plasma, the exciton lasing generated by exciton-exciton scattering and the polariton lasing generated by dynamical condensates have received considerable attention in recent years because of the sub-Mott density and low-threshold operation. This paper presents a novel approach to generate both exciton and polariton lasing in a strongly coupled microcavity (MC) and determine the critical driving requirements for simultaneously triggering these two lasing operation in temperature <140 K and large negative polariton-exciton offset (<-133 meV) conditions. In addition, the corresponding lasing behaviors, such as threshold energy, linewidth, phase diagram, and angular dispersion are verified. The results afford a basis from which to understand the complicated lasing mechanisms in strongly coupled MCs and verify a new method with which to trigger dual laser emission based on exciton and polariton.

  18. The Hydrology of Malaria: Model Development and Application to a Sahelian Village

    NASA Astrophysics Data System (ADS)

    Bomblies, A.; Duchemin, J.; Eltahir, E. A.

    2008-12-01

    We present a coupled hydrology and entomology model for the mechanistic simulation of local-scale response of malaria transmission to hydrological and climatological determinants in semi-arid, desert fringe environments. The model is applied to the Sahel village of Banizoumbou, Niger, to predict interannual variability in malaria vector mosquito populations which lead to variations in malaria transmission. Using a high-resolution, small-scale distributed hydrology model that incorporates remotely-sensed data for land cover and topography, we simulate the formation and persistence of the pools constituting the primary breeding habitat of Anopheles gambiae s.l. mosquitoes, the principal regional malaria vector mosquitoes. An agent-based mosquito population model is coupled to the distributed hydrology model, with aquatic stage and adult stage components. For each individual adult mosquito, the model tracks attributes relevant to population dynamics and malaria transmission, which are updated as mosquitoes interact with their environment, humans, and animals. Weekly field observations were made in 2005 and 2006. The model reproduces mosquito population variability at seasonal and interannual time scales, and highlights individual pool persistence as a dominant control. Future developments to the presented model can be used in the evaluation of impacts of climate change on malaria, as well as the a priori evaluation of environmental management-based interventions.

  19. How pattern formation in ring networks of excitatory and inhibitory spiking neurons depends on the input current regime.

    PubMed

    Kriener, Birgit; Helias, Moritz; Rotter, Stefan; Diesmann, Markus; Einevoll, Gaute T

    2013-01-01

    Pattern formation, i.e., the generation of an inhomogeneous spatial activity distribution in a dynamical system with translation invariant structure, is a well-studied phenomenon in neuronal network dynamics, specifically in neural field models. These are population models to describe the spatio-temporal dynamics of large groups of neurons in terms of macroscopic variables such as population firing rates. Though neural field models are often deduced from and equipped with biophysically meaningful properties, a direct mapping to simulations of individual spiking neuron populations is rarely considered. Neurons have a distinct identity defined by their action on their postsynaptic targets. In its simplest form they act either excitatorily or inhibitorily. When the distribution of neuron identities is assumed to be periodic, pattern formation can be observed, given the coupling strength is supracritical, i.e., larger than a critical weight. We find that this critical weight is strongly dependent on the characteristics of the neuronal input, i.e., depends on whether neurons are mean- or fluctuation driven, and different limits in linearizing the full non-linear system apply in order to assess stability. In particular, if neurons are mean-driven, the linearization has a very simple form and becomes independent of both the fixed point firing rate and the variance of the input current, while in the very strongly fluctuation-driven regime the fixed point rate, as well as the input mean and variance are important parameters in the determination of the critical weight. We demonstrate that interestingly even in "intermediate" regimes, when the system is technically fluctuation-driven, the simple linearization neglecting the variance of the input can yield the better prediction of the critical coupling strength. We moreover analyze the effects of structural randomness by rewiring individual synapses or redistributing weights, as well as coarse-graining on the formation of inhomogeneous activity patterns.

  20. How pattern formation in ring networks of excitatory and inhibitory spiking neurons depends on the input current regime

    PubMed Central

    Kriener, Birgit; Helias, Moritz; Rotter, Stefan; Diesmann, Markus; Einevoll, Gaute T.

    2014-01-01

    Pattern formation, i.e., the generation of an inhomogeneous spatial activity distribution in a dynamical system with translation invariant structure, is a well-studied phenomenon in neuronal network dynamics, specifically in neural field models. These are population models to describe the spatio-temporal dynamics of large groups of neurons in terms of macroscopic variables such as population firing rates. Though neural field models are often deduced from and equipped with biophysically meaningful properties, a direct mapping to simulations of individual spiking neuron populations is rarely considered. Neurons have a distinct identity defined by their action on their postsynaptic targets. In its simplest form they act either excitatorily or inhibitorily. When the distribution of neuron identities is assumed to be periodic, pattern formation can be observed, given the coupling strength is supracritical, i.e., larger than a critical weight. We find that this critical weight is strongly dependent on the characteristics of the neuronal input, i.e., depends on whether neurons are mean- or fluctuation driven, and different limits in linearizing the full non-linear system apply in order to assess stability. In particular, if neurons are mean-driven, the linearization has a very simple form and becomes independent of both the fixed point firing rate and the variance of the input current, while in the very strongly fluctuation-driven regime the fixed point rate, as well as the input mean and variance are important parameters in the determination of the critical weight. We demonstrate that interestingly even in “intermediate” regimes, when the system is technically fluctuation-driven, the simple linearization neglecting the variance of the input can yield the better prediction of the critical coupling strength. We moreover analyze the effects of structural randomness by rewiring individual synapses or redistributing weights, as well as coarse-graining on the formation of inhomogeneous activity patterns. PMID:24501591

  1. Reducing the Dynamical Degradation by Bi-Coupling Digital Chaotic Maps

    NASA Astrophysics Data System (ADS)

    Liu, Lingfeng; Liu, Bocheng; Hu, Hanping; Miao, Suoxia

    A chaotic map which is realized on a computer will suffer dynamical degradation. Here, a coupled chaotic model is proposed to reduce the dynamical degradation. In this model, the state variable of one digital chaotic map is used to control the parameter of the other digital map. This coupled model is universal and can be used for all chaotic maps. In this paper, two coupled models (one is coupled by two logistic maps, the other is coupled by Chebyshev map and Baker map) are performed, and the numerical experiments show that the performances of these two coupled chaotic maps are greatly improved. Furthermore, a simple pseudorandom bit generator (PRBG) based on coupled digital logistic maps is proposed as an application for our method.

  2. Coupling Dynamics in Aircraft: A Historical Perspective

    NASA Technical Reports Server (NTRS)

    Day, Richard E.

    1997-01-01

    Coupling dynamics can produce either adverse or beneficial stability and controllability, depending on the characteristics of the aircraft. This report presents archival anecdotes and analyses of coupling problems experienced by the X-series, Century series, and Space Shuttle aircraft. The three catastrophic sequential coupling modes of the X-2 airplane and the two simultaneous unstable modes of the X-15 and Space Shuttle aircraft are discussed. In addition, the most complex of the coupling interactions, inertia roll coupling, is discussed for the X-2, X-3, F-100A, and YF-102 aircraft. The mechanics of gyroscopics, centrifugal effect, and resonance in coupling dynamics are described. The coupling modes discussed are interacting multiple degrees of freedom of inertial and aerodynamic forces and moments. The aircraft are assumed to be rigid bodies. Structural couplings are not addressed. Various solutions for coupling instabilities are discussed.

  3. Renormalization of Collective Modes in Large-Scale Neural Dynamics

    NASA Astrophysics Data System (ADS)

    Moirogiannis, Dimitrios; Piro, Oreste; Magnasco, Marcelo O.

    2017-05-01

    The bulk of studies of coupled oscillators use, as is appropriate in Physics, a global coupling constant controlling all individual interactions. However, because as the coupling is increased, the number of relevant degrees of freedom also increases, this setting conflates the strength of the coupling with the effective dimensionality of the resulting dynamics. We propose a coupling more appropriate to neural circuitry, where synaptic strengths are under biological, activity-dependent control and where the coupling strength and the dimensionality can be controlled separately. Here we study a set of N→ ∞ strongly- and nonsymmetrically-coupled, dissipative, powered, rotational dynamical systems, and derive the equations of motion of the reduced system for dimensions 2 and 4. Our setting highlights the statistical structure of the eigenvectors of the connectivity matrix as the fundamental determinant of collective behavior, inheriting from this structure symmetries and singularities absent from the original microscopic dynamics.

  4. Coupling Developmental Physiology, Photoperiod, and Temperature to Model Phenology and Dynamics of an Invasive Heteropteran, Halyomorpha halys

    PubMed Central

    Nielsen, Anne L.; Chen, Shi; Fleischer, Shelby J.

    2016-01-01

    We developed an agent-based stochastic model expressing stage-specific phenology and population dynamics for an insect species across geographic regions. We used the invasive pentatomid, Halyomorpha halys, as the model organism because gaps in knowledge exist regarding its developmental physiology, it is expanding its global distribution, and it is of significant economic importance. Model predictions were compared against field observations over 3 years, and the parameter set that enables the largest population growth was applied to eight locations over 10 years, capturing the variation in temperature and photoperiod profiles of significant horticultural crop production that could be affected by H. halys in the US. As a species that overwinters as adults, critical photoperiod significantly impacted H. halys seasonality and population size through its influence on diapause termination and induction, and this may impact other insects with similar life-histories. Photoperiod and temperature interactions influenced life stage synchrony among years, resulting in an order of magnitude difference, for occurrence of key life stages. At all locations, there was a high degree of overlap among life stages and generation. Although all populations produced F2 adults and thus could be characterized as bivoltine, the size and relative contribution of each generation to the total, or overwintering, adult population also varied dramatically. In about half of the years in two locations (Geneva, NY and Salem, OR), F1 adults comprised half or more of the adult population at the end of the year. Yearly degree-day accumulation was a significant covariate influencing variation in population growth, and average maximum adult population size varied by 10-fold among locations. Average final population growth was positive (Asheville, NC, Homestead, FL, Davis, CA) or marginal (Geneva, NY, Bridgeton, NJ, Salem, OR, Riverside, CA), but was negative in one location (Wenatchee WA) due to cooler temperatures coupled with timing of vitellogenesis of F2 adults. Years of the highest population growth in the mid-Atlantic site coincided with years of highest crop damage reports. We discuss these results with respect to assumptions and critical knowledge gaps, the ability to realistically model phenology of species with strongly overlapping life stage and which diapause as adults. PMID:27242539

  5. Average dynamics of a finite set of coupled phase oscillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dima, Germán C., E-mail: gdima@df.uba.ar; Mindlin, Gabriel B.

    2014-06-15

    We study the solutions of a dynamical system describing the average activity of an infinitely large set of driven coupled excitable units. We compared their topological organization with that reconstructed from the numerical integration of finite sets. In this way, we present a strategy to establish the pertinence of approximating the dynamics of finite sets of coupled nonlinear units by the dynamics of its infinitely large surrogate.

  6. Average dynamics of a finite set of coupled phase oscillators

    PubMed Central

    Dima, Germán C.; Mindlin, Gabriel B.

    2014-01-01

    We study the solutions of a dynamical system describing the average activity of an infinitely large set of driven coupled excitable units. We compared their topological organization with that reconstructed from the numerical integration of finite sets. In this way, we present a strategy to establish the pertinence of approximating the dynamics of finite sets of coupled nonlinear units by the dynamics of its infinitely large surrogate. PMID:24985426

  7. Average dynamics of a finite set of coupled phase oscillators.

    PubMed

    Dima, Germán C; Mindlin, Gabriel B

    2014-06-01

    We study the solutions of a dynamical system describing the average activity of an infinitely large set of driven coupled excitable units. We compared their topological organization with that reconstructed from the numerical integration of finite sets. In this way, we present a strategy to establish the pertinence of approximating the dynamics of finite sets of coupled nonlinear units by the dynamics of its infinitely large surrogate.

  8. Towards an integrated forecasting system for fisheries on habitat-bound stocks

    NASA Astrophysics Data System (ADS)

    Christensen, A.; Butenschön, M.; Gürkan, Z.; Allen, I. J.

    2013-03-01

    First results of a coupled modelling and forecasting system for fisheries on habitat-bound stocks are being presented. The system consists currently of three mathematically, fundamentally different model subsystems coupled offline: POLCOMS providing the physical environment implemented in the domain of the north-west European shelf, the SPAM model which describes sandeel stocks in the North Sea, and the third component, the SLAM model, which connects POLCOMS and SPAM by computing the physical-biological interaction. Our major experience by the coupling model subsystems is that well-defined and generic model interfaces are very important for a successful and extendable coupled model framework. The integrated approach, simulating ecosystem dynamics from physics to fish, allows for analysis of the pathways in the ecosystem to investigate the propagation of changes in the ocean climate and to quantify the impacts on the higher trophic level, in this case the sandeel population, demonstrated here on the basis of hindcast data. The coupled forecasting system is tested for some typical scientific questions appearing in spatial fish stock management and marine spatial planning, including determination of local and basin-scale maximum sustainable yield, stock connectivity and source/sink structure. Our presented simulations indicate that sandeel stocks are currently exploited close to the maximum sustainable yield, even though periodic overfishing seems to have occurred, but large uncertainty is associated with determining stock maximum sustainable yield due to stock inherent dynamics and climatic variability. Our statistical ensemble simulations indicates that the predictive horizon set by climate interannual variability is 2-6 yr, after which only an asymptotic probability distribution of stock properties, like biomass, are predictable.

  9. Dynamical modes of two almost identical chemical oscillators connected via both pulsatile and diffusive coupling.

    PubMed

    Safonov, Dmitry A; Vanag, Vladimir K

    2018-05-03

    The dynamical regimes of two almost identical Belousov-Zhabotinsky oscillators with both pulsatile (with time delay) and diffusive coupling have been studied theoretically with the aid of ordinary differential equations for four combinations of these types of coupling: inhibitory diffusive and inhibitory pulsatile (IDIP); excitatory diffusive and inhibitory pulsatile; inhibitory diffusive and excitatory pulsatile; and finally, excitatory diffusive and excitatory pulsatile (EDEP). The combination of two types of coupling creates a condition for new feedback, which promotes new dynamical modes for the IDIP and EDEP coupling.

  10. Non-equilibrium quantum phase transition via entanglement decoherence dynamics.

    PubMed

    Lin, Yu-Chen; Yang, Pei-Yun; Zhang, Wei-Min

    2016-10-07

    We investigate the decoherence dynamics of continuous variable entanglement as the system-environment coupling strength varies from the weak-coupling to the strong-coupling regimes. Due to the existence of localized modes in the strong-coupling regime, the system cannot approach equilibrium with its environment, which induces a nonequilibrium quantum phase transition. We analytically solve the entanglement decoherence dynamics for an arbitrary spectral density. The nonequilibrium quantum phase transition is demonstrated as the system-environment coupling strength varies for all the Ohmic-type spectral densities. The 3-D entanglement quantum phase diagram is obtained.

  11. Seizure Dynamics of Coupled Oscillators with Epileptor Field Model

    NASA Astrophysics Data System (ADS)

    Zhang, Honghui; Xiao, Pengcheng

    The focus of this paper is to investigate the dynamics of seizure activities by using the Epileptor coupled model. Based on the coexistence of seizure-like event (SLE), refractory status epilepticus (RSE), depolarization block (DB), and normal state, we first study the dynamical behaviors of two coupled oscillators in different activity states with Epileptor model by linking them with slow permittivity coupling. Our research has found that when one oscillator in normal states is coupled with any oscillator in SLE, RSE or DB states, these two oscillators can both evolve into SLE states under appropriate coupling strength. And then these two SLE oscillators can perform epileptiform synchronization or epileptiform anti-synchronization. Meanwhile, SLE can be depressed when considering the fast electrical or chemical coupling in Epileptor model. Additionally, a two-dimensional reduced model is also given to show the effect of coupling number on seizures. Those results can help to understand the dynamical mechanism of the initiation, maintenance, propagation and termination of seizures in focal epilepsy.

  12. Coupling Recruitment Forecasts with Economics in the Gulf of Maine's American Lobster Fishery

    NASA Astrophysics Data System (ADS)

    Wahle, R.; Oppenheim, N.; Brady, D. C.; Dayton, A.; Sun, C. H. J.

    2016-02-01

    Accurate predictions of fishery recruitment and landings represent an important goal of fisheries science and management, but linking environmental drivers of fish population dynamics to financial markets remains a challenge. A fundamental step in that process is understanding the environmental drivers of fishery recruitment. American lobster (Homarus americanus) populations of the northwest Atlantic have been undergoing a dramatic surge, mostly driven by increases the Gulf of Maine. Settler-recruit models that track cohorts after larvae settle to the sea bed are proving useful in predicting subsequent fishery recruitment some 5-7 years later. Here we describe new recruitment forecasting models for the lobster fishery at 11 management areas from Southern New England to Atlantic Canada. We use an annual survey of juvenile year-class strength and environmental indicators to parameterize growth and mortality terms in the model. As a consequence of a recent widespread multi-year downturn in larval settlement, our models suggest that the peak in lobster abundance in the Gulf of Maine will be passed in the near future. We also present initial steps in the coupling of forecast data with economic models for the fishery. We anticipate that these models will give stakeholders and policy makers time to consider their management choices for this most valuable of the region's fisheries. Our vision is to couple our forecast model outputs to an economic model that captures the dynamics of market forces in the New England and Canadian Maritime lobster fisheries. It will then be possible to estimate the financial status of the fishery several years in advance. This early warning system could mitigate the adverse effects of a fluctuating fishery on the coastal communities that are perilously dependent upon it.

  13. N-H stretching vibrations of guanosine-cytidine base pairs in solution: ultrafast dynamics, couplings, and line shapes.

    PubMed

    Fidder, Henk; Yang, Ming; Nibbering, Erik T J; Elsaesser, Thomas; Röttger, Katharina; Temps, Friedrich

    2013-02-07

    Dynamics and couplings of N-H stretching vibrations of chemically modified guanosine-cytidine (G·C) base pairs in chloroform are investigated with linear infrared spectroscopy and ultrafast two-dimensional infrared (2D-IR) spectroscopy. Comparison of G·C absorption spectra before and after H/D exchange reveals significant N-H stretching absorption in the region from 2500 up to 3300 cm(-1). Both of the local stretching modes ν(C)(NH(2))(b) of the hydrogen-bonded N-H moiety of the cytidine NH(2) group and ν(G)(NH) of the guanosine N-H group contribute to this broad absorption band. Its complex line shape is attributed to Fermi resonances of the N-H stretching modes with combination and overtones of fingerprint vibrations and anharmonic couplings to low-frequency modes. Cross-peaks in the nonlinear 2D spectra between the 3491 cm(-1) free N-H oscillator band and the bands centered at 3145 and 3303 cm(-1) imply N-H···O═C hydrogen bond character for both of these transitions. Time evolution illustrates that the 3303 cm(-1) band is composed of a nearly homogeneous band absorbing at 3301 cm(-1), ascribed to ν(G)(NH(2))(b), and a broad inhomogeneous band peaking at 3380 cm(-1) with mainly guanosine carbonyl overtone character. Kinetics and signal strengths indicate a <0.2 ps virtually complete population transfer from the excited ν(G)(NH(2))(b) mode to the ν(G)(NH) mode at 3145 cm(-1), suggesting lifetime broadening as the dominant source for the homogeneous line shape of the 3301 cm(-1) transition. For the 3145 cm(-1) band, a 0.3 ps population lifetime was obtained.

  14. Intrinsically-generated fluctuating activity in excitatory-inhibitory networks.

    PubMed

    Mastrogiuseppe, Francesca; Ostojic, Srdjan

    2017-04-01

    Recurrent networks of non-linear units display a variety of dynamical regimes depending on the structure of their synaptic connectivity. A particularly remarkable phenomenon is the appearance of strongly fluctuating, chaotic activity in networks of deterministic, but randomly connected rate units. How this type of intrinsically generated fluctuations appears in more realistic networks of spiking neurons has been a long standing question. To ease the comparison between rate and spiking networks, recent works investigated the dynamical regimes of randomly-connected rate networks with segregated excitatory and inhibitory populations, and firing rates constrained to be positive. These works derived general dynamical mean field (DMF) equations describing the fluctuating dynamics, but solved these equations only in the case of purely inhibitory networks. Using a simplified excitatory-inhibitory architecture in which DMF equations are more easily tractable, here we show that the presence of excitation qualitatively modifies the fluctuating activity compared to purely inhibitory networks. In presence of excitation, intrinsically generated fluctuations induce a strong increase in mean firing rates, a phenomenon that is much weaker in purely inhibitory networks. Excitation moreover induces two different fluctuating regimes: for moderate overall coupling, recurrent inhibition is sufficient to stabilize fluctuations; for strong coupling, firing rates are stabilized solely by the upper bound imposed on activity, even if inhibition is stronger than excitation. These results extend to more general network architectures, and to rate networks receiving noisy inputs mimicking spiking activity. Finally, we show that signatures of the second dynamical regime appear in networks of integrate-and-fire neurons.

  15. Intrinsically-generated fluctuating activity in excitatory-inhibitory networks

    PubMed Central

    Mastrogiuseppe, Francesca; Ostojic, Srdjan

    2017-01-01

    Recurrent networks of non-linear units display a variety of dynamical regimes depending on the structure of their synaptic connectivity. A particularly remarkable phenomenon is the appearance of strongly fluctuating, chaotic activity in networks of deterministic, but randomly connected rate units. How this type of intrinsically generated fluctuations appears in more realistic networks of spiking neurons has been a long standing question. To ease the comparison between rate and spiking networks, recent works investigated the dynamical regimes of randomly-connected rate networks with segregated excitatory and inhibitory populations, and firing rates constrained to be positive. These works derived general dynamical mean field (DMF) equations describing the fluctuating dynamics, but solved these equations only in the case of purely inhibitory networks. Using a simplified excitatory-inhibitory architecture in which DMF equations are more easily tractable, here we show that the presence of excitation qualitatively modifies the fluctuating activity compared to purely inhibitory networks. In presence of excitation, intrinsically generated fluctuations induce a strong increase in mean firing rates, a phenomenon that is much weaker in purely inhibitory networks. Excitation moreover induces two different fluctuating regimes: for moderate overall coupling, recurrent inhibition is sufficient to stabilize fluctuations; for strong coupling, firing rates are stabilized solely by the upper bound imposed on activity, even if inhibition is stronger than excitation. These results extend to more general network architectures, and to rate networks receiving noisy inputs mimicking spiking activity. Finally, we show that signatures of the second dynamical regime appear in networks of integrate-and-fire neurons. PMID:28437436

  16. Transient exposure to oxygen or nitrate reveals ecophysiology of fermentative and sulfate-reducing benthic microbial populations.

    PubMed

    Saad, Sainab; Bhatnagar, Srijak; Tegetmeyer, Halina E; Geelhoed, Jeanine S; Strous, Marc; Ruff, S Emil

    2017-12-01

    For the anaerobic remineralization of organic matter in marine sediments, sulfate reduction coupled to fermentation plays a key role. Here, we enriched sulfate-reducing/fermentative communities from intertidal sediments under defined conditions in continuous culture. We transiently exposed the cultures to oxygen or nitrate twice daily and investigated the community response. Chemical measurements, provisional genomes and transcriptomic profiles revealed trophic networks of microbial populations. Sulfate reducers coexisted with facultative nitrate reducers or aerobes enabling the community to adjust to nitrate or oxygen pulses. Exposure to oxygen and nitrate impacted the community structure, but did not suppress fermentation or sulfate reduction as community functions, highlighting their stability under dynamic conditions. The most abundant sulfate reducer in all cultures, related to Desulfotignum balticum, appeared to have coupled both acetate- and hydrogen oxidation to sulfate reduction. We describe a novel representative of the widespread uncultured candidate phylum Fermentibacteria (formerly candidate division Hyd24-12). For this strictly anaerobic, obligate fermentative bacterium, we propose the name ' U Sabulitectum silens' and identify it as a partner of sulfate reducers in marine sediments. Overall, we provide insights into the function of fermentative, as well as sulfate-reducing microbial communities and their adaptation to a dynamic environment. © 2017 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  17. Generalized Master Equation with Non-Markovian Multichromophoric Förster Resonance Energy Transfer for Modular Exciton Densities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jang, Seogjoo; Hoyer, Stephan; Fleming, Graham

    2014-10-31

    A generalized master equation (GME) governing quantum evolution of modular exciton density (MED) is derived for large scale light harvesting systems composed of weakly interacting modules of multiple chromophores. The GME-MED offers a practical framework to incorporate real time coherent quantum dynamics calculations of small length scales into dynamics over large length scales, and also provides a non-Markovian generalization and rigorous derivation of the Pauli master equation employing multichromophoric Förster resonance energy transfer rates. A test of the GME-MED for four sites of the Fenna-Matthews-Olson complex demonstrates how coherent dynamics of excitonic populations over coupled chromophores can be accurately describedmore » by transitions between subgroups (modules) of delocalized excitons. Application of the GME-MED to the exciton dynamics between a pair of light harvesting complexes in purple bacteria demonstrates its promise as a computationally efficient tool to investigate large scale exciton dynamics in complex environments.« less

  18. Effect of dispersal at range edges on the structure of species ranges

    USGS Publications Warehouse

    Bahn, V.; O'Connor, R.J.; Krohn, W.B.

    2006-01-01

    Range edges are of particular interest to ecology because they hold key insights into the limits of the realized niche and associated population dynamics. A recent feature of Oikos summarized the state of the art on range edge ecology. While the typical question is what causes range edges, another important question is how range edges influence the distribution of abundances across a species geographic range when dispersal is present. We used a single species population dynamics model on a coupled-lattice to determine the effects of dispersal on peripheral populations as compared to populations at the core of the range. In the absence of resource gradients, the reduced neighborhood and thus lower connectivity or higher isolation among populations at the range edge alone led to significantly lower population sizes in the periphery of the range than in the core. Lower population sizes mean higher extinction risks and lower adaptability at the range edge, which could inhibit or slow range expansions, and thus effectively stabilize range edges. The strength of this effect depended on the potential population growth rate and the maximum dispersal distance. Lower potential population growth rates led to a stronger effect of dispersal resulting in a higher difference in population sizes between the two areas. The differential effect of dispersal on population sizes at the core and periphery of the range in the absence of resource gradients implies that traditional, habitat-based distribution models could result in misleading conclusions about the habitat quality in the periphery. Lower population sizes at the periphery are also relevant to conservation, because habitat removal not only eliminates populations but also creates new edges. Populations bordering these new edges may experience declines, due to their increased isolation. ?? OIKOS.

  19. Intraguild Predation Dynamics in a Lake Ecosystem Based on a Coupled Hydrodynamic-Ecological Model: The Example of Lake Kinneret (Israel).

    PubMed

    Makler-Pick, Vardit; Hipsey, Matthew R; Zohary, Tamar; Carmel, Yohay; Gal, Gideon

    2017-03-29

    The food web of Lake Kinneret contains intraguild predation (IGP). Predatory invertebrates and planktivorous fish both feed on herbivorous zooplankton, while the planktivorous fish also feed on the predatory invertebrates. In this study, a complex mechanistic hydrodynamic-ecological model, coupled to a bioenergetics-based fish population model (DYCD-FISH), was employed with the aim of revealing IGP dynamics. The results indicate that the predation pressure of predatory zooplankton on herbivorous zooplankton varies widely, depending on the season. At the time of its annual peak, it is 10-20 times higher than the fish predation pressure. When the number of fish was significantly higher, as occurs in the lake after atypical meteorological years, the effect was a shift from a bottom-up controlled ecosystem, to the top-down control of planktivorous fish and a significant reduction of predatory and herbivorous zooplankton biomass. Yet, seasonally, the decrease in predatory-zooplankton biomass was followed by a decrease in their predation pressure on herbivorous zooplankton, leading to an increase of herbivorous zooplankton biomass to an extent similar to the base level. The analysis demonstrates the emergence of non-equilibrium IGP dynamics due to intra-annual and inter-annual changes in the physico-chemical characteristics of the lake, and suggests that IGP dynamics should be considered in food web models in order to more accurately capture mass transfer and trophic interactions.

  20. Correlated seed failure as an environmental veto to synchronize reproduction of masting plants.

    PubMed

    Bogdziewicz, Michał; Steele, Michael A; Marino, Shealyn; Crone, Elizabeth E

    2018-07-01

    Variable, synchronized seed production, called masting, is a widespread reproductive strategy in plants. Resource dynamics, pollination success, and, as described here, environmental veto are possible proximate mechanisms driving masting. We explored the environmental veto hypothesis, which assumes that reproductive synchrony is driven by external factors preventing reproduction in some years, by extending the resource budget model of masting with correlated reproductive failure. We ran this model across its parameter space to explore how key parameters interact to drive seeding dynamics. Next, we parameterized the model based on 16 yr of seed production data for populations of red (Quercus rubra) and white (Quercus alba) oaks. We used these empirical models to simulate seeding dynamics, and compared simulated time series with patterns observed in the field. Simulations showed that resource dynamics and reproduction failure can produce masting even in the absence of pollen coupling. In concordance with this, in both oaks, among-year variation in resource gain and correlated reproductive failure were necessary and sufficient to reproduce masting, whereas pollen coupling, although present, was not necessary. Reproductive failure caused by environmental veto may drive large-scale synchronization without density-dependent pollen limitation. Reproduction-inhibiting weather events are prevalent in ecosystems, making described mechanisms likely to operate in many systems. © 2018 The Authors New Phytologist © 2018 New Phytologist Trust.

  1. Coupling functions: Universal insights into dynamical interaction mechanisms

    NASA Astrophysics Data System (ADS)

    Stankovski, Tomislav; Pereira, Tiago; McClintock, Peter V. E.; Stefanovska, Aneta

    2017-10-01

    The dynamical systems found in nature are rarely isolated. Instead they interact and influence each other. The coupling functions that connect them contain detailed information about the functional mechanisms underlying the interactions and prescribe the physical rule specifying how an interaction occurs. A coherent and comprehensive review is presented encompassing the rapid progress made recently in the analysis, understanding, and applications of coupling functions. The basic concepts and characteristics of coupling functions are presented through demonstrative examples of different domains, revealing the mechanisms and emphasizing their multivariate nature. The theory of coupling functions is discussed through gradually increasing complexity from strong and weak interactions to globally coupled systems and networks. A variety of methods that have been developed for the detection and reconstruction of coupling functions from measured data is described. These methods are based on different statistical techniques for dynamical inference. Stemming from physics, such methods are being applied in diverse areas of science and technology, including chemistry, biology, physiology, neuroscience, social sciences, mechanics, and secure communications. This breadth of application illustrates the universality of coupling functions for studying the interaction mechanisms of coupled dynamical systems.

  2. Monitoring microbial metabolites using an inductively coupled resonance circuit

    PubMed Central

    Karnaushenko, Daniil; Baraban, Larysa; Ye, Dan; Uguz, Ilke; Mendes, Rafael G.; Rümmeli, Mark H.; de Visser, J. Arjan G. M.; Schmidt, Oliver G.; Cuniberti, Gianaurelio; Makarov, Denys

    2015-01-01

    We present a new approach to monitor microbial population dynamics in emulsion droplets via changes in metabolite composition, using an inductively coupled LC resonance circuit. The signal measured by such resonance detector provides information on the magnetic field interaction with the bacterial culture, which is complementary to the information accessible by other detection means, based on electric field interaction, i.e. capacitive or resistive, as well as optical techniques. Several charge-related factors, including pH and ammonia concentrations, were identified as possible contributors to the characteristic of resonance detector profile. The setup enables probing the ionic byproducts of microbial metabolic activity at later stages of cell growth, where conventional optical detection methods have no discriminating power. PMID:26264183

  3. Dynamical interferences to probe short-pulse photoassociation of Rb atoms and stabilization of Rb{sub 2} dimers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mur-Petit, Jordi; Luc-Koenig, Eliane; Masnou-Seeuws, Francoise

    2007-06-15

    We analyze the formation of Rb{sub 2} molecules with short photoassociation pulses applied to a cold {sup 85}Rb sample. A pump laser pulse couples a continuum level of the ground electronic state X {sup 1}{sigma}{sub g}{sup +} with bound levels in the 0{sub u}{sup +}(5S+5P{sub 1/2}) and 0{sub u}{sup +}(5S+5P{sub 3/2}) vibrational series. The nonadiabatic coupling between the two excited channels induces time-dependent beatings in the populations. We propose to take advantage of these oscillations to design further laser pulses that probe the photoassociation process via photoionization or that optimize the stabilization in deep levels of the ground state.

