Instability of turing patterns in reaction-diffusion-ODE systems.
Marciniak-Czochra, Anna; Karch, Grzegorz; Suzuki, Kanako
2017-02-01
The aim of this paper is to contribute to the understanding of the pattern formation phenomenon in reaction-diffusion equations coupled with ordinary differential equations. Such systems of equations arise, for example, from modeling of interactions between cellular processes such as cell growth, differentiation or transformation and diffusing signaling factors. We focus on stability analysis of solutions of a prototype model consisting of a single reaction-diffusion equation coupled to an ordinary differential equation. We show that such systems are very different from classical reaction-diffusion models. They exhibit diffusion-driven instability (turing instability) under a condition of autocatalysis of non-diffusing component. However, the same mechanism which destabilizes constant solutions of such models, destabilizes also all continuous spatially heterogeneous stationary solutions, and consequently, there exist no stable Turing patterns in such reaction-diffusion-ODE systems. We provide a rigorous result on the nonlinear instability, which involves the analysis of a continuous spectrum of a linear operator induced by the lack of diffusion in the destabilizing equation. These results are extended to discontinuous patterns for a class of nonlinearities.
Simpson, Matthew J; Sharp, Jesse A; Morrow, Liam C; Baker, Ruth E
2015-01-01
Embryonic development involves diffusion and proliferation of cells, as well as diffusion and reaction of molecules, within growing tissues. Mathematical models of these processes often involve reaction-diffusion equations on growing domains that have been primarily studied using approximate numerical solutions. Recently, we have shown how to obtain an exact solution to a single, uncoupled, linear reaction-diffusion equation on a growing domain, 0 < x < L(t), where L(t) is the domain length. The present work is an extension of our previous study, and we illustrate how to solve a system of coupled reaction-diffusion equations on a growing domain. This system of equations can be used to study the spatial and temporal distributions of different generations of cells within a population that diffuses and proliferates within a growing tissue. The exact solution is obtained by applying an uncoupling transformation, and the uncoupled equations are solved separately before applying the inverse uncoupling transformation to give the coupled solution. We present several example calculations to illustrate different types of behaviour. The first example calculation corresponds to a situation where the initially-confined population diffuses sufficiently slowly that it is unable to reach the moving boundary at x = L(t). In contrast, the second example calculation corresponds to a situation where the initially-confined population is able to overcome the domain growth and reach the moving boundary at x = L(t). In its basic format, the uncoupling transformation at first appears to be restricted to deal only with the case where each generation of cells has a distinct proliferation rate. However, we also demonstrate how the uncoupling transformation can be used when each generation has the same proliferation rate by evaluating the exact solutions as an appropriate limit.
Reaction-diffusion systems coupled at the boundary and the Morse-Smale property
NASA Astrophysics Data System (ADS)
Broche, Rita de Cássia D. S.; de Oliveira, Luiz Augusto F.
We study an one-dimensional nonlinear reaction-diffusion system coupled on the boundary. Such system comes from modeling problems of temperature distribution on two bars of same length, jointed together, with different diffusion coefficients. We prove the transversality property of unstable and stable manifolds assuming all equilibrium points are hyperbolic. To this end, we write the system as an equation with noncontinuous diffusion coefficient. We then study the nonincreasing property of the number of zeros of a linearized nonautonomous equation as well as the Sturm-Liouville properties of the solutions of a linear elliptic problem.
A coupled theory for chemically active and deformable solids with mass diffusion and heat conduction
NASA Astrophysics Data System (ADS)
Zhang, Xiaolong; Zhong, Zheng
2017-10-01
To analyse the frequently encountered thermo-chemo-mechanical problems in chemically active material applications, we develop a thermodynamically-consistent continuum theory of coupled deformation, mass diffusion, heat conduction and chemical reaction. Basic balance equations of force, mass and energy are presented at first, and then fully coupled constitutive laws interpreting multi-field interactions and evolving equations governing irreversible fluxes are constructed according to the energy dissipation inequality and the chemical kinetics. To consider the essential distinction between mass diffusion and chemical reactions in affecting free energy and dissipations of a highly coupled system, we regard both the concentrations of diffusive species and the extent of reaction as independent state variables. This new formulation then distinguishes between the energy contribution from the diffusive species entering the solid and that from the subsequent chemical reactions occurring among these species and the host solid, which not only interact with stresses or strains in different manners and on different time scales, but also induce different variations of solid microstructures and material properties. Taking advantage of this new description, we further establish a specialized isothermal model to predict precisely the transient chemo-mechanical response of a swelling solid with a proposed volumetric constraint that accounts for material incompressibility. Coupled kinetics is incorporated to capture the volumetric swelling of the solid caused by imbibition of external species and the simultaneous dilation arised from chemical reactions between the diffusing species and the solid. The model is then exemplified with two numerical examples of transient swelling accompanied by chemical reaction. Various ratios of characteristic times of diffusion and chemical reaction are taken into account to shed light on the dependency on kinetic time scales of evolution patterns for a diffusion-reaction controlled deformable solid.
A new mathematical solution for predicting char activation reactions
Rafsanjani, H.H.; Jamshidi, E.; Rostam-Abadi, M.
2002-01-01
The differential conservation equations that describe typical gas-solid reactions, such as activation of coal chars, yield a set of coupled second-order partial differential equations. The solution of these coupled equations by exact analytical methods is impossible. In addition, an approximate or exact solution only provides predictions for either reaction- or diffusion-controlling cases. A new mathematical solution, the quantize method (QM), was applied to predict the gasification rates of coal char when both chemical reaction and diffusion through the porous char are present. Carbon conversion rates predicted by the QM were in closer agreement with the experimental data than those predicted by the random pore model and the simple particle model. ?? 2002 Elsevier Science Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcia, Andres
Transport and reaction in zeolites and other porous materials, such as mesoporous silica particles, has been a focus of interest in recent years. This is in part due to the possibility of anomalous transport effects (e.g. single-file diffusion) and its impact in the reaction yield in catalytic processes. Computational simulations are often used to study these complex nonequilibrium systems. Computer simulations using Molecular Dynamics (MD) techniques are prohibitive, so instead coarse grained one-dimensional models with the aid of Kinetic Monte Carlo (KMC) simulations are used. Both techniques can be computationally expensive, both time and resource wise. These coarse-grained systems canmore » be exactly described by a set of coupled stochastic master equations, that describe the reaction-diffusion kinetics of the system. The equations can be written exactly, however, coupling between the equations and terms within the equations make it impossible to solve them exactly; approximations must be made. One of the most common methods to obtain approximate solutions is to use Mean Field (MF) theory. MF treatments yield reasonable results at high ratios of reaction rate k to hop rate h of the particles, but fail completely at low k=h due to the over-estimation of fluxes of particles within the pore. We develop a method to estimate fluxes and intrapore diffusivity in simple one- dimensional reaction-diffusion models at high and low k=h, where the pores are coupled to an equilibrated three-dimensional fluid. We thus successfully describe analytically these simple reaction-diffusion one-dimensional systems. Extensions to models considering behavior with long range steric interactions and wider pores require determination of multiple boundary conditions. We give a prescription to estimate the required parameters for these simulations. For one dimensional systems, if single-file diffusion is relaxed, additional parameters to describe particle exchange have to be introduced. We use Langevin Molecular Dynamics (MD) simulations to assess these parameters.« less
Dynamical spike solutions in a nonlocal model of pattern formation
NASA Astrophysics Data System (ADS)
Marciniak-Czochra, Anna; Härting, Steffen; Karch, Grzegorz; Suzuki, Kanako
2018-05-01
Coupling a reaction-diffusion equation with ordinary differential equa- tions (ODE) may lead to diffusion-driven instability (DDI) which, in contrast to the classical reaction-diffusion models, causes destabilization of both, constant solutions and Turing patterns. Using a shadow-type limit of a reaction-diffusion-ODE model, we show that in such cases the instability driven by nonlocal terms (a counterpart of DDI) may lead to formation of unbounded spike patterns.
Partitioned coupling of advection-diffusion-reaction systems and Brinkman flows
NASA Astrophysics Data System (ADS)
Lenarda, Pietro; Paggi, Marco; Ruiz Baier, Ricardo
2017-09-01
We present a partitioned algorithm aimed at extending the capabilities of existing solvers for the simulation of coupled advection-diffusion-reaction systems and incompressible, viscous flow. The space discretisation of the governing equations is based on mixed finite element methods defined on unstructured meshes, whereas the time integration hinges on an operator splitting strategy that exploits the differences in scales between the reaction, advection, and diffusion processes, considering the global system as a number of sequentially linked sets of partial differential, and algebraic equations. The flow solver presents the advantage that all unknowns in the system (here vorticity, velocity, and pressure) can be fully decoupled and thus turn the overall scheme very attractive from the computational perspective. The robustness of the proposed method is illustrated with a series of numerical tests in 2D and 3D, relevant in the modelling of bacterial bioconvection and Boussinesq systems.
MacDonald, G; Mackenzie, J A; Nolan, M; Insall, R H
2016-03-15
In this paper, we devise a moving mesh finite element method for the approximate solution of coupled bulk-surface reaction-diffusion equations on an evolving two dimensional domain. Fundamental to the success of the method is the robust generation of bulk and surface meshes. For this purpose, we use a novel moving mesh partial differential equation (MMPDE) approach. The developed method is applied to model problems with known analytical solutions; these experiments indicate second-order spatial and temporal accuracy. Coupled bulk-surface problems occur frequently in many areas; in particular, in the modelling of eukaryotic cell migration and chemotaxis. We apply the method to a model of the two-way interaction of a migrating cell in a chemotactic field, where the bulk region corresponds to the extracellular region and the surface to the cell membrane.
Primal-mixed formulations for reaction-diffusion systems on deforming domains
NASA Astrophysics Data System (ADS)
Ruiz-Baier, Ricardo
2015-10-01
We propose a finite element formulation for a coupled elasticity-reaction-diffusion system written in a fully Lagrangian form and governing the spatio-temporal interaction of species inside an elastic, or hyper-elastic body. A primal weak formulation is the baseline model for the reaction-diffusion system written in the deformed domain, and a finite element method with piecewise linear approximations is employed for its spatial discretization. On the other hand, the strain is introduced as mixed variable in the equations of elastodynamics, which in turn acts as coupling field needed to update the diffusion tensor of the modified reaction-diffusion system written in a deformed domain. The discrete mechanical problem yields a mixed finite element scheme based on row-wise Raviart-Thomas elements for stresses, Brezzi-Douglas-Marini elements for displacements, and piecewise constant pressure approximations. The application of the present framework in the study of several coupled biological systems on deforming geometries in two and three spatial dimensions is discussed, and some illustrative examples are provided and extensively analyzed.
Unimodal dynamical systems: Comparison principles, spreading speeds and travelling waves
NASA Astrophysics Data System (ADS)
Yi, Taishan; Chen, Yuming; Wu, Jianhong
Reaction diffusion equations with delayed nonlinear reaction terms are used as prototypes to motivate an appropriate abstract formulation of dynamical systems with unimodal nonlinearity. For such non-monotone dynamical systems, we develop a general comparison principle and show how this general comparison principle, coupled with some existing results for monotone dynamical systems, can be used to establish results on the asymptotic speeds of spread and travelling waves. We illustrate our main results by an integral equation which includes a nonlocal delayed reaction diffusion equation and a nonlocal delayed lattice differential system in an unbounded domain, with the non-monotone nonlinearities including the Ricker birth function and the Mackey-Glass hematopoiesis feedback.
Control of reaction-diffusion equations on time-evolving manifolds.
Rossi, Francesco; Duteil, Nastassia Pouradier; Yakoby, Nir; Piccoli, Benedetto
2016-12-01
Among the main actors of organism development there are morphogens, which are signaling molecules diffusing in the developing organism and acting on cells to produce local responses. Growth is thus determined by the distribution of such signal. Meanwhile, the diffusion of the signal is itself affected by the changes in shape and size of the organism. In other words, there is a complete coupling between the diffusion of the signal and the change of the shapes. In this paper, we introduce a mathematical model to investigate such coupling. The shape is given by a manifold, that varies in time as the result of a deformation given by a transport equation. The signal is represented by a density, diffusing on the manifold via a diffusion equation. We show the non-commutativity of the transport and diffusion evolution by introducing a new concept of Lie bracket between the diffusion and the transport operator. We also provide numerical simulations showing this phenomenon.
Travelling fronts of the CO oxidation on Pd(111) with coverage-dependent diffusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cisternas, Jaime, E-mail: jecisternas@miuandes.cl; Karpitschka, Stefan; Wehner, Stefan
2014-10-28
In this work, we study a surface reaction on Pd(111) crystals under ultra-high-vacuum conditions that can be modeled by two coupled reaction-diffusion equations. In the bistable regime, the reaction exhibits travelling fronts that can be observed experimentally using photo electron emission microscopy. The spatial profile of the fronts reveals a coverage-dependent diffusivity for one of the species. We propose a method to solve the nonlinear eigenvalue problem and compute the direction and the speed of the fronts based on a geometrical construction in phase-space. This method successfully captures the dependence of the speed on control parameters and diffusivities.
Square Turing patterns in reaction-diffusion systems with coupled layers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jing; Wang, Hongli, E-mail: hlwang@pku.edu.cn, E-mail: qi@pku.edu.cn; Center for Quantitative Biology, Peking University, Beijing 100871
Square Turing patterns are usually unstable in reaction-diffusion systems and are rarely observed in corresponding experiments and simulations. We report here an example of spontaneous formation of square Turing patterns with the Lengyel-Epstein model of two coupled layers. The squares are found to be a result of the resonance between two supercritical Turing modes with an appropriate ratio. Besides, the spatiotemporal resonance of Turing modes resembles to the mode-locking phenomenon. Analysis of the general amplitude equations for square patterns reveals that the fixed point corresponding to square Turing patterns is stationary when the parameters adopt appropriate values.
Analysis of opposed jet hydrogen-air counter flow diffusion flame
NASA Technical Reports Server (NTRS)
Ho, Y. H.; Isaac, K. M.
1989-01-01
A computational simulation of the opposed-jet diffusion flame is performed to study its structure and extinction limits. The present analysis concentrates on the nitrogen-diluted hydrogen-air diffusion flame, which provides the basic information for many vehicle designs such as the aerospace plane for which hydrogen is a candidate as the fuel. The computer program uses the time-marching technique to solve the energy and species equations coupled with the momentum equation solved by the collocation method. The procedure is implemented in two stages. In the first stage, a one-step forward overal chemical reaction is chosen with the gas phase chemical reaction rate determined by comparison with experimental data. In the second stage, a complete chemical reaction mechanism is introduced with detailed thermodynamic and transport property calculations. Comparison between experimental extinction data and theoretical predictions is discussed. The effects of thermal diffusion as well as Lewis number and Prandtl number variations on the diffusion flame are also presented.
Simpson, Matthew J.; Sharp, Jesse A.; Morrow, Liam C.; Baker, Ruth E.
2015-01-01
Embryonic development involves diffusion and proliferation of cells, as well as diffusion and reaction of molecules, within growing tissues. Mathematical models of these processes often involve reaction–diffusion equations on growing domains that have been primarily studied using approximate numerical solutions. Recently, we have shown how to obtain an exact solution to a single, uncoupled, linear reaction–diffusion equation on a growing domain, 0 < x < L(t), where L(t) is the domain length. The present work is an extension of our previous study, and we illustrate how to solve a system of coupled reaction–diffusion equations on a growing domain. This system of equations can be used to study the spatial and temporal distributions of different generations of cells within a population that diffuses and proliferates within a growing tissue. The exact solution is obtained by applying an uncoupling transformation, and the uncoupled equations are solved separately before applying the inverse uncoupling transformation to give the coupled solution. We present several example calculations to illustrate different types of behaviour. The first example calculation corresponds to a situation where the initially–confined population diffuses sufficiently slowly that it is unable to reach the moving boundary at x = L(t). In contrast, the second example calculation corresponds to a situation where the initially–confined population is able to overcome the domain growth and reach the moving boundary at x = L(t). In its basic format, the uncoupling transformation at first appears to be restricted to deal only with the case where each generation of cells has a distinct proliferation rate. However, we also demonstrate how the uncoupling transformation can be used when each generation has the same proliferation rate by evaluating the exact solutions as an appropriate limit. PMID:26407013
NASA Astrophysics Data System (ADS)
Liu, Yang; Ren, Xingfeng; Pan, Changwei; Zheng, Ting; Yuan, Ling; Zheng, Juhua; Gao, Qingyu
2017-10-01
Hydrodynamic flows can exert multiple effects on an exothermal autocatalytic reaction, such as buoyancy and the Marangoni convection, which can change the structure and velocity of chemical waves. Here we report that in the chlorite-trithionate reaction, the production and consumption of chlorine dioxide can induce and inhibit Marangoni flow, respectively, leading to different chemo-hydrodynamic patterns. The horizontal propagation of a reaction-diffusion-convection front was investigated with the upper surface open to the air. The Marangoni convection, induced by gaseous chlorine dioxide on the surface, produced from chlorite disproportionation after the proton autocatalysis, has the same effect as the heat convection. When the Marangoni effect is removed by the reaction of chlorine dioxide with the Congo red (CR) indicator, an oscillatory propagation of the front tip is observed under suitable conditions. Replacing CR with bromophenol blue (BPB) distinctly enhanced the floating, resulting in multiple vortexes, owing to the coexistence between BPB and chlorine dioxide. Using the incompressible Navier-Stokes equations coupled with reaction-diffusion and heat conduction equations, we numerically obtain various experimental scenarios of front instability for the exothermic autocatalytic reaction coupled with buoyancy-driven convection and Marangoni convection.
NASA Astrophysics Data System (ADS)
Yan, David
This thesis presents the one-dimensional equations, numerical method and simulations of a model to characterize the dynamical operation of an electrochemical cell. This model extends the current state-of-the art in that it accounts, in a primitive way, for the physics of the electrolyte/electrode interface and incorporates diffuse-charge dynamics, temperature coupling, surface coverage, and polarization phenomena. The one-dimensional equations account for a system with one or two mobile ions of opposite charge, and the electrode reaction we consider (when one is needed) is a one-electron electrodeposition reaction. Though the modeled system is far from representing a realistic electrochemical device, our results show a range of dynamics and behaviors which have not been observed previously, and explore the numerical challenges required when adding more complexity to a model. Furthermore, the basic transport equations (which are developed in three spatial dimensions) can in future accomodate the inclusion of additional physics, and coupling to more complex boundary conditions that incorporate two-dimensional surface phenomena and multi-rate reactions. In the model, the Poisson-Nernst-Planck equations are used to model diffusion and electromigration in an electrolyte, and the generalized Frumkin-Butler-Volmer equation is used to model reaction kinetics at electrodes. An energy balance equation is derived and coupled to the diffusion-migration equation. The model also includes dielectric polarization effects by introducing different values of the dielectric permittivity in different regions of the bulk, as well as accounting for surface coverage effects due to adsorption, and finite size "crowding", or steric effects. Advection effects are not modeled but could in future be incorporated. In order to solve the coupled PDE's, we use a variable step size second order scheme in time and finite differencing in space. Numerical tests are performed on a simplified system and the scheme's stability and convergence properties are discussed. While evaluating different methods for discretizing the coupled flux boundary condition, we discover a thresholding behaviour in the adaptive time stepper, and perform additional tests to investigate it. Finally, a method based on ghost points is chosen for its favorable numerical properties compared to the alternatives. With this method, we are able to run simulations with a large range of parameters, including any value of the nondimensionalized Debye length epsilon. The numerical code is first used to run simulations to explore the effects of polarization, surface coverage, and temperature. The code is also used to perform frequency sweeps of input signals in order to mimic impedance spectroscopy experiments. Finally, in Chapter 5, we use our model to apply ramped voltages to electrochemical systems, and show theoretical and simulated current-voltage curves for liquid and solid thin films, cells with blocking (polarized) electrodes, and electrolytes with background charge. Linear sweep and cyclic voltammetry techniques are important tools for electrochemists and have a variety of applications in engineering. Voltammetry has classically been treated with the Randles-Sevcik equation, which assumes an electroneutral supported electrolyte. No general theory of linear-sweep voltammetry is available, however, for unsupported electrolytes and for other situations where diffuse charge effects play a role. We show theoretical and simulated current-voltage curves for liquid and solid thin films, cells with blocking electrodes, and membranes with fixed background charge. The analysis focuses on the coupling of Faradaic reactions and diffuse charge dynamics, but capacitive charging of the double layers is also studied, for early time transients at reactive electrodes and for non-reactive blocking electrodes. The final chapter highlights the role of diffuse charge in the context of voltammetry, and illustrates which regimes can be approximated using simple analytical expressions and which require more careful consideration.
Pattern formation for NO+N H3 on Pt(100): Two-dimensional numerical results
NASA Astrophysics Data System (ADS)
Uecker, Hannes
2005-01-01
The Lombardo-Fink-Imbihl model of the NO+NH3 reaction on a Pt(100) surface consists of seven coupled ordinary differential equations (ODE) and shows stable relaxation oscillations with sharp transitions in the relevant temperature range. Here we study numerically the effect of coupling of these oscillators by surface diffusion in two dimensions. We find different types of patterns, in particular phase clusters and standing waves. In models of related surface reactions such clustered solutions are known to exist only under a global coupling through the gas phase. This global coupling is replaced here by relatively fast diffusion of two variables which are kinetically slaved in the ODE. We also compare our simulations with experimental results and discuss some shortcomings of the model.
Effect of interface reaction and diffusion on stress-oxidation coupling at high temperature
NASA Astrophysics Data System (ADS)
Yue, Mengkun; Dong, Xuelin; Fang, Xufei; Feng, Xue
2018-04-01
High-temperature structural materials undergo oxidation during the service, and stress would generate in the oxide film. Understanding the coupling effect between stress and oxidation contributes to the understanding of material degradation and failure during the oxidation process. Here, we propose a model to investigative the coupling effect of stress and oxidation at high temperature by considering the three-stage oxidation process, where both the interface reaction and the diffusion process are present. The governing equations including the oxidation kinetics and stress equilibrium for isothermal oxidation under stress-oxidation coupling effect have been derived. The theory is validated by comparing with the experimental results of SiO2 grown on Si substrate. Results show that the coupling of stress and oxidation influences the growth of the oxide film by affecting all three stages of the oxidation process.
NASA Astrophysics Data System (ADS)
Liu, Bingchen; Dong, Mengzhen; Li, Fengjie
2018-04-01
This paper deals with a reaction-diffusion problem with coupled nonlinear inner sources and nonlocal boundary flux. Firstly, we propose the critical exponents on nonsimultaneous blow-up under some conditions on the initial data. Secondly, we combine the scaling technique and the Green's identity method to determine four kinds of simultaneous blow-up rates. Thirdly, the lower and the upper bounds of blow-up time are derived by using Sobolev-type differential inequalities.
A discrete model to study reaction-diffusion-mechanics systems.
Weise, Louis D; Nash, Martyn P; Panfilov, Alexander V
2011-01-01
This article introduces a discrete reaction-diffusion-mechanics (dRDM) model to study the effects of deformation on reaction-diffusion (RD) processes. The dRDM framework employs a FitzHugh-Nagumo type RD model coupled to a mass-lattice model, that undergoes finite deformations. The dRDM model describes a material whose elastic properties are described by a generalized Hooke's law for finite deformations (Seth material). Numerically, the dRDM approach combines a finite difference approach for the RD equations with a Verlet integration scheme for the equations of the mass-lattice system. Using this framework results were reproduced on self-organized pacemaking activity that have been previously found with a continuous RD mechanics model. Mechanisms that determine the period of pacemakers and its dependency on the medium size are identified. Finally it is shown how the drift direction of pacemakers in RDM systems is related to the spatial distribution of deformation and curvature effects.
A Discrete Model to Study Reaction-Diffusion-Mechanics Systems
Weise, Louis D.; Nash, Martyn P.; Panfilov, Alexander V.
2011-01-01
This article introduces a discrete reaction-diffusion-mechanics (dRDM) model to study the effects of deformation on reaction-diffusion (RD) processes. The dRDM framework employs a FitzHugh-Nagumo type RD model coupled to a mass-lattice model, that undergoes finite deformations. The dRDM model describes a material whose elastic properties are described by a generalized Hooke's law for finite deformations (Seth material). Numerically, the dRDM approach combines a finite difference approach for the RD equations with a Verlet integration scheme for the equations of the mass-lattice system. Using this framework results were reproduced on self-organized pacemaking activity that have been previously found with a continuous RD mechanics model. Mechanisms that determine the period of pacemakers and its dependency on the medium size are identified. Finally it is shown how the drift direction of pacemakers in RDM systems is related to the spatial distribution of deformation and curvature effects. PMID:21804911
NASA Astrophysics Data System (ADS)
Ohmori, Shousuke; Yamazaki, Yoshihiro
2016-01-01
Ultradiscrete equations are derived from a set of reaction-diffusion partial differential equations, and cellular automaton rules are obtained on the basis of the ultradiscrete equations. Some rules reproduce the dynamical properties of the original reaction-diffusion equations, namely, bistability and pulse annihilation. Furthermore, other rules bring about soliton-like preservation and periodic pulse generation with a pacemaker, which are not obtained from the original reaction-diffusion equations.
Solving regularly and singularly perturbed reaction-diffusion equations in three space dimensions
NASA Astrophysics Data System (ADS)
Moore, Peter K.
2007-06-01
In [P.K. Moore, Effects of basis selection and h-refinement on error estimator reliability and solution efficiency for higher-order methods in three space dimensions, Int. J. Numer. Anal. Mod. 3 (2006) 21-51] a fixed, high-order h-refinement finite element algorithm, Href, was introduced for solving reaction-diffusion equations in three space dimensions. In this paper Href is coupled with continuation creating an automatic method for solving regularly and singularly perturbed reaction-diffusion equations. The simple quasilinear Newton solver of Moore, (2006) is replaced by the nonlinear solver NITSOL [M. Pernice, H.F. Walker, NITSOL: a Newton iterative solver for nonlinear systems, SIAM J. Sci. Comput. 19 (1998) 302-318]. Good initial guesses for the nonlinear solver are obtained using continuation in the small parameter ɛ. Two strategies allow adaptive selection of ɛ. The first depends on the rate of convergence of the nonlinear solver and the second implements backtracking in ɛ. Finally a simple method is used to select the initial ɛ. Several examples illustrate the effectiveness of the algorithm.
Zhou, Y C; Lu, Benzhuo; Huber, Gary A; Holst, Michael J; McCammon, J Andrew
2008-01-17
The Poisson-Nernst-Planck (PNP) equation provides a continuum description of electrostatic-driven diffusion and is used here to model the diffusion and reaction of acetylcholine (ACh) with acetylcholinesterase (AChE) enzymes. This study focuses on the effects of ion and substrate concentrations on the reaction rate and rate coefficient. To this end, the PNP equations are numerically solved with a hybrid finite element and boundary element method at a wide range of ion and substrate concentrations, and the results are compared with the partially coupled Smoluchowski-Poisson-Boltzmann model. The reaction rate is found to depend strongly on the concentrations of both the substrate and ions; this is explained by the competition between the intersubstrate repulsion and the ionic screening effects. The reaction rate coefficient is independent of the substrate concentration only at very high ion concentrations, whereas at low ion concentrations the behavior of the rate depends strongly on the substrate concentration. Moreover, at physiological ion concentrations, variations in substrate concentration significantly affect the transient behavior of the reaction. Our results offer a reliable estimate of reaction rates at various conditions and imply that the concentrations of charged substrates must be coupled with the electrostatic computation to provide a more realistic description of neurotransmission and other electrodiffusion and reaction processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ho, C.-L.; Lee, C.-C., E-mail: chieh.no27@gmail.com
2016-01-15
We consider solvability of the generalized reaction–diffusion equation with both space- and time-dependent diffusion and reaction terms by means of the similarity method. By introducing the similarity variable, the reaction–diffusion equation is reduced to an ordinary differential equation. Matching the resulting ordinary differential equation with known exactly solvable equations, one can obtain corresponding exactly solvable reaction–diffusion systems. Several representative examples of exactly solvable reaction–diffusion equations are presented.
Hydrodynamics of bacterial colonies: A model
NASA Astrophysics Data System (ADS)
Lega, J.; Passot, T.
2003-03-01
We propose a hydrodynamic model for the evolution of bacterial colonies growing on soft agar plates. This model consists of reaction-diffusion equations for the concentrations of nutrients, water, and bacteria, coupled to a single hydrodynamic equation for the velocity field of the bacteria-water mixture. It captures the dynamics inside the colony as well as on its boundary and allows us to identify a mechanism for collective motion towards fresh nutrients, which, in its modeling aspects, is similar to classical chemotaxis. As shown in numerical simulations, our model reproduces both usual colony shapes and typical hydrodynamic motions, such as the whirls and jets recently observed in wet colonies of Bacillus subtilis. The approach presented here could be extended to different experimental situations and provides a general framework for the use of advection-reaction-diffusion equations in modeling bacterial colonies.
Analysis of a diffuse interface model of multispecies tumor growth
NASA Astrophysics Data System (ADS)
Dai, Mimi; Feireisl, Eduard; Rocca, Elisabetta; Schimperna, Giulio; Schonbek, Maria E.
2017-04-01
We consider a diffuse interface model for tumor growth recently proposed in Chen et al (2014 Int. J. Numer. Methods Biomed. Eng. 30 726-54). In this new approach sharp interfaces are replaced by narrow transition layers arising due to adhesive forces among the cell species. Hence, a continuum thermodynamically consistent model is introduced. The resulting PDE system couples four different types of equations: a Cahn-Hilliard type equation for the tumor cells (which include proliferating and dead cells), a Darcy law for the tissue velocity field, whose divergence may be different from 0 and depend on the other variables, a transport equation for the proliferating (viable) tumor cells, and a quasi-static reaction diffusion equation for the nutrient concentration. We establish existence of weak solutions for the PDE system coupled with suitable initial and boundary conditions. In particular, the proliferation function at the boundary is supposed to be nonnegative on the set where the velocity \\mathbf{u} satisfies \\mathbf{u}\\centerdot ν >0 , where ν is the outer normal to the boundary of the domain.
LEE, CHANYOUNG; RICHTSMEIER, JOAN T.; KRAFT, REUBEN H.
2017-01-01
Bones of the murine cranial vault are formed by differentiation of mesenchymal cells into osteoblasts, a process that is primarily understood to be controlled by a cascade of reactions between extracellular molecules and cells. We assume that the process can be modeled using Turing’s reaction-diffusion equations, a mathematical model describing the pattern formation controlled by two interacting molecules (activator and inhibitor). In addition to the processes modeled by reaction-diffusion equations, we hypothesize that mechanical stimuli of the cells due to growth of the underlying brain contribute significantly to the process of cell differentiation in cranial vault development. Structural analysis of the surface of the brain was conducted to explore the effects of the mechanical strain on bone formation. We propose a mechanobiological model for the formation of cranial vault bones by coupling the reaction-diffusion model with structural mechanics. The mathematical formulation was solved using the finite volume method. The computational domain and model parameters are determined using a large collection of experimental data that provide precise three dimensional (3D) measures of murine cranial geometry and cranial vault bone formation for specific embryonic time points. The results of this study suggest that mechanical strain contributes information to specific aspects of bone formation. Our mechanobiological model predicts some key features of cranial vault bone formation that were verified by experimental observations including the relative location of ossification centers of individual vault bones, the pattern of cranial vault bone growth over time, and the position of cranial vault sutures. PMID:29225392
Vlad, Marcel Ovidiu; Ross, John
2002-12-01
We introduce a general method for the systematic derivation of nonlinear reaction-diffusion equations with distributed delays. We study the interactions among different types of moving individuals (atoms, molecules, quasiparticles, biological organisms, etc). The motion of each species is described by the continuous time random walk theory, analyzed in the literature for transport problems, whereas the interactions among the species are described by a set of transformation rates, which are nonlinear functions of the local concentrations of the different types of individuals. We use the time interval between two jumps (the transition time) as an additional state variable and obtain a set of evolution equations, which are local in time. In order to make a connection with the transport models used in the literature, we make transformations which eliminate the transition time and derive a set of nonlocal equations which are nonlinear generalizations of the so-called generalized master equations. The method leads under different specified conditions to various types of nonlocal transport equations including a nonlinear generalization of fractional diffusion equations, hyperbolic reaction-diffusion equations, and delay-differential reaction-diffusion equations. Thus in the analysis of a given problem we can fit to the data the type of reaction-diffusion equation and the corresponding physical and kinetic parameters. The method is illustrated, as a test case, by the study of the neolithic transition. We introduce a set of assumptions which makes it possible to describe the transition from hunting and gathering to agriculture economics by a differential delay reaction-diffusion equation for the population density. We derive a delay evolution equation for the rate of advance of agriculture, which illustrates an application of our analysis.
Traveling waves in a coupled reaction-diffusion and difference model of hematopoiesis
NASA Astrophysics Data System (ADS)
Adimy, M.; Chekroun, A.; Kazmierczak, B.
2017-04-01
The formation and development of blood cells is a very complex process, called hematopoiesis. This process involves a small population of cells called hematopoietic stem cells (HSCs). The HSCs are undifferentiated cells, located in the bone marrow before they become mature blood cells and enter the blood stream. They have a unique ability to produce either similar cells (self-renewal), or cells engaged in one of different lineages of blood cells: red blood cells, white cells and platelets (differentiation). The HSCs can be either in a proliferating or in a quiescent phase. In this paper, we distinguish between dividing cells that enter directly to the quiescent phase and dividing cells that return to the proliferating phase to divide again. We propose a mathematical model describing the dynamics of HSC population, taking into account their spatial distribution. The resulting model is a coupled reaction-diffusion equation and difference equation with delay. We study the existence of monotone traveling wave fronts and the asymptotic speed of spread.
Study on monostable and bistable reaction-diffusion equations by iteration of travelling wave maps
NASA Astrophysics Data System (ADS)
Yi, Taishan; Chen, Yuming
2017-12-01
In this paper, based on the iterative properties of travelling wave maps, we develop a new method to obtain spreading speeds and asymptotic propagation for monostable and bistable reaction-diffusion equations. Precisely, for Dirichlet problems of monostable reaction-diffusion equations on the half line, by making links between travelling wave maps and integral operators associated with the Dirichlet diffusion kernel (the latter is NOT invariant under translation), we obtain some iteration properties of the Dirichlet diffusion and some a priori estimates on nontrivial solutions of Dirichlet problems under travelling wave transformation. We then provide the asymptotic behavior of nontrivial solutions in the space-time region for Dirichlet problems. These enable us to develop a unified method to obtain results on heterogeneous steady states, travelling waves, spreading speeds, and asymptotic spreading behavior for Dirichlet problem of monostable reaction-diffusion equations on R+ as well as of monostable/bistable reaction-diffusion equations on R.
A minimally-resolved immersed boundary model for reaction-diffusion problems
NASA Astrophysics Data System (ADS)
Pal Singh Bhalla, Amneet; Griffith, Boyce E.; Patankar, Neelesh A.; Donev, Aleksandar
2013-12-01
We develop an immersed boundary approach to modeling reaction-diffusion processes in dispersions of reactive spherical particles, from the diffusion-limited to the reaction-limited setting. We represent each reactive particle with a minimally-resolved "blob" using many fewer degrees of freedom per particle than standard discretization approaches. More complicated or more highly resolved particle shapes can be built out of a collection of reactive blobs. We demonstrate numerically that the blob model can provide an accurate representation at low to moderate packing densities of the reactive particles, at a cost not much larger than solving a Poisson equation in the same domain. Unlike multipole expansion methods, our method does not require analytically computed Green's functions, but rather, computes regularized discrete Green's functions on the fly by using a standard grid-based discretization of the Poisson equation. This allows for great flexibility in implementing different boundary conditions, coupling to fluid flow or thermal transport, and the inclusion of other effects such as temporal evolution and even nonlinearities. We develop multigrid-based preconditioners for solving the linear systems that arise when using implicit temporal discretizations or studying steady states. In the diffusion-limited case the resulting linear system is a saddle-point problem, the efficient solution of which remains a challenge for suspensions of many particles. We validate our method by comparing to published results on reaction-diffusion in ordered and disordered suspensions of reactive spheres.
Feynman-Kac equations for reaction and diffusion processes
NASA Astrophysics Data System (ADS)
Hou, Ru; Deng, Weihua
2018-04-01
This paper provides a theoretical framework for deriving the forward and backward Feynman-Kac equations for the distribution of functionals of the path of a particle undergoing both diffusion and reaction processes. Once given the diffusion type and reaction rate, a specific forward or backward Feynman-Kac equation can be obtained. The results in this paper include those for normal/anomalous diffusions and reactions with linear/nonlinear rates. Using the derived equations, we apply our findings to compute some physical (experimentally measurable) statistics, including the occupation time in half-space, the first passage time, and the occupation time in half-interval with an absorbing or reflecting boundary, for the physical system with anomalous diffusion and spontaneous evanescence.
NASA Astrophysics Data System (ADS)
Yan, David; Bazant, Martin Z.; Biesheuvel, P. M.; Pugh, Mary C.; Dawson, Francis P.
2017-03-01
Linear sweep and cyclic voltammetry techniques are important tools for electrochemists and have a variety of applications in engineering. Voltammetry has classically been treated with the Randles-Sevcik equation, which assumes an electroneutral supported electrolyte. In this paper, we provide a comprehensive mathematical theory of voltammetry in electrochemical cells with unsupported electrolytes and for other situations where diffuse charge effects play a role, and present analytical and simulated solutions of the time-dependent Poisson-Nernst-Planck equations with generalized Frumkin-Butler-Volmer boundary conditions for a 1:1 electrolyte and a simple reaction. Using these solutions, we construct theoretical and simulated current-voltage curves for liquid and solid thin films, membranes with fixed background charge, and cells with blocking electrodes. The full range of dimensionless parameters is considered, including the dimensionless Debye screening length (scaled to the electrode separation), Damkohler number (ratio of characteristic diffusion and reaction times), and dimensionless sweep rate (scaled to the thermal voltage per diffusion time). The analysis focuses on the coupling of Faradaic reactions and diffuse charge dynamics, although capacitive charging of the electrical double layers is also studied, for early time transients at reactive electrodes and for nonreactive blocking electrodes. Our work highlights cases where diffuse charge effects are important in the context of voltammetry, and illustrates which regimes can be approximated using simple analytical expressions and which require more careful consideration.
A Robust and Efficient Method for Steady State Patterns in Reaction-Diffusion Systems
Lo, Wing-Cheong; Chen, Long; Wang, Ming; Nie, Qing
2012-01-01
An inhomogeneous steady state pattern of nonlinear reaction-diffusion equations with no-flux boundary conditions is usually computed by solving the corresponding time-dependent reaction-diffusion equations using temporal schemes. Nonlinear solvers (e.g., Newton’s method) take less CPU time in direct computation for the steady state; however, their convergence is sensitive to the initial guess, often leading to divergence or convergence to spatially homogeneous solution. Systematically numerical exploration of spatial patterns of reaction-diffusion equations under different parameter regimes requires that the numerical method be efficient and robust to initial condition or initial guess, with better likelihood of convergence to an inhomogeneous pattern. Here, a new approach that combines the advantages of temporal schemes in robustness and Newton’s method in fast convergence in solving steady states of reaction-diffusion equations is proposed. In particular, an adaptive implicit Euler with inexact solver (AIIE) method is found to be much more efficient than temporal schemes and more robust in convergence than typical nonlinear solvers (e.g., Newton’s method) in finding the inhomogeneous pattern. Application of this new approach to two reaction-diffusion equations in one, two, and three spatial dimensions, along with direct comparisons to several other existing methods, demonstrates that AIIE is a more desirable method for searching inhomogeneous spatial patterns of reaction-diffusion equations in a large parameter space. PMID:22773849
New Quantum Diffusion Monte Carlo Method for strong field time dependent problems
NASA Astrophysics Data System (ADS)
Kalinski, Matt
2017-04-01
We have recently formulated the Quantum Diffusion Quantum Monte Carlo (QDMC) method for the solution of the time-dependent Schrödinger equation when it is equivalent to the reaction-diffusion system coupled by the highly nonlinear potentials of the type of Shay. Here we formulate a new Time Dependent QDMC method free of the nonlinearities described by the constant stochastic process of the coupled diffusion with transmutation. As before two kinds of diffusing particles (color walkers) are considered but which can further also transmute one into the other. Each of the species undergoes the hypothetical Einstein random walk progression with transmutation. The progressed particles transmute into the particles of the other kind before contributing to or annihilating the other particles density. This fully emulates the Time Dependent Schrödinger equation for any number of quantum particles. The negative sign of the real and the imaginary parts of the wave function is handled by the ``spinor'' densities carrying the sign as the degree of freedom. We apply the method for the exact time-dependent observation of our discovered two-electron Langmuir configurations in the magnetic and circularly polarized fields.
Modeling Morphogenesis with Reaction-Diffusion Equations Using Galerkin Spectral Methods
2002-05-06
reaction- diffusion equation is a difficult problem in analysis that will not be addressed here. Errors will also arise from numerically approx solutions to...the ODEs. When comparing the approximate solution to actual reaction- diffusion systems found in nature, we must also take into account errors that...
Combined Excitatory and Inhibitory Coupling in a 1-D Array of Belousov-Zhabotinsky Droplets
2014-01-01
with numerical chemical models of the BZ reaction in which components that participate in the excitatory (bromine dioxide and bromous acid) and...verify the transport through the fluorinated oil of chlorine dioxide and several weak acids, including malonic acid. 1. Introduction Recent studies1...finite element model (COMSOLs) of the reaction - diffusion equation in 1-D, 2-D and 3-D, where each drop is modeled as a point, disk or sphere
Product interactions and feedback in diffusion-controlled reactions
NASA Astrophysics Data System (ADS)
Roa, Rafael; Siegl, Toni; Kim, Won Kyu; Dzubiella, Joachim
2018-02-01
Steric or attractive interactions among reactants or between reactants and inert crowders can substantially influence the total rate of a diffusion-influenced reaction in the liquid phase. However, the role of the product species, which has typically different physical properties than the reactant species, has been disregarded so far. Here we study the effects of reactant-product and product-product interactions as well as asymmetric diffusion properties on the rate of diffusion-controlled reactions in the classical Smoluchowski-setup for chemical transformations at a perfect catalytic sphere. For this, we solve the diffusion equation with appropriate boundary conditions coupled by a mean-field approach on the second virial level to account for the particle interactions. We find that all particle spatial distributions and the total rate can change significantly, depending on the diffusion and interaction properties of the accumulated products. Complex competing and self-regulating (homeostatic) or self-amplifying effects are observed for the system, leading to both decrease and increase in the rates, as the presence of interacting products feeds back to the reactant flux and thus the rate with which the products are generated.
Spectral method for pricing options in illiquid markets
NASA Astrophysics Data System (ADS)
Pindza, Edson; Patidar, Kailash C.
2012-09-01
We present a robust numerical method to solve a problem of pricing options in illiquid markets. The governing equation is described by a nonlinear Black-Scholes partial differential equation (BS-PDE) of the reaction-diffusion-advection type. To discretise this BS-PDE numerically, we use a spectral method in the asset (spatial) direction and couple it with a fifth order RADAU method for the discretisation in the time direction. Numerical experiments illustrate that our approach is very efficient for pricing financial options in illiquid markets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boubendir, Yassine; Mendez, Vicenc; Rotstein, Horacio G.
2010-09-15
We study the evolution of fronts in a bistable equation with time-delayed global feedback in the fast reaction and slow diffusion regime. This equation generalizes the Hodgkin-Grafstein and Allen-Cahn equations. We derive a nonlinear equation governing the motion of fronts, which includes a term with delay. In the one-dimensional case this equation is linear. We study the motion of one- and two-dimensional fronts, finding a much richer dynamics than for the previously studied cases (without time-delayed global feedback). We explain the mechanism by which localized fronts created by inhibitory global coupling loose stability in a Hopf bifurcation as the delaymore » time increases. We show that for certain delay times, the prevailing phase is different from that corresponding to the system in the absence of global coupling. Numerical simulations of the partial differential equation are in agreement with the analytical predictions.« less
NASA Astrophysics Data System (ADS)
Huang, Rui; Jin, Chunhua; Mei, Ming; Yin, Jingxue
2018-01-01
This paper deals with the existence and stability of traveling wave solutions for a degenerate reaction-diffusion equation with time delay. The degeneracy of spatial diffusion together with the effect of time delay causes us the essential difficulty for the existence of the traveling waves and their stabilities. In order to treat this case, we first show the existence of smooth- and sharp-type traveling wave solutions in the case of c≥c^* for the degenerate reaction-diffusion equation without delay, where c^*>0 is the critical wave speed of smooth traveling waves. Then, as a small perturbation, we obtain the existence of the smooth non-critical traveling waves for the degenerate diffusion equation with small time delay τ >0 . Furthermore, we prove the global existence and uniqueness of C^{α ,β } -solution to the time-delayed degenerate reaction-diffusion equation via compactness analysis. Finally, by the weighted energy method, we prove that the smooth non-critical traveling wave is globally stable in the weighted L^1 -space. The exponential convergence rate is also derived.
NASA Astrophysics Data System (ADS)
Huang, Rui; Jin, Chunhua; Mei, Ming; Yin, Jingxue
2018-06-01
This paper deals with the existence and stability of traveling wave solutions for a degenerate reaction-diffusion equation with time delay. The degeneracy of spatial diffusion together with the effect of time delay causes us the essential difficulty for the existence of the traveling waves and their stabilities. In order to treat this case, we first show the existence of smooth- and sharp-type traveling wave solutions in the case of c≥c^* for the degenerate reaction-diffusion equation without delay, where c^*>0 is the critical wave speed of smooth traveling waves. Then, as a small perturbation, we obtain the existence of the smooth non-critical traveling waves for the degenerate diffusion equation with small time delay τ >0. Furthermore, we prove the global existence and uniqueness of C^{α ,β }-solution to the time-delayed degenerate reaction-diffusion equation via compactness analysis. Finally, by the weighted energy method, we prove that the smooth non-critical traveling wave is globally stable in the weighted L^1-space. The exponential convergence rate is also derived.
Counterflow diffusion flames: effects of thermal expansion and non-unity Lewis numbers
NASA Astrophysics Data System (ADS)
Koundinyan, Sushilkumar P.; Matalon, Moshe; Stewart, D. Scott
2018-05-01
In this work we re-examine the counterflow diffusion flame problem focusing in particular on the flame-flow interactions due to thermal expansion and its influence on various flame properties such as flame location, flame temperature, reactant leakage and extinction conditions. The analysis follows two different procedures: an asymptotic approximation for large activation energy chemical reactions, and a direct numerical approach. The asymptotic treatment follows the general theory of Cheatham and Matalon, which consists of a free-boundary problem with jump conditions across the surface representing the reaction sheet, and is well suited for variable-density flows and for mixtures with non-unity and distinct Lewis numbers for the fuel and oxidiser. Due to density variations, the species and energy transport equations are coupled to the Navier-Stokes equations and the problem does not possess an analytical solution. We thus propose and implement a methodology for solving the free-boundary problem numerically. Results based on the asymptotic approximation are then verified against those obtained from the 'exact' numerical integration of the governing equations, comparing predictions of the various flame properties.
NASA Technical Reports Server (NTRS)
Newton, G. P.
1973-01-01
Previous solutions of the problem of the distribution of vibrationally excited molecular nitrogen in the thermosphere have either assumed a Boltzmann distribution and considered diffusion as one of the loss processes or solved for the energy level populations and neglected diffusion. Both of the previous approaches are combined by solving the time dependent continuity equations, including the diffusion process, for the first six energy levels of molecular nitrogen for conditions in the thermosphere corresponding to a stable auroral red arc. The primary source of molecular nitrogen excitation was subexcitation, and inelastic collisions between thermal electrons and molecular nitrogen. The reaction rates for this process were calculated from published cross section calculations. The loss processes for vibrational energy were electron and atomic oxygen quenching and vibrational energy exchange. The coupled sets of nonlinear, partial differential equations were solved numerically by employing finite difference equations.
Lu, Benzhuo; Zhou, Y.C.
2011-01-01
The effects of finite particle size on electrostatics, density profiles, and diffusion have been a long existing topic in the study of ionic solution. The previous size-modified Poisson-Boltzmann and Poisson-Nernst-Planck models are revisited in this article. In contrast to many previous works that can only treat particle species with a single uniform size or two sizes, we generalize the Borukhov model to obtain a size-modified Poisson-Nernst-Planck (SMPNP) model that is able to treat nonuniform particle sizes. The numerical tractability of the model is demonstrated as well. The main contributions of this study are as follows. 1), We show that an (arbitrarily) size-modified PB model is indeed implied by the SMPNP equations under certain boundary/interface conditions, and can be reproduced through numerical solutions of the SMPNP. 2), The size effects in the SMPNP effectively reduce the densities of highly concentrated counterions around the biomolecule. 3), The SMPNP is applied to the diffusion-reaction process for the first time, to our knowledge. In the case of low substrate density near the enzyme reactive site, it is observed that the rate coefficients predicted by SMPNP model are considerably larger than those by the PNP model, suggesting both ions and substrates are subject to finite size effects. 4), An accurate finite element method and a convergent Gummel iteration are developed for the numerical solution of the completely coupled nonlinear system of SMPNP equations. PMID:21575582
Multistage adsorption of diffusing macromolecules and viruses
NASA Astrophysics Data System (ADS)
Chou, Tom; D'Orsogna, Maria R.
2007-09-01
We derive the equations that describe adsorption of diffusing particles onto a surface followed by additional surface kinetic steps before being transported across the interface. Multistage surface kinetics occurs during membrane protein insertion, cell signaling, and the infection of cells by virus particles. For example, viral entry into healthy cells is possible only after a series of receptor and coreceptor binding events occurs at the cellular surface. We couple the diffusion of particles in the bulk phase with the multistage surface kinetics and derive an effective, integrodifferential boundary condition that contains a memory kernel embodying the delay induced by the surface reactions. This boundary condition takes the form of a singular perturbation problem in the limit where particle-surface interactions are short ranged. Moreover, depending on the surface kinetics, the delay kernel induces a nonmonotonic, transient replenishment of the bulk particle concentration near the interface. The approach generalizes that of Ward and Tordai [J. Chem. Phys. 14, 453 (1946)] and Diamant and Andelman [Colloids Surf. A 183-185, 259 (2001)] to include surface kinetics, giving rise to qualitatively new behaviors. Our analysis also suggests a simple scheme by which stochastic surface reactions may be coupled to deterministic bulk diffusion.
Multiscale Simulations of Reactive Transport
NASA Astrophysics Data System (ADS)
Tartakovsky, D. M.; Bakarji, J.
2014-12-01
Discrete, particle-based simulations offer distinct advantages when modeling solute transport and chemical reactions. For example, Brownian motion is often used to model diffusion in complex pore networks, and Gillespie-type algorithms allow one to handle multicomponent chemical reactions with uncertain reaction pathways. Yet such models can be computationally more intensive than their continuum-scale counterparts, e.g., advection-dispersion-reaction equations. Combining the discrete and continuum models has a potential to resolve the quantity of interest with a required degree of physicochemical granularity at acceptable computational cost. We present computational examples of such "hybrid models" and discuss the challenges associated with coupling these two levels of description.
Global dynamics of a nonlocal delayed reaction-diffusion equation on a half plane
NASA Astrophysics Data System (ADS)
Hu, Wenjie; Duan, Yueliang
2018-04-01
We consider a delayed reaction-diffusion equation with spatial nonlocality on a half plane that describes population dynamics of a two-stage species living in a semi-infinite environment. A Neumann boundary condition is imposed accounting for an isolated domain. To describe the global dynamics, we first establish some a priori estimate for nontrivial solutions after investigating asymptotic properties of the nonlocal delayed effect and the diffusion operator, which enables us to show the permanence of the equation with respect to the compact open topology. We then employ standard dynamical system arguments to establish the global attractivity of the nontrivial equilibrium. The main results are illustrated by the diffusive Nicholson's blowfly equation and the diffusive Mackey-Glass equation.
NASA Astrophysics Data System (ADS)
Jahani, Fereidoun
In the model for microbially induced crown corrosion, the diffusion of sulfide inside the concrete pores, its biological conversion to sulfuric acid, and the corrosion of calcium carbonate aggregates are represented. The corrosion front is modeled as a moving boundary. The location of the interface between the corrosion layer and the concrete is determined as part of the solution to the model equations. This model consisted of a system of one dimensional reaction-diffusion equations coupled to an equation describing the movement of the corrosion front. The equations were solved numerically using finite element Galerkin approximation. The concentration profiles of sulfide in the air and the liquid phases, the pH as a function of concrete depth, and the position of the corrosion front. A new equation for the corrosion rate was also derived. A more specific model for the degradation of a concrete specimen exposed to a sulfuric acid solution was also studied. In this model, diffusion of hydrogen ions and their reaction with alkaline components of concrete were expressed using Fick's Law of diffusion. The model equations described the moving boundary, the dissolution rate of alkaline components in the concrete, volume increase of sulfuric acid solution over the concrete specimen, and the boundary conditions on the surface of the concrete. An apparatus was designed and experiments were performed to measure pH changes on the surface of concrete. The data were used to calculate the dissolution rate of the concrete and, with the model, to determine the diffusion rate of sulfuric acid in the corrosion layer and corrosion layer thickness. Electrochemical Impedance Spectroscopy (EIS) was used to study the corrosion rate of iron pins embedded in the concrete sample. The open circuit potential (OCP) determined the onset of corrosion on the surface of the pins. Visual observation of the corrosion layer thickness was in good agreement with the simulation results.
On the transition from the Ginzburg-Landau equation to the extended Fisher-Kolmogorov equation
NASA Astrophysics Data System (ADS)
Rottschäfer, Vivi; Doelman, Arjen
1998-07-01
The Ginzburg-Landau (GL) equation ‘generically’ describes the behaviour of small perturbations of a marginally unstable basic state in systems on unbounded domains. In this paper we consider the transition from this generic situation to a degenerate (co-dimension 2) case in which the GL approach is no longer valid. Instead of studying a general underlying model problem, we consider a two-dimensional system of coupled reaction-diffusion equations in one spatial dimension. We show that near the degeneration the behaviour of small perturbations is governed by the extended Fisher-Kolmogorov (eFK) equation (at leading order). The relation between the GL-equation and the eFK-equation is quite subtle, but can be analysed in detail. The main goal of this paper is to study this relation, which we do asymptotically. The asymptotic analysis is compared to numerical simulations of the full reaction-diffusion system. As one approaches the co-dimension 2 point, we observe that the stable stationary periodic patterns predicted by the GL-equation evolve towards various different families of stable, stationary (but not necessarily periodic) so-called ‘multi-bump’ solutions. In the literature, these multi-bump patterns are shown to exist as solutions of the eFK-equation, but there is no proof of the asymptotic stability of these solutions. Our results suggest that these multi-bump patterns can also be asymptotically stable in large classes of model problems.
NASA Astrophysics Data System (ADS)
Ali, M. Syed; Zhu, Quanxin; Pavithra, S.; Gunasekaran, N.
2018-03-01
This study examines the problem of dissipative synchronisation of coupled reaction-diffusion neural networks with time-varying delays. This paper proposes a complex dynamical network consisting of N linearly and diffusively coupled identical reaction-diffusion neural networks. By constructing a suitable Lyapunov-Krasovskii functional (LKF), utilisation of Jensen's inequality and reciprocally convex combination (RCC) approach, strictly ?-dissipative conditions of the addressed systems are derived. Finally, a numerical example is given to show the effectiveness of the theoretical results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Paul T.; Shadid, John N.; Sala, Marzio
In this study results are presented for the large-scale parallel performance of an algebraic multilevel preconditioner for solution of the drift-diffusion model for semiconductor devices. The preconditioner is the key numerical procedure determining the robustness, efficiency and scalability of the fully-coupled Newton-Krylov based, nonlinear solution method that is employed for this system of equations. The coupled system is comprised of a source term dominated Poisson equation for the electric potential, and two convection-diffusion-reaction type equations for the electron and hole concentration. The governing PDEs are discretized in space by a stabilized finite element method. Solution of the discrete system ismore » obtained through a fully-implicit time integrator, a fully-coupled Newton-based nonlinear solver, and a restarted GMRES Krylov linear system solver. The algebraic multilevel preconditioner is based on an aggressive coarsening graph partitioning of the nonzero block structure of the Jacobian matrix. Representative performance results are presented for various choices of multigrid V-cycles and W-cycles and parameter variations for smoothers based on incomplete factorizations. Parallel scalability results are presented for solution of up to 10{sup 8} unknowns on 4096 processors of a Cray XT3/4 and an IBM POWER eServer system.« less
A novel simulation theory and model system for multi-field coupling pipe-flow system
NASA Astrophysics Data System (ADS)
Chen, Yang; Jiang, Fan; Cai, Guobiao; Xu, Xu
2017-09-01
Due to the lack of a theoretical basis for multi-field coupling in many system-level models, a novel set of system-level basic equations for flow/heat transfer/combustion coupling is put forward. Then a finite volume model of quasi-1D transient flow field for multi-species compressible variable-cross-section pipe flow is established by discretising the basic equations on spatially staggered grids. Combining with the 2D axisymmetric model for pipe-wall temperature field and specific chemical reaction mechanisms, a finite volume model system is established; a set of specific calculation methods suitable for multi-field coupling system-level research is structured for various parameters in this model; specific modularisation simulation models can be further derived in accordance with specific structures of various typical components in a liquid propulsion system. This novel system can also be used to derive two sub-systems: a flow/heat transfer two-field coupling pipe-flow model system without chemical reaction and species diffusion; and a chemical equilibrium thermodynamic calculation-based multi-field coupling system. The applicability and accuracy of two sub-systems have been verified through a series of dynamic modelling and simulations in earlier studies. The validity of this system is verified in an air-hydrogen combustion sample system. The basic equations and the model system provide a unified universal theory and numerical system for modelling and simulation and even virtual testing of various pipeline systems.
Henry, B I; Langlands, T A M; Wearne, S L
2006-09-01
We have revisited the problem of anomalously diffusing species, modeled at the mesoscopic level using continuous time random walks, to include linear reaction dynamics. If a constant proportion of walkers are added or removed instantaneously at the start of each step then the long time asymptotic limit yields a fractional reaction-diffusion equation with a fractional order temporal derivative operating on both the standard diffusion term and a linear reaction kinetics term. If the walkers are added or removed at a constant per capita rate during the waiting time between steps then the long time asymptotic limit has a standard linear reaction kinetics term but a fractional order temporal derivative operating on a nonstandard diffusion term. Results from the above two models are compared with a phenomenological model with standard linear reaction kinetics and a fractional order temporal derivative operating on a standard diffusion term. We have also developed further extensions of the CTRW model to include more general reaction dynamics.
On two parabolic systems: Convergence and blowup
NASA Astrophysics Data System (ADS)
Huang, Yamin
1998-12-01
This dissertation studies two parabolic systems. It consists of two parts. In part one (chapter one), we prove a convergence result, namely, the solution (AK,/ BK) of a system of chemical diffusion-reaction equations (with reaction rate K) converges to the solution (A, B) of a diffusion- instantaneous-reaction equation. To prove our main result, we use some L1 and L2 'energy' estimates and a compactness result due to Aubin (1). As a by-product we also prove that as K approaches infinity, the limit solution exhibits phase separation between A and B. In part two (chapter two), we study the blowup rate for a system of heat equations ut=/Delta u,/ vt=/Delta v in a bounded domain Ωtimes(0,T) coupled in the nonlinear Neumann boundary conditions [/partial u/over/partial n]=vp,/ [/partial v/over/partial n]=uq on ∂Omega×[ 0,T), where p>0,/ q>0,/ pq>1 and n is the exterior normal vector on ∂Omega. Under certain assumptions, we establish exact blowup rate which generalizes the corresponding results of some authors' recent work including Deng (2), Deng-Fila-Levine (3) and Hu-Yin (4). ftn (1) J. P. A scUBIN, Un theoreme de compacite, C. R. Acad. Sci., 256(1963), pp. 5042-5044. (2) K. D scENG, Blow-up rates for parabolic systems, Z. Angew. Math. Phys., 47(1996), No. 1, pp. 132-143. (3) K. D scENG, M. F scILA AND H. A. L scEVINE, On critical exponents for a system of heat equations coupled in the boundary conditions, Acta Math. Univ. Comenian. (N.S.), 36(1994), No. 2, pp. 169-192. (4) B. H scU scAND H. M. Y scIN, The profile near blowup time for solutions of the heat equation with a nonlinear boundary condition, Trans. Amer. Math. Soc., 346(1994), pp. 117-135.
A Hydrodynamic Theory for Spatially Inhomogeneous Semiconductor Lasers: Microscopic Approach
NASA Technical Reports Server (NTRS)
Li, Jianzhong; Ning, C. Z.; Biegel, Bryan A. (Technical Monitor)
2001-01-01
Starting from the microscopic semiconductor Bloch equations (SBEs) including the Boltzmann transport terms in the distribution function equations for electrons and holes, we derived a closed set of diffusion equations for carrier densities and temperatures with self-consistent coupling to Maxwell's equation and to an effective optical polarization equation. The coherent many-body effects are included within the screened Hartree-Fock approximation, while scatterings are treated within the second Born approximation including both the in- and out-scatterings. Microscopic expressions for electron-hole (e-h) and carrier-LO (c-LO) phonon scatterings are directly used to derive the momentum and energy relaxation rates. These rates expressed as functions of temperatures and densities lead to microscopic expressions for self- and mutual-diffusion coefficients in the coupled density-temperature diffusion equations. Approximations for reducing the general two-component description of the electron-hole plasma (EHP) to a single-component one are discussed. In particular, we show that a special single-component reduction is possible when e-h scattering dominates over c-LO phonon scattering. The ambipolar diffusion approximation is also discussed and we show that the ambipolar diffusion coefficients are independent of e-h scattering, even though the diffusion coefficients of individual components depend sensitively on the e-h scattering rates. Our discussions lead to new perspectives into the roles played in the single-component reduction by the electron-hole correlation in momentum space induced by scatterings and the electron-hole correlation in real space via internal static electrical field. Finally, the theory is completed by coupling the diffusion equations to the lattice temperature equation and to the effective optical polarization which in turn couples to the laser field.
NASA Astrophysics Data System (ADS)
Hasnain, Shahid; Saqib, Muhammad; Mashat, Daoud Suleiman
2017-07-01
This research paper represents a numerical approximation to non-linear three dimension reaction diffusion equation with non-linear source term from population genetics. Since various initial and boundary value problems exist in three dimension reaction diffusion phenomena, which are studied numerically by different numerical methods, here we use finite difference schemes (Alternating Direction Implicit and Fourth Order Douglas Implicit) to approximate the solution. Accuracy is studied in term of L2, L∞ and relative error norms by random selected grids along time levels for comparison with analytical results. The test example demonstrates the accuracy, efficiency and versatility of the proposed schemes. Numerical results showed that Fourth Order Douglas Implicit scheme is very efficient and reliable for solving 3-D non-linear reaction diffusion equation.
A class of exact solutions for biomacromolecule diffusion-reaction in live cells.
Sadegh Zadeh, Kouroush; Montas, Hubert J
2010-06-07
A class of novel explicit analytic solutions for a system of n+1 coupled partial differential equations governing biomolecular mass transfer and reaction in living organisms are proposed, evaluated, and analyzed. The solution process uses Laplace and Hankel transforms and results in a recursive convolution of an exponentially scaled Gaussian with modified Bessel functions. The solution is developed for wide range of biomolecular binding kinetics from pure diffusion to multiple binding reactions. The proposed approach provides solutions for both Dirac and Gaussian laser beam (or fluorescence-labeled biomacromolecule) profiles during the course of a Fluorescence Recovery After Photobleaching (FRAP) experiment. We demonstrate that previous models are simplified forms of our theory for special cases. Model analysis indicates that at the early stages of the transport process, biomolecular dynamics is governed by pure diffusion. At large times, the dominant mass transfer process is effective diffusion. Analysis of the sensitivity equations, derived analytically and verified by finite difference differentiation, indicates that experimental biologists should use full space-time profile (instead of the averaged time series) obtained at the early stages of the fluorescence microscopy experiments to extract meaningful physiological information from the protocol. Such a small time frame requires improved bioinstrumentation relative to that in use today. Our mathematical analysis highlights several limitations of the FRAP protocol and provides strategies to improve it. The proposed model can be used to study biomolecular dynamics in molecular biology, targeted drug delivery in normal and cancerous tissues, motor-driven axonal transport in normal and abnormal nervous systems, kinetics of diffusion-controlled reactions between enzyme and substrate, and to validate numerical simulators of biological mass transport processes in vivo. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Ben Isaac, Eyal; Manor, Uri; Kachar, Bechara; Yochelis, Arik; Gov, Nir S
2013-08-01
Reaction-diffusion models have been used to describe pattern formation on the cellular scale, and traditionally do not include feedback between cellular shape changes and biochemical reactions. We introduce here a distinct reaction-diffusion-elasticity approach: The reaction-diffusion part describes bistability between two actin orientations, coupled to the elastic energy of the cell membrane deformations. This coupling supports spatially localized patterns, even when such solutions do not exist in the uncoupled self-inhibited reaction-diffusion system. We apply this concept to describe the nonlinear (threshold driven) initiation mechanism of actin-based cellular protrusions and provide support by several experimental observations.
CFD-ACE+: a CAD system for simulation and modeling of MEMS
NASA Astrophysics Data System (ADS)
Stout, Phillip J.; Yang, H. Q.; Dionne, Paul; Leonard, Andy; Tan, Zhiqiang; Przekwas, Andrzej J.; Krishnan, Anantha
1999-03-01
Computer aided design (CAD) systems are a key to designing and manufacturing MEMS with higher performance/reliability, reduced costs, shorter prototyping cycles and improved time- to-market. One such system is CFD-ACE+MEMS, a modeling and simulation environment for MEMS which includes grid generation, data visualization, graphical problem setup, and coupled fluidic, thermal, mechanical, electrostatic, and magnetic physical models. The fluid model is a 3D multi- block, structured/unstructured/hybrid, pressure-based, implicit Navier-Stokes code with capabilities for multi- component diffusion, multi-species transport, multi-step gas phase chemical reactions, surface reactions, and multi-media conjugate heat transfer. The thermal model solves the total enthalpy from of the energy equation. The energy equation includes unsteady, convective, conductive, species energy, viscous dissipation, work, and radiation terms. The electrostatic model solves Poisson's equation. Both the finite volume method and the boundary element method (BEM) are available for solving Poisson's equation. The BEM method is useful for unbounded problems. The magnetic model solves for the vector magnetic potential from Maxwell's equations including eddy currents but neglecting displacement currents. The mechanical model is a finite element stress/deformation solver which has been coupled to the flow, heat, electrostatic, and magnetic calculations to study flow, thermal electrostatically, and magnetically included deformations of structures. The mechanical or structural model can accommodate elastic and plastic materials, can handle large non-linear displacements, and can model isotropic and anisotropic materials. The thermal- mechanical coupling involves the solution of the steady state Navier equation with thermoelastic deformation. The electrostatic-mechanical coupling is a calculation of the pressure force due to surface charge on the mechanical structure. Results of CFD-ACE+MEMS modeling of MEMS such as cantilever beams, accelerometers, and comb drives are discussed.
Talaei, Behzad; Jagannathan, Sarangapani; Singler, John
2018-04-01
In this paper, neurodynamic programming-based output feedback boundary control of distributed parameter systems governed by uncertain coupled semilinear parabolic partial differential equations (PDEs) under Neumann or Dirichlet boundary control conditions is introduced. First, Hamilton-Jacobi-Bellman (HJB) equation is formulated in the original PDE domain and the optimal control policy is derived using the value functional as the solution of the HJB equation. Subsequently, a novel observer is developed to estimate the system states given the uncertain nonlinearity in PDE dynamics and measured outputs. Consequently, the suboptimal boundary control policy is obtained by forward-in-time estimation of the value functional using a neural network (NN)-based online approximator and estimated state vector obtained from the NN observer. Novel adaptive tuning laws in continuous time are proposed for learning the value functional online to satisfy the HJB equation along system trajectories while ensuring the closed-loop stability. Local uniformly ultimate boundedness of the closed-loop system is verified by using Lyapunov theory. The performance of the proposed controller is verified via simulation on an unstable coupled diffusion reaction process.
NASA Astrophysics Data System (ADS)
Belhi, Memdouh; Im, Hong; Computational Reacting Flows Laboratory, Clean Combustion Research Center Team
2017-11-01
The effects of an electric field on the combustion kinetics in nonpremixed counterflow methane/air flames were investigated via one-dimensional numerical simulations. A classical fluid model coupling Poison's equation with transport equations for combustion species and electric field-induced particles was used. A methane-air reaction mechanism accounting for the natural ionization in flames was combined with a set of reactions that describe the formation of active particles induced by the electric field. Kinetic parameters for electron-impact reactions and transport coefficients of electrons were modeled as functions of reduced electric field via solutions to the Boltzmann kinetic equation using the BOLSIG code. Mobility of ions was computed based on the (n,6,4) and coulomb interaction potentials, while the diffusion coefficient was approximated from the mobility using Einstein relation. Contributions of electron dissociation, excitation and ionization processes were characterized quantitatively. An analysis to identify the plasma regime where the electric field can alter the combustion kinetic was proposed.
Reaction rates for a generalized reaction-diffusion master equation
Hellander, Stefan; Petzold, Linda
2016-01-19
It has been established that there is an inherent limit to the accuracy of the reaction-diffusion master equation. Specifically, there exists a fundamental lower bound on the mesh size, below which the accuracy deteriorates as the mesh is refined further. In this paper we extend the standard reaction-diffusion master equation to allow molecules occupying neighboring voxels to react, in contrast to the traditional approach in which molecules react only when occupying the same voxel. We derive reaction rates, in two dimensions as well as three dimensions, to obtain an optimal match to the more fine-grained Smoluchowski model, and show inmore » two numerical examples that the extended algorithm is accurate for a wide range of mesh sizes, allowing us to simulate systems that are intractable with the standard reaction-diffusion master equation. In addition, we show that for mesh sizes above the fundamental lower limit of the standard algorithm, the generalized algorithm reduces to the standard algorithm. We derive a lower limit for the generalized algorithm which, in both two dimensions and three dimensions, is on the order of the reaction radius of a reacting pair of molecules.« less
Reaction rates for a generalized reaction-diffusion master equation
Hellander, Stefan; Petzold, Linda
2016-01-01
It has been established that there is an inherent limit to the accuracy of the reaction-diffusion master equation. Specifically, there exists a fundamental lower bound on the mesh size, below which the accuracy deteriorates as the mesh is refined further. In this paper we extend the standard reaction-diffusion master equation to allow molecules occupying neighboring voxels to react, in contrast to the traditional approach in which molecules react only when occupying the same voxel. We derive reaction rates, in two dimensions as well as three dimensions, to obtain an optimal match to the more fine-grained Smoluchowski model, and show in two numerical examples that the extended algorithm is accurate for a wide range of mesh sizes, allowing us to simulate systems that are intractable with the standard reaction-diffusion master equation. In addition, we show that for mesh sizes above the fundamental lower limit of the standard algorithm, the generalized algorithm reduces to the standard algorithm. We derive a lower limit for the generalized algorithm which, in both two dimensions and three dimensions, is on the order of the reaction radius of a reacting pair of molecules. PMID:26871190
A fully implicit finite element method for bidomain models of cardiac electromechanics
Dal, Hüsnü; Göktepe, Serdar; Kaliske, Michael; Kuhl, Ellen
2012-01-01
We propose a novel, monolithic, and unconditionally stable finite element algorithm for the bidomain-based approach to cardiac electromechanics. We introduce the transmembrane potential, the extracellular potential, and the displacement field as independent variables, and extend the common two-field bidomain formulation of electrophysiology to a three-field formulation of electromechanics. The intrinsic coupling arises from both excitation-induced contraction of cardiac cells and the deformation-induced generation of intra-cellular currents. The coupled reaction-diffusion equations of the electrical problem and the momentum balance of the mechanical problem are recast into their weak forms through a conventional isoparametric Galerkin approach. As a novel aspect, we propose a monolithic approach to solve the governing equations of excitation-contraction coupling in a fully coupled, implicit sense. We demonstrate the consistent linearization of the resulting set of non-linear residual equations. To assess the algorithmic performance, we illustrate characteristic features by means of representative three-dimensional initial-boundary value problems. The proposed algorithm may open new avenues to patient specific therapy design by circumventing stability and convergence issues inherent to conventional staggered solution schemes. PMID:23175588
Modelling the radiotherapy effect in the reaction-diffusion equation.
Borasi, Giovanni; Nahum, Alan
2016-09-01
In recent years, the reaction-diffusion (Fisher-Kolmogorov) equation has received much attention from the oncology research community due to its ability to describe the infiltrating nature of glioblastoma multiforme and its extraordinary resistance to any type of therapy. However, in a number of previous papers in the literature on applications of this equation, the term (R) expressing the 'External Radiotherapy effect' was incorrectly derived. In this note we derive an analytical expression for this term in the correct form to be included in the reaction-diffusion equation. The R term has been derived starting from the Linear-Quadratic theory of cell killing by ionizing radiation. The correct definition of R was adopted and the basic principles of differential calculus applied. The compatibility of the R term derived here with the reaction-diffusion equation was demonstrated. Referring to a typical glioblastoma tumour, we have compared the results obtained using our expression for the R term with the 'incorrect' expression proposed by other authors. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Ackerman, David M; Wang, Jing; Wendel, Joseph H; Liu, Da-Jiang; Pruski, Marek; Evans, James W
2011-03-21
We analyze the spatiotemporal behavior of species concentrations in a diffusion-mediated conversion reaction which occurs at catalytic sites within linear pores of nanometer diameter. Diffusion within the pores is subject to a strict single-file (no passing) constraint. Both transient and steady-state behavior is precisely characterized by kinetic Monte Carlo simulations of a spatially discrete lattice-gas model for this reaction-diffusion process considering various distributions of catalytic sites. Exact hierarchical master equations can also be developed for this model. Their analysis, after application of mean-field type truncation approximations, produces discrete reaction-diffusion type equations (mf-RDE). For slowly varying concentrations, we further develop coarse-grained continuum hydrodynamic reaction-diffusion equations (h-RDE) incorporating a precise treatment of single-file diffusion in this multispecies system. The h-RDE successfully describe nontrivial aspects of transient behavior, in contrast to the mf-RDE, and also correctly capture unreactive steady-state behavior in the pore interior. However, steady-state reactivity, which is localized near the pore ends when those regions are catalytic, is controlled by fluctuations not incorporated into the hydrodynamic treatment. The mf-RDE partly capture these fluctuation effects, but cannot describe scaling behavior of the reactivity.
First passage times for multiple particles with reversible target-binding kinetics
NASA Astrophysics Data System (ADS)
Grebenkov, Denis S.
2017-10-01
We investigate the first passage problem for multiple particles that diffuse towards a target, partially adsorb there, and then desorb after a finite exponentially distributed residence time. We search for the first time when m particles undergoing such reversible target-binding kinetics are found simultaneously on the target that may trigger an irreversible chemical reaction or a biophysical event. Even if the particles are independent, the finite residence time on the target yields an intricate temporal coupling between particles. We compute analytically the mean first passage time (MFPT) for two independent particles by mapping the original problem to higher-dimensional surface-mediated diffusion and solving the coupled partial differential equations. The respective effects of the adsorption and desorption rates on the MFPT are revealed and discussed.
Traveling wave solutions to a reaction-diffusion equation
NASA Astrophysics Data System (ADS)
Feng, Zhaosheng; Zheng, Shenzhou; Gao, David Y.
2009-07-01
In this paper, we restrict our attention to traveling wave solutions of a reaction-diffusion equation. Firstly we apply the Divisor Theorem for two variables in the complex domain, which is based on the ring theory of commutative algebra, to find a quasi-polynomial first integral of an explicit form to an equivalent autonomous system. Then through this first integral, we reduce the reaction-diffusion equation to a first-order integrable ordinary differential equation, and a class of traveling wave solutions is obtained accordingly. Comparisons with the existing results in the literature are also provided, which indicates that some analytical results in the literature contain errors. We clarify the errors and instead give a refined result in a simple and straightforward manner.
An asymptotic induced numerical method for the convection-diffusion-reaction equation
NASA Technical Reports Server (NTRS)
Scroggs, Jeffrey S.; Sorensen, Danny C.
1988-01-01
A parallel algorithm for the efficient solution of a time dependent reaction convection diffusion equation with small parameter on the diffusion term is presented. The method is based on a domain decomposition that is dictated by singular perturbation analysis. The analysis is used to determine regions where certain reduced equations may be solved in place of the full equation. Parallelism is evident at two levels. Domain decomposition provides parallelism at the highest level, and within each domain there is ample opportunity to exploit parallelism. Run time results demonstrate the viability of the method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Novascone, Stephen Rhead; Peterson, John William
Abstract This report documents the progress of simulating pore migration in ceramic (UO 2 and mixed oxide or MOX) fuel using BISON. The porosity field is treated as a function of space and time whose evolution is governed by a custom convection-diffusion-reaction equation (described here) which is coupled to the heat transfer equation via the temperature field. The porosity is initialized to a constant value at every point in the domain, and as the temperature (and its gradient) are increased by application of a heat source, the pores move up the thermal gradient and accumulate at the center of themore » fuel in a time-frame that is consistent with observations from experiments. There is an inverse dependence of the fuel’s thermal conductivity on porosity (increasing porosity decreases thermal conductivity, and vice-versa) which is also accounted for, allowing the porosity equation to couple back into the heat transfer equation. Results from an example simulation are shown to demonstrate the new capability.« less
NASA Astrophysics Data System (ADS)
Amaya-Ventura, Gilberto; Rodríguez-Romo, Suemi
2011-09-01
This paper deals with the computational simulation of the reaction-diffusion-advection phenomena emerging in Rayleigh-Bénard (RB) and Poiseuille-Bénard reactive convection systems. We use the Boussinesq's approximation for buoyancy forces and the Lattice Boltzmann method (LBM). The first kinetic mesoscopic model proposed here is based on the discrete Boltzmann equation needed to solve the momentum balance coupled with buoyancy forces. Then, a second lattice Boltzmann algorithm is applied to solve the reaction-diffusion-advection equation to calculate the evolution of the chemical species concentration. We use a reactive system composed by nitrous oxide (so call laughing gas) in air as an example; its spatio-temporal decomposition is calculated. Two cases are considered, a rectangular enclosed cavity and an open channel. The simulations are performed at low Reynolds numbers and in a steady state between the first and second thermo-hydrodynamic instabilities. The results presented here, for the thermo-hydrodynamic behavior, are in good agreement with experimental data; while our| chemical kinetics simulation yields expected results. Some applications of our approach are related to chemical reactors and atmospheric phenomena, among others.
Safonov, Dmitry A; Vanag, Vladimir K
2018-05-03
The dynamical regimes of two almost identical Belousov-Zhabotinsky oscillators with both pulsatile (with time delay) and diffusive coupling have been studied theoretically with the aid of ordinary differential equations for four combinations of these types of coupling: inhibitory diffusive and inhibitory pulsatile (IDIP); excitatory diffusive and inhibitory pulsatile; inhibitory diffusive and excitatory pulsatile; and finally, excitatory diffusive and excitatory pulsatile (EDEP). The combination of two types of coupling creates a condition for new feedback, which promotes new dynamical modes for the IDIP and EDEP coupling.
Anomalous dielectric relaxation with linear reaction dynamics in space-dependent force fields.
Hong, Tao; Tang, Zhengming; Zhu, Huacheng
2016-12-28
The anomalous dielectric relaxation of disordered reaction with linear reaction dynamics is studied via the continuous time random walk model in the presence of space-dependent electric field. Two kinds of modified reaction-subdiffusion equations are derived for different linear reaction processes by the master equation, including the instantaneous annihilation reaction and the noninstantaneous annihilation reaction. If a constant proportion of walkers is added or removed instantaneously at the end of each step, there will be a modified reaction-subdiffusion equation with a fractional order temporal derivative operating on both the standard diffusion term and a linear reaction kinetics term. If the walkers are added or removed at a constant per capita rate during the waiting time between steps, there will be a standard linear reaction kinetics term but a fractional order temporal derivative operating on an anomalous diffusion term. The dielectric polarization is analyzed based on the Legendre polynomials and the dielectric properties of both reactions can be expressed by the effective rotational diffusion function and component concentration function, which is similar to the standard reaction-diffusion process. The results show that the effective permittivity can be used to describe the dielectric properties in these reactions if the chemical reaction time is much longer than the relaxation time.
NASA Astrophysics Data System (ADS)
Marin, D.; Ribeiro, M. A.; Ribeiro, H. V.; Lenzi, E. K.
2018-07-01
We investigate the solutions for a set of coupled nonlinear Fokker-Planck equations coupled by the diffusion coefficient in presence of external forces. The coupling by the diffusion coefficient implies that the diffusion of each species is influenced by the other and vice versa due to this term, which represents an interaction among them. The solutions for the stationary case are given in terms of the Tsallis distributions, when arbitrary external forces are considered. We also use the Tsallis distributions to obtain a time dependent solution for a linear external force. The results obtained from this analysis show a rich class of behavior related to anomalous diffusion, which can be characterized by compact or long-tailed distributions.
NASA Astrophysics Data System (ADS)
Owolabi, Kolade M.
2018-03-01
In this work, we are concerned with the solution of non-integer space-fractional reaction-diffusion equations with the Riemann-Liouville space-fractional derivative in high dimensions. We approximate the Riemann-Liouville derivative with the Fourier transform method and advance the resulting system in time with any time-stepping solver. In the numerical experiments, we expect the travelling wave to arise from the given initial condition on the computational domain (-∞, ∞), which we terminate in the numerical experiments with a large but truncated value of L. It is necessary to choose L large enough to allow the waves to have enough space to distribute. Experimental results in high dimensions on the space-fractional reaction-diffusion models with applications to biological models (Fisher and Allen-Cahn equations) are considered. Simulation results reveal that fractional reaction-diffusion equations can give rise to a range of physical phenomena when compared to non-integer-order cases. As a result, most meaningful and practical situations are found to be modelled with the concept of fractional calculus.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Devine, K.D.; Hennigan, G.L.; Hutchinson, S.A.
1999-01-01
The theoretical background for the finite element computer program, MPSalsa Version 1.5, is presented in detail. MPSalsa is designed to solve laminar or turbulent low Mach number, two- or three-dimensional incompressible and variable density reacting fluid flows on massively parallel computers, using a Petrov-Galerkin finite element formulation. The code has the capability to solve coupled fluid flow (with auxiliary turbulence equations), heat transport, multicomponent species transport, and finite-rate chemical reactions, and to solve coupled multiple Poisson or advection-diffusion-reaction equations. The program employs the CHEMKIN library to provide a rigorous treatment of multicomponent ideal gas kinetics and transport. Chemical reactions occurringmore » in the gas phase and on surfaces are treated by calls to CHEMKIN and SURFACE CHEMK3N, respectively. The code employs unstructured meshes, using the EXODUS II finite element database suite of programs for its input and output files. MPSalsa solves both transient and steady flows by using fully implicit time integration, an inexact Newton method and iterative solvers based on preconditioned Krylov methods as implemented in the Aztec. solver library.« less
NASA Astrophysics Data System (ADS)
Hosseini, Kamyar; Mayeli, Peyman; Bekir, Ahmet; Guner, Ozkan
2018-01-01
In this article, a special type of fractional differential equations (FDEs) named the density-dependent conformable fractional diffusion-reaction (DDCFDR) equation is studied. Aforementioned equation has a significant role in the modelling of some phenomena arising in the applied science. The well-organized methods, including the \\exp (-φ (\\varepsilon )) -expansion and modified Kudryashov methods are exerted to generate the exact solutions of this equation such that some of the solutions are new and have been reported for the first time. Results illustrate that both methods have a great performance in handling the DDCFDR equation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santhanagopalan, Shriram; White, Ralph E.
Rotating ring disc electrode (RRDE) experiments are a classic tool for investigating kinetics of electrochemical reactions. Several standardized methods exist for extracting transport parameters and reaction rate constants using RRDE measurements. Here in this work, we compare some approximate solutions to the convective diffusion used popularly in the literature to a rigorous numerical solution of the Nernst-Planck equations coupled to the three dimensional flow problem. In light of these computational advancements, we explore design aspects of the RRDE that will help improve sensitivity of our parameter estimation procedure to experimental data. We use the oxygen reduction in acidic media involvingmore » three charge transfer reactions and a chemical reaction as an example, and identify ways to isolate reaction currents for the individual processes in order to accurately estimate the exchange current densities.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brantley, P S
2006-09-27
We describe an asymptotic analysis of the coupled nonlinear system of equations describing time-dependent three-dimensional monoenergetic neutron transport and isotopic depletion and radioactive decay. The classic asymptotic diffusion scaling of Larsen and Keller [1], along with a consistent small scaling of the terms describing the radioactive decay of isotopes, is applied to this coupled nonlinear system of equations in a medium of specified initial isotopic composition. The analysis demonstrates that to leading order the neutron transport equation limits to the standard time-dependent neutron diffusion equation with macroscopic cross sections whose number densities are determined by the standard system of ordinarymore » differential equations, the so-called Bateman equations, describing the temporal evolution of the nuclide number densities.« less
Kekenes-Huskey, Peter M.; Eun, Changsun; McCammon, J. A.
2015-01-01
Biochemical reaction networks consisting of coupled enzymes connect substrate signaling events with biological function. Substrates involved in these reactions can be strongly influenced by diffusion “barriers” arising from impenetrable cellular structures and macromolecules, as well as interactions with biomolecules, especially within crowded environments. For diffusion-influenced reactions, the spatial organization of diffusion barriers arising from intracellular structures, non-specific crowders, and specific-binders (buffers) strongly controls the temporal and spatial reaction kinetics. In this study, we use two prototypical biochemical reactions, a Goodwin oscillator, and a reaction with a periodic source/sink term to examine how a diffusion barrier that partitions substrates controls reaction behavior. Namely, we examine how conditions representative of a densely packed cytosol, including reduced accessible volume fraction, non-specific interactions, and buffers, impede diffusion over nanometer length-scales. We find that diffusion barriers can modulate the frequencies and amplitudes of coupled diffusion-influenced reaction networks, as well as give rise to “compartments” of decoupled reactant populations. These effects appear to be intensified in the presence of buffers localized to the diffusion barrier. These findings have strong implications for the role of the cellular environment in tuning the dynamics of signaling pathways. PMID:26342355
A hybrid algorithm for coupling partial differential equation and compartment-based dynamics.
Harrison, Jonathan U; Yates, Christian A
2016-09-01
Stochastic simulation methods can be applied successfully to model exact spatio-temporally resolved reaction-diffusion systems. However, in many cases, these methods can quickly become extremely computationally intensive with increasing particle numbers. An alternative description of many of these systems can be derived in the diffusive limit as a deterministic, continuum system of partial differential equations (PDEs). Although the numerical solution of such PDEs is, in general, much more efficient than the full stochastic simulation, the deterministic continuum description is generally not valid when copy numbers are low and stochastic effects dominate. Therefore, to take advantage of the benefits of both of these types of models, each of which may be appropriate in different parts of a spatial domain, we have developed an algorithm that can be used to couple these two types of model together. This hybrid coupling algorithm uses an overlap region between the two modelling regimes. By coupling fluxes at one end of the interface and using a concentration-matching condition at the other end, we ensure that mass is appropriately transferred between PDE- and compartment-based regimes. Our methodology gives notable reductions in simulation time in comparison with using a fully stochastic model, while maintaining the important stochastic features of the system and providing detail in appropriate areas of the domain. We test our hybrid methodology robustly by applying it to several biologically motivated problems including diffusion and morphogen gradient formation. Our analysis shows that the resulting error is small, unbiased and does not grow over time. © 2016 The Authors.
Breakdown of the reaction-diffusion master equation with nonelementary rates
NASA Astrophysics Data System (ADS)
Smith, Stephen; Grima, Ramon
2016-05-01
The chemical master equation (CME) is the exact mathematical formulation of chemical reactions occurring in a dilute and well-mixed volume. The reaction-diffusion master equation (RDME) is a stochastic description of reaction-diffusion processes on a spatial lattice, assuming well mixing only on the length scale of the lattice. It is clear that, for the sake of consistency, the solution of the RDME of a chemical system should converge to the solution of the CME of the same system in the limit of fast diffusion: Indeed, this has been tacitly assumed in most literature concerning the RDME. We show that, in the limit of fast diffusion, the RDME indeed converges to a master equation but not necessarily the CME. We introduce a class of propensity functions, such that if the RDME has propensities exclusively of this class, then the RDME converges to the CME of the same system, whereas if the RDME has propensities not in this class, then convergence is not guaranteed. These are revealed to be elementary and nonelementary propensities, respectively. We also show that independent of the type of propensity, the RDME converges to the CME in the simultaneous limit of fast diffusion and large volumes. We illustrate our results with some simple example systems and argue that the RDME cannot generally be an accurate description of systems with nonelementary rates.
A fully coupled 3D transport model in SPH for multi-species reaction-diffusion systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adami, Stefan; Hu, X. Y.; Adams, N. A.
2011-08-23
Abstract—In this paper we present a fully generalized transport model for multiple species in complex two and threedimensional geometries. Based on previous work [1] we have extended our interfacial reaction-diffusion model to handle arbitrary numbers of species allowing for coupled reaction models. Each species is tracked independently and we consider different physics of a species with respect to the bulk phases in contact. We use our SPH model to simulate the reaction-diffusion problem on a pore-scale level of a solid oxide fuel cell (SOFC) with special emphasize on the effect of surface diffusion.
NASA Astrophysics Data System (ADS)
Ikuse, Kazumasa; Hamaguchi, Satoshi
2016-09-01
We have used two types of numerical simulations to examine biological effects of reactive oxygen and nitrogen species (RONS) generated in water by an atmospheric-pressure plasma (APP) that irradiates the water surface. One is numerical simulation for the generation and transport of RONS in water based on the reaction-diffusion-advection equations coupled with Poisson equation. The rate constants, mobilities, and diffusion coefficients used in the equations are obtained from the literature. The gaseous species are given as boundary conditions and time evolution of the concentrations of chemical species in pure water is solved numerically as functions of the depth in one dimension. Although it is not clear how living organisms respond to such exogenous RONS, we also use numerical simulation for metabolic reactions of Escherichia coli (E. coli) and examine possible effects of such RONS on an in-silico model organism. The computation model is based on the flux balance analysis (FBA), where the fluxes of the metabolites in a biological system are evaluated in steady state, i.e., under the assumption that the fluxes do not change in time. The fluxes are determined with liner programming to maximize the growth rate of the bacteria under the given conditions. Although FBA cannot be directly applied to dynamical responses of metabolic reactions, the simulation still gives insight into the biological reactions to exogenous chemical species generated by an APP. Partially supported by JSPS Grants-in-Aid for Scientific Research.
NASA Astrophysics Data System (ADS)
Moore, Peter K.
2003-07-01
Solving systems of reaction-diffusion equations in three space dimensions can be prohibitively expensive both in terms of storage and CPU time. Herein, I present a new incomplete assembly procedure that is designed to reduce storage requirements. Incomplete assembly is analogous to incomplete factorization in that only a fixed number of nonzero entries are stored per row and a drop tolerance is used to discard small values. The algorithm is incorporated in a finite element method-of-lines code and tested on a set of reaction-diffusion systems. The effect of incomplete assembly on CPU time and storage and on the performance of the temporal integrator DASPK, algebraic solver GMRES and preconditioner ILUT is studied.
Influence of Marangoni flows on the dynamics of isothermal A + B → C reaction fronts.
Tiani, R; Rongy, L
2016-09-28
The nonlinear dynamics of A + B → C fronts is analyzed both numerically and theoretically in the presence of Marangoni flows, i.e., convective motions driven by surface tension gradients. We consider horizontal aqueous solutions where the three species A, B, and C can affect the surface tension of the solution, thereby driving Marangoni flows. The resulting dynamics is studied by numerically integrating the incompressible Navier-Stokes equations coupled to reaction-diffusion-convection (RDC) equations for the three chemical species. We show that the dynamics of the front cannot be predicted solely on the basis of the one-dimensional reaction-diffusion profiles as is the case for buoyancy-driven convection around such fronts. We relate this observation to the structure of Marangoni flows which lead to more complex and exotic dynamics. We find in particular the surprising possibility of a reversal of the front propagation direction in time for some sets of Marangoni numbers, quantifying the influence of each chemical species concentration on the solution surface tension. We explain this reversal analytically and propose a new classification of the convective effects on A + B → C reaction fronts as a function of the Marangoni numbers. The influence of the layer thickness on the RDC dynamics is also presented. Those results emphasize the importance of flow symmetry properties when studying convective front dynamics in a given geometry.
Birth-jump processes and application to forest fire spotting.
Hillen, T; Greese, B; Martin, J; de Vries, G
2015-01-01
Birth-jump models are designed to describe population models for which growth and spatial spread cannot be decoupled. A birth-jump model is a nonlinear integro-differential equation. We present two different derivations of this equation, one based on a random walk approach and the other based on a two-compartmental reaction-diffusion model. In the case that the redistribution kernels are highly concentrated, we show that the integro-differential equation can be approximated by a reaction-diffusion equation, in which the proliferation rate contributes to both the diffusion term and the reaction term. We completely solve the corresponding critical domain size problem and the minimal wave speed problem. Birth-jump models can be applied in many areas in mathematical biology. We highlight an application of our results in the context of forest fire spread through spotting. We show that spotting increases the invasion speed of a forest fire front.
Energy diffusion controlled reaction rate of reacting particle driven by broad-band noise
NASA Astrophysics Data System (ADS)
Deng, M. L.; Zhu, W. Q.
2007-10-01
The energy diffusion controlled reaction rate of a reacting particle with linear weak damping and broad-band noise excitation is studied by using the stochastic averaging method. First, the stochastic averaging method for strongly nonlinear oscillators under broad-band noise excitation using generalized harmonic functions is briefly introduced. Then, the reaction rate of the classical Kramers' reacting model with linear weak damping and broad-band noise excitation is investigated by using the stochastic averaging method. The averaged Itô stochastic differential equation describing the energy diffusion and the Pontryagin equation governing the mean first-passage time (MFPT) are established. The energy diffusion controlled reaction rate is obtained as the inverse of the MFPT by solving the Pontryagin equation. The results of two special cases of broad-band noises, i.e. the harmonic noise and the exponentially corrected noise, are discussed in details. It is demonstrated that the general expression of reaction rate derived by the authors can be reduced to the classical ones via linear approximation and high potential barrier approximation. The good agreement with the results of the Monte Carlo simulation verifies that the reaction rate can be well predicted using the stochastic averaging method.
Regular Wave Propagation Out of Noise in Chemical Active Media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alonso, S.; Sendina-Nadal, I.; Perez-Munuzuri, V.
2001-08-13
A pacemaker, regularly emitting chemical waves, is created out of noise when an excitable photosensitive Belousov-Zhabotinsky medium, strictly unable to autonomously initiate autowaves, is forced with a spatiotemporal patterned random illumination. These experimental observations are also reproduced numerically by using a set of reaction-diffusion equations for an activator-inhibitor model, and further analytically interpreted in terms of genuine coupling effects arising from parametric fluctuations. Within the same framework we also address situations of noise-sustained propagation in subexcitable media.
A framework for discrete stochastic simulation on 3D moving boundary domains
Drawert, Brian; Hellander, Stefan; Trogdon, Michael; ...
2016-11-14
We have developed a method for modeling spatial stochastic biochemical reactions in complex, three-dimensional, and time-dependent domains using the reaction-diffusion master equation formalism. In particular, we look to address the fully coupled problems that arise in systems biology where the shape and mechanical properties of a cell are determined by the state of the biochemistry and vice versa. To validate our method and characterize the error involved, we compare our results for a carefully constructed test problem to those of a microscale implementation. Finally, we demonstrate the effectiveness of our method by simulating a model of polarization and shmoo formationmore » during the mating of yeast. The method is generally applicable to problems in systems biology where biochemistry and mechanics are coupled, and spatial stochastic effects are critical.« less
A DYNAMIC DENSITY FUNCTIONAL THEORY APPROACH TO DIFFUSION IN WHITE DWARFS AND NEUTRON STAR ENVELOPES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diaw, A.; Murillo, M. S.
2016-09-20
We develop a multicomponent hydrodynamic model based on moments of the Born–Bogolyubov–Green–Kirkwood–Yvon hierarchy equations for physical conditions relevant to astrophysical plasmas. These equations incorporate strong correlations through a density functional theory closure, while transport enters through a relaxation approximation. This approach enables the introduction of Coulomb coupling correction terms into the standard Burgers equations. The diffusive currents for these strongly coupled plasmas is self-consistently derived. The settling of impurities and its impact on cooling can be greatly affected by strong Coulomb coupling, which we show can be quantified using the direct correlation function.
Estimating parameters from rotating ring disc electrode measurements
Santhanagopalan, Shriram; White, Ralph E.
2017-10-21
Rotating ring disc electrode (RRDE) experiments are a classic tool for investigating kinetics of electrochemical reactions. Several standardized methods exist for extracting transport parameters and reaction rate constants using RRDE measurements. Here in this work, we compare some approximate solutions to the convective diffusion used popularly in the literature to a rigorous numerical solution of the Nernst-Planck equations coupled to the three dimensional flow problem. In light of these computational advancements, we explore design aspects of the RRDE that will help improve sensitivity of our parameter estimation procedure to experimental data. We use the oxygen reduction in acidic media involvingmore » three charge transfer reactions and a chemical reaction as an example, and identify ways to isolate reaction currents for the individual processes in order to accurately estimate the exchange current densities.« less
Traveling wavefront solutions to nonlinear reaction-diffusion-convection equations
NASA Astrophysics Data System (ADS)
Indekeu, Joseph O.; Smets, Ruben
2017-08-01
Physically motivated modified Fisher equations are studied in which nonlinear convection and nonlinear diffusion is allowed for besides the usual growth and spread of a population. It is pointed out that in a large variety of cases separable functions in the form of exponentially decaying sharp wavefronts solve the differential equation exactly provided a co-moving point source or sink is active at the wavefront. The velocity dispersion and front steepness may differ from those of some previously studied exact smooth traveling wave solutions. For an extension of the reaction-diffusion-convection equation, featuring a memory effect in the form of a maturity delay for growth and spread, also smooth exact wavefront solutions are obtained. The stability of the solutions is verified analytically and numerically.
Analysis of Mathematical Modelling on Potentiometric Biosensors
Mehala, N.; Rajendran, L.
2014-01-01
A mathematical model of potentiometric enzyme electrodes for a nonsteady condition has been developed. The model is based on the system of two coupled nonlinear time-dependent reaction diffusion equations for Michaelis-Menten formalism that describes the concentrations of substrate and product within the enzymatic layer. Analytical expressions for the concentration of substrate and product and the corresponding flux response have been derived for all values of parameters using the new homotopy perturbation method. Furthermore, the complex inversion formula is employed in this work to solve the boundary value problem. The analytical solutions obtained allow a full description of the response curves for only two kinetic parameters (unsaturation/saturation parameter and reaction/diffusion parameter). Theoretical descriptions are given for the two limiting cases (zero and first order kinetics) and relatively simple approaches for general cases are presented. All the analytical results are compared with simulation results using Scilab/Matlab program. The numerical results agree with the appropriate theories. PMID:25969765
Analysis of mathematical modelling on potentiometric biosensors.
Mehala, N; Rajendran, L
2014-01-01
A mathematical model of potentiometric enzyme electrodes for a nonsteady condition has been developed. The model is based on the system of two coupled nonlinear time-dependent reaction diffusion equations for Michaelis-Menten formalism that describes the concentrations of substrate and product within the enzymatic layer. Analytical expressions for the concentration of substrate and product and the corresponding flux response have been derived for all values of parameters using the new homotopy perturbation method. Furthermore, the complex inversion formula is employed in this work to solve the boundary value problem. The analytical solutions obtained allow a full description of the response curves for only two kinetic parameters (unsaturation/saturation parameter and reaction/diffusion parameter). Theoretical descriptions are given for the two limiting cases (zero and first order kinetics) and relatively simple approaches for general cases are presented. All the analytical results are compared with simulation results using Scilab/Matlab program. The numerical results agree with the appropriate theories.
Mathematical Modeling of Decarburization in Levitated Fe-Cr-C Droplets
NASA Astrophysics Data System (ADS)
Gao, Lei; Shi, Zhe; Yang, Yindong; Li, Donghui; Zhang, Guifang; McLean, Alexander; Chattopadhyay, Kinnor
2018-04-01
Using carbon dioxide to replace oxygen as an alternative oxidant gas has proven to be a viable solution in the decarburization process, with potential for industrial applications. In a recent study, the transport phenomena governing the carbon dioxide decarburization process through the use of electromagnetic levitation (EML) was examined. CO2/CO mass transfer was found to be the principal reaction rate control step, as a result gas diffusion has gained significant attention. In the present study, gas diffusion during decarburization process was investigated using computational fluid dynamics (CFD) modeling coupled with chemical reactions. The resulting model was verified through experimental data in a published paper, and employed to provide insights on phenomena typically unobservable through experiments. Based on the results, a new correction of the Frössling equation was presented which better represents the mass transfer phenomena at the metal-gas interface within the range of this research.
Multilevel Preconditioners for Reaction-Diffusion Problems with Discontinuous Coefficients
Kolev, Tzanio V.; Xu, Jinchao; Zhu, Yunrong
2015-08-23
In this study, we extend some of the multilevel convergence results obtained by Xu and Zhu, to the case of second order linear reaction-diffusion equations. Specifically, we consider the multilevel preconditioners for solving the linear systems arising from the linear finite element approximation of the problem, where both diffusion and reaction coefficients are piecewise-constant functions. We discuss in detail the influence of both the discontinuous reaction and diffusion coefficients to the performance of the classical BPX and multigrid V-cycle preconditioner.
Vuong, A.-T.; Rauch, A. D.
2017-01-01
We present a computational model for the interaction of surface- and volume-bound scalar transport and reaction processes with a deformable porous medium. The application in mind is pericellular proteolysis, i.e. the dissolution of the solid phase of the extracellular matrix (ECM) as a response to the activation of certain chemical species at the cell membrane and in the vicinity of the cell. A poroelastic medium model represents the extra cellular scaffold and the interstitial fluid flow, while a surface-bound transport model accounts for the diffusion and reaction of membrane-bound chemical species. By further modelling the volume-bound transport, we consider the advection, diffusion and reaction of sequestered chemical species within the extracellular scaffold. The chemo-mechanical coupling is established by introducing a continuum formulation for the interplay of reaction rates and the mechanical state of the ECM. It is based on known experimental insights and theoretical work on the thermodynamics of porous media and degradation kinetics of collagen fibres on the one hand and a damage-like effect of the fibre dissolution on the mechanical integrity of the ECM on the other hand. The resulting system of partial differential equations is solved via the finite-element method. To the best of our knowledge, it is the first computational model including contemporaneously the coupling between (i) advection–diffusion–reaction processes, (ii) interstitial flow and deformation of a porous medium, and (iii) the chemo-mechanical interaction impelled by the dissolution of the ECM. Our numerical examples show good agreement with experimental data. Furthermore, we outline the capability of the methodology to extend existing numerical approaches towards a more comprehensive model for cellular biochemo-mechanics. PMID:28413347
Buoyancy-driven convection around chemical fronts traveling in covered horizontal solution layers.
Rongy, L; Goyal, N; Meiburg, E; De Wit, A
2007-09-21
Density differences across an autocatalytic chemical front traveling horizontally in covered thin layers of solution trigger hydrodynamic flows which can alter the concentration profile. We theoretically investigate the spatiotemporal evolution and asymptotic dynamics resulting from such an interplay between isothermal chemical reactions, diffusion, and buoyancy-driven convection. The studied model couples the reaction-diffusion-convection evolution equation for the concentration of an autocatalytic species to the incompressible Stokes equations ruling the evolution of the flow velocity in a two-dimensional geometry. The dimensionless parameter of the problem is a solutal Rayleigh number constructed upon the characteristic reaction-diffusion length scale. We show numerically that the asymptotic dynamics is one steady vortex surrounding, deforming, and accelerating the chemical front. This chemohydrodynamic structure propagating at a constant speed is quite different from the one obtained in the case of a pure hydrodynamic flow resulting from the contact between two solutions of different density or from the pure reaction-diffusion planar traveling front. The dynamics is symmetric with regard to the middle of the layer thickness for positive and negative Rayleigh numbers corresponding to products, respectively, lighter or heavier than the reactants. A parametric study shows that the intensity of the flow, the propagation speed, and the deformation of the front are increasing functions of the Rayleigh number and of the layer thickness. In particular, the asymptotic mixing length and reaction-diffusion-convection speed both scale as square root Ra for Ra>5. The velocity and concentration fields in the asymptotic dynamics are also found to exhibit self-similar properties with Ra. A comparison of the dynamics in the case of a monostable versus bistable kinetics is provided. Good agreement is obtained with experimental data on the speed of iodate-arsenous acid fronts propagating in horizontal capillaries. We furthermore compare the buoyancy-driven dynamics studied here to Marangoni-driven deformation of traveling chemical fronts in solution open to the air in the absence of gravity previously studied in the same geometry [L. Rongy and A. De Wit, J. Chem. Phys. 124, 164705 (2006)].
NASA Astrophysics Data System (ADS)
Zeeshan, A.; Shehzad, N.; Ellahi, R.
2018-03-01
The motivation of the current article is to explore the energy activation in MHD radiative Couette-Poiseuille flow nanofluid in horizontal channel with convective boundary conditions. The mathematical model of Buongiorno [1] effectively describes the current flow analysis. Additionally, the impact of chemical reaction is also taken in account. The governing flow equations are simplified with the help of boundary layer approximations. Non-linear coupled equations for momentum, energy and mass transfer are tackled with analytical (HAM) technique. The influence of dimensionless convergence parameter like Brownian motion parameter, radiation parameter, buoyancy ratio parameter, dimensionless activation energy, thermophoresis parameter, temperature difference parameter, dimensionless reaction rate, Schmidt number, Brinkman number, Biot number and convection diffusion parameter on velocity, temperature and concentration profiles are discussed graphically and in tabular form. From the results, it is elaborate that the nanoparticle concentration is directly proportional to the chemical reaction with activation energy and the performance of Brownian motion on nanoparticle concentration gives reverse pattern to that of thermophoresis parameter.
A Generalized Model for Transport of Contaminants in Soil by Electric Fields
Paz-Garcia, Juan M.; Baek, Kitae; Alshawabkeh, Iyad D.; Alshawabkeh, Akram N.
2012-01-01
A generalized model applicable to soils contaminated with multiple species under enhanced boundary conditions during treatment by electric fields is presented. The partial differential equations describing species transport are developed by applying the law of mass conservation to their fluxes. Transport, due to migration, advection and diffusion, of each aqueous component and complex species are combined to produce one partial differential equation hat describes transport of the total analytical concentrations of component species which are the primary dependent variables. This transport couples with geochemical reactions such as aqueous equilibrium, sorption, precipitation and dissolution. The enhanced model is used to simulate electrokinetic cleanup of lead and copper contaminants at an Army Firing Range. Acid enhancement is achieved by the use of adipic acid to neutralize the basic front produced for the cathode electrochemical reaction. The model is able to simulate enhanced application of the process by modifying the boundary conditions. The model showed that kinetics of geochemical reactions, such as metals dissolution/leaching and redox reactions might be significant for realistic prediction of enhanced electrokinetic extraction of metals in real world applications. PMID:22242884
NASA Astrophysics Data System (ADS)
Syed Ali, M.; Yogambigai, J.; Kwon, O. M.
2018-03-01
Finite-time boundedness and finite-time passivity for a class of switched stochastic complex dynamical networks (CDNs) with coupling delays, parameter uncertainties, reaction-diffusion term and impulsive control are studied. Novel finite-time synchronisation criteria are derived based on passivity theory. This paper proposes a CDN consisting of N linearly and diffusively coupled identical reaction- diffusion neural networks. By constructing of a suitable Lyapunov-Krasovskii's functional and utilisation of Jensen's inequality and Wirtinger's inequality, new finite-time passivity criteria for the networks are established in terms of linear matrix inequalities (LMIs), which can be checked numerically using the effective LMI toolbox in MATLAB. Finally, two interesting numerical examples are given to show the effectiveness of the theoretical results.
NASA Technical Reports Server (NTRS)
Shia, Run-Lie; Zhou, Shuntai; Ko, Malcolm K. W.; Sze, Nien-Dak; Salstein, David; Cady-Pereira, Karen
1997-01-01
A zonal mean chemistry transport model (2-D CTM) coupled with a semi-spectral dynamical model is used to simulate the distributions of trace gases in the present day atmosphere. The zonal-mean and eddy equations for the velocity and the geopotential height are solved in the semi-spectral dynamical model. The residual mean circulation is derived from these dynamical variables and used to advect the chemical species in the 2- D CTM. Based on a linearized wave transport equation, the eddy diffusion coefficients for chemical tracers are expressed in terms of the amplitude, frequency and growth rate of dynamical waves; local chemical loss rates; and a time constant parameterizing small scale mixing. The contributions to eddy flux are from the time varying wave amplitude (transient eddy), chemical reactions (chemical eddy) and small scale mixing. In spite of the high truncation in the dynamical module (only three longest waves are resolved), the model has simulated many observed characteristics of stratospheric dynamics and distribution of chemical species including ozone. Compared with the values commonly used in 2-D CTMs, the eddy diffusion coefficients for chemical species calculated in this model are smaller, especially in the subtropics. It is also found that the chemical eddy diffusion has only a small effects in determining the distribution of most slow species, including ozone in the stratosphere.
The development and preliminary application of an invariant coupled diffusion and chemistry model
NASA Technical Reports Server (NTRS)
Hilst, G. R.; Donaldson, C. DUP.; Teske, M.; Contiliano, R.; Freiberg, J.
1973-01-01
In many real-world pollution chemical reaction problems, the rate of reaction problems, the rate of reaction may be greatly affected by unmixedness. An approximate closure scheme for a chemical kinetic submodel which conforms to the principles of invariant modeling and which accounts for the effects of inhomogeneous mixing over a wide range of conditions has been developed. This submodel has been coupled successfully with invariant turbulence and diffusion models, permitting calculation of two-dimensional diffusion of two reacting (isothermally) chemical species. The initial calculations indicate the ozone reactions in the wake of stratospheric aircraft will be substantially affected by the rate of diffusion of ozone into the wake, and in the early wake, by unmixedness.
Delay-induced wave instabilities in single-species reaction-diffusion systems
NASA Astrophysics Data System (ADS)
Otto, Andereas; Wang, Jian; Radons, Günter
2017-11-01
The Turing (wave) instability is only possible in reaction-diffusion systems with more than one (two) components. Motivated by the fact that a time delay increases the dimension of a system, we investigate the presence of diffusion-driven instabilities in single-species reaction-diffusion systems with delay. The stability of arbitrary one-component systems with a single discrete delay, with distributed delay, or with a variable delay is systematically analyzed. We show that a wave instability can appear from an equilibrium of single-species reaction-diffusion systems with fluctuating or distributed delay, which is not possible in similar systems with constant discrete delay or without delay. More precisely, we show by basic analytic arguments and by numerical simulations that fast asymmetric delay fluctuations or asymmetrically distributed delays can lead to wave instabilities in these systems. Examples, for the resulting traveling waves are shown for a Fisher-KPP equation with distributed delay in the reaction term. In addition, we have studied diffusion-induced instabilities from homogeneous periodic orbits in the same systems with variable delay, where the homogeneous periodic orbits are attracting resonant periodic solutions of the system without diffusion, i.e., periodic orbits of the Hutchinson equation with time-varying delay. If diffusion is introduced, standing waves can emerge whose temporal period is equal to the period of the variable delay.
In situ imaging of the soldering reactions in nanoscale Cu/Sn/Cu and Sn/Cu/Sn diffusion couples
NASA Astrophysics Data System (ADS)
Yin, Qiyue; Gao, Fan; Gu, Zhiyong; Wang, Jirui; Stach, Eric A.; Zhou, Guangwen
2018-01-01
The soldering reactions of three-segmented Sn/Cu/Sn and Cu/Sn/Cu diffusion couples are monitored by in-situ transmission electron microscopy to reveal the metallurgical reaction mechanism and the associated phase transformation pathway. For Sn/Cu/Sn diffusion couples, there is no ɛ-Cu3Sn formation due to the relatively insufficient Cu as compared to Sn. Kirkendall voids form initially in the Cu segment and then disappear due to the volume expansion associated with the continued intermetallic compound (IMC) formation as the reaction progresses. The incoming Sn atoms react with Cu to form η-Cu6Sn5, and the continuous reaction then transforms the entire nanowire to η-Cu6Sn5 grains with remaining Sn. With continued heating slightly above the melting point of Sn, an Sn-rich liquid phase forms between η-Cu6Sn5 grains. By contrast, the reaction in the Cu/Sn/Cu diffusion couples results in the intermetallic phases of both Cu3Sn and Cu6Sn5 and the development of Cu6Sn5 bulges on Cu3Sn grains. Kirkendall voids form in the two Cu segments, which grow and eventually break the nanowire into multiple segments.
NASA Astrophysics Data System (ADS)
Guo, L.; Huang, H.; Gaston, D.; Redden, G. D.; Fox, D. T.; Fujita, Y.
2010-12-01
Inducing mineral precipitation in the subsurface is one potential strategy for immobilizing trace metal and radionuclide contaminants. Generating mineral precipitates in situ can be achieved by manipulating chemical conditions, typically through injection or in situ generation of reactants. How these reactants transport, mix and react within the medium controls the spatial distribution and composition of the resulting mineral phases. Multiple processes, including fluid flow, dispersive/diffusive transport of reactants, biogeochemical reactions and changes in porosity-permeability, are tightly coupled over a number of scales. Numerical modeling can be used to investigate the nonlinear coupling effects of these processes which are quite challenging to explore experimentally. Many subsurface reactive transport simulators employ a de-coupled or operator-splitting approach where transport equations and batch chemistry reactions are solved sequentially. However, such an approach has limited applicability for biogeochemical systems with fast kinetics and strong coupling between chemical reactions and medium properties. A massively parallel, fully coupled, fully implicit Reactive Transport simulator (referred to as “RAT”) based on a parallel multi-physics object-oriented simulation framework (MOOSE) has been developed at the Idaho National Laboratory. Within this simulator, systems of transport and reaction equations can be solved simultaneously in a fully coupled, fully implicit manner using the Jacobian Free Newton-Krylov (JFNK) method with additional advanced computing capabilities such as (1) physics-based preconditioning for solution convergence acceleration, (2) massively parallel computing and scalability, and (3) adaptive mesh refinements for 2D and 3D structured and unstructured mesh. The simulator was first tested against analytical solutions, then applied to simulating induced calcium carbonate mineral precipitation in 1D columns and 2D flow cells as analogs to homogeneous and heterogeneous porous media, respectively. In 1D columns, calcium carbonate mineral precipitation was driven by urea hydrolysis catalyzed by urease enzyme, and in 2D flow cells, calcium carbonate mineral forming reactants were injected sequentially, forming migrating reaction fronts that are typically highly nonuniform. The RAT simulation results for the spatial and temporal distributions of precipitates, reaction rates and major species in the system, and also for changes in porosity and permeability, were compared to both laboratory experimental data and computational results obtained using other reactive transport simulators. The comparisons demonstrate the ability of RAT to simulate complex nonlinear systems and the advantages of fully coupled approaches, over de-coupled methods, for accurate simulation of complex, dynamic processes such as engineered mineral precipitation in subsurface environments.
Yang, Mino
2007-06-07
Theoretical foundation of rate kernel equation approaches for diffusion-influenced chemical reactions is presented and applied to explain the kinetics of fluorescence quenching reactions. A many-body master equation is constructed by introducing stochastic terms, which characterize the rates of chemical reactions, into the many-body Smoluchowski equation. A Langevin-type of memory equation for the density fields of reactants evolving under the influence of time-independent perturbation is derived. This equation should be useful in predicting the time evolution of reactant concentrations approaching the steady state attained by the perturbation as well as the steady-state concentrations. The dynamics of fluctuation occurring in equilibrium state can be predicted by the memory equation by turning the perturbation off and consequently may be useful in obtaining the linear response to a time-dependent perturbation. It is found that unimolecular decay processes including the time-independent perturbation can be incorporated into bimolecular reaction kinetics as a Laplace transform variable. As a result, a theory for bimolecular reactions along with the unimolecular process turned off is sufficient to predict overall reaction kinetics including the effects of unimolecular reactions and perturbation. As the present formulation is applied to steady-state kinetics of fluorescence quenching reactions, the exact relation between fluorophore concentrations and the intensity of excitation light is derived.
NASA Astrophysics Data System (ADS)
Chen, Lin; Yueming, Li
2018-06-01
In this paper, a coupled mechanical-chemical model is established based on the thermodynamic framework, in which the contribution of chemical expansion to free energy is introduced. The stress-dependent chemical potential equilibrium at the gas-solid interface and the stress gradient-dependent diffusion equation as well as a so-called generalized force which is conjugate to the oxidation rate are derived from the proposed model, which could reflect the influence of stresses on the oxidation reaction. Based on the proposed coupled mechanical-chemical model, a user element subroutine is developed in ABAQUS. The numerical simulation of the high temperature oxidation in the thermal barrier coating is carried out to verify the accuracy of the proposed model, and then the influence of stresses on the oxidation reaction is investigated. In thermally grown oxide, the considerable stresses would be induced by permanent volumetric swelling during the oxidation. The stresses play an important role in the chemical potential equilibrium at the gas-solid interface and strongly affect the oxidation reaction. The gradient of the stresses, however, only occurs in the extremely thin oxidation front layer, which plays a very limited role in the oxidation reaction. The generalized force could be divided into the stress-dependent and the stress-independent parts. Comparing with the stress-independent part, the stress-dependent part is smaller, which has little influence on oxidation reaction.
Computational methods for diffusion-influenced biochemical reactions.
Dobrzynski, Maciej; Rodríguez, Jordi Vidal; Kaandorp, Jaap A; Blom, Joke G
2007-08-01
We compare stochastic computational methods accounting for space and discrete nature of reactants in biochemical systems. Implementations based on Brownian dynamics (BD) and the reaction-diffusion master equation are applied to a simplified gene expression model and to a signal transduction pathway in Escherichia coli. In the regime where the number of molecules is small and reactions are diffusion-limited predicted fluctuations in the product number vary between the methods, while the average is the same. Computational approaches at the level of the reaction-diffusion master equation compute the same fluctuations as the reference result obtained from the particle-based method if the size of the sub-volumes is comparable to the diameter of reactants. Using numerical simulations of reversible binding of a pair of molecules we argue that the disagreement in predicted fluctuations is due to different modeling of inter-arrival times between reaction events. Simulations for a more complex biological study show that the different approaches lead to different results due to modeling issues. Finally, we present the physical assumptions behind the mesoscopic models for the reaction-diffusion systems. Input files for the simulations and the source code of GMP can be found under the following address: http://www.cwi.nl/projects/sic/bioinformatics2007/
Reduced equations of motion for quantum systems driven by diffusive Markov processes.
Sarovar, Mohan; Grace, Matthew D
2012-09-28
The expansion of a stochastic Liouville equation for the coupled evolution of a quantum system and an Ornstein-Uhlenbeck process into a hierarchy of coupled differential equations is a useful technique that simplifies the simulation of stochastically driven quantum systems. We expand the applicability of this technique by completely characterizing the class of diffusive Markov processes for which a useful hierarchy of equations can be derived. The expansion of this technique enables the examination of quantum systems driven by non-Gaussian stochastic processes with bounded range. We present an application of this extended technique by simulating Stark-tuned Förster resonance transfer in Rydberg atoms with nonperturbative position fluctuations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, William W., E-mail: dai@lanl.gov; Scannapieco, Anthony J.
2015-11-01
A set of numerical schemes is developed for two- and three-dimensional time-dependent 3-T radiation diffusion equations in systems involving multi-materials. To resolve sub-cell structure, interface reconstruction is implemented within any cell that has more than one material. Therefore, the system of 3-T radiation diffusion equations is solved on two- and three-dimensional polyhedral meshes. The focus of the development is on the fully coupling between radiation and material, the treatment of nonlinearity in the equations, i.e., in the diffusion terms and source terms, treatment of the discontinuity across cell interfaces in material properties, the formulations for both transient and steady states,more » the property for large time steps, and second order accuracy in both space and time. The discontinuity of material properties between different materials is correctly treated based on the governing physics principle for general polyhedral meshes and full nonlinearity. The treatment is exact for arbitrarily strong discontinuity. The scheme is fully nonlinear for the full nonlinearity in the 3-T diffusion equations. Three temperatures are fully coupled and are updated simultaneously. The scheme is general in two and three dimensions on general polyhedral meshes. The features of the scheme are demonstrated through numerical examples for transient problems and steady states. The effects of some simplifications of numerical schemes are also shown through numerical examples, such as linearization, simple average of diffusion coefficient, and approximate treatment for the coupling between radiation and material.« less
Hybrid approaches for multiple-species stochastic reaction-diffusion models
NASA Astrophysics Data System (ADS)
Spill, Fabian; Guerrero, Pilar; Alarcon, Tomas; Maini, Philip K.; Byrne, Helen
2015-10-01
Reaction-diffusion models are used to describe systems in fields as diverse as physics, chemistry, ecology and biology. The fundamental quantities in such models are individual entities such as atoms and molecules, bacteria, cells or animals, which move and/or react in a stochastic manner. If the number of entities is large, accounting for each individual is inefficient, and often partial differential equation (PDE) models are used in which the stochastic behaviour of individuals is replaced by a description of the averaged, or mean behaviour of the system. In some situations the number of individuals is large in certain regions and small in others. In such cases, a stochastic model may be inefficient in one region, and a PDE model inaccurate in another. To overcome this problem, we develop a scheme which couples a stochastic reaction-diffusion system in one part of the domain with its mean field analogue, i.e. a discretised PDE model, in the other part of the domain. The interface in between the two domains occupies exactly one lattice site and is chosen such that the mean field description is still accurate there. In this way errors due to the flux between the domains are small. Our scheme can account for multiple dynamic interfaces separating multiple stochastic and deterministic domains, and the coupling between the domains conserves the total number of particles. The method preserves stochastic features such as extinction not observable in the mean field description, and is significantly faster to simulate on a computer than the pure stochastic model.