  4. Superslow relaxation in identical phase oscillators with random and frustrated interactions

    NASA Astrophysics Data System (ADS)

    Daido, H.

    2018-04-01

    This paper is concerned with the relaxation dynamics of a large population of identical phase oscillators, each of which interacts with all the others through random couplings whose parameters obey the same Gaussian distribution with the average equal to zero and are mutually independent. The results obtained by numerical simulation suggest that for the infinite-size system, the absolute value of Kuramoto's order parameter exhibits superslow relaxation, i.e., 1/ln t as time t increases. Moreover, the statistics on both the transient time T for the system to reach a fixed point and the absolute value of Kuramoto's order parameter at t = T are also presented together with their distribution densities over many realizations of the coupling parameters.

  5. Coupled stream and population dynamics: Modeling the role beaver (Castor canadensis) play in generating juvenile steelhead (Oncorhynchus mykiss) habitat

    NASA Astrophysics Data System (ADS)

    Jordan, C.; Bouwes, N.; Wheaton, J. M.; Pollock, M.

    2013-12-01

    Over the past several centuries, the population of North American Beaver has been dramatically reduced through fur trapping. As a result, the geomorphic impacts long-term beaver occupancy and activity can have on fluvial systems have been lost, both from the landscape and from our collective memory such that physical and biological models of floodplain system function neither consider nor have the capacity to incorporate the role beaver can play in structuring the dynamics of streams. Concomitant with the decline in beaver populations was an increasing pressure on streams and floodplains through human activity, placing numerous species of stream rearing fishes in peril, most notably the ESA listing of trout and salmon populations across the entirety of the Western US. The rehabilitation of stream systems is seen as one of the primary means by which population and ecosystem recovery can be achieved, yet the methods of stream rehabilitation are applied almost exclusively with the expected outcome of a static idealized stream planform, occasionally with an acknowledgement of restoring processes rather than form and only rarely with the goal of a beaver dominated riverscape. We have constructed an individual based model of trout and beaver populations that allows the exploration of fish population dynamics as a function of stream habitat quality and quantity. We based the simulation tool on Bridge Creek (John Day River basin, Oregon) where we have implemented a large-scale restoration experiment using wooden posts to provide beavers with stable platforms for dam building and to simulate the dams themselves. Extensive monitoring captured geomorphic and riparian changes, as well as fish and beaver population responses; information we use to parameterize the model as to the geomorphic and fish response to dam building beavers. In the simulation environment, stream habitat quality and quantity can be manipulated directly through rehabilitation actions and indirectly through the dynamics of the co-occurring beaver population. The model allowed to us to ask questions critical for designing restoration strategies based on dam building beaver activity, such as what beaver population growth rate is required to develop and maintain floodplain connectivity in an incised system, or what beaver population size is required to increase juvenile steelhead production? The model was sensitive to several variables including beaver colony size, dams and colony dynamics and site fidelity, and thus highlights further research needs to fill critical information gaps.

  6. Structure and Dynamics of Interacting Nanoparticles in Semidilute Polymer Solutions

    DOE PAGES

    Pollng-Skutvik, Ryan; Mongcopa, Katrina Irene S.; Faraone, Antonio; ...

    2016-08-17

    We investigate the structure and dynamics of silica nanoparticles and polymer chains in semidilute solutions of high molecular weight polystyrene in 2-butanone to determine the effect of long-range interparticle interactions on the coupling between particle and polymer dynamics. Particles at concentrations of 1–10 wt % are well dispersed in the semidilute polymer solutions and exhibit long-range electrostatic repulsions between particles. Because the particles are comparably sized to the radius of gyration of the polymer, the particle dynamics is predicted to couple to that of the polymer. We verify that the polymer structure and dynamics are not significantly affected by themore » particles, indicating that the particle–polymer coupling does not change with increasing particle loading. We find that the coupling between the dynamics of comparably sized particles and polymer results in subdiffusive particle dynamics, as expected. Over the interparticle distance, however, the particle dynamics is hindered and not fully described by the relaxation of the surrounding polymer chains. Instead, the particle dynamics is inversely related to the structure factor, suggesting that physical particle–polymer coupling on short length scales and interparticle interactions on long length scales both present energetic barriers to particle motion that lead to subdiffusive dynamics and de Gennes narrowing, respectively.« less

  7. Evaluating Water Conservation and Reuse Policies Using a Dynamic Water Balance Model

    NASA Astrophysics Data System (ADS)

    Qaiser, Kamal; Ahmad, Sajjad; Johnson, Walter; Batista, Jacimaria R.

    2013-02-01

    A dynamic water balance model is created to examine the effects of different water conservation policies and recycled water use on water demand and supply in a region faced with water shortages and significant population growth, the Las Vegas Valley (LVV). The model, developed using system dynamics approach, includes an unusual component of the water system, return flow credits, where credits are accrued for returning treated wastewater to the water supply source. In LVV, Lake Mead serves as, both the drinking water source and the receiving body for treated wastewater. LVV has a consumptive use allocation from Lake Mead but return flow credits allow the water agency to pull out additional water equal to the amount returned as treated wastewater. This backdrop results in a scenario in which conservation may cause a decline in the available water supply. Current water use in LVV is 945 lpcd (250 gpcd), which the water agency aims to reduce to 752 lpcd (199 gpcd) by 2035, mainly through water conservation. Different conservation policies focused on indoor and outdoor water use, along with different population growth scenarios, are modeled for their effects on the water demand and supply. Major contribution of this study is in highlighting the importance of outdoor water conservation and the effectiveness of reducing population growth rate in addressing the future water shortages. The water agency target to decrease consumption, if met completely through outdoor conservation, coupled with lower population growth rate, can potentially satisfy the Valley's water demands through 2035.

  8. Population Dynamics of a Salmonella Lytic Phage and Its Host: Implications of the Host Bacterial Growth Rate in Modelling

    PubMed Central

    Santos, Sílvio B.; Carvalho, Carla; Azeredo, Joana; Ferreira, Eugénio C.

    2014-01-01

    The prevalence and impact of bacteriophages in the ecology of bacterial communities coupled with their ability to control pathogens turn essential to understand and predict the dynamics between phage and bacteria populations. To achieve this knowledge it is essential to develop mathematical models able to explain and simulate the population dynamics of phage and bacteria. We have developed an unstructured mathematical model using delay-differential equations to predict the interactions between a broad-host-range Salmonella phage and its pathogenic host. The model takes into consideration the main biological parameters that rule phage-bacteria interactions likewise the adsorption rate, latent period, burst size, bacterial growth rate, and substrate uptake rate, among others. The experimental validation of the model was performed with data from phage-interaction studies in a 5 L bioreactor. The key and innovative aspect of the model was the introduction of variations in the latent period and adsorption rate values that are considered as constants in previous developed models. By modelling the latent period as a normal distribution of values and the adsorption rate as a function of the bacterial growth rate it was possible to accurately predict the behaviour of the phage-bacteria population. The model was shown to predict simulated data with a good agreement with the experimental observations and explains how a lytic phage and its host bacteria are able to coexist. PMID:25051248

  9. Socio-hydrologic modeling to understand and mediate the competition for water between agriculture development and environmental health: Murrumbidgee River basin, Australia

    NASA Astrophysics Data System (ADS)

    van Emmerik, T. H. M.; Li, Z.; Sivapalan, M.; Pande, S.; Kandasamy, J.; Savenije, H. H. G.; Chanan, A.; Vigneswaran, S.

    2014-10-01

    Competition for water between humans and ecosystems is set to become a flash point in the coming decades in many parts of the world. An entirely new and comprehensive quantitative framework is needed to establish a holistic understanding of that competition, thereby enabling the development of effective mediation strategies. This paper presents a modeling study centered on the Murrumbidgee River basin (MRB). The MRB has witnessed a unique system dynamics over the last 100 years as a result of interactions between patterns of water management and climate driven hydrological variability. Data analysis has revealed a pendulum swing between agricultural development and restoration of environmental health and ecosystem services over different stages of basin-scale water resource development. A parsimonious, stylized, quasi-distributed coupled socio-hydrologic system model that simulates the two-way coupling between human and hydrological systems of the MRB is used to mimic and explain dominant features of the pendulum swing. The model consists of coupled nonlinear ordinary differential equations that describe the interaction between five state variables that govern the co-evolution: reservoir storage, irrigated area, human population, ecosystem health, and environmental awareness. The model simulations track the propagation of the external climatic and socio-economic drivers through this coupled, complex system to the emergence of the pendulum swing. The model results point to a competition between human "productive" and environmental "restorative" forces that underpin the pendulum swing. Both the forces are endogenous, i.e., generated by the system dynamics in response to external drivers and mediated by humans through technology change and environmental awareness, respectively. Sensitivity analysis carried out with the model further reveals that socio-hydrologic modeling can be used as a tool to explain or gain insight into observed co-evolutionary dynamics of diverse human-water coupled systems. This paper therefore contributes to the ultimate development of a generic modeling framework that can be applied to human-water coupled systems in different climatic and socio-economic settings.

  10. Carraguard acceptability among men and women in a couples study in Thailand.

    PubMed

    Martin, Sarah; Blanchard, Kelly; Manopaiboon, Chomnad; Chaikummao, Supaporn; Schaffer, Kate; Friedland, Barbara; Kilmarx, Peter H

    2010-08-01

    The aim of this study is to evaluate the use and acceptability of Carraguard among men and women enrolled as couples in a microbicide trial. Focus groups were conducted with participants in a 6-month randomized, placebo-controlled trial that enrolled sexually active, low-risk couples in Thailand. Participants were blinded as to which gel they had received at the time of the discussions. Most men and women liked the gel and found it acceptable. The majority of men and women thought that using the gel increased sexual pleasure, although participants disagreed about whether using the gel increased sexual frequency. Drawbacks of gel use included that it was too wet or messy, and nearly all respondents thought that the applicator was too hard. Most men and women questioned the utility of using the gel among married couples since gel use was tied to perception of HIV/STI risk. However, those who perceived themselves to be at risk expressed interest in using the product as an alternative to condoms. Many women were particularly interested in a product that also had contraceptive properties. Gel use also raised issues of trust and fidelity among couples and questions about men's ability to detect women's use of the product. Men and women in this study found the gel acceptable and thought that it should be made available if it is found to be safe and effective. Strategies for marketing a potential microbicide product must take the target population into consideration. For married couples, key considerations may be partner dynamics and trust issues, whereas messages focusing on sexual pleasure or disease prevention may resonate more strongly with sex workers or other populations.

  11. Adaptive dynamical networks

    NASA Astrophysics Data System (ADS)

    Maslennikov, O. V.; Nekorkin, V. I.

    2017-10-01

    Dynamical networks are systems of active elements (nodes) interacting with each other through links. Examples are power grids, neural structures, coupled chemical oscillators, and communications networks, all of which are characterized by a networked structure and intrinsic dynamics of their interacting components. If the coupling structure of a dynamical network can change over time due to nodal dynamics, then such a system is called an adaptive dynamical network. The term ‘adaptive’ implies that the coupling topology can be rewired; the term ‘dynamical’ implies the presence of internal node and link dynamics. The main results of research on adaptive dynamical networks are reviewed. Key notions and definitions of the theory of complex networks are given, and major collective effects that emerge in adaptive dynamical networks are described.

  12. Synchrony due to parametric averaging in neurons coupled by a shared signal

    NASA Astrophysics Data System (ADS)

    Khadra, Anmar

    2009-04-01

    Gonadotropin-releasing hormone (GnRH) is a decapeptide secreted by GnRH neurons located in the hypothalamus. It is responsible for the onset of puberty and the regulation of hormone release from the pituitary. There is a strong evidence suggesting that GnRH exerts an autocrine regulation on its own release via three types of G-proteins [L.Z. Krsmanovic, N. Mores, C.E. Navarro, K.K. Arora, K.J. Catt, An agonist-induced switch in G protein coupling of the gonadotropin-releasing hormone receptor regulates pulsatile neuropeptide secretion, Proc. Natl. Acad. Sci. 100 (2003) 2969-2974]. A mathematical model based on this proposed mechanism has been developed and extended to explain the synchrony observed in GnRH neurons by incorporating the idea of a common pool of GnRH [A. Khadra, Y.X. Li, A model for the pulsatile secretion of gonadotropin-releasing hormone from synchronized hypothalamic neurons, Biophys. J. 91 (2006) 74-83]. This type of coupling led to a very robust synchrony between these neurons. We aim in this paper to reduce the one cell model to a two-variable model using quasi-steady state (QSS) analysis, to further examine its dynamics analytically and geometrically. The concept of synchrony of a heterogeneous population will be clearly defined and established for certain cases, while, for the general case, two different types of phases are introduced to gain more insight on how the model behaves. Bifurcation diagrams for certain parameters in the one cell model are also shown to explain some of the phenomena observed in a coupled population. A comparison between the population model and an averaged two-variable model is also conducted.

  13. The coupled dynamics of fluids and spacecraft in low gravity and low gravity fluid measurement

    NASA Technical Reports Server (NTRS)

    Hansman, R. John; Peterson, Lee D.; Crawley, Edward F.

    1987-01-01

    The very large mass fraction of liquids stored on broad current and future generation spacecraft has made critical the technologies of describing the fluid-spacecraft dynamics and measuring or gauging the fluid. Combined efforts in these areas are described, and preliminary results are presented. The coupled dynamics of fluids and spacecraft in low gravity study is characterizing the parametric behavior of fluid-spacecraft systems in which interaction between the fluid and spacecraft dynamics is encountered. Particular emphasis is given to the importance of nonlinear fluid free surface phenomena to the coupled dynamics. An experimental apparatus has been developed for demonstrating a coupled fluid-spacecraft system. In these experiments, slosh force signals are fed back to a model tank actuator through a tunable analog second order integration circuit. In this manner, the tank motion is coupled to the resulting slosh force. Results are being obtained in 1-g and in low-g (on the NASA KC-135) using dynamic systems nondimensionally identical except for the Bond numbers.

  14. Modal resonant dynamics of cables with a flexible support: A modulated diffraction problem

    NASA Astrophysics Data System (ADS)

    Guo, Tieding; Kang, Houjun; Wang, Lianhua; Liu, Qijian; Zhao, Yueyu

    2018-06-01

    Modal resonant dynamics of cables with a flexible support is defined as a modulated (wave) diffraction problem, and investigated by asymptotic expansions of the cable-support coupled system. The support-cable mass ratio, which is usually very large, turns out to be the key parameter for characterizing cable-support dynamic interactions. By treating the mass ratio's inverse as a small perturbation parameter and scaling the cable tension properly, both cable's modal resonant dynamics and the flexible support dynamics are asymptotically reduced by using multiple scale expansions, leading finally to a reduced cable-support coupled model (i.e., on a slow time scale). After numerical validations of the reduced coupled model, cable-support coupled responses and the flexible support induced coupling effects on the cable, are both fully investigated, based upon the reduced model. More explicitly, the dynamic effects on the cable's nonlinear frequency and force responses, caused by the support-cable mass ratio, the resonant detuning parameter and the support damping, are carefully evaluated.

  15. Ecological feedback in quorum-sensing microbial populations can induce heterogeneous production of autoinducers

    PubMed Central

    Bauer, Matthias; Knebel, Johannes; Lechner, Matthias; Pickl, Peter; Frey, Erwin

    2017-01-01

    Autoinducers are small signaling molecules that mediate intercellular communication in microbial populations and trigger coordinated gene expression via ‘quorum sensing’. Elucidating the mechanisms that control autoinducer production is, thus, pertinent to understanding collective microbial behavior, such as virulence and bioluminescence. Recent experiments have shown a heterogeneous promoter activity of autoinducer synthase genes, suggesting that some of the isogenic cells in a population might produce autoinducers, whereas others might not. However, the mechanism underlying this phenotypic heterogeneity in quorum-sensing microbial populations has remained elusive. In our theoretical model, cells synthesize and secrete autoinducers into the environment, up-regulate their production in this self-shaped environment, and non-producers replicate faster than producers. We show that the coupling between ecological and population dynamics through quorum sensing can induce phenotypic heterogeneity in microbial populations, suggesting an alternative mechanism to stochastic gene expression in bistable gene regulatory circuits. DOI: http://dx.doi.org/10.7554/eLife.25773.001 PMID:28741470

  16. Measure synchronization in a spin-orbit-coupled bosonic Josephson junction

    NASA Astrophysics Data System (ADS)

    Wang, Wen-Yuan; Liu, Jie; Fu, Li-Bin

    2015-11-01

    We present measure synchronization (MS) in a bosonic Josephson junction with spin-orbit coupling. The two atomic hyperfine states are coupled by a Raman dressing scheme, and they are regarded as two orientations of a pseudo-spin-1 /2 system. A feature specific to a spin-orbit-coupled (SOC) bosonic Josephson junction is that the transition from non-MS to MS dynamics can be modulated by Raman laser intensity, even in the absence of interspin atomic interaction. A phase diagram of non-MS and MS dynamics as functions of Raman laser intensity and Josephson tunneling amplitude is presented. Taking into account interspin atomic interactions, the system exhibits MS breaking dynamics resulting from the competition between intraspin and interspin atomic interactions. When interspin atomic interactions dominate in the competition, the system always exhibits MS dynamics. For interspin interaction weaker than intraspin interaction, a window for non-MS dynamics is present. Since SOC Bose-Einstein condensates provide a powerful platform for studies on physical problems in various fields, the study of MS dynamics is valuable in researching the collective coherent dynamical behavior in a spin-orbit-coupled bosonic Josephson junction.

  17. Inverse dynamic substructuring using the direct hybrid assembly in the frequency domain

    NASA Astrophysics Data System (ADS)

    D'Ambrogio, Walter; Fregolent, Annalisa

    2014-04-01

    The paper deals with the identification of the dynamic behaviour of a structural subsystem, starting from the known dynamic behaviour of both the coupled system and the remaining part of the structural system (residual subsystem). This topic is also known as decoupling problem, subsystem subtraction or inverse dynamic substructuring. Whenever it is necessary to combine numerical models (e.g. FEM) and test models (e.g. FRFs), one speaks of experimental dynamic substructuring. Substructure decoupling techniques can be classified as inverse coupling or direct decoupling techniques. In inverse coupling, the equations describing the coupling problem are rearranged to isolate the unknown substructure instead of the coupled structure. On the contrary, direct decoupling consists in adding to the coupled system a fictitious subsystem that is the negative of the residual subsystem. Starting from a reduced version of the 3-field formulation (dynamic equilibrium using FRFs, compatibility and equilibrium of interface forces), a direct hybrid assembly is developed by requiring that both compatibility and equilibrium conditions are satisfied exactly, either at coupling DoFs only, or at additional internal DoFs of the residual subsystem. Equilibrium and compatibility DoFs might not be the same: this generates the so-called non-collocated approach. The technique is applied using experimental data from an assembled system made by a plate and a rigid mass.

  18. Non-integrable dynamics of matter-wave solitons in a density-dependent gauge theory

    NASA Astrophysics Data System (ADS)

    Dingwall, R. J.; Edmonds, M. J.; Helm, J. L.; Malomed, B. A.; Öhberg, P.

    2018-04-01

    We study interactions between bright matter-wave solitons which acquire chiral transport dynamics due to an optically-induced density-dependent gauge potential. Through numerical simulations, we find that the collision dynamics feature several non-integrable phenomena, from inelastic collisions including population transfer and radiation losses to the formation of short-lived bound states and soliton fission. An effective quasi-particle model for the interaction between the solitons is derived by means of a variational approximation, which demonstrates that the inelastic nature of the collision arises from a coupling of the gauge field to velocities of the solitons. In addition, we derive a set of interaction potentials which show that the influence of the gauge field appears as a short-range potential, that can give rise to both attractive and repulsive interactions.

  19. Strain-specific functional and numerical responses are required to evaluate impacts on predator-prey dynamics.

    PubMed

    Yang, Zhou; Lowe, Chris D; Crowther, Will; Fenton, Andy; Watts, Phillip C; Montagnes, David J S

    2013-02-01

    We use strains recently collected from the field to establish cultures; then, through laboratory studies we investigate how among strain variation in protozoan ingestion and growth rates influences population dynamics and intraspecific competition. We focused on the impact of changing temperature because of its well-established effects on protozoan rates and its ecological relevance, from daily fluctuations to climate change. We show, first, that there is considerable inter-strain variability in thermal sensitivity of maximum growth rate, revealing distinct differences among multiple strains of our model species Oxyrrhis marina. We then intensively examined two representative strains that exhibit distinctly different thermal responses and parameterised the influence of temperature on their functional and numerical responses. Finally, we assessed how these responses alter predator-prey population dynamics. We do this first considering a standard approach, which assumes that functional and numerical responses are directly coupled, and then compare these results with a novel framework that incorporates both functional and numerical responses in a fully parameterised model. We conclude that: (i) including functional diversity of protozoa at the sub-species level will alter model predictions and (ii) including directly measured, independent functional and numerical responses in a model can provide a more realistic account of predator-prey dynamics.

  20. Linear and nonlinear spectroscopy from quantum master equations.

    PubMed

    Fetherolf, Jonathan H; Berkelbach, Timothy C

    2017-12-28

    We investigate the accuracy of the second-order time-convolutionless (TCL2) quantum master equation for the calculation of linear and nonlinear spectroscopies of multichromophore systems. We show that even for systems with non-adiabatic coupling, the TCL2 master equation predicts linear absorption spectra that are accurate over an extremely broad range of parameters and well beyond what would be expected based on the perturbative nature of the approach; non-equilibrium population dynamics calculated with TCL2 for identical parameters are significantly less accurate. For third-order (two-dimensional) spectroscopy, the importance of population dynamics and the violation of the so-called quantum regression theorem degrade the accuracy of TCL2 dynamics. To correct these failures, we combine the TCL2 approach with a classical ensemble sampling of slow microscopic bath degrees of freedom, leading to an efficient hybrid quantum-classical scheme that displays excellent accuracy over a wide range of parameters. In the spectroscopic setting, the success of such a hybrid scheme can be understood through its separate treatment of homogeneous and inhomogeneous broadening. Importantly, the presented approach has the computational scaling of TCL2, with the modest addition of an embarrassingly parallel prefactor associated with ensemble sampling. The presented approach can be understood as a generalized inhomogeneous cumulant expansion technique, capable of treating multilevel systems with non-adiabatic dynamics.

  1. Linear and nonlinear spectroscopy from quantum master equations

    NASA Astrophysics Data System (ADS)

    Fetherolf, Jonathan H.; Berkelbach, Timothy C.

    2017-12-01

    We investigate the accuracy of the second-order time-convolutionless (TCL2) quantum master equation for the calculation of linear and nonlinear spectroscopies of multichromophore systems. We show that even for systems with non-adiabatic coupling, the TCL2 master equation predicts linear absorption spectra that are accurate over an extremely broad range of parameters and well beyond what would be expected based on the perturbative nature of the approach; non-equilibrium population dynamics calculated with TCL2 for identical parameters are significantly less accurate. For third-order (two-dimensional) spectroscopy, the importance of population dynamics and the violation of the so-called quantum regression theorem degrade the accuracy of TCL2 dynamics. To correct these failures, we combine the TCL2 approach with a classical ensemble sampling of slow microscopic bath degrees of freedom, leading to an efficient hybrid quantum-classical scheme that displays excellent accuracy over a wide range of parameters. In the spectroscopic setting, the success of such a hybrid scheme can be understood through its separate treatment of homogeneous and inhomogeneous broadening. Importantly, the presented approach has the computational scaling of TCL2, with the modest addition of an embarrassingly parallel prefactor associated with ensemble sampling. The presented approach can be understood as a generalized inhomogeneous cumulant expansion technique, capable of treating multilevel systems with non-adiabatic dynamics.

  2. Non-equilibrium quantum phase transition via entanglement decoherence dynamics

    PubMed Central

    Lin, Yu-Chen; Yang, Pei-Yun; Zhang, Wei-Min

    2016-01-01

    We investigate the decoherence dynamics of continuous variable entanglement as the system-environment coupling strength varies from the weak-coupling to the strong-coupling regimes. Due to the existence of localized modes in the strong-coupling regime, the system cannot approach equilibrium with its environment, which induces a nonequilibrium quantum phase transition. We analytically solve the entanglement decoherence dynamics for an arbitrary spectral density. The nonequilibrium quantum phase transition is demonstrated as the system-environment coupling strength varies for all the Ohmic-type spectral densities. The 3-D entanglement quantum phase diagram is obtained. PMID:27713556

  3. Dynamics of interacting Dicke model in a coupled-cavity array

    NASA Astrophysics Data System (ADS)

    Badshah, Fazal; Qamar, Shahid; Paternostro, Mauro

    2014-09-01

    We consider the dynamics of an array of mutually interacting cavities, each containing an ensemble of N two-level atoms. By exploring the possibilities offered by ensembles of various dimensions and a range of atom-light and photon-hopping values, we investigate the generation of multisite entanglement, as well as the performance of excitation transfer across the array, resulting from the competition between on-site nonlinearities of the matter-light interaction and intersite photon hopping. In particular, for a three-cavity interacting system it is observed that the initial excitation in the first cavity completely transfers to the ensemble in the third cavity through the hopping of photons between the adjacent cavities. Probabilities of the transfer of excitation of the cavity modes and ensembles exhibit characteristics of fast and slow oscillations governed by coupling and hopping parameters, respectively. In the large-hopping case, by seeding an initial excitation in the cavity at the center of the array, a tripartite W state, as well as a bipartite maximally entangled state, is obtained, depending on the interaction time. Population of the ensemble in a cavity has a positive impact on the rate of excitation transfer between the ensembles and their local cavity modes. In particular, for ensembles of five to seven atoms, tripartite W states can be produced even when the hopping rate is comparable to the cavity-atom coupling rate. A similar behavior of the transfer of excitation is observed for a four-coupled-cavity system with two initial excitations.

  4. Detecting population-environmental interactions with mismatched time series data.

    PubMed

    Ferguson, Jake M; Reichert, Brian E; Fletcher, Robert J; Jager, Henriëtte I

    2017-11-01

    Time series analysis is an essential method for decomposing the influences of density and exogenous factors such as weather and climate on population regulation. However, there has been little work focused on understanding how well commonly collected data can reconstruct the effects of environmental factors on population dynamics. We show that, analogous to similar scale issues in spatial data analysis, coarsely sampled temporal data can fail to detect covariate effects when interactions occur on timescales that are fast relative to the survey period. We propose a method for modeling mismatched time series data that couples high-resolution environmental data to low-resolution abundance data. We illustrate our approach with simulations and by applying it to Florida's southern Snail kite population. Our simulation results show that our method can reliably detect linear environmental effects and that detecting nonlinear effects requires high-resolution covariate data even when the population turnover rate is slow. In the Snail kite analysis, our approach performed among the best in a suite of previously used environmental covariates explaining Snail kite dynamics and was able to detect a potential phenological shift in the environmental dependence of Snail kites. Our work provides a statistical framework for reliably detecting population-environment interactions from coarsely surveyed time series. An important implication of this work is that the low predictability of animal population growth by weather variables found in previous studies may be due, in part, to how these data are utilized as covariates. © 2017 by the Ecological Society of America.

  5. Chimera states in nonlocally coupled phase oscillators with biharmonic interaction

    NASA Astrophysics Data System (ADS)

    Cheng, Hongyan; Dai, Qionglin; Wu, Nianping; Feng, Yuee; Li, Haihong; Yang, Junzhong

    2018-03-01

    Chimera states, which consist of coexisting domains of coherent and incoherent parts, have been observed in a variety of systems. Most of previous works on chimera states have taken into account specific form of interaction between oscillators, for example, sinusoidal coupling or diffusive coupling. Here, we investigate chimera dynamics in nonlocally coupled phase oscillators with biharmonic interaction. We find novel chimera states with features such as that oscillators in the same coherent cluster may split into two groups with a phase difference around π/2 and that oscillators in adjacent coherent clusters may have a phase difference close to π/2. The different impacts of the coupling ranges in the first and the second harmonic interactions on chimera dynamics are investigated based on the synchronous dynamics in globally coupled phase oscillators. Our study suggests a new direction in the field of chimera dynamics.

  6. Coupled Vortex-Lattice Flight Dynamic Model with Aeroelastic Finite-Element Model of Flexible Wing Transport Aircraft with Variable Camber Continuous Trailing Edge Flap for Drag Reduction

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan; Ting, Eric; Nguyen, Daniel; Dao, Tung; Trinh, Khanh

    2013-01-01

    This paper presents a coupled vortex-lattice flight dynamic model with an aeroelastic finite-element model to predict dynamic characteristics of a flexible wing transport aircraft. The aircraft model is based on NASA Generic Transport Model (GTM) with representative mass and stiffness properties to achieve a wing tip deflection about twice that of a conventional transport aircraft (10% versus 5%). This flexible wing transport aircraft is referred to as an Elastically Shaped Aircraft Concept (ESAC) which is equipped with a Variable Camber Continuous Trailing Edge Flap (VCCTEF) system for active wing shaping control for drag reduction. A vortex-lattice aerodynamic model of the ESAC is developed and is coupled with an aeroelastic finite-element model via an automated geometry modeler. This coupled model is used to compute static and dynamic aeroelastic solutions. The deflection information from the finite-element model and the vortex-lattice model is used to compute unsteady contributions to the aerodynamic force and moment coefficients. A coupled aeroelastic-longitudinal flight dynamic model is developed by coupling the finite-element model with the rigid-body flight dynamic model of the GTM.

  7. Asymptotic analysis of noisy fitness maximization, applied to metabolism & growth

    NASA Astrophysics Data System (ADS)

    De Martino, Daniele; Masoero, Davide

    2016-12-01

    We consider a population dynamics model coupling cell growth to a diffusion in the space of metabolic phenotypes as it can be obtained from realistic constraints-based modeling. In the asymptotic regime of slow diffusion, that coincides with the relevant experimental range, the resulting non-linear Fokker-Planck equation is solved for the steady state in the WKB approximation that maps it into the ground state of a quantum particle in an Airy potential plus a centrifugal term. We retrieve scaling laws for growth rate fluctuations and time response with respect to the distance from the maximum growth rate suggesting that suboptimal populations can have a faster response to perturbations.

  8. Ultrafast coherence transfer in DNA-templated silver nanoclusters

    PubMed Central

    Thyrhaug, Erling; Bogh, Sidsel Ammitzbøll; Carro-Temboury, Miguel R; Madsen, Charlotte Stahl; Vosch, Tom; Zigmantas, Donatas

    2017-01-01

    DNA-templated silver nanoclusters of a few tens of atoms or less have come into prominence over the last several years due to very strong absorption and efficient emission. Applications in microscopy and sensing have already been realized, however little is known about the excited-state structure and dynamics in these clusters. Here we report on a multidimensional spectroscopy investigation of the energy-level structure and the early-time relaxation cascade, which eventually results in the population of an emitting state. We find that the ultrafast intramolecular relaxation is strongly coupled to a specific vibrational mode, resulting in the concerted transfer of population and coherence between excited states on a sub-100 fs timescale. PMID:28548085

  9. Emergence of traveling waves in the spreading of dengue fever

    NASA Astrophysics Data System (ADS)

    Bianco, Simone; Faatz, Andrea; Cummings, Derek; Shaw, Leah

    2010-03-01

    Dengue fever is a multistrain mosquito-borne subtropical disease that exhibits complex oscillatory outbreaks. Epidemiological data from Thailand displays traveling waves of infection originating in Bangkok, the largest population center (Cummings et al., Nature 427: 344, 2004). We present a multistrain metapopulation model in which traveling wave like behavior results from migration coupling between heterogeneous regions. The region with the highest effective person-to-person contact rate leads the dynamics. A stochastic version of the model will also be presented.

  10. Hierarchical coarse-graining model for photosystem II including electron and excitation-energy transfer processes.

    PubMed

    Matsuoka, Takeshi; Tanaka, Shigenori; Ebina, Kuniyoshi

    2014-03-01

    We propose a hierarchical reduction scheme to cope with coupled rate equations that describe the dynamics of multi-time-scale photosynthetic reactions. To numerically solve nonlinear dynamical equations containing a wide temporal range of rate constants, we first study a prototypical three-variable model. Using a separation of the time scale of rate constants combined with identified slow variables as (quasi-)conserved quantities in the fast process, we achieve a coarse-graining of the dynamical equations reduced to those at a slower time scale. By iteratively employing this reduction method, the coarse-graining of broadly multi-scale dynamical equations can be performed in a hierarchical manner. We then apply this scheme to the reaction dynamics analysis of a simplified model for an illuminated photosystem II, which involves many processes of electron and excitation-energy transfers with a wide range of rate constants. We thus confirm a good agreement between the coarse-grained and fully (finely) integrated results for the population dynamics. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  11. Benchmarking novel approaches for modelling species range dynamics

    PubMed Central

    Zurell, Damaris; Thuiller, Wilfried; Pagel, Jörn; Cabral, Juliano S; Münkemüller, Tamara; Gravel, Dominique; Dullinger, Stefan; Normand, Signe; Schiffers, Katja H.; Moore, Kara A.; Zimmermann, Niklaus E.

    2016-01-01

    Increasing biodiversity loss due to climate change is one of the most vital challenges of the 21st century. To anticipate and mitigate biodiversity loss, models are needed that reliably project species’ range dynamics and extinction risks. Recently, several new approaches to model range dynamics have been developed to supplement correlative species distribution models (SDMs), but applications clearly lag behind model development. Indeed, no comparative analysis has been performed to evaluate their performance. Here, we build on process-based, simulated data for benchmarking five range (dynamic) models of varying complexity including classical SDMs, SDMs coupled with simple dispersal or more complex population dynamic models (SDM hybrids), and a hierarchical Bayesian process-based dynamic range model (DRM). We specifically test the effects of demographic and community processes on model predictive performance. Under current climate, DRMs performed best, although only marginally. Under climate change, predictive performance varied considerably, with no clear winners. Yet, all range dynamic models improved predictions under climate change substantially compared to purely correlative SDMs, and the population dynamic models also predicted reasonable extinction risks for most scenarios. When benchmarking data were simulated with more complex demographic and community processes, simple SDM hybrids including only dispersal often proved most reliable. Finally, we found that structural decisions during model building can have great impact on model accuracy, but prior system knowledge on important processes can reduce these uncertainties considerably. Our results reassure the clear merit in using dynamic approaches for modelling species’ response to climate change but also emphasise several needs for further model and data improvement. We propose and discuss perspectives for improving range projections through combination of multiple models and for making these approaches operational for large numbers of species. PMID:26872305

  12. Benchmarking novel approaches for modelling species range dynamics.

    PubMed

    Zurell, Damaris; Thuiller, Wilfried; Pagel, Jörn; Cabral, Juliano S; Münkemüller, Tamara; Gravel, Dominique; Dullinger, Stefan; Normand, Signe; Schiffers, Katja H; Moore, Kara A; Zimmermann, Niklaus E

    2016-08-01

    Increasing biodiversity loss due to climate change is one of the most vital challenges of the 21st century. To anticipate and mitigate biodiversity loss, models are needed that reliably project species' range dynamics and extinction risks. Recently, several new approaches to model range dynamics have been developed to supplement correlative species distribution models (SDMs), but applications clearly lag behind model development. Indeed, no comparative analysis has been performed to evaluate their performance. Here, we build on process-based, simulated data for benchmarking five range (dynamic) models of varying complexity including classical SDMs, SDMs coupled with simple dispersal or more complex population dynamic models (SDM hybrids), and a hierarchical Bayesian process-based dynamic range model (DRM). We specifically test the effects of demographic and community processes on model predictive performance. Under current climate, DRMs performed best, although only marginally. Under climate change, predictive performance varied considerably, with no clear winners. Yet, all range dynamic models improved predictions under climate change substantially compared to purely correlative SDMs, and the population dynamic models also predicted reasonable extinction risks for most scenarios. When benchmarking data were simulated with more complex demographic and community processes, simple SDM hybrids including only dispersal often proved most reliable. Finally, we found that structural decisions during model building can have great impact on model accuracy, but prior system knowledge on important processes can reduce these uncertainties considerably. Our results reassure the clear merit in using dynamic approaches for modelling species' response to climate change but also emphasize several needs for further model and data improvement. We propose and discuss perspectives for improving range projections through combination of multiple models and for making these approaches operational for large numbers of species. © 2016 John Wiley & Sons Ltd.

  13. Microscopic theory for coupled atomistic magnetization and lattice dynamics

    NASA Astrophysics Data System (ADS)

    Fransson, J.; Thonig, D.; Bessarab, P. F.; Bhattacharjee, S.; Hellsvik, J.; Nordström, L.

    2017-12-01

    A coupled atomistic spin and lattice dynamics approach is developed which merges the dynamics of these two degrees of freedom into a single set of coupled equations of motion. The underlying microscopic model comprises local exchange interactions between the electron spin and magnetic moment and the local couplings between the electronic charge and lattice displacements. An effective action for the spin and lattice variables is constructed in which the interactions among the spin and lattice components are determined by the underlying electronic structure. In this way, expressions are obtained for the electronically mediated couplings between the spin and lattice degrees of freedom, besides the well known interatomic force constants and spin-spin interactions. These former susceptibilities provide an atomistic ab initio description for the coupled spin and lattice dynamics. It is important to notice that this theory is strictly bilinear in the spin and lattice variables and provides a minimal model for the coupled dynamics of these subsystems and that the two subsystems are treated on the same footing. Questions concerning time-reversal and inversion symmetry are rigorously addressed and it is shown how these aspects are absorbed in the tensor structure of the interaction fields. By means of these results regarding the spin-lattice coupling, simple explanations of ionic dimerization in double-antiferromagnetic materials, as well as charge density waves induced by a nonuniform spin structure, are given. In the final parts, coupled equations of motion for the combined spin and lattice dynamics are constructed, which subsequently can be reduced to a form which is analogous to the Landau-Lifshitz-Gilbert equations for spin dynamics and a damped driven mechanical oscillator for the ionic motion. It is important to notice, however, that these equations comprise contributions that couple these descriptions into one unified formulation. Finally, Kubo-like expressions for the discussed exchanges in terms of integrals over the electronic structure and, moreover, analogous expressions for the damping within and between the subsystems are provided. The proposed formalism and types of couplings enable a step forward in the microscopic first principles modeling of coupled spin and lattice quantities in a consistent format.

  14. Functional connectivity and dynamics of cortical-thalamic networks co-cultured in a dual compartment device

    NASA Astrophysics Data System (ADS)

    Kanagasabapathi, Thirukumaran T.; Massobrio, Paolo; Barone, Rocco Andrea; Tedesco, Mariateresa; Martinoia, Sergio; Wadman, Wytse J.; Decré, Michel M. J.

    2012-06-01

    Co-cultures containing dissociated cortical and thalamic cells may provide a unique model for understanding the pathophysiology in the respective neuronal sub-circuitry. In addition, developing an in vitro dissociated co-culture model offers the possibility of studying the system without influence from other neuronal sub-populations. Here we demonstrate a dual compartment system coupled to microelectrode arrays (MEAs) for co-culturing and recording spontaneous activities from neuronal sub-populations. Propagation of electrical activities between cortical and thalamic regions and their interdependence in connectivity is verified by means of a cross-correlation algorithm. We found that burst events originate in the cortical region and drive the entire cortical-thalamic network bursting behavior while mutually weak thalamic connections play a relevant role in sustaining longer burst events in cortical cells. To support these experimental findings, a neuronal network model was developed and used to investigate the interplay between network dynamics and connectivity in the cortical-thalamic system.

  15. Dynamic interaction of monowheel inclined vehicle-vibration platform coupled system with quadratic and cubic nonlinearities

    NASA Astrophysics Data System (ADS)

    Zhou, Shihua; Song, Guiqiu; Sun, Maojun; Ren, Zhaohui; Wen, Bangchun

    2018-01-01

    In order to analyze the nonlinear dynamics and stability of a novel design for the monowheel inclined vehicle-vibration platform coupled system (MIV-VPCS) with intermediate nonlinearity support subjected to a harmonic excitation, a multi-degree of freedom lumped parameter dynamic model taking into account the dynamic interaction of the MIV-VPCS with quadratic and cubic nonlinearities is presented. The dynamical equations of the coupled system are derived by applying the displacement relationship, interaction force relationship at the contact position and Lagrange's equation, which are further discretized into a set of nonlinear ordinary differential equations with coupled terms by Galerkin's truncation. Based on the mathematical model, the coupled multi-body nonlinear dynamics of the vibration system is investigated by numerical method, and the parameters influences of excitation amplitude, mass ratio and inclined angle on the dynamic characteristics are precisely analyzed and discussed by bifurcation diagram, Largest Lyapunov exponent and 3-D frequency spectrum. Depending on different ranges of system parameters, the results show that the different motions and jump discontinuity appear, and the coupled system enters into chaotic behavior through different routes (period-doubling bifurcation, inverse period-doubling bifurcation, saddle-node bifurcation and Hopf bifurcation), which are strongly attributed to the dynamic interaction of the MIV-VPCS. The decreasing excitation amplitude and inclined angle could reduce the higher order bifurcations, and effectively control the complicated nonlinear dynamic behaviors under the perturbation of low rotational speed. The first bifurcation and chaotic motion occur at lower value of inclined angle, and the chaotic behavior lasts for larger intervals with higher rotational speed. The investigation results could provide a better understanding of the nonlinear dynamic behaviors for the dynamic interaction of the MIV-VPCS.

  16. Multilevel relaxation phenomena and population trapping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hioe, F.T.

    1991-11-01

    This final report summarizes the main results of our work supported by DOE since 1982. A list of 45 publications supported by this DOE Grant is attached at the end of this report. The use and exploitation of the SU(N) dynamic symmetry to the study of the dynamics of laser-atom interaction was the starting point of our research work under this DOE Grant, and is our most original contribution to the field of quantum electrodynamics. Many results of general and special interests have been derived and developed from this starting point and the following is a summary of them: (1)more » We have introduced a set of simple relations based on the principle of unitary invariance which has proved to be useful for the study of the dynamics of a quantum system involving coupling. (2) We have found various specific conditions under which (a) we may have trapped population, or (b) we may send laser pulses through a multilevel atomic medium without attenuation. (3) We have found a remarkably efficient method for optimal state selective multiphoton population transfer, that employs two or more spatially overlapping lasers arranged in an unconventional sequence which we called counterintuitive''. A recent suggestion by Profs. P. Marte, P. Zoller and J.L. Hall to use this counterintuitive method for atomic beam deflections promises to make this remarkably effective procedure to become an important method in atomic interferometry.« less

  17. A System Dynamics Modeling of Water Supply and Demand in Las Vegas Valley

    NASA Astrophysics Data System (ADS)

    Parajuli, R.; Kalra, A.; Mastino, L.; Velotta, M.; Ahmad, S.

    2017-12-01

    The rise in population and change in climate have posed the uncertainties in the balance between supply and demand of water. The current study deals with the water management issues in Las Vegas Valley (LVV) using Stella, a system dynamics modeling software, to model the feedback based relationship between supply and demand parameters. Population parameters were obtained from Center for Business and Economic Research while historical water demand and conservation practices were modeled as per the information provided by local authorities. The water surface elevation of Lake Mead, which is the prime source of water supply to the region, was modeled as the supply side whereas the water demand in LVV was modeled as the demand side. The study was done from the period of 1989 to 2049 with 1989 to 2012 as the historical one and the period from 2013 to 2049 as the future period. This study utilizes Coupled Model Intercomparison Project data sets (2013-2049) (CMIP3&5) to model different future climatic scenarios. The model simulates the past dynamics of supply and demand, and then forecasts the future water budget for the forecasted future population and future climatic conditions. The results can be utilized by the water authorities in understanding the future water status and hence plan suitable conservation policies to allocate future water budget and achieve sustainable water management.

  18. Quantum dynamics in strong fluctuating fields

    NASA Astrophysics Data System (ADS)

    Goychuk, Igor; Hänggi, Peter

    A large number of multifaceted quantum transport processes in molecular systems and physical nanosystems, such as e.g. nonadiabatic electron transfer in proteins, can be treated in terms of quantum relaxation processes which couple to one or several fluctuating environments. A thermal equilibrium environment can conveniently be modelled by a thermal bath of harmonic oscillators. An archetype situation provides a two-state dissipative quantum dynamics, commonly known under the label of a spin-boson dynamics. An interesting and nontrivial physical situation emerges, however, when the quantum dynamics evolves far away from thermal equilibrium. This occurs, for example, when a charge transferring medium possesses nonequilibrium degrees of freedom, or when a strong time-dependent control field is applied externally. Accordingly, certain parameters of underlying quantum subsystem acquire stochastic character. This may occur, for example, for the tunnelling coupling between the donor and acceptor states of the transferring electron, or for the corresponding energy difference between electronic states which assume via the coupling to the fluctuating environment an explicit stochastic or deterministic time-dependence. Here, we review the general theoretical framework which is based on the method of projector operators, yielding the quantum master equations for systems that are exposed to strong external fields. This allows one to investigate on a common basis, the influence of nonequilibrium fluctuations and periodic electrical fields on those already mentioned dynamics and related quantum transport processes. Most importantly, such strong fluctuating fields induce a whole variety of nonlinear and nonequilibrium phenomena. A characteristic feature of such dynamics is the absence of thermal (quantum) detailed balance.ContentsPAGE1. Introduction5262. Quantum dynamics in stochastic fields531 2.1. Stochastic Liouville equation531 2.2. Non-Markovian vs. Markovian discrete state fluctuations531 2.3. Averaging the quantum propagator533  2.3.1. Kubo oscillator535  2.3.2. Averaged dynamics of two-level quantum systems exposed to two-state stochastic fields537 2.4. Projection operator method: a primer5403. Two-state quantum dynamics in periodic fields542 3.1. Coherent destruction of tunnelling542 3.2. Driving-induced tunnelling oscillations (DITO)5434. Dissipative quantum dynamics in strong time-dependent fields544 4.1. General formalism544  4.1.1. Weak-coupling approximation545  4.1.2. Markovian approximation: Generalised Redfield Equations5475. Application I: Quantum relaxation in driven, dissipative two-level systems548 5.1. Decoupling approximation for fast fluctuating energy levels550  5.1.1. Control of quantum rates551  5.1.2. Stochastic cooling and inversion of level populations552  5.1.3. Emergence of an effective energy bias553 5.2. Quantum relaxation in strong periodic fields554 5.3. Approximation of time-dependent rates554 5.4. Exact averaging for dichotomous Markovian fluctuations5556. Application II: Driven electron transfer within a spin-boson description557 6.1. Curve-crossing problems with dissipation558 6.2. Weak system-bath coupling559 6.3. Beyond weak-coupling theory: Strong system-bath coupling563  6.3.1. Fast fluctuating energy levels565  6.3.2. Exact averaging over dichotomous fluctuations of the energy levels566  6.3.3. Electron transfer in fast oscillating periodic fields567  6.3.4. Dichotomously fluctuating tunnelling barrier5687. Quantum transport in dissipative tight-binding models subjected tostrong external fields569 7.1. Noise-induced absolute negative mobility571 7.2. Dissipative quantum rectifiers573 7.3. Limit of vanishing dissipation575 7.4. Case of harmonic mixing drive5758. Summary576Acknowledgements578References579

  19. Spin-orbit-coupled fermions in an optical lattice clock

    NASA Astrophysics Data System (ADS)

    Kolkowitz, S.; Bromley, S. L.; Bothwell, T.; Wall, M. L.; Marti, G. E.; Koller, A. P.; Zhang, X.; Rey, A. M.; Ye, J.

    2017-02-01

    Engineered spin-orbit coupling (SOC) in cold-atom systems can enable the study of new synthetic materials and complex condensed matter phenomena. However, spontaneous emission in alkali-atom spin-orbit-coupled systems is hindered by heating, limiting the observation of many-body effects and motivating research into potential alternatives. Here we demonstrate that spin-orbit-coupled fermions can be engineered to occur naturally in a one-dimensional optical lattice clock. In contrast to previous SOC experiments, here the SOC is both generated and probed using a direct ultra-narrow optical clock transition between two electronic orbital states in 87Sr atoms. We use clock spectroscopy to prepare lattice band populations, internal electronic states and quasi-momenta, and to produce spin-orbit-coupled dynamics. The exceptionally long lifetime of the excited clock state (160 seconds) eliminates decoherence and atom loss from spontaneous emission at all relevant experimental timescales, allowing subsequent momentum- and spin-resolved in situ probing of the SOC band structure and eigenstates. We use these capabilities to study Bloch oscillations, spin-momentum locking and Van Hove singularities in the transition density of states. Our results lay the groundwork for using fermionic optical lattice clocks to probe new phases of matter.

  20. One ring to rule them all: storm time ring current and its influence on radiation belts, plasmasphere and global magnetosphere electrodynamics

    NASA Astrophysics Data System (ADS)

    Buzulukova, Natalia; Fok, Mei-Ching; Glocer, Alex; Moore, Thomas E.

    2013-04-01

    We report studies of the storm time ring current and its influence on the radiation belts, plasmasphere and global magnetospheric dynamics. The near-Earth space environment is described by multiscale physics that reflects a variety of processes and conditions that occur in magnetospheric plasma. For a successful description of such a plasma, a complex solution is needed which allows multiple physics domains to be described using multiple physical models. A key population of the inner magnetosphere is ring current plasma. Ring current dynamics affects magnetic and electric fields in the entire magnetosphere, the distribution of cold ionospheric plasma (plasmasphere), and radiation belts particles. To study electrodynamics of the inner magnetosphere, we present a MHD model (BATSRUS code) coupled with ionospheric solver for electric field and with ring current-radiation belt model (CIMI code). The model will be used as a tool to reveal details of coupling between different regions of the Earth's magnetosphere. A model validation will be also presented based on comparison with data from THEMIS, POLAR, GOES, and TWINS missions. INVITED TALK

  1. Hierarchical Equation of Motion Investigation of Decoherence and Relaxation Dynamics in Nonequilibrium Transport through Interacting Quantum Dots

    NASA Astrophysics Data System (ADS)

    Hartle, Rainer; Cohen, Guy; Reichman, David R.; Millis, Andrew J.

    2014-03-01

    A recently developed hierarchical quantum master equation approach is used to investigate nonequilibrium electron transport through an interacting double quantum dot system in the regime where the inter-dot coupling is weaker than the coupling to the electrodes. The corresponding eigenstates provide tunneling paths that may interfere constructively or destructively, depending on the energy of the tunneling electrons. Electron-electron interactions are shown to quench these interference effects in bias-voltage dependent ways, leading, in particular, to negative differential resistance, population inversion and an enhanced broadening of resonances in the respective transport characteristics. Relaxation times are found to be very long, and to be correlated with very slow dynamics of the inter-dot coherences (off diagonal density matrix elements). The ability of the hierarchical quantum master equation approach to access very long time scales is crucial for the study of this physics. This work is supported by the National Science Foundation (NSF DMR-1006282 and NSF CHE-1213247), the Yad Hanadiv-Rothschild Foundation (via a Rothschild Fellowship for GC) and the Alexander von Humboldt Foundation (via a Feodor Lynen fellowship for RH).

  2. A three-state kinetic agent-based model to analyze tax evasion dynamics

    NASA Astrophysics Data System (ADS)

    Crokidakis, Nuno

    2014-11-01

    In this work we study the problem of tax evasion on a fully-connected population. For this purpose, we consider that the agents may be in three different states, namely honest tax payers, tax evaders and undecided, that are individuals in an intermediate class among honests and evaders. Every individual can change his/her state following a kinetic exchange opinion dynamics, where the agents interact by pairs with competitive negative (with probability q) and positive (with probability 1-q) couplings, representing agreement/disagreement between pairs of agents. In addition, we consider the punishment rules of the Zaklan econophysics model, for which there is a probability pa of an audit each agent is subject to in every period and a length of time k detected tax evaders remain honest. Our results suggest that below the critical point qc=1/4 of the opinion dynamics the compliance is high, and the punishment rules have a small effect in the population. On the other hand, for q>qc the tax evasion can be considerably reduced by the enforcement mechanism. We also discuss the impact of the presence of the undecided agents in the evolution of the system.

  3. Coupled intertwiner dynamics: A toy model for coupling matter to spin foam models

    NASA Astrophysics Data System (ADS)

    Steinhaus, Sebastian

    2015-09-01

    The universal coupling of matter and gravity is one of the most important features of general relativity. In quantum gravity, in particular spin foams, matter couplings have been defined in the past, yet the mutual dynamics, in particular if matter and gravity are strongly coupled, are hardly explored, which is related to the definition of both matter and gravitational degrees of freedom on the discretization. However, extracting these mutual dynamics is crucial in testing the viability of the spin foam approach and also establishing connections to other discrete approaches such as lattice gauge theories. Therefore, we introduce a simple two-dimensional toy model for Yang-Mills coupled to spin foams, namely an Ising model coupled to so-called intertwiner models defined for SU (2 )k. The two systems are coupled by choosing the Ising coupling constant to depend on spin labels of the background, as these are interpreted as the edge lengths of the discretization. We coarse grain this toy model via tensor network renormalization and uncover an interesting dynamics: the Ising phase transition temperature turns out to be sensitive to the background configurations and conversely, the Ising model can induce phase transitions in the background. Moreover, we observe a strong coupling of both systems if close to both phase transitions.

  4. Finite temperature dynamics of a Holstein polaron: The thermo-field dynamics approach

    NASA Astrophysics Data System (ADS)

    Chen, Lipeng; Zhao, Yang

    2017-12-01

    Combining the multiple Davydov D2 Ansatz with the method of thermo-field dynamics, we study finite temperature dynamics of a Holstein polaron on a lattice. It has been demonstrated, using the hierarchy equations of motion method as a benchmark, that our approach provides an efficient, robust description of finite temperature dynamics of the Holstein polaron in the simultaneous presence of diagonal and off-diagonal exciton-phonon coupling. The method of thermo-field dynamics handles temperature effects in the Hilbert space with key numerical advantages over other treatments of finite-temperature dynamics based on quantum master equations in the Liouville space or wave function propagation with Monte Carlo importance sampling. While for weak to moderate diagonal coupling temperature increases inhibit polaron mobility, it is found that off-diagonal coupling induces phonon-assisted transport that dominates at high temperatures. Results on the mean square displacements show that band-like transport features dominate the diagonal coupling cases, and there exists a crossover from band-like to hopping transport with increasing temperature when including off-diagonal coupling. As a proof of concept, our theory provides a unified treatment of coherent and incoherent transport in molecular crystals and is applicable to any temperature.

  5. Coupled diffusion in lipid bilayers upon close approach

    DOE PAGES

    Pronk, Sander; Lindahl, Erik; Kasson, Peter M.

    2014-12-23

    Biomembrane interfaces create regions of slowed water dynamics in their vicinity. When two lipid bilayers come together, this effect is further accentuated, and the associated slowdown can affect the dynamics of larger-scale processes such as membrane fusion. We have used molecular dynamics simulations to examine how lipid and water dynamics are affected as two lipid bilayers approach each other. These two interacting fluid systems, lipid and water, both slow and become coupled when the lipid membranes are separated by a thin water layer. We show in particular that the water dynamics become glassy, and diffusion of lipids in the apposedmore » leaflets becomes coupled across the water layer, while the “outer” leaflets remain unaffected. This dynamic coupling between bilayers appears mediated by lipid–water–lipid hydrogen bonding, as it occurs at bilayer separations where water–lipid hydrogen bonds become more common than water–water hydrogen bonds. We further show that such coupling occurs in simulations of vesicle–vesicle fusion prior to the fusion event itself. As a result, such altered dynamics at membrane–membrane interfaces may both stabilize the interfacial contact and slow fusion stalk formation within the interface region.« less

  6. Multidimensional joint coupling: a case study visualisation approach to movement coordination and variability.

    PubMed

    Irwin, Gareth; Kerwin, David G; Williams, Genevieve; Van Emmerik, Richard E A; Newell, Karl M; Hamill, Joseph

    2018-06-18

    A case study visualisation approach to examining the coordination and variability of multiple interacting segments is presented using a whole-body gymnastic skill as the task example. One elite male gymnast performed 10 trials of 10 longswings whilst three-dimensional locations of joint centres were tracked using a motion analysis system. Segment angles were used to define coupling between the arms and trunk, trunk and thighs and thighs and shanks. Rectified continuous relative phase profiles for each interacting couple for 80 longswings were produced. Graphical representations of coordination couplings are presented that include the traditional single coupling, followed by the relational dynamics of two couplings and finally three couplings simultaneously plotted. This method highlights the power of visualisation of movement dynamics and identifies properties of the global interacting segmental couplings that a more formal analysis may not reveal. Visualisation precedes and informs the appropriate qualitative and quantitative analysis of the dynamics.

  7. Socio-hydrologic modeling to understand and mediate the competition for water between agriculture development and environmental health: Murrumbidgee River Basin, Australia

    NASA Astrophysics Data System (ADS)

    van Emmerik, T. H. M.; Li, Z.; Sivapalan, M.; Pande, S.; Kandasamy, J.; Savenije, H. H. G.; Chanan, A.; Vigneswaran, S.

    2014-03-01

    Competition for water between humans and ecosystems is set to become a flash point in the coming decades in many parts of the world. An entirely new and comprehensive quantitative framework is needed to establish a holistic understanding of that competition, thereby enabling the development of effective mediation strategies. This paper presents a modeling study centered on the Murrumbidgee River Basin (MRB). The MRB has witnessed a unique system dynamics over the last 100 years as a result of interactions between patterns of water management and climate driven hydrological variability. Data analysis has revealed a pendulum swing between agricultural development and restoration of environmental health and ecosystem services over different stages of basin scale water resource development. A parsimonious, stylized, quasi-distributed coupled socio-hydrologic system model that simulates the two-way coupling between human and hydrological systems of the MRB is used to mimic dominant features of the pendulum swing. The model consists of coupled nonlinear ordinary differential equations that describe the interaction between five state variables that govern the co-evolution: reservoir storage, irrigated area, human population, ecosystem health, and a measure of environmental awareness. The model simulations track the propagation of the external climatic and socio-economic drivers through this coupled, complex system to the emergence of the pendulum swing. The model results point to a competition between human "productive" and environmental "restorative" forces that underpin the pendulum swing. Both the forces are endogenous, i.e., generated by the system dynamics in response to external drivers and mediated by humans through technology change and environmental awareness, respectively. We propose this as a generalizable modeling framework for coupled human hydrological systems that is potentially transferable to systems in different climatic and socio-economic settings.

  8. Scaling properties and symmetrical patterns in the epidemiology of rotavirus infection.

    PubMed Central

    José, Marco V; Bishop, Ruth F

    2003-01-01

    The rich epidemiological database of the incidence of rotavirus, as a cause of severe diarrhoea in young children, coupled with knowledge of the natural history of the infection, can make this virus a paradigm for studies of epidemic dynamics. The cyclic recurrence of childhood rotavirus epidemics in unvaccinated populations provides one of the best documented phenomena in population dynamics. This paper makes use of epidemiological data on rotavirus infection in young children admitted to hospital in Melbourne, Australia from 1977 to 2000. Several mathematical methods were used to characterize the overall dynamics of rotavirus infections as a whole and individually as serotypes G1, G2, G3, G4 and G9. These mathematical methods are as follows: seasonal autoregressive integrated moving-average (SARIMA) models, power spectral density (PSD), higher-order spectral analysis (HOSA) (bispectrum estimation and quadratic phase coupling (QPC)), detrended fluctuation analysis (DFA), wavelet analysis (WA) and a surrogate data analysis technique. Each of these techniques revealed different dynamic aspects of rotavirus epidemiology. In particular, we confirm the existence of an annual, biannual and a quinquennial period but additionally we found other embedded cycles (e.g. ca. 3 years). There seems to be an overall unique geometric and dynamic structure of the data despite the apparent changes in the dynamics of the last years. The inherent dynamics seems to be conserved regardless of the emergence of new serotypes, the re-emergence of old serotypes or the transient disappearance of a particular serotype. More importantly, the dynamics of all serotypes is multiple synchronized so that they behave as a single entity at the epidemic level. Overall, the whole dynamics follow a scale-free power-law fractal scaling behaviour. We found that there are three different scaling regions in the time-series, suggesting that processes influencing the epidemic dynamics of rotavirus over less than 12 months differ from those that operate between 1 and ca. 3 years, as well as those between 3 and ca. 5 years. To discard the possibility that the observed patterns could be due to artefacts, we applied a surrogate data analysis technique which enabled us to discern if only random components or linear features of the incidence of rotavirus contribute to its dynamics. The global dynamics of the epidemic is portrayed by wavelet-based incidence analysis. The resulting wavelet transform of the incidence of rotavirus crisply reveals a repeating pattern over time that looks similar on many scales (a property called self-similarity). Both the self-similar behaviour and the absence of a single characteristic scale of the power-law fractal-like scaling of the incidence of rotavirus infection imply that there is not a universal inherently more virulent serotype to which severe gastroenteritis can uniquely be ascribed. PMID:14561323

  9. Chimera States in Neural Oscillators

    NASA Astrophysics Data System (ADS)

    Bahar, Sonya; Glaze, Tera

    2014-03-01

    Chimera states have recently been explored both theoretically and experimentally, in various coupled nonlinear oscillators, ranging from phase-oscillator models to coupled chemical reactions. In a chimera state, both coherent and incoherent (or synchronized and desynchronized) states occur simultaneously in populations of identical oscillators. We investigate chimera behavior in a population of neural oscillators using the Huber-Braun model, a Hodgkin-Huxley-like model originally developed to characterize the temperature-dependent bursting behavior of mammalian cold receptors. One population of neurons is allowed to synchronize, with each neuron receiving input from all the others in its group (global within-group coupling). Subsequently, a second population of identical neurons is placed under an identical global within-group coupling, and the two populations are also coupled to each other (between-group coupling). For certain values of the coupling constants, the neurons in the two populations exhibit radically different synchronization behavior. We will discuss the range of chimera activity in the model, and discuss its implications for actual neural activity, such as unihemispheric sleep.

  10. Tight Coupling of Astrocyte pH Dynamics to Epileptiform Activity Revealed by Genetically Encoded pH Sensors.

    PubMed

    Raimondo, Joseph V; Tomes, Hayley; Irkle, Agnese; Kay, Louise; Kellaway, Lauriston; Markram, Henry; Millar, Robert P; Akerman, Colin J

    2016-06-29

    Astrocytes can both sense and shape the evolution of neuronal network activity and are known to possess unique ion regulatory mechanisms. Here we explore the relationship between astrocytic intracellular pH dynamics and the synchronous network activity that occurs during seizure-like activity. By combining confocal and two-photon imaging of genetically encoded pH reporters with simultaneous electrophysiological recordings, we perform pH measurements in defined cell populations and relate these to ongoing network activity. This approach reveals marked differences in the intracellular pH dynamics between hippocampal astrocytes and neighboring pyramidal neurons in rodent in vitro models of epilepsy. With three different genetically encoded pH reporters, astrocytes are observed to alkalinize during epileptiform activity, whereas neurons are observed to acidify. In addition to the direction of pH change, the kinetics of epileptiform-associated intracellular pH transients are found to differ between the two cell types, with astrocytes displaying significantly more rapid changes in pH. The astrocytic alkalinization is shown to be highly correlated with astrocytic membrane potential changes during seizure-like events and mediated by an electrogenic Na(+)/HCO3 (-) cotransporter. Finally, comparisons across different cell-pair combinations reveal that astrocytic pH dynamics are more closely related to network activity than are neuronal pH dynamics. This work demonstrates that astrocytes exhibit distinct pH dynamics during periods of epileptiform activity, which has relevance to multiple processes including neurometabolic coupling and the control of network excitability. Dynamic changes in intracellular ion concentrations are central to the initiation and progression of epileptic seizures. However, it is not known how changes in intracellular H(+) concentration (ie, pH) differ between different cell types during seizures. Using recently developed pH-sensitive proteins, we demonstrate that astrocytes undergo rapid alkalinization during periods of seizure-like activity, which is in stark contrast to the acidification that occurs in neighboring neurons. Rapid astrocytic pH changes are highly temporally correlated with seizure activity, are mediated by an electrogenic Na(+)/HCO3- cotransporter, and are more tightly coupled to network activity than are neuronal pH changes. As pH has profound effects on signaling in the nervous system, this work has implications for our understanding of seizure dynamics. Copyright © 2016 the authors 0270-6474/16/367002-12$15.00/0.