Hybrid approaches for multiple-species stochastic reaction-diffusion models.
Spill, Fabian; Guerrero, Pilar; Alarcon, Tomas; Maini, Philip K; Byrne, Helen
2015-10-15
Reaction-diffusion models are used to describe systems in fields as diverse as physics, chemistry, ecology and biology. The fundamental quantities in such models are individual entities such as atoms and molecules, bacteria, cells or animals, which move and/or react in a stochastic manner. If the number of entities is large, accounting for each individual is inefficient, and often partial differential equation (PDE) models are used in which the stochastic behaviour of individuals is replaced by a description of the averaged, or mean behaviour of the system. In some situations the number of individuals is large in certain regions and small in others. In such cases, a stochastic model may be inefficient in one region, and a PDE model inaccurate in another. To overcome this problem, we develop a scheme which couples a stochastic reaction-diffusion system in one part of the domain with its mean field analogue, i.e. a discretised PDE model, in the other part of the domain. The interface in between the two domains occupies exactly one lattice site and is chosen such that the mean field description is still accurate there. In this way errors due to the flux between the domains are small. Our scheme can account for multiple dynamic interfaces separating multiple stochastic and deterministic domains, and the coupling between the domains conserves the total number of particles. The method preserves stochastic features such as extinction not observable in the mean field description, and is significantly faster to simulate on a computer than the pure stochastic model.
NASA Astrophysics Data System (ADS)
Benguria, Rafael D.; Depassier, M. Cristina; Loss, Michael
2012-12-01
We study the effect of a cutoff on the speed of pulled fronts of the one-dimensional reaction diffusion equation. To accomplish this, we first use variational techniques to prove the existence of a heteroclinic orbit in phase space for traveling wave solutions of the corresponding reaction diffusion equation under conditions that include discontinuous reaction profiles. This existence result allows us to prove rigorous upper and lower bounds on the minimal speed of monotonic fronts in terms of the cut-off parameter ɛ. From these bounds we estimate the range of validity of the Brunet-Derrida formula for a general class of reaction terms.
NASA Astrophysics Data System (ADS)
Harmon, Michael; Gamba, Irene M.; Ren, Kui
2016-12-01
This work concerns the numerical solution of a coupled system of self-consistent reaction-drift-diffusion-Poisson equations that describes the macroscopic dynamics of charge transport in photoelectrochemical (PEC) solar cells with reactive semiconductor and electrolyte interfaces. We present three numerical algorithms, mainly based on a mixed finite element and a local discontinuous Galerkin method for spatial discretization, with carefully chosen numerical fluxes, and implicit-explicit time stepping techniques, for solving the time-dependent nonlinear systems of partial differential equations. We perform computational simulations under various model parameters to demonstrate the performance of the proposed numerical algorithms as well as the impact of these parameters on the solution to the model.
A Simple Demonstration of Convective Effects on Reaction-Diffusion Systems: A Burning Cigarette.
ERIC Educational Resources Information Center
Pojman, John A.
1990-01-01
Described is a demonstration that provides an introduction to nonequilibrium reaction-diffusion systems and the coupling of hydrodynamics to chemical reactions. Experiments that demonstrate autocatalytic behavior that are effected by gravity and convection are included. (KR)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ackerman, David M.; Wang, Jing; Evans, James W.
2012-05-30
Behavior of catalytic reactions in narrow pores is controlled by a delicate interplay between fluctuations in adsorption-desorption at pore openings, restricted diffusion, and reaction. This behavior is captured by a generalized hydrodynamic formulation of appropriate reaction-diffusion equations (RDE). These RDE incorporate an unconventional description of chemical diffusion in mixed-component quasi-single-file systems based on a refined picture of tracer diffusion for finite-length pores. The RDE elucidate the nonexponential decay of the steady-state reactant concentration into the pore and the non-mean-field scaling of the reactant penetration depth.
Ackerman, David M; Wang, Jing; Evans, James W
2012-06-01
Behavior of catalytic reactions in narrow pores is controlled by a delicate interplay between fluctuations in adsorption-desorption at pore openings, restricted diffusion, and reaction. This behavior is captured by a generalized hydrodynamic formulation of appropriate reaction-diffusion equations (RDE). These RDE incorporate an unconventional description of chemical diffusion in mixed-component quasi-single-file systems based on a refined picture of tracer diffusion for finite-length pores. The RDE elucidate the nonexponential decay of the steady-state reactant concentration into the pore and the non-mean-field scaling of the reactant penetration depth.
NASA Technical Reports Server (NTRS)
Trouve, A.; Veynante, D.; Bray, K. N. C.; Mantel, T.
1994-01-01
Current flamelot models based on a description of the flame surface dynamics require the closure of two inter-related equations: a transport equation for the mean reaction progress variable, (tilde)c, and a transport equation for the flame surface density, Sigma. The coupling between these two equations is investigated using direct numerical simulations (DNS) with emphasis on the correlation between the turbulent fluxes of (tilde)c, bar(pu''c''), and Sigma, (u'')(sub S)Sigma. Two different DNS databases are used in the present work: a database developed at CTR by A. Trouve and a database developed by C. J. Rutland using a different code. Both databases correspond to statistically one-dimensional premixed flames in isotropic turbulent flow. The run parameters, however, are significantly different, and the two databases correspond to different combustion regimes. It is found that in all simulated flames, the correlation between bar(pu''c'') and (u'')(sub S)Sigma is always strong. The sign, however, of the turbulent flux of (tilde)c or Sigma with respect to the mean gradients, delta(tilde)c/delta(x) or delta(Sigma)/delta(x), is case-dependent. The CTR database is found to exhibit gradient turbulent transport of (tilde)c and Sigma, whereas the Rutland DNS features counter-gradient diffusion. The two databases are analyzed and compared using various tools (a local analysis of the flow field near the flame, a classical analysis of the conservation equation for (tilde)(u''c''), and a thin flame theoretical analysis). A mechanism is then proposed to explain the discrepancies between the two databases and a preliminary simple criterion is derived to predict the occurrence of gradient/counter-gradient turbulent diffusion.
A reaction-diffusion model of CO2 influx into an oocyte
Somersalo, Erkki; Occhipinti, Rossana; Boron, Walter F.; Calvetti, Daniela
2012-01-01
We have developed and implemented a novel mathematical model for simulating transients in surface pH (pHS) and intracellular pH (pHi) caused by the influx of carbon dioxide (CO2) into a Xenopus oocyte. These transients are important tools for studying gas channels. We assume that the oocyte is a sphere surrounded by a thin layer of unstirred fluid, the extracellular unconvected fluid (EUF), which is in turn surrounded by the well-stirred bulk extracellular fluid (BECF) that represents an infinite reservoir for all solutes. Here, we assume that the oocyte plasma membrane is permeable only to CO2. In both the EUF and intracellular space, solute concentrations can change because of diffusion and reactions. The reactions are the slow equilibration of the CO2 hydration-dehydration reactions and competing equilibria among carbonic acid (H2CO3)/bicarbonate ( HCO3-) and a multitude of non-CO2/HCO3- buffers. Mathematically, the model is described by a coupled system of reaction-diffusion equations that—assuming spherical radial symmetry—we solved using the method of lines with appropriate stiff solvers. In agreement with experimental data (Musa-Aziz et al, PNAS 2009, 106:5406–5411), the model predicts that exposing the cell to extracellular 1.5% CO2/10 mM HCO3- (pH 7.50) causes pHi to fall and pHS to rise rapidly to a peak and then decay. Moreover, the model provides insights into the competition between diffusion and reaction processes when we change the width of the EUF, membrane permeability to CO2, native extra-and intracellular carbonic anhydrase-like activities, the non-CO2/HCO3- (intrinsic) intracellular buffering power, or mobility of intrinsic intracellular buffers. PMID:22728674
Zabusky, N J; Deem, G S
1979-01-01
We present a theory for proton diffusion through an immobilized protein membrane perfused with an electrolyte and a buffer. Using a Nernst-Planck equation for each species and assuming local charge neutrality, we obtain two coupled nonlinear diffusion equations with new diffusion coefficients dependent on the concentration of all species, the diffusion constants or mobilities of the buffers and salts, the pH-derivative of the titration curves of the mobile buffer and the immobilized protein, and the derivative with respect to ionic strength of the protein titration curve. Transient time scales are locally pH-dependent because of protonation-deprotonation reactions with the fixed protein and are ionic strength-dependent because salts provide charge carriers to shield internal electric fields. Intrinsic electric fields arise proportional to the gradient of an "effective" charge concentration. The field may reverse locally if buffer concentrations are large (greater to or equal to 0.1 M) and if the diffusivity of the electrolyte species is sufficiently small. The "ideal" electrolyte case (where each species has the same diffusivity) reduces to a simple form. We apply these theoretical considerations to membranes composed of papain and bovine serum albumin (BSA) and show that intrinsic electric fields greatly enhance the mobility of protons when the ionic strength of the salts is smaller than 0.1 M. These results are consistent with experiments where pH changes are observed to depend strongly on buffer, salt, and proton concentrations in baths adjacent to the membranes. PMID:233570
Drawert, Brian; Lawson, Michael J; Petzold, Linda; Khammash, Mustafa
2010-02-21
We have developed a computational framework for accurate and efficient simulation of stochastic spatially inhomogeneous biochemical systems. The new computational method employs a fractional step hybrid strategy. A novel formulation of the finite state projection (FSP) method, called the diffusive FSP method, is introduced for the efficient and accurate simulation of diffusive transport. Reactions are handled by the stochastic simulation algorithm.
NASA Astrophysics Data System (ADS)
Horowitz, Jordan M.
2015-07-01
The stochastic thermodynamics of a dilute, well-stirred mixture of chemically reacting species is built on the stochastic trajectories of reaction events obtained from the chemical master equation. However, when the molecular populations are large, the discrete chemical master equation can be approximated with a continuous diffusion process, like the chemical Langevin equation or low noise approximation. In this paper, we investigate to what extent these diffusion approximations inherit the stochastic thermodynamics of the chemical master equation. We find that a stochastic-thermodynamic description is only valid at a detailed-balanced, equilibrium steady state. Away from equilibrium, where there is no consistent stochastic thermodynamics, we show that one can still use the diffusive solutions to approximate the underlying thermodynamics of the chemical master equation.
Horowitz, Jordan M
2015-07-28
The stochastic thermodynamics of a dilute, well-stirred mixture of chemically reacting species is built on the stochastic trajectories of reaction events obtained from the chemical master equation. However, when the molecular populations are large, the discrete chemical master equation can be approximated with a continuous diffusion process, like the chemical Langevin equation or low noise approximation. In this paper, we investigate to what extent these diffusion approximations inherit the stochastic thermodynamics of the chemical master equation. We find that a stochastic-thermodynamic description is only valid at a detailed-balanced, equilibrium steady state. Away from equilibrium, where there is no consistent stochastic thermodynamics, we show that one can still use the diffusive solutions to approximate the underlying thermodynamics of the chemical master equation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Angstmann, C.N.; Donnelly, I.C.; Henry, B.I., E-mail: B.Henry@unsw.edu.au
We have introduced a new explicit numerical method, based on a discrete stochastic process, for solving a class of fractional partial differential equations that model reaction subdiffusion. The scheme is derived from the master equations for the evolution of the probability density of a sum of discrete time random walks. We show that the diffusion limit of the master equations recovers the fractional partial differential equation of interest. This limiting procedure guarantees the consistency of the numerical scheme. The positivity of the solution and stability results are simply obtained, provided that the underlying process is well posed. We also showmore » that the method can be applied to standard reaction–diffusion equations. This work highlights the broader applicability of using discrete stochastic processes to provide numerical schemes for partial differential equations, including fractional partial differential equations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Hai; Spencer, Benjamin W.; Cai, Guowei
Concrete is widely used in the construction of nuclear facilities because of its structural strength and its ability to shield radiation. The use of concrete in nuclear power plants for containment and shielding of radiation and radioactive materials has made its performance crucial for the safe operation of the facility. As such, when life extension is considered for nuclear power plants, it is critical to have accurate and reliable predictive tools to address concerns related to various aging processes of concrete structures and the capacity of structures subjected to age-related degradation. The goal of this report is to document themore » progress of the development and implementation of a fully coupled thermo-hydro-mechanical-chemical model in GRIZZLY code with the ultimate goal to reliably simulate and predict long-term performance and response of aged NPP concrete structures subjected to a number of aging mechanisms including external chemical attacks and volume-changing chemical reactions within concrete structures induced by alkali-silica reactions and long-term exposure to irradiation. Based on a number of survey reports of concrete aging mechanisms relevant to nuclear power plants and recommendations from researchers in concrete community, we’ve implemented three modules during FY15 in GRIZZLY code, (1) multi-species reactive diffusion model within cement materials; (2) coupled moisture and heat transfer model in concrete; and (3) anisotropic, stress-dependent, alkali-silica reaction induced swelling model. The multi-species reactive diffusion model was implemented with the objective to model aging of concrete structures subjected to aggressive external chemical attacks (e.g., chloride attack, sulfate attack, etc.). It considers multiple processes relevant to external chemical attacks such as diffusion of ions in aqueous phase within pore spaces, equilibrium chemical speciation reactions and kinetic mineral dissolution/precipitation. The moisture/heat transfer module was implemented to simulate long-term spatial and temporal evolutions of the moisture and temperature fields within concrete structures at both room and elevated temperatures. The ASR swelling model implemented in GRIZZLY code can simulate anisotropic expansions of ASR gel under either uniaxial, biaxial and triaxial stress states, and can be run simultaneously with the moisture/heat transfer model and coupled with various elastic/inelastic solid mechanics models that were implemented in GRIZZLY code previously. This report provides detailed descriptions of the governing equations, constitutive equations and numerical algorithms of the three modules implemented in GRIZZLY during FY15, simulation results of example problems and model validation results by comparing simulations with available experimental data reported in the literature. The close match between the experiments and simulations clearly demonstrate the potential of GRIZZLY code for reliable evaluation and prediction of long-term performance and response of aged concrete structures in nuclear power plants.« less
NASA Astrophysics Data System (ADS)
Jacques, Diederik; Gérard, Fréderic; Mayer, Uli; Simunek, Jirka; Leterme, Bertrand
2016-04-01
A large number of organic matter degradation, CO2 transport and dissolved organic matter models have been developed during the last decades. However, organic matter degradation models are in many cases strictly hard-coded in terms of organic pools, degradation kinetics and dependency on environmental variables. The scientific input of the model user is typically limited to the adjustment of input parameters. In addition, the coupling with geochemical soil processes including aqueous speciation, pH-dependent sorption and colloid-facilitated transport are not incorporated in many of these models, strongly limiting the scope of their application. Furthermore, the most comprehensive organic matter degradation models are combined with simplified representations of flow and transport processes in the soil system. We illustrate the capability of generic reactive transport codes to overcome these shortcomings. The formulations of reactive transport codes include a physics-based continuum representation of flow and transport processes, while biogeochemical reactions can be described as equilibrium processes constrained by thermodynamic principles and/or kinetic reaction networks. The flexibility of these type of codes allows for straight-forward extension of reaction networks, permits the inclusion of new model components (e.g.: organic matter pools, rate equations, parameter dependency on environmental conditions) and in such a way facilitates an application-tailored implementation of organic matter degradation models and related processes. A numerical benchmark involving two reactive transport codes (HPx and MIN3P) demonstrates how the process-based simulation of transient variably saturated water flow (Richards equation), solute transport (advection-dispersion equation), heat transfer and diffusion in the gas phase can be combined with a flexible implementation of a soil organic matter degradation model. The benchmark includes the production of leachable organic matter and inorganic carbon in the aqueous and gaseous phases, as well as different decomposition functions with first-order, linear dependence or nonlinear dependence on a biomass pool. In addition, we show how processes such as local bioturbation (bio-diffusion) can be included implicitly through a Fickian formulation of transport of soil organic matter. Coupling soil organic matter models with generic and flexible reactive transport codes offers a valuable tool to enhance insights into coupled physico-chemical processes at different scales within the scope of C-biogeochemical cycles, possibly linked with other chemical elements such as plant nutrients and pollutants.
Pulse-coupled mixed-mode oscillators: Cluster states and extreme noise sensitivity
NASA Astrophysics Data System (ADS)
Karamchandani, Avinash J.; Graham, James N.; Riecke, Hermann
2018-04-01
Motivated by rhythms in the olfactory system of the brain, we investigate the synchronization of all-to-all pulse-coupled neuronal oscillators exhibiting various types of mixed-mode oscillations (MMOs) composed of sub-threshold oscillations (STOs) and action potentials ("spikes"). We focus particularly on the impact of the delay in the interaction. In the weak-coupling regime, we reduce the system to a Kuramoto-type equation with non-sinusoidal phase coupling and the associated Fokker-Planck equation. Its linear stability analysis identifies the appearance of various cluster states. Their type depends sensitively on the delay and the width of the pulses. Interestingly, long delays do not imply slow population rhythms, and the number of emerging clusters only loosely depends on the number of STOs. Direct simulations of the oscillator equations reveal that for quantitative agreement of the weak-coupling theory the coupling strength and the noise have to be extremely small. Even moderate noise leads to significant skipping of STO cycles, which can enhance the diffusion coefficient in the Fokker-Planck equation by two orders of magnitude. Introducing an effective diffusion coefficient extends the range of agreement significantly. Numerical simulations of the Fokker-Planck equation reveal bistability and solutions with oscillatory order parameters that result from nonlinear mode interactions. These are confirmed in simulations of the full spiking model.
Restoration of rhythmicity in diffusively coupled dynamical networks.
Zou, Wei; Senthilkumar, D V; Nagao, Raphael; Kiss, István Z; Tang, Yang; Koseska, Aneta; Duan, Jinqiao; Kurths, Jürgen
2015-07-15
Oscillatory behaviour is essential for proper functioning of various physical and biological processes. However, diffusive coupling is capable of suppressing intrinsic oscillations due to the manifestation of the phenomena of amplitude and oscillation deaths. Here we present a scheme to revoke these quenching states in diffusively coupled dynamical networks, and demonstrate the approach in experiments with an oscillatory chemical reaction. By introducing a simple feedback factor in the diffusive coupling, we show that the stable (in)homogeneous steady states can be effectively destabilized to restore dynamic behaviours of coupled systems. Even a feeble deviation from the normal diffusive coupling drastically shrinks the death regions in the parameter space. The generality of our method is corroborated in diverse non-linear systems of diffusively coupled paradigmatic models with various death scenarios. Our study provides a general framework to strengthen the robustness of dynamic activity in diffusively coupled dynamical networks.
Some Fundamental Issues of Mathematical Simulation in Biology
NASA Astrophysics Data System (ADS)
Razzhevaikin, V. N.
2018-02-01
Some directions of simulation in biology leading to original formulations of mathematical problems are overviewed. Two of them are discussed in detail: the correct solvability of first-order linear equations with unbounded coefficients and the construction of a reaction-diffusion equation with nonlinear diffusion for a model of genetic wave propagation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Tao, E-mail: fengtao2@mail.ustc.edu.cn; Graduate School of China Academy Engineering Physics, Beijing 100083; An, Hengbin, E-mail: an_hengbin@iapcm.ac.cn
2013-03-01
Jacobian-free Newton–Krylov (JFNK) method is an effective algorithm for solving large scale nonlinear equations. One of the most important advantages of JFNK method is that there is no necessity to form and store the Jacobian matrix of the nonlinear system when JFNK method is employed. However, an approximation of the Jacobian is needed for the purpose of preconditioning. In this paper, JFNK method is employed to solve a class of non-equilibrium radiation diffusion coupled to material thermal conduction equations, and two preconditioners are designed by linearizing the equations in two methods. Numerical results show that the two preconditioning methods canmore » improve the convergence behavior and efficiency of JFNK method.« less
Diffusion Processes Satisfying a Conservation Law Constraint
Bakosi, J.; Ristorcelli, J. R.
2014-03-04
We investigate coupled stochastic differential equations governing N non-negative continuous random variables that satisfy a conservation principle. In various fields a conservation law requires that a set of fluctuating variables be non-negative and (if appropriately normalized) sum to one. As a result, any stochastic differential equation model to be realizable must not produce events outside of the allowed sample space. We develop a set of constraints on the drift and diffusion terms of such stochastic models to ensure that both the non-negativity and the unit-sum conservation law constraint are satisfied as the variables evolve in time. We investigate the consequencesmore » of the developed constraints on the Fokker-Planck equation, the associated system of stochastic differential equations, and the evolution equations of the first four moments of the probability density function. We show that random variables, satisfying a conservation law constraint, represented by stochastic diffusion processes, must have diffusion terms that are coupled and nonlinear. The set of constraints developed enables the development of statistical representations of fluctuating variables satisfying a conservation law. We exemplify the results with the bivariate beta process and the multivariate Wright-Fisher, Dirichlet, and Lochner’s generalized Dirichlet processes.« less
Diffusion Processes Satisfying a Conservation Law Constraint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bakosi, J.; Ristorcelli, J. R.
We investigate coupled stochastic differential equations governing N non-negative continuous random variables that satisfy a conservation principle. In various fields a conservation law requires that a set of fluctuating variables be non-negative and (if appropriately normalized) sum to one. As a result, any stochastic differential equation model to be realizable must not produce events outside of the allowed sample space. We develop a set of constraints on the drift and diffusion terms of such stochastic models to ensure that both the non-negativity and the unit-sum conservation law constraint are satisfied as the variables evolve in time. We investigate the consequencesmore » of the developed constraints on the Fokker-Planck equation, the associated system of stochastic differential equations, and the evolution equations of the first four moments of the probability density function. We show that random variables, satisfying a conservation law constraint, represented by stochastic diffusion processes, must have diffusion terms that are coupled and nonlinear. The set of constraints developed enables the development of statistical representations of fluctuating variables satisfying a conservation law. We exemplify the results with the bivariate beta process and the multivariate Wright-Fisher, Dirichlet, and Lochner’s generalized Dirichlet processes.« less
Void Formation during Diffusion - Two-Dimensional Approach
NASA Astrophysics Data System (ADS)
Wierzba, Bartek
2016-06-01
The final set of equations defining the interdiffusion process in solid state is presented. The model is supplemented by vacancy evolution equation. The competition between the Kirkendall shift, backstress effect and vacancy migration is considered. The proper diffusion flux based on the Nernst-Planck formula is proposed. As a result, the comparison of the experimental and calculated evolution of the void formation in the Fe-Pd diffusion couple is shown.
Picart, Sébastien; Ramière, Isabelle; Mokhtari, Hamid; Jobelin, Isabelle
2010-09-02
This study is devoted to the characterization of ion exchange inside a microsphere of carboxylic resin. It aims at describing the kinetics of this exchange reaction which is known to be controlled by interdiffusion in the particle. The fractional attainment of equilibrium function of time depends on the concentration of the cations in the resin which can be modelized by the Nernst-Planck equation. A powerful approach for the numerical resolution of this equation is introduced in this paper. This modeling is based on the work of Helfferich but involves an implicit numerical scheme which reduces the computational cost. Knowing the diffusion coefficients of the cations in the resin and the radius of the spherical exchanger, the kinetics can be hence completely determined. When those diffusion parameters are missing, they can be deduced by fitting experimental data of fractional attainment of equilibrium. An efficient optimization tool coupled with the implicit resolution has been developed for this purpose. A monovalent/trivalent cation exchange had been experimentally characterized for a carboxylic resin. Diffusion coefficients and concentration profiles in the resin were then deduced through this new model.
Azunre, P.
2016-09-21
Here in this paper, two novel techniques for bounding the solutions of parametric weakly coupled second-order semilinear parabolic partial differential equations are developed. The first provides a theorem to construct interval bounds, while the second provides a theorem to construct lower bounds convex and upper bounds concave in the parameter. The convex/concave bounds can be significantly tighter than the interval bounds because of the wrapping effect suffered by interval analysis in dynamical systems. Both types of bounds are computationally cheap to construct, requiring solving auxiliary systems twice and four times larger than the original system, respectively. An illustrative numerical examplemore » of bound construction and use for deterministic global optimization within a simple serial branch-and-bound algorithm, implemented numerically using interval arithmetic and a generalization of McCormick's relaxation technique, is presented. Finally, problems within the important class of reaction-diffusion systems may be optimized with these tools.« less
Interfacial reactions between metal and gallium arsenide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, J.C.; Schulz, K.J.; Hsieh, K.C.
1989-10-01
The phase formation sequence for GaAs/metal ternary diffusion couples is discussed. The diffusion path concept is introduced and is used with the phase diagram to understand interfacial reactions between GaAs and metal. The correlation between growth kinetics and interface morphology is discussed. Studies of bulk and thin film couples in two systems, GaAs/Pd and GaAs/Pt, are given to illustrate these concepts.
Extremal equilibria for reaction-diffusion equations in bounded domains and applications
NASA Astrophysics Data System (ADS)
Rodríguez-Bernal, Aníbal; Vidal-López, Alejandro
We show the existence of two special equilibria, the extremal ones, for a wide class of reaction-diffusion equations in bounded domains with several boundary conditions, including non-linear ones. They give bounds for the asymptotic dynamics and so for the attractor. Some results on the existence and/or uniqueness of positive solutions are also obtained. As a consequence, several well-known results on the existence and/or uniqueness of solutions for elliptic equations are revisited in a unified way obtaining, in addition, information on the dynamics of the associated parabolic problem. Finally, we ilustrate the use of the general results by applying them to the case of logistic equations. In fact, we obtain a detailed picture of the positive dynamics depending on the parameters appearing in the equation.
Yates, Christian A; Flegg, Mark B
2015-05-06
Spatial reaction-diffusion models have been employed to describe many emergent phenomena in biological systems. The modelling technique most commonly adopted in the literature implements systems of partial differential equations (PDEs), which assumes there are sufficient densities of particles that a continuum approximation is valid. However, owing to recent advances in computational power, the simulation and therefore postulation, of computationally intensive individual-based models has become a popular way to investigate the effects of noise in reaction-diffusion systems in which regions of low copy numbers exist. The specific stochastic models with which we shall be concerned in this manuscript are referred to as 'compartment-based' or 'on-lattice'. These models are characterized by a discretization of the computational domain into a grid/lattice of 'compartments'. Within each compartment, particles are assumed to be well mixed and are permitted to react with other particles within their compartment or to transfer between neighbouring compartments. Stochastic models provide accuracy, but at the cost of significant computational resources. For models that have regions of both low and high concentrations, it is often desirable, for reasons of efficiency, to employ coupled multi-scale modelling paradigms. In this work, we develop two hybrid algorithms in which a PDE in one region of the domain is coupled to a compartment-based model in the other. Rather than attempting to balance average fluxes, our algorithms answer a more fundamental question: 'how are individual particles transported between the vastly different model descriptions?' First, we present an algorithm derived by carefully redefining the continuous PDE concentration as a probability distribution. While this first algorithm shows very strong convergence to analytical solutions of test problems, it can be cumbersome to simulate. Our second algorithm is a simplified and more efficient implementation of the first, it is derived in the continuum limit over the PDE region alone. We test our hybrid methods for functionality and accuracy in a variety of different scenarios by comparing the averaged simulations with analytical solutions of PDEs for mean concentrations. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
On a Multiphase Multicomponent Model of Biofilm Growth
NASA Astrophysics Data System (ADS)
Friedman, Avner; Hu, Bei; Xue, Chuan
2014-01-01
Biofilms are formed when free-floating bacteria attach to a surface and secrete polysaccharide to form an extracellular polymeric matrix (EPS). A general model of biofilm growth needs to include the bacteria, the EPS, and the solvent within the biofilm region Ω( t), and the solvent in the surrounding region D( t). The interface between the two regions, Γ( t), is a free boundary. In this paper, we consider a mathematical model that consists of a Stokes equation for the EPS with bacteria attached to it, a Stokes equation for the solvent in Ω( t) and another for the solvent in D( t). The volume fraction of the EPS is another unknown satisfying a reaction-diffusion equation. The entire system is coupled nonlinearly within Ω( t) and across the free surface Γ( t). We prove the existence and uniqueness of a solution, with a smooth surface Γ( t), for a small time interval.
Cross-Diffusion Driven Instability for a Lotka-Volterra Competitive Reaction-Diffusion System
NASA Astrophysics Data System (ADS)
Gambino, G.; Lombardo, M. C.; Sammartino, M.
2008-04-01
In this work we investigate the possibility of the pattern formation for a reaction-diffusion system with nonlinear diffusion terms. Through a linear stability analysis we find the conditions which allow a homogeneous steady state (stable for the kinetics) to become unstable through a Turing mechanism. In particular, we show how cross-diffusion effects are responsible for the initiation of spatial patterns. Finally, we find a Fisher amplitude equation which describes the weakly nonlinear dynamics of the system near the marginal stability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Li; He, Ya-Ling; Kang, Qinjun
2013-12-15
A coupled (hybrid) simulation strategy spatially combining the finite volume method (FVM) and the lattice Boltzmann method (LBM), called CFVLBM, is developed to simulate coupled multi-scale multi-physicochemical processes. In the CFVLBM, computational domain of multi-scale problems is divided into two sub-domains, i.e., an open, free fluid region and a region filled with porous materials. The FVM and LBM are used for these two regions, respectively, with information exchanged at the interface between the two sub-domains. A general reconstruction operator (RO) is proposed to derive the distribution functions in the LBM from the corresponding macro scalar, the governing equation of whichmore » obeys the convection–diffusion equation. The CFVLBM and the RO are validated in several typical physicochemical problems and then are applied to simulate complex multi-scale coupled fluid flow, heat transfer, mass transport, and chemical reaction in a wall-coated micro reactor. The maximum ratio of the grid size between the FVM and LBM regions is explored and discussed. -- Highlights: •A coupled simulation strategy for simulating multi-scale phenomena is developed. •Finite volume method and lattice Boltzmann method are coupled. •A reconstruction operator is derived to transfer information at the sub-domains interface. •Coupled multi-scale multiple physicochemical processes in micro reactor are simulated. •Techniques to save computational resources and improve the efficiency are discussed.« less
NASA Astrophysics Data System (ADS)
Zhang, Henggui; Garratt, Clifford J.; Kharche, Sanjay; Holden, Arun V.
2009-06-01
Human atrial tissue is an excitable system, in which myocytes are excitable elements, and cell-to-cell electrotonic interactions are via diffusive interactions of cell membrane potentials. We developed a family of excitable system models for human atrium at cellular, tissue and anatomical levels for both normal and chronic atrial fibrillation (AF) conditions. The effects of AF-induced remodelling of cell membrane ionic channels (reaction kinetics) and intercellular gap junctional coupling (diffusion) on atrial excitability, conduction of excitation waves and dynamics of re-entrant excitation waves are quantified. Both ionic channel and gap junctional coupling remodelling have rate dependent effects on atrial propagation. Membrane channel conductance remodelling allows the propagation of activity at higher rates than those sustained in normal tissue or in tissue with gap junctional remodelling alone. Membrane channel conductance remodelling is essential for the propagation of activity at rates higher than 300/min as seen in AF. Spatially heterogeneous gap junction coupling remodelling increased the risk of conduction block, an essential factor for the genesis of re-entry. In 2D and 3D anatomical models, the dynamical behaviours of re-entrant excitation waves are also altered by membrane channel modelling. This study provides insights to understand the pro-arrhythmic effects of AF-induced reaction and diffusion remodelling in atrial tissue.
Chevalier, Michael W.; El-Samad, Hana
2014-01-01
Noise and stochasticity are fundamental to biology and derive from the very nature of biochemical reactions where thermal motion of molecules translates into randomness in the sequence and timing of reactions. This randomness leads to cell-to-cell variability even in clonal populations. Stochastic biochemical networks have been traditionally modeled as continuous-time discrete-state Markov processes whose probability density functions evolve according to a chemical master equation (CME). In diffusion reaction systems on membranes, the Markov formalism, which assumes constant reaction propensities is not directly appropriate. This is because the instantaneous propensity for a diffusion reaction to occur depends on the creation times of the molecules involved. In this work, we develop a chemical master equation for systems of this type. While this new CME is computationally intractable, we make rational dimensional reductions to form an approximate equation, whose moments are also derived and are shown to yield efficient, accurate results. This new framework forms a more general approach than the Markov CME and expands upon the realm of possible stochastic biochemical systems that can be efficiently modeled. PMID:25481130
NASA Astrophysics Data System (ADS)
Chevalier, Michael W.; El-Samad, Hana
2014-12-01
Noise and stochasticity are fundamental to biology and derive from the very nature of biochemical reactions where thermal motion of molecules translates into randomness in the sequence and timing of reactions. This randomness leads to cell-to-cell variability even in clonal populations. Stochastic biochemical networks have been traditionally modeled as continuous-time discrete-state Markov processes whose probability density functions evolve according to a chemical master equation (CME). In diffusion reaction systems on membranes, the Markov formalism, which assumes constant reaction propensities is not directly appropriate. This is because the instantaneous propensity for a diffusion reaction to occur depends on the creation times of the molecules involved. In this work, we develop a chemical master equation for systems of this type. While this new CME is computationally intractable, we make rational dimensional reductions to form an approximate equation, whose moments are also derived and are shown to yield efficient, accurate results. This new framework forms a more general approach than the Markov CME and expands upon the realm of possible stochastic biochemical systems that can be efficiently modeled.
The rate constant of a quantum-diffusion-controlled bimolecular reaction
NASA Astrophysics Data System (ADS)
Bondarev, B. V.
1986-04-01
A quantum-mechanical equation is derived in the tight-bond approximation which describes the motion and chemical interaction of a pair of species A and B when their displacement in the matrix is caused by tunnelling. Within the framework of the discrete model of random walks, definitions are given of the probability and rate constant of a reaction A + B → P (products) proceeding in a condensed medium. A method is suggested for calculating the rate constant of a quantum-diffusion-controlled bimolecular reaction. By this method, an expression is obtained for the rate constant in the stationary spherically symmetrical case. An equation for the density matrix is also proposed which describes the motion and chemical interaction of a pair of species when the quantum and classical diffusion are competitive.
NASA Astrophysics Data System (ADS)
Coronel-Escamilla, A.; Gómez-Aguilar, J. F.; Torres, L.; Escobar-Jiménez, R. F.
2018-02-01
A reaction-diffusion system can be represented by the Gray-Scott model. The reaction-diffusion dynamic is described by a pair of time and space dependent Partial Differential Equations (PDEs). In this paper, a generalization of the Gray-Scott model by using variable-order fractional differential equations is proposed. The variable-orders were set as smooth functions bounded in (0 , 1 ] and, specifically, the Liouville-Caputo and the Atangana-Baleanu-Caputo fractional derivatives were used to express the time differentiation. In order to find a numerical solution of the proposed model, the finite difference method together with the Adams method were applied. The simulations results showed the chaotic behavior of the proposed model when different variable-orders are applied.
NASA Astrophysics Data System (ADS)
Zhong, Jiaqi; Zeng, Cheng; Yuan, Yupeng; Zhang, Yuzhe; Zhang, Ye
2018-04-01
The aim of this paper is to present an explicit numerical algorithm based on improved spectral Galerkin method for solving the unsteady diffusion-convection-reaction equation. The principal characteristics of this approach give the explicit eigenvalues and eigenvectors based on the time-space separation method and boundary condition analysis. With the help of Fourier series and Galerkin truncation, we can obtain the finite-dimensional ordinary differential equations which facilitate the system analysis and controller design. By comparing with the finite element method, the numerical solutions are demonstrated via two examples. It is shown that the proposed method is effective.
Sheng, Yin; Zhang, Hao; Zeng, Zhigang
2017-10-01
This paper is concerned with synchronization for a class of reaction-diffusion neural networks with Dirichlet boundary conditions and infinite discrete time-varying delays. By utilizing theories of partial differential equations, Green's formula, inequality techniques, and the concept of comparison, algebraic criteria are presented to guarantee master-slave synchronization of the underlying reaction-diffusion neural networks via a designed controller. Additionally, sufficient conditions on exponential synchronization of reaction-diffusion neural networks with finite time-varying delays are established. The proposed criteria herein enhance and generalize some published ones. Three numerical examples are presented to substantiate the validity and merits of the obtained theoretical results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horowitz, Jordan M., E-mail: jordan.horowitz@umb.edu
The stochastic thermodynamics of a dilute, well-stirred mixture of chemically reacting species is built on the stochastic trajectories of reaction events obtained from the chemical master equation. However, when the molecular populations are large, the discrete chemical master equation can be approximated with a continuous diffusion process, like the chemical Langevin equation or low noise approximation. In this paper, we investigate to what extent these diffusion approximations inherit the stochastic thermodynamics of the chemical master equation. We find that a stochastic-thermodynamic description is only valid at a detailed-balanced, equilibrium steady state. Away from equilibrium, where there is no consistent stochasticmore » thermodynamics, we show that one can still use the diffusive solutions to approximate the underlying thermodynamics of the chemical master equation.« less
Mean-field hierarchical equations for some A+BC catalytic reaction models
NASA Astrophysics Data System (ADS)
Cortés, Joaquín; Puschmann, Heinrich; Valencia, Eliana
1998-10-01
A mean-field study of the (A+BC→AC+1/2B2) system is developed from hierarchical equations, considering mechanisms that include dissociation, reaction with finite rates, desorption, and diffusion of the adsorbed species. The phase diagrams are compared to Monte Carlo simulations.
NASA Astrophysics Data System (ADS)
Akhmediev, N.; Soto-Crespo, J. M.; Brand, H. R.
2013-05-01
We consider a combined model of dissipative solitons that are generated due to the balance between gain and loss of energy as well as to the balance between input and output of matter. The system is governed by the generic complex Ginzburg-Landau equation, which is coupled to a common reaction-diffusion (RD) system. Such a composite dynamical system may describe nerve pulses with a significant part of electromagnetic energy involved. We present examples of such composite dissipative solitons and analyse their internal balances between energy and matter generation and dissipation.
1984-06-01
space discretization error . 1. I 3 1. INTRODUCTION Reaction- diffusion processes occur in many branches of biology and physical chemistry. Examples...to model reaction- diffusion phenomena. The primary goal of this adaptive method is to keep a particular norm of the space discretization error less...AD-A142 253 AN ADAPTIVE MET6 OFD LNES WITH ERROR CONTROL FOR 1 INST FOR PHYSICAL SCIENCE AND TECH. I BABUSKAAAO C7 EA OH S UMR AN UNVC EEP R
Anomalous diffusion and scaling in coupled stochastic processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bel, Golan; Nemenman, Ilya
2009-01-01
Inspired by problems in biochemical kinetics, we study statistical properties of an overdamped Langevin processes with the friction coefficient depending on the state of a similar, unobserved, process. Integrating out the latter, we derive the Pocker-Planck the friction coefficient of the first depends on the state of the second. Integrating out the latter, we derive the Focker-Planck equation for the probability distribution of the former. This has the fonn of diffusion equation with time-dependent diffusion coefficient, resulting in an anomalous diffusion. The diffusion exponent can not be predicted using a simple scaling argument, and anomalous scaling appears as well. Themore » diffusion exponent of the Weiss-Havlin comb model is derived as a special case, and the same exponent holds even for weakly coupled processes. We compare our theoretical predictions with numerical simulations and find an excellent agreement. The findings caution against treating biochemical systems with unobserved dynamical degrees of freedom by means of standandard, diffusive Langevin descritpion.« less
Reactive-Diffusive-Advective Traveling Waves in a Family of Degenerate Nonlinear Equations.
Sánchez-Garduño, Faustino; Pérez-Velázquez, Judith
This paper deals with the analysis of existence of traveling wave solutions (TWS) for a diffusion-degenerate (at D (0) = 0) and advection-degenerate (at h '(0) = 0) reaction-diffusion-advection (RDA) equation. Diffusion is a strictly increasing function and the reaction term generalizes the kinetic part of the Fisher-KPP equation. We consider different forms of the convection term h ( u ): (1) h '( u ) is constant k , (2) h '( u ) = ku with k > 0, and (3) it is a quite general form which guarantees the degeneracy in the advective term. In Case 1, we prove that the task can be reduced to that for the corresponding equation, where k = 0, and then previous results reported from the authors can be extended. For the other two cases, we use both analytical and numerical tools. The analysis we carried out is based on the restatement of searching TWS for the full RDA equation into a two-dimensional dynamical problem. This consists of searching for the conditions on the parameter values for which there exist heteroclinic trajectories of the ordinary differential equations (ODE) system in the traveling wave coordinates. Throughout the paper we obtain the dynamics by using tools coming from qualitative theory of ODE.
Reactive-Diffusive-Advective Traveling Waves in a Family of Degenerate Nonlinear Equations
Sánchez-Garduño, Faustino
2016-01-01
This paper deals with the analysis of existence of traveling wave solutions (TWS) for a diffusion-degenerate (at D(0) = 0) and advection-degenerate (at h′(0) = 0) reaction-diffusion-advection (RDA) equation. Diffusion is a strictly increasing function and the reaction term generalizes the kinetic part of the Fisher-KPP equation. We consider different forms of the convection term h(u): (1) h′(u) is constant k, (2) h′(u) = ku with k > 0, and (3) it is a quite general form which guarantees the degeneracy in the advective term. In Case 1, we prove that the task can be reduced to that for the corresponding equation, where k = 0, and then previous results reported from the authors can be extended. For the other two cases, we use both analytical and numerical tools. The analysis we carried out is based on the restatement of searching TWS for the full RDA equation into a two-dimensional dynamical problem. This consists of searching for the conditions on the parameter values for which there exist heteroclinic trajectories of the ordinary differential equations (ODE) system in the traveling wave coordinates. Throughout the paper we obtain the dynamics by using tools coming from qualitative theory of ODE. PMID:27689131
Finite Element Analysis of Poroelastic Composites Undergoing Thermal and Gas Diffusion
NASA Technical Reports Server (NTRS)
Salamon, N. J. (Principal Investigator); Sullivan, Roy M.; Lee, Sunpyo
1995-01-01
A theory for time-dependent thermal and gas diffusion in mechanically time-rate-independent anisotropic poroelastic composites has been developed. This theory advances previous work by the latter two authors by providing for critical transverse shear through a three-dimensional axisymmetric formulation and using it in a new hypothesis for determining the Biot fluid pressure-solid stress coupling factor. The derived governing equations couple material deformation with temperature and internal pore pressure and more strongly couple gas diffusion and heat transfer than the previous theory. Hence the theory accounts for the interactions between conductive heat transfer in the porous body and convective heat carried by the mass flux through the pores. The Bubnov Galerkin finite element method is applied to the governing equations to transform them into a semidiscrete finite element system. A numerical procedure is developed to solve the coupled equations in the space and time domains. The method is used to simulate two high temperature tests involving thermal-chemical decomposition of carbon-phenolic composites. In comparison with measured data, the results are accurate. Moreover unlike previous work, for a single set of poroelastic parameters, they are consistent with two measurements in a restrained thermal growth test.
A model for shrinkage strain in photo polymerization of dental composites.
Petrovic, Ljubomir M; Atanackovic, Teodor M
2008-04-01
We formulate a new model for the shrinkage strain developed during photo polymerization in dental composites. The model is based on the diffusion type fractional order equation, since it has been proved that polymerization reaction is diffusion controlled (Atai M, Watts DC. A new kinetic model for the photo polymerization shrinkage-strain of dental composites and resin-monomers. Dent Mater 2006;22:785-91). Our model strongly confirms the observation by Atai and Watts (see reference details above) and their experimental results. The shrinkage strain is modeled by a nonlinear differential equation in (see reference details above) and that equation must be solved numerically. In our approach, we use the linear fractional order differential equation to describe the strain rate due to photo polymerization. This equation is solved exactly. As shrinkage is a consequence of the polymerization reaction and polymerization reaction is diffusion controlled, we postulate that shrinkage strain rate is described by a diffusion type equation. We find explicit form of solution to this equation and determine the strain in the resin monomers. Also by using equations of linear viscoelasticity, we determine stresses in the polymer due to the shrinkage. The time evolution of stresses implies that the maximal stresses are developed at the very beginning of the polymerization process. The stress in a dental composite that is light treated has the largest value short time after the treatment starts. The strain settles at the constant value in the time of about 100s (for the cases treated in Atai and Watts). From the model developed here, the shrinkage strain of dental composites and resin monomers is analytically determined. The maximal value of stresses is important, since this value must be smaller than the adhesive bond strength at cavo-restoration interface. The maximum stress determined here depends on the diffusivity coefficient. Since diffusivity coefficient increases as polymerization proceeds, it follows that the periods of light treatments should be shorter at the beginning of the treatment and longer at the end of the treatment, with dark interval between the initial low intensity and following high intensity curing. This is because at the end of polymerization the stress relaxation cannot take place.
Group-kinetic theory of turbulence
NASA Technical Reports Server (NTRS)
Tchen, C. M.
1986-01-01
The two phases are governed by two coupled systems of Navier-Stokes equations. The couplings are nonlinear. These equations describe the microdynamical state of turbulence, and are transformed into a master equation. By scaling, a kinetic hierarchy is generated in the form of groups, representing the spectral evolution, the diffusivity and the relaxation. The loss of memory in formulating the relaxation yields the closure. The network of sub-distributions that participates in the relaxation is simulated by a self-consistent porous medium, so that the average effect on the diffusivity is to make it approach equilibrium. The kinetic equation of turbulence is derived. The method of moments reverts it to the continuum. The equation of spectral evolution is obtained and the transport properties are calculated. In inertia turbulence, the Kolmogoroff law for weak coupling and the spectrum for the strong coupling are found. As the fluid analog, the nonlinear Schrodinger equation has a driving force in the form of emission of solitons by velocity fluctuations, and is used to describe the microdynamical state of turbulence. In order for the emission together with the modulation to participate in the transport processes, the non-homogeneous Schrodinger equation is transformed into a homogeneous master equation. By group-scaling, the master equation is decomposed into a system of transport equations, replacing the Bogoliubov system of equations of many-particle distributions. It is in the relaxation that the memory is lost when the ensemble of higher-order distributions is simulated by an effective porous medium. The closure is thus found. The kinetic equation is derived and transformed into the equation of spectral flow.
OpenCMISS: a multi-physics & multi-scale computational infrastructure for the VPH/Physiome project.
Bradley, Chris; Bowery, Andy; Britten, Randall; Budelmann, Vincent; Camara, Oscar; Christie, Richard; Cookson, Andrew; Frangi, Alejandro F; Gamage, Thiranja Babarenda; Heidlauf, Thomas; Krittian, Sebastian; Ladd, David; Little, Caton; Mithraratne, Kumar; Nash, Martyn; Nickerson, David; Nielsen, Poul; Nordbø, Oyvind; Omholt, Stig; Pashaei, Ali; Paterson, David; Rajagopal, Vijayaraghavan; Reeve, Adam; Röhrle, Oliver; Safaei, Soroush; Sebastián, Rafael; Steghöfer, Martin; Wu, Tim; Yu, Ting; Zhang, Heye; Hunter, Peter
2011-10-01
The VPH/Physiome Project is developing the model encoding standards CellML (cellml.org) and FieldML (fieldml.org) as well as web-accessible model repositories based on these standards (models.physiome.org). Freely available open source computational modelling software is also being developed to solve the partial differential equations described by the models and to visualise results. The OpenCMISS code (opencmiss.org), described here, has been developed by the authors over the last six years to replace the CMISS code that has supported a number of organ system Physiome projects. OpenCMISS is designed to encompass multiple sets of physical equations and to link subcellular and tissue-level biophysical processes into organ-level processes. In the Heart Physiome project, for example, the large deformation mechanics of the myocardial wall need to be coupled to both ventricular flow and embedded coronary flow, and the reaction-diffusion equations that govern the propagation of electrical waves through myocardial tissue need to be coupled with equations that describe the ion channel currents that flow through the cardiac cell membranes. In this paper we discuss the design principles and distributed memory architecture behind the OpenCMISS code. We also discuss the design of the interfaces that link the sets of physical equations across common boundaries (such as fluid-structure coupling), or between spatial fields over the same domain (such as coupled electromechanics), and the concepts behind CellML and FieldML that are embodied in the OpenCMISS data structures. We show how all of these provide a flexible infrastructure for combining models developed across the VPH/Physiome community. Copyright © 2011 Elsevier Ltd. All rights reserved.
Spatial pattern dynamics due to the fitness gradient flux in evolutionary games.
deForest, Russ; Belmonte, Andrew
2013-06-01
We introduce a nondiffusive spatial coupling term into the replicator equation of evolutionary game theory. The spatial flux is based on motion due to local gradients in the relative fitness of each strategy, providing a game-dependent alternative to diffusive coupling. We study numerically the development of patterns in one dimension (1D) for two-strategy games including the coordination game and the prisoner's dilemma, and in two dimensions (2D) for the rock-paper-scissors game. In 1D we observe modified traveling wave solutions in the presence of diffusion, and asymptotic attracting states under a frozen-strategy assumption without diffusion. In 2D we observe spiral formation and breakup in the frozen-strategy rock-paper-scissors game without diffusion. A change of variables appropriate to replicator dynamics is shown to correctly capture the 1D asymptotic steady state via a nonlinear diffusion equation.
Quantum Transmission Conditions for Diffusive Transport in Graphene with Steep Potentials
NASA Astrophysics Data System (ADS)
Barletti, Luigi; Negulescu, Claudia
2018-05-01
We present a formal derivation of a drift-diffusion model for stationary electron transport in graphene, in presence of sharp potential profiles, such as barriers and steps. Assuming the electric potential to have steep variations within a strip of vanishing width on a macroscopic scale, such strip is viewed as a quantum interface that couples the classical regions at its left and right sides. In the two classical regions, where the potential is assumed to be smooth, electron and hole transport is described in terms of semiclassical kinetic equations. The diffusive limit of the kinetic model is derived by means of a Hilbert expansion and a boundary layer analysis, and consists of drift-diffusion equations in the classical regions, coupled by quantum diffusive transmission conditions through the interface. The boundary layer analysis leads to the discussion of a four-fold Milne (half-space, half-range) transport problem.
Spatial pattern dynamics due to the fitness gradient flux in evolutionary games
NASA Astrophysics Data System (ADS)
deForest, Russ; Belmonte, Andrew
2013-06-01
We introduce a nondiffusive spatial coupling term into the replicator equation of evolutionary game theory. The spatial flux is based on motion due to local gradients in the relative fitness of each strategy, providing a game-dependent alternative to diffusive coupling. We study numerically the development of patterns in one dimension (1D) for two-strategy games including the coordination game and the prisoner's dilemma, and in two dimensions (2D) for the rock-paper-scissors game. In 1D we observe modified traveling wave solutions in the presence of diffusion, and asymptotic attracting states under a frozen-strategy assumption without diffusion. In 2D we observe spiral formation and breakup in the frozen-strategy rock-paper-scissors game without diffusion. A change of variables appropriate to replicator dynamics is shown to correctly capture the 1D asymptotic steady state via a nonlinear diffusion equation.
Computational analysis of the roles of biochemical reactions in anomalous diffusion dynamics
NASA Astrophysics Data System (ADS)
Naruemon, Rueangkham; Charin, Modchang
2016-04-01
Most biochemical processes in cells are usually modeled by reaction-diffusion (RD) equations. In these RD models, the diffusive process is assumed to be Gaussian. However, a growing number of studies have noted that intracellular diffusion is anomalous at some or all times, which may result from a crowded environment and chemical kinetics. This work aims to computationally study the effects of chemical reactions on the diffusive dynamics of RD systems by using both stochastic and deterministic algorithms. Numerical method to estimate the mean-square displacement (MSD) from a deterministic algorithm is also investigated. Our computational results show that anomalous diffusion can be solely due to chemical reactions. The chemical reactions alone can cause anomalous sub-diffusion in the RD system at some or all times. The time-dependent anomalous diffusion exponent is found to depend on many parameters, including chemical reaction rates, reaction orders, and chemical concentrations. Project supported by the Thailand Research Fund and Mahidol University (Grant No. TRG5880157), the Thailand Center of Excellence in Physics (ThEP), CHE, Thailand, and the Development Promotion of Science and Technology.
Stochastic simulation of reaction-diffusion systems: A fluctuating-hydrodynamics approach
NASA Astrophysics Data System (ADS)
Kim, Changho; Nonaka, Andy; Bell, John B.; Garcia, Alejandro L.; Donev, Aleksandar
2017-03-01
We develop numerical methods for stochastic reaction-diffusion systems based on approaches used for fluctuating hydrodynamics (FHD). For hydrodynamic systems, the FHD formulation is formally described by stochastic partial differential equations (SPDEs). In the reaction-diffusion systems we consider, our model becomes similar to the reaction-diffusion master equation (RDME) description when our SPDEs are spatially discretized and reactions are modeled as a source term having Poisson fluctuations. However, unlike the RDME, which becomes prohibitively expensive for an increasing number of molecules, our FHD-based description naturally extends from the regime where fluctuations are strong, i.e., each mesoscopic cell has few (reactive) molecules, to regimes with moderate or weak fluctuations, and ultimately to the deterministic limit. By treating diffusion implicitly, we avoid the severe restriction on time step size that limits all methods based on explicit treatments of diffusion and construct numerical methods that are more efficient than RDME methods, without compromising accuracy. Guided by an analysis of the accuracy of the distribution of steady-state fluctuations for the linearized reaction-diffusion model, we construct several two-stage (predictor-corrector) schemes, where diffusion is treated using a stochastic Crank-Nicolson method, and reactions are handled by the stochastic simulation algorithm of Gillespie or a weakly second-order tau leaping method. We find that an implicit midpoint tau leaping scheme attains second-order weak accuracy in the linearized setting and gives an accurate and stable structure factor for a time step size of an order of magnitude larger than the hopping time scale of diffusing molecules. We study the numerical accuracy of our methods for the Schlögl reaction-diffusion model both in and out of thermodynamic equilibrium. We demonstrate and quantify the importance of thermodynamic fluctuations to the formation of a two-dimensional Turing-like pattern and examine the effect of fluctuations on three-dimensional chemical front propagation. By comparing stochastic simulations to deterministic reaction-diffusion simulations, we show that fluctuations accelerate pattern formation in spatially homogeneous systems and lead to a qualitatively different disordered pattern behind a traveling wave.
Stochastic simulation of reaction-diffusion systems: A fluctuating-hydrodynamics approach
Kim, Changho; Nonaka, Andy; Bell, John B.; ...
2017-03-24
Here, we develop numerical methods for stochastic reaction-diffusion systems based on approaches used for fluctuating hydrodynamics (FHD). For hydrodynamic systems, the FHD formulation is formally described by stochastic partial differential equations (SPDEs). In the reaction-diffusion systems we consider, our model becomes similar to the reaction-diffusion master equation (RDME) description when our SPDEs are spatially discretized and reactions are modeled as a source term having Poisson fluctuations. However, unlike the RDME, which becomes prohibitively expensive for an increasing number of molecules, our FHD-based description naturally extends from the regime where fluctuations are strong, i.e., each mesoscopic cell has few (reactive) molecules,more » to regimes with moderate or weak fluctuations, and ultimately to the deterministic limit. By treating diffusion implicitly, we avoid the severe restriction on time step size that limits all methods based on explicit treatments of diffusion and construct numerical methods that are more efficient than RDME methods, without compromising accuracy. Guided by an analysis of the accuracy of the distribution of steady-state fluctuations for the linearized reaction-diffusion model, we construct several two-stage (predictor-corrector) schemes, where diffusion is treated using a stochastic Crank-Nicolson method, and reactions are handled by the stochastic simulation algorithm of Gillespie or a weakly second-order tau leaping method. We find that an implicit midpoint tau leaping scheme attains second-order weak accuracy in the linearized setting and gives an accurate and stable structure factor for a time step size of an order of magnitude larger than the hopping time scale of diffusing molecules. We study the numerical accuracy of our methods for the Schlögl reaction-diffusion model both in and out of thermodynamic equilibrium. We demonstrate and quantify the importance of thermodynamic fluctuations to the formation of a two-dimensional Turing-like pattern and examine the effect of fluctuations on three-dimensional chemical front propagation. Furthermore, by comparing stochastic simulations to deterministic reaction-diffusion simulations, we show that fluctuations accelerate pattern formation in spatially homogeneous systems and lead to a qualitatively different disordered pattern behind a traveling wave.« less
Poznanski, R R
2010-09-01
A reaction-diffusion model is presented to encapsulate calcium-induced calcium release (CICR) as a potential mechanism for somatofugal bias of dendritic calcium movement in starburst amacrine cells. Calcium dynamics involves a simple calcium extrusion (pump) and a buffering mechanism of calcium binding proteins homogeneously distributed over the plasma membrane of the endoplasmic reticulum within starburst amacrine cells. The system of reaction-diffusion equations in the excess buffer (or low calcium concentration) approximation are reformulated as a nonlinear Volterra integral equation which is solved analytically via a regular perturbation series expansion in response to calcium feedback from a continuously and uniformly distributed calcium sources. Calculation of luminal calcium diffusion in the absence of buffering enables a wave to travel at distances of 120 μm from the soma to distal tips of a starburst amacrine cell dendrite in 100 msec, yet in the presence of discretely distributed calcium-binding proteins it is unknown whether the propagating calcium wave-front in the somatofugal direction is further impeded by endogenous buffers. If so, this would indicate CICR to be an unlikely mechanism of retinal direction selectivity in starburst amacrine cells.
NASA Astrophysics Data System (ADS)
Ivanova, Bojidarka; Spiteller, Michael
2018-04-01
The problematic that we consider in this paper treats the quantitative correlation model equations between experimental kinetic and thermodynamic parameters of coupled electrospray ionization (ESI) mass spectrometry (MS) or atmospheric pressure chemical ionization (APCI) mass spectrometry with collision induced dissociation mass spectrometry, accounting for the fact that the physical phenomena and mechanisms of ESI- and APCI-ion formation are completely different. There are described forty two fragment reactions of three analytes under independent ESI- and APCI-measurements. The developed new quantitative models allow us to study correlatively the reaction kinetics and thermodynamics using the methods of mass spectrometry, which complementary application with the methods of the quantum chemistry provide 3D structural information of the analytes. Both static and dynamic quantum chemical computations are carried out. The object of analyses are [2,3-dimethyl-4-(4-methyl-benzoyl)-2,3-di-p-tolyl-cyclobutyl]-p-tolyl-methanone (1) and the polycyclic aromatic hydrocarbons derivatives of dibenzoperylen (2) and tetrabenzo [a,c,fg,op]naphthacene (3), respectively. As far as (1) is known to be a product of [2π+2π] cycloaddition reactions of chalcone (1,3-di-p-tolyl-propenone), however producing cyclic derivatives with different stereo selectivity, so that the study provide crucial data about the capability of mass spectrometry to provide determine the stereo selectivity of the analytes. This work also first provides quantitative treatment of the relations '3D molecular/electronic structures'-'quantum chemical diffusion coefficient'-'mass spectrometric diffusion coefficient', thus extending the capability of the mass spectrometry for determination of the exact 3D structure of the analytes using independent measurements and computations of the diffusion coefficients. The determination of the experimental diffusion parameters is carried out within the 'current monitoring method' evaluating the translation diffusion of charged analytes, while the theoretical modelling of MS ions and computations of theoretical diffusion coefficients are based on the Arrhenius type behavior of the charged species under ESI- and APCI-conditions. Although the study provide certain sound considerations for the quantitative relations between the reaction kinetic-thermodynamics and 3D structure of the analytes together with correlations between 3D molecular/electronic structures-quantum chemical diffusion coefficient-mass spectrometric diffusion coefficient, which contribute significantly to the structural analytical chemistry, the results have importance to other areas such as organic synthesis and catalysis as well.
Diffusion Influenced Adsorption Kinetics.
Miura, Toshiaki; Seki, Kazuhiko
2015-08-27
When the kinetics of adsorption is influenced by the diffusive flow of solutes, the solute concentration at the surface is influenced by the surface coverage of solutes, which is given by the Langmuir-Hinshelwood adsorption equation. The diffusion equation with the boundary condition given by the Langmuir-Hinshelwood adsorption equation leads to the nonlinear integro-differential equation for the surface coverage. In this paper, we solved the nonlinear integro-differential equation using the Grünwald-Letnikov formula developed to solve fractional kinetics. Guided by the numerical results, analytical expressions for the upper and lower bounds of the exact numerical results were obtained. The upper and lower bounds were close to the exact numerical results in the diffusion- and reaction-controlled limits, respectively. We examined the validity of the two simple analytical expressions obtained in the diffusion-controlled limit. The results were generalized to include the effect of dispersive diffusion. We also investigated the effect of molecular rearrangement of anisotropic molecules on surface coverage.