  11. Spatiotemporal Self-Organization of Fluctuating Bacterial Colonies

    NASA Astrophysics Data System (ADS)

    Grafke, Tobias; Cates, Michael E.; Vanden-Eijnden, Eric

    2017-11-01

    We model an enclosed system of bacteria, whose motility-induced phase separation is coupled to slow population dynamics. Without noise, the system shows both static phase separation and a limit cycle, in which a rising global population causes a dense bacterial colony to form, which then declines by local cell death, before dispersing to reinitiate the cycle. Adding fluctuations, we find that static colonies are now metastable, moving between spatial locations via rare and strongly nonequilibrium pathways, whereas the limit cycle becomes almost periodic such that after each redispersion event the next colony forms in a random location. These results, which hint at some aspects of the biofilm-planktonic life cycle, can be explained by combining tools from large deviation theory with a bifurcation analysis in which the global population density plays the role of control parameter.

  12. Metastable dynamical patterns and their stabilization in arrays of bidirectionally coupled sigmoidal neurons

    NASA Astrophysics Data System (ADS)

    Horikawa, Yo

    2013-12-01

    Transient patterns in a bistable ring of bidirectionally coupled sigmoidal neurons were studied. When the system had a pair of spatially uniform steady solutions, the instability of unstable spatially nonuniform steady solutions decreased exponentially with the number of neurons because of the symmetry of the system. As a result, transient spatially nonuniform patterns showed dynamical metastability: Their duration increased exponentially with the number of neurons and the duration of randomly generated patterns obeyed a power-law distribution. However, these metastable dynamical patterns were easily stabilized in the presence of small variations in coupling strength. Metastable rotating waves and their pinning in the presence of asymmetry in the direction of coupling and the disappearance of metastable dynamical patterns due to asymmetry in the output function of a neuron were also examined. Further, in a two-dimensional array of neurons with nearest-neighbor coupling, intrinsically one-dimensional patterns were dominant in transients, and self-excitation in these neurons affected the metastable dynamical patterns.

  13. Methodologies for launcher-payload coupled dynamic analysis

    NASA Astrophysics Data System (ADS)

    Fransen, S. H. J. A.

    2012-06-01

    An important step in the design and verification process of spacecraft structures is the coupled dynamic analysis with the launch vehicle in the low-frequency domain, also referred to as coupled loads analysis (CLA). The objective of such analyses is the computation of the dynamic environment of the spacecraft (payload) in terms of interface accelerations, interface forces, center of gravity (CoG) accelerations as well as the internal state of stress. In order to perform an efficient, fast and accurate launcher-payload coupled dynamic analysis, various methodologies have been applied and developed. The methods are related to substructuring techniques, data recovery techniques, the effects of prestress and fluids and time integration problems. The aim of this paper was to give an overview of these methodologies and to show why, how and where these techniques can be used in the process of launcher-payload coupled dynamic analysis. In addition, it will be shown how these methodologies fit together in a library of procedures which can be used with the MSC.Nastran™ solution sequences.

  14. Dynamical transitions in large systems of mean field-coupled Landau-Stuart oscillators: Extensive chaos and cluster states.

    PubMed

    Ku, Wai Lim; Girvan, Michelle; Ott, Edward

    2015-12-01

    In this paper, we study dynamical systems in which a large number N of identical Landau-Stuart oscillators are globally coupled via a mean-field. Previously, it has been observed that this type of system can exhibit a variety of different dynamical behaviors. These behaviors include time periodic cluster states in which each oscillator is in one of a small number of groups for which all oscillators in each group have the same state which is different from group to group, as well as a behavior in which all oscillators have different states and the macroscopic dynamics of the mean field is chaotic. We argue that this second type of behavior is "extensive" in the sense that the chaotic attractor in the full phase space of the system has a fractal dimension that scales linearly with N and that the number of positive Lyapunov exponents of the attractor also scales linearly with N. An important focus of this paper is the transition between cluster states and extensive chaos as the system is subjected to slow adiabatic parameter change. We observe discontinuous transitions between the cluster states (which correspond to low dimensional dynamics) and the extensively chaotic states. Furthermore, examining the cluster state, as the system approaches the discontinuous transition to extensive chaos, we find that the oscillator population distribution between the clusters continually evolves so that the cluster state is always marginally stable. This behavior is used to reveal the mechanism of the discontinuous transition. We also apply the Kaplan-Yorke formula to study the fractal structure of the extensively chaotic attractors.

  15. A constitutively activating mutation alters the dynamics and energetics of a key conformational change in a ligand-free G protein-coupled receptor.

    PubMed

    Tsukamoto, Hisao; Farrens, David L

    2013-09-27

    G protein-coupled receptors (GPCRs) undergo dynamic transitions between active and inactive conformations. Usually, these conversions are triggered when the receptor detects an external signal, but some so-called constitutively activating mutations, or CAMs, induce a GPCR to bind and activate G proteins in the absence of external stimulation, in ways still not fully understood. Here, we investigated how a CAM alters the structure of a GPCR and the dynamics involved as the receptor transitions between different conformations. Our approach used site-directed fluorescence labeling (SDFL) spectroscopy to compare opsin, the ligand-free form of the GPCR rhodopsin, with opsin containing the CAM M257Y, focusing specifically on key movements that occur in the sixth transmembrane helix (TM6) during GPCR activation. The site-directed fluorescence labeling data indicate opsin is constrained to an inactive conformation both in detergent micelles and lipid membranes, but when it contains the M257Y CAM, opsin is more dynamic and can interact with a G protein mimetic. Further study of these receptors using tryptophan-induced quenching (TrIQ) methods indicates that in detergent, the CAM significantly increases the population of receptors in the active state, but not in lipids. Subsequent Arrhenius analysis of the TrIQ data suggests that, both in detergent and lipids, the CAM lowers the energy barrier for TM6 movement, a key transition required for conversion between the inactive and active conformations. Together, these data suggest that the lowered energy barrier is a primary effect of the CAM on the receptor dynamics and energetics.

  16. Dynamical transitions in large systems of mean field-coupled Landau-Stuart oscillators: Extensive chaos and cluster states

    NASA Astrophysics Data System (ADS)

    Ku, Wai Lim; Girvan, Michelle; Ott, Edward

    2015-12-01

    In this paper, we study dynamical systems in which a large number N of identical Landau-Stuart oscillators are globally coupled via a mean-field. Previously, it has been observed that this type of system can exhibit a variety of different dynamical behaviors. These behaviors include time periodic cluster states in which each oscillator is in one of a small number of groups for which all oscillators in each group have the same state which is different from group to group, as well as a behavior in which all oscillators have different states and the macroscopic dynamics of the mean field is chaotic. We argue that this second type of behavior is "extensive" in the sense that the chaotic attractor in the full phase space of the system has a fractal dimension that scales linearly with N and that the number of positive Lyapunov exponents of the attractor also scales linearly with N. An important focus of this paper is the transition between cluster states and extensive chaos as the system is subjected to slow adiabatic parameter change. We observe discontinuous transitions between the cluster states (which correspond to low dimensional dynamics) and the extensively chaotic states. Furthermore, examining the cluster state, as the system approaches the discontinuous transition to extensive chaos, we find that the oscillator population distribution between the clusters continually evolves so that the cluster state is always marginally stable. This behavior is used to reveal the mechanism of the discontinuous transition. We also apply the Kaplan-Yorke formula to study the fractal structure of the extensively chaotic attractors.

  17. Sloshing of Cryogenic Helium Driven by Lateral Impulse/Gravity Gradient-Dominated/or g-Jitter-Dominated Accelerations and Orbital Dynamics

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Long, Y. T.; Zu, G. J.

    1996-01-01

    The coupling of slosh dynamics within a partially filled rotating dewar of superfluid helium 11 with spacecraft orbital dynamics is investigated in response to the environmental disturbances of (a) lateral impulses, (b) gravity gradients and (c) g-jitter forces. The purpose of this study is to investigate how the coupling of helium 11 fluid slosh dynamics driven by three cases of environmental force with spacecraft dynamics can affect the bubble deformations and their associated fluid and spacecraft mass centre fluctuations. The numerical computation of slosh dynamics is based on a rotational frame, while the spacecraft dynamics is associated with a non-rotational frame. Results show that the major contribution of orbital dynamics is driven by coupling with slosh dynamics. Neglecting the effect of slosh dynamics acting on the spacecraft may lead to the wrong results for the development of orbital and attitude control techniques.

  18. Ionospheric Outflow in the Magnetosphere: Circulation and Consequences

    NASA Astrophysics Data System (ADS)

    Welling, D. T.; Liemohn, M. W.

    2017-12-01

    Including ionospheric outflow in global magnetohydrodynamic models of near-Earth outer space has become an important step towards understanding the role of this plasma source in the magnetosphere. Such simulations have revealed the importance of outflow in populating the plasma sheet and inner magnetosphere as a function of outflow source characteristics. More importantly, these experiments have shown how outflow can control global dynamics, including tail dynamics and dayside reconnection rate. The broad impact of light and heavy ion outflow can create non-linear feedback loops between outflow and the magnetosphere. This paper reviews some of the most important revelations from global magnetospheric modeling that includes ionospheric outflow of light and heavy ions. It also introduces new advances in outflow modeling and coupling outflow to the magnetosphere.

  19. Superconducting Qubits as Mechanical Quantum Engines

    NASA Astrophysics Data System (ADS)

    Sachtleben, Kewin; Mazon, Kahio T.; Rego, Luis G. C.

    2017-09-01

    We propose the equivalence of superconducting qubits with a pistonlike mechanical quantum engine. The work reports a study on the nature of the nonequilibrium work exchanged with the quantum-nonadiabatic working medium, which is modeled as a multilevel coupled quantum well system subject to an external control parameter. The quantum dynamics is solved for arbitrary control protocols. It is shown that the work output has two components: one that depends instantaneously on the level populations and another that is due to the quantum coherences built in the system. The nonadiabatic coherent dynamics of the quantum engine gives rise to a resistance (friction) force that decreases the work output. We consider the functional equivalence of such a device and a rf-SQUID flux qubit.

  20. Coupling Vector-host Dynamics with Weather Geography and Mitigation Measures to Model Rift Valley Fever in Africa.

    PubMed

    McMahon, B H; Manore, C A; Hyman, J M; LaBute, M X; Fair, J M

    2014-01-01

    We present and characterize a multi-host epidemic model of Rift Valley fever (RVF) virus in East Africa with geographic spread on a network, rule-based mitigation measures, and mosquito infection and population dynamics. Susceptible populations are depleted by disease and vaccination and are replenished with the birth of new animals. We observe that the severity of the epidemics is strongly correlated with the duration of the rainy season and that even severe epidemics are abruptly terminated when the rain stops. Because naturally acquired herd immunity is established, total mortality across 25 years is relatively insensitive to many mitigation approaches. Strong reductions in cattle mortality are expected, however, with sufficient reduction in population densities of either vectors or susceptible (ie. unvaccinated) hosts. A better understanding of RVF epidemiology would result from serology surveys to quantify the importance of herd immunity in epidemic control, and sequencing of virus from representative animals to quantify the realative importance of transportation and local reservoirs in nucleating yearly epidemics. Our results suggest that an effective multi-layered mitigation strategy would include vector control, movement control, and vaccination of young animals yearly, even in the absence of expected rainfall.

  1. Muddled or mixed? Inferring palaeoclimate from size distributions of deep-sea clastics

    NASA Astrophysics Data System (ADS)

    Weltje, G. J.; Prins, M. A.

    2003-04-01

    One of the outstanding problems of palaeoclimate reconstruction from physico-chemical properties of terrigenous deep-sea sediments is the fact that most basin fills are mixtures of sediment populations derived from different sources and transported to the site of deposition by different mechanisms. Conventional approaches to palaeoclimate reconstruction from deep-sea sediments, which ignore this common fact, often fail to recognise the true significance of variations in sediment properties. We formulate a set of requirements that each proposed palaeoenvironmental indicator should fulfil, and focus on the intrinsic coupling between grain size and chemical composition. A critical review of past achievements in grain-size analysis is given to provide a starting point for a conceptual model of spatio-temporal grain-size variation in terms of dynamic populations. Each dynamic population results from a characteristic combination of production and transport mechanisms that corresponds to a distinct subpopulation in the data analysed. The mathematical-statistical equivalent of the conceptual model may be solved by means of the end-member modelling algorithm EMMA. Applications of the model to several ocean basins are discussed, as well as methods to examine the validity of the palaeoclimate reconstructions.

  2. Vibrational relaxation of hot carriers in C60 molecule

    NASA Astrophysics Data System (ADS)

    Madjet, Mohamed; Chakraborty, Himadri

    2017-04-01

    Electron-phonon coupling in molecular systems is at the heart of several important physical phenomena, including the mobility of carriers in organic electronic devices. Following the optical absorption, the vibrational relaxation of excited (hot) electrons and holes to the fullerene band-edges driven by electron-phonon coupling, known as the hot carrier thermalization process, is of particular fundamental interest. Using the non-adiabatic molecular dynamical methodology (PYXAID + Quantum Espresso) based on density functional approach, we have performed a simulation of vibrionic relaxations of hot carriers in C60. Time-dependent population decays and transfers in the femtosecond scale from various excited states to the states at the band-edge are calculated to study the details of this relaxation process. This work was supported by the U.S. National Science Foundation.

  3. Dynamics of a network of phase oscillators with plastic couplings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nekorkin, V. I.; Kasatkin, D. V.; Moscow Institute of Physics and Technology

    The processes of synchronization and phase cluster formation are investigated in a complex network of dynamically coupled phase oscillators. Coupling weights evolve dynamically depending on the phase relations between the oscillators. It is shown that the network exhibits several types of behavior: the globally synchronized state, two-cluster and multi-cluster states, different synchronous states with a fixed phase relationship between the oscillators and chaotic desynchronized state.

  4. The interplay between interpersonal dynamics, treatment barriers, and larger social forces: an exploratory study of drug-using couples in Hartford, CT

    PubMed Central

    Simmons, Janie

    2006-01-01

    Background The drug treatment field tends to place emphasis on the individual rather than the individual in social context. While there are a growing number of studies indicating that drug-using intimate partners are likely to play an important role in determining treatment options, little attention has been given to the experience and complex treatment needs of illicit drug-using (heroin, cocaine, crack) couples. Methods This exploratory study used in-depth interviews and ethnographic engagement to better understand the relationship between interpersonal dynamics and the treatment experience of ten relatively stable drug-using couples in Hartford, CT. Semi-structured and open-ended qualitative interviews were conducted with each couple and separately with each partner. Whenever possible, the day-to-day realities and contexts of risk were also observed via participant and non-participant observation of these couples in the community. A grounded theory approach was used to inductively code and analyze nearly 40 transcripts of 60–90 minute interviews as well as fieldnotes. Results This study builds on a concept of complex interpersonal dynamics among drug users. Interpersonal dynamics of care and collusion were identified: couples cared for each other and colluded to acquire and use drugs. Care and collusion operate at the micro level of the risk environment. Treatment barriers and inadequacies were identified as part of the risk environment at the meso or intermediate level of analysis, and larger social forces such as gender dynamics, poverty and the "War on Drugs" were identified at the macro level. Interpersonal dynamics posed problems for couples when one or both partners were interested in accessing treatment. Structural barriers presented additional obstacles with the denial of admittance of both partners to treatment programs which had a sole focus on the individual and avoided treating couples. Conclusion Detoxification and treatment facilities need to recognize the complex interplay between interpersonal dynamics which shape the treatment experience of couples, and which are also shaped by larger structural dynamics, including barriers in the treatment system. Improvements to the treatment system in general will go a long way in improving treatment for couples. Couples-specific programming also needs to be developed. PMID:16722545

  5. Effects of self-coupling and asymmetric output on metastable dynamical transient firing patterns in arrays of neurons with bidirectional inhibitory coupling.

    PubMed

    Horikawa, Yo

    2016-04-01

    Metastable dynamical transient patterns in arrays of bidirectionally coupled neurons with self-coupling and asymmetric output were studied. First, an array of asymmetric sigmoidal neurons with symmetric inhibitory bidirectional coupling and self-coupling was considered and the bifurcations of its steady solutions were shown. Metastable dynamical transient spatially nonuniform states existed in the presence of a pair of spatially symmetric stable solutions as well as unstable spatially nonuniform solutions in a restricted range of the output gain of a neuron. The duration of the transients increased exponentially with the number of neurons up to the maximum number at which the spatially nonuniform steady solutions were stabilized. The range of the output gain for which they existed reduced as asymmetry in a sigmoidal output function of a neuron increased, while the existence range expanded as the strength of inhibitory self-coupling increased. Next, arrays of spiking neuron models with slow synaptic inhibitory bidirectional coupling and self-coupling were considered with computer simulation. In an array of Class 1 Hindmarsh-Rose type models, in which each neuron showed a graded firing rate, metastable dynamical transient firing patterns were observed in the presence of inhibitory self-coupling. This agreed with the condition for the existence of metastable dynamical transients in an array of sigmoidal neurons. In an array of Class 2 Bonhoeffer-van der Pol models, in which each neuron had a clear threshold between firing and resting, long-lasting transient firing patterns with bursting and irregular motion were observed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Two-species boson mixture on a ring: A group-theoretic approach to the quantum dynamics of low-energy excitations

    NASA Astrophysics Data System (ADS)

    Penna, Vittorio; Richaud, Andrea

    2017-11-01

    We investigate the weak excitations of a system made up of two condensates trapped in a Bose-Hubbard ring and coupled by an interspecies repulsive interaction. Our approach, based on the Bogoliubov approximation scheme, shows that one can reduce the problem Hamiltonian to the sum of sub-Hamiltonians Ĥk, each one associated to momentum modes ±k . Each Ĥk is then recognized to be an element of a dynamical algebra. This uncommon and remarkable property allows us to present a straightforward diagonalization scheme, to find constants of motion, to highlight the significant microscopic processes, and to compute their time evolution. The proposed solution scheme is applied to a simple but nontrivial closed circuit, the trimer. The dynamics of low-energy excitations, corresponding to weakly populated vortices, is investigated considering different choices of the initial conditions and the angular-momentum transfer between the two condensates is evidenced. Finally, the condition for which the spectral collapse and dynamical instability are observed is derived analytically.

  7. Multiscale Modeling of Microbial Communities

    NASA Astrophysics Data System (ADS)

    Blanchard, Andrew

    Although bacteria are single-celled organisms, they exist in nature primarily in the form of complex communities, participating in a vast array of social interactions through regulatory gene networks. The social interactions between individual cells drive the emergence of community structures, resulting in an intricate relationship across multiple spatiotemporal scales. Here, I present my work towards developing and applying the tools necessary to model the complex dynamics of bacterial communities. In Chapter 2, I utilize a reaction-diffusion model to determine the population dynamics for a population with two species. One species (CDI+) utilizes contact dependent inhibition to kill the other sensitive species (CDI-). The competition can produce diverse patterns, including extinction, coexistence, and localized aggregation. The emergence, relative abundance, and characteristic features of these patterns are collectively determined by the competitive benefit of CDI and its growth disadvantage for a given rate of population diffusion. The results provide a systematic and statistical view of CDI-based bacterial population competition, expanding the spectrum of our knowledge about CDI systems and possibly facilitating new experimental tests for a deeper understanding of bacterial interactions. In the following chapter, I present a systematic computational survey on the relationship between social interaction types and population structures for two-species communities by developing and utilizing a hybrid computational framework that combines discrete element techniques with reaction-diffusion equations. The impact of deleterious and beneficial interactions on the community are quantified. Deleterious interactions generate an increased variance in relative abundance, a drastic decrease in surviving lineages, and a rough expanding front. In contrast, beneficial interactions contribute to a reduced variance in relative abundance, an enhancement in lineage number, and a smooth expanding front. More specifically, mutualism promotes spatial homogeneity and population robustness while competition increases spatial segregation and population fluctuations. To examine the generality of these findings, a large set of initial conditions with varying density and species abundance was tested and analyzed. The results and the computational framework presented provide the basis for further explorations of individual based simulations of bacterial communities. For Chapter 4, I consider the role of gene regulation in shaping the outcome of competition between a bacteriocin (i.e. toxin) producing and sensitive strain. In natural systems, bacteriocin production is often conditional, governed by underlying quorum sensing regulatory circuitry. By developing an ordinary differential equation (ODE) model integrating population dynamics with molecular regulation, we find that the ecological contribution of bacteriocin production can be positive or negative, determined by the tradeoff between the benefit of bacteriocins in mediating competition and the fitness cost due to metabolic load. Interestingly, under the naturally occurring scenario where bacteriocin production has a high cost, density-dependent synthesis is more advantageous than constitutive synthesis, which offers a quantitative interpretation for the wide prevalence of density-related bacteriocin production in nature. By incorporating the modeling framework presented in Chapter 3, the results of the ODE model were extended to the spatial setting, providing ecological insights into the costs and benefits of bacteriocin synthesis in competitive environments. For the final research chapter, I consider the impact of growth coupling on protein production at both the single cell and population scales. The same machinery (e.g. ribosomes) and resources (e.g. amino acids and ATP) are used within cells to produce both endogenous (host) and exogenous (circuit) proteins. Thus, the introduction of a gene circuit generates a metabolic burden on the cell which can slow its growth rate relative to the wild type. Building off of the computational framework introduced in Chapter 3 with single cell resolution, I utilize deterministic and stochastic simulations to characterize the changes in protein production due to host-circuit coupling for a simple gene regulatory architecture. Analytical arguments and simulation results show that incorporating growth can lead to drastic changes in both the steady state and time scales for protein production at the single cell and population level. Furthermore, host-circuit coupling can induce bimodality at the population level well outside the bistable region for single cell dynamics.

  8. A model of gene expression based on random dynamical systems reveals modularity properties of gene regulatory networks.

    PubMed

    Antoneli, Fernando; Ferreira, Renata C; Briones, Marcelo R S

    2016-06-01

    Here we propose a new approach to modeling gene expression based on the theory of random dynamical systems (RDS) that provides a general coupling prescription between the nodes of any given regulatory network given the dynamics of each node is modeled by a RDS. The main virtues of this approach are the following: (i) it provides a natural way to obtain arbitrarily large networks by coupling together simple basic pieces, thus revealing the modularity of regulatory networks; (ii) the assumptions about the stochastic processes used in the modeling are fairly general, in the sense that the only requirement is stationarity; (iii) there is a well developed mathematical theory, which is a blend of smooth dynamical systems theory, ergodic theory and stochastic analysis that allows one to extract relevant dynamical and statistical information without solving the system; (iv) one may obtain the classical rate equations form the corresponding stochastic version by averaging the dynamic random variables (small noise limit). It is important to emphasize that unlike the deterministic case, where coupling two equations is a trivial matter, coupling two RDS is non-trivial, specially in our case, where the coupling is performed between a state variable of one gene and the switching stochastic process of another gene and, hence, it is not a priori true that the resulting coupled system will satisfy the definition of a random dynamical system. We shall provide the necessary arguments that ensure that our coupling prescription does indeed furnish a coupled regulatory network of random dynamical systems. Finally, the fact that classical rate equations are the small noise limit of our stochastic model ensures that any validation or prediction made on the basis of the classical theory is also a validation or prediction of our model. We illustrate our framework with some simple examples of single-gene system and network motifs. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Self-amplified photo-induced gap quenching in a correlated electron material

    PubMed Central

    Mathias, S.; Eich, S.; Urbancic, J.; Michael, S.; Carr, A. V.; Emmerich, S.; Stange, A.; Popmintchev, T.; Rohwer, T.; Wiesenmayer, M.; Ruffing, A.; Jakobs, S.; Hellmann, S.; Matyba, P.; Chen, C.; Kipp, L.; Bauer, M.; Kapteyn, H. C.; Schneider, H. C.; Rossnagel, K.; Murnane, M. M.; Aeschlimann, M.

    2016-01-01

    Capturing the dynamic electronic band structure of a correlated material presents a powerful capability for uncovering the complex couplings between the electronic and structural degrees of freedom. When combined with ultrafast laser excitation, new phases of matter can result, since far-from-equilibrium excited states are instantaneously populated. Here, we elucidate a general relation between ultrafast non-equilibrium electron dynamics and the size of the characteristic energy gap in a correlated electron material. We show that carrier multiplication via impact ionization can be one of the most important processes in a gapped material, and that the speed of carrier multiplication critically depends on the size of the energy gap. In the case of the charge-density wave material 1T-TiSe2, our data indicate that carrier multiplication and gap dynamics mutually amplify each other, which explains—on a microscopic level—the extremely fast response of this material to ultrafast optical excitation. PMID:27698341

  10. Storm-time radiation belt electron dynamics: Repeatability in the outer radiation belt

    NASA Astrophysics Data System (ADS)

    Murphy, K. R.; Mann, I. R.; Rae, J.; Watt, C.; Boyd, A. J.; Turner, D. L.; Claudepierre, S. G.; Baker, D. N.; Spence, H. E.; Reeves, G. D.; Blake, J. B.; Fennell, J. F.

    2017-12-01

    During intervals of enhanced solar wind driving the outer radiation belt becomes extremely dynamic leading to geomagnetic storms. During these storms the flux of energetic electrons can vary by over 4 orders of magnitude. Despite recent advances in understanding the nature of competing storm-time electron loss and acceleration processes the dynamic behavior of the outer radiation belt remains poorly understood; the outer radiation belt can exhibit either no change, an enhancement, or depletion in radiation belt electrons. Using a new analysis of the total radiation belt electron content, calculated from the Van Allen probes phase space density (PSD), we statistically analyze the time-dependent and global response of the outer radiation belt during storms. We demonstrate that by removing adiabatic effects there is a clear and repeatable sequence of events in storm-time radiation belt electron dynamics. Namely, the relativistic (μ=1000 MeV/G) and ultra-relativistic (μ=4000 MeV/G) electron populations can be separated into two phases; an initial phase dominated by loss followed by a second phase dominated by acceleration. At lower energies, the radiation belt seed population of electrons (μ=150 MeV/G) shows no evidence of loss but rather a net enhancement during storms. Further, we investigate the dependence of electron dynamics as a function of the second adiabatic invariant, K. These results demonstrate a global coherency in the dynamics of the source, relativistic and ultra-relativistic electron populations as function of the second adiabatic invariant K. This analysis demonstrates two key aspects of storm-time radiation belt electron dynamics. First, the radiation belt responds repeatably to solar wind driving during geomagnetic storms. Second, the response of the radiation belt is energy dependent, relativistic electrons behaving differently than lower energy seed electrons. These results have important implications in radiation belt research. In particular, the repeatability in electron dynamics coupled with observations of processes leading to electron loss (EMIC waves) and acceleration (VLF or ULF waves) can be used to diagnose the relative importance of physical processes in radiation belt dynamics during storms.

  11. Stochastic dynamics of coupled active particles in an overdamped limit

    NASA Astrophysics Data System (ADS)

    Ann, Minjung; Lee, Kong-Ju-Bock; Park, Pyeong Jun

    2015-10-01

    We introduce a model for Brownian dynamics of coupled active particles in an overdamped limit. Our system consists of several identical active particles and one passive particle. Each active particle is elastically coupled to the passive particle and there is no direct coupling among the active particles. We investigate the dynamics of the system with respect to the number of active particles, viscous friction, and coupling between the active and passive particles. For this purpose, we consider an intracellular transport process as an application of our model and perform a Brownian dynamics simulation using realistic parameters for processive molecular motors such as kinesin-1. We determine an adequate energy conversion function for molecular motors and study the dynamics of intracellular transport by multiple motors. The results show that the average velocity of the coupled system is not affected by the number of active motors and that the stall force increases linearly as the number of motors increases. Our results are consistent with well-known experimental observations. We also examine the effects of coupling between the motors and the cargo, as well as of the spatial distribution of the motors around the cargo. Our model might provide a physical explanation of the cooperation among active motors in the cellular transport processes.

  12. Good coupling for the multiscale patch scheme on systems with microscale heterogeneity

    NASA Astrophysics Data System (ADS)

    Bunder, J. E.; Roberts, A. J.; Kevrekidis, I. G.

    2017-05-01

    Computational simulation of microscale detailed systems is frequently only feasible over spatial domains much smaller than the macroscale of interest. The 'equation-free' methodology couples many small patches of microscale computations across space to empower efficient computational simulation over macroscale domains of interest. Motivated by molecular or agent simulations, we analyse the performance of various coupling schemes for patches when the microscale is inherently 'rough'. As a canonical problem in this universality class, we systematically analyse the case of heterogeneous diffusion on a lattice. Computer algebra explores how the dynamics of coupled patches predict the large scale emergent macroscale dynamics of the computational scheme. We determine good design for the coupling of patches by comparing the macroscale predictions from patch dynamics with the emergent macroscale on the entire domain, thus minimising the computational error of the multiscale modelling. The minimal error on the macroscale is obtained when the coupling utilises averaging regions which are between a third and a half of the patch. Moreover, when the symmetry of the inter-patch coupling matches that of the underlying microscale structure, patch dynamics predicts the desired macroscale dynamics to any specified order of error. The results confirm that the patch scheme is useful for macroscale computational simulation of a range of systems with microscale heterogeneity.

  13. Quantification of causal couplings via dynamical effects: A unifying perspective

    NASA Astrophysics Data System (ADS)

    Smirnov, Dmitry A.

    2014-12-01

    Quantitative characterization of causal couplings from time series is crucial in studies of complex systems of different origin. Various statistical tools for that exist and new ones are still being developed with a tendency to creating a single, universal, model-free quantifier of coupling strength. However, a clear and generally applicable way of interpreting such universal characteristics is lacking. This work suggests a general conceptual framework for causal coupling quantification, which is based on state space models and extends the concepts of virtual interventions and dynamical causal effects. Namely, two basic kinds of interventions (state space and parametric) and effects (orbital or transient and stationary or limit) are introduced, giving four families of coupling characteristics. The framework provides a unifying view of apparently different well-established measures and allows us to introduce new characteristics, always with a definite "intervention-effect" interpretation. It is shown that diverse characteristics cannot be reduced to any single coupling strength quantifier and their interpretation is inevitably model based. The proposed set of dynamical causal effect measures quantifies different aspects of "how the coupling manifests itself in the dynamics," reformulating the very question about the "causal coupling strength."

  14. Modal simulation of gearbox vibration with experimental correlation

    NASA Technical Reports Server (NTRS)

    Choy, Fred K.; Ruan, Yeefeng F.; Zakrajsek, James J.; Oswald, Fred B.

    1992-01-01

    A newly developed global dynamic model was used to simulate the dynamics of a gear noise rig at NASA Lewis Research Center. Experimental results from the test rig were used to verify the analytical model. In this global dynamic model, the number of degrees of freedom of the system are reduced by transforming the system equations of motion into modal coordinates. The vibration of the individual gear-shaft system are coupled through the gear mesh forces. A three-dimensional, axial-lateral coupled, bearing model was used to couple the casing structural vibration to the gear-rotor dynamics. The coupled system of modal equations is solved to predict the resulting vibration at several locations on the test rig. Experimental vibration data was compared to the predictions of the global dynamic model. There is excellent agreement between the vibration results from analysis and experiment.

  15. Thermal coupling effect on the vortex dynamics of superconducting thin films: time-dependent Ginzburg–Landau simulations

    NASA Astrophysics Data System (ADS)

    Jing, Ze; Yong, Huadong; Zhou, Youhe

    2018-05-01

    In this paper, vortex dynamics of superconducting thin films are numerically investigated by the generalized time-dependent Ginzburg–Landau (TDGL) theory. Interactions between vortex motion and the motion induced energy dissipation is considered by solving the coupled TDGL equation and the heat diffusion equation. It is found that thermal coupling has significant effects on the vortex dynamics of superconducting thin films. Branching in the vortex penetration path originates from the coupling between vortex motion and the motion induced energy dissipation. In addition, the environment temperature, the magnetic field ramp rate and the geometry of the superconducting film also greatly influence the vortex dynamic behaviors. Our results provide new insights into the dynamics of superconducting vortices, and give a mesoscopic understanding on the channeling and branching of vortex penetration paths during flux avalanches.

  16. SPIN–SPIN COUPLING IN THE SOLAR SYSTEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batygin, Konstantin; Morbidelli, Alessandro, E-mail: kbatygin@gps.caltech.edu

    The richness of dynamical behavior exhibited by the rotational states of various solar system objects has driven significant advances in the theoretical understanding of their evolutionary histories. An important factor that determines whether a given object is prone to exhibiting non-trivial rotational evolution is the extent to which such an object can maintain a permanent aspheroidal shape, meaning that exotic behavior is far more common among the small body populations of the solar system. Gravitationally bound binary objects constitute a substantial fraction of asteroidal and TNO populations, comprising systems of triaxial satellites that orbit permanently deformed central bodies. In thismore » work, we explore the rotational evolution of such systems with specific emphasis on quadrupole–quadrupole interactions, and show that for closely orbiting, highly deformed objects, both prograde and retrograde spin–spin resonances naturally arise. Subsequently, we derive capture probabilities for leading order commensurabilities and apply our results to the illustrative examples of (87) Sylvia and (216) Kleopatra asteroid systems. Cumulatively, our results suggest that spin–spin coupling may be consequential for highly elongated, tightly orbiting binary objects.« less

  17. Localization length and intraband scattering of excitons in linear aggregates

    NASA Astrophysics Data System (ADS)

    Lemaistre, J. P.

    1999-07-01

    A theoretical model to describe the intraband scattering of excitons in linear aggregates of finite size which exhibit strong intermolecular interactions is presented. From the calculation of the aggregate eigenstates, the localization length of excitons is evaluated for various configurations featuring physical situations like trapping, edge effects, inclusion of diagonal and/or orientational disorders. The intraband scattering is studied by considering the exciton-phonon stochastic coupling induced by the thermal bath. This coupling creates local dynamical fluctuations in the site energies which are characterized by their amplitude ( Δ) and their correlation time ( τc). Expressions of scattering rates are provided and used in a Pauli master equation to calculate the time dependence of the eigenstates populations after initial excitation of the quasi exciton-band. It is shown that the time evolution of the lowest state population as well as the Stokes shift strongly depend on τc. Comparison of the theoretical results to time-resolved experiments performed on triaryl pyrylium salts allows us to interpret the observed Stokes shift and to derive an average value of the exciton-phonon correlation time.

  18. The low-lying electronic states of pentacene and their roles in singlet fission.

    PubMed

    Zeng, Tao; Hoffmann, Roald; Ananth, Nandini

    2014-04-16

    We present a detailed study of pentacene monomer and dimer that serves to reconcile extant views of its singlet fission. We obtain the correct ordering of singlet excited-state energy levels in a pentacene molecule (E (S1) < E (D)) from multireference calculations with an appropriate active orbital space and dynamical correlation being incorporated. In order to understand the mechanism of singlet fission in pentacene, we use a well-developed diabatization scheme to characterize the six low-lying singlet states of a pentacene dimer that approximates the unit cell structure of crystalline pentacene. The local, single-excitonic diabats are not directly coupled with the important multiexcitonic state but rather mix through their mutual couplings with one of the charge-transfer configurations. We analyze the mixing of diabats as a function of monomer separation and pentacene rotation. By defining an oscillator strength measure of the coherent population of the multiexcitonic diabat, essential to singlet fission, we find this population can, in principle, be increased by small compression along a specific crystal direction.

  19. Impact of contrarians and intransigents in a kinetic model of opinion dynamics

    NASA Astrophysics Data System (ADS)

    Crokidakis, Nuno; Blanco, Victor H.; Anteneodo, Celia

    2014-01-01

    In this work we study opinion formation on a fully connected population participating of a public debate with two distinct choices, where the agents may adopt three different attitudes (favorable to either one choice or to the other, or undecided). The interactions between agents occur by pairs and are competitive, with couplings that are either negative with probability p or positive with probability 1-p. This bimodal probability distribution of couplings produces a behavior similar to the one resulting from the introduction of Galam's contrarians in the population. In addition, we consider that a fraction d of the individuals are intransigent, that is, reluctant to change their opinions. The consequences of the presence of contrarians and intransigents are studied by means of computer simulations. Our results suggest that the presence of inflexible agents affects the critical behavior of the system, causing either the shift of the critical point or the suppression of the ordering phase transition, depending on the groups of opinions to which the intransigents belong. We also discuss the relevance of the model for real social systems.

  20. Evaluating water conservation and reuse policies using a dynamic water balance model.

    PubMed

    Qaiser, Kamal; Ahmad, Sajjad; Johnson, Walter; Batista, Jacimaria R

    2013-02-01

    A dynamic water balance model is created to examine the effects of different water conservation policies and recycled water use on water demand and supply in a region faced with water shortages and significant population growth, the Las Vegas Valley (LVV). The model, developed using system dynamics approach, includes an unusual component of the water system, return flow credits, where credits are accrued for returning treated wastewater to the water supply source. In LVV, Lake Mead serves as, both the drinking water source and the receiving body for treated wastewater. LVV has a consumptive use allocation from Lake Mead but return flow credits allow the water agency to pull out additional water equal to the amount returned as treated wastewater. This backdrop results in a scenario in which conservation may cause a decline in the available water supply. Current water use in LVV is 945 lpcd (250 gpcd), which the water agency aims to reduce to 752 lpcd (199 gpcd) by 2035, mainly through water conservation. Different conservation policies focused on indoor and outdoor water use, along with different population growth scenarios, are modeled for their effects on the water demand and supply. Major contribution of this study is in highlighting the importance of outdoor water conservation and the effectiveness of reducing population growth rate in addressing the future water shortages. The water agency target to decrease consumption, if met completely through outdoor conservation, coupled with lower population growth rate, can potentially satisfy the Valley's water demands through 2035.

  1. Intraguild Predation Dynamics in a Lake Ecosystem Based on a Coupled Hydrodynamic-Ecological Model: The Example of Lake Kinneret (Israel)

    PubMed Central

    Makler-Pick, Vardit; Hipsey, Matthew R.; Zohary, Tamar; Carmel, Yohay; Gal, Gideon

    2017-01-01

    The food web of Lake Kinneret contains intraguild predation (IGP). Predatory invertebrates and planktivorous fish both feed on herbivorous zooplankton, while the planktivorous fish also feed on the predatory invertebrates. In this study, a complex mechanistic hydrodynamic-ecological model, coupled to a bioenergetics-based fish population model (DYCD-FISH), was employed with the aim of revealing IGP dynamics. The results indicate that the predation pressure of predatory zooplankton on herbivorous zooplankton varies widely, depending on the season. At the time of its annual peak, it is 10–20 times higher than the fish predation pressure. When the number of fish was significantly higher, as occurs in the lake after atypical meteorological years, the effect was a shift from a bottom-up controlled ecosystem, to the top-down control of planktivorous fish and a significant reduction of predatory and herbivorous zooplankton biomass. Yet, seasonally, the decrease in predatory-zooplankton biomass was followed by a decrease in their predation pressure on herbivorous zooplankton, leading to an increase of herbivorous zooplankton biomass to an extent similar to the base level. The analysis demonstrates the emergence of non-equilibrium IGP dynamics due to intra-annual and inter-annual changes in the physico-chemical characteristics of the lake, and suggests that IGP dynamics should be considered in food web models in order to more accurately capture mass transfer and trophic interactions. PMID:28353646

  2. Magnetosheath High-Speed Jets: Coupling Bow Shock Processes to the Magnetosphere

    NASA Astrophysics Data System (ADS)

    Hietala, H.

    2016-12-01

    Magnetosheath high-speed jets (HSJs) - dynamic pressure enhancements typically of 1 Earth radius in size - are the most common dayside transient. They impact the magnetopause many times per hour, especially during intervals of low interplanetary magnetic field cone-angle. Upon impact they cause large amplitude yet localized magnetopause indentations, and can couple to global dynamics by driving magnetospheric waves that alter radiation belt electron populations, and by affecting subsolar magnetopause reconnection. Previous observational studies have provided considerable insight into properties of the HSJs. Similarly, recent hybrid simulations have demonstrated the formation of jets downstream of the quasi-parallel shock with properties resembling the observed ones. Yet these studies were based on differing definitions of transients, have used varying terminology, methodology, data sets/simulations, and yielded, not unexpectedly, differing results on origin and characteristics of jets. In this talk we will present the first results towards a more unified understanding of these jets from a dedicated International Space Science Institute (ISSI) team. In particular, we compare the three selection criteria used in the recent observational statistical studies: (i) high dynamic pressure in the Sun-Earth direction with respect to the solar wind; (ii) enhancement of the total dynamic pressure with respect to the ambient magnetosheath plasma; (iii) enhancement of density with respect to the ambient plasma. We apply these criteria to global kinetic simulations and compare what structures they pick out. Consequently, we can effectively demonstrate where the different criteria agree and where they disagree.

  3. Crossover from polariton lasing to exciton lasing in a strongly coupled ZnO microcavity

    PubMed Central

    Lai, Ying-Yu; Chou, Yu-Hsun; Lan, Yu-Pin; Lu, Tien-Chang; Wang, Shing-Chung; Yamamoto, Yoshihisa

    2016-01-01

    Unlike conventional photon lasing, in which the threshold is limited by the population inversion of the electron-hole plasma, the exciton lasing generated by exciton-exciton scattering and the polariton lasing generated by dynamical condensates have received considerable attention in recent years because of the sub-Mott density and low-threshold operation. This paper presents a novel approach to generate both exciton and polariton lasing in a strongly coupled microcavity (MC) and determine the critical driving requirements for simultaneously triggering these two lasing operation in temperature <140 K and large negative polariton-exciton offset (<−133 meV) conditions. In addition, the corresponding lasing behaviors, such as threshold energy, linewidth, phase diagram, and angular dispersion are verified. The results afford a basis from which to understand the complicated lasing mechanisms in strongly coupled MCs and verify a new method with which to trigger dual laser emission based on exciton and polariton. PMID:26838665

  4. The effect of movement and load on the dynamic coupling of abdominal electromyography.

    PubMed

    King, Adam C

    2018-05-14

    This study investigated the degree of neural coupling in abdominal muscle activity and whether the task constraints of movement and load altered the coupling within three muscle pairings. Nineteen young, physically-active individuals performed sit-up and reverse crunch movements in bodyweight (BW) and loaded (+4.54 kg) conditions. Surface electromyography (sEMG) was recorded from the rectus abdominus (RA), external oblique (EO), and transverse abdominus (TA) muscles. Linear (correlation coefficient) and non-linear (Cross-Approximate Entropy) measurements evaluated the degree of couplings across three muscle pairings. Compared to a resting coupling state, most conditions showed evidence of coupling. The linear coupling showed greater coupling compared to the resting state. Dynamic coupling showed lower degrees of coupling for the RA-EO and RA-TA pairings but stronger coupling for the EO-TA pairing with the sit-up movement exhibiting lower Cross-ApEn (higher dynamic coupling) than the reverse crunch. The results provide preliminary evidence of coupling in abdominal muscle activity that was influenced by movement, but not load. The functional roles of the RA (prime mover), EO and TA (stabilizers) muscles may have influenced the degree of coupling and future investigations are needed to better understand the coupling of abdominal muscle activity. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. System Simulation by Recursive Feedback: Coupling a Set of Stand-Alone Subsystem Simulations

    NASA Technical Reports Server (NTRS)

    Nixon, D. D.

    2001-01-01

    Conventional construction of digital dynamic system simulations often involves collecting differential equations that model each subsystem, arran g them to a standard form, and obtaining their numerical gin solution as a single coupled, total-system simultaneous set. Simulation by numerical coupling of independent stand-alone subsimulations is a fundamentally different approach that is attractive because, among other things, the architecture naturally facilitates high fidelity, broad scope, and discipline independence. Recursive feedback is defined and discussed as a candidate approach to multidiscipline dynamic system simulation by numerical coupling of self-contained, single-discipline subsystem simulations. A satellite motion example containing three subsystems (orbit dynamics, attitude dynamics, and aerodynamics) has been defined and constructed using this approach. Conventional solution methods are used in the subsystem simulations. Distributed and centralized implementations of coupling have been considered. Numerical results are evaluated by direct comparison with a standard total-system, simultaneous-solution approach.

  6. Nonlinear Dynamics and Strong Cavity Cooling of Levitated Nanoparticles.

    PubMed

    Fonseca, P Z G; Aranas, E B; Millen, J; Monteiro, T S; Barker, P F

    2016-10-21

    Optomechanical systems explore and exploit the coupling between light and the mechanical motion of macroscopic matter. A nonlinear coupling offers rich new physics, in both quantum and classical regimes. We investigate a dynamic, as opposed to the usually studied static, nonlinear optomechanical system, comprising a nanosphere levitated in a hybrid electro-optical trap. The cavity offers readout of both linear-in-position and quadratic-in-position (nonlinear) light-matter coupling, while simultaneously cooling the nanosphere, for indefinite periods of time and in high vacuum. We observe the cooling dynamics via both linear and nonlinear coupling. As the background gas pressure was lowered, we observed a greater than 1000-fold reduction in temperature before temperatures fell below readout sensitivity in the present setup. This Letter opens the way to strongly coupled quantum dynamics between a cavity and a nanoparticle largely decoupled from its environment.

  7. The Jungle Universe: coupled cosmological models in a Lotka-Volterra framework

    NASA Astrophysics Data System (ADS)

    Perez, Jérôme; Füzfa, André; Carletti, Timoteo; Mélot, Laurence; Guedezounme, Lazare

    2014-06-01

    In this paper, we exploit the fact that the dynamics of homogeneous and isotropic Friedmann-Lemaître universes is a special case of generalized Lotka-Volterra system where the competitive species are the barotropic fluids filling the Universe. Without coupling between those fluids, Lotka-Volterra formulation offers a pedagogical and simple way to interpret usual Friedmann-Lemaître cosmological dynamics. A natural and physical coupling between cosmological fluids is proposed which preserves the structure of the dynamical equations. Using the standard tools of Lotka-Volterra dynamics, we obtain the general Lyapunov function of the system when one of the fluids is coupled to dark energy. This provides in a rigorous form a generic asymptotic behavior for cosmic expansion in presence of coupled species, beyond the standard de Sitter, Einstein-de Sitter and Milne cosmologies. Finally, we conjecture that chaos can appear for at least four interacting fluids.

  8. Nonlinear Dynamics and Strong Cavity Cooling of Levitated Nanoparticles

    NASA Astrophysics Data System (ADS)

    Fonseca, P. Z. G.; Aranas, E. B.; Millen, J.; Monteiro, T. S.; Barker, P. F.

    2016-10-01

    Optomechanical systems explore and exploit the coupling between light and the mechanical motion of macroscopic matter. A nonlinear coupling offers rich new physics, in both quantum and classical regimes. We investigate a dynamic, as opposed to the usually studied static, nonlinear optomechanical system, comprising a nanosphere levitated in a hybrid electro-optical trap. The cavity offers readout of both linear-in-position and quadratic-in-position (nonlinear) light-matter coupling, while simultaneously cooling the nanosphere, for indefinite periods of time and in high vacuum. We observe the cooling dynamics via both linear and nonlinear coupling. As the background gas pressure was lowered, we observed a greater than 1000-fold reduction in temperature before temperatures fell below readout sensitivity in the present setup. This Letter opens the way to strongly coupled quantum dynamics between a cavity and a nanoparticle largely decoupled from its environment.

  9. Scaling up complexity in host-pathogens interaction models. Comment on "Coupled disease-behavior dynamics on complex networks: A review" by Z. Wang et al.

    NASA Astrophysics Data System (ADS)

    Aguiar, Maíra

    2015-12-01

    Caused by micro-organisms that are pathogenic to the host, infectious diseases have caused debilitation and premature death to large portions of the human population, leading to serious social-economic concerns. The persistence and increase in the occurrence of infectious diseases as well the emergence or resurgence of vector-borne diseases are closely related with demographic factors such as the uncontrolled urbanization and remarkable population growth, political, social and economical changes, deforestation, development of resistance to insecticides and drugs and increased human travel. In recent years, mathematical modeling became an important tool for the understanding of infectious disease epidemiology and dynamics, addressing ideas about the components of host-pathogen interactions. Acting as a possible tool to understand, predict the spread of infectious diseases these models are also used to evaluate the introduction of intervention strategies like vector control and vaccination. Many scientific papers have been published recently on these topics, and most of the models developed try to incorporate factors focusing on several different aspects of the disease (and eventually biological aspects of the vector), which can imply rich dynamic behavior even in the most basic dynamical models. As one example to be cited, there is a minimalistic dengue model that has shown rich dynamic structures, with bifurcations (Hopf, pitchfork, torus and tangent bifurcations) up to chaotic attractors in unexpected parameter regions [1,2], which was able to describe the large fluctuations observed in empirical outbreak data [3,4].

  10. Dynamic health policies for controlling the spread of emerging infections: influenza as an example.

    PubMed

    Yaesoubi, Reza; Cohen, Ted

    2011-01-01

    The recent appearance and spread of novel infectious pathogens provide motivation for using models as tools to guide public health decision-making. Here we describe a modeling approach for developing dynamic health policies that allow for adaptive decision-making as new data become available during an epidemic. In contrast to static health policies which have generally been selected by comparing the performance of a limited number of pre-determined sequences of interventions within simulation or mathematical models, dynamic health policies produce "real-time" recommendations for the choice of the best current intervention based on the observable state of the epidemic. Using cumulative real-time data for disease spread coupled with current information about resource availability, these policies provide recommendations for interventions that optimally utilize available resources to preserve the overall health of the population. We illustrate the design and implementation of a dynamic health policy for the control of a novel strain of influenza, where we assume that two types of intervention may be available during the epidemic: (1) vaccines and antiviral drugs, and (2) transmission reducing measures, such as social distancing or mask use, that may be turned "on" or "off" repeatedly during the course of epidemic. In this example, the optimal dynamic health policy maximizes the overall population's health during the epidemic by specifying at any point of time, based on observable conditions, (1) the number of individuals to vaccinate if vaccines are available, and (2) whether the transmission-reducing intervention should be either employed or removed.

  11. Dynamic acousto-optic control of a strongly coupled photonic molecule

    PubMed Central

    Kapfinger, Stephan; Reichert, Thorsten; Lichtmannecker, Stefan; Müller, Kai; Finley, Jonathan J.; Wixforth, Achim; Kaniber, Michael; Krenner, Hubert J.

    2015-01-01

    Strongly confined photonic modes can couple to quantum emitters and mechanical excitations. To harness the full potential in quantum photonic circuits, interactions between different constituents have to be precisely and dynamically controlled. Here, a prototypical coupled element, a photonic molecule defined in a photonic crystal membrane, is controlled by a radio frequency surface acoustic wave. The sound wave is tailored to deliberately switch on and off the bond of the photonic molecule on sub-nanosecond timescales. In time-resolved experiments, the acousto-optically controllable coupling is directly observed as clear anticrossings between the two nanophotonic modes. The coupling strength is determined directly from the experimental data. Both the time dependence of the tuning and the inter-cavity coupling strength are found to be in excellent agreement with numerical calculations. The demonstrated mechanical technique can be directly applied for dynamic quantum gate operations in state-of-the-art-coupled nanophotonic, quantum cavity electrodynamic and optomechanical systems. PMID:26436203

  12. Study on the Vehicle Dynamic Load Considering the Vehicle-Pavement Coupled Effect

    NASA Astrophysics Data System (ADS)

    Xu, H. L.; He, L.; An, D.

    2017-11-01

    The vibration of vehicle-pavement interaction system is sophisticated random vibration process and the vehicle-pavement coupled effect was not considered in the previous study. A new linear elastic model of the vehicle-pavement coupled system was established in the paper. The new model was verified with field measurement which could reflect the real vibration between vehicle and pavement. Using the new model, the study on the vehicle dynamic load considering the vehicle-pavement coupled effect showed that random forces (centralization) between vehicle and pavement were influenced largely by vehicle-pavement coupled effect. Numerical calculation indicated that the maximum of random forces in coupled model was 2.4 times than that in uncoupled model. Inquiring the reason, it was found that the main vibration frequency of the vehicle non-suspension system was similar with that of the vehicle suspension system in the coupled model and the resonance vibration lead to vehicle dynamic load increase significantly.

  13. Quantum heat engines and refrigerators: continuous devices.

    PubMed

    Kosloff, Ronnie; Levy, Amikam

    2014-01-01

    Quantum thermodynamics supplies a consistent description of quantum heat engines and refrigerators up to a single few-level system coupled to the environment. Once the environment is split into three (a hot, cold, and work reservoir), a heat engine can operate. The device converts the positive gain into power, with the gain obtained from population inversion between the components of the device. Reversing the operation transforms the device into a quantum refrigerator. The quantum tricycle, a device connected by three external leads to three heat reservoirs, is used as a template for engines and refrigerators. The equation of motion for the heat currents and power can be derived from first principles. Only a global description of the coupling of the device to the reservoirs is consistent with the first and second laws of thermodynamics. Optimization of the devices leads to a balanced set of parameters in which the couplings to the three reservoirs are of the same order and the external driving field is in resonance. When analyzing refrigerators, one needs to devote special attention to a dynamical version of the third law of thermodynamics. Bounds on the rate of cooling when Tc→0 are obtained by optimizing the cooling current. All refrigerators as Tc→0 show universal behavior. The dynamical version of the third law imposes restrictions on the scaling as Tc→0 of the relaxation rate γc and heat capacity cV of the cold bath.

  14. Forecasting effects of climate change on Great Lakes fisheries: models that link habitat supply to population dynamics can help

    USGS Publications Warehouse

    Jones, Michael L.; Shuter, Brian J.; Zhao, Yingming; Stockwell, Jason D.

    2006-01-01

    Future changes to climate in the Great Lakes may have important consequences for fisheries. Evidence suggests that Great Lakes air and water temperatures have risen and the duration of ice cover has lessened during the past century. Global circulation models (GCMs) suggest future warming and increases in precipitation in the region. We present new evidence that water temperatures have risen in Lake Erie, particularly during summer and winter in the period 1965–2000. GCM forecasts coupled with physical models suggest lower annual runoff, less ice cover, and lower lake levels in the future, but the certainty of these forecasts is low. Assessment of the likely effects of climate change on fish stocks will require an integrative approach that considers several components of habitat rather than water temperature alone. We recommend using mechanistic models that couple habitat conditions to population demographics to explore integrated effects of climate-caused habitat change and illustrate this approach with a model for Lake Erie walleye (Sander vitreum). We show that the combined effect on walleye populations of plausible changes in temperature, river hydrology, lake levels, and light penetration can be quite different from that which would be expected based on consideration of only a single factor.

  15. Coupled dynamics analysis of wind energy systems

    NASA Technical Reports Server (NTRS)

    Hoffman, J. A.

    1977-01-01

    A qualitative description of all key elements of a complete wind energy system computer analysis code is presented. The analysis system addresses the coupled dynamics characteristics of wind energy systems, including the interactions of the rotor, tower, nacelle, power train, control system, and electrical network. The coupled dynamics are analyzed in both the frequency and time domain to provide the basic motions and loads data required for design, performance verification and operations analysis activities. Elements of the coupled analysis code were used to design and analyze candidate rotor articulation concepts. Fundamental results and conclusions derived from these studies are presented.

  16. Dynamic characteristic of electromechanical coupling effects in motor-gear system

    NASA Astrophysics Data System (ADS)

    Bai, Wenyu; Qin, Datong; Wang, Yawen; Lim, Teik C.

    2018-06-01

    Dynamic characteristics of an electromechanical model which combines a nonlinear permeance network model (PNM) of a squirrel-cage induction motor and a coupled lateral-torsional dynamic model of a planetary geared rotor system is analyzed in this study. The simulations reveal the effects of internal excitations or parameters like machine slotting, magnetic saturation, time-varying mesh stiffness and shaft stiffness on the system dynamics. The responses of the electromechanical system with PNM motor model are compared with those responses of the system with dynamic motor model. The electromechanical coupling due to the interactions between the motor and gear system are studied. Furthermore, the frequency analysis of the electromechanical system dynamic characteristics predicts an efficient way to detect work condition of unsymmetrical voltage sag.

  17. Insights into Watson-Crick/Hoogsteen breathing dynamics and damage repair from the solution structure and dynamic ensemble of DNA duplexes containing m1A.

    PubMed

    Sathyamoorthy, Bharathwaj; Shi, Honglue; Zhou, Huiqing; Xue, Yi; Rangadurai, Atul; Merriman, Dawn K; Al-Hashimi, Hashim M

    2017-05-19

    In the canonical DNA double helix, Watson-Crick (WC) base pairs (bps) exist in dynamic equilibrium with sparsely populated (∼0.02-0.4%) and short-lived (lifetimes ∼0.2-2.5 ms) Hoogsteen (HG) bps. To gain insights into transient HG bps, we used solution-state nuclear magnetic resonance spectroscopy, including measurements of residual dipolar couplings and molecular dynamics simulations, to examine how a single HG bp trapped using the N1-methylated adenine (m1A) lesion affects the structural and dynamic properties of two duplexes. The solution structure and dynamic ensembles of the duplexes reveals that in both cases, m1A forms a m1A•T HG bp, which is accompanied by local and global structural and dynamic perturbations in the double helix. These include a bias toward the BI backbone conformation; sugar repuckering, major-groove directed kinking (∼9°); and local melting of neighboring WC bps. These results provide atomic insights into WC/HG breathing dynamics in unmodified DNA duplexes as well as identify structural and dynamic signatures that could play roles in m1A recognition and repair. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. Insights into Watson–Crick/Hoogsteen breathing dynamics and damage repair from the solution structure and dynamic ensemble of DNA duplexes containing m1A

    PubMed Central

    Sathyamoorthy, Bharathwaj; Shi, Honglue; Zhou, Huiqing; Xue, Yi; Rangadurai, Atul; Merriman, Dawn K.

    2017-01-01

    Abstract In the canonical DNA double helix, Watson–Crick (WC) base pairs (bps) exist in dynamic equilibrium with sparsely populated (∼0.02–0.4%) and short-lived (lifetimes ∼0.2–2.5 ms) Hoogsteen (HG) bps. To gain insights into transient HG bps, we used solution-state nuclear magnetic resonance spectroscopy, including measurements of residual dipolar couplings and molecular dynamics simulations, to examine how a single HG bp trapped using the N1-methylated adenine (m1A) lesion affects the structural and dynamic properties of two duplexes. The solution structure and dynamic ensembles of the duplexes reveals that in both cases, m1A forms a m1A•T HG bp, which is accompanied by local and global structural and dynamic perturbations in the double helix. These include a bias toward the BI backbone conformation; sugar repuckering, major-groove directed kinking (∼9°); and local melting of neighboring WC bps. These results provide atomic insights into WC/HG breathing dynamics in unmodified DNA duplexes as well as identify structural and dynamic signatures that could play roles in m1A recognition and repair. PMID:28369571

  19. Effect of intermodular connection on fast sparse synchronization in clustered small-world neural networks

    NASA Astrophysics Data System (ADS)

    Kim, Sang-Yoon; Lim, Woochang

    2015-11-01

    We consider a clustered network with small-world subnetworks of inhibitory fast spiking interneurons and investigate the effect of intermodular connection on the emergence of fast sparsely synchronized rhythms by varying both the intermodular coupling strength Jinter and the average number of intermodular links per interneuron Msyn(inter ). In contrast to the case of nonclustered networks, two kinds of sparsely synchronized states such as modular and global synchronization are found. For the case of modular sparse synchronization, the population behavior reveals the modular structure, because the intramodular dynamics of subnetworks make some mismatching. On the other hand, in the case of global sparse synchronization, the population behavior is globally identical, independently of the cluster structure, because the intramodular dynamics of subnetworks make perfect matching. We introduce a realistic cross-correlation modularity measure, representing the matching degree between the instantaneous subpopulation spike rates of the subnetworks, and examine whether the sparse synchronization is global or modular. Depending on its magnitude, the intermodular coupling strength Jinter seems to play "dual" roles for the pacing between spikes in each subnetwork. For large Jinter, due to strong inhibition it plays a destructive role to "spoil" the pacing between spikes, while for small Jinter it plays a constructive role to "favor" the pacing between spikes. Through competition between the constructive and the destructive roles of Jinter, there exists an intermediate optimal Jinter at which the pacing degree between spikes becomes maximal. In contrast, the average number of intermodular links per interneuron Msyn(inter ) seems to play a role just to favor the pacing between spikes. With increasing Msyn(inter ), the pacing degree between spikes increases monotonically thanks to the increase in the degree of effectiveness of global communication between spikes. Furthermore, we employ the realistic sub- and whole-population order parameters, based on the instantaneous sub- and whole-population spike rates, to determine the threshold values for the synchronization-unsynchronization transition in the sub- and whole populations, and the degrees of global and modular sparse synchronization are also measured in terms of the realistic sub- and whole-population statistical-mechanical spiking measures defined by considering both the occupation and the pacing degrees of spikes. It is expected that our results could have implications for the role of the brain plasticity in some functional behaviors associated with population synchronization.

  20. Persistent Memory in Single Node Delay-Coupled Reservoir Computing.

    PubMed

    Kovac, André David; Koall, Maximilian; Pipa, Gordon; Toutounji, Hazem

    2016-01-01

    Delays are ubiquitous in biological systems, ranging from genetic regulatory networks and synaptic conductances, to predator/pray population interactions. The evidence is mounting, not only to the presence of delays as physical constraints in signal propagation speed, but also to their functional role in providing dynamical diversity to the systems that comprise them. The latter observation in biological systems inspired the recent development of a computational architecture that harnesses this dynamical diversity, by delay-coupling a single nonlinear element to itself. This architecture is a particular realization of Reservoir Computing, where stimuli are injected into the system in time rather than in space as is the case with classical recurrent neural network realizations. This architecture also exhibits an internal memory which fades in time, an important prerequisite to the functioning of any reservoir computing device. However, fading memory is also a limitation to any computation that requires persistent storage. In order to overcome this limitation, the current work introduces an extended version to the single node Delay-Coupled Reservoir, that is based on trained linear feedback. We show by numerical simulations that adding task-specific linear feedback to the single node Delay-Coupled Reservoir extends the class of solvable tasks to those that require nonfading memory. We demonstrate, through several case studies, the ability of the extended system to carry out complex nonlinear computations that depend on past information, whereas the computational power of the system with fading memory alone quickly deteriorates. Our findings provide the theoretical basis for future physical realizations of a biologically-inspired ultrafast computing device with extended functionality.