Amplitude equations for breathing spiral waves in a forced reaction-diffusion system
NASA Astrophysics Data System (ADS)
Ghosh, Pushpita; Ray, Deb Shankar
2011-09-01
Based on a multiple scale analysis of a forced reaction-diffusion system leading to amplitude equations, we explain the existence of spiral wave and its photo-induced spatiotemporal behavior in chlorine dioxide-iodine-malonic acid system. When the photo-illumination intensity is modulated, breathing of spiral is observed in which the period of breathing is identical to the period of forcing. We have also derived the condition for breakup and suppression of spiral wave by periodic illumination. The numerical simulations agree well with our analytical treatment.
Wavefronts for a global reaction-diffusion population model with infinite distributed delay
NASA Astrophysics Data System (ADS)
Weng, Peixuan; Xu, Zhiting
2008-09-01
We consider a global reaction-diffusion population model with infinite distributed delay which includes models of Nicholson's blowflies and hematopoiesis derived by Gurney, Mackey and Glass, respectively. The existence of monotone wavefronts is derived by using the abstract settings of functional differential equations and Schauder fixed point theory.
NASA Astrophysics Data System (ADS)
Yeh, Gour-Tsyh (George); Siegel, Malcolm D.; Li, Ming-Hsu
2001-02-01
The couplings among chemical reaction rates, advective and diffusive transport in fractured media or soils, and changes in hydraulic properties due to precipitation and dissolution within fractures and in rock matrix are important for both nuclear waste disposal and remediation of contaminated sites. This paper describes the development and application of LEHGC2.0, a mechanistically based numerical model for simulation of coupled fluid flow and reactive chemical transport, including both fast and slow reactions in variably saturated media. Theoretical bases and numerical implementations are summarized, and two example problems are demonstrated. The first example deals with the effect of precipitation/dissolution on fluid flow and matrix diffusion in a two-dimensional fractured media. Because of the precipitation and decreased diffusion of solute from the fracture into the matrix, retardation in the fractured medium is not as large as the case wherein interactions between chemical reactions and transport are not considered. The second example focuses on a complicated but realistic advective-dispersive-reactive transport problem. This example exemplifies the need for innovative numerical algorithms to solve problems involving stiff geochemical reactions.
Diffusion and binding analyzed with combined point FRAP and FCS.
Im, Kang-Bin; Schmidt, Ute; Kang, Moon-Sik; Lee, Ji-Young; Bestvater, Felix; Wachsmuth, Malte
2013-09-01
To quantify more precisely and more reliably diffusion and reaction properties of biomolecules in living cells, a novel closed description in 3D of both the bleach and the post-bleach segment of fluorescence recovery after photobleaching (FRAP) data acquired at a point, i.e., a diffraction-limited observation area, termed point FRAP, is presented. It covers a complete coupled reaction-diffusion scheme for mobile molecules undergoing transient or long-term immobilization because of binding. We assess and confirm the feasibility with numerical solutions of the differential equations. By applying this model to free EYFP expressed in HeLa cells using a customized confocal laser scanning microscope that integrates point FRAP and fluorescence correlation spectroscopy (FCS), the applicability is validated by comparison with results from FCS. We show that by taking diffusion during bleaching into consideration and/or by employing a global analysis of series of bleach times, the results can be improved significantly. As the point FRAP approach allows to obtain data with diffraction-limited positioning accuracy, diffusion and binding properties of the exon-exon junction complex (EJC) components REF2-II and Magoh are obtained at different localizations in the nucleus of MCF7 cells and refine our view on the position-dependent association of the EJC factors with a maturating mRNP complex. Our findings corroborate the concept of combining point FRAP and FCS for a better understanding of the underlying diffusion and binding processes. Copyright © 2013 International Society for Advancement of Cytometry.
NASA Astrophysics Data System (ADS)
Lin, Guoxing
2018-05-01
Anomalous diffusion exists widely in polymer and biological systems. Pulsed-field gradient (PFG) anomalous diffusion is complicated, especially in the anisotropic case where limited research has been reported. A general PFG signal attenuation expression, including the finite gradient pulse (FGPW) effect for free general anisotropic fractional diffusion { 0 < α , β ≤ 2 } based on the fractional derivative, has not been obtained, where α and β are time and space derivative orders. It is essential to derive a general PFG signal attenuation expression including the FGPW effect for PFG anisotropic anomalous diffusion research. In this paper, two recently developed modified-Bloch equations, the fractal differential modified-Bloch equation and the fractional integral modified-Bloch equation, were extended to obtain general PFG signal attenuation expressions for anisotropic anomalous diffusion. Various cases of PFG anisotropic anomalous diffusion were investigated, including coupled and uncoupled anisotropic anomalous diffusion. The continuous-time random walk (CTRW) simulation was also carried out to support the theoretical results. The theory and the CTRW simulation agree with each other. The obtained signal attenuation expressions and the three-dimensional fractional modified-Bloch equations are important for analyzing PFG anisotropic anomalous diffusion in NMR and MRI.
Analysis of non-equilibrium phenomena in inductively coupled plasma generators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, W.; Panesi, M., E-mail: mpanesi@illinois.edu; Lani, A.
This work addresses the modeling of non-equilibrium phenomena in inductively coupled plasma discharges. In the proposed computational model, the electromagnetic induction equation is solved together with the set of Navier-Stokes equations in order to compute the electromagnetic and flow fields, accounting for their mutual interaction. Semi-classical statistical thermodynamics is used to determine the plasma thermodynamic properties, while transport properties are obtained from kinetic principles, with the method of Chapman and Enskog. Particle ambipolar diffusive fluxes are found by solving the Stefan-Maxwell equations with a simple iterative method. Two physico-mathematical formulations are used to model the chemical reaction processes: (1) Amore » Local Thermodynamics Equilibrium (LTE) formulation and (2) a thermo-chemical non-equilibrium (TCNEQ) formulation. In the TCNEQ model, thermal non-equilibrium between the translational energy mode of the gas and the vibrational energy mode of individual molecules is accounted for. The electronic states of the chemical species are assumed in equilibrium with the vibrational temperature, whereas the rotational energy mode is assumed to be equilibrated with translation. Three different physical models are used to account for the coupling of chemistry and energy transfer processes. Numerical simulations obtained with the LTE and TCNEQ formulations are used to characterize the extent of non-equilibrium of the flow inside the Plasmatron facility at the von Karman Institute. Each model was tested using different kinetic mechanisms to assess the sensitivity of the results to variations in the reaction parameters. A comparison of temperatures and composition profiles at the outlet of the torch demonstrates that the flow is in non-equilibrium for operating conditions characterized by pressures below 30 000 Pa, frequency 0.37 MHz, input power 80 kW, and mass flow 8 g/s.« less
Analysis of non-equilibrium phenomena in inductively coupled plasma generators
NASA Astrophysics Data System (ADS)
Zhang, W.; Lani, A.; Panesi, M.
2016-07-01
This work addresses the modeling of non-equilibrium phenomena in inductively coupled plasma discharges. In the proposed computational model, the electromagnetic induction equation is solved together with the set of Navier-Stokes equations in order to compute the electromagnetic and flow fields, accounting for their mutual interaction. Semi-classical statistical thermodynamics is used to determine the plasma thermodynamic properties, while transport properties are obtained from kinetic principles, with the method of Chapman and Enskog. Particle ambipolar diffusive fluxes are found by solving the Stefan-Maxwell equations with a simple iterative method. Two physico-mathematical formulations are used to model the chemical reaction processes: (1) A Local Thermodynamics Equilibrium (LTE) formulation and (2) a thermo-chemical non-equilibrium (TCNEQ) formulation. In the TCNEQ model, thermal non-equilibrium between the translational energy mode of the gas and the vibrational energy mode of individual molecules is accounted for. The electronic states of the chemical species are assumed in equilibrium with the vibrational temperature, whereas the rotational energy mode is assumed to be equilibrated with translation. Three different physical models are used to account for the coupling of chemistry and energy transfer processes. Numerical simulations obtained with the LTE and TCNEQ formulations are used to characterize the extent of non-equilibrium of the flow inside the Plasmatron facility at the von Karman Institute. Each model was tested using different kinetic mechanisms to assess the sensitivity of the results to variations in the reaction parameters. A comparison of temperatures and composition profiles at the outlet of the torch demonstrates that the flow is in non-equilibrium for operating conditions characterized by pressures below 30 000 Pa, frequency 0.37 MHz, input power 80 kW, and mass flow 8 g/s.
Simulations of pattern dynamics for reaction-diffusion systems via SIMULINK
2014-01-01
Background Investigation of the nonlinear pattern dynamics of a reaction-diffusion system almost always requires numerical solution of the system’s set of defining differential equations. Traditionally, this would be done by selecting an appropriate differential equation solver from a library of such solvers, then writing computer codes (in a programming language such as C or Matlab) to access the selected solver and display the integrated results as a function of space and time. This “code-based” approach is flexible and powerful, but requires a certain level of programming sophistication. A modern alternative is to use a graphical programming interface such as Simulink to construct a data-flow diagram by assembling and linking appropriate code blocks drawn from a library. The result is a visual representation of the inter-relationships between the state variables whose output can be made completely equivalent to the code-based solution. Results As a tutorial introduction, we first demonstrate application of the Simulink data-flow technique to the classical van der Pol nonlinear oscillator, and compare Matlab and Simulink coding approaches to solving the van der Pol ordinary differential equations. We then show how to introduce space (in one and two dimensions) by solving numerically the partial differential equations for two different reaction-diffusion systems: the well-known Brusselator chemical reactor, and a continuum model for a two-dimensional sheet of human cortex whose neurons are linked by both chemical and electrical (diffusive) synapses. We compare the relative performances of the Matlab and Simulink implementations. Conclusions The pattern simulations by Simulink are in good agreement with theoretical predictions. Compared with traditional coding approaches, the Simulink block-diagram paradigm reduces the time and programming burden required to implement a solution for reaction-diffusion systems of equations. Construction of the block-diagram does not require high-level programming skills, and the graphical interface lends itself to easy modification and use by non-experts. PMID:24725437
Simulations of pattern dynamics for reaction-diffusion systems via SIMULINK.
Wang, Kaier; Steyn-Ross, Moira L; Steyn-Ross, D Alistair; Wilson, Marcus T; Sleigh, Jamie W; Shiraishi, Yoichi
2014-04-11
Investigation of the nonlinear pattern dynamics of a reaction-diffusion system almost always requires numerical solution of the system's set of defining differential equations. Traditionally, this would be done by selecting an appropriate differential equation solver from a library of such solvers, then writing computer codes (in a programming language such as C or Matlab) to access the selected solver and display the integrated results as a function of space and time. This "code-based" approach is flexible and powerful, but requires a certain level of programming sophistication. A modern alternative is to use a graphical programming interface such as Simulink to construct a data-flow diagram by assembling and linking appropriate code blocks drawn from a library. The result is a visual representation of the inter-relationships between the state variables whose output can be made completely equivalent to the code-based solution. As a tutorial introduction, we first demonstrate application of the Simulink data-flow technique to the classical van der Pol nonlinear oscillator, and compare Matlab and Simulink coding approaches to solving the van der Pol ordinary differential equations. We then show how to introduce space (in one and two dimensions) by solving numerically the partial differential equations for two different reaction-diffusion systems: the well-known Brusselator chemical reactor, and a continuum model for a two-dimensional sheet of human cortex whose neurons are linked by both chemical and electrical (diffusive) synapses. We compare the relative performances of the Matlab and Simulink implementations. The pattern simulations by Simulink are in good agreement with theoretical predictions. Compared with traditional coding approaches, the Simulink block-diagram paradigm reduces the time and programming burden required to implement a solution for reaction-diffusion systems of equations. Construction of the block-diagram does not require high-level programming skills, and the graphical interface lends itself to easy modification and use by non-experts.
NASA Astrophysics Data System (ADS)
Ojambati, Oluwafemi S.; Yılmaz, Hasan; Lagendijk, Ad; Mosk, Allard P.; Vos, Willem L.
2016-03-01
Diffusion equation describes the energy density inside a scattering medium such as biological tissues and paint [1]. The solution of the diffusion equation is a sum over a complete set of eigensolutions that shows a characteristic linear decrease with depth in the medium. It is of particular interest if one could launch energy in the fundamental eigensolution, as this opens the opportunity to achieve a much greater internal energy density. For applications in optics, an enhanced energy density is vital for solid-state lighting, light harvesting in solar cells, low-threshold random lasers, and biomedical optics. Here we demonstrate the first ever selective coupling of optical energy into a diffusion eigensolution of a scattering medium of zinc oxide (ZnO) paint. To this end, we exploit wavefront shaping to selectively couple energy into the fundamental diffusion mode, employing fluorescence of nanoparticles randomly positioned inside the medium as a probe of the energy density. We observe an enhanced fluorescence in case of optimized incident wavefronts, and the enhancement increases with sample thickness, a typical mesoscopic control parameter. We interpret successfully our result by invoking the fundamental eigensolution of the diffusion equation, and we obtain excellent agreement with our observations, even in absence of adjustable parameters [2]. References [1] R. Pierrat, P. Ambichl, S. Gigan, A. Haber, R. Carminati, and R. Rotter, Proc. Natl. Acad. Sci. U.S.A. 111, 17765 (2014). [2] O. S. Ojambati, H. Yilmaz, A. Lagendijk, A. P. Mosk, and W. L. Vos, arXiv:1505.08103.
A deterministic particle method for one-dimensional reaction-diffusion equations
NASA Technical Reports Server (NTRS)
Mascagni, Michael
1995-01-01
We derive a deterministic particle method for the solution of nonlinear reaction-diffusion equations in one spatial dimension. This deterministic method is an analog of a Monte Carlo method for the solution of these problems that has been previously investigated by the author. The deterministic method leads to the consideration of a system of ordinary differential equations for the positions of suitably defined particles. We then consider the time explicit and implicit methods for this system of ordinary differential equations and we study a Picard and Newton iteration for the solution of the implicit system. Next we solve numerically this system and study the discretization error both analytically and numerically. Numerical computation shows that this deterministic method is automatically adaptive to large gradients in the solution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Jungpyo; Wright, John; Bertelli, Nicola
In this study, a reduced model of quasilinear velocity diffusion by a small Larmor radius approximation is derived to couple the Maxwell’s equations and the Fokker Planck equation self-consistently for the ion cyclotron range of frequency waves in a tokamak. The reduced model ensures the important properties of the full model by Kennel-Engelmann diffusion, such as diffusion directions, wave polarizations, and H-theorem. The kinetic energy change (Wdot ) is used to derive the reduced model diffusion coefficients for the fundamental damping (n = 1) and the second harmonic damping (n = 2) to the lowest order of the finite Larmormore » radius expansion. The quasilinear diffusion coefficients are implemented in a coupled code (TORIC-CQL3D) with the equivalent reduced model of the dielectric tensor. We also present the simulations of the ITER minority heating scenario, in which the reduced model is verified within the allowable errors from the full model results.« less
Lee, Jungpyo; Wright, John; Bertelli, Nicola; ...
2017-04-24
In this study, a reduced model of quasilinear velocity diffusion by a small Larmor radius approximation is derived to couple the Maxwell’s equations and the Fokker Planck equation self-consistently for the ion cyclotron range of frequency waves in a tokamak. The reduced model ensures the important properties of the full model by Kennel-Engelmann diffusion, such as diffusion directions, wave polarizations, and H-theorem. The kinetic energy change (Wdot ) is used to derive the reduced model diffusion coefficients for the fundamental damping (n = 1) and the second harmonic damping (n = 2) to the lowest order of the finite Larmormore » radius expansion. The quasilinear diffusion coefficients are implemented in a coupled code (TORIC-CQL3D) with the equivalent reduced model of the dielectric tensor. We also present the simulations of the ITER minority heating scenario, in which the reduced model is verified within the allowable errors from the full model results.« less
Nonlinear diffusion and viral spread through the leaf of a plant
NASA Astrophysics Data System (ADS)
Edwards, Maureen P.; Waterhouse, Peter M.; Munoz-Lopez, María Jesús; Anderssen, Robert S.
2016-10-01
The spread of a virus through the leaf of a plant is both spatially and temporally causal in that the present status depends on the past and the spatial spread is compactly supported and progresses outwards. Such spatial spread is known to occur for certain nonlinear diffusion processes. The first compactly supported solution for nonlinear diffusion equations appears to be that of Pattle published in 1959. In that paper, no explanation is given as to how the solution was derived. Here, we show how the solution can be derived using Lie symmetry analysis. This lays a foundation for exploring the behavior of other choices for nonlinear diffusion and exploring the addition of reaction terms which do not eliminate the compactly supported structure. The implications associated with using the reaction-diffusion equation to model the spatial-temporal spread of a virus through the leaf of a plant are discussed.
Sabelnikov, V A; Lipatnikov, A N
2014-09-01
The problem of traveling wave (TW) speed selection for solutions to a generalized Murray-Burgers-KPP-Fisher parabolic equation with a strictly positive cubic reaction term is considered theoretically and the initial boundary value problem is numerically solved in order to support obtained analytical results. Depending on the magnitude of a parameter inherent in the reaction term (i) the term is either a concave function or a function with the inflection point and (ii) transition from pulled to pushed TW solution occurs due to interplay of two nonlinear terms; the reaction term and the Burgers convection term. Explicit pushed TW solutions are derived. It is shown that physically observable TW solutions, i.e., solutions obtained by solving the initial boundary value problem with a sufficiently steep initial condition, can be determined by seeking the TW solution characterized by the maximum decay rate at its leading edge. In the Appendix, the developed approach is applied to a non-linear diffusion-reaction equation that is widely used to model premixed turbulent combustion.
Generalized two-temperature model for coupled phonon-magnon diffusion.
Liao, Bolin; Zhou, Jiawei; Chen, Gang
2014-07-11
We generalize the two-temperature model [Sanders and Walton, Phys. Rev. B 15, 1489 (1977)] for coupled phonon-magnon diffusion to include the effect of the concurrent magnetization flow, with a particular emphasis on the thermal consequence of the magnon flow driven by a nonuniform magnetic field. Working within the framework of the Boltzmann transport equation, we derive the constitutive equations for coupled phonon-magnon transport driven by gradients of both temperature and external magnetic fields, and the corresponding conservation laws. Our equations reduce to the original Sanders-Walton two-temperature model under a uniform external field, but predict a new magnon cooling effect driven by a nonuniform magnetic field in a homogeneous single-domain ferromagnet. We estimate the magnitude of the cooling effect in an yttrium iron garnet, and show it is within current experimental reach. With properly optimized materials, the predicted cooling effect can potentially supplement the conventional magnetocaloric effect in cryogenic applications in the future.
Surge dynamics coupled to pore-pressure evolution in debris flows
Savage, S.B.; Iverson, R.M.; ,
2003-01-01
Temporally and spatially varying pore-fluid pressures exert strong controls on debris-flow motion by mediating internal and basal friction at grain contacts. We analyze these effects by deriving a one-dimensional model of pore-pressure diffusion explicitly coupled to changes in debris-flow thickness. The new pore-pressure equation is combined with Iverson's (1997) extension of the depth-averaged Savage-Hutter (1989, 1991) granular avalanche equations to predict motion of unsteady debris-flow surges with evolving pore-pressure distributions. Computational results illustrate the profound effects of pore-pressure diffusivities on debris-flow surge depths and velocities. ?? 2003 Millpress,.
NASA Technical Reports Server (NTRS)
Cunningham, Ronan A.; McManus, Hugh L.
1996-01-01
It has previously been demonstrated that simple coupled reaction-diffusion models can approximate the aging behavior of PMR-15 resin subjected to different oxidative environments. Based on empirically observed phenomena, a model coupling chemical reactions, both thermal and oxidative, with diffusion of oxygen into the material bulk should allow simulation of the aging process. Through preliminary modeling techniques such as this it has become apparent that accurate analytical models cannot be created until the phenomena which cause the aging of these materials are quantified. An experimental program is currently underway to quantify all of the reaction/diffusion related mechanisms involved. The following contains a summary of the experimental data which has been collected through thermogravimetric analyses of neat PMR-15 resin, along with analytical predictions from models based on the empirical data. Thermogravimetric analyses were carried out in a number of different environments - nitrogen, air and oxygen. The nitrogen provides data for the purely thermal degradation mechanisms while those in air provide data for the coupled oxidative-thermal process. The intent here is to effectively subtract the nitrogen atmosphere data (assumed to represent only thermal reactions) from the air and oxygen atmosphere data to back-figure the purely oxidative reactions. Once purely oxidative (concentration dependent) reactions have been quantified it should then be possible to quantify the diffusion of oxygen into the material bulk.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chevalier, Michael W., E-mail: Michael.Chevalier@ucsf.edu; El-Samad, Hana, E-mail: Hana.El-Samad@ucsf.edu
Noise and stochasticity are fundamental to biology and derive from the very nature of biochemical reactions where thermal motion of molecules translates into randomness in the sequence and timing of reactions. This randomness leads to cell-to-cell variability even in clonal populations. Stochastic biochemical networks have been traditionally modeled as continuous-time discrete-state Markov processes whose probability density functions evolve according to a chemical master equation (CME). In diffusion reaction systems on membranes, the Markov formalism, which assumes constant reaction propensities is not directly appropriate. This is because the instantaneous propensity for a diffusion reaction to occur depends on the creation timesmore » of the molecules involved. In this work, we develop a chemical master equation for systems of this type. While this new CME is computationally intractable, we make rational dimensional reductions to form an approximate equation, whose moments are also derived and are shown to yield efficient, accurate results. This new framework forms a more general approach than the Markov CME and expands upon the realm of possible stochastic biochemical systems that can be efficiently modeled.« less
NASA Astrophysics Data System (ADS)
Lampin, E.; Cristiano, F.; Lamrani, Y.; Colombeau, B.
2004-02-01
We present simulations of B TED based on a complete calculation of the extended defect growth/shrinkage during annealing. The Si self-interstitial supersaturation calculated at the extended defect depth is coupled to the set of equations for the B kick-out diffusion through a generation/recombination term in the diffusion equation of the Si self-interstitials. The simulations are compared to the measurements performed on a Si wafer containing several B marker layers, where the amount of TED varies from one peak to the other. The good agreement obtained on this experiment is very promising for the application of these calculations to the case of ultra-shallow B + implants.
Numerical Simulations of High-Speed Chemically Reacting Flow
NASA Technical Reports Server (NTRS)
Ton, V. T.; Karagozian, A. R.; Marble, F. E.; Osher, S. J.; Engquist, B. E.
1994-01-01
The essentially nonoscillatory (ENO) shock-capturing scheme for the solution of hyperbolic equations is extended to solve a system of coupled conservation equations governing two-dimensional, time-dependent, compressible chemically reacting flow with full chemistry. The thermodynamic properties of the mixture are modeled accurately, and stiff kinetic terms are separated from the fluid motion by a fractional step algorithm. The methodology is used to study the concept of shock-induced mixing and combustion, a process by which the interaction of a shock wave with a jet of low-density hydrogen fuel enhances mixing through streamwise vorticity generation. Test cases with and without chemical reaction are explored here. Our results indicate that, in the temperature range examined, vorticity generation as well as the distribution of atomic species do not change significantly with the introduction of a chemical reaction and subsequent heat release. The actual diffusion of hydrogen is also relatively unaffected by the reaction process. This suggests that the fluid mechanics of this problem may be successfully decoupled from the combustion processes, and that computation of the mixing problem (without combustion chemistry) can elucidate much of the important physical features of the flow.
Numerical Simulations of High-Speed Chemically Reacting Flow
NASA Technical Reports Server (NTRS)
Ton, V. T.; Karagozin, A. R.; Marble, F. E.; Osher, S. J.; Engquist, B. E.
1994-01-01
The Essentially NonOscillatory (ENO) shock-capturing scheme for the solution of hyperbolic equations is extended to solve a system of coupled conservation equations governing two-dimensional, time-dependent, compressible chemically reacting flow with full chemistry. The thermodynamic properties of the mixture are modeled accurately, and stiff kinetic terms are separated from the fluid motion by a fractional step algorithm. The methodology is used to study the concept of shock-induced mixing and combustion, a process by which the interaction of a shock wave with a jet of low-density hydrogen fuel enhances mixing through streamwise vorticity generation. Test cases with and without chemical reaction are explored here. Our results indicate that, in the temperature range examined, vorticity generation as well as the distribution of atomic species do not change significantly with the introduction of a chemical reaction and subsequent heat release. The actual diffusion of hydrogen is also relatively unaffected by the reaction process. This suggests that the fluid mechanics of this problem may be successfully decoupled from the combustion processes, and that computation of the mixing problem (without combustion chemistry) can elucidate much of the important physical features of the flow.
Mesoscopic Modeling of Blood Clotting: Coagulation Cascade and Platelets Adhesion
NASA Astrophysics Data System (ADS)
Yazdani, Alireza; Li, Zhen; Karniadakis, George
2015-11-01
The process of clot formation and growth at a site on a blood vessel wall involve a number of multi-scale simultaneous processes including: multiple chemical reactions in the coagulation cascade, species transport and flow. To model these processes we have incorporated advection-diffusion-reaction (ADR) of multiple species into an extended version of Dissipative Particle Dynamics (DPD) method which is considered as a coarse-grained Molecular Dynamics method. At the continuum level this is equivalent to the Navier-Stokes equation plus one advection-diffusion equation for each specie. The chemistry of clot formation is now understood to be determined by mechanisms involving reactions among many species in dilute solution, where reaction rate constants and species diffusion coefficients in plasma are known. The role of blood particulates, i.e. red cells and platelets, in the clotting process is studied by including them separately and together in the simulations. An agonist-induced platelet activation mechanism is presented, while platelets adhesive dynamics based on a stochastic bond formation/dissociation process is included in the model.
Multispecies reaction-diffusion systems
NASA Astrophysics Data System (ADS)
Aghamohammadi, A.; Fatollahi, A. H.; Khorrami, M.; Shariati, A.
2000-10-01
Multispecies reaction-diffusion systems, for which the time evolution equations of correlation functions become a closed set, are considered. A formal solution for the average densities is found. Some special interactions and the exact time dependence of the average densities in these cases are also studied. For the general case, the large-time behavior of the average densities has also been obtained.
Time-delayed reaction-diffusion fronts
NASA Astrophysics Data System (ADS)
Isern, Neus; Fort, Joaquim
2009-11-01
A time-delayed second-order approximation for the front speed in reaction-dispersion systems was obtained by Fort and Méndez [Phys. Rev. Lett. 82, 867 (1999)]. Here we show that taking proper care of the effect of the time delay on the reactive process yields a different evolution equation and, therefore, an alternate equation for the front speed. We apply the new equation to the Neolithic transition. For this application the new equation yields speeds about 10% slower than the previous one.
Multinucleon transfer dynamics in heavy-ion collisions near Coulomb-barrier energies
NASA Astrophysics Data System (ADS)
Niu, Fei; Chen, Peng-Hui; Guo, Ya-Fei; Ma, Chun-Wang; Feng, Zhao-Qing
2017-12-01
Multinucleon transfer reactions near barrier energies have been investigated with a multistep model based on the dinuclear system (DNS) concept, in which the capture of two colliding nuclei, the transfer dynamics, and the deexcitation process of primary fragments are described by an analytical formula, diffusion theory, and a statistical model, respectively. The nucleon transfer takes place after forming the DNS and is coupled to the dissipation of relative motion energy and angular momentum by solving a set of microscopically derived master equations within the potential energy surface. Specific reactions of Ca,4840+124Sn , 40Ca(40Ar,58Ni)+232Th , 40Ca(58Ni)+238U , and Ca,4840(58Ni)+248Cm near barrier energies are investigated. It is found that fragments are produced by multinucleon transfer reactions with maximal yields along the β -stability line. The isospin relaxation is particularly significant in the process of fragment formation. The incident energy dependence of heavy target-like fragments in the reaction of 58Ni+248Cm is analyzed thoroughly.
Wu, Changzheng; Zhang, Xiaodong; Ning, Bo; Yang, Jinlong; Xie, Yi
2009-07-06
Solid templates have been long regarded as one of the most promising ways to achieve single-shelled hollow nanostructures; however, few effective methods for the construction of multishelled hollow objects from their solid template counterparts have been developed. We report here, for the first time, a novel and convenient route to synthesizing double-shelled hollow spheres from the solid templates via programming the reaction-temperature procedures. The programmed temperature strategy developed in this work then provides an essential and general access to multishelled hollow nanostructures based on the designed extension of single-shelled hollow objects, independent of their outside contours, such as tubes, hollow spheres, and cubes. Starting from the V(OH)(2)NH(2) solid templates, we show that the relationship between the hollowing rate and the reaction temperature obey the Van't Hoff rule and Arrhenius activation-energy equation, revealing that it is the chemical reaction rather than the diffusion process that guided the whole hollowing process, despite the fact that the coupled reaction/diffusion process is involved in the hollowing process. Using the double-shelled hollow spheres as the PCM (CaCl(2).6H(2)O) matrix grants much better thermal-storage stability than that for the nanoparticles counterpart, revealing that the designed nanostructures can give rise to significant improvements for the energy-saving performance in future "smart house" systems.
Billon, Alexis; Foy, Cédric; Picaut, Judicaël; Valeau, Vincent; Sakout, Anas
2008-06-01
In this paper, a modification of the diffusion model for room acoustics is proposed to account for sound transmission between two rooms, a source room and an adjacent room, which are coupled through a partition wall. A system of two diffusion equations, one for each room, together with a set of two boundary conditions, one for the partition wall and one for the other walls of a room, is obtained and numerically solved. The modified diffusion model is validated by numerical comparisons with the statistical theory for several coupled-room configurations by varying the coupling area surface, the absorption coefficient of each room, and the volume of the adjacent room. An experimental comparison is also carried out for two coupled classrooms. The modified diffusion model results agree very well with both the statistical theory and the experimental data. The diffusion model can then be used as an alternative to the statistical theory, especially when the statistical theory is not applicable, that is, when the reverberant sound field is not diffuse. Moreover, the diffusion model allows the prediction of the spatial distribution of sound energy within each coupled room, while the statistical theory gives only one sound level for each room.
Stochastic modeling and simulation of reaction-diffusion system with Hill function dynamics.
Chen, Minghan; Li, Fei; Wang, Shuo; Cao, Young
2017-03-14
Stochastic simulation of reaction-diffusion systems presents great challenges for spatiotemporal biological modeling and simulation. One widely used framework for stochastic simulation of reaction-diffusion systems is reaction diffusion master equation (RDME). Previous studies have discovered that for the RDME, when discretization size approaches zero, reaction time for bimolecular reactions in high dimensional domains tends to infinity. In this paper, we demonstrate that in the 1D domain, highly nonlinear reaction dynamics given by Hill function may also have dramatic change when discretization size is smaller than a critical value. Moreover, we discuss methods to avoid this problem: smoothing over space, fixed length smoothing over space and a hybrid method. Our analysis reveals that the switch-like Hill dynamics reduces to a linear function of discretization size when the discretization size is small enough. The three proposed methods could correctly (under certain precision) simulate Hill function dynamics in the microscopic RDME system.
Amplitude equations for breathing spiral waves in a forced reaction-diffusion system.
Ghosh, Pushpita; Ray, Deb Shankar
2011-09-14
Based on a multiple scale analysis of a forced reaction-diffusion system leading to amplitude equations, we explain the existence of spiral wave and its photo-induced spatiotemporal behavior in chlorine dioxide-iodine-malonic acid system. When the photo-illumination intensity is modulated, breathing of spiral is observed in which the period of breathing is identical to the period of forcing. We have also derived the condition for breakup and suppression of spiral wave by periodic illumination. The numerical simulations agree well with our analytical treatment. © 2011 American Institute of Physics
Calculation of two-dimension radial electric field in boundary plasmas by using BOUT++
NASA Astrophysics Data System (ADS)
Li, N. M.; Xu, X. Q.; Rognlien, T. D.; Gui, B.; Sun, J. Z.; Wang, D. Z.
2018-07-01
The steady state radial electric field (Er) is calculated by coupling a plasma transport model with the quasi-neutrality constraint and the vorticity equation within the BOUT++ framework. Based on the experimentally measured plasma density and temperature profiles in Alcator C-Mod discharges, the effective radial particle and heat diffusivities are inferred from the set of plasma transport equations. The effective diffusivities are then extended into the scrape-off layer (SOL) to calculate the plasma density, temperature and flow profiles across the separatrix into the SOL with the electrostatic sheath boundary conditions (SBC) applied on the divertor plates. Given these diffusivities, the electric field can be calculated self-consistently across the separatrix from the vorticity equation with SBC coupled to the plasma transport equations. The sheath boundary conditions act to generate a large and positive Er in the SOL, which is consistent with experimental measurements. The effect of magnetic particle drifts is shown to play a significant role on local particle transport and Er by inducing a net particle flow in both the edge and SOL regions.
Reaction-diffusion basis of retroviral infectivity
NASA Astrophysics Data System (ADS)
Sadiq, S. Kashif
2016-11-01
Retrovirus particle (virion) infectivity requires diffusion and clustering of multiple transmembrane envelope proteins (Env3) on the virion exterior, yet is triggered by protease-dependent degradation of a partially occluding, membrane-bound Gag polyprotein lattice on the virion interior. The physical mechanism underlying such coupling is unclear and only indirectly accessible via experiment. Modelling stands to provide insight but the required spatio-temporal range far exceeds current accessibility by all-atom or even coarse-grained molecular dynamics simulations. Nor do such approaches account for chemical reactions, while conversely, reaction kinetics approaches handle neither diffusion nor clustering. Here, a recently developed multiscale approach is considered that applies an ultra-coarse-graining scheme to treat entire proteins at near-single particle resolution, but which also couples chemical reactions with diffusion and interactions. A model is developed of Env3 molecules embedded in a truncated Gag lattice composed of membrane-bound matrix proteins linked to capsid subunits, with freely diffusing protease molecules. Simulations suggest that in the presence of Gag but in the absence of lateral lattice-forming interactions, Env3 diffuses comparably to Gag-absent Env3. Initial immobility of Env3 is conferred through lateral caging by matrix trimers vertically coupled to the underlying hexameric capsid layer. Gag cleavage by protease vertically decouples the matrix and capsid layers, induces both matrix and Env3 diffusion, and permits Env3 clustering. Spreading across the entire membrane surface reduces crowding, in turn, enhancing the effect and promoting infectivity. This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'.
NASA Astrophysics Data System (ADS)
Yeh, G. T.; Tsai, C. H.
2015-12-01
This paper presents the development of a THMC (thermal-hydrology-mechanics-chemistry) process model in variably saturated media. The governing equations for variably saturated flow and reactive chemical transport are obtained based on the mass conservation principle of species transport supplemented with Darcy's law, constraint of species concentration, equation of states, and constitutive law of K-S-P (Conductivity-Degree of Saturation-Capillary Pressure). The thermal transport equation is obtained based on the conservation of energy. The geo-mechanic displacement is obtained based on the assumption of equilibrium. Conventionally, these equations have been implicitly coupled via the calculations of secondary variables based on primary variables. The mechanisms of coupling have not been obvious. In this paper, governing equations are explicitly coupled for all primary variables. The coupling is accomplished via the storage coefficients, transporting velocities, and conduction-dispersion-diffusion coefficient tensor; one set each for every primary variable. With this new system of equations, the coupling mechanisms become clear. Physical interpretations of every term in the coupled equations will be discussed. Examples will be employed to demonstrate the intuition and superiority of these explicit coupling approaches. Keywords: Variably Saturated Flow, Thermal Transport, Geo-mechanics, Reactive Transport.
Stochastic Analysis of Reaction–Diffusion Processes
Hu, Jifeng; Kang, Hye-Won
2013-01-01
Reaction and diffusion processes are used to model chemical and biological processes over a wide range of spatial and temporal scales. Several routes to the diffusion process at various levels of description in time and space are discussed and the master equation for spatially discretized systems involving reaction and diffusion is developed. We discuss an estimator for the appropriate compartment size for simulating reaction–diffusion systems and introduce a measure of fluctuations in a discretized system. We then describe a new computational algorithm for implementing a modified Gillespie method for compartmental systems in which reactions are aggregated into equivalence classes and computational cells are searched via an optimized tree structure. Finally, we discuss several examples that illustrate the issues that have to be addressed in general systems. PMID:23719732
Coupling of active motion and advection shapes intracellular cargo transport.
Khuc Trong, Philipp; Guck, Jochen; Goldstein, Raymond E
2012-07-13
Intracellular cargo transport can arise from passive diffusion, active motor-driven transport along cytoskeletal filament networks, and passive advection by fluid flows entrained by such cargo-motor motion. Active and advective transport are thus intrinsically coupled as related, yet different representations of the same underlying network structure. A reaction-advection-diffusion system is used here to show that this coupling affects the transport and localization of a passive tracer in a confined geometry. For sufficiently low diffusion, cargo localization to a target zone is optimized either by low reaction kinetics and decoupling of bound and unbound states, or by a mostly disordered cytoskeletal network with only weak directional bias. These generic results may help to rationalize subtle features of cytoskeletal networks, for example as observed for microtubules in fly oocytes.
A Luenberger observer for reaction-diffusion models with front position data
NASA Astrophysics Data System (ADS)
Collin, Annabelle; Chapelle, Dominique; Moireau, Philippe
2015-11-01
We propose a Luenberger observer for reaction-diffusion models with propagating front features, and for data associated with the location of the front over time. Such models are considered in various application fields, such as electrophysiology, wild-land fire propagation and tumor growth modeling. Drawing our inspiration from image processing methods, we start by proposing an observer for the eikonal-curvature equation that can be derived from the reaction-diffusion model by an asymptotic expansion. We then carry over this observer to the underlying reaction-diffusion equation by an ;inverse asymptotic analysis;, and we show that the associated correction in the dynamics has a stabilizing effect for the linearized estimation error. We also discuss the extension to joint state-parameter estimation by using the earlier-proposed ROUKF strategy. We then illustrate and assess our proposed observer method with test problems pertaining to electrophysiology modeling, including with a realistic model of cardiac atria. Our numerical trials show that state estimation is directly very effective with the proposed Luenberger observer, while specific strategies are needed to accurately perform parameter estimation - as is usual with Kalman filtering used in a nonlinear setting - and we demonstrate two such successful strategies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcia, Andres; Evans, James W.
2016-11-03
We show that steady-state catalytic conversion in nanoporous materials can occur in a quasi-counter-diffusion mode with the reactant (product) concentration strongly decaying (growing) into the pore, but also with oscillations in the total concentration. These oscillations reflect the response of the fluid to the transition from an extended to a confined environment near the pore opening. We focus on the regime of strongly inhibited transport in narrow pores corresponding to single-file diffusion. Here, limited penetration of the reactant into the pores and the associated low reaction yield is impacted by strong spatial correlations induced by both reaction (non-equilibrium correlations) andmore » also by intermolecular interactions (thermodynamic correlations). We develop a generalized hydrodynamic formulation to effectively describe inhibited transport accounting for the effect of these correlations, and incorporate this description of transport into appropriate reaction-diffusion equations. These equations accurately describe both shorter-range concentration oscillations near the pore opening and the longer-range mesoscale variation of concentration profiles in the pore (and thus also describe reaction yield). Success of the analytic theory is validated by comparison with a precise kinetic Monte Carlo simulation of an appropriate molecular-level stochastic reaction-diffusion model. As a result, this work elucidates unconventional chemical kinetics in interacting confined systems.« less
Reconstruction of ensembles of coupled time-delay systems from time series.
Sysoev, I V; Prokhorov, M D; Ponomarenko, V I; Bezruchko, B P
2014-06-01
We propose a method to recover from time series the parameters of coupled time-delay systems and the architecture of couplings between them. The method is based on a reconstruction of model delay-differential equations and estimation of statistical significance of couplings. It can be applied to networks composed of nonidentical nodes with an arbitrary number of unidirectional and bidirectional couplings. We test our method on chaotic and periodic time series produced by model equations of ensembles of diffusively coupled time-delay systems in the presence of noise, and apply it to experimental time series obtained from electronic oscillators with delayed feedback coupled by resistors.
1/f Noise Inside a Faraday Cage
NASA Astrophysics Data System (ADS)
Handel, Peter H.; George, Thomas F.
2009-04-01
We show that quantum 1/f noise does not have a lower frequency limit given by the lowest free electromagnetic field mode in a Faraday cage, even in an ideal cage. Indeed, quantum 1/f noise comes from the infrared-divergent coupling of the field with the charges, in their joint nonlinear system, where the charges cause the field that reacts back on the charges, and so on. This low-frequency limitation is thus not applicable for the nonlinear system of matter and field in interaction. Indeed, this nonlinear system is governed by Newton's laws, Maxwell's equations, in general also by the diffusion equations for particles and heat, or reaction kinetics given by quantum matrix elements. Nevertheless, all the other quantities can be eliminated in principle, resulting in highly nonlinear integro-differential equations for the electromagnetic field only, which no longer yield a fundamental frequency. Alternatively, we may describe this through the presence of an infinite system of subharmonics. We show how this was proven early in the classical and quantum domains, adding new insight.
Modeling the rate-controlled sorption of hexavalent chromium
Grove, D.B.; Stollenwerk, K.G.
1985-01-01
Sorption of chromium VI on the iron-oxide- and hydroxide-coated surface of alluvial material was numerically simulated with rate-controlled reactions. Reaction kinetics and diffusional processes, in the form of film, pore, and particle diffusion, were simulated and compared with experimental results. The use of empirically calculated rate coefficients for diffusion through the reacting surface was found to simulate experimental data; pore or particle diffusion is believed to be a possible rate-controlling mechanism. The use of rate equations to predict conservative transport and rate- and local-equilibrium-controlled reactions was shown to be feasible.
Feedback coupling in dynamical systems
NASA Astrophysics Data System (ADS)
Trimper, Steffen; Zabrocki, Knud
2003-05-01
Different evolution models are considered with feedback-couplings. In particular, we study the Lotka-Volterra system under the influence of a cumulative term, the Ginzburg-Landau model with a convolution memory term and chemical rate equations with time delay. The memory leads to a modified dynamical behavior. In case of a positive coupling the generalized Lotka-Volterra system exhibits a maximum gain achieved after a finite time, but the population will die out in the long time limit. In the opposite case, the time evolution is terminated in a crash. Due to the nonlinear feedback coupling the two branches of a bistable model are controlled by the the strength and the sign of the memory. For a negative coupling the system is able to switch over between both branches of the stationary solution. The dynamics of the system is further controlled by the initial condition. The diffusion-limited reaction is likewise studied in case the reacting entities are not available simultaneously. Whereas for an external feedback the dynamics is altered, but the stationary solution remain unchanged, a self-organized internal feedback leads to a time persistent solution.
NASA Astrophysics Data System (ADS)
Price, D. J.; Laibe, G.
2015-10-01
Dust-gas mixtures are the simplest example of a two fluid mixture. We show that when simulating such mixtures with particles or with particles coupled to grids a problem arises due to the need to resolve a very small length scale when the coupling is strong. Since this is occurs in the limit when the fluids are well coupled, we show how the dust-gas equations can be reformulated to describe a single fluid mixture. The equations are similar to the usual fluid equations supplemented by a diffusion equation for the dust-to-gas ratio or alternatively the dust fraction. This solves a number of numerical problems as well as making the physics clear.
1985-06-01
relative to reactant and with the free energy of reaction. The correlation equations were derived from hyperbolic paraboloid models of the energy...obtained the differen- tial equations which define the best dividing surfaces of this type for both microcanonical and canonical cases. We have...is now generalized to non-uniform reaction systems. For kinetics-diffusion problems the equations of the generalized PAM were (similar in form to
Effect of breathing-hole size on the electrochemical species in a free-breathing cathode of a DMFC
NASA Astrophysics Data System (ADS)
Hwang, J. J.; Wu, S. D.; Lai, L. K.; Chen, C. K.; Lai, D. Y.
A three-dimensional numerical model is developed to study the electrochemical species characteristics in a free-breathing cathode of a direct methanol fuel cell (DMFC). A perforated current collector is attached to the porous cathode that breathes the fresh air through an array of orifices. The radius of the orifice is varied to examine its effect on the electrochemical performance. Gas flow in the porous cathode is governed by the Darcy equation with constant porosity and permeability. The multi-species diffusive transports in the porous cathode are described using the Stefan-Maxwell equation. Electrochemical reaction on the surfaces of the porous matrices is depicted via the Butler-Volmer equation. The charge transports in the porous matrices are dealt with by Ohm's law. The coupled equations are solved by a finite-element-based CFD technique. Detailed distributions of electrochemical species characteristics such as flow velocities, species mass fractions, species fluxes, and current densities are presented. The optimal breathing-hole radius is derived from the current drawn out of the porous cathode under a fixed overpotential.
Stochastic fire-diffuse-fire model with realistic cluster dynamics.
Calabrese, Ana; Fraiman, Daniel; Zysman, Daniel; Ponce Dawson, Silvina
2010-09-01
Living organisms use waves that propagate through excitable media to transport information. Ca2+ waves are a paradigmatic example of this type of processes. A large hierarchy of Ca2+ signals that range from localized release events to global waves has been observed in Xenopus laevis oocytes. In these cells, Ca2+ release occurs trough inositol 1,4,5-trisphosphate receptors (IP3Rs) which are organized in clusters of channels located on the membrane of the endoplasmic reticulum. In this article we construct a stochastic model for a cluster of IP3R 's that replicates the experimental observations reported in [D. Fraiman, Biophys. J. 90, 3897 (2006)]. We then couple this phenomenological cluster model with a reaction-diffusion equation, so as to have a discrete stochastic model for calcium dynamics. The model we propose describes the transition regimes between isolated release and steadily propagating waves as the IP3 concentration is increased.
Lateral diffusion study of the Pt-Al system using the NAC nuclear microprobe.
NASA Astrophysics Data System (ADS)
de Waal, H.; Pretorius, R.
1999-10-01
In this study a nuclear microprobe (NMP) was used to analyse phase formation during reaction in Pt-Al lateral diffusion couples. Phase identification was done by Rutherford backscattering spectroscopy. These results were compared with phase formation during conventional thin film Pt-Al interactions. The co-existence of multiple phases in lateral diffusion couples is discussed with reference to the effective heat of formation (EHF) model.
Lin, S H; Sahai, R; Eyring, H
1971-04-01
A theoretical model for the accumulation of pesticides in soil has been proposed and discussed from the viewpoint of heterogeneous reaction kinetics with a basic aim to understand the complex nature of soil processes relating to the environmental pollution. In the bulk of soil, the pesticide disappears by diffusion and a chemical reaction; the rate processes considered on the surface of soil are diffusion, chemical reaction, vaporization, and regular pesticide application. The differential equations involved have been solved analytically by the Laplace-transform method.
Lin, S. H.; Sahai, R.; Eyring, H.
1971-01-01
A theoretical model for the accumulation of pesticides in soil has been proposed and discussed from the viewpoint of heterogeneous reaction kinetics with a basic aim to understand the complex nature of soil processes relating to the environmental pollution. In the bulk of soil, the pesticide disappears by diffusion and a chemical reaction; the rate processes considered on the surface of soil are diffusion, chemical reaction, vaporization, and regular pesticide application. The differential equations involved have been solved analytically by the Laplace-transform method. PMID:5279519
NASA Astrophysics Data System (ADS)
Uecker, Hannes
2004-04-01
The Lombardo-Imbihl-Fink (LFI) ODE model of the NO+NH 3 reaction on a Pt(1 0 0) surface shows stable relaxation oscillations with very sharp transitions for temperatures T between 404 and 433 K. Here we study numerically the effect of linear diffusive coupling of these oscillators in one spatial dimension. Depending on the parameters and initial conditions we find a rich variety of spatio-temporal patterns which we group into four main regimes: bulk oscillations (BOs), standing waves (SW), phase clusters (PC), and phase waves (PW). Two key ingredients for SW and PC are identified, namely the relaxation type of the ODE oscillations and a nonlocal (and nonglobal) coupling due to relatively fast diffusion of the kinetically slaved variables NH 3 and H. In particular, the latter replaces the global coupling through the gas phase used to obtain SW and PC in models of related surface reactions. The PW exist only under the assumption of (relatively) slow diffusion of NH 3 and H.
Turbulent transport of a passive-scalar field by using a renormalization-group method
NASA Technical Reports Server (NTRS)
Hossain, Murshed
1992-01-01
A passive-scalar field is considered to evolve under the influence of a turbulent fluid governed by the Navier-Stokes equation. Turbulent-transport coefficients are calculated by small-scale elimination using a renormalization-group method. Turbulent processes couple both the viscosity and the diffusivity. In the absence of any correlation between the passive-scalar fluctuations and any component of the fluid velocity, the renormalized diffusivity is essentially the same as if the fluid velocity were frozen, although the renormalized equation does contain higher-order nonlinear terms involving viscosity. This arises due to the nonlinear interaction of the velocity with itself. In the presence of a finite correlation, the turbulent diffusivity becomes coupled with both the velocity field and the viscosity. There is then a dependence of the turbulent decay of the passive scalar on the turbulent Prandtl number.
Calculating the True and Observed Rates of Complex Heterogeneous Catalytic Reactions
NASA Astrophysics Data System (ADS)
Avetisov, A. K.; Zyskin, A. G.
2018-06-01
Equations of the theory of steady-state complex reactions are considered in matrix form. A set of stage stationarity equations is given, and an algorithm is described for deriving the canonic set of stationarity equations with appropriate corrections for the existence of fast stages in a mechanism. A formula for calculating the number of key compounds is presented. The applicability of the Gibbs rule to estimating the number of independent compounds in a complex reaction is analyzed. Some matrix equations relating the rates of dependent and key substances are derived. They are used as a basis to determine the general diffusion stoichiometry relationships between temperature, the concentrations of dependent reaction participants, and the concentrations of key reaction participants in a catalyst grain. An algorithm is described for calculating heat and mass transfer in a catalyst grain with respect to arbitrary complex heterogeneous catalytic reactions.
Exact PDF equations and closure approximations for advective-reactive transport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Venturi, D.; Tartakovsky, Daniel M.; Tartakovsky, Alexandre M.
2013-06-01
Mathematical models of advection–reaction phenomena rely on advective flow velocity and (bio) chemical reaction rates that are notoriously random. By using functional integral methods, we derive exact evolution equations for the probability density function (PDF) of the state variables of the advection–reaction system in the presence of random transport velocity and random reaction rates with rather arbitrary distributions. These PDF equations are solved analytically for transport with deterministic flow velocity and a linear reaction rate represented mathematically by a heterog eneous and strongly-correlated random field. Our analytical solution is then used to investigate the accuracy and robustness of the recentlymore » proposed large-eddy diffusivity (LED) closure approximation [1]. We find that the solution to the LED-based PDF equation, which is exact for uncorrelated reaction rates, is accurate even in the presence of strong correlations and it provides an upper bound of predictive uncertainty.« less
DEVELOPMENT OF SPLIT-OPERATOR, PETROV-GALERKIN METHODS TO SIMULATE TRANSPORT AND DIFFUSION PROBLEMS
The rate at which contaminants in groundwater undergo sorption and desorption is routinely described using diffusion models. Such approaches, when incorporated into transport models, lead to large systems of coupled equations, often nonlinear. This has restricted applications of ...
Synthesis of Refractory Compounds with Gasless Combustion Reactions.
1983-09-01
either Al or Mg as the reducing agent. With Al as the reductant, the stoichiometric equation is 2Mo03 + B203 + 6 Al 2MoB + 3 A120 3 Using the methods...r. rr. . . ;. ., .s . , . . o. . - •-~~- ~- . . . .4 calculated to be 267.3 kcal/mole. With Mg as the reductant, the stoichio- metric equation for the...reaction conditions also are assumed for each model. Conservation of energy and heat diffusion equations are applied to a characteristic control volume
Simulation studies of chemical erosion on carbon based materials at elevated temperatures
NASA Astrophysics Data System (ADS)
Kenmotsu, T.; Kawamura, T.; Li, Zhijie; Ono, T.; Yamamura, Y.
1999-06-01
We simulated the fluence dependence of methane reaction yield in carbon with hydrogen bombardment using the ACAT-DIFFUSE code. The ACAT-DIFFUSE code is a simulation code based on a Monte Carlo method with a binary collision approximation and on solving diffusion equations. The chemical reaction model in carbon was studied by Roth or other researchers. Roth's model is suitable for the steady state methane reaction. But this model cannot estimate the fluence dependence of the methane reaction. Then, we derived an empirical formula based on Roth's model for methane reaction. In this empirical formula, we assumed the reaction region where chemical sputtering due to methane formation takes place. The reaction region corresponds to the peak range of incident hydrogen distribution in the target material. We adopted this empirical formula to the ACAT-DIFFUSE code. The simulation results indicate the similar fluence dependence compared with the experiment result. But, the fluence to achieve the steady state are different between experiment and simulation results.
Molecules in motion: influences of diffusion on metabolic structure and function in skeletal muscle.
Kinsey, Stephen T; Locke, Bruce R; Dillaman, Richard M
2011-01-15
Metabolic processes are often represented as a group of metabolites that interact through enzymatic reactions, thus forming a network of linked biochemical pathways. Implicit in this view is that diffusion of metabolites to and from enzymes is very fast compared with reaction rates, and metabolic fluxes are therefore almost exclusively dictated by catalytic properties. However, diffusion may exert greater control over the rates of reactions through: (1) an increase in reaction rates; (2) an increase in diffusion distances; or (3) a decrease in the relevant diffusion coefficients. It is therefore not surprising that skeletal muscle fibers have long been the focus of reaction-diffusion analyses because they have high and variable rates of ATP turnover, long diffusion distances, and hindered metabolite diffusion due to an abundance of intracellular barriers. Examination of the diversity of skeletal muscle fiber designs found in animals provides insights into the role that diffusion plays in governing both rates of metabolic fluxes and cellular organization. Experimental measurements of metabolic fluxes, diffusion distances and diffusion coefficients, coupled with reaction-diffusion mathematical models in a range of muscle types has started to reveal some general principles guiding muscle structure and metabolic function. Foremost among these is that metabolic processes in muscles do, in fact, appear to be largely reaction controlled and are not greatly limited by diffusion. However, the influence of diffusion is apparent in patterns of fiber growth and metabolic organization that appear to result from selective pressure to maintain reaction control of metabolism in muscle.
Hybrid simplified spherical harmonics with diffusion equation for light propagation in tissues.
Chen, Xueli; Sun, Fangfang; Yang, Defu; Ren, Shenghan; Zhang, Qian; Liang, Jimin
2015-08-21
Aiming at the limitations of the simplified spherical harmonics approximation (SPN) and diffusion equation (DE) in describing the light propagation in tissues, a hybrid simplified spherical harmonics with diffusion equation (HSDE) based diffuse light transport model is proposed. In the HSDE model, the living body is first segmented into several major organs, and then the organs are divided into high scattering tissues and other tissues. DE and SPN are employed to describe the light propagation in these two kinds of tissues respectively, which are finally coupled using the established boundary coupling condition. The HSDE model makes full use of the advantages of SPN and DE, and abandons their disadvantages, so that it can provide a perfect balance between accuracy and computation time. Using the finite element method, the HSDE is solved for light flux density map on body surface. The accuracy and efficiency of the HSDE are validated with both regular geometries and digital mouse model based simulations. Corresponding results reveal that a comparable accuracy and much less computation time are achieved compared with the SPN model as well as a much better accuracy compared with the DE one.
Fisher equation for anisotropic diffusion: simulating South American human dispersals.
Martino, Luis A; Osella, Ana; Dorso, Claudio; Lanata, José L
2007-09-01
The Fisher equation is commonly used to model population dynamics. This equation allows describing reaction-diffusion processes, considering both population growth and diffusion mechanism. Some results have been reported about modeling human dispersion, always assuming isotropic diffusion. Nevertheless, it is well-known that dispersion depends not only on the characteristics of the habitats where individuals are but also on the properties of the places where they intend to move, then isotropic approaches cannot adequately reproduce the evolution of the wave of advance of populations. Solutions to a Fisher equation are difficult to obtain for complex geometries, moreover, when anisotropy has to be considered and so few studies have been conducted in this direction. With this scope in mind, we present in this paper a solution for a Fisher equation, introducing anisotropy. We apply a finite difference method using the Crank-Nicholson approximation and analyze the results as a function of the characteristic parameters. Finally, this methodology is applied to model South American human dispersal.
Stabilization of a spatially uniform steady state in two systems exhibiting Turing patterns
NASA Astrophysics Data System (ADS)
Konishi, Keiji; Hara, Naoyuki
2018-05-01
This paper deals with the stabilization of a spatially uniform steady state in two coupled one-dimensional reaction-diffusion systems with Turing instability. This stabilization corresponds to amplitude death that occurs in a coupled system with Turing instability. Stability analysis of the steady state shows that stabilization does not occur if the two reaction-diffusion systems are identical. We derive a sufficient condition for the steady state to be stable for any length of system and any boundary conditions. Our analytical results are supported with numerical examples.
Rule-based spatial modeling with diffusing, geometrically constrained molecules.
Gruenert, Gerd; Ibrahim, Bashar; Lenser, Thorsten; Lohel, Maiko; Hinze, Thomas; Dittrich, Peter
2010-06-07
We suggest a new type of modeling approach for the coarse grained, particle-based spatial simulation of combinatorially complex chemical reaction systems. In our approach molecules possess a location in the reactor as well as an orientation and geometry, while the reactions are carried out according to a list of implicitly specified reaction rules. Because the reaction rules can contain patterns for molecules, a combinatorially complex or even infinitely sized reaction network can be defined. For our implementation (based on LAMMPS), we have chosen an already existing formalism (BioNetGen) for the implicit specification of the reaction network. This compatibility allows to import existing models easily, i.e., only additional geometry data files have to be provided. Our simulations show that the obtained dynamics can be fundamentally different from those simulations that use classical reaction-diffusion approaches like Partial Differential Equations or Gillespie-type spatial stochastic simulation. We show, for example, that the combination of combinatorial complexity and geometric effects leads to the emergence of complex self-assemblies and transportation phenomena happening faster than diffusion (using a model of molecular walkers on microtubules). When the mentioned classical simulation approaches are applied, these aspects of modeled systems cannot be observed without very special treatment. Further more, we show that the geometric information can even change the organizational structure of the reaction system. That is, a set of chemical species that can in principle form a stationary state in a Differential Equation formalism, is potentially unstable when geometry is considered, and vice versa. We conclude that our approach provides a new general framework filling a gap in between approaches with no or rigid spatial representation like Partial Differential Equations and specialized coarse-grained spatial simulation systems like those for DNA or virus capsid self-assembly.
Rule-based spatial modeling with diffusing, geometrically constrained molecules
2010-01-01
Background We suggest a new type of modeling approach for the coarse grained, particle-based spatial simulation of combinatorially complex chemical reaction systems. In our approach molecules possess a location in the reactor as well as an orientation and geometry, while the reactions are carried out according to a list of implicitly specified reaction rules. Because the reaction rules can contain patterns for molecules, a combinatorially complex or even infinitely sized reaction network can be defined. For our implementation (based on LAMMPS), we have chosen an already existing formalism (BioNetGen) for the implicit specification of the reaction network. This compatibility allows to import existing models easily, i.e., only additional geometry data files have to be provided. Results Our simulations show that the obtained dynamics can be fundamentally different from those simulations that use classical reaction-diffusion approaches like Partial Differential Equations or Gillespie-type spatial stochastic simulation. We show, for example, that the combination of combinatorial complexity and geometric effects leads to the emergence of complex self-assemblies and transportation phenomena happening faster than diffusion (using a model of molecular walkers on microtubules). When the mentioned classical simulation approaches are applied, these aspects of modeled systems cannot be observed without very special treatment. Further more, we show that the geometric information can even change the organizational structure of the reaction system. That is, a set of chemical species that can in principle form a stationary state in a Differential Equation formalism, is potentially unstable when geometry is considered, and vice versa. Conclusions We conclude that our approach provides a new general framework filling a gap in between approaches with no or rigid spatial representation like Partial Differential Equations and specialized coarse-grained spatial simulation systems like those for DNA or virus capsid self-assembly. PMID:20529264
A model for oscillations and pattern formation in protoplasmic droplets of Physarum polycephalum
NASA Astrophysics Data System (ADS)
Radszuweit, M.; Engel, H.; Bär, M.