  1. Persistent Memory in Single Node Delay-Coupled Reservoir Computing

    PubMed Central

    Pipa, Gordon; Toutounji, Hazem

    2016-01-01

    Delays are ubiquitous in biological systems, ranging from genetic regulatory networks and synaptic conductances, to predator/pray population interactions. The evidence is mounting, not only to the presence of delays as physical constraints in signal propagation speed, but also to their functional role in providing dynamical diversity to the systems that comprise them. The latter observation in biological systems inspired the recent development of a computational architecture that harnesses this dynamical diversity, by delay-coupling a single nonlinear element to itself. This architecture is a particular realization of Reservoir Computing, where stimuli are injected into the system in time rather than in space as is the case with classical recurrent neural network realizations. This architecture also exhibits an internal memory which fades in time, an important prerequisite to the functioning of any reservoir computing device. However, fading memory is also a limitation to any computation that requires persistent storage. In order to overcome this limitation, the current work introduces an extended version to the single node Delay-Coupled Reservoir, that is based on trained linear feedback. We show by numerical simulations that adding task-specific linear feedback to the single node Delay-Coupled Reservoir extends the class of solvable tasks to those that require nonfading memory. We demonstrate, through several case studies, the ability of the extended system to carry out complex nonlinear computations that depend on past information, whereas the computational power of the system with fading memory alone quickly deteriorates. Our findings provide the theoretical basis for future physical realizations of a biologically-inspired ultrafast computing device with extended functionality. PMID:27783690

  2. Socio-hydrologic Modeling to Understand and Mediate the Competition for Water between Humans and Ecosystems: Murrumbidgee River Basin, Australia

    NASA Astrophysics Data System (ADS)

    van Emmerik, Tim; Sivapalan, Murugesu; Li, Zheng; Pande, Saket; Savenije, Hubert

    2014-05-01

    Around the world the demand for water resources is growing in order to satisfy rapidly increasing human populations, leading to competition for water between humans and ecosystems. An entirely new and comprehensive quantitative framework is needed to establish a holistic understanding of that competition, thereby enabling development and evaluation of effective mediation strategies. We present a case study centered on the Murrumbidgee river basin in eastern Australia that illustrates the dynamics of the balance between water extraction and use for food production and efforts to mitigate and reverse consequent degradation of the riparian environment. Interactions between patterns of water resources management and climate driven hydrological variability within the prevailing socio-economic environment have contributed to the emergence of new whole system dynamics over the last 100 years. In particular, data analysis reveals a pendulum swing between an exclusive focus on agricultural development and food production in the initial stages of water resources development and its attendant socio-economic benefits, followed by the gradual realization of the adverse environmental impacts, efforts to mitigate these with the use of remedial measures, and ultimately concerted efforts and externally imposed solutions to restore environmental health and ecosystem services. A quasi-distributed coupled socio-hydrologic system model that explicitly includes the two-way coupling between human and hydrological systems, including evolution of human values/norms relating to water and the environment, is able to mimic broad features of this pendulum swing. The model consists of coupled nonlinear differential equations that include four state variables describing the co-evolution of storage capacity, irrigated area, human population, and ecosystem health, which are all connected by feedback mechanisms. The model is used to generate insights into the dominant controls of the trajectory of co-evolution of the coupled human-water system, to serve as the theoretical framework for more detailed analysis of the system, and to generate organizing principles that may be transferable to other systems in different climatic and socio-economic settings.

  3. Coupled Flip-Flop Model for REM Sleep Regulation in the Rat

    PubMed Central

    Dunmyre, Justin R.; Mashour, George A.; Booth, Victoria

    2014-01-01

    Recent experimental studies investigating the neuronal regulation of rapid eye movement (REM) sleep have identified mutually inhibitory synaptic projections among REM sleep-promoting (REM-on) and REM sleep-inhibiting (REM-off) neuronal populations that act to maintain the REM sleep state and control its onset and offset. The control mechanism of mutually inhibitory synaptic interactions mirrors the proposed flip-flop switch for sleep-wake regulation consisting of mutually inhibitory synaptic projections between wake- and sleep-promoting neuronal populations. While a number of synaptic projections have been identified between these REM-on/REM-off populations and wake/sleep-promoting populations, the specific interactions that govern behavioral state transitions have not been completely determined. Using a minimal mathematical model, we investigated behavioral state transition dynamics dictated by a system of coupled flip-flops, one to control transitions between wake and sleep states, and another to control transitions into and out of REM sleep. The model describes the neurotransmitter-mediated inhibitory interactions between a wake- and sleep-promoting population, and between a REM-on and REM-off population. We proposed interactions between the wake/sleep and REM-on/REM-off flip-flops to replicate the behavioral state statistics and probabilities of behavioral state transitions measured from experimental recordings of rat sleep under ad libitum conditions and after 24 h of REM sleep deprivation. Reliable transitions from REM sleep to wake, as dictated by the data, indicated the necessity of an excitatory projection from the REM-on population to the wake-promoting population. To replicate the increase in REM-wake-REM transitions observed after 24 h REM sleep deprivation required that this excitatory projection promote transient activation of the wake-promoting population. Obtaining the reliable wake-nonREM sleep transitions observed in the data required that activity of the wake-promoting population modulated the interaction between the REM-on and REM-off populations. This analysis suggests neuronal processes to be targeted in further experimental studies of the regulatory mechanisms of REM sleep. PMID:24722577

  4. Coupled flip-flop model for REM sleep regulation in the rat.

    PubMed

    Dunmyre, Justin R; Mashour, George A; Booth, Victoria

    2014-01-01

    Recent experimental studies investigating the neuronal regulation of rapid eye movement (REM) sleep have identified mutually inhibitory synaptic projections among REM sleep-promoting (REM-on) and REM sleep-inhibiting (REM-off) neuronal populations that act to maintain the REM sleep state and control its onset and offset. The control mechanism of mutually inhibitory synaptic interactions mirrors the proposed flip-flop switch for sleep-wake regulation consisting of mutually inhibitory synaptic projections between wake- and sleep-promoting neuronal populations. While a number of synaptic projections have been identified between these REM-on/REM-off populations and wake/sleep-promoting populations, the specific interactions that govern behavioral state transitions have not been completely determined. Using a minimal mathematical model, we investigated behavioral state transition dynamics dictated by a system of coupled flip-flops, one to control transitions between wake and sleep states, and another to control transitions into and out of REM sleep. The model describes the neurotransmitter-mediated inhibitory interactions between a wake- and sleep-promoting population, and between a REM-on and REM-off population. We proposed interactions between the wake/sleep and REM-on/REM-off flip-flops to replicate the behavioral state statistics and probabilities of behavioral state transitions measured from experimental recordings of rat sleep under ad libitum conditions and after 24 h of REM sleep deprivation. Reliable transitions from REM sleep to wake, as dictated by the data, indicated the necessity of an excitatory projection from the REM-on population to the wake-promoting population. To replicate the increase in REM-wake-REM transitions observed after 24 h REM sleep deprivation required that this excitatory projection promote transient activation of the wake-promoting population. Obtaining the reliable wake-nonREM sleep transitions observed in the data required that activity of the wake-promoting population modulated the interaction between the REM-on and REM-off populations. This analysis suggests neuronal processes to be targeted in further experimental studies of the regulatory mechanisms of REM sleep.

  5. Dynamics of Competition between Subnetworks of Spiking Neuronal Networks in the Balanced State.

    PubMed

    Lagzi, Fereshteh; Rotter, Stefan

    2015-01-01

    We explore and analyze the nonlinear switching dynamics of neuronal networks with non-homogeneous connectivity. The general significance of such transient dynamics for brain function is unclear; however, for instance decision-making processes in perception and cognition have been implicated with it. The network under study here is comprised of three subnetworks of either excitatory or inhibitory leaky integrate-and-fire neurons, of which two are of the same type. The synaptic weights are arranged to establish and maintain a balance between excitation and inhibition in case of a constant external drive. Each subnetwork is randomly connected, where all neurons belonging to a particular population have the same in-degree and the same out-degree. Neurons in different subnetworks are also randomly connected with the same probability; however, depending on the type of the pre-synaptic neuron, the synaptic weight is scaled by a factor. We observed that for a certain range of the "within" versus "between" connection weights (bifurcation parameter), the network activation spontaneously switches between the two sub-networks of the same type. This kind of dynamics has been termed "winnerless competition", which also has a random component here. In our model, this phenomenon is well described by a set of coupled stochastic differential equations of Lotka-Volterra type that imply a competition between the subnetworks. The associated mean-field model shows the same dynamical behavior as observed in simulations of large networks comprising thousands of spiking neurons. The deterministic phase portrait is characterized by two attractors and a saddle node, its stochastic component is essentially given by the multiplicative inherent noise of the system. We find that the dwell time distribution of the active states is exponential, indicating that the noise drives the system randomly from one attractor to the other. A similar model for a larger number of populations might suggest a general approach to study the dynamics of interacting populations of spiking networks.

  6. Dynamics of Competition between Subnetworks of Spiking Neuronal Networks in the Balanced State

    PubMed Central

    Lagzi, Fereshteh; Rotter, Stefan

    2015-01-01

    We explore and analyze the nonlinear switching dynamics of neuronal networks with non-homogeneous connectivity. The general significance of such transient dynamics for brain function is unclear; however, for instance decision-making processes in perception and cognition have been implicated with it. The network under study here is comprised of three subnetworks of either excitatory or inhibitory leaky integrate-and-fire neurons, of which two are of the same type. The synaptic weights are arranged to establish and maintain a balance between excitation and inhibition in case of a constant external drive. Each subnetwork is randomly connected, where all neurons belonging to a particular population have the same in-degree and the same out-degree. Neurons in different subnetworks are also randomly connected with the same probability; however, depending on the type of the pre-synaptic neuron, the synaptic weight is scaled by a factor. We observed that for a certain range of the “within” versus “between” connection weights (bifurcation parameter), the network activation spontaneously switches between the two sub-networks of the same type. This kind of dynamics has been termed “winnerless competition”, which also has a random component here. In our model, this phenomenon is well described by a set of coupled stochastic differential equations of Lotka-Volterra type that imply a competition between the subnetworks. The associated mean-field model shows the same dynamical behavior as observed in simulations of large networks comprising thousands of spiking neurons. The deterministic phase portrait is characterized by two attractors and a saddle node, its stochastic component is essentially given by the multiplicative inherent noise of the system. We find that the dwell time distribution of the active states is exponential, indicating that the noise drives the system randomly from one attractor to the other. A similar model for a larger number of populations might suggest a general approach to study the dynamics of interacting populations of spiking networks. PMID:26407178

  7. Cosmological dynamics with non-minimally coupled scalar field and a constant potential function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hrycyna, Orest; Szydłowski, Marek, E-mail: orest.hrycyna@ncbj.gov.pl, E-mail: marek.szydlowski@uj.edu.pl

    2015-11-01

    Dynamical systems methods are used to investigate global behaviour of the spatially flat Friedmann-Robertson-Walker cosmological model in gravitational theory with a non-minimally coupled scalar field and a constant potential function. We show that the system can be reduced to an autonomous three-dimensional dynamical system and additionally is equipped with an invariant manifold corresponding to an accelerated expansion of the universe. Using this invariant manifold we find an exact solution of the reduced dynamics. We investigate all solutions for all admissible initial conditions using theory of dynamical systems to obtain a classification of all evolutional paths. The right-hand sides of themore » dynamical system depend crucially on the value of the non-minimal coupling constant therefore we study bifurcation values of this parameter under which the structure of the phase space changes qualitatively. We found a special bifurcation value of the non-minimal coupling constant which is distinguished by dynamics of the model and may suggest some additional symmetry in matter sector of the theory.« less

  8. Optimal control of dissipative nonlinear dynamical systems with triggers of coupled singularities

    NASA Astrophysics Data System (ADS)

    Stevanović Hedrih, K.

    2008-02-01

    This paper analyses the controllability of motion of nonconservative nonlinear dynamical systems in which triggers of coupled singularities exist or appear. It is shown that the phase plane method is useful for the analysis of nonlinear dynamics of nonconservative systems with one degree of freedom of control strategies and also shows the way it can be used for controlling the relative motion in rheonomic systems having equivalent scleronomic conservative or nonconservative system For the system with one generalized coordinate described by nonlinear differential equation of nonlinear dynamics with trigger of coupled singularities, the functions of system potential energy and conservative force must satisfy some conditions defined by a Theorem on the existence of a trigger of coupled singularities and the separatrix in the form of "an open a spiral form" of number eight. Task of the defined dynamical nonconservative system optimal control is: by using controlling force acting to the system, transfer initial state of the nonlinear dynamics of the system into the final state of the nonlinear dynamics in the minimal time for that optimal control task

  9. Autonomous cycling between excitatory and inhibitory coupling in photosensitive chemical oscillators

    NASA Astrophysics Data System (ADS)

    Yengi, Desmond; Tinsley, Mark R.; Showalter, Kenneth

    2018-04-01

    Photochemically coupled Belousov-Zhabotinsky micro-oscillators are studied in experiments and simulations. The photosensitive oscillators exhibit excitatory or inhibitory coupling depending on the surrounding reaction mixture composition, which can be systematically varied. In-phase or out-of-phase synchronization is observed with predominantly excitatory or inhibitory coupling, respectively, and complex frequency cycling between excitatory and inhibitory coupling is found between these extremes. The dynamical behavior is characterized in terms of the corresponding phase response curves, and a map representation of the dynamics is presented.

  10. Couplerlib: a metadata-driven library for the integration of multiple models of higher and lower trophic level marine systems with inexact functional group matching

    NASA Astrophysics Data System (ADS)

    Beecham, Jonathan; Bruggeman, Jorn; Aldridge, John; Mackinson, Steven

    2016-03-01

    End-to-end modelling is a rapidly developing strategy for modelling in marine systems science and management. However, problems remain in the area of data matching and sub-model compatibility. A mechanism and novel interfacing system (Couplerlib) is presented whereby a physical-biogeochemical model (General Ocean Turbulence Model-European Regional Seas Ecosystem Model, GOTM-ERSEM) that predicts dynamics of the lower trophic level (LTL) organisms in marine ecosystems is coupled to a dynamic ecosystem model (Ecosim), which predicts food-web interactions among higher trophic level (HTL) organisms. Coupling is achieved by means of a bespoke interface, which handles the system incompatibilities between the models and a more generic Couplerlib library, which uses metadata descriptions in extensible mark-up language (XML) to marshal data between groups, paying attention to functional group mappings and compatibility of units between models. In addition, within Couplerlib, models can be coupled across networks by means of socket mechanisms. As a demonstration of this approach, a food-web model (Ecopath with Ecosim, EwE) and a physical-biogeochemical model (GOTM-ERSEM) representing the North Sea ecosystem were joined with Couplerlib. The output from GOTM-ERSEM varies between years, depending on oceanographic and meteorological conditions. Although inter-annual variability was clearly present, there was always the tendency for an annual cycle consisting of a peak of diatoms in spring, followed by (less nutritious) flagellates and dinoflagellates through the summer, resulting in an early summer peak in the mesozooplankton biomass. Pelagic productivity, predicted by the LTL model, was highly seasonal with little winter food for the higher trophic levels. The Ecosim model was originally based on the assumption of constant annual inputs of energy and, consequently, when coupled, pelagic species suffered population losses over the winter months. By contrast, benthic populations were more stable (although the benthic linkage modelled was purely at the detritus level, so this stability reflects the stability of the Ecosim model). The coupled model was used to examine long-term effects of environmental change, and showed the system to be nutrient limited and relatively unaffected by forecast climate change, especially in the benthos. The stability of an Ecosim formulation for large higher tropic level food webs is discussed and it is concluded that this kind of coupled model formulation is better for examining the effects of long-term environmental change than short-term perturbations.

  11. Chaos and multi-scroll attractors in RCL-shunted junction coupled Jerk circuit connected by memristor

    PubMed Central

    Zhou, Ping; Ahmad, Bashir; Ren, Guodong; Wang, Chunni

    2018-01-01

    In this paper, a new four-variable dynamical system is proposed to set chaotic circuit composed of memristor and Josephson junction, and the dependence of chaotic behaviors on nonlinearity is investigated. A magnetic flux-controlled memristor is used to couple with the RCL-shunted junction circuit, and the dynamical behaviors can be modulated by changing the coupling intensity between the memristor and the RCL-shunted junction. Bifurcation diagram and Lyapunov exponent are calculated to confirm the emergence of chaos in the improved dynamical system. The outputs and dynamical behaviors can be controlled by the initial setting and external stimulus as well. As a result, chaos can be suppressed and spiking occurs in the sampled outputs under negative feedback, while applying positive feedback type via memristor can be effective to trigger chaos. Furthermore, it is found that the number of multi-attractors in the Jerk circuit can be modulated when memristor coupling is applied on the circuit. These results indicate that memristor coupling can be effective to control chaotic circuits and it is also useful to reproduce dynamical behaviors for neuronal activities. PMID:29342178

  12. Chaos and multi-scroll attractors in RCL-shunted junction coupled Jerk circuit connected by memristor.

    PubMed

    Ma, Jun; Zhou, Ping; Ahmad, Bashir; Ren, Guodong; Wang, Chunni

    2018-01-01

    In this paper, a new four-variable dynamical system is proposed to set chaotic circuit composed of memristor and Josephson junction, and the dependence of chaotic behaviors on nonlinearity is investigated. A magnetic flux-controlled memristor is used to couple with the RCL-shunted junction circuit, and the dynamical behaviors can be modulated by changing the coupling intensity between the memristor and the RCL-shunted junction. Bifurcation diagram and Lyapunov exponent are calculated to confirm the emergence of chaos in the improved dynamical system. The outputs and dynamical behaviors can be controlled by the initial setting and external stimulus as well. As a result, chaos can be suppressed and spiking occurs in the sampled outputs under negative feedback, while applying positive feedback type via memristor can be effective to trigger chaos. Furthermore, it is found that the number of multi-attractors in the Jerk circuit can be modulated when memristor coupling is applied on the circuit. These results indicate that memristor coupling can be effective to control chaotic circuits and it is also useful to reproduce dynamical behaviors for neuronal activities.

  13. Exciton-Polariton Dynamics of a Monolayer Semiconductor Coupled to a Microcavity

    NASA Astrophysics Data System (ADS)

    Chen, Yen-Jung; Stanev, Teodor K.; Stern, Nathaniel P.; Cain, Jeffrey D.; Dravid, Vinayak P.

    Strong light-matter interactions, evidenced by exciton-polariton states, have been observed in the two-dimensional limit with monolayer transition metal dichalcogenides (TMDs) embedded in a microcavity. Because of the valley degree of freedom in monolayer TMDs, these hybrid light-matter states can exhibit valley polarization as in a bare monolayer, with strongly-coupled dynamics determined by the relative rates of exciton relaxation and intervalley scattering, which can be highly modified in on-resonant cavities. Here, we test this intuitive picture of the polarized exciton-polariton dynamics with monolayer MoS2 coupled to detuned cavities. Upper and lower polariton branches exhibit distinct decay rates indicative of different cavity dynamics. As with on-resonant, strongly-coupled exciton-polaritons, the weakly-coupled regime causes exciton-polariton valley polarization to persist at room temperature, demonstrating that dynamics of valley-polarized excitations can be controlled by engineering light-matter interactions. This work is supported by the U.S. Department of Energy (BES DE-SC0012130) and the National Science Foundation MRSEC program (DMR-1121262). N.P.S. is an Alfred P. Sloan Research Fellow.

  14. Understanding transient uncoupling induced synchronization through modified dynamic coupling

    NASA Astrophysics Data System (ADS)

    Ghosh, Anupam; Godara, Prakhar; Chakraborty, Sagar

    2018-05-01

    An important aspect of the recently introduced transient uncoupling scheme is that it induces synchronization for large values of coupling strength at which the coupled chaotic systems resist synchronization when continuously coupled. However, why this is so is an open problem? To answer this question, we recall the conventional wisdom that the eigenvalues of the Jacobian of the transverse dynamics measure whether a trajectory at a phase point is locally contracting or diverging with respect to another nearby trajectory. Subsequently, we go on to highlight a lesser appreciated fact that even when, under the corresponding linearised flow, the nearby trajectory asymptotically diverges away, its distance from the reference trajectory may still be contracting for some intermediate period. We term this phenomenon transient decay in line with the phenomenon of the transient growth. Using these facts, we show that an optimal coupling region, i.e., a region of the phase space where coupling is on, should ideally be such that at any of the constituent phase point either the maximum of the real parts of the eigenvalues is negative or the magnitude of the positive maximum is lesser than that of the negative minimum. We also invent and employ a modified dynamics coupling scheme—a significant improvement over the well-known dynamic coupling scheme—as a decisive tool to justify our results.

  15. Coherence resonance and stochastic resonance in directionally coupled rings

    NASA Astrophysics Data System (ADS)

    Werner, Johannes Peter; Benner, Hartmut; Florio, Brendan James; Stemler, Thomas

    2011-11-01

    In coupled systems, symmetry plays an important role for the collective dynamics. We investigate the dynamical response to noise with and without weak periodic modulation for two classes of ring systems. Each ring system consists of unidirectionally coupled bistable elements but in one class, the number of elements is even while in the other class the number is odd. Consequently, the rings without forcing show at a certain coupling strength, either ordering (similar to anti-ferromagnetic chains) or auto-oscillations. Analysing the bifurcations and fixed points of the two ring classes enables us to explain the dynamical response measured to noise and weak modulation. Moreover, by analysing a simplified model, we demonstrate that the response is universal for systems having a directional component in their stochastic dynamics in phase space around the origin.

  16. Excitation energy transfer in photosynthetic protein-pigment complexes

    NASA Astrophysics Data System (ADS)

    Yeh, Shu-Hao

    Quantum biology is a relatively new research area which investigates the rules that quantum mechanics plays in biology. One of the most intriguing systems in this field is the coherent excitation energy transport (EET) in photosynthesis. In this document I will discuss the theories that are suitable for describing the photosynthetic EET process and the corresponding numerical results on several photosynthetic protein-pigment complexes (PPCs). In some photosynthetic EET processes, because of the electronic coupling between the chromophores within the system is about the same order of magnitude as system-bath coupling (electron-phonon coupling), a non-perturbative method called hierarchy equation of motion (HEOM) is applied to study the EET dynamics. The first part of this thesis includes brief introduction and derivation to the HEOM approach. The second part of this thesis the HEOM method will be applied to investigate the EET process within the B850 ring of the light harvesting complex 2 (LH2) from purple bacteria, Rhodopseudomonas acidophila. The dynamics of the exciton population and coherence will be analyzed under different initial excitation configurations and temperatures. Finally, how HEOM can be implemented to simulate the two-dimensional electronic spectra of photosynthetic PPCs will be discussed. Two-dimensional electronic spectroscopy is a crucial experimental technique to probe EET dynamics in multi-chromophoric systems. The system we are interested in is the 7-chromophore Fenna-Matthews-Olson (FMO) complex from green sulfur bacteria, Prosthecochloris aestuarii. Recent crystallographic studies report the existence of an additional (eighth) chromophore in some of the FMO monomers. By applying HEOM we are able to calculate the two-dimensional electronic spectra of the 7-site and 8-site FMO complexes and investigate the functionality of the eighth chromophore.

  17. Electrically pumped graphene-based Landau-level laser

    NASA Astrophysics Data System (ADS)

    Brem, Samuel; Wendler, Florian; Winnerl, Stephan; Malic, Ermin

    2018-03-01

    Graphene exhibits a nonequidistant Landau quantization with tunable Landau-level (LL) transitions in the technologically desired terahertz spectral range. Here, we present a strategy for an electrically driven terahertz laser based on Landau-quantized graphene as the gain medium. Performing microscopic modeling of the coupled electron, phonon, and photon dynamics in such a laser, we reveal that an inter-LL population inversion can be achieved resulting in the emission of coherent terahertz radiation. The presented paper provides a concrete recipe for the experimental realization of tunable graphene-based terahertz laser systems.

  18. Large-scale galaxy flow from a non-gravitational impulse

    NASA Technical Reports Server (NTRS)

    Hogan, Craig J.; Kaiser, Nick

    1989-01-01

    A theory is presented describing linear perturbations of an expanding universe containing multiple, independently perturbed, collisionless, gravitationally coupled constituents. Solutions are found in the limit where one initially unperturbed component dominates the total density. The theory is applied to perturbations generated by a nongravitational process in one or more of the light components, as would occur in explosive or radiation-pressure-instability theories of galaxy formation. The apparent dynamical density parameter and correlations between density and velocity amplitude for various populations, are evaluated as a function of cosmic scale factor.

  19. Molecular dynamics study of naturally existing cavity couplings in proteins.

    PubMed

    Barbany, Montserrat; Meyer, Tim; Hospital, Adam; Faustino, Ignacio; D'Abramo, Marco; Morata, Jordi; Orozco, Modesto; de la Cruz, Xavier

    2015-01-01

    Couplings between protein sub-structures are a common property of protein dynamics. Some of these couplings are especially interesting since they relate to function and its regulation. In this article we have studied the case of cavity couplings because cavities can host functional sites, allosteric sites, and are the locus of interactions with the cell milieu. We have divided this problem into two parts. In the first part, we have explored the presence of cavity couplings in the natural dynamics of 75 proteins, using 20 ns molecular dynamics simulations. For each of these proteins, we have obtained two trajectories around their native state. After applying a stringent filtering procedure, we found significant cavity correlations in 60% of the proteins. We analyze and discuss the structure origins of these correlations, including neighbourhood, cavity distance, etc. In the second part of our study, we have used longer simulations (≥100 ns) from the MoDEL project, to obtain a broader view of cavity couplings, particularly about their dependence on time. Using moving window computations we explored the fluctuations of cavity couplings along time, finding that these couplings could fluctuate substantially during the trajectory, reaching in several cases correlations above 0.25/0.5. In summary, we describe the structural origin and the variations with time of cavity couplings. We complete our work with a brief discussion of the biological implications of these results.

  20. Molecular Dynamics Study of Naturally Existing Cavity Couplings in Proteins

    PubMed Central

    Barbany, Montserrat; Meyer, Tim; Hospital, Adam; Faustino, Ignacio; D'Abramo, Marco; Morata, Jordi; Orozco, Modesto; de la Cruz, Xavier

    2015-01-01

    Couplings between protein sub-structures are a common property of protein dynamics. Some of these couplings are especially interesting since they relate to function and its regulation. In this article we have studied the case of cavity couplings because cavities can host functional sites, allosteric sites, and are the locus of interactions with the cell milieu. We have divided this problem into two parts. In the first part, we have explored the presence of cavity couplings in the natural dynamics of 75 proteins, using 20 ns molecular dynamics simulations. For each of these proteins, we have obtained two trajectories around their native state. After applying a stringent filtering procedure, we found significant cavity correlations in 60% of the proteins. We analyze and discuss the structure origins of these correlations, including neighbourhood, cavity distance, etc. In the second part of our study, we have used longer simulations (≥100ns) from the MoDEL project, to obtain a broader view of cavity couplings, particularly about their dependence on time. Using moving window computations we explored the fluctuations of cavity couplings along time, finding that these couplings could fluctuate substantially during the trajectory, reaching in several cases correlations above 0.25/0.5. In summary, we describe the structural origin and the variations with time of cavity couplings. We complete our work with a brief discussion of the biological implications of these results. PMID:25816327

  1. Turning Oscillations Into Opportunities: Lessons from a Bacterial Decision Gate

    NASA Astrophysics Data System (ADS)

    Schultz, Daniel; Lu, Mingyang; Stavropoulos, Trevor; Onuchic, Jose'; Ben-Jacob, Eshel

    2013-04-01

    Sporulation vs. competence provides a prototypic example of collective cell fate determination. The decision is performed by the action of three modules: 1) A stochastic competence switch whose transition probability is regulated by population density, population stress and cell stress. 2) A sporulation timer whose clock rate is regulated by cell stress and population stress. 3) A decision gate that is coupled to the timer via a special repressilator-like loop. We show that the distinct circuit architecture of this gate leads to special dynamics and noise management characteristics: The gate opens a time-window of opportunity for competence transitions during which it generates oscillations that are turned into a chain of transition opportunities - each oscillation opens a short interval with high transition probability. The special architecture of the gate also leads to filtering of external noise and robustness against internal noise and variations in the circuit parameters.

  2. Turning Oscillations Into Opportunities: Lessons from a Bacterial Decision Gate

    PubMed Central

    Schultz, Daniel; Lu, Mingyang; Stavropoulos, Trevor; Onuchic, Jose'; Ben-Jacob, Eshel

    2013-01-01

    Sporulation vs. competence provides a prototypic example of collective cell fate determination. The decision is performed by the action of three modules: 1) A stochastic competence switch whose transition probability is regulated by population density, population stress and cell stress. 2) A sporulation timer whose clock rate is regulated by cell stress and population stress. 3) A decision gate that is coupled to the timer via a special repressilator-like loop. We show that the distinct circuit architecture of this gate leads to special dynamics and noise management characteristics: The gate opens a time-window of opportunity for competence transitions during which it generates oscillations that are turned into a chain of transition opportunities – each oscillation opens a short interval with high transition probability. The special architecture of the gate also leads to filtering of external noise and robustness against internal noise and variations in the circuit parameters. PMID:23591544

  3. Multilevel relaxation phenomena and population trapping. Final report, July 1, 1984--June 30, 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hioe, F.T.

    1991-11-01

    This final report summarizes the main results of our work supported by DOE since 1982. A list of 45 publications supported by this DOE Grant is attached at the end of this report. The use and exploitation of the SU(N) dynamic symmetry to the study of the dynamics of laser-atom interaction was the starting point of our research work under this DOE Grant, and is our most original contribution to the field of quantum electrodynamics. Many results of general and special interests have been derived and developed from this starting point and the following is a summary of them: (1)more » We have introduced a set of simple relations based on the principle of unitary invariance which has proved to be useful for the study of the dynamics of a quantum system involving coupling. (2) We have found various specific conditions under which (a) we may have trapped population, or (b) we may send laser pulses through a multilevel atomic medium without attenuation. (3) We have found a remarkably efficient method for optimal state selective multiphoton population transfer, that employs two or more spatially overlapping lasers arranged in an unconventional sequence which we called ``counterintuitive``. A recent suggestion by Profs. P. Marte, P. Zoller and J.L. Hall to use this counterintuitive method for atomic beam deflections promises to make this remarkably effective procedure to become an important method in atomic interferometry.« less

  4. Lesbian, Gay, and Heterosexual Couples in Open Adoption Arrangements: A Qualitative Study

    ERIC Educational Resources Information Center

    Goldberg, Abbie E.; Kinkler, Lori A.; Richardson, Hannah B.; Downing, Jordan B.

    2011-01-01

    Little research has attended to the role of gender and sexual orientation in shaping open adoption dynamics. This qualitative, longitudinal study of 45 adoptive couples (15 lesbian, 15 gay, and 15 heterosexual couples) examined adopters' motivations for open adoption, changes in attitudes about openness, and early relationship dynamics. Key…

  5. Seasonal Diversity Patterns of a Coastal Synechococcus Population

    NASA Astrophysics Data System (ADS)

    Hunter-Cevera, K. R.; Sosik, H. M.; Neubert, M.; Hammar, K.; Post, A.

    2016-02-01

    Understanding how environmental and ecological factors determine phytoplankton species abundances requires knowledge of the diversity present within a population. For the important primary producer Synechococcus, clades demonstrate differences in temperature tolerance, light acclimation, grazer palatability, and more. Marine Synechococcus populations are often composed of more than one clade, and overall population dynamics will be governed by the types of cells present and by their individual physiological capabilities. We investigate the diversity of the Synechococcus assemblage at the Martha's Vineyard Coastal Observatory with high-throughput sequencing of the V6 hypervariable region of the 16S rRNA gene. Small nucleotide differences within this region allow for resolution of distinct phylotypes that can have a direct correspondence to the well-defined Synechococcus clades. From a three-year time series, we find that the Synechococcus population is dominated by 5 distinct phylotypes, and that each type exhibits a repeatable, seasonal pattern in relative abundance. We use compositional data analysis techniques to investigate the relationships between these patterns and environmental factors. We further interpret these patterns in the context of Synechococcus population dynamics assessed by automated, submersible flow cytometry (FlowCytobot). Observed diel changes in cell size distributions, coupled with a validated matrix population model, provide estimates of in situ population division rates. We find strong evidence that the main seasonal diversity patterns are governed by temperature, but that biological loss agents likely shape the diversity structure for certain times of year. For some phylotypes, relative abundance patterns are also related to light and nutrients. The composition of Synechococcus over the annual cycle appears to directly affect seasonal features of cell abundance patterns, such as the spring bloom.

  6. The nonlinear dynamics of a spacecraft coupled to the vibration of a contained fluid

    NASA Technical Reports Server (NTRS)

    Peterson, Lee D.; Crawley, Edward F.; Hansman, R. John

    1988-01-01

    The dynamics of a linear spacecraft mode coupled to a nonlinear low gravity slosh of a fluid in a cylindrical tank is investigated. Coupled, nonlinear equations of motion for the fluid-spacecraft dynamics are derived through an assumed mode Lagrangian method. Unlike linear fluid slosh models, this nonlinear slosh model retains two fundamental slosh modes and three secondary modes. An approximate perturbation solution of the equations of motion indicates that the nonlinear coupled system response involves fluid-spacecraft modal resonances not predicted by either a linear, or a nonlinear, uncoupled slosh analysis. Experimental results substantiate the analytical predictions.

  7. Linear dynamic coupling in geared rotor systems

    NASA Technical Reports Server (NTRS)

    David, J. W.; Mitchell, L. D.

    1986-01-01

    The effects of high frequency oscillations caused by the gear mesh, on components of a geared system that can be modeled as rigid discs are analyzed using linear dynamic coupling terms. The coupled, nonlinear equations of motion for a disc attached to a rotating shaft are presented. The results of a trial problem analysis show that the inclusion of the linear dynamic coupling terms can produce significant changes in the predicted response of geared rotor systems, and that the produced sideband responses are greater than the unbalanced response. The method is useful in designing gear drives for heavy-lift helicopters, industrial speed reducers, naval propulsion systems, and heavy off-road equipment.

  8. Synchronization of heteroclinic circuits through learning in coupled neural networks

    NASA Astrophysics Data System (ADS)

    Selskii, Anton; Makarov, Valeri A.

    2016-01-01

    The synchronization of oscillatory activity in neural networks is usually implemented by coupling the state variables describing neuronal dynamics. Here we study another, but complementary mechanism based on a learning process with memory. A driver network, acting as a teacher, exhibits winner-less competition (WLC) dynamics, while a driven network, a learner, tunes its internal couplings according to the oscillations observed in the teacher. We show that under appropriate training the learner can "copy" the coupling structure and thus synchronize oscillations with the teacher. The replication of the WLC dynamics occurs for intermediate memory lengths only, consequently, the learner network exhibits a phenomenon of learning resonance.

  9. Coupled socioeconomic-crop modelling for the participatory local analysis of climate change impacts on smallholder farmers in Guatemala

    NASA Astrophysics Data System (ADS)

    Malard, J. J.; Adamowski, J. F.; Wang, L. Y.; Rojas, M.; Carrera, J.; Gálvez, J.; Tuy, H. A.; Melgar-Quiñonez, H.

    2015-12-01

    The modelling of the impacts of climate change on agriculture requires the inclusion of socio-economic factors. However, while cropping models and economic models of agricultural systems are common, dynamically coupled socio-economic-biophysical models have not received as much success. A promising methodology for modelling the socioeconomic aspects of coupled natural-human systems is participatory system dynamics modelling, in which stakeholders develop mental maps of the socio-economic system that are then turned into quantified simulation models. This methodology has been successful in the water resources management field. However, while the stocks and flows of water resources have also been represented within the system dynamics modelling framework and thus coupled to the socioeconomic portion of the model, cropping models are ill-suited for such reformulation. In addition, most of these system dynamics models were developed without stakeholder input, limiting the scope for the adoption and implementation of their results. We therefore propose a new methodology for the analysis of climate change variability on agroecosystems which uses dynamically coupled system dynamics (socio-economic) and biophysical (cropping) models to represent both physical and socioeconomic aspects of the agricultural system, using two case studies (intensive market-based agricultural development versus subsistence crop-based development) from rural Guatemala. The system dynamics model component is developed with relevant governmental and NGO stakeholders from rural and agricultural development in the case study regions and includes such processes as education, poverty and food security. Common variables with the cropping models (yield and agricultural management choices) are then used to dynamically couple the two models together, allowing for the analysis of the agroeconomic system's response to and resilience against various climatic and socioeconomic shocks.

  10. LIDT-DD: A New Self-Consistent Debris Disc Model Including Radiation Pressure and Coupling Dynamical and Collisional Evolution

    NASA Astrophysics Data System (ADS)

    Kral, Q.; Thebault, P.; Charnoz, S.

    2014-01-01

    The first attempt at developing a fully self-consistent code coupling dynamics and collisions to study debris discs (Kral et al. 2013) is presented. So far, these two crucial mechanisms were studied separately, with N-body and statistical collisional codes respectively, because of stringent computational constraints. We present a new model named LIDT-DD which is able to follow over long timescales the coupled evolution of dynamics (including radiation forces) and collisions in a self-consistent way.

  11. Detecting population–environmental interactions with mismatched time series data

    PubMed Central

    Ferguson, Jake M.; Reichert, Brian E.; Fletcher, Robert J.; Jager, Henriëtte I.

    2017-01-01

    Time series analysis is an essential method for decomposing the influences of density and exogenous factors such as weather and climate on population regulation. However, there has been little work focused on understanding how well commonly collected data can reconstruct the effects of environmental factors on population dynamics. We show that, analogous to similar scale issues in spatial data analysis, coarsely sampled temporal data can fail to detect covariate effects when interactions occur on timescales that are fast relative to the survey period. We propose a method for modeling mismatched time series data that couples high-resolution environmental data to low-resolution abundance data. We illustrate our approach with simulations and by applying it to Florida’s southern Snail kite population. Our simulation results show that our method can reliably detect linear environmental effects and that detecting nonlinear effects requires high-resolution covariate data even when the population turnover rate is slow. In the Snail kite analysis, our approach performed among the best in a suite of previously used environmental covariates explaining Snail kite dynamics and was able to detect a potential phenological shift in the environmental dependence of Snail kites. Our work provides a statistical framework for reliably detecting population–environment interactions from coarsely surveyed time series. An important implication of this work is that the low predictability of animal population growth by weather variables found in previous studies may be due, in part, to how these data are utilized as covariates. PMID:28759123

  12. Host and viral ecology determine bat rabies seasonality and maintenance

    USGS Publications Warehouse

    George, D.B.; Webb, C.T.; Farnsworth, Matthew L.; O'Shea, T.J.; Bowen, R.A.; Smith, D.L.; Stanley, T.R.; Ellison, L.E.; Rupprecht, C.E.

    2011-01-01

    Rabies is an acute viral infection that is typically fatal. Most rabies modeling has focused on disease dynamics and control within terrestrial mammals (e.g., raccoons and foxes). As such, rabies in bats has been largely neglected until recently. Because bats have been implicated as natural reservoirs for several emerging zoonotic viruses, including SARS-like corona viruses, henipaviruses, and lyssaviruses, understanding how pathogens are maintained within a population becomes vital. Unfortunately, little is known about maintenance mechanisms for any pathogen in bat populations. We present a mathematical model parameterized with unique data from an extensive study of rabies in a Colorado population of big brown bats (Eptesicus fuscus) to elucidate general maintenance mechanisms. We propose that life history patterns of many species of temperate-zone bats, coupled with sufficiently long incubation periods, allows for rabies virus maintenance. Seasonal variability in bat mortality rates, specifically low mortality during hibernation, allows long-term bat population viability. Within viable bat populations, sufficiently long incubation periods allow enough infected individuals to enter hibernation and survive until the following year, and hence avoid an epizootic fadeout of rabies virus. We hypothesize that the slowing effects of hibernation on metabolic and viral activity maintains infected individuals and their pathogens until susceptibles from the annual birth pulse become infected and continue the cycle. This research provides a context to explore similar host ecology and viral dynamics that may explain seasonal patterns and maintenance of other bat-borne diseases.

  13. Host and viral ecology determine bat rabies seasonality and maintenance.

    PubMed

    George, Dylan B; Webb, Colleen T; Farnsworth, Matthew L; O'Shea, Thomas J; Bowen, Richard A; Smith, David L; Stanley, Thomas R; Ellison, Laura E; Rupprecht, Charles E

    2011-06-21

    Rabies is an acute viral infection that is typically fatal. Most rabies modeling has focused on disease dynamics and control within terrestrial mammals (e.g., raccoons and foxes). As such, rabies in bats has been largely neglected until recently. Because bats have been implicated as natural reservoirs for several emerging zoonotic viruses, including SARS-like corona viruses, henipaviruses, and lyssaviruses, understanding how pathogens are maintained within a population becomes vital. Unfortunately, little is known about maintenance mechanisms for any pathogen in bat populations. We present a mathematical model parameterized with unique data from an extensive study of rabies in a Colorado population of big brown bats (Eptesicus fuscus) to elucidate general maintenance mechanisms. We propose that life history patterns of many species of temperate-zone bats, coupled with sufficiently long incubation periods, allows for rabies virus maintenance. Seasonal variability in bat mortality rates, specifically low mortality during hibernation, allows long-term bat population viability. Within viable bat populations, sufficiently long incubation periods allow enough infected individuals to enter hibernation and survive until the following year, and hence avoid an epizootic fadeout of rabies virus. We hypothesize that the slowing effects of hibernation on metabolic and viral activity maintains infected individuals and their pathogens until susceptibles from the annual birth pulse become infected and continue the cycle. This research provides a context to explore similar host ecology and viral dynamics that may explain seasonal patterns and maintenance of other bat-borne diseases.

  14. Using a new high resolution regional model for malaria that accounts for population density and surface hydrology to determine sensitivity of malaria risk to climate drivers

    NASA Astrophysics Data System (ADS)

    Tompkins, Adrian; Ermert, Volker; Di Giuseppe, Francesca

    2013-04-01

    In order to better address the role of population dynamics and surface hydrology in the assessment of malaria risk, a new dynamical disease model been developed at ICTP, known as VECTRI: VECtor borne disease community model of ICTP, TRIeste (VECTRI). The model accounts for the temperature impact on the larvae, parasite and adult vector populations. Local host population density affects the transmission intensity, and the model thus reproduces the differences between peri-urban and rural transmission noted in Africa. A new simple pond model framework represents surface hydrology. The model can be used on with spatial resolutions finer than 10km to resolve individual health districts and thus can be used as a planning tool. Results of the models representation of interannual variability and longer term projections of malaria transmission will be shown for Africa. These will show that the model represents the seasonality and spatial variations of malaria transmission well matching a wide range of survey data of parasite rate and entomological inoculation rate (EIR) from across West and East Africa taken in the period prior to large-scale interventions. The model is used to determine the sensitivity of malaria risk to climate variations, both in rainfall and temperature, and then its use in a prototype forecasting system coupled with ECMWF forecasts will be demonstrated.

  15. Dynamics of a Landau-Zener transitions in a two-level system driven by a dissipative environment

    NASA Astrophysics Data System (ADS)

    Ateuafack, M. E.; Diffo, J. T.; Fai, L. C.

    2016-02-01

    The paper investigates the effects of a two-level quantum system coupled to transversal and longitudinal dissipative environment. The time-dependent phase accumulation, LZ transition probability and entropy in the presence of fast-ohmic, sub-ohmic and super-ohmic quantum noise are derived. Analytical results are obtained in terms of temperature, dissipation strength, LZ parameter and bath cutoff frequency. The bath is observed to modify the standard occupation difference by a decaying random phase factor and also produces dephasing during the transfer of population. The dephasing characteristics or the initial non-zero decoherence rate are observed to increase in time with the bath temperature and depend on the system-bath coupling strength and cutoff frequency. These parameters are found to strongly affect the memory and thus tailor the coherence process of the system.

  16. Dynamical transition between weak and strong coupling in Brillouin laser pulse amplification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schluck, F.; Lehmann, G.; Müller, C.

    Short laser pulse amplification via stimulated Brillouin backscattering in plasma is considered. Previous work distinguishes between the weakly and strongly coupled regime and treats them separately. It is shown here that such a separation is not generally applicable because strong and weak coupling interaction regimes are entwined with each other. An initially weakly coupled amplification scenario may dynamically transform into strong coupling. This happens when the local seed amplitude grows and thus triggers the strongly driven plasma response. On the other hand, when in a strong coupling scenario, the pump pulse gets depleted, and its amplitude might drop below themore » strong coupling threshold. This may cause significant changes in the final seed pulse shape. Furthermore, experimentally used pump pulses are typically Gaussian-shaped. The intensity threshold for strong coupling may only be exceeded around the maximum and not in the wings of the pulse. Also here, a description valid in both strong and weak coupling regimes is required. We propose such a unified treatment which allows us, in particular, to study the dynamic transition between weak and strong coupling. Consequences for the pulse forms of the amplified seed are discussed.« less

  17. A Constitutively Activating Mutation Alters the Dynamics and Energetics of a Key Conformational Change in a Ligand-free G Protein-coupled Receptor*

    PubMed Central

    Tsukamoto, Hisao; Farrens, David L.

    2013-01-01

    G protein-coupled receptors (GPCRs) undergo dynamic transitions between active and inactive conformations. Usually, these conversions are triggered when the receptor detects an external signal, but some so-called constitutively activating mutations, or CAMs, induce a GPCR to bind and activate G proteins in the absence of external stimulation, in ways still not fully understood. Here, we investigated how a CAM alters the structure of a GPCR and the dynamics involved as the receptor transitions between different conformations. Our approach used site-directed fluorescence labeling (SDFL) spectroscopy to compare opsin, the ligand-free form of the GPCR rhodopsin, with opsin containing the CAM M257Y, focusing specifically on key movements that occur in the sixth transmembrane helix (TM6) during GPCR activation. The site-directed fluorescence labeling data indicate opsin is constrained to an inactive conformation both in detergent micelles and lipid membranes, but when it contains the M257Y CAM, opsin is more dynamic and can interact with a G protein mimetic. Further study of these receptors using tryptophan-induced quenching (TrIQ) methods indicates that in detergent, the CAM significantly increases the population of receptors in the active state, but not in lipids. Subsequent Arrhenius analysis of the TrIQ data suggests that, both in detergent and lipids, the CAM lowers the energy barrier for TM6 movement, a key transition required for conversion between the inactive and active conformations. Together, these data suggest that the lowered energy barrier is a primary effect of the CAM on the receptor dynamics and energetics. PMID:23940032

  18. Dynamical transitions in large systems of mean field-coupled Landau-Stuart oscillators: Extensive chaos and cluster states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ku, Wai Lim; Girvan, Michelle; Ott, Edward

    In this paper, we study dynamical systems in which a large number N of identical Landau-Stuart oscillators are globally coupled via a mean-field. Previously, it has been observed that this type of system can exhibit a variety of different dynamical behaviors. These behaviors include time periodic cluster states in which each oscillator is in one of a small number of groups for which all oscillators in each group have the same state which is different from group to group, as well as a behavior in which all oscillators have different states and the macroscopic dynamics of the mean field ismore » chaotic. We argue that this second type of behavior is “extensive” in the sense that the chaotic attractor in the full phase space of the system has a fractal dimension that scales linearly with N and that the number of positive Lyapunov exponents of the attractor also scales linearly with N. An important focus of this paper is the transition between cluster states and extensive chaos as the system is subjected to slow adiabatic parameter change. We observe discontinuous transitions between the cluster states (which correspond to low dimensional dynamics) and the extensively chaotic states. Furthermore, examining the cluster state, as the system approaches the discontinuous transition to extensive chaos, we find that the oscillator population distribution between the clusters continually evolves so that the cluster state is always marginally stable. This behavior is used to reveal the mechanism of the discontinuous transition. We also apply the Kaplan-Yorke formula to study the fractal structure of the extensively chaotic attractors.« less

  19. A 37-mm Ceramic Gun Nozzle Stress Analysis

    DTIC Science & Technology

    2006-05-01

    Figures iv List of Tables iv 1 . Introduction 1 2. Ceramic Nozzle Structure and Materials 1 3. Sequentially-Coupled and Fully-Coupled Thermal Stress...FEM Analysis 1 4. Ceramic Nozzle Thermal Stress Response 4 5. Ceramic Nozzle Dynamic FEM 7 6. Ceramic Nozzle Dynamic Responses and Discussions 8 7...candidate ceramics and the test fixture model components are listed in table 1 . 3. Sequentially-Coupled and Fully-Coupled Thermal Stress FEM Analysis

  20. Dynamical localization of coupled relativistic kicked rotors

    NASA Astrophysics Data System (ADS)

    Rozenbaum, Efim B.; Galitski, Victor

    2017-02-01

    A periodically driven rotor is a prototypical model that exhibits a transition to chaos in the classical regime and dynamical localization (related to Anderson localization) in the quantum regime. In a recent work [Phys. Rev. B 94, 085120 (2016), 10.1103/PhysRevB.94.085120], A. C. Keser et al. considered a many-body generalization of coupled quantum kicked rotors, and showed that in the special integrable linear case, dynamical localization survives interactions. By analogy with many-body localization, the phenomenon was dubbed dynamical many-body localization. In the present work, we study nonintegrable models of single and coupled quantum relativistic kicked rotors (QRKRs) that bridge the gap between the conventional quadratic rotors and the integrable linear models. For a single QRKR, we supplement the recent analysis of the angular-momentum-space dynamics with a study of the spin dynamics. Our analysis of two and three coupled QRKRs along with the proved localization in the many-body linear model indicate that dynamical localization exists in few-body systems. Moreover, the relation between QRKR and linear rotor models implies that dynamical many-body localization can exist in generic, nonintegrable many-body systems. And localization can generally result from a complicated interplay between Anderson mechanism and limiting integrability, since the many-body linear model is a high-angular-momentum limit of many-body QRKRs. We also analyze the dynamics of two coupled QRKRs in the highly unusual superballistic regime and find that the resonance conditions are relaxed due to interactions. Finally, we propose experimental realizations of the QRKR model in cold atoms in optical lattices.

  1. Wavelet Imaging on Multiple Scales (WIMS) reveals focal adhesion distributions, dynamics and coupling between actomyosin bundle stability

    PubMed Central

    Toplak, Tim; Palmieri, Benoit; Juanes-García, Alba; Vicente-Manzanares, Miguel; Grant, Martin; Wiseman, Paul W.

    2017-01-01

    We introduce and use Wavelet Imaging on Multiple Scales (WIMS) as an improvement to fluorescence correlation spectroscopy to measure physical processes and features that occur across multiple length scales. In this study, wavelet transforms of cell images are used to characterize molecular dynamics at the cellular and subcellular levels (i.e. focal adhesions). We show the usefulness of the technique by applying WIMS to an image time series of a migrating osteosarcoma cell expressing fluorescently labelled adhesion proteins, which allows us to characterize different components of the cell ranging from optical resolution scale through to focal adhesion and whole cell size scales. Using WIMS we measured focal adhesion numbers, orientation and cell boundary velocities for retraction and protrusion. We also determine the internal dynamics of individual focal adhesions undergoing assembly, disassembly or elongation. Thus confirming as previously shown, WIMS reveals that the number of adhesions and the area of the protruding region of the cell are strongly correlated, establishing a correlation between protrusion size and adhesion dynamics. We also apply this technique to characterize the behavior of adhesions, actin and myosin in Chinese hamster ovary cells expressing a mutant form of myosin IIB (1935D) that displays decreased filament stability and impairs front-back cell polarity. We find separate populations of actin and myosin at each adhesion pole for both the mutant and wild type form. However, we find these populations move rapidly inwards toward one another in the mutant case in contrast to the cells that express wild type myosin IIB where those populations remain stationary. Results obtained with these two systems demonstrate how WIMS has the potential to reveal novel correlations between chosen parameters that belong to different scales. PMID:29049414

  2. Dispersal leads to spatial autocorrelation in species distributions: A simulation model

    USGS Publications Warehouse

    Bahn, V.; Krohn, W.B.; O'Connor, R.J.

    2008-01-01

    Compared to population growth regulated by local conditions, dispersal has been underappreciated as a central process shaping the spatial distribution of populations. This paper asks: (a) which conditions increase the importance of dispersers relative to local recruits in determining population sizes? and (b) how does dispersal influence the spatial distribution patterns of abundances among connected populations? We approached these questions with a simulation model of populations on a coupled lattice with cells of continuously varying habitat quality expressed as carrying capacities. Each cell contained a population with the basic dynamics of density-regulated growth, and was connected to other populations by immigration and emigration. The degree to which dispersal influenced the distribution of population sizes depended most strongly on the absolute amount of dispersal, and then on the potential population growth rate. Dispersal decaying in intensity with distance left close neighbours more alike in population size than distant populations, leading to an increase in spatial autocorrelation. The spatial distribution of species with low potential growth rates is more dependent on dispersal than that of species with high growth rates; therefore, distribution modelling for species with low growth rates requires particular attention to autocorrelation, and conservation management of these species requires attention to factors curtailing dispersal, such as fragmentation and dispersal barriers. ?? 2007 Elsevier B.V. All rights reserved.

  3. Spin-current emission governed by nonlinear spin dynamics.

    PubMed

    Tashiro, Takaharu; Matsuura, Saki; Nomura, Akiyo; Watanabe, Shun; Kang, Keehoon; Sirringhaus, Henning; Ando, Kazuya

    2015-10-16

    Coupling between conduction electrons and localized magnetization is responsible for a variety of phenomena in spintronic devices. This coupling enables to generate spin currents from dynamical magnetization. Due to the nonlinearity of magnetization dynamics, the spin-current emission through the dynamical spin-exchange coupling offers a route for nonlinear generation of spin currents. Here, we demonstrate spin-current emission governed by nonlinear magnetization dynamics in a metal/magnetic insulator bilayer. The spin-current emission from the magnetic insulator is probed by the inverse spin Hall effect, which demonstrates nontrivial temperature and excitation power dependences of the voltage generation. The experimental results reveal that nonlinear magnetization dynamics and enhanced spin-current emission due to magnon scatterings are triggered by decreasing temperature. This result illustrates the crucial role of the nonlinear magnon interactions in the spin-current emission driven by dynamical magnetization, or nonequilibrium magnons, from magnetic insulators.

  4. Spin-current emission governed by nonlinear spin dynamics

    PubMed Central

    Tashiro, Takaharu; Matsuura, Saki; Nomura, Akiyo; Watanabe, Shun; Kang, Keehoon; Sirringhaus, Henning; Ando, Kazuya

    2015-01-01

    Coupling between conduction electrons and localized magnetization is responsible for a variety of phenomena in spintronic devices. This coupling enables to generate spin currents from dynamical magnetization. Due to the nonlinearity of magnetization dynamics, the spin-current emission through the dynamical spin-exchange coupling offers a route for nonlinear generation of spin currents. Here, we demonstrate spin-current emission governed by nonlinear magnetization dynamics in a metal/magnetic insulator bilayer. The spin-current emission from the magnetic insulator is probed by the inverse spin Hall effect, which demonstrates nontrivial temperature and excitation power dependences of the voltage generation. The experimental results reveal that nonlinear magnetization dynamics and enhanced spin-current emission due to magnon scatterings are triggered by decreasing temperature. This result illustrates the crucial role of the nonlinear magnon interactions in the spin-current emission driven by dynamical magnetization, or nonequilibrium magnons, from magnetic insulators. PMID:26472712

  5. Dynamics of entanglement and uncertainty relation in coupled harmonic oscillator system: exact results

    NASA Astrophysics Data System (ADS)

    Park, DaeKil

    2018-06-01

    The dynamics of entanglement and uncertainty relation is explored by solving the time-dependent Schrödinger equation for coupled harmonic oscillator system analytically when the angular frequencies and coupling constant are arbitrarily time dependent. We derive the spectral and Schmidt decompositions for vacuum solution. Using the decompositions, we derive the analytical expressions for von Neumann and Rényi entropies. Making use of Wigner distribution function defined in phase space, we derive the time dependence of position-momentum uncertainty relations. To show the dynamics of entanglement and uncertainty relation graphically, we introduce two toy models and one realistic quenched model. While the dynamics can be conjectured by simple consideration in the toy models, the dynamics in the realistic quenched model is somewhat different from that in the toy models. In particular, the dynamics of entanglement exhibits similar pattern to dynamics of uncertainty parameter in the realistic quenched model.

  6. Control of Abnormal Synchronization in Neurological Disorders

    PubMed Central

    Popovych, Oleksandr V.; Tass, Peter A.

    2014-01-01

    In the nervous system, synchronization processes play an important role, e.g., in the context of information processing and motor control. However, pathological, excessive synchronization may strongly impair brain function and is a hallmark of several neurological disorders. This focused review addresses the question of how an abnormal neuronal synchronization can specifically be counteracted by invasive and non-invasive brain stimulation as, for instance, by deep brain stimulation for the treatment of Parkinson’s disease, or by acoustic stimulation for the treatment of tinnitus. On the example of coordinated reset (CR) neuromodulation, we illustrate how insights into the dynamics of complex systems contribute to successful model-based approaches, which use methods from synergetics, non-linear dynamics, and statistical physics, for the development of novel therapies for normalization of brain function and synaptic connectivity. Based on the intrinsic multistability of the neuronal populations induced by spike timing-dependent plasticity (STDP), CR neuromodulation utilizes the mutual interdependence between synaptic connectivity and dynamics of the neuronal networks in order to restore more physiological patterns of connectivity via desynchronization of neuronal activity. The very goal is to shift the neuronal population by stimulation from an abnormally coupled and synchronized state to a desynchronized regime with normalized synaptic connectivity, which significantly outlasts the stimulation cessation, so that long-lasting therapeutic effects can be achieved. PMID:25566174

  7. Dynamic modeling of injection-induced fault reactivation and ground motion and impact on surface structures and human perception

    DOE PAGES

    Rutqvist, Jonny; Cappa, Frederic; Rinaldi, Antonio P.; ...

    2014-12-31

    We summarize recent modeling studies of injection-induced fault reactivation, seismicity, and its potential impact on surface structures and nuisance to the local human population. We used coupled multiphase fluid flow and geomechanical numerical modeling, dynamic wave propagation modeling, seismology theories, and empirical vibration criteria from mining and construction industries. We first simulated injection-induced fault reactivation, including dynamic fault slip, seismic source, wave propagation, and ground vibrations. From co-seismic average shear displacement and rupture area, we determined the moment magnitude to about M w = 3 for an injection-induced fault reactivation at a depth of about 1000 m. We then analyzedmore » the ground vibration results in terms of peak ground acceleration (PGA), peak ground velocity (PGV), and frequency content, with comparison to the U.S. Bureau of Mines’ vibration criteria for cosmetic damage to buildings, as well as human-perception vibration limits. For the considered synthetic M w = 3 event, our analysis showed that the short duration, high frequency ground motion may not cause any significant damage to surface structures, and would not cause, in this particular case, upward CO 2 leakage, but would certainly be felt by the local population.« less

  8. A Socio-Hydrological Model of the Voluntary Urban Water Conservation Behavior during Droughts

    NASA Astrophysics Data System (ADS)

    Sangwan, N.; Eisma, J. A.; Sung, K.; Yu, D. J.

    2016-12-01

    Several cities across the globe are increasingly struggling to meet the water demands of their population. By 2050, nearly 160 million urban dwellers are likely to face perennial water shortage due to ever rising population numbers and climate change. As observed once again during recent drought in California, voluntary water conservation is a key approach for managing urban water availability during periods of constrained supply. It relies on behavioral adaptation that is critical for long-term reductions in water use and building drought resilient communities. Strong interdependencies between human group behavior and regional hydrology in this context entail that the two components be coupled together in a socio-hydrology model to fully understand the dynamics of urban water systems. This work proposes a conceptual framework for one such model and simulates the dynamics of a voluntary conservation program in Marin Municipal Water District, California using dynamic systems modeling approach. Through this model, we plan to assess the effects of different social factors (such as social concern and conformist tendencies) and climato-hydrological conditions (viz. storage levels and weather forecast) on the trajectory of a voluntary conservation program. Our preliminary results have indicated several `tipping points' which can be capitalized on by policy makers to boost conservation at low social costs.

  9. Coupled attitude-orbit dynamics and control for an electric sail in a heliocentric transfer mission.

    PubMed

    Huo, Mingying; Zhao, Jun; Xie, Shaobiao; Qi, Naiming

    2015-01-01

    The paper discusses the coupled attitude-orbit dynamics and control of an electric-sail-based spacecraft in a heliocentric transfer mission. The mathematical model characterizing the propulsive thrust is first described as a function of the orbital radius and the sail angle. Since the solar wind dynamic pressure acceleration is induced by the sail attitude, the orbital and attitude dynamics of electric sails are coupled, and are discussed together. Based on the coupled equations, the flight control is investigated, wherein the orbital control is studied in an optimal framework via a hybrid optimization method and the attitude controller is designed based on feedback linearization control. To verify the effectiveness of the proposed control strategy, a transfer problem from Earth to Mars is considered. The numerical results show that the proposed strategy can control the coupled system very well, and a small control torque can control both the attitude and orbit. The study in this paper will contribute to the theory study and application of electric sail.

  10. Coupled Attitude-Orbit Dynamics and Control for an Electric Sail in a Heliocentric Transfer Mission

    PubMed Central

    Huo, Mingying; Zhao, Jun; Xie, Shaobiao; Qi, Naiming

    2015-01-01

    The paper discusses the coupled attitude-orbit dynamics and control of an electric-sail-based spacecraft in a heliocentric transfer mission. The mathematical model characterizing the propulsive thrust is first described as a function of the orbital radius and the sail angle. Since the solar wind dynamic pressure acceleration is induced by the sail attitude, the orbital and attitude dynamics of electric sails are coupled, and are discussed together. Based on the coupled equations, the flight control is investigated, wherein the orbital control is studied in an optimal framework via a hybrid optimization method and the attitude controller is designed based on feedback linearization control. To verify the effectiveness of the proposed control strategy, a transfer problem from Earth to Mars is considered. The numerical results show that the proposed strategy can control the coupled system very well, and a small control torque can control both the attitude and orbit. The study in this paper will contribute to the theory study and application of electric sail. PMID:25950179

  11. Female figs as traps: Their impact on the dynamics of an experimental fig tree-pollinator-parasitoid community

    NASA Astrophysics Data System (ADS)

    Suleman, Nazia; Sait, Steve; Compton, Stephen G.

    2015-01-01

    Interactions between fig trees (Ficus) and their pollinating fig wasps (Agaonidae) result in both a highly species-specific nursery mutualism and mutual exploitation. Around half of the 800 or so fig tree species are functionally dioecious. Figs on male plants produce pollen and fig wasp offspring, whereas figs on female plants produce only seeds. Figs on female plants are traps for pollinators. The fig wasps enter the female figs to oviposit, but lose their wings on entry and are then prevented from oviposition by the long styles that characterise the flowers in female figs. Continuation of the mutualism depends on the pollinators' failure to distinguish between male and female figs before entry. Female plants may also have a negative impact on the parasitoid fig wasps that feed on pollinators, if they are also attracted to female figs. We used glasshouse populations of figs (with and without female plants), pollinators and parasitoids to infer the impact of female figs on fig wasp dynamics. Cyclic population fluctuations were present in both species. Female plants appeared to dampen the amplitudes of pollinator population cycles, and parasitoid populations may become less tightly coupled with host populations, but the presence of female figs did not reduce parasitism rates, nor parasitoid and pollinator densities, and only parasitoid sex ratios were affected. Our glasshouse experimental design was likely to favour the impact of female figs on the wasp populations, which suggests that female plants in the field are unlikely to have a major negative impact on their pollinators, despite being a major mortality factor.

  12. Coupling of electromagnetics and structural/fluid dynamics - application to the dual coolant blanket subjected to plasma disruptions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jordan, T.

    Some aspects concerning the coupling of quasi-stationary electromagnetics and the dynamics of structure and fluid are investigated. The necessary equations are given in a dimensionless form. The dimensionless parameters in these equations are used to evaluate the importance of the different coupling effects. A finite element formulation of the eddy-current damping in solid structures is developed. With this formulation, an existing finite element method (FEM) structural dynamics code is extended and coupled to an FEM eddy-current code. With this program system, the influence of the eddy-current damping on the dynamic loading of the dual coolant blanket during a centered plasmamore » disruption is determined. The analysis proves that only in loosely fixed or soft structures will eddy-current damping considerably reduce the resulting stresses. Additionally, the dynamic behavior of the liquid metal in the blankets` poloidal channels is described with a simple two-dimensional magnetohydrodynamic approach. The analysis of the dimensionless parameters shows that for small-scale experiments, which are designed to model the coupled electromagnetic and structural/fluid dynamic effects in such a blanket, the same magnetic fields must be applied as in the real fusion device. This will be the easiest way to design experiments that produce transferable results. 10 refs., 7 figs.« less

  13. Effect of correlations on the polarizability of the one component plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carini, P.R.