2010-12-01
A mechano-chemical model for the spatiotemporal dynamics of free calcium and the thickness in protoplasmic droplets of the true slime mold Physarum polycephalum is derived starting from a physiologically detailed description of intracellular calcium oscillations proposed by Smith and Saldana (Biopys. J. 61, 368 (1992)). First, we have modified the Smith-Saldana model for the temporal calcium dynamics in order to reproduce the experimentally observed phase relation between calcium and mechanical tension oscillations. Then, we formulate a model for spatiotemporal dynamics by adding spatial coupling in the form of calcium diffusion and advection due to calcium-dependent mechanical contraction. In another step, the resulting reaction-diffusion model with mechanical coupling is simplified to a reaction-diffusion model with global coupling that approximates the mechanical part. We perform a bifurcation analysis of the local dynamics and observe a Hopf bifurcation upon increase of a biochemical activity parameter. The corresponding reaction-diffusion model with global coupling shows regular and chaotic spatiotemporal behaviour for parameters with oscillatory dynamics. In addition, we show that the global coupling leads to a long-wavelength instability even for parameters where the local dynamics possesses a stable spatially homogeneous steady state. This instability causes standing waves with a wavelength of twice the system size in one dimension. Simulations of the model in two dimensions are found to exhibit defect-mediated turbulence as well as various types of spiral wave patterns in qualitative agreement with earlier experimental observation by Takagi and Ueda (Physica D, 237, 420 (2008)).
Semi-implicit integration factor methods on sparse grids for high-dimensional systems
NASA Astrophysics Data System (ADS)
Wang, Dongyong; Chen, Weitao; Nie, Qing
2015-07-01
Numerical methods for partial differential equations in high-dimensional spaces are often limited by the curse of dimensionality. Though the sparse grid technique, based on a one-dimensional hierarchical basis through tensor products, is popular for handling challenges such as those associated with spatial discretization, the stability conditions on time step size due to temporal discretization, such as those associated with high-order derivatives in space and stiff reactions, remain. Here, we incorporate the sparse grids with the implicit integration factor method (IIF) that is advantageous in terms of stability conditions for systems containing stiff reactions and diffusions. We combine IIF, in which the reaction is treated implicitly and the diffusion is treated explicitly and exactly, with various sparse grid techniques based on the finite element and finite difference methods and a multi-level combination approach. The overall method is found to be efficient in terms of both storage and computational time for solving a wide range of PDEs in high dimensions. In particular, the IIF with the sparse grid combination technique is flexible and effective in solving systems that may include cross-derivatives and non-constant diffusion coefficients. Extensive numerical simulations in both linear and nonlinear systems in high dimensions, along with applications of diffusive logistic equations and Fokker-Planck equations, demonstrate the accuracy, efficiency, and robustness of the new methods, indicating potential broad applications of the sparse grid-based integration factor method.
An adaptive tau-leaping method for stochastic simulations of reaction-diffusion systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Padgett, Jill M. A.; Ilie, Silvana, E-mail: silvana@ryerson.ca
2016-03-15
Stochastic modelling is critical for studying many biochemical processes in a cell, in particular when some reacting species have low population numbers. For many such cellular processes the spatial distribution of the molecular species plays a key role. The evolution of spatially heterogeneous biochemical systems with some species in low amounts is accurately described by the mesoscopic model of the Reaction-Diffusion Master Equation. The Inhomogeneous Stochastic Simulation Algorithm provides an exact strategy to numerically solve this model, but it is computationally very expensive on realistic applications. We propose a novel adaptive time-stepping scheme for the tau-leaping method for approximating themore » solution of the Reaction-Diffusion Master Equation. This technique combines effective strategies for variable time-stepping with path preservation to reduce the computational cost, while maintaining the desired accuracy. The numerical tests on various examples arising in applications show the improved efficiency achieved by the new adaptive method.« less
Stanis, Ronald J.; Lambert, Timothy N.
2016-12-06
An apparatus of an aspect includes a fuel cell catalyst layer. The fuel cell catalyst layer is operable to catalyze a reaction involving a fuel reactant. A fuel cell gas diffusion layer is coupled with the fuel cell catalyst layer. The fuel cell gas diffusion layer includes a porous electrically conductive material. The porous electrically conductive material is operable to allow the fuel reactant to transfer through the fuel cell gas diffusion layer to reach the fuel cell catalyst layer. The porous electrically conductive material is also operable to conduct electrons associated with the reaction through the fuel cell gas diffusion layer. An electrically conductive polymer material is coupled with the fuel cell gas diffusion layer. The electrically conductive polymer material is operable to limit transfer of the fuel reactant to the fuel cell catalyst layer.
NASA Astrophysics Data System (ADS)
Lin, Zeng; Wang, Dongdong
2017-10-01
Due to the nonlocal property of the fractional derivative, the finite element analysis of fractional diffusion equation often leads to a dense and non-symmetric stiffness matrix, in contrast to the conventional finite element formulation with a particularly desirable symmetric and banded stiffness matrix structure for the typical diffusion equation. This work first proposes a finite element formulation that preserves the symmetry and banded stiffness matrix characteristics for the fractional diffusion equation. The key point of the proposed formulation is the symmetric weak form construction through introducing a fractional weight function. It turns out that the stiffness part of the present formulation is identical to its counterpart of the finite element method for the conventional diffusion equation and thus the stiffness matrix formulation becomes trivial. Meanwhile, the fractional derivative effect in the discrete formulation is completely transferred to the force vector, which is obviously much easier and efficient to compute than the dense fractional derivative stiffness matrix. Subsequently, it is further shown that for the general fractional advection-diffusion-reaction equation, the symmetric and banded structure can also be maintained for the diffusion stiffness matrix, although the total stiffness matrix is not symmetric in this case. More importantly, it is demonstrated that under certain conditions this symmetric diffusion stiffness matrix formulation is capable of producing very favorable numerical solutions in comparison with the conventional non-symmetric diffusion stiffness matrix finite element formulation. The effectiveness of the proposed methodology is illustrated through a series of numerical examples.
Simulations of reactive transport and precipitation with smoothed particle hydrodynamics
NASA Astrophysics Data System (ADS)
Tartakovsky, Alexandre M.; Meakin, Paul; Scheibe, Timothy D.; Eichler West, Rogene M.
2007-03-01
A numerical model based on smoothed particle hydrodynamics (SPH) was developed for reactive transport and mineral precipitation in fractured and porous materials. Because of its Lagrangian particle nature, SPH has several advantages for modeling Navier-Stokes flow and reactive transport including: (1) in a Lagrangian framework there is no non-linear term in the momentum conservation equation, so that accurate solutions can be obtained for momentum dominated flows and; (2) complicated physical and chemical processes such as surface growth due to precipitation/dissolution and chemical reactions are easy to implement. In addition, SPH simulations explicitly conserve mass and linear momentum. The SPH solution of the diffusion equation with fixed and moving reactive solid-fluid boundaries was compared with analytical solutions, Lattice Boltzmann [Q. Kang, D. Zhang, P. Lichtner, I. Tsimpanogiannis, Lattice Boltzmann model for crystal growth from supersaturated solution, Geophysical Research Letters, 31 (2004) L21604] simulations and diffusion limited aggregation (DLA) [P. Meakin, Fractals, scaling and far from equilibrium. Cambridge University Press, Cambridge, UK, 1998] model simulations. To illustrate the capabilities of the model, coupled three-dimensional flow, reactive transport and precipitation in a fracture aperture with a complex geometry were simulated.
MSM/RD: Coupling Markov state models of molecular kinetics with reaction-diffusion simulations
NASA Astrophysics Data System (ADS)
Dibak, Manuel; del Razo, Mauricio J.; De Sancho, David; Schütte, Christof; Noé, Frank
2018-06-01
Molecular dynamics (MD) simulations can model the interactions between macromolecules with high spatiotemporal resolution but at a high computational cost. By combining high-throughput MD with Markov state models (MSMs), it is now possible to obtain long time-scale behavior of small to intermediate biomolecules and complexes. To model the interactions of many molecules at large length scales, particle-based reaction-diffusion (RD) simulations are more suitable but lack molecular detail. Thus, coupling MSMs and RD simulations (MSM/RD) would be highly desirable, as they could efficiently produce simulations at large time and length scales, while still conserving the characteristic features of the interactions observed at atomic detail. While such a coupling seems straightforward, fundamental questions are still open: Which definition of MSM states is suitable? Which protocol to merge and split RD particles in an association/dissociation reaction will conserve the correct bimolecular kinetics and thermodynamics? In this paper, we make the first step toward MSM/RD by laying out a general theory of coupling and proposing a first implementation for association/dissociation of a protein with a small ligand (A + B ⇌ C). Applications on a toy model and CO diffusion into the heme cavity of myoglobin are reported.
Ogawa, S.; Komini Babu, S.; Chung, H. T.; ...
2016-08-22
The nano/micro-scale geometry of polymer electrolyte fuel cell (PEFC) catalyst layers critically affects cell performance. The small length scales and complex structure of these composite layers make it challenging to analyze cell performance and physics at the particle scale by experiment. We present a computational method to simulate transport and chemical reaction phenomena at the pore/particle-scale and apply it to a PEFC cathode with platinum group metal free (PGM-free) catalyst. Here, we numerically solve the governing equations for the physics with heterogeneous oxygen diffusion coefficient and proton conductivity evaluated using the actual electrode structure and ionomer distribution obtained using nano-scalemore » resolution X-ray computed tomography (nano-CT). Using this approach, the oxygen concentration and electrolyte potential distributions imposed by the oxygen reduction reaction are solved and the impact of the catalyst layer structure on performance is evaluated.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogawa, S.; Komini Babu, S.; Chung, H. T.
The nano/micro-scale geometry of polymer electrolyte fuel cell (PEFC) catalyst layers critically affects cell performance. The small length scales and complex structure of these composite layers make it challenging to analyze cell performance and physics at the particle scale by experiment. We present a computational method to simulate transport and chemical reaction phenomena at the pore/particle-scale and apply it to a PEFC cathode with platinum group metal free (PGM-free) catalyst. Here, we numerically solve the governing equations for the physics with heterogeneous oxygen diffusion coefficient and proton conductivity evaluated using the actual electrode structure and ionomer distribution obtained using nano-scalemore » resolution X-ray computed tomography (nano-CT). Using this approach, the oxygen concentration and electrolyte potential distributions imposed by the oxygen reduction reaction are solved and the impact of the catalyst layer structure on performance is evaluated.« less
An application of a two-equation model of turbulence to three-dimensional chemically reacting flows
NASA Technical Reports Server (NTRS)
Lee, J.
1994-01-01
A numerical study of three dimensional chemically reacting and non-reacting flowfields is conducted using a two-equation model of turbulence. A generalized flow solver using an implicit Lower-Upper (LU) diagonal decomposition numerical technique and finite-rate chemistry has been coupled with a low-Reynolds number two-equation model of turbulence. This flow solver is then used to study chemically reacting turbulent supersonic flows inside combustors with synergetic fuel injectors. The reacting and non-reacting turbulent combustor solutions obtained are compared with zero-equation turbulence model solutions and with available experimental data. The hydrogen-air chemistry is modeled using a nine-species/eighteen reaction model. A low-Reynolds number k-epsilon model was used to model the effect of turbulence because, in general, the low-Reynolds number k-epsilon models are easier to implement numerically and are far more general than algebraic models. However, low-Reynolds number k-epsilon models require a much finer near-wall grid resolution than high-Reynolds number models to resolve accurately the near-wall physics. This is especially true in complex flowfields, where the stiff nature of the near-wall turbulence must be resolved. Therefore, the limitations imposed by the near-wall characteristics and compressible model corrections need to be evaluated further. The gradient-diffusion hypothesis is used to model the effects of turbulence on the mass diffusion process. The influence of this low-Reynolds number turbulence model on the reacting flowfield predictions was studied parametrically.
Lenarda, P; Paggi, M
A comprehensive computational framework based on the finite element method for the simulation of coupled hygro-thermo-mechanical problems in photovoltaic laminates is herein proposed. While the thermo-mechanical problem takes place in the three-dimensional space of the laminate, moisture diffusion occurs in a two-dimensional domain represented by the polymeric layers and by the vertical channel cracks in the solar cells. Therefore, a geometrical multi-scale solution strategy is pursued by solving the partial differential equations governing heat transfer and thermo-elasticity in the three-dimensional space, and the partial differential equation for moisture diffusion in the two dimensional domains. By exploiting a staggered scheme, the thermo-mechanical problem is solved first via a fully implicit solution scheme in space and time, with a specific treatment of the polymeric layers as zero-thickness interfaces whose constitutive response is governed by a novel thermo-visco-elastic cohesive zone model based on fractional calculus. Temperature and relative displacements along the domains where moisture diffusion takes place are then projected to the finite element model of diffusion, coupled with the thermo-mechanical problem by the temperature and crack opening dependent diffusion coefficient. The application of the proposed method to photovoltaic modules pinpoints two important physical aspects: (i) moisture diffusion in humidity freeze tests with a temperature dependent diffusivity is a much slower process than in the case of a constant diffusion coefficient; (ii) channel cracks through Silicon solar cells significantly enhance moisture diffusion and electric degradation, as confirmed by experimental tests.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fakcharoenphol, Perapon; Xiong, Yi; Hu, Litang
TOUGH2-EGS is a numerical simulation program coupling geomechanics and chemical reactions for fluid and heat flows in porous media and fractured reservoirs of enhanced geothermal systems. The simulator includes the fully-coupled geomechanical (THM) module, the fully-coupled geochemical (THC) module, and the sequentially coupled reactive geochemistry (THMC) module. The fully-coupled flow-geomechanics model is developed from the linear elastic theory for the thermo-poro-elastic system and is formulated with the mean normal stress as well as pore pressure and temperature. The chemical reaction is sequentially coupled after solution of flow equations, which provides the flow velocity and phase saturation for the solute transportmore » calculation at each time step. In addition, reservoir rock properties, such as porosity and permeability, are subjected to change due to rock deformation and chemical reactions. The relationships between rock properties and geomechanical and chemical effects from poro-elasticity theories and empirical correlations are incorporated into the simulator. This report provides the user with detailed information on both mathematical models and instructions for using TOUGH2-EGS for THM, THC or THMC simulations. The mathematical models include the fluid and heat flow equations, geomechanical equation, reactive geochemistry equations, and discretization methods. Although TOUGH2-EGS has the capability for simulating fluid and heat flows coupled with both geomechanical and chemical effects, it is up to the users to select the specific coupling process, such as THM, THC, or THMC in a simulation. There are several example problems illustrating the applications of this program. These example problems are described in details and their input data are presented. The results demonstrate that this program can be used for field-scale geothermal reservoir simulation with fluid and heat flow, geomechanical effect, and chemical reaction in porous and fractured media.« less
Michael Bevers; Curtis H. Flather
1999-01-01
We examine habitat size, shape, and arrangement effects on populations using a discrete reaction-diffusion model. Diffusion is modeled passively and applied to a cellular grid of territories forming a coupled map lattice. Dispersal mortality is proportional to the amount of nonhabitat and fully occupied habitat surrounding a given cell, with distance decay. After...
Stress, deformation and diffusion interactions in solids - A simulation study
NASA Astrophysics Data System (ADS)
Fischer, F. D.; Svoboda, J.
2015-05-01
Equations of diffusion treated in the frame of Manning's concept, are completed by equations for generation/annihilation of vacancies at non-ideal sources and sinks, by conservation laws, by equations for generation of an eigenstrain state and by a strain-stress analysis. The stress-deformation-diffusion interactions are demonstrated on the evolution of a diffusion couple consisting of two thin layers of different chemical composition forming a free-standing plate without external loading. The equations are solved for different material parameters represented by the values of diffusion coefficients of individual components and by the intensity of sources and sinks for vacancies. The results of simulations indicate that for low intensity of sources and sinks for vacancies a significant eigenstress state can develop and the interdiffusion process is slowed down. For high intensity of sources and sinks for vacancies a significant eigenstrain state can develop and the eigenstress state quickly relaxes. If the difference in the diffusion coefficients of individual components is high, then the intensity of sources and sinks for vacancies influences the interdiffusion process considerably. For such systems their description only by diffusion coefficients is insufficient and must be completed by a microstructure characterization.
Yogurtcu, Osman N.; Johnson, Margaret E.
2015-01-01
The dynamics of association between diffusing and reacting molecular species are routinely quantified using simple rate-equation kinetics that assume both well-mixed concentrations of species and a single rate constant for parameterizing the binding rate. In two-dimensions (2D), however, even when systems are well-mixed, the assumption of a single characteristic rate constant for describing association is not generally accurate, due to the properties of diffusional searching in dimensions d ≤ 2. Establishing rigorous bounds for discriminating between 2D reactive systems that will be accurately described by rate equations with a single rate constant, and those that will not, is critical for both modeling and experimentally parameterizing binding reactions restricted to surfaces such as cellular membranes. We show here that in regimes of intrinsic reaction rate (ka) and diffusion (D) parameters ka/D > 0.05, a single rate constant cannot be fit to the dynamics of concentrations of associating species independently of the initial conditions. Instead, a more sophisticated multi-parametric description than rate-equations is necessary to robustly characterize bimolecular reactions from experiment. Our quantitative bounds derive from our new analysis of 2D rate-behavior predicted from Smoluchowski theory. Using a recently developed single particle reaction-diffusion algorithm we extend here to 2D, we are able to test and validate the predictions of Smoluchowski theory and several other theories of reversible reaction dynamics in 2D for the first time. Finally, our results also mean that simulations of reactive systems in 2D using rate equations must be undertaken with caution when reactions have ka/D > 0.05, regardless of the simulation volume. We introduce here a simple formula for an adaptive concentration dependent rate constant for these chemical kinetics simulations which improves on existing formulas to better capture non-equilibrium reaction dynamics from dilute to dense systems. PMID:26328828
Optimal distributed control of a diffuse interface model of tumor growth
NASA Astrophysics Data System (ADS)
Colli, Pierluigi; Gilardi, Gianni; Rocca, Elisabetta; Sprekels, Jürgen
2017-06-01
In this paper, a distributed optimal control problem is studied for a diffuse interface model of tumor growth which was proposed by Hawkins-Daruud et al in Hawkins-Daruud et al (2011 Int. J. Numer. Math. Biomed. Eng. 28 3-24). The model consists of a Cahn-Hilliard equation for the tumor cell fraction φ coupled to a reaction-diffusion equation for a function σ representing the nutrient-rich extracellular water volume fraction. The distributed control u monitors as a right-hand side of the equation for σ and can be interpreted as a nutrient supply or a medication, while the cost function, which is of standard tracking type, is meant to keep the tumor cell fraction under control during the evolution. We show that the control-to-state operator is Fréchet differentiable between appropriate Banach spaces and derive the first-order necessary optimality conditions in terms of a variational inequality involving the adjoint state variables. The financial support of the FP7-IDEAS-ERC-StG #256872 (EntroPhase) and of the project Fondazione Cariplo-Regione Lombardia MEGAsTAR ‘Matematica d’Eccellenza in biologia ed ingegneria come accelleratore di una nuona strateGia per l’ATtRattività dell’ateneo pavese’ is gratefully acknowledged. The paper also benefited from the support of the MIUR-PRIN Grant 2015PA5MP7 ‘Calculus of Variations’ for PC and GG, and the GNAMPA (Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni) of INdAM (Istituto Nazionale di Alta Matematica) for PC, GG and ER.
Dóka, Éva; Lente, Gábor
2017-04-13
This work presents a rigorous mathematical study of the effect of unavoidable inhomogeneities in laser flash photolysis experiments. There are two different kinds of inhomegenities: the first arises from diffusion, whereas the second one has geometric origins (the shapes of the excitation and detection light beams). Both of these are taken into account in our reported model, which gives rise to a set of reaction-diffusion type partial differential equations. These equations are solved by a specially developed finite volume method. As an example, the aqueous reaction between the sulfate ion radical and iodide ion is used, for which sufficiently detailed experimental data are available from an earlier publication. The results showed that diffusion itself is in general too slow to influence the kinetic curves on the usual time scales of laser flash photolysis experiments. However, the use of the absorbances measured (e.g., to calculate the molar absorption coefficients of transient species) requires very detailed mathematical consideration and full knowledge of the geometrical shapes of the excitation laser beam and the separate detection light beam. It is also noted that the usual pseudo-first-order approach to evaluating the kinetic traces can be used successfully even if the usual large excess condition is not rigorously met in the reaction cell locally.
Evans functions and bifurcations of nonlinear waves of some nonlinear reaction diffusion equations
NASA Astrophysics Data System (ADS)
Zhang, Linghai
2017-10-01
The main purposes of this paper are to accomplish the existence, stability, instability and bifurcation of the nonlinear waves of the nonlinear system of reaction diffusion equations ut =uxx + α [ βH (u - θ) - u ] - w, wt = ε (u - γw) and to establish the existence, stability, instability and bifurcation of the nonlinear waves of the nonlinear scalar reaction diffusion equation ut =uxx + α [ βH (u - θ) - u ], under different conditions on the model constants. To establish the bifurcation for the system, we will study the existence and instability of a standing pulse solution if 0 < 2 (1 + αγ) θ < αβγ; the existence and stability of two standing wave fronts if 2 (1 + αγ) θ = αβγ and γ2 ε > 1; the existence and instability of two standing wave fronts if 2 (1 + αγ) θ = αβγ and 0 <γ2 ε < 1; the existence and instability of an upside down standing pulse solution if 0 < (1 + αγ) θ < αβγ < 2 (1 + αγ) θ. To establish the bifurcation for the scalar equation, we will study the existence and stability of a traveling wave front as well as the existence and instability of a standing pulse solution if 0 < 2 θ < β; the existence and stability of two standing wave fronts if 2 θ = β; the existence and stability of a traveling wave front as well as the existence and instability of an upside down standing pulse solution if 0 < θ < β < 2 θ. By the way, we will also study the existence and stability of a traveling wave back of the nonlinear scalar reaction diffusion equation ut =uxx + α [ βH (u - θ) - u ] -w0, where w0 = α (β - 2 θ) > 0 is a positive constant, if 0 < 2 θ < β. To achieve the main goals, we will make complete use of the special structures of the model equations and we will construct Evans functions and apply them to study the eigenvalues and eigenfunctions of several eigenvalue problems associated with several linear differential operators. It turns out that a complex number λ0 is an eigenvalue of the linear differential operator, if and only if λ0 is a zero of the Evans function. The stability, instability and bifurcations of the nonlinear waves follow from the zeros of the Evans functions. A very important motivation to study the existence, stability, instability and bifurcations of the nonlinear waves is to study the existence and stability/instability of infinitely many fast/slow multiple traveling pulse solutions of the nonlinear system of reaction diffusion equations. The existence and stability of infinitely many fast multiple traveling pulse solutions are of great interests in mathematical neuroscience.
Nanoscopic diffusion studies on III-V compound semiconductor structures: Experiment and theory
NASA Astrophysics Data System (ADS)
Gonzalez Debs, Mariam
The electronic structure of multilayer semiconductor heterostructures is affected by the detailed compositional profiles throughout the structure and at critical interfaces. The extent of interdiffusion across these interfaces places limits on both the processing time and temperatures for many applications based on the resultant compositional profile and associated electronic structure. Atomic and phenomenological methods were used in this work through the combination of experiment and theory to understand the nanoscopic mechanisms in complex heterostructures. Two principal studies were conducted. Tin diffusion in GaAs was studied by fitting complex experimental diffusion profiles to a phenomenological model which involved the diffusion of substitutional and interstitial dopant atoms. A methodology was developed combining both the atomistic model and the use of key features within these experimentally-obtained diffusion profiles to determine meaningful values of the transport and defect reaction rate parameters. Interdiffusion across AlSb/GaSb multi-quantum well interfaces was also studied. The chemical diffusion coefficient characterizing the AlSb/GaSb diffusion couple was quantitatively determined by fitting the observed photoluminescence (PL) peak shifts to the solution of the Schrodinger equation using a potential derived from the solution of the diffusion equation to quantify the interband transition energy shifts. First-principles calculations implementing Density Functional Theory were performed to study the thermochemistry of point defects as a function of local environment, allowing a direct comparison of interfacial and bulk diffusion phenomena within these nanoscopic structures. Significant differences were observed in the Ga and Al vacancy formation energies at the AlSb/GaSb interface when compared to bulk AlSb and GaSb with the largest change found for Al vacancies. The AlSb/GaSb structures were further studied using positron annihilation spectroscopy (PAS) to investigate the role of vacancies in the interdiffusion of Al and Ga in the superlattices. The PL and PAS experimental techniques together with the phenomenological and atomistic modeling allowed for the determination of the underlying mass transport mechanisms at the nanoscale.
Nonlinear dynamics of capacitive charging and desalination by porous electrodes.
Biesheuvel, P M; Bazant, M Z
2010-03-01
The rapid and efficient exchange of ions between porous electrodes and aqueous solutions is important in many applications, such as electrical energy storage by supercapacitors, water desalination and purification by capacitive deionization, and capacitive extraction of renewable energy from a salinity difference. Here, we present a unified mean-field theory for capacitive charging and desalination by ideally polarizable porous electrodes (without Faradaic reactions or specific adsorption of ions) valid in the limit of thin double layers (compared to typical pore dimensions). We illustrate the theory for the case of a dilute, symmetric, binary electrolyte using the Gouy-Chapman-Stern (GCS) model of the double layer, for which simple formulae are available for salt adsorption and capacitive charging of the diffuse part of the double layer. We solve the full GCS mean-field theory numerically for realistic parameters in capacitive deionization, and we derive reduced models for two limiting regimes with different time scales: (i) in the "supercapacitor regime" of small voltages and/or early times, the porous electrode acts like a transmission line, governed by a linear diffusion equation for the electrostatic potential, scaled to the RC time of a single pore, and (ii) in the "desalination regime" of large voltages and long times, the porous electrode slowly absorbs counterions, governed by coupled, nonlinear diffusion equations for the pore-averaged potential and salt concentration.
Nonlinear dynamics of capacitive charging and desalination by porous electrodes
NASA Astrophysics Data System (ADS)
Biesheuvel, P. M.; Bazant, M. Z.
2010-03-01
The rapid and efficient exchange of ions between porous electrodes and aqueous solutions is important in many applications, such as electrical energy storage by supercapacitors, water desalination and purification by capacitive deionization, and capacitive extraction of renewable energy from a salinity difference. Here, we present a unified mean-field theory for capacitive charging and desalination by ideally polarizable porous electrodes (without Faradaic reactions or specific adsorption of ions) valid in the limit of thin double layers (compared to typical pore dimensions). We illustrate the theory for the case of a dilute, symmetric, binary electrolyte using the Gouy-Chapman-Stern (GCS) model of the double layer, for which simple formulae are available for salt adsorption and capacitive charging of the diffuse part of the double layer. We solve the full GCS mean-field theory numerically for realistic parameters in capacitive deionization, and we derive reduced models for two limiting regimes with different time scales: (i) in the “supercapacitor regime” of small voltages and/or early times, the porous electrode acts like a transmission line, governed by a linear diffusion equation for the electrostatic potential, scaled to the RC time of a single pore, and (ii) in the “desalination regime” of large voltages and long times, the porous electrode slowly absorbs counterions, governed by coupled, nonlinear diffusion equations for the pore-averaged potential and salt concentration.
Thermodynamics of viscoelastic rate-type fluids with stress diffusion
NASA Astrophysics Data System (ADS)
Málek, Josef; Průša, Vít; Skřivan, Tomáš; Süli, Endre
2018-02-01
We propose thermodynamically consistent models for viscoelastic fluids with a stress diffusion term. In particular, we derive variants of compressible/incompressible Maxwell/Oldroyd-B models with a stress diffusion term in the evolution equation for the extra stress tensor. It is shown that the stress diffusion term can be interpreted either as a consequence of a nonlocal energy storage mechanism or as a consequence of a nonlocal entropy production mechanism, while different interpretations of the stress diffusion mechanism lead to different evolution equations for the temperature. The benefits of the knowledge of the thermodynamical background of the derived models are documented in the study of nonlinear stability of equilibrium rest states. The derived models open up the possibility to study fully coupled thermomechanical problems involving viscoelastic rate-type fluids with stress diffusion.
Convective instabilities in traveling fronts of addition polymerization
NASA Technical Reports Server (NTRS)
Pojman, John A.; Jones, Chris E.; Khan, Akhtar M.
1993-01-01
An autocatalytic reaction in an unstirred vessel can support a constant velocity wavefront resulting from the coupling of diffusion to the chemical reaction. A flare front is a common example in which heat is the autocatalytic species that diffuses into unreacted regions stimulating a reaction that produces more heat. Traveling fronts were studied in synthetic polymerization reactions under high pressure by workers in the former USSR. More recently, propagating fronts of methacrylic acid polymerization were studied under ambient conditions, both with video techniques and by NMR.
Stratified Shear Flows In Pipe Geometries
NASA Astrophysics Data System (ADS)
Harabin, George; Camassa, Roberto; McLaughlin, Richard; UNC Joint Fluids Lab Team Team
2015-11-01
Exact and series solutions to the full Navier-Stokes equations coupled to the advection diffusion equation are investigated in tilted three-dimensional pipe geometries. Analytic techniques for studying the three-dimensional problem provide a means for tackling interesting questions such as the optimal domain for mass transport, and provide new avenues for experimental investigation of diffusion driven flows. Both static and time dependent solutions will be discussed. NSF RTG DMS-0943851, NSF RTG ARC-1025523, NSF DMS-1009750.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simmonds, M. J.; Yu, J. H.; Wang, Y. Q.
Simulating the implantation and thermal desorption evolution in a reaction-diffusion model requires solving a set of coupled differential equations that describe the trapping and release of atomic species in Plasma Facing Materials (PFMs). These fundamental equations are well outlined by the Tritium Migration Analysis Program (TMAP) which can model systems with no more than three active traps per atomic species. To overcome this limitation, we have developed a Pseudo Trap and Temperature Partition (PTTP) scheme allowing us to lump multiple inactive traps into one pseudo trap, simplifying the system of equations to be solved. For all temperatures, we show themore » trapping of atoms from solute is exactly accounted for when using a pseudo trap. However, a single effective pseudo trap energy can not well replicate the release from multiple traps, each with its own detrapping energy. However, atoms held in a high energy trap will remain trapped at relatively low temperatures, and thus there is a temperature range in which release from high energy traps is effectively inactive. By partitioning the temperature range into segments, a pseudo trap can be defined for each segment to account for multiple high energy traps that are actively trapping but are effectively not releasing atoms. With increasing temperature, as in controlled thermal desorption, the lowest energy trap is nearly emptied and can be removed from the set of coupled equations, while the next higher energy trap becomes an actively releasing trap. Each segment is thus calculated sequentially, with the last time step of a given segment solution being used as an initial input for the next segment as only the pseudo and actively releasing traps are modeled. This PTTP scheme is then applied to experimental thermal desorption data for tungsten (W) samples damaged with heavy ions, which display six distinct release peaks during thermal desorption. Without modifying the TMAP7 source code the PTTP scheme is shown to successfully model the D retention in all six traps. In conclusion, we demonstrate the full reconstruction from the plasma implantation phase through the controlled thermal desorption phase with detrapping energies near 0.9, 1.1, 1.4, 1.7, 1.9 and 2.1 eV for a W sample damaged at room temperature.« less
Simmonds, M. J.; Yu, J. H.; Wang, Y. Q.; ...
2018-06-04
Simulating the implantation and thermal desorption evolution in a reaction-diffusion model requires solving a set of coupled differential equations that describe the trapping and release of atomic species in Plasma Facing Materials (PFMs). These fundamental equations are well outlined by the Tritium Migration Analysis Program (TMAP) which can model systems with no more than three active traps per atomic species. To overcome this limitation, we have developed a Pseudo Trap and Temperature Partition (PTTP) scheme allowing us to lump multiple inactive traps into one pseudo trap, simplifying the system of equations to be solved. For all temperatures, we show themore » trapping of atoms from solute is exactly accounted for when using a pseudo trap. However, a single effective pseudo trap energy can not well replicate the release from multiple traps, each with its own detrapping energy. However, atoms held in a high energy trap will remain trapped at relatively low temperatures, and thus there is a temperature range in which release from high energy traps is effectively inactive. By partitioning the temperature range into segments, a pseudo trap can be defined for each segment to account for multiple high energy traps that are actively trapping but are effectively not releasing atoms. With increasing temperature, as in controlled thermal desorption, the lowest energy trap is nearly emptied and can be removed from the set of coupled equations, while the next higher energy trap becomes an actively releasing trap. Each segment is thus calculated sequentially, with the last time step of a given segment solution being used as an initial input for the next segment as only the pseudo and actively releasing traps are modeled. This PTTP scheme is then applied to experimental thermal desorption data for tungsten (W) samples damaged with heavy ions, which display six distinct release peaks during thermal desorption. Without modifying the TMAP7 source code the PTTP scheme is shown to successfully model the D retention in all six traps. In conclusion, we demonstrate the full reconstruction from the plasma implantation phase through the controlled thermal desorption phase with detrapping energies near 0.9, 1.1, 1.4, 1.7, 1.9 and 2.1 eV for a W sample damaged at room temperature.« less
NASA Astrophysics Data System (ADS)
Kim, Kyoung Yeon; Lee, Won Cheol; Yun, Jun Yeon; Lee, Youngeun; Choi, Seoungwook; Jin, Seonghoon; Park, Young June
2018-01-01
We developed a numerical simulator to model the operation of a tunneling based biosensor which has a redox-active monolayer. The simulator takes a realistic device structure as a simulation domain, and it employs the drift-diffusion equation for ion transport, the non-equilibrium Green's function formalism for electron tunneling, and the Ramo-Shockley theorem for accurate calculation of non-faradaic current. We also accounted for the buffer reaction and the immobilized peptide layer. For efficient transient simulation, the implicit time integration scheme is employed where the solution at each time step is obtained from the coupled Newton-Raphson method. As an application, we studied the operation of a recently fabricated reference-electrode free biosensor in various bias conditions and confirmed the effect of buffer reaction and the current flowing mechanism. Using the simulator, we also found a strategy to maximize the sensitivity of the tunneling based sensor.
Automatic simplification of systems of reaction-diffusion equations by a posteriori analysis.
Maybank, Philip J; Whiteley, Jonathan P
2014-02-01
Many mathematical models in biology and physiology are represented by systems of nonlinear differential equations. In recent years these models have become increasingly complex in order to explain the enormous volume of data now available. A key role of modellers is to determine which components of the model have the greatest effect on a given observed behaviour. An approach for automatically fulfilling this role, based on a posteriori analysis, has recently been developed for nonlinear initial value ordinary differential equations [J.P. Whiteley, Model reduction using a posteriori analysis, Math. Biosci. 225 (2010) 44-52]. In this paper we extend this model reduction technique for application to both steady-state and time-dependent nonlinear reaction-diffusion systems. Exemplar problems drawn from biology are used to demonstrate the applicability of the technique. Copyright © 2014 Elsevier Inc. All rights reserved.
Dynamics of localized structures in reaction-diffusion systems induced by delayed feedback
NASA Astrophysics Data System (ADS)
Gurevich, Svetlana V.
2013-05-01
We are interested in stability properties of a single localized structure in a three-component reaction-diffusion system subjected to the time-delayed feedback. We shall show that variation in the product of the delay time and the feedback strength leads to complex dynamical behavior of the system, including formation of target patterns, spontaneous motion, and spontaneous breathing as well as various complex structures, arising from combination of different oscillatory instabilities. In the case of spontaneous motion, we provide a bifurcation analysis of the delayed system and derive an order parameter equation for the position of the localized structure, explicitly describing its temporal evolution in the vicinity of the bifurcation point. This equation is a subject to a nonlinear delay differential equation, which can be transformed to the normal form of the pitchfork drift bifurcation.
NASA Astrophysics Data System (ADS)
Ouazib, Nabila; Salhi, Yacine; Si-Ahmed, El-Khider; Legrand, Jack; Degrez, G.
2017-07-01
Numerical methods for solving convection-diffusion-reaction (CDR) scalar transport equation in three-dimensional flow are used in the present investigation. The flow is confined between two concentric cylinders both the inner cylinder and the outer one are allowed to rotate. Direct numerical simulations (DNS) have been achieved to study the effects of the gravitational and the centrifugal potentials on the stability of incompressible Taylor-Couette flow. The Navier-Stokes equations and the uncoupled convection-diffusion-reaction equation are solved using a spectral development in one direction combined together with a finite element discretization in the two remaining directions. The complexity of the patterns is highlighted. Since, it increases as the rotation rates of the cylinders increase. In addition, the effect of the counter-rotation of the cylinders on the mass transfer is pointed out.
Semi-analytical solutions of the Schnakenberg model of a reaction-diffusion cell with feedback
NASA Astrophysics Data System (ADS)
Al Noufaey, K. S.
2018-06-01
This paper considers the application of a semi-analytical method to the Schnakenberg model of a reaction-diffusion cell. The semi-analytical method is based on the Galerkin method which approximates the original governing partial differential equations as a system of ordinary differential equations. Steady-state curves, bifurcation diagrams and the region of parameter space in which Hopf bifurcations occur are presented for semi-analytical solutions and the numerical solution. The effect of feedback control, via altering various concentrations in the boundary reservoirs in response to concentrations in the cell centre, is examined. It is shown that increasing the magnitude of feedback leads to destabilization of the system, whereas decreasing this parameter to negative values of large magnitude stabilizes the system. The semi-analytical solutions agree well with numerical solutions of the governing equations.
Equation-of-motion coupled-cluster method for doubly ionized states with spin-orbit coupling.
Wang, Zhifan; Hu, Shu; Wang, Fan; Guo, Jingwei
2015-04-14
In this work, we report implementation of the equation-of-motion coupled-cluster method for doubly ionized states (EOM-DIP-CC) with spin-orbit coupling (SOC) using a closed-shell reference. Double ionization potentials (DIPs) are calculated in the space spanned by 2h and 3h1p determinants with the EOM-DIP-CC approach at the CC singles and doubles level (CCSD). Time-reversal symmetry together with spatial symmetry is exploited to reduce computational effort. To circumvent the problem of unstable dianion references when diffuse basis functions are included, nuclear charges are scaled. Effect of this stabilization potential on DIPs is estimated based on results from calculations using a small basis set without diffuse basis functions. DIPs and excitation energies of some low-lying states for a series of open-shell atoms and molecules containing heavy elements with two unpaired electrons have been calculated with the EOM-DIP-CCSD approach. Results show that this approach is able to afford a reliable description on SOC splitting. Furthermore, the EOM-DIP-CCSD approach is shown to provide reasonable excitation energies for systems with a dianion reference when diffuse basis functions are not employed.
Equation-of-motion coupled-cluster method for doubly ionized states with spin-orbit coupling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zhifan; Hu, Shu; Guo, Jingwei
2015-04-14
In this work, we report implementation of the equation-of-motion coupled-cluster method for doubly ionized states (EOM-DIP-CC) with spin-orbit coupling (SOC) using a closed-shell reference. Double ionization potentials (DIPs) are calculated in the space spanned by 2h and 3h1p determinants with the EOM-DIP-CC approach at the CC singles and doubles level (CCSD). Time-reversal symmetry together with spatial symmetry is exploited to reduce computational effort. To circumvent the problem of unstable dianion references when diffuse basis functions are included, nuclear charges are scaled. Effect of this stabilization potential on DIPs is estimated based on results from calculations using a small basis setmore » without diffuse basis functions. DIPs and excitation energies of some low-lying states for a series of open-shell atoms and molecules containing heavy elements with two unpaired electrons have been calculated with the EOM-DIP-CCSD approach. Results show that this approach is able to afford a reliable description on SOC splitting. Furthermore, the EOM-DIP-CCSD approach is shown to provide reasonable excitation energies for systems with a dianion reference when diffuse basis functions are not employed.« less
Lu, Binglong; Jiang, Haijun; Hu, Cheng; Abdurahman, Abdujelil
2018-05-04
The exponential synchronization of hybrid coupled reaction-diffusion neural networks with time delays is discussed in this article. At first, a generalized intermittent control with spacial sampled-data is introduced, which is intermittent in time and data sampling in space. This type of control strategy not only can unify the traditional periodic intermittent control and the aperiodic case, but also can lower the update rate of the controller in both temporal and spatial domains. Next, based on the designed control protocol and the Lyapunov-Krasovskii functional approach, some novel and readily verified criteria are established to guarantee the exponential synchronization of the considered networks. These criteria depend on the diffusion coefficients, coupled strengths, time delays as well as control parameters. Finally, the effectiveness of the proposed control strategy is shown by a numerical example. Copyright © 2018 Elsevier Ltd. All rights reserved.
Convective Sedimentation of Colloidal Particles in a Bowl.
Stiles; Kagan
1999-08-01
A physical model, which regards a colloidal dispersion as a single fluid continuum, is used to investigate cellular convection accompanying gravitational sedimentation in a hemispherical bowl with a thin cylindrical shaft along its vertical axis of symmetry. We have adapted the stream-function-vorticity form of the Navier-Stokes equations to describe momentum conservation in axially symmetric containers. These hydrodynamic equations have been coupled to the mass balance equation for binary hydrodynamic diffusion in the presence of a vertical gravitational field. Using finite-element software we have solved the equations governing coupled diffusive and hydrodynamic flow. A rapidly intensifying horizontal toroidal vortex develops around the axis of the bowl. This vortex is characterized by downward barycentric flow along the curved surface of the bowl and upward flow in the vicinity of its axis. We find that after a short period of time this large-scale cellular convection associated with the curved boundary of the bowl greatly enhances the rate of sedimentation. Copyright 1999 Academic Press.
A Corresponding Lie Algebra of a Reductive homogeneous Group and Its Applications
NASA Astrophysics Data System (ADS)
Zhang, Yu-Feng; Wu, Li-Xin; Rui, Wen-Juan
2015-05-01
With the help of a Lie algebra of a reductive homogeneous space G/K, where G is a Lie group and K is a resulting isotropy group, we introduce a Lax pair for which an expanding (2+1)-dimensional integrable hierarchy is obtained by applying the binormial-residue representation (BRR) method, whose Hamiltonian structure is derived from the trace identity for deducing (2+1)-dimensional integrable hierarchies, which was proposed by Tu, et al. We further consider some reductions of the expanding integrable hierarchy obtained in the paper. The first reduction is just right the (2+1)-dimensional AKNS hierarchy, the second-type reduction reveals an integrable coupling of the (2+1)-dimensional AKNS equation (also called the Davey-Stewartson hierarchy), a kind of (2+1)-dimensional Schrödinger equation, which was once reobtained by Tu, Feng and Zhang. It is interesting that a new (2+1)-dimensional integrable nonlinear coupled equation is generated from the reduction of the part of the (2+1)-dimensional integrable coupling, which is further reduced to the standard (2+1)-dimensional diffusion equation along with a parameter. In addition, the well-known (1+1)-dimensional AKNS hierarchy, the (1+1)-dimensional nonlinear Schrödinger equation are all special cases of the (2+1)-dimensional expanding integrable hierarchy. Finally, we discuss a few discrete difference equations of the diffusion equation whose stabilities are analyzed by making use of the von Neumann condition and the Fourier method. Some numerical solutions of a special stationary initial value problem of the (2+1)-dimensional diffusion equation are obtained and the resulting convergence and estimation formula are investigated. Supported by the Innovation Team of Jiangsu Province hosted by China University of Mining and Technology (2014), the National Natural Science Foundation of China under Grant No. 11371361, the Fundamental Research Funds for the Central Universities (2013XK03), and the Natural Science Foundation of Shandong Province under Grant No. ZR2013AL016
Algorithm refinement for stochastic partial differential equations: II. Correlated systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexander, Francis J.; Garcia, Alejandro L.; Tartakovsky, Daniel M.
2005-08-10
We analyze a hybrid particle/continuum algorithm for a hydrodynamic system with long ranged correlations. Specifically, we consider the so-called train model for viscous transport in gases, which is based on a generalization of the random walk process for the diffusion of momentum. This discrete model is coupled with its continuous counterpart, given by a pair of stochastic partial differential equations. At the interface between the particle and continuum computations the coupling is by flux matching, giving exact mass and momentum conservation. This methodology is an extension of our stochastic Algorithm Refinement (AR) hybrid for simple diffusion [F. Alexander, A. Garcia,more » D. Tartakovsky, Algorithm refinement for stochastic partial differential equations: I. Linear diffusion, J. Comput. Phys. 182 (2002) 47-66]. Results from a variety of numerical experiments are presented for steady-state scenarios. In all cases the mean and variance of density and velocity are captured correctly by the stochastic hybrid algorithm. For a non-stochastic version (i.e., using only deterministic continuum fluxes) the long-range correlations of velocity fluctuations are qualitatively preserved but at reduced magnitude.« less
Noniterative, unconditionally stable numerical techniques for solving condensational and
dissolutional growth equations are given. Growth solutions are compared to Gear-code solutions for
three cases when growth is coupled to reversible equilibrium chemistry. In all cases, ...
Zhang, Fan; Yeh, Gour-Tsyh; Parker, Jack C; Brooks, Scott C; Pace, Molly N; Kim, Young-Jin; Jardine, Philip M; Watson, David B
2007-06-16
This paper presents a reaction-based water quality transport model in subsurface flow systems. Transport of chemical species with a variety of chemical and physical processes is mathematically described by M partial differential equations (PDEs). Decomposition via Gauss-Jordan column reduction of the reaction network transforms M species reactive transport equations into two sets of equations: a set of thermodynamic equilibrium equations representing N(E) equilibrium reactions and a set of reactive transport equations of M-N(E) kinetic-variables involving no equilibrium reactions (a kinetic-variable is a linear combination of species). The elimination of equilibrium reactions from reactive transport equations allows robust and efficient numerical integration. The model solves the PDEs of kinetic-variables rather than individual chemical species, which reduces the number of reactive transport equations and simplifies the reaction terms in the equations. A variety of numerical methods are investigated for solving the coupled transport and reaction equations. Simulation comparisons with exact solutions were performed to verify numerical accuracy and assess the effectiveness of various numerical strategies to deal with different application circumstances. Two validation examples involving simulations of uranium transport in soil columns are presented to evaluate the ability of the model to simulate reactive transport with complex reaction networks involving both kinetic and equilibrium reactions.
Pattern formations and optimal packing.
Mityushev, Vladimir
2016-04-01
Patterns of different symmetries may arise after solution to reaction-diffusion equations. Hexagonal arrays, layers and their perturbations are observed in different models after numerical solution to the corresponding initial-boundary value problems. We demonstrate an intimate connection between pattern formations and optimal random packing on the plane. The main study is based on the following two points. First, the diffusive flux in reaction-diffusion systems is approximated by piecewise linear functions in the framework of structural approximations. This leads to a discrete network approximation of the considered continuous problem. Second, the discrete energy minimization yields optimal random packing of the domains (disks) in the representative cell. Therefore, the general problem of pattern formations based on the reaction-diffusion equations is reduced to the geometric problem of random packing. It is demonstrated that all random packings can be divided onto classes associated with classes of isomorphic graphs obtained from the Delaunay triangulation. The unique optimal solution is constructed in each class of the random packings. If the number of disks per representative cell is finite, the number of classes of isomorphic graphs, hence, the number of optimal packings is also finite. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jing; Ackerman, David M.; Lin, Victor S.-Y.
2013-04-02
Statistical mechanical modeling is performed of a catalytic conversion reaction within a functionalized nanoporous material to assess the effect of varying the reaction product-pore interior interaction from attractive to repulsive. A strong enhancement in reactivity is observed not just due to the shift in reaction equilibrium towards completion but also due to enhanced transport within the pore resulting from reduced loading. The latter effect is strongest for highly restricted transport (single-file diffusion), and applies even for irreversible reactions. The analysis is performed utilizing a generalized hydrodynamic formulation of the reaction-diffusion equations which can reliably capture the complex interplay between reactionmore » and restricted transport.« less
2010-08-01
a mathematical equation relates the cathode reaction reversible electric potential to the lithium content of the cathode electrode. Based on the...Transport of Lithium in the Cell Cathode Active Material The Nernst -Einstein relation linking the lithium-ion mass diffusivity and its ionic...transient, isothermal and isobaric conditions. The differential model equation describing the lithium diffusion and accumulation in a spherical, active
NASA Astrophysics Data System (ADS)
Dinesh Kumar, S.; Nageshwar Rao, R.; Pramod Chakravarthy, P.
2017-11-01
In this paper, we consider a boundary value problem for a singularly perturbed delay differential equation of reaction-diffusion type. We construct an exponentially fitted numerical method using Numerov finite difference scheme, which resolves not only the boundary layers but also the interior layers arising from the delay term. An extensive amount of computational work has been carried out to demonstrate the applicability of the proposed method.
Finite element procedures for time-dependent convection-diffusion-reaction systems
NASA Technical Reports Server (NTRS)
Tezduyar, T. E.; Park, Y. J.; Deans, H. A.
1988-01-01
New finite element procedures based on the streamline-upwind/Petrov-Galerkin formulations are developed for time-dependent convection-diffusion-reaction equations. These procedures minimize spurious oscillations for convection-dominated and reaction-dominated problems. The results obtained for representative numerical examples are accurate with minimal oscillations. As a special application problem, the single-well chemical tracer test (a procedure for measuring oil remaining in a depleted field) is simulated numerically. The results show the importance of temperature effects on the interpreted value of residual oil saturation from such tests.
Multiscale Modeling of Diffusion in a Crowded Environment.
Meinecke, Lina
2017-11-01
We present a multiscale approach to model diffusion in a crowded environment and its effect on the reaction rates. Diffusion in biological systems is often modeled by a discrete space jump process in order to capture the inherent noise of biological systems, which becomes important in the low copy number regime. To model diffusion in the crowded cell environment efficiently, we compute the jump rates in this mesoscopic model from local first exit times, which account for the microscopic positions of the crowding molecules, while the diffusing molecules jump on a coarser Cartesian grid. We then extract a macroscopic description from the resulting jump rates, where the excluded volume effect is modeled by a diffusion equation with space-dependent diffusion coefficient. The crowding molecules can be of arbitrary shape and size, and numerical experiments demonstrate that those factors together with the size of the diffusing molecule play a crucial role on the magnitude of the decrease in diffusive motion. When correcting the reaction rates for the altered diffusion we can show that molecular crowding either enhances or inhibits chemical reactions depending on local fluctuations of the obstacle density.
NASA Technical Reports Server (NTRS)
Mantel, T.
1993-01-01
Although the different regimes of premixed combustion are not well defined, most of the recent developments in turbulent combustion modeling are led in the so-called flamelet regime. The goal of these models is to give a realistic expression to the mean reaction rate (w). Several methods can be used to estimate (w). Bray and coworkers (Libby & Bray 1980, Bray 1985, Bray & Libby 1986) express the instantaneous reaction rate by means of a flamelet library and a frequency which describes the local interaction between the laminar flamelets and the turbulent flowfield. In another way, the mean reaction rate can be directly connected to the flame surface density (Sigma). This quantity can be given by the transport equation of the coherent flame model initially proposed by Marble & Broadwell 1977 and developed elsewhere. The mean reaction rate, (w), can also be estimated thanks to the evolution of an arbitrary scalar field G(x, t) = G(sub O) which represents the flame sheet. G(x, t) is obtained from the G-equation proposed by Williams 1985, Kerstein et al. 1988 and Peters 1993. Another possibility proposed in a recent study by Mantel & Borghi 1991, where a transport equation for the mean dissipation rate (epsilon(sub c)) of the progress variable c is used to determine (w). In their model, Mantel & Borghi 1991 considered a medium with constant density and constant diffusivity in the determination of the transport equation for (epsilon(sub c)). A comparison of different flamelet models made by Duclos et al. 1993 shows the realistic behavior of this model even in the case of constant density. Our objective in this present report is to present preliminary results on the study of this equation in the case of variable density and variable diffusivity. Assumptions of constant pressure and a Lewis number equal to unity allow us to significantly simplify the equation. A systematic order of magnitude analysis based on adequate scale relations is performed on each term of the equation. As in the case of constant density and constant diffusivity, the effects of stretching of the scalar field by the turbulent strain field, of local curvature, and of chemical reactions are predominant. In this preliminary work, we suggest closure models for certain terms, which will be validated after comparisons with DNS data.
Semistable extremal ground states for nonlinear evolution equations in unbounded domains
NASA Astrophysics Data System (ADS)
Rodríguez-Bernal, Aníbal; Vidal-López, Alejandro
2008-02-01
In this paper we show that dissipative reaction-diffusion equations in unbounded domains posses extremal semistable ground states equilibria, which bound asymptotically the global dynamics. Uniqueness of such positive ground state and their approximation by extremal equilibria in bounded domains is also studied. The results are then applied to the important case of logistic equations.
Recovery Discontinuous Galerkin Jacobian-Free Newton-Krylov Method for All-Speed Flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
HyeongKae Park; Robert Nourgaliev; Vincent Mousseau
2008-07-01
A novel numerical algorithm (rDG-JFNK) for all-speed fluid flows with heat conduction and viscosity is introduced. The rDG-JFNK combines the Discontinuous Galerkin spatial discretization with the implicit Runge-Kutta time integration under the Jacobian-free Newton-Krylov framework. We solve fully-compressible Navier-Stokes equations without operator-splitting of hyperbolic, diffusion and reaction terms, which enables fully-coupled high-order temporal discretization. The stability constraint is removed due to the L-stable Explicit, Singly Diagonal Implicit Runge-Kutta (ESDIRK) scheme. The governing equations are solved in the conservative form, which allows one to accurately compute shock dynamics, as well as low-speed flows. For spatial discretization, we develop a “recovery” familymore » of DG, exhibiting nearly-spectral accuracy. To precondition the Krylov-based linear solver (GMRES), we developed an “Operator-Split”-(OS) Physics Based Preconditioner (PBP), in which we transform/simplify the fully-coupled system to a sequence of segregated scalar problems, each can be solved efficiently with Multigrid method. Each scalar problem is designed to target/cluster eigenvalues of the Jacobian matrix associated with a specific physics.« less
Understanding micro-diffusion bonding from the fabrication of B4C/Ni composites
NASA Astrophysics Data System (ADS)
Wang, Miao; Wang, Wen-xian; Chen, Hong-sheng; Li, Yu-li
2018-03-01
A Ni-B4C macroscopic diffusion welding couple and a Ni-15wt%B4C composite fabricated by spark plasma sintering (SPS) were used to understand the micro-scale diffusion bonding between metals and ceramics. In the Ni-B4C macroscopic diffusion welding couple a perfect diffusion welding joint was achieved. In the Ni-15wt%B4C sample, microstructure analyses demonstrated that loose structures occurred around the B4C particles. Energy dispersive X-ray spectroscopy analyses revealed that during the SPS process, the process of diffusion bonding between Ni and B4C particles can be divided into three stages. By employing a nano-indentation test, the room-temperature fracture toughness of the Ni matrix was found to be higher than that of the interface. The micro-diffusion bonding between Ni and B4C particles is quite different from the Ni-B4C reaction couple.
Global Existence Analysis of Cross-Diffusion Population Systems for Multiple Species
NASA Astrophysics Data System (ADS)
Chen, Xiuqing; Daus, Esther S.; Jüngel, Ansgar
2018-02-01
The existence of global-in-time weak solutions to reaction-cross-diffusion systems for an arbitrary number of competing population species is proved. The equations can be derived from an on-lattice random-walk model with general transition rates. In the case of linear transition rates, it extends the two-species population model of Shigesada, Kawasaki, and Teramoto. The equations are considered in a bounded domain with homogeneous Neumann boundary conditions. The existence proof is based on a refined entropy method and a new approximation scheme. Global existence follows under a detailed balance or weak cross-diffusion condition. The detailed balance condition is related to the symmetry of the mobility matrix, which mirrors Onsager's principle in thermodynamics. Under detailed balance (and without reaction) the entropy is nonincreasing in time, but counter-examples show that the entropy may increase initially if detailed balance does not hold.
Asynchronous discrete event schemes for PDEs
NASA Astrophysics Data System (ADS)
Stone, D.; Geiger, S.; Lord, G. J.
2017-08-01
A new class of asynchronous discrete-event simulation schemes for advection-diffusion-reaction equations is introduced, based on the principle of allowing quanta of mass to pass through faces of a (regular, structured) Cartesian finite volume grid. The timescales of these events are linked to the flux on the face. The resulting schemes are self-adaptive, and local in both time and space. Experiments are performed on realistic physical systems related to porous media flow applications, including a large 3D advection diffusion equation and advection diffusion reaction systems. The results are compared to highly accurate reference solutions where the temporal evolution is computed with exponential integrator schemes using the same finite volume discretisation. This allows a reliable estimation of the solution error. Our results indicate a first order convergence of the error as a control parameter is decreased, and we outline a framework for analysis.
Numerical Analysis of Microwave Heating on Saponification Reaction
NASA Astrophysics Data System (ADS)
Huang, Kama; Jia, Kun
2005-01-01
Currently, microwave is widely used in chemical industry to accelerate chemical reactions. Saponification reaction has important applications in industry; some research results have shown that microwave heating can significantly accelerate the reaction [1]. But so far, no efficient method has been reported for the analysis of the heating process and design of an efficient reactor powered by microwave. In this paper, we present a method to study the microwave heating process on saponification reaction, where the reactant in a test tube is considered as a mixture of dilute solution. According to the preliminary measurement results, the effective permittivity of the mixture is approximately the permittivity of water, but the conductivity, which could change with the reaction, is derived from the reaction equation (RE). The electromagnetic field equation and reaction equation are coupled by the conductivity. Following that, the whole heating processes, which is described by Maxwell's equations, the reaction equation and heat transport equation (HTE), is analyzed by finite difference time domain (FDTD) method. The temperature rising in the test tube are measured and compared with the computational results. Good agreement can be seen between the measured and calculated results.
Chatterjee, Abhijit; Vlachos, Dionisios G
2007-07-21
While recently derived continuum mesoscopic equations successfully bridge the gap between microscopic and macroscopic physics, so far they have been derived only for simple lattice models. In this paper, general deterministic continuum mesoscopic equations are derived rigorously via nonequilibrium statistical mechanics to account for multiple interacting surface species and multiple processes on multiple site types and/or different crystallographic planes. Adsorption, desorption, reaction, and surface diffusion are modeled. It is demonstrated that contrary to conventional phenomenological continuum models, microscopic physics, such as the interaction potential, determines the final form of the mesoscopic equation. Models of single component diffusion and binary diffusion of interacting particles on single-type site lattice and of single component diffusion on complex microporous materials' lattices consisting of two types of sites are derived, as illustrations of the mesoscopic framework. Simplification of the diffusion mesoscopic model illustrates the relation to phenomenological models, such as the Fickian and Maxwell-Stefan transport models. It is demonstrated that the mesoscopic equations are in good agreement with lattice kinetic Monte Carlo simulations for several prototype examples studied.
Study of Solid-State Diffusion of Bi in Polycrystalline Sn Using Electron Probe Microanalysis
NASA Astrophysics Data System (ADS)
Delhaise, André M.; Perovic, Doug D.
2018-03-01
Current lead-free solders such as SAC305 exhibit degradation in microstructure, properties, and reliability. Current third-generation alloys containing bismuth (Bi) demonstrate preservation of strength after aging; this is accompanied by homogenization of the Bi precipitates in the tin (Sn) matrix, driven via solid-state diffusion. This study quantifies the diffusion of Bi in Sn. Diffusion couples were prepared by mating together polished samples of pure Sn and Bi. Couples were annealed at one of three temperatures, viz. 85°C for 7 days, 100°C for 2 days, or 125°C for 1 day. After cross-sectioning the couples to examine the diffusion microstructure and grain size, elemental analysis was performed using electron probe microanalysis. For this study, it was assumed that the diffusivity of Bi in Sn is concentration dependent, therefore inverse methods were used to solve Fick's non-steady-state diffusion equation. In addition, Darken analysis was used to extract the impurity diffusivity of Bi in Sn at each temperature, allowing estimation of the Arrhenius parameters D 0 and k A.
NASA Astrophysics Data System (ADS)
Revil, A.
2017-05-01
I developed a model of cross-coupled flow in partially saturated porous media based on electrokinetic coupling including the effect of ion filtration (normal and reverse osmosis) and the multi-component nature of the pore water (wetting) phase. The model also handles diffusion and membrane polarization but is valid only for saturations above the irreducible water saturation. I start with the local Nernst-Planck and Stokes equations and I use a volume-averaging procedure to obtain the generalized Ohm, Fick, and Darcy equations with cross-coupling terms at the scale of a representative elementary volume of the porous rock. These coupling terms obey Onsager's reciprocity, which is a required condition, at the macroscale, to keep the total dissipation function of the system positive. Rather than writing the electrokinetic terms in terms of zeta potential (the double layer electrical potential on the slipping plane located in the pore water), I developed the model in terms of an effective charge density dragged by the flow of the pore water. This effective charge density is found to be strongly controlled by the permeability and the water saturation. I also developed an electrical conductivity equation including the effect of saturation on both bulk and surface conductivities, the surface conductivity being associated with electromigration in the electrical diffuse layer coating the grains. This surface conductivity depends on the CEC of the porous material.
Xu, X.; Sumption, M. D.