    Correlational effects on the dynamical polarizability ..cap alpha..(k,..omega..) of the one component plasma (OCP) are investigated in both the weak (..gamma.. < 1) and strong (..gamma.. < 1) coupling regions (..gamma.. is the plasma parameter, ..gamma.. = k/sup 3//4..pi..n where k/sup -1/ is the Debye length and n is the number density. In the weak coupling region a numerical solution is presented over a wide range of frequencies of the complete first order (in ..gamma..) correction to the dynamical polarizability which fully accounts for dynamical screening effects and is exact in the long wavelength and weak coupling limits (k ..-->..more » 0, ..gamma.. ..-->.. 0). This complete result is compared with a similar numerical solution for the dynamical polarizability obtained from the Golden-Kalman (GK) dynamical theory for strongly coupled plasmas. Contrary to previous results reported in the literature it was found that both theories predict the change in the dispersion of the long wavelength plasmons due to finite ..gamma.. effects to be that the slope of the plasmon dispersion curve decreases from its Bohm-Gross value as the plasma parameter increases from 0. In the strong coupling region two hydrodynamical model solutions of the GK dynamical theory for the polarizability are presented.« less

  14. Synchronization in complex oscillator networks and smart grids.

    PubMed

    Dörfler, Florian; Chertkov, Michael; Bullo, Francesco

    2013-02-05

    The emergence of synchronization in a network of coupled oscillators is a fascinating topic in various scientific disciplines. A widely adopted model of a coupled oscillator network is characterized by a population of heterogeneous phase oscillators, a graph describing the interaction among them, and diffusive and sinusoidal coupling. It is known that a strongly coupled and sufficiently homogeneous network synchronizes, but the exact threshold from incoherence to synchrony is unknown. Here, we present a unique, concise, and closed-form condition for synchronization of the fully nonlinear, nonequilibrium, and dynamic network. Our synchronization condition can be stated elegantly in terms of the network topology and parameters or equivalently in terms of an intuitive, linear, and static auxiliary system. Our results significantly improve upon the existing conditions advocated thus far, they are provably exact for various interesting network topologies and parameters; they are statistically correct for almost all networks; and they can be applied equally to synchronization phenomena arising in physics and biology as well as in engineered oscillator networks, such as electrical power networks. We illustrate the validity, the accuracy, and the practical applicability of our results in complex network scenarios and in smart grid applications.

  15. Continuous and Discrete Structured Population Models with Applications to Epidemiology and Marine Mammals

    NASA Astrophysics Data System (ADS)

    Tang, Tingting

    In this dissertation, we develop structured population models to examine how changes in the environmental affect population processes. In Chapter 2, we develop a general continuous time size structured model describing a susceptible-infected (SI) population coupled with the environment. This model applies to problems arising in ecology, epidemiology, and cell biology. The model consists of a system of quasilinear hyperbolic partial differential equations coupled with a system of nonlinear ordinary differential equations that represent the environment. We develop a second-order high resolution finite difference scheme to numerically solve the model. Convergence of this scheme to a weak solution with bounded total variation is proved. We numerically compare the second order high resolution scheme with a first order finite difference scheme. Higher order of convergence and high resolution property are observed in the second order finite difference scheme. In addition, we apply our model to a multi-host wildlife disease problem, questions regarding the impact of the initial population structure and transition rate within each host are numerically explored. In Chapter 3, we use a stage structured matrix model for wildlife population to study the recovery process of the population given an environmental disturbance. We focus on the time it takes for the population to recover to its pre-event level and develop general formulas to calculate the sensitivity or elasticity of the recovery time to changes in the initial population distribution, vital rates and event severity. Our results suggest that the recovery time is independent of the initial population size, but is sensitive to the initial population structure. Moreover, it is more sensitive to the reduction proportion to the vital rates of the population caused by the catastrophe event relative to the duration of impact of the event. We present the potential application of our model to the amphibian population dynamic and the recovery of a certain plant population. In addition, we explore, in details, the application of the model to the sperm whale population in Gulf of Mexico after the Deepwater Horizon oil spill. In Chapter 4, we summarize the results from Chapter 2 and Chapter 3 and explore some further avenues of our research.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rutqvist, Jonny; Cappa, Frederic; Rinaldi, Antonio P.

    We summarize recent modeling studies of injection-induced fault reactivation, seismicity, and its potential impact on surface structures and nuisance to the local human population. We used coupled multiphase fluid flow and geomechanical numerical modeling, dynamic wave propagation modeling, seismology theories, and empirical vibration criteria from mining and construction industries. We first simulated injection-induced fault reactivation, including dynamic fault slip, seismic source, wave propagation, and ground vibrations. From co-seismic average shear displacement and rupture area, we determined the moment magnitude to about M w = 3 for an injection-induced fault reactivation at a depth of about 1000 m. We then analyzedmore » the ground vibration results in terms of peak ground acceleration (PGA), peak ground velocity (PGV), and frequency content, with comparison to the U.S. Bureau of Mines’ vibration criteria for cosmetic damage to buildings, as well as human-perception vibration limits. For the considered synthetic M w = 3 event, our analysis showed that the short duration, high frequency ground motion may not cause any significant damage to surface structures, and would not cause, in this particular case, upward CO 2 leakage, but would certainly be felt by the local population.« less

  17. Systems Modeling at Multiple Levels of Regulation: Linking Systems and Genetic Networks to Spatially Explicit Plant Populations

    PubMed Central

    Kitchen, James L.; Allaby, Robin G.

    2013-01-01

    Selection and adaptation of individuals to their underlying environments are highly dynamical processes, encompassing interactions between the individual and its seasonally changing environment, synergistic or antagonistic interactions between individuals and interactions amongst the regulatory genes within the individual. Plants are useful organisms to study within systems modeling because their sedentary nature simplifies interactions between individuals and the environment, and many important plant processes such as germination or flowering are dependent on annual cycles which can be disrupted by climate behavior. Sedentism makes plants relevant candidates for spatially explicit modeling that is tied in with dynamical environments. We propose that in order to fully understand the complexities behind plant adaptation, a system that couples aspects from systems biology with population and landscape genetics is required. A suitable system could be represented by spatially explicit individual-based models where the virtual individuals are located within time-variable heterogeneous environments and contain mutable regulatory gene networks. These networks could directly interact with the environment, and should provide a useful approach to studying plant adaptation. PMID:27137364

  18. Complex Dynamics of Delay-Coupled Neural Networks

    NASA Astrophysics Data System (ADS)

    Mao, Xiaochen

    2016-09-01

    This paper reveals the complicated dynamics of a delay-coupled system that consists of a pair of sub-networks and multiple bidirectional couplings. Time delays are introduced into the internal connections and network-couplings, respectively. The stability and instability of the coupled network are discussed. The sufficient conditions for the existence of oscillations are given. Case studies of numerical simulations are given to validate the analytical results. Interesting and complicated neuronal activities are observed numerically, such as rest states, periodic oscillations, multiple switches of rest states and oscillations, and the coexistence of different types of oscillations.

  19. Influence of coupling on thermal forces and dynamic friction in plasmas with multiple ion species

    NASA Astrophysics Data System (ADS)

    Kagan, Grigory; Baalrud, Scott D.; Daligault, Jérôme

    2017-07-01

    The recently proposed effective potential theory [Phys. Rev. Lett. 110, 235001 (2013)] is used to investigate the influence of coupling on inter-ion-species diffusion and momentum exchange in multi-component plasmas. Thermo-diffusion and the thermal force are found to diminish rapidly as strong coupling onsets. For the same coupling parameters, the dynamic friction coefficient is found to tend to unity. These results provide an impetus for addressing the role of coupling on diffusive processes in inertial confinement fusion experiments.

  20. Influence of coupling on thermal forces and dynamic friction in plasmas with multiple ion species

    DOE PAGES

    Kagan, Grigory; Baalrud, Scott D.; Daligault, Jérôme

    2017-07-05

    The recently proposed effective potential theory [Phys. Rev. Lett. 110, 235001 (2013)] is used to investigate the influence of coupling on inter-ion-species diffusion and momentum exchange in multi-component plasmas. Thermo-diffusion and the thermal force are found to diminish rapidly as strong coupling onsets. We found that for the same coupling parameters, the dynamic friction coefficient there tends to be unity. Our results provide an impetus for addressing the role of coupling on diffusive processes in inertial confinement fusion experiments.

  1. Influence of coupling on thermal forces and dynamic friction in plasmas with multiple ion species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kagan, Grigory; Baalrud, Scott D.; Daligault, Jérôme

    The recently proposed effective potential theory [Phys. Rev. Lett. 110, 235001 (2013)] is used to investigate the influence of coupling on inter-ion-species diffusion and momentum exchange in multi-component plasmas. Thermo-diffusion and the thermal force are found to diminish rapidly as strong coupling onsets. We found that for the same coupling parameters, the dynamic friction coefficient there tends to be unity. Our results provide an impetus for addressing the role of coupling on diffusive processes in inertial confinement fusion experiments.

  2. An alternative laser driven photodissociation mechanism of pyrrole via πσ*1∕S0 conical intersection.

    PubMed

    Nandipati, K R; Lan, Z; Singh, H; Mahapatra, S

    2017-06-07

    A first principles quantum dynamics study of N-H photodissociation of pyrrole on the S 0 - 1 πσ * (A21) coupled electronic states is carried out with the aid of an optimally designed UV-laser pulse. A new photodissociation path, as compared to the conventional barrier crossing on the πσ*1 state, opens up upon electronic transitions under the influence of pump-dump laser pulses, which efficiently populate both the dissociation channels. The interplay of electronic transitions due both to vibronic coupling and the laser pulse is observed in the control mechanism and discussed in detail. The proposed control mechanism seems to be robust, and not discussed in the literature so far, and is expected to trigger future experiments on the πσ*1 photochemistry of molecules of chemical and biological importance. The design of the optimal pulses and their application to enhance the overall dissociation probability is carried out within the framework of optimal control theory. The quantum dynamics of the system in the presence of pulse is treated by solving the time-dependent Schrödinger equation in the semi-classical dipole approximation.

  3. An alternative laser driven photodissociation mechanism of pyrrole via πσ*1∕S0 conical intersection

    PubMed Central

    Nandipati, K. R.; Lan, Z.; Singh, H.; Mahapatra, S.

    2017-01-01

    A first principles quantum dynamics study of N–H photodissociation of pyrrole on the S0−1πσ*(A21) coupled electronic states is carried out with the aid of an optimally designed UV-laser pulse. A new photodissociation path, as compared to the conventional barrier crossing on the πσ*1 state, opens up upon electronic transitions under the influence of pump-dump laser pulses, which efficiently populate both the dissociation channels. The interplay of electronic transitions due both to vibronic coupling and the laser pulse is observed in the control mechanism and discussed in detail. The proposed control mechanism seems to be robust, and not discussed in the literature so far, and is expected to trigger future experiments on the πσ*1 photochemistry of molecules of chemical and biological importance. The design of the optimal pulses and their application to enhance the overall dissociation probability is carried out within the framework of optimal control theory. The quantum dynamics of the system in the presence of pulse is treated by solving the time-dependent Schrödinger equation in the semi-classical dipole approximation. PMID:28595406

  4. Nonadiabatic Dynamics May Be Probed through Electronic Coherence in Time-Resolved Photoelectron Spectroscopy.

    PubMed

    Bennett, Kochise; Kowalewski, Markus; Mukamel, Shaul

    2016-02-09

    We present a hierarchy of Fermi golden rules (FGRs) that incorporate strongly coupled electronic/nuclear dynamics in time-resolved photoelectron spectroscopy (TRPES) signals at different levels of theory. Expansion in the joint electronic and nuclear eigenbasis yields the numerically most challenging exact FGR (eFGR). The quasistatic Fermi Golden Rule (qsFGR) neglects nuclear motion during the photoionization process but takes into account electronic coherences as well as populations initially present in the pumped matter as well as those generated internally by coupling between electronic surfaces. The standard semiclassical Fermi Golden Rule (scFGR) neglects the electronic coherences and the nuclear kinetic energy during the ionizing pulse altogether, yielding the classical Condon approximation. The coherence contributions depend on the phase-profile of the ionizing field, allowing coherent control of TRPES signals. The photoelectron spectrum from model systems is simulated using these three levels of theory. The eFGR and the qsFGR show temporal oscillations originating from the electronic or vibrational coherences generated as the nuclear wave packet traverses a conical intersection. These oscillations, which are missed by the scFGR, directly reveal the time-evolving splitting between electronic states of the neutral molecule in the curve-crossing regime.

  5. An alternative laser driven photodissociation mechanism of pyrrole via π*1σ/S0 conical intersection

    NASA Astrophysics Data System (ADS)

    Nandipati, K. R.; Lan, Z.; Singh, H.; Mahapatra, S.

    2017-06-01

    A first principles quantum dynamics study of N-H photodissociation of pyrrole on the S0-1π σ*(A12) coupled electronic states is carried out with the aid of an optimally designed UV-laser pulse. A new photodissociation path, as compared to the conventional barrier crossing on the π*1σ state, opens up upon electronic transitions under the influence of pump-dump laser pulses, which efficiently populate both the dissociation channels. The interplay of electronic transitions due both to vibronic coupling and the laser pulse is observed in the control mechanism and discussed in detail. The proposed control mechanism seems to be robust, and not discussed in the literature so far, and is expected to trigger future experiments on the π*1σ photochemistry of molecules of chemical and biological importance. The design of the optimal pulses and their application to enhance the overall dissociation probability is carried out within the framework of optimal control theory. The quantum dynamics of the system in the presence of pulse is treated by solving the time-dependent Schrödinger equation in the semi-classical dipole approximation.

  6. Surface hopping with a manifold of electronic states. II. Application to the many-body Anderson-Holstein model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dou, Wenjie; Subotnik, Joseph E.; Nitzan, Abraham

    We investigate a simple surface hopping (SH) approach for modeling a single impurity level coupled to a single phonon and an electronic (metal) bath (i.e., the Anderson-Holstein model). The phonon degree of freedom is treated classically with motion along–and hops between–diabatic potential energy surfaces. The hopping rate is determined by the dynamics of the electronic bath (which are treated implicitly). For the case of one electronic bath, in the limit of small coupling to the bath, SH recovers phonon relaxation to thermal equilibrium and yields the correct impurity electron population (as compared with numerical renormalization group). For the case ofmore » out of equilibrium dynamics, SH current-voltage (I-V) curve is compared with the quantum master equation (QME) over a range of parameters, spanning the quantum region to the classical region. In the limit of large temperature, SH and QME agree. Furthermore, we can show that, in the limit of low temperature, the QME agrees with real-time path integral calculations. As such, the simple procedure described here should be useful in many other contexts.« less

  7. Single field double inflation and primordial black holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kannike, K.; Marzola, L.; Raidal, M.

    Within the framework of scalar-tensor theories, we study the conditions that allow single field inflation dynamics on small cosmological scales to significantly differ from that of the large scales probed by the observations of cosmic microwave background. The resulting single field double inflation scenario is characterised by two consequent inflation eras, usually separated by a period where the slow-roll approximation fails. At large field values the dynamics of the inflaton is dominated by the interplay between its non-minimal coupling to gravity and the radiative corrections to the inflaton self-coupling. For small field values the potential is, instead, dominated by amore » polynomial that results in a hilltop inflation. Without relying on the slow-roll approximation, which is invalidated by the appearance of the intermediate stage, we propose a concrete model that matches the current measurements of inflationary observables and employs the freedom granted by the framework on small cosmological scales to give rise to a sizeable population of primordial black holes generated by large curvature fluctuations. We find that these features generally require a potential with a local minimum. We show that the associated primordial black hole mass function is only approximately lognormal.« less

  8. A Hierarchical Approach Embedding Hydrologic and Population Modeling for a West Nile Virus Vector Prediction

    NASA Astrophysics Data System (ADS)

    Jian, Y.; Silvestri, S.; Marani, M.; Saltarin, A.; Chillemi, G.

    2012-12-01

    We applied a hierarchical state space model to predict the abundance of Cx.pipiens (a West Nile Virus vector) in the Po River Delta Region, Northeastern Italy. The study area has large mosquito abundance, due to a favorable environment and climate as well as dense human population. Mosquito data were collected on a weekly basis at more than 20 sites from May to September in 2010 and 2011. Cx.pipiens was the dominant species in our samples, accounting for about 90% of the more than 300,000 total captures. The hydrological component of the model accounted for evapotranspiration, infiltration and deep percolation to infer, in a 0D context, the local dynamics of soil moisture as a direct exogenous forcing of mosquito dynamics. The population model had a Gompertz structure, which included exogenous meteorological forcings and delayed internal dynamics. The models were coupled within a hierarchical statistical structure to overcome the relatively short length of the samples by exploiting the large number of concurrent observations available. The results indicated that Cx.pipiens abundance had significant density dependence at 1 week lag, which approximately matched its development time from larvae to adult. Among the exogenous controls, temperature, daylight hours, and soil moisture explained most of the dynamics. Longer daylight hours and lower soil moisture values resulted in higher abundance. The negative correlation of soil moisture and mosquito population can be explained with the abundance of water in the region (e.g. due to irrigation) and the preference for eutrophic habitats by Cx.pipien. Variations among sites were explained by land use factors as represented by distance to the nearest rice field and NDVI values: the carrying capacity decreased with increased distance to the nearest rice filed, while the maximum growth rate was positively related with NDVI. The model shows a satisfactory performance in predicting (potentially one week in advance) mosquito abundance and particularly its peak timing and magnitude.

  9. Morphological communication: exploiting coupled dynamics in a complex mechanical structure to achieve locomotion

    PubMed Central

    Rieffel, John A.; Valero-Cuevas, Francisco J.; Lipson, Hod

    2010-01-01

    Traditional engineering approaches strive to avoid, or actively suppress, nonlinear dynamic coupling among components. Biological systems, in contrast, are often rife with these dynamics. Could there be, in some cases, a benefit to high degrees of dynamical coupling? Here we present a distributed robotic control scheme inspired by the biological phenomenon of tensegrity-based mechanotransduction. This emergence of morphology-as-information-conduit or ‘morphological communication’, enabled by time-sensitive spiking neural networks, presents a new paradigm for the decentralized control of large, coupled, modular systems. These results significantly bolster, both in magnitude and in form, the idea of morphological computation in robotic control. Furthermore, they lend further credence to ideas of embodied anatomical computation in biological systems, on scales ranging from cellular structures up to the tendinous networks of the human hand. PMID:19776146

  10. Vulnerabilities, Stressors, and Adaptations in Situationally Violent Relationships

    ERIC Educational Resources Information Center

    Stith, Sandra M.; Amanor-Boadu, Yvonne; Miller, Marjorie Strachman; Menhusen, Erin; Morgan, Carla; Few-Demo, April

    2011-01-01

    Very little research has examined the dynamics within couple relationships that may lead to situational couple violence (SCV; M. P. Johnson, 2006a; K. H. Rosen, S. M. Stith, A. L. Few, K. L. Daly, & D. R. Tritt, 2005). To enhance understanding of these dynamics, we conducted a qualitative analysis of interviews with 11 couples previously…

  11. Synchronization of oscillations in coupled multimode optoelectronic oscillators: bifurcation analysis

    NASA Astrophysics Data System (ADS)

    Balakin, M.; Gulyaev, A.; Kazaryan, A.; Yarovoy, O.

    2018-04-01

    We study influence of time delay in coupling on the dynamics of two coupled multimode optoelectronic oscillators. We reveal the structure of main synchronization region on the parameter plane and main bifurcations leading to synchronization and multistability formation. The dynamics of the system is studied in a wide range of values of control parameters.

  12. Tinamit: Making coupled system dynamics models accessible to stakeholders

    NASA Astrophysics Data System (ADS)

    Malard, Julien; Inam Baig, Azhar; Rojas Díaz, Marcela; Hassanzadeh, Elmira; Adamowski, Jan; Tuy, Héctor; Melgar-Quiñonez, Hugo

    2017-04-01

    Model coupling is increasingly used as a method of combining the best of two models when representing socio-environmental systems, though barriers to successful model adoption by stakeholders are particularly present with the use of coupled models, due to their high complexity and typically low implementation flexibility. Coupled system dynamics - physically-based modelling is a promising method to improve stakeholder participation in environmental modelling while retaining a high level of complexity for physical process representation, as the system dynamics components are readily understandable and can be built by stakeholders themselves. However, this method is not without limitations in practice, including 1) inflexible and complicated coupling methods, 2) difficult model maintenance after the end of the project, and 3) a wide variety of end-user cultures and languages. We have developed the open-source Python-language software tool Tinamit to overcome some of these limitations to the adoption of stakeholder-based coupled system dynamics - physically-based modelling. The software is unique in 1) its inclusion of both a graphical user interface (GUI) and a library of available commands (API) that allow users with little or no coding abilities to rapidly, effectively, and flexibly couple models, 2) its multilingual support for the GUI, allowing users to couple models in their preferred language (and to add new languages as necessary for their community work), and 3) its modular structure allowing for very easy model coupling and modification without the direct use of code, and to which programming-savvy users can easily add support for new types of physically-based models. We discuss how the use of Tinamit for model coupling can greatly increase the accessibility of coupled models to stakeholders, using an example of a stakeholder-built system dynamics model of soil salinity issues in Pakistan coupled with the physically-based soil salinity and water flow model SAHYSMOD. Different socioeconomic and environmental policies for soil salinity remediation are tested within the coupled model, allowing for the identification of the most efficient actions from an environmental and a farmer economy standpoint while taking into account the complex feedbacks between socioeconomics and the physical environment.

  13. An epidemic model for the interactions between thermal regime of rivers and transmission of Proliferative Kidney Disease in salmonid fish

    NASA Astrophysics Data System (ADS)

    Carraro, Luca; Bertuzzo, Enrico; Mari, Lorenzo; Gatto, Marino; Strepparava, Nicole; Hartikainen, Hanna; Rinaldo, Andrea

    2015-04-01

    Proliferative kidney disease (PKD) affects salmonid populations in European and North-American rivers. It is caused by the endoparasitic myxozoan Tetracapsuloides bryosalmonae, which exploits freshwater bryozoans (Fredericella sultana) and salmonids as primary and secondary hosts, respectively. Incidence and mortality, which can reach up to 90-100%, are known to be strongly related to water temperature. PKD has been present in brown trout population for a long time but has recently increased rapidly in incidence and severity causing a decline in fish catches in many countries. In addition, environmental changes are feared to cause PKD outbreaks at higher latitude and altitude regions as warmer temperatures promote disease development. This calls for a better comprehension of the interactions between disease dynamics and the thermal regime of rivers, in order to possibly devise strategies for disease management. In this perspective, a spatially explicit model of PKD epidemiology in riverine host metacommunities is proposed. The model aims at summarizing the knowledge on the modes of transmission of the disease and the life-cycle of the parasite, making the connection between temperature and epidemiological parameters explicit. The model accounts for both local population and disease dynamics of bryozoans and fish and hydrodynamic dispersion of the parasite spores and hosts along the river network. The model is time-hybrid, coupling inter-seasonal and intra-seasonal dynamics, the former being described in a continuous time domain, the latter seen as time steps of a discrete time domain. In order to test the model, a case study is conducted in river Wigger (Cantons of Aargau and Lucerne, Switzerland), where data about water temperature, brown trout and bryozoan populations and PKD prevalence are being collected.

  14. A review of dynamic inflow and its effect on experimental correlations

    NASA Technical Reports Server (NTRS)

    Gaonkar, G. H.; Peters, D. A.

    1985-01-01

    A review is given of the relationship between experimental data and the development of modern dynamic-inflow theory. Some of the most interesting data, first presented 10 years ago at the Dynamic Specialist's Meeting, is now reviewed in light of the newer theories. These pure blade-flapping data correlate very well with analyses that include the new dynamic inflow theory, thus verifying the theory. Experimental data are also presented for damping with coupled inplane and body motions. Although inclusion of dynamic inflow is often required to correlate this coupled data, the data cannot be used to verify any particular dynamic inflow theory due to the uncertainties in modeling the inplane degree of freedom. For verification, pure flapping is required. However, the coupled data do show that inflow is often important in such computations.

  15. A Coupled Modeling Framework of the Co-evolution of Humans and Water: Case Study of Tarim River Basin, Western China

    NASA Astrophysics Data System (ADS)

    Liu, D.; Tian, F.; Lin, M.; Sivapalan, M.

    2014-12-01

    The complex interactions and feedbacks between humans and water are very essential issues but are poorly understood in the newly proposed discipline of socio-hydrology (Sivapalan et al., 2012). An exploratory model with the appropriate level of simplification can be valuable to improve our understanding of the co-evolution and self-organization of socio-hydrological systems driven by interactions and feedbacks operating at different scales. In this study, a simple coupled modeling framework for socio-hydrology co-evolution is developed for the Tarim River Basin in Western China, and is used to illustrate the explanatory power of such a model. The study area is the mainstream of the Tarim River, which is divided into two modeling units. The socio-hydrological system is composed of four parts, i.e., social sub-system, economic sub-system, ecological sub-system, and hydrological sub-system. In each modeling unit, four coupled ordinary differential equations are used to simulate the dynamics of the social sub-system represented by human population, the economic sub-system represented by irrigated crop area, the ecological sub-system represented by natural vegetation cover and the hydrological sub-system represented by stream discharge. The coupling and feedback processes of the four dominant sub-systems (and correspondingly four state variables) are integrated into several internal system characteristics interactively and jointly determined by themselves and by other coupled systems. For example, the stream discharge is coupled to the irrigated crop area by the colonization rate and mortality rate of the irrigated crop area in the upper reach and the irrigated area is coupled to stream discharge through irrigation water consumption. The co-evolution of the Tarim socio-hydrological system is then analyzed within this modeling framework to gain insights into the overall system dynamics and its sensitivity to the external drivers and internal system variables. In the modeling framework, the state of each subsystem is holistically described by one state variable and the framework is flexible enough to comprise more processes and constitutive relationships if they are needed to illustrate the interaction and feedback mechanisms of the human-water system.

  16. Protonation-state-Coupled Conformational Dynamics in Reaction Mechanisms of Channel and Pump Rhodopsins

    DOE PAGES

    Bondar, Ana-Nicoleta; Smith, Jeremy C.

    2017-07-25

    Channel and pump rhodopsins use energy from light absorbed by a covalently bound retinal chromophore to transport ions across membranes of microbial cells. Ion transfer steps, including proton transfer, can couple to changes in protein conformational dynamics and water positions. Although general principles of how microbial rhodopsins function are largely understood, key issues pertaining to reaction mechanisms remain unclear. Here, we compare the protonation-coupled dynamics of pump and channelrhodopsins, highlighting the roles that water dynamics, protein electrostatics and protein flexibility can have in ion transport mechanisms. We discuss observations supporting important functional roles of inter- and intra-helical carboxylate/hydroxyl hydrogen-bonding motifs.more » Specifically, we use the proton pump bacteriorhodopsin, the sodium pump KR2, channelrhodopsins and Anabaena sensory rhodopsin. We outline the usefulness of theoretic biophysics approaches to the study of retinal proteins, challenges in studying the hydrogen-bond dynamics of rhodopsin active sites, and implications for conformational coupling in membrane transporters.« less

  17. The effect of inertial coupling in the dynamics and control of flexible robotic manipulators

    NASA Technical Reports Server (NTRS)

    Tesar, Delbert; Curran, Carol Cockrell; Graves, Philip Lee

    1988-01-01

    A general model of the dynamics of flexible robotic manipulators is presented, including the gross motion of the links, the vibrations of the links and joints, and the dynamic coupling between the gross motions and vibrations. The vibrations in the links may be modeled using lumped parameters, truncated modal summation, a component mode synthesis method, or a mixture of these methods. The local link inertia matrix is derived to obtain the coupling terms between the gross motion of the link and the vibrations of the link. Coupling between the motions of the links results from the kinematic model, which utilizes the method of kinematic influence. The model is used to simulate the dynamics of a flexible space-based robotic manipulator which is attached to a spacecraft, and is free to move with respect to the inertial reference frame. This model may be used to study the dynamic response of the manipulator to the motions of its joints, or to externally applied disturbances.

  18. Quenching of dynamic nuclear polarization by spin-orbit coupling in GaAs quantum dots.

    PubMed

    Nichol, John M; Harvey, Shannon P; Shulman, Michael D; Pal, Arijeet; Umansky, Vladimir; Rashba, Emmanuel I; Halperin, Bertrand I; Yacoby, Amir

    2015-07-17

    The central-spin problem is a widely studied model of quantum decoherence. Dynamic nuclear polarization occurs in central-spin systems when electronic angular momentum is transferred to nuclear spins and is exploited in quantum information processing for coherent spin manipulation. However, the mechanisms limiting this process remain only partially understood. Here we show that spin-orbit coupling can quench dynamic nuclear polarization in a GaAs quantum dot, because spin conservation is violated in the electron-nuclear system, despite weak spin-orbit coupling in GaAs. Using Landau-Zener sweeps to measure static and dynamic properties of the electron spin-flip probability, we observe that the size of the spin-orbit and hyperfine interactions depends on the magnitude and direction of applied magnetic field. We find that dynamic nuclear polarization is quenched when the spin-orbit contribution exceeds the hyperfine, in agreement with a theoretical model. Our results shed light on the surprisingly strong effect of spin-orbit coupling in central-spin systems.

  19. Protonation-state-Coupled Conformational Dynamics in Reaction Mechanisms of Channel and Pump Rhodopsins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bondar, Ana-Nicoleta; Smith, Jeremy C.

    Channel and pump rhodopsins use energy from light absorbed by a covalently bound retinal chromophore to transport ions across membranes of microbial cells. Ion transfer steps, including proton transfer, can couple to changes in protein conformational dynamics and water positions. Although general principles of how microbial rhodopsins function are largely understood, key issues pertaining to reaction mechanisms remain unclear. Here, we compare the protonation-coupled dynamics of pump and channelrhodopsins, highlighting the roles that water dynamics, protein electrostatics and protein flexibility can have in ion transport mechanisms. We discuss observations supporting important functional roles of inter- and intra-helical carboxylate/hydroxyl hydrogen-bonding motifs.more » Specifically, we use the proton pump bacteriorhodopsin, the sodium pump KR2, channelrhodopsins and Anabaena sensory rhodopsin. We outline the usefulness of theoretic biophysics approaches to the study of retinal proteins, challenges in studying the hydrogen-bond dynamics of rhodopsin active sites, and implications for conformational coupling in membrane transporters.« less

  20. Long-distance dispersal via ocean currents connects Omani clownfish populations throughout entire species range.

    PubMed

    Simpson, Stephen D; Harrison, Hugo B; Claereboudt, Michel R; Planes, Serge

    2014-01-01

    Dispersal is a crucial ecological process, driving population dynamics and defining the structure and persistence of populations. Measuring demographic connectivity between discreet populations remains a long-standing challenge for most marine organisms because it involves tracking the movement of pelagic larvae. Recent studies demonstrate local connectivity of reef fish populations via the dispersal of planktonic larvae, while biogeography indicates some larvae must disperse 100-1000 s kilometres. To date, empirical measures of long-distance dispersal are lacking and the full scale of dispersal is unknown. Here we provide the first measure of long-distance dispersal in a coral reef fish, the Omani clownfish Amphiprion omanensis, throughout its entire species range. Using genetic assignment tests we demonstrate bidirectional exchange of first generation migrants, with subsequent social and reproductive integration, between two populations separated by over 400 km. Immigration was 5.4% and 0.7% in each region, suggesting a biased southward exchange, and matched predictions from a physically-coupled dispersal model. This rare opportunity to measure long-distance dispersal demonstrates connectivity of isolated marine populations over distances of 100 s of kilometres and provides a unique insight into the processes of biogeography, speciation and adaptation.

Top