2016-01-12
In this work we explore the compositions of non-stoichiometric intermediate phases formed by diffusion reactions: a mathematical framework is developed and tested against the specific case of Nb 3Sn superconductors. In the first part, the governing equations for the bulk diffusion and interphase interface reactions during the growth of a compound are derived, numerical solutions to which give both the composition profile and growth rate of the compound layer. The analytic solutions are obtained with certain approximations made. In the second part, we explain an effect that the composition characteristics of compounds can be quite different depending on whether itmore » is the bulk diffusion or grain boundary diffusion that dominates in the compounds, and that “frozen” bulk diffusion leads to unique composition characteristics that the bulk composition of a compound layer remains unchanged after its initial formation instead of varying with the diffusion reaction system; here the model is modified for the case of grain boundary diffusion. Lastly, we apply this model to the Nb 3Sn superconductors and propose approaches to control their compositions.« less
Phase transition of traveling waves in bacterial colony pattern
NASA Astrophysics Data System (ADS)
Wakano, Joe Yuichiro; Komoto, Atsushi; Yamaguchi, Yukio
2004-05-01
Depending on the growth condition, bacterial colonies can exhibit different morphologies. Many previous studies have used reaction diffusion equations to reproduce spatial patterns. They have revealed that nonlinear reaction term can produce diverse patterns as well as nonlinear diffusion coefficient. Typical reaction term consists of nutrient consumption, bacterial reproduction, and sporulation. Among them, the functional form of sporulation rate has not been biologically investigated. Here we report experimentally measured sporulation rate. Then, based on the result, a reaction diffusion model is proposed. One-dimensional simulation showed the existence of traveling wave solution. We study the wave form as a function of the initial nutrient concentration and find two distinct types of solution. Moreover, transition between them is very sharp, which is analogous to phase transition. The velocity of traveling wave also shows sharp transition in nonlinear diffusion model, which is consistent with the previous experimental result. The phenomenon can be explained by separatrix in reaction term dynamics. Results of two-dimensional simulation are also shown and discussed.
Numerical Simulation of Hydrogen Air Supersonic Coaxial Jet
NASA Astrophysics Data System (ADS)
Dharavath, Malsur; Manna, Pulinbehari; Chakraborty, Debasis
2017-10-01
In the present study, the turbulent structure of coaxial supersonic H2-air jet is explored numerically by solving three dimensional RANS equations along with two equation k-ɛ turbulence model. Grid independence of the solution is demonstrated by estimating the error distribution using Grid Convergence Index. Distributions of flow parameters in different planes are analyzed to explain the mixing and combustion characteristics of high speed coaxial jets. The flow field is seen mostly diffusive in nature and hydrogen diffusion is confined to core region of the jet. Both single step laminar finite rate chemistry and turbulent reacting calculation employing EDM combustion model are performed to find the effect of turbulence-chemistry interaction in the flow field. Laminar reaction predicts higher H2 mol fraction compared to turbulent reaction because of lower reaction rate caused by turbulence chemistry interaction. Profiles of major species and temperature match well with experimental data at different axial locations; although, the computed profiles show a narrower shape in the far field region. These results demonstrate that standard two equation class turbulence model with single step kinetics based turbulence chemistry interaction can describe H2-air reaction adequately in high speed flows.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patil, Abhijit A.; Pandey, Yogendra Narayan; Doxastakis, Manolis
2014-10-01
The acid-catalyzed deprotection of glassy poly(4-hydroxystyrene-co-tertbutyl acrylate) films was studied with infrared absorbance spectroscopy and stochastic simulations. Experimental data were interpreted with a simple description of subdiffusive acid transport coupled to second-order acid loss. This model predicts key attributes of observed deprotection rates, such as fast reaction at short times, slow reaction at long times, and a nonlinear dependence on acid loading. Fickian diffusion is approached by increasing the post-exposure bake temperature or adding plasticizing agents to the polymer resin. These findings demonstrate that acid mobility and overall deprotection kinetics are coupled to glassy matrix dynamics. To complement the analysismore » of bulk kinetics, acid diffusion lengths were calculated from the anomalous transport model and compared with nanopattern line widths. The consistent scaling between experiments and simulations suggests that the anomalous diffusion model could be further developed into a predictive lithography tool.« less
Numerical study of chemically reacting viscous flow relevant to pulsed detonation engines
NASA Astrophysics Data System (ADS)
Yi, Tae-Hyeong
2005-11-01
A computational fluid dynamics code for two-dimensional, multi-species, laminar Navier-Stokes equations is developed to simulate a recently proposed engine concept for a pulsed detonation based propulsion system and to investigate the feasibility of the engine of the concept. The governing equations that include transport phenomena such as viscosity, thermal conduction and diffusion are coupled with chemical reactions. The gas is assumed to be thermally perfect and in chemically non-equilibrium. The stiffness due to coupling the fluid dynamics and the chemical kinetics is properly taken care of by using a time-operator splitting method and a variable coefficient ordinary differential equation solver. A second-order Roe scheme with a minmod limiter is explicitly used for space descretization, while a second-order, two-step Runge-Kutta method is used for time descretization. In space integration, a finite volume method and a cell-centered scheme are employed. The first-order derivatives in the equations of transport properties are discretized by a central differencing with Green's theorem. Detailed chemistry is involved in this study. Two chemical reaction mechanisms are extracted from GRI-Mech, which are forty elementary reactions with thirteen species for a hydrogen-air mixture and twenty-seven reactions with eight species for a hydrogen-oxygen mixture. The code is ported to a high-performance parallel machine with Message-Passing Interface. Code validation is performed with chemical kinetic modeling for a stoichiometric hydrogen-air mixture, an one-dimensional detonation tube, a two-dimensional, inviscid flow over a wedge and a viscous flow over a flat plate. Detonation is initiated using a numerically simulated arc-ignition or shock-induced ignition system. Various freestream conditions are utilized to study the propagation of the detonation in the proposed concept of the engine. Investigation of the detonation propagation is performed for a pulsed detonation rocket and a supersonic combustion chamber. For a pulsed detonation rocket case, the detonation tube is embedded in a mixing chamber where an initiator is added to the main detonation chamber. Propagating detonation waves in a supersonic combustion chamber is investigated for one- and two-dimensional cases. The detonation initiated by an arc and a shock wave is studied in the inviscid and viscous flow, respectively. Various features including a detonation-shock interaction, a detonation diffraction, a base flow and a vortex are observed.
A generalized reaction diffusion model for spatial structure formed by motile cells.
Ochoa, F L
1984-01-01
A non-linear stability analysis using a multi-scale perturbation procedure is carried out on a model of a generalized reaction diffusion mechanism which involves only a single equation but which nevertheless exhibits bifurcation to non-uniform states. The patterns generated by this model by variation in a parameter related to the scalar dimensions of domain of definition, indicate its capacity to represent certain key morphogenetic features of multicellular systems formed by motile cells.
Particle Transport through Scattering Regions with Clear Layers and Inclusions
NASA Astrophysics Data System (ADS)
Bal, Guillaume
2002-08-01
This paper introduces generalized diffusion models for the transport of particles in scattering media with nonscattering inclusions. Classical diffusion is known as a good approximation of transport only in scattering media. Based on asymptotic expansions and the coupling of transport and diffusion models, generalized diffusion equations with nonlocal interface conditions are proposed which offer a computationally cheap, yet accurate, alternative to solving the full phase-space transport equations. The paper shows which computational model should be used depending on the size and shape of the nonscattering inclusions in the simplified setting of two space dimensions. An important application is the treatment of clear layers in near-infrared (NIR) spectroscopy, an imaging technique based on the propagation of NIR photons in human tissues.
NASA Astrophysics Data System (ADS)
Lukyanenko, D. V.; Shishlenin, M. A.; Volkov, V. T.
2018-01-01
We propose the numerical method for solving coefficient inverse problem for a nonlinear singularly perturbed reaction-diffusion-advection equation with the final time observation data based on the asymptotic analysis and the gradient method. Asymptotic analysis allows us to extract a priory information about interior layer (moving front), which appears in the direct problem, and boundary layers, which appear in the conjugate problem. We describe and implement the method of constructing a dynamically adapted mesh based on this a priory information. The dynamically adapted mesh significantly reduces the complexity of the numerical calculations and improve the numerical stability in comparison with the usual approaches. Numerical example shows the effectiveness of the proposed method.
Regularity of random attractors for fractional stochastic reaction-diffusion equations on Rn
NASA Astrophysics Data System (ADS)
Gu, Anhui; Li, Dingshi; Wang, Bixiang; Yang, Han
2018-06-01
We investigate the regularity of random attractors for the non-autonomous non-local fractional stochastic reaction-diffusion equations in Hs (Rn) with s ∈ (0 , 1). We prove the existence and uniqueness of the tempered random attractor that is compact in Hs (Rn) and attracts all tempered random subsets of L2 (Rn) with respect to the norm of Hs (Rn). The main difficulty is to show the pullback asymptotic compactness of solutions in Hs (Rn) due to the noncompactness of Sobolev embeddings on unbounded domains and the almost sure nondifferentiability of the sample paths of the Wiener process. We establish such compactness by the ideas of uniform tail-estimates and the spectral decomposition of solutions in bounded domains.
Transition fronts of time periodic bistable reaction-diffusion equations in RN
NASA Astrophysics Data System (ADS)
Sheng, Wei-Jie; Guo, Hong-Jun
2018-09-01
This paper is concerned with the existence and qualitative properties of transition fronts for time periodic bistable reaction-diffusion equations in RN. We first show that any almost-planar transition front is actually planar, regardless of the number of transition layers. Then we prove that all transition fronts admit a global mean speed γ and it holds γ = | c |, where c is the speed of the planar traveling front. Finally we establish the existence of a transition front in RN that is not a standard traveling front. Such a front behaves like three moving time periodic planar fronts as time goes to -∞ and like a time periodic V-shaped traveling front as time goes to ∞.
Simpson, Matthew J
2015-01-01
Many processes during embryonic development involve transport and reaction of molecules, or transport and proliferation of cells, within growing tissues. Mathematical models of such processes usually take the form of a reaction-diffusion partial differential equation (PDE) on a growing domain. Previous analyses of such models have mainly involved solving the PDEs numerically. Here, we present a framework for calculating the exact solution of a linear reaction-diffusion PDE on a growing domain. We derive an exact solution for a general class of one-dimensional linear reaction-diffusion process on 0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu Benzhuo; Holst, Michael J.; Center for Theoretical Biological Physics, University of California San Diego, La Jolla, CA 92093
2010-09-20
In this paper we developed accurate finite element methods for solving 3-D Poisson-Nernst-Planck (PNP) equations with singular permanent charges for simulating electrodiffusion in solvated biomolecular systems. The electrostatic Poisson equation was defined in the biomolecules and in the solvent, while the Nernst-Planck equation was defined only in the solvent. We applied a stable regularization scheme to remove the singular component of the electrostatic potential induced by the permanent charges inside biomolecules, and formulated regular, well-posed PNP equations. An inexact-Newton method was used to solve the coupled nonlinear elliptic equations for the steady problems; while an Adams-Bashforth-Crank-Nicolson method was devised formore » time integration for the unsteady electrodiffusion. We numerically investigated the conditioning of the stiffness matrices for the finite element approximations of the two formulations of the Nernst-Planck equation, and theoretically proved that the transformed formulation is always associated with an ill-conditioned stiffness matrix. We also studied the electroneutrality of the solution and its relation with the boundary conditions on the molecular surface, and concluded that a large net charge concentration is always present near the molecular surface due to the presence of multiple species of charged particles in the solution. The numerical methods are shown to be accurate and stable by various test problems, and are applicable to real large-scale biophysical electrodiffusion problems.« less
Lu, Benzhuo; Holst, Michael J.; McCammon, J. Andrew; Zhou, Y. C.
2010-01-01
In this paper we developed accurate finite element methods for solving 3-D Poisson-Nernst-Planck (PNP) equations with singular permanent charges for electrodiffusion in solvated biomolecular systems. The electrostatic Poisson equation was defined in the biomolecules and in the solvent, while the Nernst-Planck equation was defined only in the solvent. We applied a stable regularization scheme to remove the singular component of the electrostatic potential induced by the permanent charges inside biomolecules, and formulated regular, well-posed PNP equations. An inexact-Newton method was used to solve the coupled nonlinear elliptic equations for the steady problems; while an Adams-Bashforth-Crank-Nicolson method was devised for time integration for the unsteady electrodiffusion. We numerically investigated the conditioning of the stiffness matrices for the finite element approximations of the two formulations of the Nernst-Planck equation, and theoretically proved that the transformed formulation is always associated with an ill-conditioned stiffness matrix. We also studied the electroneutrality of the solution and its relation with the boundary conditions on the molecular surface, and concluded that a large net charge concentration is always present near the molecular surface due to the presence of multiple species of charged particles in the solution. The numerical methods are shown to be accurate and stable by various test problems, and are applicable to real large-scale biophysical electrodiffusion problems. PMID:21709855
Lu, Benzhuo; Holst, Michael J; McCammon, J Andrew; Zhou, Y C
2010-09-20
In this paper we developed accurate finite element methods for solving 3-D Poisson-Nernst-Planck (PNP) equations with singular permanent charges for electrodiffusion in solvated biomolecular systems. The electrostatic Poisson equation was defined in the biomolecules and in the solvent, while the Nernst-Planck equation was defined only in the solvent. We applied a stable regularization scheme to remove the singular component of the electrostatic potential induced by the permanent charges inside biomolecules, and formulated regular, well-posed PNP equations. An inexact-Newton method was used to solve the coupled nonlinear elliptic equations for the steady problems; while an Adams-Bashforth-Crank-Nicolson method was devised for time integration for the unsteady electrodiffusion. We numerically investigated the conditioning of the stiffness matrices for the finite element approximations of the two formulations of the Nernst-Planck equation, and theoretically proved that the transformed formulation is always associated with an ill-conditioned stiffness matrix. We also studied the electroneutrality of the solution and its relation with the boundary conditions on the molecular surface, and concluded that a large net charge concentration is always present near the molecular surface due to the presence of multiple species of charged particles in the solution. The numerical methods are shown to be accurate and stable by various test problems, and are applicable to real large-scale biophysical electrodiffusion problems.
Shock-wave-like structures induced by an exothermic neutralization reaction in miscible fluids
NASA Astrophysics Data System (ADS)
Bratsun, Dmitry; Mizev, Alexey; Mosheva, Elena; Kostarev, Konstantin
2017-11-01
We report shock-wave-like structures that are strikingly different from previously observed fingering instabilities, which occur in a two-layer system of miscible fluids reacting by a second-order reaction A +B →S in a vertical Hele-Shaw cell. While the traditional analysis expects the occurrence of a diffusion-controlled convection, we show both experimentally and theoretically that the exothermic neutralization reaction can also trigger a wave with a perfectly planar front and nearly discontinuous change in density across the front. This wave propagates fast compared with the characteristic diffusion times and separates the motionless fluid and the area with anomalously intense convective mixing. We explain its mechanism and introduce a new dimensionless parameter, which allows to predict the appearance of such a pattern in other systems. Moreover, we show that our governing equations, taken in the inviscid limit, are formally analogous to well-known shallow-water equations and adiabatic gas flow equations. Based on this analogy, we define the critical velocity for the onset of the shock wave which is found to be in the perfect agreement with the experiments.
NASA Technical Reports Server (NTRS)
Sojka, J. J.; Schunk, R. W.
1985-01-01
A time-dependent, three-dimensional, multi-ion model of the ionospheric F region at 120-800 km altitude is presented. Account is taken of field-aligned diffusion, cross-field electrodynamic drifts in equatorial and high latitude regions, interhemispheric flow, thermospheric winds, polar wind escape, energy-dependent chemical reactions and neutral composition changes. Attention is also given to the effects of ion production by solar EUV radiation and auroral precipitation, thermal conduction, diffusion-thermal heat flow, local heating and cooling processes, offsets between the geomagnetic and geographic poles, and bending of field lines near the magnetic equator. The model incorporates all phenomena described by previous models and can be applied to tracing magnetic storm and substorm disturbances from high to low latitudes on a global scale. Sample results are provided for ionospheric features during a June solstice, the solar maximum and in a period of low geomagnetic activity. The model will eventually be used to study coupled ionosphere-thermosphere activity.
Hellander, Andreas; Lawson, Michael J; Drawert, Brian; Petzold, Linda
2014-06-01
The efficiency of exact simulation methods for the reaction-diffusion master equation (RDME) is severely limited by the large number of diffusion events if the mesh is fine or if diffusion constants are large. Furthermore, inherent properties of exact kinetic-Monte Carlo simulation methods limit the efficiency of parallel implementations. Several approximate and hybrid methods have appeared that enable more efficient simulation of the RDME. A common feature to most of them is that they rely on splitting the system into its reaction and diffusion parts and updating them sequentially over a discrete timestep. This use of operator splitting enables more efficient simulation but it comes at the price of a temporal discretization error that depends on the size of the timestep. So far, existing methods have not attempted to estimate or control this error in a systematic manner. This makes the solvers hard to use for practitioners since they must guess an appropriate timestep. It also makes the solvers potentially less efficient than if the timesteps are adapted to control the error. Here, we derive estimates of the local error and propose a strategy to adaptively select the timestep when the RDME is simulated via a first order operator splitting. While the strategy is general and applicable to a wide range of approximate and hybrid methods, we exemplify it here by extending a previously published approximate method, the Diffusive Finite-State Projection (DFSP) method, to incorporate temporal adaptivity.
Experimental studies of alunite: II. Rates of alunite-water alkali and isotope exchange
Stoffregen, R.E.; Rye, R.O.; Wasserman, M.D.
1994-01-01
Rates of alkali exchange between alunite and water have been measured in hydrothermal experiments of 1 hour to 259 days duration at 150 to 400??C. Examination of run products by scanning electron microscope indicates that the reaction takes place by dissolution-reprecipitation. This exchange is modeled with an empirical rate equation which assumes a linear decrease in mineral surface area with percent exchange (f) and a linear dependence of the rate on the square root of the affinity for the alkali exchange reaction. This equation provides a good fit of the experimental data for f = 17% to 90% and yields log rate constants which range from -6.25 moles alkali m-2s-1 at 400??C to - 11.7 moles alkali m-2s-1 at 200??C. The variation in these rates with temperature is given by the equation log k* = -8.17(1000/T(K)) + 5.54 (r2 = 0.987) which yields an activation energy of 37.4 ?? 1.5 kcal/mol. For comparison, data from O'Neil and Taylor (1967) and Merigoux (1968) modeled with a pseudo-second-order rate expression give an activation energy of 36.1 ?? 2.9 kcal/mol for alkali-feldspar water Na-K exchange. In the absence of coupled alkali exchange, oxygen isotope exchange between alunite and water also occurs by dissolution-reprecipitation but rates are one to three orders of magnitude lower than those for alkali exchange. In fine-grained alunites, significant D-H exchange occurs by hydrogen diffusion at temperatures as low as 100??C. Computed hydrogen diffusion coefficients range from -15.7 to -17.3 cm2s-1 and suggest that the activation energy for hydrogen diffusion may be as low as 6 kcal/mol. These experiments indicate that rates of alkali exchange in the relatively coarse-grained alunites typical of hydrothermal ore deposits are insignificant, and support the reliability of K-Ar age data from such samples. However, the fine-grained alunites typical of low temperature settings may be susceptible to limited alkali exchange at surficial conditions which could cause alteration of their radiometric ages. Furthermore, the rapid rate of hydrogen diffusion observed at 100-150??C suggests that fine-grained alunites are susceptible to rapid D-H re-equilibration even at surficial conditions. ?? 1994.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horsten, N., E-mail: niels.horsten@kuleuven.be; Baelmans, M.; Dekeyser, W.
2016-01-15
We derive fluid neutral approximations for a simplified 1D edge plasma model, suitable to study the neutral behavior close to the target of a nuclear fusion divertor, and compare its solutions to the solution of the corresponding kinetic Boltzmann equation. The plasma is considered as a fixed background extracted from a detached 2D simulation. We show that the Maxwellian equilibrium distribution is already obtained very close to the target, justifying the use of a fluid approximation. We compare three fluid neutral models: (i) a diffusion model; (ii) a pressure-diffusion model (i.e., a combination of a continuity and momentum equation) assumingmore » equal neutral and ion temperatures; and (iii) the pressure-diffusion model coupled to a neutral energy equation taking into account temperature differences between neutrals and ions. Partial reflection of neutrals reaching the boundaries is included in both the kinetic and fluid models. We propose two methods to obtain an incident neutral flux boundary condition for the fluid models: one based on a diffusion approximation and the other assuming a truncated Chapman-Enskog distribution. The pressure-diffusion model predicts the plasma sources very well. The diffusion boundary condition gives slightly better results overall. Although including an energy equation still improves the results, the assumption of equal ion and neutral temperature already gives a very good approximation.« less
Additive Runge-Kutta Schemes for Convection-Diffusion-Reaction Equations
NASA Technical Reports Server (NTRS)
Kennedy, Christopher A.; Carpenter, Mark H.
2001-01-01
Additive Runge-Kutta (ARK) methods are investigated for application to the spatially discretized one-dimensional convection-diffusion-reaction (CDR) equations. First, accuracy, stability, conservation, and dense output are considered for the general case when N different Runge-Kutta methods are grouped into a single composite method. Then, implicit-explicit, N = 2, additive Runge-Kutta ARK2 methods from third- to fifth-order are presented that allow for integration of stiff terms by an L-stable, stiffly-accurate explicit, singly diagonally implicit Runge-Kutta (ESDIRK) method while the nonstiff terms are integrated with a traditional explicit Runge-Kutta method (ERK). Coupling error terms are of equal order to those of the elemental methods. Derived ARK2 methods have vanishing stability functions for very large values of the stiff scaled eigenvalue, z(exp [I]) goes to infinity, and retain high stability efficiency in the absence of stiffness, z(exp [I]) goes to zero. Extrapolation-type stage-value predictors are provided based on dense-output formulae. Optimized methods minimize both leading order ARK2 error terms and Butcher coefficient magnitudes as well as maximize conservation properties. Numerical tests of the new schemes on a CDR problem show negligible stiffness leakage and near classical order convergence rates. However, tests on three simple singular-perturbation problems reveal generally predictable order reduction. Error control is best managed with a PID-controller. While results for the fifth-order method are disappointing, both the new third- and fourth-order methods are at least as efficient as existing ARK2 methods while offering error control and stage-value predictors.
Development of a second order closure model for computation of turbulent diffusion flames
NASA Technical Reports Server (NTRS)
Varma, A. K.; Donaldson, C. D.
1974-01-01
A typical eddy box model for the second-order closure of turbulent, multispecies, reacting flows developed. The model structure was quite general and was valid for an arbitrary number of species. For the case of a reaction involving three species, the nine model parameters were determined from equations for nine independent first- and second-order correlations. The model enabled calculation of any higher-order correlation involving mass fractions, temperatures, and reaction rates in terms of first- and second-order correlations. Model predictions for the reaction rate were in very good agreement with exact solutions of the reaction rate equations for a number of assumed flow distributions.
Coupling Schemes for Multiphysics Reactor Simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vijay Mahadeven; Jean Ragusa
2007-11-01
This report documents the progress of the student Vijay S. Mahadevan from the Nuclear Engineering Department of Texas A&M University over the summer of 2007 during his visit to the INL. The purpose of his visit was to investigate the physics-based preconditioned Jacobian-free Newton-Krylov method applied to physics relevant to nuclear reactor simulation. To this end he studied two test problems that represented reaction-diffusion and advection-reaction. These two test problems will provide the basis for future work in which neutron diffusion, nonlinear heat conduction, and a twophase flow model will be tightly coupled to provide an accurate model of amore » BWR core.« less
NASA Technical Reports Server (NTRS)
Kleinman, Leonid S.; Red, X. B., Jr.
1995-01-01
An algorithm has been developed for time-dependent forced convective diffusion-reaction having convection by a recirculating flow field within the drop that is hydrodynamically coupled at the interface with a convective external flow field that at infinity becomes a uniform free-streaming flow. The concentration field inside the droplet is likewise coupled with that outside by boundary conditions at the interface. A chemical reaction can take place either inside or outside the droplet, or reactions can take place in both phases. The algorithm has been implemented, and for comparison results are shown here for the case of no reaction in either phase and for the case of an external first order reaction, both for unsteady behavior. For pure interphase mass transfer, concentration isocontours, local and average Sherwood numbers, and average droplet concentrations have been obtained as a function of the physical properties and external flow field. For mass transfer enhanced by an external reaction, in addition to the above forms of results, we present the enhancement factor, with the results now also depending upon the (dimensionless) rate of reaction.
NASA Technical Reports Server (NTRS)
Kleinman, Leonid S.; Reed, X. B., Jr.
1995-01-01
An algorithm has been developed for the forced convective diffusion-reaction problem for convection inside and outside a droplet by a recirculating flow field hydrodynamically coupled at the droplet interface with an external flow field that at infinity becomes a uniform streaming flow. The concentration field inside the droplet is likewise coupled with that outside by boundary conditions at the interface. A chemical reaction can take place either inside or outside the droplet or reactions can take place in both phases. The algorithm has been implemented and results are shown here for the case of no reaction and for the case of an external first order reaction, both for unsteady behavior. For pure interphase mass transfer, concentration isocontours, local and average Sherwood numbers, and average droplet concentrations have been obtained as a function of the physical properties and external flow field. For mass transfer enhanced by an external reaction, in addition to the above forms of results, we present the enhancement factor, with the results now also depending upon the (dimensionless) rate of reaction.
Molecules in motion: influences of diffusion on metabolic structure and function in skeletal muscle
Kinsey, Stephen T.; Locke, Bruce R.; Dillaman, Richard M.
2011-01-01
Metabolic processes are often represented as a group of metabolites that interact through enzymatic reactions, thus forming a network of linked biochemical pathways. Implicit in this view is that diffusion of metabolites to and from enzymes is very fast compared with reaction rates, and metabolic fluxes are therefore almost exclusively dictated by catalytic properties. However, diffusion may exert greater control over the rates of reactions through: (1) an increase in reaction rates; (2) an increase in diffusion distances; or (3) a decrease in the relevant diffusion coefficients. It is therefore not surprising that skeletal muscle fibers have long been the focus of reaction–diffusion analyses because they have high and variable rates of ATP turnover, long diffusion distances, and hindered metabolite diffusion due to an abundance of intracellular barriers. Examination of the diversity of skeletal muscle fiber designs found in animals provides insights into the role that diffusion plays in governing both rates of metabolic fluxes and cellular organization. Experimental measurements of metabolic fluxes, diffusion distances and diffusion coefficients, coupled with reaction–diffusion mathematical models in a range of muscle types has started to reveal some general principles guiding muscle structure and metabolic function. Foremost among these is that metabolic processes in muscles do, in fact, appear to be largely reaction controlled and are not greatly limited by diffusion. However, the influence of diffusion is apparent in patterns of fiber growth and metabolic organization that appear to result from selective pressure to maintain reaction control of metabolism in muscle. PMID:21177946
Temperature Variations in Lubricating Films Induced by Viscous Dissipation
NASA Astrophysics Data System (ADS)
Mozaffari, Farshad; Metcalfe, Ralph
2015-11-01
We have studied temperature distributions of lubricating films. The study has applications in tribology where temperature-reduced viscosity decreases load carrying capacity of bearings, or degrades elastomeric seals. The viscosity- temperature dependency is modeled according to ASTM D341-09. We have modeled the film temperature distribution by our finite element program. The program is made up of three modules: the first one solves the general form of Reynolds equation for the film pressure and velocity gradients. The other two solve the energy equation for the film and its solid boundary temperature distributions. The modules are numerically coupled and iteratively converged to the solutions. We have shown that the temperature distribution in the film is strongly coupled with the thermal response at the boundary. In addition, only thermal diffusion across film thickness is dominant. Moreover, thermal diffusion in the lateral directions, as well as all the convection terms, are negligible. The approximation reduces the energy equation to an ordinary differential equation, which significantly simplifies the modeling of temperature -viscosity effects in thin films. Supported by Kalsi Engineering, Inc.
Computation of the unsteady facilitated transport of oxygen in hemoglobin
NASA Technical Reports Server (NTRS)
Davis, Sanford
1990-01-01
The transport of a reacting permeant diffusing through a thin membrane is extended to more realistic dissociation models. A new nonlinear analysis of the reaction-diffusion equations, using implicit finite-difference methods and direct block solvers, is used to study the limits of linearized and equilibrium theories. Computed curves of molecular oxygen permeating through hemoglobin solution are used to illustrate higher-order reaction models, the effect of concentration boundary layers at the membrane interfaces, and the transient buildup of oxygen flux.
NASA Astrophysics Data System (ADS)
Camley, Brian A.; Zhao, Yanxiang; Li, Bo; Levine, Herbert; Rappel, Wouter-Jan
2017-01-01
We study a minimal model of a crawling eukaryotic cell with a chemical polarity controlled by a reaction-diffusion mechanism describing Rho GTPase dynamics. The size, shape, and speed of the cell emerge from the combination of the chemical polarity, which controls the locations where actin polymerization occurs, and the physical properties of the cell, including its membrane tension. We find in our model both highly persistent trajectories, in which the cell crawls in a straight line, and turning trajectories, where the cell transitions from crawling in a line to crawling in a circle. We discuss the controlling variables for this turning instability and argue that turning arises from a coupling between the reaction-diffusion mechanism and the shape of the cell. This emphasizes the surprising features that can arise from simple links between cell mechanics and biochemistry. Our results suggest that similar instabilities may be present in a broad class of biochemical descriptions of cell polarity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Ying; Field, Kevin G.; Allen, Todd R.
2016-02-23
A detailed analysis of the diffusion fluxes near and at grain boundaries of irradiated Fe–Cr–Ni alloys, induced by preferential atom-vacancy and atom-interstitial coupling, is presented. The diffusion flux equations were based on the Perks model formulated through the linear theory of the thermodynamics of irreversible processes. The preferential atom-vacancy coupling was described by the mobility model, whereas the preferential atom-interstitial coupling was described by the interstitial binding model. The composition dependence of the thermodynamic factor was modeled using the CALPHAD approach. The calculated fluxes up to 10 dpa suggested the dominant diffusion mechanism for chromium and iron is via vacancy,more » while that for nickel can swing from the vacancy to the interstitial dominant mechanism. The diffusion flux in the vicinity of a grain boundary was found to be greatly modified by the segregation induced by irradiation, leading to the oscillatory behavior of alloy compositions in this region.« less
A model for interpretation of brine-dependent spontaneous imbibition experiments
NASA Astrophysics Data System (ADS)
Evje, S.; Hiorth, A.
2011-12-01
Previous experimental results for spontaneous imbibition experiments in the context of chalk cores have revealed a rather puzzling behavior: the oil recovery curves, both the shape as well as the steady state level which is reached, depend strongly on the brine composition. In particular, it has been demonstrated that Mg,SO42-, and Ca 2+ play a central role in this physico-chemical system. A good theoretical understanding of these experimental results, in terms of mathematical models that can suggest possible explanations of the lab experiments as well as predict behavior not yet tested in the lab, seems to still be lacking. The purpose of this paper is to try to shed light on some important modeling aspects. The model we propose is an extended version of the classical Buckley-Leverett (BL) equation for two-phase spontaneous imbibition where the water saturation equation has been coupled to a system of reaction-diffusion (RD) equations describing water-rock chemistry relevant for chalk core plugs. As far as water-rock chemistry is concerned we focus in this work on the combined effect of transport and dissolution/precipitation of calcite, magnesite, and anhydrite. The line we pursue is to couple changes of the wetting state, expressed in terms of the relative permeability and capillary pressure functions, to the water-rock chemistry behavior. More precisely, we build into the model the mechanism that the rock surface will become more water-wet at the places where dissolution of calcite takes place. In particular, we illustrate and analyze how different compositions of the imbibing brine then lead to different water-rock interaction scenarios which in turn gives qualitative and quantitative differences in the solution of the saturation equation describing spontaneous imbibition. Comparison with relevant experimental behavior is included as well as illustration of some possible interesting and non-trivial characteristic features of the model reflecting the nonlinear coupling mechanisms between the RD model for the water-rock chemistry and the BL equation for the water-oil transport.
NASA Astrophysics Data System (ADS)
Bolhuis, Peter
Important reaction-diffusion processes, such as biochemical networks in living cells, or self-assembling soft matter, span many orders in length and time scales. In these systems, the reactants' spatial dynamics at mesoscopic length and time scales of microns and seconds is coupled to the reactions between the molecules at microscopic length and time scales of nanometers and milliseconds. This wide range of length and time scales makes these systems notoriously difficult to simulate. While mean-field rate equations cannot describe such processes, the mesoscopic Green's Function Reaction Dynamics (GFRD) method enables efficient simulation at the particle level provided the microscopic dynamics can be integrated out. Yet, many processes exhibit non-trivial microscopic dynamics that can qualitatively change the macroscopic behavior, calling for an atomistic, microscopic description. The recently developed multiscale Molecular Dynamics Green's Function Reaction Dynamics (MD-GFRD) approach combines GFRD for simulating the system at the mesocopic scale where particles are far apart, with microscopic Molecular (or Brownian) Dynamics, for simulating the system at the microscopic scale where reactants are in close proximity. The association and dissociation of particles are treated with rare event path sampling techniques. I will illustrate the efficiency of this method for patchy particle systems. Replacing the microscopic regime with a Markov State Model avoids the microscopic regime completely. The MSM is then pre-computed using advanced path-sampling techniques such as multistate transition interface sampling. I illustrate this approach on patchy particle systems that show multiple modes of binding. MD-GFRD is generic, and can be used to efficiently simulate reaction-diffusion systems at the particle level, including the orientational dynamics, opening up the possibility for large-scale simulations of e.g. protein signaling networks.
A kinetics database and scripts for PHREEQC
NASA Astrophysics Data System (ADS)
Hu, B.; Zhang, Y.; Teng, Y.; Zhu, C.
2017-12-01
Kinetics of geochemical reactions has been increasingly used in numerical models to simulate coupled flow, mass transport, and chemical reactions. However, the kinetic data are scattered in the literature. To assemble a kinetic dataset for a modeling project is an intimidating task for most. In order to facilitate the application of kinetics in geochemical modeling, we assembled kinetics parameters into a database for the geochemical simulation program, PHREEQC (version 3.0). Kinetics data were collected from the literature. Our database includes kinetic data for over 70 minerals. The rate equations are also programmed into scripts with the Basic language. Using the new kinetic database, we simulated reaction path during the albite dissolution process using various rate equations in the literature. The simulation results with three different rate equations gave difference reaction paths at different time scale. Another application involves a coupled reactive transport model simulating the advancement of an acid plume in an acid mine drainage site associated with Bear Creek Uranium tailings pond. Geochemical reactions including calcite, gypsum, and illite were simulated with PHREEQC using the new kinetic database. The simulation results successfully demonstrated the utility of new kinetic database.
Spongiosa Primary Development: A Biochemical Hypothesis by Turing Patterns Formations
López-Vaca, Oscar Rodrigo; Garzón-Alvarado, Diego Alexander
2012-01-01
We propose a biochemical model describing the formation of primary spongiosa architecture through a bioregulatory model by metalloproteinase 13 (MMP13) and vascular endothelial growth factor (VEGF). It is assumed that MMP13 regulates cartilage degradation and the VEGF allows vascularization and advances in the ossification front through the presence of osteoblasts. The coupling of this set of molecules is represented by reaction-diffusion equations with parameters in the Turing space, creating a stable spatiotemporal pattern that leads to the formation of the trabeculae present in the spongy tissue. Experimental evidence has shown that the MMP13 regulates VEGF formation, and it is assumed that VEGF negatively regulates MMP13 formation. Thus, the patterns obtained by ossification may represent the primary spongiosa formation during endochondral ossification. Moreover, for the numerical solution, we used the finite element method with the Newton-Raphson method to approximate partial differential nonlinear equations. Ossification patterns obtained may represent the primary spongiosa formation during endochondral ossification. PMID:23193429
Numerical approaches to model perturbation fire in turing pattern formations
NASA Astrophysics Data System (ADS)
Campagna, R.; Brancaccio, M.; Cuomo, S.; Mazzoleni, S.; Russo, L.; Siettos, K.; Giannino, F.
2017-11-01
Turing patterns were observed in chemical, physical and biological systems described by coupled reaction-diffusion equations. Several models have been formulated proposing the water as the causal mechanism of vegetation pattern formation, but this isn't an exhaustive hypothesis in some natural environments. An alternative explanation has been related to the plant-soil negative feedback. In Marasco et al. [1] the authors explored the hypothesis that both mechanisms contribute in the formation of regular and irregular vegetation patterns. The mathematical model consists in three partial differential equations (PDEs) that take into account for a dynamic balance between biomass, water and toxic compounds. A numerical approach is mandatory also to investigate on the predictions of this kind of models. In this paper we start from the mathematical model described in [1], set the model parameters such that the biomass reaches a stable spatial pattern (spots) and present preliminary studies about the occurrence of perturbing events, such as wildfire, that can affect the regularity of the biomass configuration.
Complex Wall Boundary Conditions for Modeling Combustion in Catalytic Channels
NASA Astrophysics Data System (ADS)
Zhu, Huayang; Jackson, Gregory
2000-11-01
Monolith catalytic reactors for exothermic oxidation are being used in automobile exhaust clean-up and ultra-low emissions combustion systems. The reactors present a unique coupling between mass, heat, and momentum transport in a channel flow configuration. The use of porous catalytic coatings along the channel wall presents a complex boundary condition when modeled with the two-dimensional channel flow. This current work presents a 2-D transient model for predicting the performance of catalytic combustion systems for methane oxidation on Pd catalysts. The model solves the 2-D compressible transport equations for momentum, species, and energy, which are solved with a porous washcoat model for the wall boundary conditions. A time-splitting algorithm is used to separate the stiff chemical reactions from the convective/diffusive equations for the channel flow. A detailed surface chemistry mechanism is incorporated for the catalytic wall model and is used to predict transient ignition and steady-state conversion of CH4-air flows in the catalytic reactor.
D'Elia, Marta; Perego, Mauro; Bochev, Pavel B.; ...
2015-12-21
We develop and analyze an optimization-based method for the coupling of nonlocal and local diffusion problems with mixed volume constraints and boundary conditions. The approach formulates the coupling as a control problem where the states are the solutions of the nonlocal and local equations, the objective is to minimize their mismatch on the overlap of the nonlocal and local domains, and the controls are virtual volume constraints and boundary conditions. When some assumptions on the kernel functions hold, we prove that the resulting optimization problem is well-posed and discuss its implementation using Sandia’s agile software components toolkit. As a result,more » the latter provides the groundwork for the development of engineering analysis tools, while numerical results for nonlocal diffusion in three-dimensions illustrate key properties of the optimization-based coupling method.« less
Effect of static porosity fluctuations on reactive transport in a porous medium
NASA Astrophysics Data System (ADS)
L'Heureux, Ivan
2018-02-01
Reaction-diffusive transport phenomena in porous media are ubiquitous in engineering applications, biological and geochemical systems. The porosity field is usually random in space, but most models consider the porosity field as a well-defined deterministic function of space and time and ignore the porosity fluctuations. They use a reaction-diffusion equation written in terms of an average porosity and average concentration fields. In this contribution, we treat explicitly the effect of spatial porosity fluctuations on the dynamics of a concentration field for the case of a one-dimensional reaction-transport system with nonlinear kinetics. Three basic assumptions are considered. (i) The porosity fluctuations are assumed to have Gaussian properties and an arbitrary variance; (ii) we assume that the noise correlation length is small compared to the relevant macroscopic length scale; (iii) and we assume that the kinetics of the reactive term in the equations for the fluctuations is a self-consistently determined constant. Elimination of the fluctuating part of the concentration field from the dynamics leads to a renormalized equation involving the average concentration field. It is shown that the noise leads to a renormalized (generally smaller) diffusion coefficient and renormalized kinetics. Within the framework of the approximations used, numerical simulations are in agreement with our theory. We show that the porosity fluctuations may have a significant effect on the transport of a reactive species, even in the case of a homogeneous average porosity.
NASA Astrophysics Data System (ADS)
Plante, Ianik
2016-01-01
The exact Green's function of the diffusion equation (GFDE) is often considered to be the gold standard for the simulation of partially diffusion-controlled reactions. As the GFDE with angular dependency is quite complex, the radial GFDE is more often used. Indeed, the exact GFDE is expressed as a Legendre expansion, the coefficients of which are given in terms of an integral comprising Bessel functions. This integral does not seem to have been evaluated analytically in existing literature. While the integral can be evaluated numerically, the Bessel functions make the integral oscillate and convergence is difficult to obtain. Therefore it would be of great interest to evaluate the integral analytically. The first term was evaluated previously, and was found to be equal to the radial GFDE. In this work, the second term of this expansion was evaluated. As this work has shown that the first two terms of the Legendre polynomial expansion can be calculated analytically, it raises the question of the possibility that an analytical solution exists for the other terms.
Efficient reactive Brownian dynamics
Donev, Aleksandar; Yang, Chiao-Yu; Kim, Changho
2018-01-21
We develop a Split Reactive Brownian Dynamics (SRBD) algorithm for particle simulations of reaction-diffusion systems based on the Doi or volume reactivity model, in which pairs of particles react with a specified Poisson rate if they are closer than a chosen reactive distance. In our Doi model, we ensure that the microscopic reaction rules for various association and dissociation reactions are consistent with detailed balance (time reversibility) at thermodynamic equilibrium. The SRBD algorithm uses Strang splitting in time to separate reaction and diffusion and solves both the diffusion-only and reaction-only subproblems exactly, even at high packing densities. To efficiently processmore » reactions without uncontrolled approximations, SRBD employs an event-driven algorithm that processes reactions in a time-ordered sequence over the duration of the time step. A grid of cells with size larger than all of the reactive distances is used to schedule and process the reactions, but unlike traditional grid-based methods such as reaction-diffusion master equation algorithms, the results of SRBD are statistically independent of the size of the grid used to accelerate the processing of reactions. We use the SRBD algorithm to compute the effective macroscopic reaction rate for both reaction-limited and diffusion-limited irreversible association in three dimensions and compare to existing theoretical predictions at low and moderate densities. We also study long-time tails in the time correlation functions for reversible association at thermodynamic equilibrium and compare to recent theoretical predictions. Finally, we compare different particle and continuum methods on a model exhibiting a Turing-like instability and pattern formation. Our studies reinforce the common finding that microscopic mechanisms and correlations matter for diffusion-limited systems, making continuum and even mesoscopic modeling of such systems difficult or impossible. We also find that for models in which particles diffuse off lattice, such as the Doi model, reactions lead to a spurious enhancement of the effective diffusion coefficients.« less
Efficient reactive Brownian dynamics
NASA Astrophysics Data System (ADS)
Donev, Aleksandar; Yang, Chiao-Yu; Kim, Changho
2018-01-01
We develop a Split Reactive Brownian Dynamics (SRBD) algorithm for particle simulations of reaction-diffusion systems based on the Doi or volume reactivity model, in which pairs of particles react with a specified Poisson rate if they are closer than a chosen reactive distance. In our Doi model, we ensure that the microscopic reaction rules for various association and dissociation reactions are consistent with detailed balance (time reversibility) at thermodynamic equilibrium. The SRBD algorithm uses Strang splitting in time to separate reaction and diffusion and solves both the diffusion-only and reaction-only subproblems exactly, even at high packing densities. To efficiently process reactions without uncontrolled approximations, SRBD employs an event-driven algorithm that processes reactions in a time-ordered sequence over the duration of the time step. A grid of cells with size larger than all of the reactive distances is used to schedule and process the reactions, but unlike traditional grid-based methods such as reaction-diffusion master equation algorithms, the results of SRBD are statistically independent of the size of the grid used to accelerate the processing of reactions. We use the SRBD algorithm to compute the effective macroscopic reaction rate for both reaction-limited and diffusion-limited irreversible association in three dimensions and compare to existing theoretical predictions at low and moderate densities. We also study long-time tails in the time correlation functions for reversible association at thermodynamic equilibrium and compare to recent theoretical predictions. Finally, we compare different particle and continuum methods on a model exhibiting a Turing-like instability and pattern formation. Our studies reinforce the common finding that microscopic mechanisms and correlations matter for diffusion-limited systems, making continuum and even mesoscopic modeling of such systems difficult or impossible. We also find that for models in which particles diffuse off lattice, such as the Doi model, reactions lead to a spurious enhancement of the effective diffusion coefficients.
Efficient reactive Brownian dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donev, Aleksandar; Yang, Chiao-Yu; Kim, Changho
We develop a Split Reactive Brownian Dynamics (SRBD) algorithm for particle simulations of reaction-diffusion systems based on the Doi or volume reactivity model, in which pairs of particles react with a specified Poisson rate if they are closer than a chosen reactive distance. In our Doi model, we ensure that the microscopic reaction rules for various association and dissociation reactions are consistent with detailed balance (time reversibility) at thermodynamic equilibrium. The SRBD algorithm uses Strang splitting in time to separate reaction and diffusion and solves both the diffusion-only and reaction-only subproblems exactly, even at high packing densities. To efficiently processmore » reactions without uncontrolled approximations, SRBD employs an event-driven algorithm that processes reactions in a time-ordered sequence over the duration of the time step. A grid of cells with size larger than all of the reactive distances is used to schedule and process the reactions, but unlike traditional grid-based methods such as reaction-diffusion master equation algorithms, the results of SRBD are statistically independent of the size of the grid used to accelerate the processing of reactions. We use the SRBD algorithm to compute the effective macroscopic reaction rate for both reaction-limited and diffusion-limited irreversible association in three dimensions and compare to existing theoretical predictions at low and moderate densities. We also study long-time tails in the time correlation functions for reversible association at thermodynamic equilibrium and compare to recent theoretical predictions. Finally, we compare different particle and continuum methods on a model exhibiting a Turing-like instability and pattern formation. Our studies reinforce the common finding that microscopic mechanisms and correlations matter for diffusion-limited systems, making continuum and even mesoscopic modeling of such systems difficult or impossible. We also find that for models in which particles diffuse off lattice, such as the Doi model, reactions lead to a spurious enhancement of the effective diffusion coefficients.« less
Strain-based diffusion solver for realistic representation of diffusion front in physical reactions
2017-01-01
When simulating fluids, such as water or fire, interacting with solids, it is a challenging problem to represent details of diffusion front in physical reaction. Previous approaches commonly use isotropic or anisotropic diffusion to model the transport of a quantity through a medium or long interface. We have identified unrealistic monotonous patterns with previous approaches and therefore, propose to extend these approaches by integrating the deformation of the material with the diffusion process. Specifically, stretching deformation represented by strain is incorporated in a divergence-constrained diffusion model. A novel diffusion model is introduced to increase the global rate at which the solid acquires relevant quantities, such as heat or saturation. This ensures that the equations describing fluid flow are linked to the change of solid geometry, and also satisfy the divergence-free condition. Experiments show that our method produces convincing results. PMID:28448591
NASA Astrophysics Data System (ADS)
Liu, Chengsong; Yang, Shufeng; Li, Jingshe; Ni, Hongwei; Zhang, Xueliang
2017-04-01
The aim of this study was to control the physicochemical characteristics of inclusions in steel through appropriate heat treatment. Using a confocal scanning laser microscope (CSLM) and pipe furnace, the solid-state reactions between Fe-Al-Ca alloy and Al2O3-CaO-FeO oxide during heat treatment at 1473 K (1200 °C) and the influence of these reactions on the compositions of and phases in the alloy and oxide were investigated by the diffusion couple method. Suitable pretreatment of the oxide using a CSLM and production of the diffusion couple of Fe-Al-Ca alloy and Al2O3-CaO-FeO oxide gave good contact between the alloy and oxide. The diffusion couple was then sealed in a quartz tube with a piece of Ti foil to lower oxygen partial pressure and a block of Fe-Al-Ca alloy was introduced to conduct heat treatment experiments. Solid-state reactions between the alloy and oxide during heat treatment at 1473 K (1200 °C) were analyzed and discussed. A dynamic model to calculate the width of the particle precipitation zone based on the Wagner model of internal oxidation of metal was proposed. This model was helpful to understand the solid-state reaction mechanism between Fe-Al-Ca alloy and Al2O3-CaO-FeO oxide.
A double medium model for diffusion in fluid-bearing rock
NASA Astrophysics Data System (ADS)
Wang, H. F.
1993-09-01
The concept of a double porosity medium to model fluid flow in fractured rock has been applied to model diffusion in rock containing a small amount of a continuous fluid phase that surrounds small volume elements of the solid matrix. The model quantifies the relative role of diffusion in the fluid and solid phases of the rock. The fluid is the fast diffusion path, but the solid contains the volumetrically significant amount of the diffusing species. The double medium model consists of two coupled differential equations. One equation is the diffusion equation for the fluid concentration; it contains a source term for change in the average concentration of the diffusing species in the solid matrix. The second equation represents the assumption that the change in average concentration in a solid element is proportional to the difference between the average concentration in the solid and the concentration in the fluid times the solid-fluid partition coefficient. The double medium model is shown to apply to laboratory data on iron diffusion in fluid-bearing dunite and to measured oxygen isotope ratios at marble-metagranite contacts. In both examples, concentration profiles are calculated for diffusion taking place at constant temperature, where a boundary value changes suddenly and is subsequently held constant. Knowledge of solid diffusivities can set a lower bound to the length of time over which diffusion occurs, but only the product of effective fluid diffusivity and time is constrained for times longer than the characteristic solid diffusion time. The double medium results approach a local, grain-scale equilibrium model for times that are large relative to the time constant for solid diffusion.
A thermodynamic framework for thermo-chemo-elastic interactions in chemically active materials
NASA Astrophysics Data System (ADS)
Zhang, XiaoLong; Zhong, Zheng
2017-08-01
In this paper, a general thermodynamic framework is developed to describe the thermo-chemo-mechanical interactions in elastic solids undergoing mechanical deformation, imbibition of diffusive chemical species, chemical reactions and heat exchanges. Fully coupled constitutive relations and evolving laws for irreversible fluxes are provided based on entropy imbalance and stoichiometry that governs reactions. The framework manifests itself with a special feature that the change of Helmholtz free energy is attributed to separate contributions of the diffusion-swelling process and chemical reaction-dilation process. Both the extent of reaction and the concentrations of diffusive species are taken as independent state variables, which describe the reaction-activated responses with underlying variation of microstructures and properties of a material in an explicit way. A specialized isothermal formulation for isotropic materials is proposed that can properly account for volumetric constraints from material incompressibility under chemo-mechanical loadings, in which inhomogeneous deformation is associated with reaction and diffusion under various kinetic time scales. This framework can be easily applied to model the transient volumetric swelling of a solid caused by imbibition of external chemical species and simultaneous chemical dilation arising from reactions between the diffusing species and the solid.
Double diffusivity model under stochastic forcing
NASA Astrophysics Data System (ADS)
Chattopadhyay, Amit K.; Aifantis, Elias C.
2017-05-01
The "double diffusivity" model was proposed in the late 1970s, and reworked in the early 1980s, as a continuum counterpart to existing discrete models of diffusion corresponding to high diffusivity paths, such as grain boundaries and dislocation lines. It was later rejuvenated in the 1990s to interpret experimental results on diffusion in polycrystalline and nanocrystalline specimens where grain boundaries and triple grain boundary junctions act as high diffusivity paths. Technically, the model pans out as a system of coupled Fick-type diffusion equations to represent "regular" and "high" diffusivity paths with "source terms" accounting for the mass exchange between the two paths. The model remit was extended by analogy to describe flow in porous media with double porosity, as well as to model heat conduction in media with two nonequilibrium local temperature baths, e.g., ion and electron baths. Uncoupling of the two partial differential equations leads to a higher-ordered diffusion equation, solutions of which could be obtained in terms of classical diffusion equation solutions. Similar equations could also be derived within an "internal length" gradient (ILG) mechanics formulation applied to diffusion problems, i.e., by introducing nonlocal effects, together with inertia and viscosity, in a mechanics based formulation of diffusion theory. While being remarkably successful in studies related to various aspects of transport in inhomogeneous media with deterministic microstructures and nanostructures, its implications in the presence of stochasticity have not yet been considered. This issue becomes particularly important in the case of diffusion in nanopolycrystals whose deterministic ILG-based theoretical calculations predict a relaxation time that is only about one-tenth of the actual experimentally verified time scale. This article provides the "missing link" in this estimation by adding a vital element in the ILG structure, that of stochasticity, that takes into account all boundary layer fluctuations. Our stochastic-ILG diffusion calculation confirms rapprochement between theory and experiment, thereby benchmarking a new generation of gradient-based continuum models that conform closer to real-life fluctuating environments.
New mechanism of spiral wave initiation in a reaction-diffusion-mechanics system.
Weise, Louis D; Panfilov, Alexander V
2011-01-01
Spiral wave initiation in the heart muscle is a mechanism for the onset of dangerous cardiac arrhythmias. A standard protocol for spiral wave initiation is the application of a stimulus in the refractory tail of a propagating excitation wave, a region that we call the "classical vulnerable zone." Previous studies of vulnerability to spiral wave initiation did not take the influence of deformation into account, which has been shown to have a substantial effect on the excitation process of cardiomyocytes via the mechano-electrical feedback phenomenon. In this work we study the effect of deformation on the vulnerability of excitable media in a discrete reaction-diffusion-mechanics (dRDM) model. The dRDM model combines FitzHugh-Nagumo type equations for cardiac excitation with a discrete mechanical description of a finite-elastic isotropic material (Seth material) to model cardiac excitation-contraction coupling and stretch activated depolarizing current. We show that deformation alters the "classical," and forms a new vulnerable zone at longer coupling intervals. This mechanically caused vulnerable zone results in a new mechanism of spiral wave initiation, where unidirectional conduction block and rotation directions of the consequently initiated spiral waves are opposite compared to the mechanism of spiral wave initiation due to the "classical vulnerable zone." We show that this new mechanism of spiral wave initiation can naturally occur in situations that involve wave fronts with curvature, and discuss its relation to supernormal excitability of cardiac tissue. The concept of mechanically induced vulnerability may lead to a better understanding about the onset of dangerous heart arrhythmias via mechano-electrical feedback.
Far-field analysis of coupled bulk and boundary layer diffusion toward an ion channel entrance.
Schumaker, M F; Kentler, C J
1998-01-01
We present a far-field analysis of ion diffusion toward a channel embedded in a membrane with a fixed charge density. The Smoluchowski equation, which represents the 3D problem, is approximated by a system of coupled three- and two-dimensional diffusions. The 2D diffusion models the quasi-two-dimensional diffusion of ions in a boundary layer in which the electrical potential interaction with the membrane surface charge is important. The 3D diffusion models ion transport in the bulk region outside the boundary layer. Analytical expressions for concentration and flux are developed that are accurate far from the channel entrance. These provide boundary conditions for a numerical solution of the problem. Our results are used to calculate far-field ion flows corresponding to experiments of Bell and Miller (Biophys. J. 45:279, 1984). PMID:9591651
An efficient, explicit finite-rate algorithm to compute flows in chemical nonequilibrium
NASA Technical Reports Server (NTRS)
Palmer, Grant
1989-01-01
An explicit finite-rate code was developed to compute hypersonic viscous chemically reacting flows about three-dimensional bodies. Equations describing the finite-rate chemical reactions were fully coupled to the gas dynamic equations using a new coupling technique. The new technique maintains stability in the explicit finite-rate formulation while permitting relatively large global time steps.
Simpson, Matthew J
2015-01-01
Many processes during embryonic development involve transport and reaction of molecules, or transport and proliferation of cells, within growing tissues. Mathematical models of such processes usually take the form of a reaction-diffusion partial differential equation (PDE) on a growing domain. Previous analyses of such models have mainly involved solving the PDEs numerically. Here, we present a framework for calculating the exact solution of a linear reaction-diffusion PDE on a growing domain. We derive an exact solution for a general class of one-dimensional linear reaction—diffusion process on 0
Modelling and simulating reaction-diffusion systems using coloured Petri nets.
Liu, Fei; Blätke, Mary-Ann; Heiner, Monika; Yang, Ming
2014-10-01
Reaction-diffusion systems often play an important role in systems biology when developmental processes are involved. Traditional methods of modelling and simulating such systems require substantial prior knowledge of mathematics and/or simulation algorithms. Such skills may impose a challenge for biologists, when they are not equally well-trained in mathematics and computer science. Coloured Petri nets as a high-level and graphical language offer an attractive alternative, which is easily approachable. In this paper, we investigate a coloured Petri net framework integrating deterministic, stochastic and hybrid modelling formalisms and corresponding simulation algorithms for the modelling and simulation of reaction-diffusion processes that may be closely coupled with signalling pathways, metabolic reactions and/or gene expression. Such systems often manifest multiscaleness in time, space and/or concentration. We introduce our approach by means of some basic diffusion scenarios, and test it against an established case study, the Brusselator model. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hernlund, J. W.; Matsui, H.
2017-12-01
Ultralow-velocity zones (ULVZ) are increasingly illuminated by seismology, revealing surprising diversity in size, shape, and physical characteristics. The only viable hypotheses are that ULVZs are a compositionally distinct FeO-enriched dense material, which could have formed by fractional crystallization of a basal magma ocean, segregation of subducted banded iron formations, precipitation of solids from the outer core, partial melting and segregation of iron-rich melts from subducted basalts, or most likely a combination of many different processes. But many questions remain: Are ULVZ partially molten in some places, and not in others? Are ULVZ simply the thicker portions of an otherwise global thin layer, covering the entire CMB and thus blocking or moderating chemical interactions between the core and overlying mantle? Is such a layer inter-connected and able to conduct electrical currents that allow electro-magnetic coupling of core and mantle angular momentum? Are they being eroded and shrinking in size due to viscous entrainment, or is more material being added to ULVZ over time? Here we derive an advection-diffusion-like equation that governs the dynamical evolution of a chemically distinct ULVZ. Analysis of this equation shows that ULVZ should become readily swept aside by viscous mantle flows at the CMB, exposing "ordinary mantle" to the top of the core, thus inducing chemical heterogeneity that drives lateral CMB chemical reactions. These reactions are correlated with heat flux, thus maintaining large-scale pressure variations atop the core that induce cyclone-like flows centered around ULVZ and ponded subducted slabs. We suggest that turbulent diffusion across adjacent cyclone streams inside a stratified region atop the core readily accommodates lateral transport and re-distribution of components such as O and Si, in addition to heat. Our model implies that the deeper core is at least partly shielded from the influence of strong heat flux variations at the CMB which might otherwise cause problems for producing a geodynamo.
The Transport Equation in Optically Thick Media: Discussion of IMC and its Diffusion Limit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szoke, A.; Brooks, E. D.
2016-07-12
We discuss the limits of validity of the Implicit Monte Carlo (IMC) method for the transport of thermally emitted radiation. The weakened coupling between the radiation and material energy of the IMC method causes defects in handling problems with strong transients. We introduce an approach to asymptotic analysis for the transport equation that emphasizes the fact that the radiation and material temperatures are always different in time-dependent problems, and we use it to show that IMC does not produce the correct diffusion limit. As this is a defect of IMC in the continuous equations, no improvement to its discretization canmore » remedy it.« less
Lu, Benzhuo; Zhou, Y C; Huber, Gary A; Bond, Stephen D; Holst, Michael J; McCammon, J Andrew
2007-10-07
A computational framework is presented for the continuum modeling of cellular biomolecular diffusion influenced by electrostatic driving forces. This framework is developed from a combination of state-of-the-art numerical methods, geometric meshing, and computer visualization tools. In particular, a hybrid of (adaptive) finite element and boundary element methods is adopted to solve the Smoluchowski equation (SE), the Poisson equation (PE), and the Poisson-Nernst-Planck equation (PNPE) in order to describe electrodiffusion processes. The finite element method is used because of its flexibility in modeling irregular geometries and complex boundary conditions. The boundary element method is used due to the convenience of treating the singularities in the source charge distribution and its accurate solution to electrostatic problems on molecular boundaries. Nonsteady-state diffusion can be studied using this framework, with the electric field computed using the densities of charged small molecules and mobile ions in the solvent. A solution for mesh generation for biomolecular systems is supplied, which is an essential component for the finite element and boundary element computations. The uncoupled Smoluchowski equation and Poisson-Boltzmann equation are considered as special cases of the PNPE in the numerical algorithm, and therefore can be solved in this framework as well. Two types of computations are reported in the results: stationary PNPE and time-dependent SE or Nernst-Planck equations solutions. A biological application of the first type is the ionic density distribution around a fragment of DNA determined by the equilibrium PNPE. The stationary PNPE with nonzero flux is also studied for a simple model system, and leads to an observation that the interference on electrostatic field of the substrate charges strongly affects the reaction rate coefficient. The second is a time-dependent diffusion process: the consumption of the neurotransmitter acetylcholine by acetylcholinesterase, determined by the SE and a single uncoupled solution of the Poisson-Boltzmann equation. The electrostatic effects, counterion compensation, spatiotemporal distribution, and diffusion-controlled reaction kinetics are analyzed and different methods are compared.
Asymptotic analysis of dissipative waves with applications to their numerical simulation
NASA Technical Reports Server (NTRS)
Hagstrom, Thomas
1990-01-01
Various problems involving the interplay of asymptotics and numerics in the analysis of wave propagation in dissipative systems are studied. A general approach to the asymptotic analysis of linear, dissipative waves is developed. It was applied to the derivation of asymptotic boundary conditions for numerical solutions on unbounded domains. Applications include the Navier-Stokes equations. Multidimensional traveling wave solutions to reaction-diffusion equations are also considered. A preliminary numerical investigation of a thermo-diffusive model of flame propagation in a channel with heat loss at the walls is presented.
Molins, S.; Mayer, K.U.
2007-01-01
The two‐way coupling that exists between biogeochemical reactions and vadose zone transport processes, in particular gas phase transport, determines the composition of soil gas. To explore these feedback processes quantitatively, multicomponent gas diffusion and advection are implemented into an existing reactive transport model that includes a full suite of geochemical reactions. Multicomponent gas diffusion is described on the basis of the dusty gas model, which accounts for all relevant gas diffusion mechanisms. The simulation of gas attenuation in partially saturated landfill soil covers, methane production, and oxidation in aquifers contaminated by organic compounds (e.g., an oil spill site) and pyrite oxidation in mine tailings demonstrate that both diffusive and advective gas transport can be affected by geochemical reactions. Methane oxidation in landfill covers reduces the existing upward pressure gradient, thereby decreasing the contribution of advective methane emissions to the atmosphere and enhancing the net flux of atmospheric oxygen into the soil column. At an oil spill site, methane oxidation causes a reversal in the direction of gas advection, which results in advective transport toward the zone of oxidation both from the ground surface and the deeper zone of methane production. Both diffusion and advection contribute to supply atmospheric oxygen into the subsurface, and methane emissions to the atmosphere are averted. During pyrite oxidation in mine tailings, pressure reduction in the reaction zone drives advective gas flow into the sediment column, enhancing the oxidation process. In carbonate‐rich mine tailings, calcite dissolution releases carbon dioxide, which partly offsets the pressure reduction caused by O2 consumption.
Mesoscopic-microscopic spatial stochastic simulation with automatic system partitioning.
Hellander, Stefan; Hellander, Andreas; Petzold, Linda
2017-12-21
The reaction-diffusion master equation (RDME) is a model that allows for efficient on-lattice simulation of spatially resolved stochastic chemical kinetics. Compared to off-lattice hard-sphere simulations with Brownian dynamics or Green's function reaction dynamics, the RDME can be orders of magnitude faster if the lattice spacing can be chosen coarse enough. However, strongly diffusion-controlled reactions mandate a very fine mesh resolution for acceptable accuracy. It is common that reactions in the same model differ in their degree of diffusion control and therefore require different degrees of mesh resolution. This renders mesoscopic simulation inefficient for systems with multiscale properties. Mesoscopic-microscopic hybrid methods address this problem by resolving the most challenging reactions with a microscale, off-lattice simulation. However, all methods to date require manual partitioning of a system, effectively limiting their usefulness as "black-box" simulation codes. In this paper, we propose a hybrid simulation algorithm with automatic system partitioning based on indirect a priori error estimates. We demonstrate the accuracy and efficiency of the method on models of diffusion-controlled networks in 3D.
Diffuse-Interface Capturing Methods for Compressible Two-Phase Flows
NASA Astrophysics Data System (ADS)
Saurel, Richard; Pantano, Carlos
2018-01-01
Simulation of compressible flows became a routine activity with the appearance of shock-/contact-capturing methods. These methods can determine all waves, particularly discontinuous ones. However, additional difficulties may appear in two-phase and multimaterial flows due to the abrupt variation of thermodynamic properties across the interfacial region, with discontinuous thermodynamical representations at the interfaces. To overcome this difficulty, researchers have developed augmented systems of governing equations to extend the capturing strategy. These extended systems, reviewed here, are termed diffuse-interface models, because they are designed to compute flow variables correctly in numerically diffused zones surrounding interfaces. In particular, they facilitate coupling the dynamics on both sides of the (diffuse) interfaces and tend to the proper pure fluid-governing equations far from the interfaces. This strategy has become efficient for contact interfaces separating fluids that are governed by different equations of state, in the presence or absence of capillary effects, and with phase change. More sophisticated materials than fluids (e.g., elastic-plastic materials) have been considered as well.
NASA Astrophysics Data System (ADS)
Sayed, Shehrin; Hong, Seokmin; Datta, Supriyo
We will present a general semiclassical theory for an arbitrary channel with spin-orbit coupling (SOC), that uses four electrochemical potential (U + , D + , U - , and D -) depending on the sign of z-component of the spin (up (U) , down (D)) and the sign of the x-component of the group velocity (+ , -) . This can be considered as an extension of the standard spin diffusion equation that uses two electrochemical potentials for up and down spin states, allowing us to take into account the unique coupling between charge and spin degrees of freedom in channels with SOC. We will describe applications of this model to answer a number of interesting questions in this field such as: (1) whether topological insulators can switch magnets, (2) how the charge to spin conversion is influenced by the channel resistivity, and (3) how device structures can be designed to enhance spin injection. This work was supported by FAME, one of six centers of STARnet, a Semiconductor Research Corporation program sponsored by MARCO and DARPA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kordilla, Jannes, E-mail: jkordil@gwdg.de; Pan, Wenxiao, E-mail: Wenxiao.Pan@pnnl.gov; Tartakovsky, Alexandre, E-mail: alexandre.tartakovsky@pnnl.gov
2014-12-14
We propose a novel smoothed particle hydrodynamics (SPH) discretization of the fully coupled Landau-Lifshitz-Navier-Stokes (LLNS) and stochastic advection-diffusion equations. The accuracy of the SPH solution of the LLNS equations is demonstrated by comparing the scaling of velocity variance and the self-diffusion coefficient with kinetic temperature and particle mass obtained from the SPH simulations and analytical solutions. The spatial covariance of pressure and velocity fluctuations is found to be in a good agreement with theoretical models. To validate the accuracy of the SPH method for coupled LLNS and advection-diffusion equations, we simulate the interface between two miscible fluids. We study formationmore » of the so-called “giant fluctuations” of the front between light and heavy fluids with and without gravity, where the light fluid lies on the top of the heavy fluid. We find that the power spectra of the simulated concentration field are in good agreement with the experiments and analytical solutions. In the absence of gravity, the power spectra decay as the power −4 of the wavenumber—except for small wavenumbers that diverge from this power law behavior due to the effect of finite domain size. Gravity suppresses the fluctuations, resulting in much weaker dependence of the power spectra on the wavenumber. Finally, the model is used to study the effect of thermal fluctuation on the Rayleigh-Taylor instability, an unstable dynamics of the front between a heavy fluid overlaying a light fluid. The front dynamics is shown to agree well with the analytical solutions.« less
Kordilla, Jannes; Pan, Wenxiao; Tartakovsky, Alexandre
2014-12-14
We propose a novel smoothed particle hydrodynamics (SPH) discretization of the fully coupled Landau-Lifshitz-Navier-Stokes (LLNS) and stochastic advection-diffusion equations. The accuracy of the SPH solution of the LLNS equations is demonstrated by comparing the scaling of velocity variance and the self-diffusion coefficient with kinetic temperature and particle mass obtained from the SPH simulations and analytical solutions. The spatial covariance of pressure and velocity fluctuations is found to be in a good agreement with theoretical models. To validate the accuracy of the SPH method for coupled LLNS and advection-diffusion equations, we simulate the interface between two miscible fluids. We study formation of the so-called "giant fluctuations" of the front between light and heavy fluids with and without gravity, where the light fluid lies on the top of the heavy fluid. We find that the power spectra of the simulated concentration field are in good agreement with the experiments and analytical solutions. In the absence of gravity, the power spectra decay as the power -4 of the wavenumber-except for small wavenumbers that diverge from this power law behavior due to the effect of finite domain size. Gravity suppresses the fluctuations, resulting in much weaker dependence of the power spectra on the wavenumber. Finally, the model is used to study the effect of thermal fluctuation on the Rayleigh-Taylor instability, an unstable dynamics of the front between a heavy fluid overlaying a light fluid. The front dynamics is shown to agree well with the analytical solutions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kordilla, Jannes; Pan, Wenxiao; Tartakovsky, Alexandre M.
2014-12-14
We propose a novel Smoothed Particle Hydrodynamics (SPH) discretization of the fully-coupled Landau-Lifshitz-Navier-Stokes (LLNS) and advection-diffusion equations. The accuracy of the SPH solution of the LLNS equations is demonstrated by comparing the scaling of velocity variance and self-diffusion coefficient with kinetic temperature and particle mass obtained from the SPH simulations and analytical solutions. The spatial covariance of pressure and velocity fluctuations are found to be in a good agreement with theoretical models. To validate the accuracy of the SPH method for the coupled LLNS and advection-diffusion equations, we simulate the interface between two miscible fluids. We study the formation ofmore » the so-called giant fluctuations of the front between light and heavy fluids with and without gravity, where the light fluid lays on the top of the heavy fluid. We find that the power spectra of the simulated concentration field is in good agreement with the experiments and analytical solutions. In the absence of gravity the the power spectra decays as the power -4 of the wave number except for small wave numbers which diverge from this power law behavior due to the effect of finite domain size. Gravity suppresses the fluctuations resulting in the much weaker dependence of the power spectra on the wave number. Finally the model is used to study the effect of thermal fluctuation on the Rayleigh-Taylor instability, an unstable dynamics of the front between a heavy fluid overlying a light fluid. The front dynamics is shown to agree well with the analytical solutions.« less
Using hybrid implicit Monte Carlo diffusion to simulate gray radiation hydrodynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cleveland, Mathew A., E-mail: cleveland7@llnl.gov; Gentile, Nick
This work describes how to couple a hybrid Implicit Monte Carlo Diffusion (HIMCD) method with a Lagrangian hydrodynamics code to evaluate the coupled radiation hydrodynamics equations. This HIMCD method dynamically applies Implicit Monte Carlo Diffusion (IMD) [1] to regions of a problem that are opaque and diffusive while applying standard Implicit Monte Carlo (IMC) [2] to regions where the diffusion approximation is invalid. We show that this method significantly improves the computational efficiency as compared to a standard IMC/Hydrodynamics solver, when optically thick diffusive material is present, while maintaining accuracy. Two test cases are used to demonstrate the accuracy andmore » performance of HIMCD as compared to IMC and IMD. The first is the Lowrie semi-analytic diffusive shock [3]. The second is a simple test case where the source radiation streams through optically thin material and heats a thick diffusive region of material causing it to rapidly expand. We found that HIMCD proves to be accurate, robust, and computationally efficient for these test problems.« less
Analytical approach for the fractional differential equations by using the extended tanh method
NASA Astrophysics Data System (ADS)
Pandir, Yusuf; Yildirim, Ayse
2018-07-01
In this study, we consider analytical solutions of space-time fractional derivative foam drainage equation, the nonlinear Korteweg-de Vries equation with time and space-fractional derivatives and time-fractional reaction-diffusion equation by using the extended tanh method. The fractional derivatives are defined in the modified Riemann-Liouville context. As a result, various exact analytical solutions consisting of trigonometric function solutions, kink-shaped soliton solutions and new exact solitary wave solutions are obtained.
NASA Technical Reports Server (NTRS)
Li, Jian-Zhong; Cheung, Samson H.; Ning, C. Z.
2001-01-01
Carrier diffusion and thermal conduction play a fundamental role in the operation of high-power, broad-area semiconductor lasers. Restricted geometry, high pumping level and dynamic instability lead to inhomogeneous spatial distribution of plasma density, temperature, as well as light field, due to strong light-matter interaction. Thus, modeling and simulation of such optoelectronic devices rely on detailed descriptions of carrier dynamics and energy transport in the system. A self-consistent description of lasing and heating in large-aperture, inhomogeneous edge- or surface-emitting lasers (VCSELs) require coupled diffusion equations for carrier density and temperature. In this paper, we derive such equations from the Boltzmann transport equation for the carrier distributions. The derived self- and mutual-diffusion coefficients are in general nonlinear functions of carrier density and temperature including many-body interactions. We study the effects of many-body interactions on these coefficients, as well as the nonlinearity of these coefficients for large-area VCSELs. The effects of mutual diffusions on carrier and temperature distributions in gain-guided VCSELs will be also presented.
Spatiotemporal pattern formation in a prey-predator model under environmental driving forces
NASA Astrophysics Data System (ADS)
Sirohi, Anuj Kumar; Banerjee, Malay; Chakraborti, Anirban
2015-09-01
Many existing studies on pattern formation in the reaction-diffusion systems rely on deterministic models. However, environmental noise is often a major factor which leads to significant changes in the spatiotemporal dynamics. In this paper, we focus on the spatiotemporal patterns produced by the predator-prey model with ratio-dependent functional response and density dependent death rate of predator. We get the reaction-diffusion equations incorporating the self-diffusion terms, corresponding to random movement of the individuals within two dimensional habitats, into the growth equations for the prey and predator population. In order to have the noise added model, small amplitude heterogeneous perturbations to the linear intrinsic growth rates are introduced using uncorrelated Gaussian white noise terms. For the noise added system, we then observe spatial patterns for the parameter values lying outside the Turing instability region. With thorough numerical simulations we characterize the patterns corresponding to Turing and Turing-Hopf domain and study their dependence on different system parameters like noise-intensity, etc.
Reactive transport in fractured porous media
NASA Astrophysics Data System (ADS)
Adler, P.; Jasinski, L.; Thovert, J.-F.; Mourzenko, V. V.
2012-04-01
Reactive flow through geological formations occurs in many situations due to human intervention or during natural processes. For instance, chemical dissolution and precipitation play a major role in diagenesis or in the formation of karsts. The quantitative description of the injection of a reacting fluid from a well into a fractured porous medium is also a subject of high interest. It can be provoked, as in the acidization stimulation technique for increasing well productivity, or accidental, in CO2 sequestration. Ideally, one wishes to analyze the improvements or damages caused by the fluid to the well itself and to its immediate surroundings. To this end, a coupled system of equations has to be solved. It includes the description of the flow in the porous matrix and in the fracture network by Darcy-like equations, and the description of the reactive solute transport and of the reactions which occur in the two structures. In addition, constitutive equations are required for the evolution of these two structures, such as evolution laws for permeability and reactivity as functions of porosity. Our discrete fracture numerical model involves three major steps. First, an unstructured tetrahedral mesh of the fractures and of the porous matrix is built. Second, the Darcy equations are discretized and solved, in a finite volume formulation. Third, the evolution of the solute concentration has to be calculated. This is the most difficult point if one wants to avoid numerical diffusion and accurately describe the transfers between the fractures and the matrix. A non linear flux limiting scheme of the Superbee type coupled with a systematic use of triple control volumes proved to be the most efficient. Various simple model situations have been considered, for validation purposes or to illustrate some physical points. In particular, it is shown that even when the matrix permeability is small and the flow is predominantly carried by the fracture network, convective exchanges still exist between the fractures and the matrix which can widely exceed diffusive ones and strongly affect the solute transport and its residence time distribution. Finally, simulations of passive and reactive solute transport have been performed in large samples containing percolating or non percolating fracture networks. Various parameters have been systematically investigated, including the transmissivity of the fractures, the flow regime characterized by Péclet numbers in the fractures and in the matrix, and the Damköhler numbers of the reaction process in the matrix and fractures. The passive transport behavior and the effect of the gradual clogging of the fractures and/or matrix pore space in the case of a precipitation process are analyzed.
Reactive flow in fractured porous media
NASA Astrophysics Data System (ADS)
Jasinski, L.; Thovert, J.; Mourzenko, V.; Adler, P. M.
2011-12-01
Reactive flow through geological formations occurs in many situations due to human intervention or during natural processes. For instance, chemical dissolution and precipitation play a major role in diagenesis or in the formation of karsts. The quantitative description of the injection of a reacting fluid from a well into a fractured porous medium is also a subject of high interest. It can be provoked, as in the acidization stimulation technique for increasing well productivity, or accidental, in CO2 sequestration. Ideally, one wishes to analyze the improvements or damages caused by the fluid to the well itself and to its immediate surroundings. To this end, a coupled system of equations has to be solved. It includes the description of the flow in the porous matrix and in the fracture network by Darcy-like equations, and the description of the reactive solute transport and of the reactions which occur in the two structures. In addition, constitutive equations are required for the evolution of these two structures, such as evolution laws for permeability and reactivity as functions of porosity. Our discrete fracture numerical model involves three major steps. First, an unstructured tetrahedral mesh of the fractures and of the porous matrix is built. Second, the Darcy equations are discretized and solved, in a finite volume formulation. Third, the evolution of the solute concentration has to be calculated. This is the most difficult point if one wants to avoid numerical diffusion and accurately describe the transfers between the fractures and the matrix. A non linear flux limiting scheme of the Superbee type coupled with a systematic use of triple control volumes proved to be the most efficient. Various simple model situations have been considered, for validation purposes or to illustrate some physical points. In particular, it is shown that even when the matrix permeability is small and the flow is predominantly carried by the fracture network, convective exchanges still exist between the fractures and the matrix which can widely exceed diffusive ones and strongly affect the solute transport and its residence time distribution. Finally, simulations of passive and reactive solute transport have been performed in large samples containing percolating or non percolating fracture networks. Various parameters have been systematically investigated, including the transmissivity of the fractures, the flow regime characterized by Péclet numbers in the fractures and in the matrix, and the Damköhler numbers of the reaction process in the matrix and fractures. The passive transport behavior and the effect of the gradual clogging of the fractures and/or matrix pore space in the case of a precipitation process are analyzed.
Ordinary differential equation for local accumulation time.
Berezhkovskii, Alexander M
2011-08-21
Cell differentiation in a developing tissue is controlled by the concentration fields of signaling molecules called morphogens. Formation of these concentration fields can be described by the reaction-diffusion mechanism in which locally produced molecules diffuse through the patterned tissue and are degraded. The formation kinetics at a given point of the patterned tissue can be characterized by the local accumulation time, defined in terms of the local relaxation function. Here, we show that this time satisfies an ordinary differential equation. Using this equation one can straightforwardly determine the local accumulation time, i.e., without preliminary calculation of the relaxation function by solving the partial differential equation, as was done in previous studies. We derive this ordinary differential equation together with the accompanying boundary conditions and demonstrate that the earlier obtained results for the local accumulation time can be recovered by solving this equation. © 2011 American Institute of Physics
NASA Astrophysics Data System (ADS)
Tuan, Nguyen Huy; Van Au, Vo; Khoa, Vo Anh; Lesnic, Daniel
2017-05-01
The identification of the population density of a logistic equation backwards in time associated with nonlocal diffusion and nonlinear reaction, motivated by biology and ecology fields, is investigated. The diffusion depends on an integral average of the population density whilst the reaction term is a global or local Lipschitz function of the population density. After discussing the ill-posedness of the problem, we apply the quasi-reversibility method to construct stable approximation problems. It is shown that the regularized solutions stemming from such method not only depend continuously on the final data, but also strongly converge to the exact solution in L 2-norm. New error estimates together with stability results are obtained. Furthermore, numerical examples are provided to illustrate the theoretical results.
Transition and separation process in brine channels formation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berti, Alessia, E-mail: alessia.berti@unibs.it; Bochicchio, Ivana, E-mail: ibochicchio@unisa.it; Fabrizio, Mauro, E-mail: mauro.fabrizio@unibo.it
2016-02-15
In this paper, we discuss the formation of brine channels in sea ice. The model includes a time-dependent Ginzburg-Landau equation for the solid-liquid phase change, a diffusion equation of the Cahn-Hilliard kind for the solute dynamics, and the heat equation for the temperature change. The macroscopic motion of the fluid is also considered, so the resulting differential system couples with the Navier-Stokes equation. The compatibility of this system with the thermodynamic laws and a maximum theorem is proved.
NASA Astrophysics Data System (ADS)
Ngau, Julie L.; Griffin, Peter B.; Plummer, James D.
2001-08-01
Recent work has indicated that the suppression of boron transient enhanced diffusion (TED) in carbon-rich Si is caused by nonequilibrium Si point defect concentrations, specifically the undersaturation of Si self-interstitials, that result from the coupled out-diffusion of carbon interstitials via the kick-out and Frank-Turnbull reactions. This study of boron TED reduction in Si1-x-yGexCy during 750 °C inert anneals has revealed that the use of an additional reaction that further reduces the Si self-interstitial concentration is necessary to describe accurately the time evolved diffusion behavior of boron. In this article, we present a comprehensive model which includes {311} defects, boron-interstitial clusters, a carbon kick-out reaction, a carbon Frank-Turnbull reaction, and a carbon interstitial-carbon substitutional (CiCs) pairing reaction that successfully simulates carbon suppression of boron TED at 750 °C for anneal times ranging from 10 s to 60 min.
Rethinking pattern formation in reaction-diffusion systems
NASA Astrophysics Data System (ADS)
Halatek, J.; Frey, E.
2018-05-01
The present theoretical framework for the analysis of pattern formation in complex systems is mostly limited to the vicinity of fixed (global) equilibria. Here we present a new theoretical approach to characterize dynamical states arbitrarily far from (global) equilibrium. We show that reaction-diffusion systems that are driven by locally mass-conserving interactions can be understood in terms of local equilibria of diffusively coupled compartments. Diffusive coupling generically induces lateral redistribution of the globally conserved quantities, and the variable local amounts of these quantities determine the local equilibria in each compartment. We find that, even far from global equilibrium, the system is well characterized by its moving local equilibria. We apply this framework to in vitro Min protein pattern formation, a paradigmatic model for biological pattern formation. Within our framework we can predict and explain transitions between chemical turbulence and order arbitrarily far from global equilibrium. Our results reveal conceptually new principles of self-organized pattern formation that may well govern diverse dynamical systems.
Two-time scale subordination in physical processes with long-term memory
NASA Astrophysics Data System (ADS)
Stanislavsky, Aleksander; Weron, Karina
2008-03-01
We describe dynamical processes in continuous media with a long-term memory. Our consideration is based on a stochastic subordination idea and concerns two physical examples in detail. First we study a temporal evolution of the species concentration in a trapping reaction in which a diffusing reactant is surrounded by a sea of randomly moving traps. The analysis uses the random-variable formalism of anomalous diffusive processes. We find that the empirical trapping-reaction law, according to which the reactant concentration decreases in time as a product of an exponential and a stretched exponential function, can be explained by a two-time scale subordination of random processes. Another example is connected with a state equation for continuous media with memory. If the pressure and the density of a medium are subordinated in two different random processes, then the ordinary state equation becomes fractional with two-time scales. This allows one to arrive at the Bagley-Torvik type of state equation.
Numerical analysis of heat treatment of TiCN coated AA7075 aluminium alloy
NASA Astrophysics Data System (ADS)
Srinath, M. K.; Prasad, M. S. Ganesha
2018-04-01
The Numerical analysis of heat treatments of TiCN coated AA7075 aluminium alloys is presented in this paper. The Convection-Diffusion-Reaction (CDR) equation with solutions in the Streamlined-Upward Petrov-Galerkin (SUPG) method for different parameters is provided for the understanding of the process. An experimental process to improve the surface properties of AA-7075 aluminium alloy was attempted through the coatings of TiCN and subsequent heat treatments. From the experimental process, optimized temperature and time was obtained which gave the maximum surface hardness and corrosion resistance. The paper gives an understanding and use of the CDR equation for application of the process. Expression to determine convection, diffusion and reaction parameters are provided which is used to obtain the overall expression of the heat treatment process. With the substitution of the optimized temperature and time, the governing equation may be obtained. Additionally, the total energy consumed during the heat treatment process is also developed to give a mathematical formulation of the energy consumed.
Reaction diffusion in the nickel-chromium-aluminum and cobalt-chromium-aluminum systems
NASA Technical Reports Server (NTRS)
Levine, S. R.
1977-01-01
The effects of MCrAl coating-substrate interdiffusion on oxidation life and the general mutliphase, multicomponent diffusion problem were examined. Semi-infinite diffusion couples that had sources representing coatings and sinks representing gas turbine alloys were annealed at 1,000, 1,095, 1,150, or 1,205 C for as long as 500 hours. The source and sink aluminum and chromium contents and the base metal (cobalt or nickel) determined the parabolic diffusion rate constants of the couples and predicted finite coating lives. The beta source strength concept provided a method (1) for correlating beta recession rate constants with composition; (2) for determining reliable average total, diffusion, and constitutional activation energies; and (3) for calculating interdiffusion coefficients.
Is the kinetic equation for turbulent gas-particle flows ill posed?
Reeks, M; Swailes, D C; Bragg, A D
2018-02-01
This paper is about the kinetic equation for gas-particle flows, in particular its well-posedness and realizability and its relationship to the generalized Langevin model (GLM) probability density function (PDF) equation. Previous analyses, e.g. [J.-P. Minier and C. Profeta, Phys. Rev. E 92, 053020 (2015)PLEEE81539-375510.1103/PhysRevE.92.053020], have concluded that this kinetic equation is ill posed, that in particular it has the properties of a backward heat equation, and as a consequence, its solution will in the course of time exhibit finite-time singularities. We show that this conclusion is fundamentally flawed because it ignores the coupling between the phase space variables in the kinetic equation and the time and particle inertia dependence of the phase space diffusion tensor. This contributes an extra positive diffusion that always outweighs the negative diffusion associated with the dispersion along one of the principal axes of the phase space diffusion tensor. This is confirmed by a numerical evaluation of analytic solutions of these positive and negative contributions to the particle diffusion coefficient along this principal axis. We also examine other erroneous claims and assumptions made in previous studies that demonstrate the apparent superiority of the GLM PDF approach over the kinetic approach. In so doing, we have drawn attention to the limitations of the GLM approach, which these studies have ignored or not properly considered, to give a more balanced appraisal of the benefits of both PDF approaches.
Drift-wave turbulence and zonal flow generation.
Balescu, R
2003-10-01
Drift-wave turbulence in a plasma is analyzed on the basis of the wave Liouville equation, describing the evolution of the distribution function of wave packets (quasiparticles) characterized by position x and wave vector k. A closed kinetic equation is derived for the ensemble-averaged part of this function by the methods of nonequilibrium statistical mechanics. It has the form of a non-Markovian advection-diffusion equation describing coupled diffusion processes in x and k spaces. General forms of the diffusion coefficients are obtained in terms of Lagrangian velocity correlations. The latter are calculated in the decorrelation trajectory approximation, a method recently developed for an accurate measure of the important trapping phenomena of particles in the rugged electrostatic potential. The analysis of individual decorrelation trajectories provides an illustration of the fragmentation of drift-wave structures in the radial direction and the generation of long-wavelength structures in the poloidal direction that are identified as zonal flows.
NASA Astrophysics Data System (ADS)
Mittal, Rajat; Seo, Jung Hee; Abd, Thura; George, Richard T.
2015-11-01
Patients recovering from myocardial infarction (MI) are considered at high-risk for cardioembolic stroke due to the formation of left ventricle thrombus (LVT). The formation of LVT is the result of a complex interplay between the fluid dynamics inside the ventricle and the chemistry of coagulation, and the role of LV flow pattern on the thrombogenesis was not well understood. The previous computational study performed with the model ventricles suggested that the local flow residence time is the key variable governing the accumulation of coagulation factors. In the present study, a coupled, chemo-fluidic computational modeling is applied to the patient-specific cases of infracted ventricles to investigate the interaction between the LV hemodynamics and thrombogensis. In collaboration with the Johns Hopkins hospital, patient-specific LV models are constructed using the multi-modality medical imaging data. Blood flow in the left ventricle is simulated by solving the incompressible Navier-Stokes equations and the biochemical reactions for the thrombus formation are modeled with convection-diffusion-reaction equations. The formation and deposition of key coagulation chemical factors are then correlated with the hemodynamic flow metrics to explore the biophysics underlying LVT risk. Supported by the Johns Hopkins Medicine Discovery Fund and NSF Grant: CBET-1511200, Computational resource by XSEDE NSF grant TG-CTS100002.
NASA Astrophysics Data System (ADS)
Akridis, Petros; Rigopoulos, Stelios
2017-01-01
A discretised population balance equation (PBE) is coupled with an in-house computational fluid dynamics (CFD) code in order to model soot formation in laminar diffusion flames. The unsteady Navier-Stokes, species and enthalpy transport equations and the spatially-distributed discretised PBE for the soot particles are solved in a coupled manner, together with comprehensive gas-phase chemistry and an optically thin radiation model, thus yielding the complete particle size distribution of the soot particles. Nucleation, surface growth and oxidation are incorporated into the PBE using an acetylene-based soot model. The potential of the proposed methodology is investigated by comparing with experimental results from the Santoro jet burner [Santoro, Semerjian and Dobbins, Soot particle measurements in diffusion flames, Combustion and Flame, Vol. 51 (1983), pp. 203-218; Santoro, Yeh, Horvath and Semerjian, The transport and growth of soot particles in laminar diffusion flames, Combustion Science and Technology, Vol. 53 (1987), pp. 89-115] for three laminar axisymmetric non-premixed ethylene flames: a non-smoking, an incipient smoking and a smoking flame. Overall, good agreement is observed between the numerical and the experimental results.
Non-Archimedean reaction-ultradiffusion equations and complex hierarchic systems
NASA Astrophysics Data System (ADS)
Zúñiga-Galindo, W. A.
2018-06-01
We initiate the study of non-Archimedean reaction-ultradiffusion equations and their connections with models of complex hierarchic systems. From a mathematical perspective, the equations studied here are the p-adic counterpart of the integro-differential models for phase separation introduced by Bates and Chmaj. Our equations are also generalizations of the ultradiffusion equations on trees studied in the 1980s by Ogielski, Stein, Bachas, Huberman, among others, and also generalizations of the master equations of the Avetisov et al models, which describe certain complex hierarchic systems. From a physical perspective, our equations are gradient flows of non-Archimedean free energy functionals and their solutions describe the macroscopic density profile of a bistable material whose space of states has an ultrametric structure. Some of our results are p-adic analogs of some well-known results in the Archimedean setting, however, the mechanism of diffusion is completely different due to the fact that it occurs in an ultrametric space.
Correspondence between discrete and continuous models of excitable media: trigger waves
NASA Technical Reports Server (NTRS)
Chernyak, Y. B.; Feldman, A. B.; Cohen, R. J.
1997-01-01
We present a theoretical framework for relating continuous partial differential equation (PDE) models of excitable media to discrete cellular automata (CA) models on a randomized lattice. These relations establish a quantitative link between the CA model and the specific physical system under study. We derive expressions for the CA model's plane wave speed, critical curvature, and effective diffusion constant in terms of the model's internal parameters (the interaction radius, excitation threshold, and time step). We then equate these expressions to the corresponding quantities obtained from solution of the PDEs (for a fixed excitability). This yields a set of coupled equations with a unique solution for the required CA parameter values. Here we restrict our analysis to "trigger" wave solutions obtained in the limiting case of a two-dimensional excitable medium with no recovery processes. We tested the correspondence between our CA model and two PDE models (the FitzHugh-Nagumo medium and a medium with a "sawtooth" nonlinear reaction source) and found good agreement with the numerical solutions of the PDEs. Our results suggest that the behavior of trigger waves is actually controlled by a small number of parameters.
NASA Astrophysics Data System (ADS)
Cooper, Fred; Dawson, John F.
2016-02-01
We present an alternative to the perturbative (in coupling constant) diagrammatic approach for studying stochastic dynamics of a class of reaction diffusion systems. Our approach is based on an auxiliary field loop expansion for the path integral representation for the generating functional of the noise induced correlation functions of the fields describing these systems. The systems we consider include Langevin systems describable by the set of self interacting classical fields ϕi(x , t) in the presence of external noise ηi(x , t) , namely (∂t - ν∇2) ϕ - F [ ϕ ] = η, as well as chemical reaction annihilation processes obtained by applying the many-body approach of Doi-Peliti to the Master Equation formulation of these problems. We consider two different effective actions, one based on the Onsager-Machlup (OM) approach, and the other due to Janssen-deGenneris based on the Martin-Siggia-Rose (MSR) response function approach. For the simple models we consider, we determine an analytic expression for the Energy landscape (effective potential) in both formalisms and show how to obtain the more physical effective potential of the Onsager-Machlup approach from the MSR effective potential in leading order in the auxiliary field loop expansion. For the KPZ equation we find that our approximation, which is non-perturbative and obeys broken symmetry Ward identities, does not lead to the appearance of a fluctuation induced symmetry breakdown. This contradicts the results of earlier studies.
Adaptive two-regime method: Application to front propagation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robinson, Martin, E-mail: martin.robinson@maths.ox.ac.uk; Erban, Radek, E-mail: erban@maths.ox.ac.uk; Flegg, Mark, E-mail: mark.flegg@monash.edu
2014-03-28
The Adaptive Two-Regime Method (ATRM) is developed for hybrid (multiscale) stochastic simulation of reaction-diffusion problems. It efficiently couples detailed Brownian dynamics simulations with coarser lattice-based models. The ATRM is a generalization of the previously developed Two-Regime Method [Flegg et al., J. R. Soc., Interface 9, 859 (2012)] to multiscale problems which require a dynamic selection of regions where detailed Brownian dynamics simulation is used. Typical applications include a front propagation or spatio-temporal oscillations. In this paper, the ATRM is used for an in-depth study of front propagation in a stochastic reaction-diffusion system which has its mean-field model given in termsmore » of the Fisher equation [R. Fisher, Ann. Eugen. 7, 355 (1937)]. It exhibits a travelling reaction front which is sensitive to stochastic fluctuations at the leading edge of the wavefront. Previous studies into stochastic effects on the Fisher wave propagation speed have focused on lattice-based models, but there has been limited progress using off-lattice (Brownian dynamics) models, which suffer due to their high computational cost, particularly at the high molecular numbers that are necessary to approach the Fisher mean-field model. By modelling only the wavefront itself with the off-lattice model, it is shown that the ATRM leads to the same Fisher wave results as purely off-lattice models, but at a fraction of the computational cost. The error analysis of the ATRM is also presented for a morphogen gradient model.« less
NASA Astrophysics Data System (ADS)
Zamani, K.; Bombardelli, F. A.
2014-12-01
Verification of geophysics codes is imperative to avoid serious academic as well as practical consequences. In case that access to any given source code is not possible, the Method of Manufactured Solution (MMS) cannot be employed in code verification. In contrast, employing the Method of Exact Solution (MES) has several practical advantages. In this research, we first provide four new one-dimensional analytical solutions designed for code verification; these solutions are able to uncover the particular imperfections of the Advection-diffusion-reaction equation, such as nonlinear advection, diffusion or source terms, as well as non-constant coefficient equations. After that, we provide a solution of Burgers' equation in a novel setup. Proposed solutions satisfy the continuity of mass for the ambient flow, which is a crucial factor for coupled hydrodynamics-transport solvers. Then, we use the derived analytical solutions for code verification. To clarify gray-literature issues in the verification of transport codes, we designed a comprehensive test suite to uncover any imperfection in transport solvers via a hierarchical increase in the level of tests' complexity. The test suite includes hundreds of unit tests and system tests to check vis-a-vis the portions of the code. Examples for checking the suite start by testing a simple case of unidirectional advection; then, bidirectional advection and tidal flow and build up to nonlinear cases. We design tests to check nonlinearity in velocity, dispersivity and reactions. The concealing effect of scales (Peclet and Damkohler numbers) on the mesh-convergence study and appropriate remedies are also discussed. For the cases in which the appropriate benchmarks for mesh convergence study are not available, we utilize symmetry. Auxiliary subroutines for automation of the test suite and report generation are designed. All in all, the test package is not only a robust tool for code verification but it also provides comprehensive insight on the ADR solvers capabilities. Such information is essential for any rigorous computational modeling of ADR equation for surface/subsurface pollution transport. We also convey our experiences in finding several errors which were not detectable with routine verification techniques.
Cryer, S A; Mann, R K; Erhardt-Zabik, S; Keeney, F N; Handy, P R
2001-06-01
Mathematical descriptors, coupled with experimental observations, are used to quantify differential uptake of an experimental herbicide in Japonica and Indica rice (Oryza sativa, non-target) and barnyardgrass (Echinochloa crus-galli, target). Partitioning, degradation, plant uptake and metabolism are described using mass-balance conservation equations in the form of kinetic approximations. Estimated environmental concentrations, governed by the pesticide formulation, are described using superimposed analytical solutions for the one-dimensional diffusion equation in spherical coordinates and by a finite difference representation of the two-dimensional diffusion equation in Cartesian coordinates. Formulation attributes from granules include active ingredient release rates, particle sizes, pesticide loading, and granule spacing. The diffusion model for pesticide transport is coupled with the compartment model to follow the fate and transport of a pesticide from its initial application location to various environmental matrices of interest. Formulation effects, partitioning and degradation in the various environmental matrices, differential plant uptake and metabolism, and dose-response information for plants are accounted for. This novel model provides a mechanism for selecting formulation delivery systems that optimize specific attributes (such as weed control or the therapeutic index) for risk-assessment procedures. In this report we describe how this methodology was used to explore the factors affecting herbicide efficacy and to define an optimal release rate for a granule formulation.
NASA Astrophysics Data System (ADS)
Adam, A. M. A.; Bashier, E. B. M.; Hashim, M. H. A.; Patidar, K. C.
2017-07-01
In this work, we design and analyze a fitted numerical method to solve a reaction-diffusion model with time delay, namely, a delayed version of a population model which is an extension of the logistic growth (LG) equation for a food-limited population proposed by Smith [F.E. Smith, Population dynamics in Daphnia magna and a new model for population growth, Ecology 44 (1963) 651-663]. Seeing that the analytical solution (in closed form) is hard to obtain, we seek for a robust numerical method. The method consists of a Fourier-pseudospectral semi-discretization in space and a fitted operator implicit-explicit scheme in temporal direction. The proposed method is analyzed for convergence and we found that it is unconditionally stable. Illustrative numerical results will be presented at the conference.
Fractional calculus and morphogen gradient formation
NASA Astrophysics Data System (ADS)
Yuste, Santos Bravo; Abad, Enrique; Lindenberg, Katja
2012-12-01
Some microscopic models for reactive systems where the reaction kinetics is limited by subdiffusion are described by means of reaction-subdiffusion equations where fractional derivatives play a key role. In particular, we consider subdiffusive particles described by means of a Continuous Time Random Walk (CTRW) model subject to a linear (first-order) death process. The resulting fractional equation is employed to study the developmental biology key problem of morphogen gradient formation for the case in which the morphogens are subdiffusive. If the morphogen degradation rate (reactivity) is constant, we find exponentially decreasing stationary concentration profiles, which are similar to the profiles found when the morphogens diffuse normally. However, for the case in which the degradation rate decays exponentially with the distance to the morphogen source, we find that the morphogen profiles are qualitatively different from the profiles obtained when the morphogens diffuse normally.
Fluctuation-enhanced electric conductivity in electrolyte solutions.
Péraud, Jean-Philippe; Nonaka, Andrew J; Bell, John B; Donev, Aleksandar; Garcia, Alejandro L
2017-10-10
We analyze the effects of an externally applied electric field on thermal fluctuations for a binary electrolyte fluid. We show that the fluctuating Poisson-Nernst-Planck (PNP) equations for charged multispecies diffusion coupled with the fluctuating fluid momentum equation result in enhanced charge transport via a mechanism distinct from the well-known enhancement of mass transport that accompanies giant fluctuations. Although the mass and charge transport occurs by advection by thermal velocity fluctuations, it can macroscopically be represented as electrodiffusion with renormalized electric conductivity and a nonzero cation-anion diffusion coefficient. Specifically, we predict a nonzero cation-anion Maxwell-Stefan coefficient proportional to the square root of the salt concentration, a prediction that agrees quantitatively with experimental measurements. The renormalized or effective macroscopic equations are different from the starting PNP equations, which contain no cross-diffusion terms, even for rather dilute binary electrolytes. At the same time, for infinitely dilute solutions the renormalized electric conductivity and renormalized diffusion coefficients are consistent and the classical PNP equations with renormalized coefficients are recovered, demonstrating the self-consistency of the fluctuating hydrodynamics equations. Our calculations show that the fluctuating hydrodynamics approach recovers the electrophoretic and relaxation corrections obtained by Debye-Huckel-Onsager theory, while elucidating the physical origins of these corrections and generalizing straightforwardly to more complex multispecies electrolytes. Finally, we show that strong applied electric fields result in anisotropically enhanced "giant" velocity fluctuations and reduced fluctuations of salt concentration.
Fluctuation-enhanced electric conductivity in electrolyte solutions
Péraud, Jean-Philippe; Nonaka, Andrew J.; Bell, John B.; Donev, Aleksandar; Garcia, Alejandro L.
2017-01-01
We analyze the effects of an externally applied electric field on thermal fluctuations for a binary electrolyte fluid. We show that the fluctuating Poisson–Nernst–Planck (PNP) equations for charged multispecies diffusion coupled with the fluctuating fluid momentum equation result in enhanced charge transport via a mechanism distinct from the well-known enhancement of mass transport that accompanies giant fluctuations. Although the mass and charge transport occurs by advection by thermal velocity fluctuations, it can macroscopically be represented as electrodiffusion with renormalized electric conductivity and a nonzero cation–anion diffusion coefficient. Specifically, we predict a nonzero cation–anion Maxwell–Stefan coefficient proportional to the square root of the salt concentration, a prediction that agrees quantitatively with experimental measurements. The renormalized or effective macroscopic equations are different from the starting PNP equations, which contain no cross-diffusion terms, even for rather dilute binary electrolytes. At the same time, for infinitely dilute solutions the renormalized electric conductivity and renormalized diffusion coefficients are consistent and the classical PNP equations with renormalized coefficients are recovered, demonstrating the self-consistency of the fluctuating hydrodynamics equations. Our calculations show that the fluctuating hydrodynamics approach recovers the electrophoretic and relaxation corrections obtained by Debye–Huckel–Onsager theory, while elucidating the physical origins of these corrections and generalizing straightforwardly to more complex multispecies electrolytes. Finally, we show that strong applied electric fields result in anisotropically enhanced “giant” velocity fluctuations and reduced fluctuations of salt concentration. PMID:28973890
Coupled Diffusion and Reaction Processes in Rock Matrices: Impact on Dilute Groundwater Plumes
2015-12-28
28 Figure 3.5.6 Plastic dish used for permanganate diffusion experiment ........................................ 32 Figure 3.6.5...Manganese profiles following permanganate experiments ................................... 78 Figure 4.4.4.3 Carbon profiles...Figure A.3 SEM images and EDS spectra of permanganate -reacted surfaces ........................... 107
Reaction-diffusion systems in natural sciences and new technology transfer
NASA Astrophysics Data System (ADS)
Keller, André A.
2012-12-01
Diffusion mechanisms in natural sciences and innovation management involve partial differential equations (PDEs). This is due to their spatio-temporal dimensions. Functional semi-discretized PDEs (with lattice spatial structures or time delays) may be even more adapted to real world problems. In the modeling process, PDEs can also formalize behaviors, such as the logistic growth of populations with migration, and the adopters’ dynamics of new products in innovation models. In biology, these events are related to variations in the environment, population densities and overcrowding, migration and spreading of humans, animals, plants and other cells and organisms. In chemical reactions, molecules of different species interact locally and diffuse. In the management of new technologies, the diffusion processes of innovations in the marketplace (e.g., the mobile phone) are a major subject. These innovation diffusion models refer mainly to epidemic models. This contribution introduces that modeling process by using PDEs and reviews the essential features of the dynamics and control in biological, chemical and new technology transfer. This paper is essentially user-oriented with basic nonlinear evolution equations, delay PDEs, several analytical and numerical methods for solving, different solutions, and with the use of mathematical packages, notebooks and codes. The computations are carried out by using the software Wolfram Mathematica®7, and C++ codes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tartakovsky, Alexandre M.; Trask, Nathaniel; Pan, K.
2016-03-11
Smoothed Particle Hydrodynamics (SPH) is a Lagrangian method based on a meshless discretization of partial differential equations. In this review, we present SPH discretization of the Navier-Stokes and Advection-Diffusion-Reaction equations, implementation of various boundary conditions, and time integration of the SPH equations, and we discuss applications of the SPH method for modeling pore-scale multiphase flows and reactive transport in porous and fractured media.
Hybrid finite element and Brownian dynamics method for diffusion-controlled reactions.
Bauler, Patricia; Huber, Gary A; McCammon, J Andrew
2012-04-28
Diffusion is often the rate determining step in many biological processes. Currently, the two main computational methods for studying diffusion are stochastic methods, such as Brownian dynamics, and continuum methods, such as the finite element method. This paper proposes a new hybrid diffusion method that couples the strengths of each of these two methods. The method is derived for a general multidimensional system, and is presented using a basic test case for 1D linear and radially symmetric diffusion systems.
Heat and Mass Transfer in an L Shaped Porous Medium
NASA Astrophysics Data System (ADS)
Salman Ahmed, N. J.; Azeem; Yunus Khan, T. M.
2017-08-01
This article is an extension to the heat transfer in L-shaped porous medium by including the mass diffusion. The heat and mass transfer in the porous domain is represented by three coupled partial differential equations representing the fluid movement, energy transport and mass transport. The equations are converted into algebraic form of equations by the application of finite element method that can be conveniently solved by matrix method. An iterative approach is adopted to solve the coupled equations by setting suitable convergence criterion. The results are discussed in terms of heat transfer characteristics influenced by physical parameters such as buoyancy ratio, Lewis number, Rayleigh number etc. It is found that these physical parameters have significant effect on heat and mass transfer behavior of L-shaped porous medium.
NASA Astrophysics Data System (ADS)
Inc, Mustafa; Yusuf, Abdullahi; Isa Aliyu, Aliyu; Hashemi, M. S.
2018-05-01
This paper studies the brusselator reaction diffusion model (BRDM) with time- and constant-dependent coefficients. The soliton solutions for BRDM with time-dependent coefficients are obtained via first integral (FIM), ansatz, and sine-Gordon expansion (SGEM) methods. Moreover, it is well known that stability analysis (SA), symmetry analysis and conservation laws (CLs) give several information for modelling a system of differential equations (SDE). This is because they can be used for investigating the internal properties, existence, uniqueness and integrability of different SDE. For this reason, we investigate the SA via linear stability technique, symmetry analysis and CLs for BRDM with constant-dependent coefficients in order to extract more physics and information on the governing equation. The constraint conditions for the existence of the solutions are also examined. The new solutions obtained in this paper can be useful for describing the concentrations of diffusion problems of the BRDM. It is shown that the examined dependent coefficients are some of the factors that are affecting the diffusion rate. So, the present paper provides much motivational information in comparison to the existing results in the literature.
Symmetrization of conservation laws with entropy for high-temperature hypersonic computations
NASA Technical Reports Server (NTRS)
Chalot, F.; Hughes, T. J. R.; Shakib, F.
1990-01-01
Results of Hughes, France, and Mallet are generalized to conservation law systems taking into account high-temperature effects. Symmetric forms of different equation sets are derived in terms of entropy variables. First, the case of a general divariant gas is studied; it can be specialized to the usual Navier-Stokes equations, as well as to situations where the gas is vibrationally excited, and undergoes equilibrium chemical reactions. The case of gas in thermochemical nonequilibrium is considered next. Transport phenomena, and in particular mass diffusion, are examined in the framework of symmetric advective-diffusive systems.
Pattern formation in diffusive excitable systems under magnetic flow effects
NASA Astrophysics Data System (ADS)
Mvogo, Alain; Takembo, Clovis N.; Ekobena Fouda, H. P.; Kofané, Timoléon C.
2017-07-01
We study the spatiotemporal formation of patterns in a diffusive FitzHugh-Nagumo network where the effect of electromagnetic induction has been introduced in the standard mathematical model by using magnetic flux, and the modulation of magnetic flux on membrane potential is realized by using memristor coupling. We use the multi-scale expansion to show that the system equations can be reduced to a single differential-difference nonlinear equation. The linear stability analysis is performed and discussed with emphasis on the impact of magnetic flux. It is observed that the effect of memristor coupling importantly modifies the features of modulational instability. Our analytical results are supported by the numerical experiments, which reveal that the improved model can lead to nonlinear quasi-periodic spatiotemporal patterns with some features of synchronization. It is observed also the generation of pulses and rhythmics behaviors like breathing or swimming which are important in brain researches.
Homogeneous-heterogeneous reactions in curved channel with porous medium
NASA Astrophysics Data System (ADS)
Hayat, T.; Ayub, Sadia; Alsaedi, A.
2018-06-01
Purpose of the present investigation is to examine the peristaltic flow through porous medium in a curved conduit. Problem is modeled for incompressible electrically conducting Ellis fluid. Influence of porous medium is tackled via modified Darcy's law. The considered model utilizes homogeneous-heterogeneous reactions with equal diffusivities for reactant and autocatalysis. Constitutive equations are formulated in the presence of viscous dissipation. Channel walls are compliant in nature. Governing equations are modeled and simplified under the assumptions of small Reynolds number and large wavelength. Graphical results for velocity, temperature, heat transfer coefficient and homogeneous-heterogeneous reaction parameters are examined for the emerging parameters entering into the problem. Results reveal an activation in both homogenous-heterogenous reaction effect and heat transfer rate with increasing curvature of the channel.
NASA Astrophysics Data System (ADS)
Zhokh, Alexey A.; Strizhak, Peter E.
2018-04-01
The solutions of the time-fractional diffusion equation for the short and long times are obtained via an application of the asymptotic Green's functions. The derived solutions are applied to analysis of the methanol mass transfer through H-ZSM-5/alumina catalyst grain. It is demonstrated that the methanol transport in the catalysts pores may be described by the obtained solutions in a fairly good manner. The measured fractional exponent is equal to 1.20 ± 0.02 and reveals the super-diffusive regime of the methanol mass transfer. The presence of the anomalous transport may be caused by geometrical restrictions and the adsorption process on the internal surface of the catalyst grain's pores.
Glimm, Tilmann; Zhang, Jianying; Shen, Yun-Qiu; Newman, Stuart A
2012-03-01
We investigate a reaction-diffusion system consisting of an activator and an inhibitor in a two-dimensional domain. There is a morphogen gradient in the domain. The production of the activator depends on the concentration of the morphogen. Mathematically, this leads to reaction-diffusion equations with explicitly space-dependent terms. It is well known that in the absence of an external morphogen, the system can produce either spots or stripes via the Turing bifurcation. We derive first-order expansions for the possible patterns in the presence of an external morphogen and show how both stripes and spots are affected. This work generalizes previous one-dimensional results to two dimensions. Specifically, we consider the quasi-one-dimensional case of a thin rectangular domain and the case of a square domain. We apply the results to a model of skeletal pattern formation in vertebrate limbs. In the framework of reaction-diffusion models, our results suggest a simple explanation for some recent experimental findings in the mouse limb which are much harder to explain in positional-information-type models.
Logarithmic Superdiffusion in Two Dimensional Driven Lattice Gases
NASA Astrophysics Data System (ADS)
Krug, J.; Neiss, R. A.; Schadschneider, A.; Schmidt, J.
2018-03-01
The spreading of density fluctuations in two-dimensional driven diffusive systems is marginally anomalous. Mode coupling theory predicts that the diffusivity in the direction of the drive diverges with time as (ln t)^{2/3} with a prefactor depending on the macroscopic current-density relation and the diffusion tensor of the fluctuating hydrodynamic field equation. Here we present the first numerical verification of this behavior for a particular version of the two-dimensional asymmetric exclusion process. Particles jump strictly asymmetrically along one of the lattice directions and symmetrically along the other, and an anisotropy parameter p governs the ratio between the two rates. Using a novel massively parallel coupling algorithm that strongly reduces the fluctuations in the numerical estimate of the two-point correlation function, we are able to accurately determine the exponent of the logarithmic correction. In addition, the variation of the prefactor with p provides a stringent test of mode coupling theory.
Endeward, Volker
2012-05-01
A mathematical model describing facilitation of O(2) diffusion by the diffusion of myoglobin and hemoglobin is presented. The equations are solved numerically by a finite-difference method for the conditions as they prevail in cardiac and skeletal muscle and in red cells without major simplifications. It is demonstrated that, in the range of intracellular diffusion distances, the degree of facilitation is limited by the rate of the chemical reaction between myglobin or hemoglobin and O(2). The results are presented in the form of relationships between the degree of facilitation and the length of the diffusion path on the basis of the known kinetics of the oxygenation-deoxygenation reactions. It is concluded that the limitation by reaction kinetics reduces the maximally possible facilitated oxygen diffusion in cardiomyoctes by ∼50% and in skeletal muscle fibers by ∼ 20%. For human red blood cells, a reduction of facilitated O(2) diffusion by 36% is obtained in agreement with previous reports. This indicates that, especially in cardiomyocytes and red cells, chemical equilibrium between myoglobin or hemoglobin and O(2) is far from being established, an assumption that previously has often been made. Although the "O(2) transport function" of myoglobin in cardiac muscle cells thus is severely limited by the chemical reaction kinetics, and to a lesser extent also in skeletal muscle, it is noteworthy that the speed of release of O(2) from MbO(2), the "storage function," is not limited by the reaction kinetics under physiological conditions.
Numerical simulation of artificial microswimmers driven by Marangoni flow
NASA Astrophysics Data System (ADS)
Stricker, L.
2017-10-01
In the present paper the behavior of a single artificial microswimmer is addressed, namely an active droplet moving by Marangoni flow. We provide a numerical treatment for the main factors playing a role in real systems, such as advection, diffusion and the presence of chemical species with different behaviors. The flow field inside and outside the droplet is modeled to account for the two-way coupling between the surrounding fluid and the motion of the swimmer. Mass diffusion is also taken into account. In particular, we consider two concentration fields: the surfactant concentration in the bulk, i.e. in the liquid surrounding the droplet, and the surfactant concentration on the surface. The latter is related to the local surface tension, through an equation of state (Langmuir equation). We examine different interaction mechanisms between the bulk and the surface concentration fields, namely the case of insoluble surfactants attached to the surface (no exchange between the bulk and the surface) and soluble surfactants with adsorption/desorption at the surface. We also consider the case where the bulk concentration field is in equilibrium with the content of the droplet. The numerical results are validated through comparison with analytical calculations. We show that our model can reproduce the typical pusher/puller behavior presented by squirmers. It is also able to capture the self-propulsion mechanism of droplets driven by Belousov-Zhabotinsky (BZ) reactions, as well as a typical chemotactic behavior.
A Radiation Chemistry Code Based on the Greens Functions of the Diffusion Equation
NASA Technical Reports Server (NTRS)
Plante, Ianik; Wu, Honglu
2014-01-01
Ionizing radiation produces several radiolytic species such as.OH, e-aq, and H. when interacting with biological matter. Following their creation, radiolytic species diffuse and chemically react with biological molecules such as DNA. Despite years of research, many questions on the DNA damage by ionizing radiation remains, notably on the indirect effect, i.e. the damage resulting from the reactions of the radiolytic species with DNA. To simulate DNA damage by ionizing radiation, we are developing a step-by-step radiation chemistry code that is based on the Green's functions of the diffusion equation (GFDE), which is able to follow the trajectories of all particles and their reactions with time. In the recent years, simulations based on the GFDE have been used extensively in biochemistry, notably to simulate biochemical networks in time and space and are often used as the "gold standard" to validate diffusion-reaction theories. The exact GFDE for partially diffusion-controlled reactions is difficult to use because of its complex form. Therefore, the radial Green's function, which is much simpler, is often used. Hence, much effort has been devoted to the sampling of the radial Green's functions, for which we have developed a sampling algorithm This algorithm only yields the inter-particle distance vector length after a time step; the sampling of the deviation angle of the inter-particle vector is not taken into consideration. In this work, we show that the radial distribution is predicted by the exact radial Green's function. We also use a technique developed by Clifford et al. to generate the inter-particle vector deviation angles, knowing the inter-particle vector length before and after a time step. The results are compared with those predicted by the exact GFDE and by the analytical angular functions for free diffusion. This first step in the creation of the radiation chemistry code should help the understanding of the contribution of the indirect effect in the formation of DNA damage and double-strand breaks.
Direct Coupling Method for Time-Accurate Solution of Incompressible Navier-Stokes Equations
NASA Technical Reports Server (NTRS)
Soh, Woo Y.
1992-01-01
A noniterative finite difference numerical method is presented for the solution of the incompressible Navier-Stokes equations with second order accuracy in time and space. Explicit treatment of convection and diffusion terms and implicit treatment of the pressure gradient give a single pressure Poisson equation when the discretized momentum and continuity equations are combined. A pressure boundary condition is not needed on solid boundaries in the staggered mesh system. The solution of the pressure Poisson equation is obtained directly by Gaussian elimination. This method is tested on flow problems in a driven cavity and a curved duct.
NASA Astrophysics Data System (ADS)
Patel, Ravi A.; Perko, Janez; Jacques, Diederik
2017-04-01
Often, especially in the disciplines related to natural porous media, such as for example vadoze zone or aquifer hydrology or contaminant transport, the relevant spatial and temporal scales on which we need to provide information is larger than the scale where the processes actually occur. Usual techniques used to deal with these problems assume the existence of a REV. However, in order to understand the behavior on larger scales it is important to downscale the problem onto the relevant scale of the processes. Due to the limitations of resources (time, memory) the downscaling can only be made up to the certain lower scale. At this lower scale still several scales may co-exist - the scale which can be explicitly described and a scale which needs to be conceptualized by effective properties. Hence, models which are supposed to provide effective properties on relevant scales should therefor be flexible enough to represent complex pore-structure by explicit geometry on one side, and differently defined processes (e.g. by the effective properties) which emerge on lower scale. In this work we present the state-of-the-art lattice Boltzmann method based simulation tool applicable to advection-diffusion equation coupled to geochemical processes. The lattice Boltzmann transport solver can be coupled with an external geochemical solver which allows to account for a wide range of geochemical reaction networks through thermodynamic databases. The applicability to multiphase systems is ongoing. We provide several examples related to the calculation of an effective diffusion properties, permeability and effective reaction rate based on a continuum scale based on the pore scale geometry.
NASA Astrophysics Data System (ADS)
Cui, Z.; Welty, C.; Maxwell, R. M.
2011-12-01
Lagrangian, particle-tracking models are commonly used to simulate solute advection and dispersion in aquifers. They are computationally efficient and suffer from much less numerical dispersion than grid-based techniques, especially in heterogeneous and advectively-dominated systems. Although particle-tracking models are capable of simulating geochemical reactions, these reactions are often simplified to first-order decay and/or linear, first-order kinetics. Nitrogen transport and transformation in aquifers involves both biodegradation and higher-order geochemical reactions. In order to take advantage of the particle-tracking approach, we have enhanced an existing particle-tracking code SLIM-FAST, to simulate nitrogen transport and transformation in aquifers. The approach we are taking is a hybrid one: the reactive multispecies transport process is operator split into two steps: (1) the physical movement of the particles including the attachment/detachment to solid surfaces, which is modeled by a Lagrangian random-walk algorithm; and (2) multispecies reactions including biodegradation are modeled by coupling multiple Monod equations with other geochemical reactions. The coupled reaction system is solved by an ordinary differential equation solver. In order to solve the coupled system of equations, after step 1, the particles are converted to grid-based concentrations based on the mass and position of the particles, and after step 2 the newly calculated concentration values are mapped back to particles. The enhanced particle-tracking code is capable of simulating subsurface nitrogen transport and transformation in a three-dimensional domain with variably saturated conditions. Potential application of the enhanced code is to simulate subsurface nitrogen loading to the Chesapeake Bay and its tributaries. Implementation details, verification results of the enhanced code with one-dimensional analytical solutions and other existing numerical models will be presented in addition to a discussion of implementation challenges.
Integrated Coupling of Surface and Subsurface Flow with HYDRUS-2D
NASA Astrophysics Data System (ADS)
Hartmann, Anne; Šimůnek, Jirka; Wöhling, Thomas; Schütze, Niels
2016-04-01
Describing interactions between surface and subsurface flow processes is important to adequately define water flow in natural systems. Since overland flow generation is highly influenced by rainfall and infiltration, both highly spatially heterogeneous processes, overland flow is unsteady and varies spatially. The prediction of overland flow needs to include an appropriate description of the interactions between the surface and subsurface flow. Coupling surface and subsurface water flow is a challenging task. Different approaches have been developed during the last few years, each having its own advantages and disadvantages. A new approach by Weill et al. (2009) to couple overland flow and subsurface flow based on a generalized Richards equation was implemented into the well-known subsurface flow model HYDRUS-2D (Šimůnek et al., 2011). This approach utilizes the one-dimensional diffusion wave equation to model overland flow. The diffusion wave model is integrated in HYDRUS-2D by replacing the terms of the Richards equation in a pre-defined runoff layer by terms defining the diffusion wave equation. Using this approach, pressure and flux continuity along the interface between both flow domains is provided. This direct coupling approach provides a strong coupling of both systems based on the definition of a single global system matrix to numerically solve the coupled flow problem. The advantage of the direct coupling approach, compared to the loosely coupled approach, is supposed to be a higher robustness, when many convergence problems can be avoided (Takizawa et al., 2014). The HYDRUS-2D implementation was verified using a) different test cases, including a direct comparison with the results of Weill et al. (2009), b) an analytical solution of the kinematic wave equation, and c) the results of a benchmark test of Maxwell et al. (2014), that included several known coupled surface subsurface flow models. Additionally, a sensitivity analysis evaluating the effects of various model parameters on simulated overland flow (while considering or neglecting the effects of subsurface flow) was carried out to verify the applicability of the model to different problems. The model produced reasonable results in describing the diffusion wave approximation and its interactions with subsurface flow processes. The model could handle coupled surface-subsurface processes for conditions involving runoff generated by infiltration excess, saturation excess, or run-on, as well as a combination of these runoff generating processes. Several standard features of the HYDRUS 2D model, such as root water uptake and evaporation from the soil surface, as well as evaporation from runoff layer, can still be considered by the new model. The code required relatively small time steps when overland flow was active, resulting in long simulation times, and sometimes produced poor mass balance. The model nevertheless showed potential to be a useful tool for addressing various issues related to irrigation research and to natural generation of overland flow at the hillslope scale. Maxwell, R., Putti, M., Meyerhoff, S., Delf, J., Ferguson, I., Ivanov, V., Kim, J., Kolditz, O., Kollet, S., Kumar, M., Lopez, S., Niu, J., Paniconi, C., Park, Y.-J., Phanikumar, M., Shen, C., Sudicky, E., and Sulis, M. (2014). Surface-subsurface model intercomparison: A first set of benchmark results to diagnose integrated hydrology and feedbacks. Water Resourc. Res., 50:1531-1549. Šimůnek, J., van Genuchten, M. T., and Šejna, M. (2011). The HYDRUS Software Package for Simulating Two- and Three-Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Media. Technical Manual, Version 2.0, PC Progress, Prague, Czech Republic. Takizawa, K., Bazilevs Y., Tezduyar, T. E., Long, C.C., Marsden, A. L. and Schjodt.K., Patient-Specific Cardiovascular Fluid Mechanics Analysis with the ST and ALE-VMS Method in Idelsohn, S. R. (2014). Numerical Simulations of Coupled Problems in Engineering. Springer. Weill, S., Mouche, E., and Patin, J. (2009). A generalized Richards equation for surface/subsurface flow modelling. Journal of Hydrology, 366:9-20.
Fast and accurate Monte Carlo sampling of first-passage times from Wiener diffusion models.
Drugowitsch, Jan
2016-02-11
We present a new, fast approach for drawing boundary crossing samples from Wiener diffusion models. Diffusion models are widely applied to model choices and reaction times in two-choice decisions. Samples from these models can be used to simulate the choices and reaction times they predict. These samples, in turn, can be utilized to adjust the models' parameters to match observed behavior from humans and other animals. Usually, such samples are drawn by simulating a stochastic differential equation in discrete time steps, which is slow and leads to biases in the reaction time estimates. Our method, instead, facilitates known expressions for first-passage time densities, which results in unbiased, exact samples and a hundred to thousand-fold speed increase in typical situations. In its most basic form it is restricted to diffusion models with symmetric boundaries and non-leaky accumulation, but our approach can be extended to also handle asymmetric boundaries or to approximate leaky accumulation.
NASA Astrophysics Data System (ADS)
Rajaram, H.; Arshadi, M.
2016-12-01
In-situ chemical oxidation (ISCO) is an effective strategy for remediation of DNAPL contamination in fractured rock. During ISCO, an oxidant (e.g. permanganate) is typically injected through fractures and is consumed by bimolecular reactions with DNAPLs such as TCE and natural organic matter in the fracture and the adjacent rock matrix. Under these conditions, moving reaction fronts form and propagate along the fracture and into the rock matrix. The propagation of these reaction fronts is strongly influenced by the heterogeneity/discontinuity across the fracture-matrix interface (advective transport dominates in the fractures, while diffusive transport dominates in the rock matrix). We present analytical solutions for the concentrations of the oxidant, TCE and natural organic matter; and the propagation of the reaction fronts in a fracture-matrix system. Our approximate analytical solutions assume advection and reaction dominate over diffusion/dispersion in the fracture and neglect the latter. Diffusion and reaction with both TCE and immobile natural organic matter in the rock matrix are considered. The behavior of the reaction-diffusion equations in the rock matrix is posed as a Stefan problem where the diffusing oxidant reacts with both diffusing (TCE) and immobile (natural organic matter) reductants. Our analytical solutions establish that the reaction fronts propagate diffusively (i.e. as the square root of time) in both the matrix and the fracture. Our analytical solutions agree very well with numerical simulations for the case of uniform advection in the fracture. We also present extensions of our analytical solutions to non-uniform flows in the fracture by invoking a travel-time transformation. The non-uniform flow solutions are relevant to field applications of ISCO. The approximate analytical solutions are relevant to a broad class of reactive transport problems in fracture-matrix systems where moving reaction fronts occur.
Chen, Juan; Cui, Baotong; Chen, YangQuan
2018-06-11
This paper presents a boundary feedback control design for a fractional reaction diffusion (FRD) system with a space-dependent (non-constant) diffusion coefficient via the backstepping method. The contribution of this paper is to generalize the results of backstepping-based boundary feedback control for a FRD system with a space-independent (constant) diffusion coefficient to the case of space-dependent diffusivity. For the boundary stabilization problem of this case, a designed integral transformation treats it as a problem of solving a hyperbolic partial differential equation (PDE) of transformation's kernel, then the well posedness of the kernel PDE is solved for the plant with non-constant diffusivity. Furthermore, by the fractional Lyapunov stability (Mittag-Leffler stability) theory and the backstepping-based boundary feedback controller, the Mittag-Leffler stability of the closed-loop FRD system with non-constant diffusivity is proved. Finally, an extensive numerical example for this closed-loop FRD system with non-constant diffusivity is presented to verify the effectiveness of our proposed controller. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Agrawal, Ajay K.; Yang, Tah-Teh
1993-01-01
This paper describes the 3D computations of a flow field in the compressor/combustor diffusers of an industrial gas turbine. The geometry considered includes components such as the combustor support strut, the transition piece and the impingement sleeve with discrete cooling air holes on its surface. Because the geometry was complex and 3D, the airflow path was divided into two computational domains sharing an interface region. The body-fitted grid was generated independently in each of the two domains. The governing equations for incompressible Navier-Stokes equations were solved using the finite volume approach. The results show that the flow in the prediffuser is strongly coupled with the flow in the dump diffuser and vice versa. The computations also revealed that the flow in the dump diffuser is highly nonuniform.
Reaction Rate of Small Diffusing Molecules on a Cylindrical Membrane
NASA Astrophysics Data System (ADS)
Straube, Ronny; Ward, Michael J.; Falcke, Martin
2007-10-01
Biomembranes consist of a lipid bi-layer into which proteins are embedded to fulfill numerous tasks in localized regions of the membrane. Often, the proteins have to reach these regions by simple diffusion. Motivated by the observation that IP3 receptor channels (IP3R) form clusters on the surface of the endoplasmic reticulum (ER) during ATP-induced calcium release, the reaction rate of small diffusing molecules on a cylindrical membrane is calculated based on the Smoluchowski approach. In this way, the cylindrical topology of the tubular ER is explicitly taken into account. The problem can be reduced to the solution of the diffusion equation on a finite cylindrical surface containing a small absorbing hole. The solution is constructed by matching appropriate `inner' and `outer' asymptotic expansions. The asymptotic results are compared with those from numerical simulations and excellent agreement is obtained. For realistic parameter sets, we find reaction rates in the range of experimentally measured clustering rates of IP3R. This supports the idea that clusters are formed by a purely diffusion limited process.
Reaction diffusion in the NiCrAl and CoCrAl systems
NASA Technical Reports Server (NTRS)
Levine, S. R.
1978-01-01
The paper assesses the effect of overlay coating and substrate composition on the kinetics of coating depletion by interdiffusion. This is accomplished by examining the constitution, kinetics and activation energies for a series of diffusion couples primarily of the NiCrAl/Ni-10Cr or CoCrAl/Ni-10Cr type annealed at temperatures in the range 1000-1205 C for times up to 500 hr. A general procedure is developed for analyzing diffusion in multicomponent multiphase systems. It is shown that by introducing the concept of beta-source strength, which can be determined from appropriate phase diagrams, the Wagner solution for consumption of a second phase in a semiinfinite couple is successfully applied to the analysis of MCrAl couples. Thus, correlation of beta-recession rate constants with couple composition, total and diffusional activation energies, and interdiffusion coefficients are determined.
Link between alginate reaction front propagation and general reaction diffusion theory.
Braschler, Thomas; Valero, Ana; Colella, Ludovica; Pataky, Kristopher; Brugger, Jürgen; Renaud, Philippe
2011-03-15
We provide a common theoretical framework reuniting specific models for the Ca(2+)-alginate system and general reaction diffusion theory along with experimental validation on a microfluidic chip. As a starting point, we use a set of nonlinear, partial differential equations that are traditionally solved numerically: the Mikkelsen-Elgsaeter model. Applying the traveling-wave hypothesis as a major simplification, we obtain an analytical solution. The solution indicates that the fundamental properties of the alginate reaction front are governed by a single dimensionless parameter λ. For small λ values, a large depletion zone accompanies the reaction front. For large λ values, the alginate reacts before having the time to diffuse significantly. We show that the λ parameter is of general importance beyond the alginate model system, as it can be used to classify known solutions for second-order reaction diffusion schemes, along with the novel solution presented here. For experimental validation, we develop a microchip model system, in which the alginate gel formation can be carried out in a highly controlled, essentially 1D environment. The use of a filter barrier enables us to rapidly renew the CaCl(2) solution, while maintaining flow speeds lower than 1 μm/s for the alginate compartment. This allows one to impose an exactly known bulk CaCl(2) concentration and diffusion resistance. This experimental model system, taken together with the theoretical development, enables the determination of the entire set of physicochemical parameters governing the alginate reaction front in a single experiment.
Numerical simulation of double‐diffusive finger convection
Hughes, Joseph D.; Sanford, Ward E.; Vacher, H. Leonard
2005-01-01
A hybrid finite element, integrated finite difference numerical model is developed for the simulation of double‐diffusive and multicomponent flow in two and three dimensions. The model is based on a multidimensional, density‐dependent, saturated‐unsaturated transport model (SUTRA), which uses one governing equation for fluid flow and another for solute transport. The solute‐transport equation is applied sequentially to each simulated species. Density coupling of the flow and solute‐transport equations is accounted for and handled using a sequential implicit Picard iterative scheme. High‐resolution data from a double‐diffusive Hele‐Shaw experiment, initially in a density‐stable configuration, is used to verify the numerical model. The temporal and spatial evolution of simulated double‐diffusive convection is in good agreement with experimental results. Numerical results are very sensitive to discretization and correspond closest to experimental results when element sizes adequately define the spatial resolution of observed fingering. Numerical results also indicate that differences in the molecular diffusivity of sodium chloride and the dye used to visualize experimental sodium chloride concentrations are significant and cause inaccurate mapping of sodium chloride concentrations by the dye, especially at late times. As a result of reduced diffusion, simulated dye fingers are better defined than simulated sodium chloride fingers and exhibit more vertical mass transfer.
Posterior quantum dynamics for a continuous diffusion observation of a coherent channel
NASA Astrophysics Data System (ADS)
Dąbrowska, Anita; Staszewski, Przemysław
2012-11-01
We present the Belavkin filtering equation for the intense balanced heterodyne detection in a unitary model of an indirect observation. The measuring apparatus modelled by a Bose field is initially prepared in a coherent state and the observed process is a diffusion one. We prove that this filtering equation is relaxing: any initial square-integrable function tends asymptotically to a coherent state with an amplitude depending on the coupling constant and the initial state of the apparatus. The time-development of a squeezed coherent state is studied and compared with the previous results obtained for the measuring apparatus prepared initially in the vacuum state.
Numerical solution of the time fractional reaction-diffusion equation with a moving boundary
NASA Astrophysics Data System (ADS)
Zheng, Minling; Liu, Fawang; Liu, Qingxia; Burrage, Kevin; Simpson, Matthew J.
2017-06-01
A fractional reaction-diffusion model with a moving boundary is presented in this paper. An efficient numerical method is constructed to solve this moving boundary problem. Our method makes use of a finite difference approximation for the temporal discretization, and spectral approximation for the spatial discretization. The stability and convergence of the method is studied, and the errors of both the semi-discrete and fully-discrete schemes are derived. Numerical examples, motivated by problems from developmental biology, show a good agreement with the theoretical analysis and illustrate the efficiency of our method.
Cookbook asymptotics for spiral and scroll waves in excitable media.
Margerit, Daniel; Barkley, Dwight
2002-09-01
Algebraic formulas predicting the frequencies and shapes of waves in a reaction-diffusion model of excitable media are presented in the form of four recipes. The formulas themselves are based on a detailed asymptotic analysis (published elsewhere) of the model equations at leading order and first order in the asymptotic parameter. The importance of the first order contribution is stressed throughout, beginning with a discussion of the Fife limit, Fife scaling, and Fife regime. Recipes are given for spiral waves and detailed comparisons are presented between the asymptotic predictions and the solutions of the full reaction-diffusion equations. Recipes for twisted scroll waves with straight filaments are given and again comparisons are shown. The connection between the asymptotic results and filament dynamics is discussed, and one of the previously unknown coefficients in the theory of filament dynamics is evaluated in terms of its asymptotic expansion. (c) 2002 American Institute of Physics.
Cookbook asymptotics for spiral and scroll waves in excitable media
NASA Astrophysics Data System (ADS)
Margerit, Daniel; Barkley, Dwight
2002-09-01
Algebraic formulas predicting the frequencies and shapes of waves in a reaction-diffusion model of excitable media are presented in the form of four recipes. The formulas themselves are based on a detailed asymptotic analysis (published elsewhere) of the model equations at leading order and first order in the asymptotic parameter. The importance of the first order contribution is stressed throughout, beginning with a discussion of the Fife limit, Fife scaling, and Fife regime. Recipes are given for spiral waves and detailed comparisons are presented between the asymptotic predictions and the solutions of the full reaction-diffusion equations. Recipes for twisted scroll waves with straight filaments are given and again comparisons are shown. The connection between the asymptotic results and filament dynamics is discussed, and one of the previously unknown coefficients in the theory of filament dynamics is evaluated in terms of its asymptotic expansion.
Guiding brine shrimp through mazes by solving reaction diffusion equations
NASA Astrophysics Data System (ADS)
Singal, Krishma; Fenton, Flavio
Excitable systems driven by reaction diffusion equations have been shown to not only find solutions to mazes but to also to find the shortest path between the beginning and the end of the maze. In this talk we describe how we can use the Fitzhugh-Nagumo model, a generic model for excitable media, to solve a maze by varying the basin of attraction of its two fixed points. We demonstrate how two dimensional mazes are solved numerically using a Java Applet and then accelerated to run in real time by using graphic processors (GPUs). An application of this work is shown by guiding phototactic brine shrimp through a maze solved by the algorithm. Once the path is obtained, an Arduino directs the shrimp through the maze using lights from LEDs placed at the floor of the Maze. This method running in real time could be eventually used for guiding robots and cars through traffic.
Minimal wave speed for a class of non-cooperative reaction-diffusion systems of three equations
NASA Astrophysics Data System (ADS)
Zhang, Tianran
2017-05-01
In this paper, we study the traveling wave solutions and minimal wave speed for a class of non-cooperative reaction-diffusion systems consisting of three equations. Based on the eigenvalues, a pair of upper-lower solutions connecting only the invasion-free equilibrium are constructed and the Schauder's fixed-point theorem is applied to show the existence of traveling semi-fronts for an auxiliary system. Then the existence of traveling semi-fronts of original system is obtained by limit arguments. The traveling semi-fronts are proved to connect another equilibrium if natural birth and death rates are not considered and to be persistent if these rates are incorporated. Then non-existence of bounded traveling semi-fronts is obtained by two-sided Laplace transform. Then the above results are applied to some disease-transmission models and a predator-prey model.
Dynamical patterns and regime shifts in the nonlinear model of soil microorganisms growth
NASA Astrophysics Data System (ADS)
Zaitseva, Maria; Vladimirov, Artem; Winter, Anna-Marie; Vasilyeva, Nadezda
2017-04-01
Dynamical model of soil microorganisms growth and turnover is formulated as a system of nonlinear partial differential equations of reaction-diffusion type. We consider spatial distributions of concentrations of several substrates and microorganisms. Biochemical reactions are modelled by chemical kinetic equations. Transport is modelled by simple linear diffusion for all chemical substances, while for microorganisms we use different transport functions, e.g. some of them can actively move along gradient of substrate concentration, while others cannot move. We solve our model in two dimensions, starting from uniform state with small initial perturbations for various parameters and find parameter range, where small initial perturbations grow and evolve. We search for bifurcation points and critical regime shifts in our model and analyze time-space profile and phase portraits of these solutions approaching critical regime shifts in the system, exploring possibility to detect such shifts in advance. This work is supported by NordForsk, project #81513.
Gurevich, Svetlana V
2014-10-28
The dynamics of a single breathing localized structure in a three-component reaction-diffusion system subjected to time-delayed feedback is investigated. It is shown that variation of the delay time and the feedback strength can lead either to stabilization of the breathing or to delay-induced periodic or quasi-periodic oscillations of the localized structure. A bifurcation analysis of the system in question is provided and an order parameter equation is derived that describes the dynamics of the localized structure in the vicinity of the Andronov-Hopf bifurcation. With the aid of this equation, the boundaries of the stabilization domains as well as the dependence of the oscillation radius on delay parameters can be explicitly derived, providing a robust mechanism to control the behaviour of the breathing localized structure in a straightforward manner. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
DREAM3D simulations of inner-belt dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cunningham, Gregory Scott
2015-05-26
A 1973 paper by Lyons and Thorne explains the two-belt structure for electrons in the inner magnetosphere as a balance between inward radial diffusion and loss to the atmosphere, where the loss to the atmosphere is enabled by pitch-angle scattering from Coulomb and wave-particle interactions. In the 1973 paper, equilibrium solutions to a decoupled set of 1D radial diffusion equations, one for each value of the first invariant of motion, μ, were computed to produce the equilibrium two-belt structure. Each 1D radial diffusion equation incorporated an L-and μ-dependent `lifetime' due to the Coulomb and wave-particle interactions. This decoupling of themore » problem is appropriate under the assumption that radial diffusion is slow in comparison to pitch-angle scattering. However, for some values of μ and L the lifetime associated with pitch-angle scattering is comparable to the timescale associated with radial diffusion, suggesting that the true equilibrium solutions might reflect `coupled modes' involving pitch-angle scattering and radial diffusion and thus requiring a 3D diffusion model. In the work we show here, we have computed the equilibrium solutions using our 3D diffusion model, DREAM3D, that allows for such coupling. We find that the 3D equilibrium solutions are quite similar to the solutions shown in the 1973 paper when we use the same physical models for radial diffusion and pitch-angle scattering from hiss. However, we show that the equilibrium solutions are quite sensitive to various aspects of the physics model employed in the 1973 paper that can be improved, suggesting that additional work needs to be done to understand the two-belt structure.« less
The weak coupling limit as a quantum functional central limit
NASA Astrophysics Data System (ADS)
Accardi, L.; Frigerio, A.; Lu, Y. G.
1990-08-01
We show that, in the weak coupling limit, the laser model process converges weakly in the sense of the matrix elements to a quantum diffusion whose equation is explicitly obtained. We prove convergence, in the same sense, of the Heisenberg evolution of an observable of the system to the solution of a quantum Langevin equation. As a corollary of this result, via the quantum Feynman-Kac technique, one can recover previous results on the quantum master equation for reduced evolutions of open systems. When applied to some particular model (e.g. the free Boson gas) our results allow to interpret the Lamb shift as an Ito correction term and to express the pumping rates in terms of quantities related to the original Hamiltonian model.
Hypervelocity atmospheric flight: Real gas flow fields
NASA Technical Reports Server (NTRS)
Howe, John T.
1990-01-01
Flight in the atmosphere is examined from the viewpoint of including real gas phenomena in the flow field about a vehicle flying at hypervelocity. That is to say, the flow field is subject not only to compressible phenomena, but is dominated by energetic phenomena. There are several significant features of such a flow field. Spatially, its composition can vary by both chemical and elemental species. The equations which describe the flow field include equations of state and mass, species, elemental, and electric charge continuity; momentum; and energy equations. These are nonlinear, coupled, partial differential equations that were reduced to a relatively compact set of equations of a self-consistent manner (which allows mass addition at the surface at a rate comparable to the free-stream mass flux). The equations and their inputs allow for transport of these quantities relative to the mass-averaged behavior of the flow field. Thus transport of mass by chemical, thermal, pressure, and forced diffusion; transport of momentum by viscosity; and transport of energy by conduction, chemical considerations, viscosity, and radiative transfer are included. The last of these complicate the set of equations by making the energy equation a partial integrodifferential equation. Each phenomenon is considered and represented mathematically by one or more developments. The coefficients which pertain are both thermodynamically and chemically dependent. Solutions of the equations are presented and discussed in considerable detail, with emphasis on severe energetic flow fields. For hypervelocity flight in low-density environments where gaseous reactions proceed at finite rates, chemical nonequilibrium is considered and some illustrations are presented. Finally, flight where the flow field may be out of equilibrium, both chemically and thermodynamically, is presented briefly.
Hypervelocity atmospheric flight: Real gas flow fields
NASA Technical Reports Server (NTRS)
Howe, John T.
1989-01-01
Flight in the atmosphere is examined from the viewpoint of including real gas phenomena in the flow field about a vehicle flying at hypervelocity. That is to say, the flow field is subject not only to compressible phenomena, but is dominated by energetic phenomena. There are several significant features of such a flow field. Spatially, its composition can vary by both chemical and elemental species. The equations which describe the flow field include equations of state and mass, species, elemental, and electric charge continuity; momentum; and energy equations. These are nonlinear, coupled, partial differential equations that have been reduced to a relatively compact set of equations in a self-consistent manner (which allows mass addition at the surface at a rate comparable to the free-stream mass flux). The equations and their inputs allow for transport of these quantities relative to the mass-average behavior of the flow field. Thus transport of mass by chemical, thermal, pressure, and forced diffusion; transport of momentum by viscosity; and transport of energy by conduction, chemical considerations, viscosity, and radiative transfer are included. The last of these complicate the set of equations by making the energy equations a partial integrodifferential equation. Each phenomenon is considered and represented mathematically by one or more developments. The coefficients which pertain are both thermodynamically and chemically dependent. Solutions of the equations are presented and discussed in considerable detail, with emphasis on severe energetic flow fields. Hypervelocity flight in low-density environments where gaseous reactions proceed at finite rates chemical nonequilibrium is considered, and some illustrations are presented. Finally, flight where the flow field may be out of equilibrium, both chemically and thermodynamically, is presented briefly.
Excitation of turbulence by density waves
NASA Technical Reports Server (NTRS)
Tichen, C. M.
1985-01-01
A nonlinear system describes the microdynamical state of turbulence that is excited by density waves. It consists of an equation of propagation and a master equation. A group-scaling generates the scaled equations of many interacting groups of distribution functions. The two leading groups govern the transport processes of evolution and eddy diffusivity. The remaining sub-groups represent the relaxation for the approach of diffusivity to equilibrium. In strong turbulence, the sub-groups disperse themselves and the ensemble acts like a medium that offers an effective damping to close the hierarchy. The kinetic equation of turbulence is derived. It calculates the eddy viscosity and identifies the effective damping of the assumed medium self-consistently. It formulates the coupling mechanism for the intensification of the turbulent energy at the expense of the wave energy, and the transfer mechanism for the cascade. The spectra of velocity and density fluctuations find the power law k sup-2 and k sup-4, respectively.
NASA Astrophysics Data System (ADS)
Ancey, Christophe; Bohorquez, Patricio; Heyman, Joris
2016-04-01
The advection-diffusion equation arises quite often in the context of sediment transport, e.g., for describing time and space variations in the particle activity (the solid volume of particles in motion per unit streambed area). Stochastic models can also be used to derive this equation, with the significant advantage that they provide information on the statistical properties of particle activity. Stochastic models are quite useful when sediment transport exhibits large fluctuations (typically at low transport rates), making the measurement of mean values difficult. We develop an approach based on birth-death Markov processes, which involves monitoring the evolution of the number of particles moving within an array of cells of finite length. While the topic has been explored in detail for diffusion-reaction systems, the treatment of advection has received little attention. We show that particle advection produces nonlocal effects, which are more or less significant depending on the cell size and particle velocity. Albeit nonlocal, these effects look like (local) diffusion and add to the intrinsic particle diffusion (dispersal due to velocity fluctuations), with the important consequence that local measurements depend on both the intrinsic properties of particle displacement and the dimensions of the measurement system.
Nonlinear Chemical Dynamics and Synchronization
NASA Astrophysics Data System (ADS)
Li, Ning
Alan Turing's work on morphogenesis, more than half a century ago, continues to motivate and inspire theoretical and experimental biologists even today. That said, there are very few experimental systems for which Turing's theory is applicable. In this thesis we present an experimental reaction-diffusion system ideally suited for testing Turing's ideas in synthetic "cells" consisting of microfluidically produced surfactant-stabilized emulsions in which droplets containing the Belousov-Zhabotinsky (BZ) oscillatory chemical reactants are dispersed in oil. The BZ reaction has become the prototype of nonlinear dynamics in chemistry and a preferred system for exploring the behavior of coupled nonlinear oscillators. Our system consists of a surfactant stabilized monodisperse emulsion of drops of aqueous BZ solution dispersed in a continuous phase of oil. In contrast to biology, here the chemistry is understood, rate constants are measured and interdrop coupling is purely diffusive. We explore a large set of parameters through control of rate constants, drop size, spacing, and spatial arrangement of the drops in lines and rings in one-dimension (1D) and hexagonal arrays in two-dimensions (2D). The Turing model is regarded as a metaphor for morphogenesis in biology but not for prediction. Here, we develop a quantitative and falsifiable reaction-diffusion model that we experimentally test with synthetic cells. We quantitatively establish the extent to which the Turing model in 1D describes both stationary pattern formation and temporal synchronization of chemical oscillators via reaction-diffusion and in 2D demonstrate that chemical morphogenesis drives physical differentiation in synthetic cells.
Heat Diffusion in Gases, Including Effects of Chemical Reaction
NASA Technical Reports Server (NTRS)
Hansen, C. Frederick
1960-01-01
The diffusion of heat through gases is treated where the coefficients of thermal conductivity and diffusivity are functions of temperature. The diffusivity is taken proportional to the integral of thermal conductivity, where the gas is ideal, and is considered constant over the temperature interval in which a chemical reaction occurs. The heat diffusion equation is then solved numerically for a semi-infinite gas medium with constant initial and boundary conditions. These solutions are in a dimensionless form applicable to gases in general, and they are used, along with measured shock velocity and heat flux through a shock reflecting surface, to evaluate the integral of thermal conductivity for air up to 5000 degrees Kelvin. This integral has the properties of a heat flux potential and replaces temperature as the dependent variable for problems of heat diffusion in media with variable coefficients. Examples are given in which the heat flux at the stagnation region of blunt hypersonic bodies is expressed in terms of this potential.
NASA Astrophysics Data System (ADS)
Ylilammi, Markku; Ylivaara, Oili M. E.; Puurunen, Riikka L.
2018-05-01
The conformality of thin films grown by atomic layer deposition (ALD) is studied using all-silicon test structures with long narrow lateral channels. A diffusion model, developed in this work, is used for studying the propagation of ALD growth in narrow channels. The diffusion model takes into account the gas transportation at low pressures, the dynamic Langmuir adsorption model for the film growth and the effect of channel narrowing due to film growth. The film growth is calculated by solving the diffusion equation with surface reactions. An efficient analytic approximate solution of the diffusion equation is developed for fitting the model to the measured thickness profile. The fitting gives the equilibrium constant of adsorption and the sticking coefficient. This model and Gordon's plug flow model are compared. The simulations predict the experimental measurement results quite well for Al2O3 and TiO2 ALD processes.
Fluctuation-enhanced electric conductivity in electrolyte solutions
Péraud, Jean-Philippe; Nonaka, Andrew J.; Bell, John B.; ...
2017-09-26
In this work, we analyze the effects of an externally applied electric field on thermal fluctuations for a binary electrolyte fluid. We show that the fluctuating Poisson–Nernst–Planck (PNP) equations for charged multispecies diffusion coupled with the fluctuating fluid momentum equation result in enhanced charge transport via a mechanism distinct from the well-known enhancement of mass transport that accompanies giant fluctuations. Although the mass and charge transport occurs by advection by thermal velocity fluctuations, it can macroscopically be represented as electrodiffusion with renormalized electric conductivity and a nonzero cation–anion diffusion coefficient. Specifically, we predict a nonzero cation–anion Maxwell– Stefan coefficient proportionalmore » to the square root of the salt concentration, a prediction that agrees quantitatively with experimental measurements. The renormalized or effective macroscopic equations are different from the starting PNP equations, which contain no cross-diffusion terms, even for rather dilute binary electrolytes. At the same time, for infinitely dilute solutions the renormalized electric conductivity and renormalized diffusion coefficients are consistent and the classical PNP equations with renormalized coefficients are recovered, demonstrating the self-consistency of the fluctuating hydrodynamics equations. Our calculations show that the fluctuating hydrodynamics approach recovers the electrophoretic and relaxation corrections obtained by Debye–Huckel–Onsager theory, while elucidating the physical origins of these corrections and generalizing straightforwardly to more complex multispecies electrolytes. Lastly, we show that strong applied electric fields result in anisotropically enhanced “giant” velocity fluctuations and reduced fluctuations of salt concentration.« less
Fluctuation-enhanced electric conductivity in electrolyte solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Péraud, Jean-Philippe; Nonaka, Andrew J.; Bell, John B.
In this work, we analyze the effects of an externally applied electric field on thermal fluctuations for a binary electrolyte fluid. We show that the fluctuating Poisson–Nernst–Planck (PNP) equations for charged multispecies diffusion coupled with the fluctuating fluid momentum equation result in enhanced charge transport via a mechanism distinct from the well-known enhancement of mass transport that accompanies giant fluctuations. Although the mass and charge transport occurs by advection by thermal velocity fluctuations, it can macroscopically be represented as electrodiffusion with renormalized electric conductivity and a nonzero cation–anion diffusion coefficient. Specifically, we predict a nonzero cation–anion Maxwell– Stefan coefficient proportionalmore » to the square root of the salt concentration, a prediction that agrees quantitatively with experimental measurements. The renormalized or effective macroscopic equations are different from the starting PNP equations, which contain no cross-diffusion terms, even for rather dilute binary electrolytes. At the same time, for infinitely dilute solutions the renormalized electric conductivity and renormalized diffusion coefficients are consistent and the classical PNP equations with renormalized coefficients are recovered, demonstrating the self-consistency of the fluctuating hydrodynamics equations. Our calculations show that the fluctuating hydrodynamics approach recovers the electrophoretic and relaxation corrections obtained by Debye–Huckel–Onsager theory, while elucidating the physical origins of these corrections and generalizing straightforwardly to more complex multispecies electrolytes. Lastly, we show that strong applied electric fields result in anisotropically enhanced “giant” velocity fluctuations and reduced fluctuations of salt concentration.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Ying; Field, Kevin G; Allen, Todd R.
2015-09-01
Irradiation-assisted stress corrosion cracking (IASCC) of austenitic stainless steels in Light Water Reactor (LWR) components has been linked to changes in grain boundary composition due to irradiation induced segregation (RIS). This work developed a robust RIS modeling tool to account for thermodynamics and kinetics of the atom and defect transportation under combined thermal and radiation conditions. The diffusion flux equations were based on the Perks model formulated through the linear theory of the thermodynamics of irreversible processes. Both cross and non-cross phenomenological diffusion coefficients in the flux equations were considered and correlated to tracer diffusion coefficients through Manning’s relation. Themore » preferential atomvacancy coupling was described by the mobility model, whereas the preferential atom-interstitial coupling was described by the interstitial binding model. The composition dependence of the thermodynamic factor was modeled using the CALPHAD approach. Detailed analysis on the diffusion fluxes near and at grain boundaries of irradiated austenitic stainless steels suggested the dominant diffusion mechanism for chromium and iron is via vacancy, while that for nickel can swing from the vacancy to the interstitial dominant mechanism. The diffusion flux in the vicinity of a grain boundary was found to be greatly influenced by the composition gradient formed from the transient state, leading to the oscillatory behavior of alloy compositions in this region. This work confirms that both vacancy and interstitial diffusion, and segregation itself, have important roles in determining the microchemistry of Fe, Cr, and Ni at irradiated grain boundaries in austenitic stainless steels.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohamed, M. Shadi, E-mail: m.s.mohamed@durham.ac.uk; Seaid, Mohammed; Trevelyan, Jon
2013-10-15
We investigate the effectiveness of the partition-of-unity finite element method for transient conduction–radiation problems in diffusive grey media. The governing equations consist of a semi-linear transient heat equation for the temperature field and a stationary diffusion approximation to the radiation in grey media. The coupled equations are integrated in time using a semi-implicit method in the finite element framework. We show that for the considered problems, a combination of hyperbolic and exponential enrichment functions based on an approximation of the boundary layer leads to improved accuracy compared to the conventional finite element method. It is illustrated that this approach canmore » be more efficient than using h adaptivity to increase the accuracy of the finite element method near the boundary walls. The performance of the proposed partition-of-unity method is analyzed on several test examples for transient conduction–radiation problems in two space dimensions.« less
The Dynamic Mutation Characteristics of Thermonuclear Reaction in Tokamak
Li, Jing; Quan, Tingting; Zhang, Wei; Deng, Wei
2014-01-01
The stability and bifurcations of multiple limit cycles for the physical model of thermonuclear reaction in Tokamak are investigated in this paper. The one-dimensional Ginzburg-Landau type perturbed diffusion equations for the density of the plasma and the radial electric field near the plasma edge in Tokamak are established. First, the equations are transformed to the average equations with the method of multiple scales and the average equations turn to be a Z 2-symmetric perturbed polynomial Hamiltonian system of degree 5. Then, with the bifurcations theory and method of detection function, the qualitative behavior of the unperturbed system and the number of the limit cycles of the perturbed system for certain groups of parameter are analyzed. At last, the stability of the limit cycles is studied and the physical meaning of Tokamak equations under these parameter groups is given. PMID:24892099
NASA Astrophysics Data System (ADS)
Insfrán, J. F.; Ubal, S.; Di Paolo, y. J.
2016-04-01
A simplified model of a proximal convoluted tubule of an average human nephron is presented. The model considers the 2D axisymmetric flow of the luminal solution exchanging matter with the tubule walls and the peritubular fluid by means of 0D models for the epithelial cells. The tubule radius is considered to vary along the conduit due to the trans-epithelial pressure difference. The fate of more than ten typical solutes is tracked down by the model. The Navier-Stokes and Reaction-Diffusion-Advection equations (considering the electro-neutrality principle) are solved in the lumen, giving a detailed picture of the velocity, pressure and concentration fields, along with trans-membrane fluxes and tubule deformation, via coupling with the 0D model for the tubule wall. The calculations are carried out numerically by means of the finite element method. The results obtained show good agreement with those published by other authors using models that ignore the diffusive transport and disregard a detailed calculation of velocity, pressure and concentrations. This work should be seen as a first approach towards the development of a more comprehensive model of the filtration process taking place in the kidneys, which ultimately helps in devising a device that can mimic/complement the renal function.
Boundary-induced pattern formation from uniform temporal oscillation
NASA Astrophysics Data System (ADS)
Kohsokabe, Takahiro; Kaneko, Kunihiko
2018-04-01
Pattern dynamics triggered by fixing a boundary is investigated. By considering a reaction-diffusion equation that has a unique spatially uniform and limit cycle attractor under a periodic or Neumann boundary condition, and then by choosing a fixed boundary condition, we found three novel phases depending on the ratio of diffusion constants of activator to inhibitor: transformation of temporally periodic oscillation into a spatially periodic fixed pattern, travelling wave emitted from the boundary, and aperiodic spatiotemporal dynamics. The transformation into a fixed, periodic pattern is analyzed by crossing of local nullclines at each spatial point, shifted by diffusion terms, as is analyzed by using recursive equations, to obtain the spatial pattern as an attractor. The generality of the boundary-induced pattern formation as well as its relevance to biological morphogenesis is discussed.
Explicit spatiotemporal simulation of receptor-G protein coupling in rod cell disk membranes.
Schöneberg, Johannes; Heck, Martin; Hofmann, Klaus Peter; Noé, Frank
2014-09-02
Dim-light vision is mediated by retinal rod cells. Rhodopsin (R), a G-protein-coupled receptor, switches to its active form (R(∗)) in response to absorbing a single photon and activates multiple copies of the G-protein transducin (G) that trigger further downstream reactions of the phototransduction cascade. The classical assumption is that R and G are uniformly distributed and freely diffusing on disk membranes. Recent experimental findings have challenged this view by showing specific R architectures, including RG precomplexes, nonuniform R density, specific R arrangements, and immobile fractions of R. Here, we derive a physical model that describes the first steps of the photoactivation cascade in spatiotemporal detail and single-molecule resolution. The model was implemented in the ReaDDy software for particle-based reaction-diffusion simulations. Detailed kinetic in vitro experiments are used to parametrize the reaction rates and diffusion constants of R and G. Particle diffusion and G activation are then studied under different conditions of R-R interaction. It is found that the classical free-diffusion model is consistent with the available kinetic data. The existence of precomplexes between inactive R and G is only consistent with the data if these precomplexes are weak, with much larger dissociation rates than suggested elsewhere. Microarchitectures of R, such as dimer racks, would effectively immobilize R but have little impact on the diffusivity of G and on the overall amplification of the cascade at the level of the G protein. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Reactions between palladium and gallium arsenide: Bulk versus thin-film studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, J.; Hsieh, K.; Schulz, K.J.
1988-01-01
Reactions between Pd and GaAs have been studied using bulk-diffusion couples of Pd (approx.0.6 mm thick)/GaAs and thin-film Pd (50 and 160 nm)/GaAs samples. The sequence of phase formation at 600 /sup 0/C between bulk Pd and GaAs was established. Initial formation of the solution phase ..mu.. and the ternary phase T does not represent the stable configuration. The stable configuration is GaAs chemically bondepsilonchemically bondlambdachemically bond..gamma..chemically bond..nu..chemically bondPd and is termed the diffusion path between GaAs and Pd. The sequence of phase formation for the bulk-diffusion couples is similar at 500 /sup 0/C. Phase formation for the thin-film Pd/GaAsmore » specimens was studied at 180, 220, 250, 300, 350, 400, 450, 600, and 1000 /sup 0/C for various annealing times. The sequence of phase formation obtained from the thin-film experiments is rationalized readily from the known ternary phase equilibria of Ga--Pd--As and the results from the bulk-diffusion couples of Pd/GaAs. The thin-film results reported in the literature are likewise rationalized. The diffusion path concept provides a useful guide in understanding the phase formation in Pd--GaAs interface or any other M--GaAs interface. This information is important in designing a uniform, stable contact for the metallization of GaAs.« less
NASA Technical Reports Server (NTRS)
Cho, S. Y.; Yetter, R. A.; Dryer, F. L.
1992-01-01
Various chemically reacting flow problems highlighting chemical and physical fundamentals rather than flow geometry are presently investigated by means of a comprehensive mathematical model that incorporates multicomponent molecular diffusion, complex chemistry, and heterogeneous processes, in the interest of obtaining sensitivity-related information. The sensitivity equations were decoupled from those of the model, and then integrated one time-step behind the integration of the model equations, and analytical Jacobian matrices were applied to improve the accuracy of sensitivity coefficients that are calculated together with model solutions.
Spatial Stochastic Intracellular Kinetics: A Review of Modelling Approaches.
Smith, Stephen; Grima, Ramon
2018-05-21
Models of chemical kinetics that incorporate both stochasticity and diffusion are an increasingly common tool for studying biology. The variety of competing models is vast, but two stand out by virtue of their popularity: the reaction-diffusion master equation and Brownian dynamics. In this review, we critically address a number of open questions surrounding these models: How can they be justified physically? How do they relate to each other? How do they fit into the wider landscape of chemical models, ranging from the rate equations to molecular dynamics? This review assumes no prior knowledge of modelling chemical kinetics and should be accessible to a wide range of readers.
Analysis of the discontinuous Galerkin method applied to the European option pricing problem
NASA Astrophysics Data System (ADS)
Hozman, J.
2013-12-01
In this paper we deal with a numerical solution of a one-dimensional Black-Scholes partial differential equation, an important scalar nonstationary linear convection-diffusion-reaction equation describing the pricing of European vanilla options. We present a derivation of the numerical scheme based on the space semidiscretization of the model problem by the discontinuous Galerkin method with nonsymmetric stabilization of diffusion terms and with the interior and boundary penalty. The main attention is paid to the investigation of a priori error estimates for the proposed scheme. The appended numerical experiments illustrate the theoretical results and the potency of the method, consequently.
NASA Technical Reports Server (NTRS)
Hilst, G. R.; Contiliano, R. M.
1973-01-01
The sensitivity of the coupled chemistry/diffusion model's outputs to a wide range of variation of the model's independent variables has been investigated. It is shown that the efficiency with which the now catalytic cycle destroys ambient O3 is extremely sensitive to the amount of NO emitted and to the relative rates of turbulent diffusion and chemical reactions. For representative conditions in the stratosphere, a tenfold variation of either the turbulence intensity or the reaction rate constant or the source strength can vary the efficiency from 1% to 50%. If the duration of Phase 3 is a significant fraction of the total residence time of the plume, then these efficiency variations can alter O3 depletion rates by more than a factor of two. These results, therefore, point toward those variables which must be accurately defined or measured if one is to adequately predict the effect of SST operations on the ambient inventory of O3 in the lower stratosphere.
Diffusional limits to the consumption of atmospheric methane by soils
Striegl, Robert G.
1993-01-01
Net transport of atmospheric gases into and out of soil systems is primarily controlled by diffusion along gas partial pressure gradients. Gas fluxes between soil and the atmosphere can therefore be estimated by a generalization of the equation for ordinary gaseous diffusion in porous unsaturated media. Consumption of CH4 by methylotrophic bacteria in the top several centimeters of soil causes the uptake of atmospheric CH4 by aerated soils. The capacity of the methylotrophs to consume CH4 commonly exceeds the potential of CH4 to diffuse from the atmosphere to the consumers. The maximum rate of uptake of atmospheric CH4 by soil is, therefore, limited by diffusion and can be calculated from soil physical properties and the CH4 concentration gradient. The CH4 concentration versus depth profile is theoretically described by the equation for gaseous diffusion with homogeneous chemical reaction in porous unsaturated media. This allows for calculation of the in situ rate of CH4 consumption within specified depth intervals.
Multi-dimensional multi-species modeling of transient electrodeposition in LIGA microfabrication.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evans, Gregory Herbert; Chen, Ken Shuang
2004-06-01
This report documents the efforts and accomplishments of the LIGA electrodeposition modeling project which was headed by the ASCI Materials and Physics Modeling Program. A multi-dimensional framework based on GOMA was developed for modeling time-dependent diffusion and migration of multiple charged species in a dilute electrolyte solution with reduction electro-chemical reactions on moving deposition surfaces. By combining the species mass conservation equations with the electroneutrality constraint, a Poisson equation that explicitly describes the electrolyte potential was derived. The set of coupled, nonlinear equations governing species transport, electric potential, velocity, hydrodynamic pressure, and mesh motion were solved in GOMA, using themore » finite-element method and a fully-coupled implicit solution scheme via Newton's method. By treating the finite-element mesh as a pseudo solid with an arbitrary Lagrangian-Eulerian formulation and by repeatedly performing re-meshing with CUBIT and re-mapping with MAPVAR, the moving deposition surfaces were tracked explicitly from start of deposition until the trenches were filled with metal, thus enabling the computation of local current densities that potentially influence the microstructure and frictional/mechanical properties of the deposit. The multi-dimensional, multi-species, transient computational framework was demonstrated in case studies of two-dimensional nickel electrodeposition in single and multiple trenches, without and with bath stirring or forced flow. Effects of buoyancy-induced convection on deposition were also investigated. To further illustrate its utility, the framework was employed to simulate deposition in microscreen-based LIGA molds. Lastly, future needs for modeling LIGA electrodeposition are discussed.« less
Hellander, Andreas; Lawson, Michael J; Drawert, Brian; Petzold, Linda
2015-01-01
The efficiency of exact simulation methods for the reaction-diffusion master equation (RDME) is severely limited by the large number of diffusion events if the mesh is fine or if diffusion constants are large. Furthermore, inherent properties of exact kinetic-Monte Carlo simulation methods limit the efficiency of parallel implementations. Several approximate and hybrid methods have appeared that enable more efficient simulation of the RDME. A common feature to most of them is that they rely on splitting the system into its reaction and diffusion parts and updating them sequentially over a discrete timestep. This use of operator splitting enables more efficient simulation but it comes at the price of a temporal discretization error that depends on the size of the timestep. So far, existing methods have not attempted to estimate or control this error in a systematic manner. This makes the solvers hard to use for practitioners since they must guess an appropriate timestep. It also makes the solvers potentially less efficient than if the timesteps are adapted to control the error. Here, we derive estimates of the local error and propose a strategy to adaptively select the timestep when the RDME is simulated via a first order operator splitting. While the strategy is general and applicable to a wide range of approximate and hybrid methods, we exemplify it here by extending a previously published approximate method, the Diffusive Finite-State Projection (DFSP) method, to incorporate temporal adaptivity. PMID:26865735
Mehala, N; Rajendran, L; Meena, V
2017-02-01
A mathematical model developed by Abdekhodaie and Wu (J Membr Sci 335:21-31, 2009), which describes a dynamic process involving an enzymatic reaction and diffusion of reactants and product inside glucose-sensitive composite membrane has been discussed. This theoretical model depicts a system of non-linear non-steady state reaction diffusion equations. These equations have been solved using new approach of homotopy perturbation method and analytical solutions pertaining to the concentrations of glucose, oxygen, and gluconic acid are derived. These analytical results are compared with the numerical results, and limiting case results for steady state conditions and a good agreement is observed. The influence of various kinetic parameters involved in the model has been presented graphically. Theoretical evaluation of the kinetic parameters like the maximal reaction velocity (V max ) and Michaelis-Menten constants for glucose and oxygen (K g and K ox ) is also reported. This predicted model is very much useful for designing the glucose-responsive composite membranes for closed-loop insulin delivery.
NASA Astrophysics Data System (ADS)
Jing, Ze; Yong, Huadong; Zhou, Youhe
2018-05-01
In this paper, vortex dynamics of superconducting thin films are numerically investigated by the generalized time-dependent Ginzburg–Landau (TDGL) theory. Interactions between vortex motion and the motion induced energy dissipation is considered by solving the coupled TDGL equation and the heat diffusion equation. It is found that thermal coupling has significant effects on the vortex dynamics of superconducting thin films. Branching in the vortex penetration path originates from the coupling between vortex motion and the motion induced energy dissipation. In addition, the environment temperature, the magnetic field ramp rate and the geometry of the superconducting film also greatly influence the vortex dynamic behaviors. Our results provide new insights into the dynamics of superconducting vortices, and give a mesoscopic understanding on the channeling and branching of vortex penetration paths during flux avalanches.
NASA Astrophysics Data System (ADS)
Ancey, C.; Bohorquez, P.; Heyman, J.
2015-12-01
The advection-diffusion equation is one of the most widespread equations in physics. It arises quite often in the context of sediment transport, e.g., for describing time and space variations in the particle activity (the solid volume of particles in motion per unit streambed area). Phenomenological laws are usually sufficient to derive this equation and interpret its terms. Stochastic models can also be used to derive it, with the significant advantage that they provide information on the statistical properties of particle activity. These models are quite useful when sediment transport exhibits large fluctuations (typically at low transport rates), making the measurement of mean values difficult. Among these stochastic models, the most common approach consists of random walk models. For instance, they have been used to model the random displacement of tracers in rivers. Here we explore an alternative approach, which involves monitoring the evolution of the number of particles moving within an array of cells of finite length. Birth-death Markov processes are well suited to this objective. While the topic has been explored in detail for diffusion-reaction systems, the treatment of advection has received no attention. We therefore look into the possibility of deriving the advection-diffusion equation (with a source term) within the framework of birth-death Markov processes. We show that in the continuum limit (when the cell size becomes vanishingly small), we can derive an advection-diffusion equation for particle activity. Yet while this derivation is formally valid in the continuum limit, it runs into difficulty in practical applications involving cells or meshes of finite length. Indeed, within our stochastic framework, particle advection produces nonlocal effects, which are more or less significant depending on the cell size and particle velocity. Albeit nonlocal, these effects look like (local) diffusion and add to the intrinsic particle diffusion (dispersal due to velocity fluctuations), with the important consequence that local measurements depend on both the intrinsic properties of particle displacement and the dimensions of the measurement system.
Theoretical study of reactive and nonreactive turbulent coaxial jets
NASA Technical Reports Server (NTRS)
Gupta, R. N.; Wakelyn, N. T.
1976-01-01
The hydrodynamic properties and the reaction kinetics of axisymmetric coaxial turbulent jets having steady mean quantities are investigated. From the analysis, limited to free turbulent boundary layer mixing of such jets, it is found that the two-equation model of turbulence is adequate for most nonreactive flows. For the reactive flows, where an allowance must be made for second order correlations of concentration fluctuations in the finite rate chemistry for initially inhomogeneous mixture, an equation similar to the concentration fluctuation equation of a related model is suggested. For diffusion limited reactions, the eddy breakup model based on concentration fluctuations is found satisfactory and simple to use. The theoretical results obtained from these various models are compared with some of the available experimental data.
MESOSCOPIC MODELING OF STOCHASTIC REACTION-DIFFUSION KINETICS IN THE SUBDIFFUSIVE REGIME
BLANC, EMILIE; ENGBLOM, STEFAN; HELLANDER, ANDREAS; LÖTSTEDT, PER
2017-01-01
Subdiffusion has been proposed as an explanation of various kinetic phenomena inside living cells. In order to fascilitate large-scale computational studies of subdiffusive chemical processes, we extend a recently suggested mesoscopic model of subdiffusion into an accurate and consistent reaction-subdiffusion computational framework. Two different possible models of chemical reaction are revealed and some basic dynamic properties are derived. In certain cases those mesoscopic models have a direct interpretation at the macroscopic level as fractional partial differential equations in a bounded time interval. Through analysis and numerical experiments we estimate the macroscopic effects of reactions under subdiffusive mixing. The models display properties observed also in experiments: for a short time interval the behavior of the diffusion and the reaction is ordinary, in an intermediate interval the behavior is anomalous, and at long times the behavior is ordinary again. PMID:29046618
Viscosity and diffusivity in melts: from unary to multicomponent systems
NASA Astrophysics Data System (ADS)
Chen, Weimin; Zhang, Lijun; Du, Yong; Huang, Baiyun
2014-05-01
Viscosity and diffusivity, two important transport coefficients, are systematically investigated from unary melt to binary to multicomponent melts in the present work. By coupling with Kaptay's viscosity equation of pure liquid metals and effective radii of diffusion species, the Sutherland equation is modified by taking the size effect into account, and further derived into an Arrhenius formula for the convenient usage. Its reliability for predicting self-diffusivity and impurity diffusivity in unary liquids is then validated by comparing the calculated self-diffusivities and impurity diffusivities in liquid Al- and Fe-based alloys with the experimental and the assessed data. Moreover, the Kozlov model was chosen among various viscosity models as the most reliable one to reproduce the experimental viscosities in binary and multicomponent melts. Based on the reliable viscosities calculated from the Kozlov model, the modified Sutherland equation is utilized to predict the tracer diffusivities in binary and multicomponent melts, and validated in Al-Cu, Al-Ni and Al-Ce-Ni melts. Comprehensive comparisons between the calculated results and the literature data indicate that the experimental tracer diffusivities and the theoretical ones can be well reproduced by the present calculations. In addition, the vacancy-wind factor in binary liquid Al-Ni alloys with the increasing temperature is also discussed. What's more, the calculated inter-diffusivities in liquid Al-Cu, Al-Ni and Al-Ag-Cu alloys are also in excellent agreement with the measured and theoretical data. Comparisons between the simulated concentration profiles and the measured ones in Al-Cu, Al-Ce-Ni and Al-Ag-Cu melts are further used to validate the present calculation method.
Effective electrodiffusion equation for non-uniform nanochannels.
Marini Bettolo Marconi, Umberto; Melchionna, Simone; Pagonabarraga, Ignacio
2013-06-28
We derive a one-dimensional formulation of the Planck-Nernst-Poisson equation to describe the dynamics of a symmetric binary electrolyte in channels whose section is nanometric and varies along the axial direction. The approach is in the spirit of the Fick-Jacobs diffusion equation and leads to a system of coupled equations for the partial densities which depends on the charge sitting at the walls in a non-trivial fashion. We consider two kinds of non-uniformities, those due to the spatial variation of charge distribution and those due to the shape variation of the pore and report one- and three-dimensional solutions of the electrokinetic equations.
An electromechanical based deformable model for soft tissue simulation.
Zhong, Yongmin; Shirinzadeh, Bijan; Smith, Julian; Gu, Chengfan
2009-11-01
Soft tissue deformation is of great importance to surgery simulation. Although a significant amount of research efforts have been dedicated to simulating the behaviours of soft tissues, modelling of soft tissue deformation is still a challenging problem. This paper presents a new deformable model for simulation of soft tissue deformation from the electromechanical viewpoint of soft tissues. Soft tissue deformation is formulated as a reaction-diffusion process coupled with a mechanical load. The mechanical load applied to a soft tissue to cause a deformation is incorporated into the reaction-diffusion system, and consequently distributed among mass points of the soft tissue. Reaction-diffusion of mechanical load and non-rigid mechanics of motion are combined to govern the simulation dynamics of soft tissue deformation. An improved reaction-diffusion model is developed to describe the distribution of the mechanical load in soft tissues. A three-layer artificial cellular neural network is constructed to solve the reaction-diffusion model for real-time simulation of soft tissue deformation. A gradient based method is established to derive internal forces from the distribution of the mechanical load. Integration with a haptic device has also been achieved to simulate soft tissue deformation with haptic feedback. The proposed methodology does not only predict the typical behaviours of living tissues, but it also accepts both local and large-range deformations. It also accommodates isotropic, anisotropic and inhomogeneous deformations by simple modification of diffusion coefficients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zieba, P.; Gust, W.
1999-07-09
The morphology and kinetics of the discontinuous precipitation (DP) and discontinuous dissolution (DD) reactions have been studied in a Ni-4 at.% Sn alloy. High spatial resolution energy-dispersive X-ray microanalysis has been used to determine the Sn concentration profiles left behind the moving reaction front for the individual cells of the Sn-depleted [alpha] lamellae and Ni[sub 3]Sn compound. These data, combined with the local values of the reaction front velocity and the thickness of the [alpha]lamellae, have been used to evaluate the local s[delta]D[sub b] values (D[sub b] is the grain-boundary chemical diffusion coefficient, [delta] is the grain-boundary thickness and smore » is the segregation factor). The obtained results have been compared with those calculated by the global approach to the DP and DD reactions, which is relevant for the whole population of the cells. It has been shown that the application of the local characterization of the DP and DD reactions removes essentially the differences between the s[delta]D[sub b] values calculated by the Petermann-Hornbogen equation and the equations of Cahn and Zieba-Pawlowski. Moreover, both sets of data do not show any substantial differences from the s[delta]D[sub b] values obtained from measurements of the tracer diffusion of tin along stationary grain boundaries in nickel.« less
Substitutional and Interstitial Diffusion in alpha2-Ti3Al(O)
NASA Technical Reports Server (NTRS)
Copland, Evan; Young, David J.; Gleeson, Brian; Jacobson, Nathan
2007-01-01
The reaction between Al2O3 and alpha2-Ti3Al was studied with a series of Al2O3/alpha2-Ti3Al multiphase diffusion couples annealed at 900, 1000 and 1100 C. The diffusion-paths were found to strongly depend on alpha2- Ti3Al(O) composition. For alloys with low oxygen concentrations the reaction involved the reduction of Al2O3, the formation of a gamma-TiAl reaction-layer and diffusion of Al and O into the alpha2-Ti3Al substrate. Measured concentration profiles across the interaction-zone showed "up-hill" diffusion of O in alpha2-Ti3Al(O) indicating a significant thermodynamic interaction between O and Al, Ti or both. Diffusion coefficients for the interstitial O in alpha2-Ti3Al(O) were determined independently from the interdiffusion of Ti and Al on the substitutional lattice. Diffusion coefficients are reported for alpha2-Ti3Al(O) as well as gamma-TiAl. Interpretation of the results were aided with the subsequent measurement of the activities of Al, Ti and O in alpha 2-Ti3Al(O) by Knudsen effusion-cell mass spectrometry.
EFFECTS OF TURBULENCE AND ELECTROHYDRODYAMICS ON THE PERFORMANCE OF ELECTROSTATIC PRECIPITATORS
Numerical simulations of the turbulent diffusion equation coupled with the electrohydrodynamics (EHD) are carried out for the plate-plate and wire-plate ESPs. The local particle concentration profiles and fractional collection efficiencies have been evaluated as a function of thr...
NASA Astrophysics Data System (ADS)
Plante, Ianik; Devroye, Luc
2015-09-01
Several computer codes simulating chemical reactions in particles systems are based on the Green's functions of the diffusion equation (GFDE). Indeed, many types of chemical systems have been simulated using the exact GFDE, which has also become the gold standard for validating other theoretical models. In this work, a simulation algorithm is presented to sample the interparticle distance for partially diffusion-controlled reversible ABCD reaction. This algorithm is considered exact for 2-particles systems, is faster than conventional look-up tables and uses only a few kilobytes of memory. The simulation results obtained with this method are compared with those obtained with the independent reaction times (IRT) method. This work is part of our effort in developing models to understand the role of chemical reactions in the radiation effects on cells and tissues and may eventually be included in event-based models of space radiation risks. However, as many reactions are of this type in biological systems, this algorithm might play a pivotal role in future simulation programs not only in radiation chemistry, but also in the simulation of biochemical networks in time and space as well.
Lagrangian numerical methods for ocean biogeochemical simulations
NASA Astrophysics Data System (ADS)
Paparella, Francesco; Popolizio, Marina
2018-05-01
We propose two closely-related Lagrangian numerical methods for the simulation of physical processes involving advection, reaction and diffusion. The methods are intended to be used in settings where the flow is nearly incompressible and the Péclet numbers are so high that resolving all the scales of motion is unfeasible. This is commonplace in ocean flows. Our methods consist in augmenting the method of characteristics, which is suitable for advection-reaction problems, with couplings among nearby particles, producing fluxes that mimic diffusion, or unresolved small-scale transport. The methods conserve mass, obey the maximum principle, and allow to tune the strength of the diffusive terms down to zero, while avoiding unwanted numerical dissipation effects.
Effects of non-unity Lewis numbers in diffusion flames
NASA Technical Reports Server (NTRS)
Linan, A.; Orlandi, P.; Verzicco, R.; Higuera, F. J.
1994-01-01
The purpose of this work is to carry out direct numerical simulations of diffusion controlled combustion with non-unity Lewis numbers for the reactants and products, thus accounting for the differential diffusion effects of the temperature and concentration fields. We use a formulation based on combining the conservation equations in a way to eliminate the reaction terms similar to the method used by Burke and Schumann (1928) for unity Lewis numbers. We present calculations for an axisymmetric fuel jet and for a planar, time evolving mixing layer, leaving out the effects of thermal expansion and variations of the transport coefficients due to the heat release. Our results show that the front of the flame shifts toward the fuel or oxygen sides owing to the effect of the differential diffusion and that the location of maximum temperature may not coincide with the flame. The dependence of the distribution of the reaction products on their Lewis number has been investigated.
Fluctuating chemohydrodynamics and the stochastic motion of self-diffusiophoretic particles
NASA Astrophysics Data System (ADS)
Gaspard, Pierre; Kapral, Raymond
2018-04-01
The propulsion of active particles by self-diffusiophoresis is driven by asymmetric catalytic reactions on the particle surface that generate a mechanochemical coupling between the fluid velocity and the concentration fields of fuel and product in the surrounding solution. Because of thermal and molecular fluctuations in the solution, the motion of micrometric or submicrometric active particles is stochastic. Coupled Langevin equations describing the translation, rotation, and reaction of such active particles are deduced from fluctuating chemohydrodynamics and fluctuating boundary conditions at the interface between the fluid and the particle. These equations are consistent with microreversibility and the Onsager-Casimir reciprocal relations between affinities and currents and provide a thermodynamically consistent basis for the investigation of the dynamics of active particles propelled by diffusiophoretic mechanisms.
Coupled Protein Diffusion and Folding in the Cell
Guo, Minghao; Gelman, Hannah; Gruebele, Martin
2014-01-01
When a protein unfolds in the cell, its diffusion coefficient is affected by its increased hydrodynamic radius and by interactions of exposed hydrophobic residues with the cytoplasmic matrix, including chaperones. We characterize protein diffusion by photobleaching whole cells at a single point, and imaging the concentration change of fluorescent-labeled protein throughout the cell as a function of time. As a folded reference protein we use green fluorescent protein. The resulting region-dependent anomalous diffusion is well characterized by 2-D or 3-D diffusion equations coupled to a clustering algorithm that accounts for position-dependent diffusion. Then we study diffusion of a destabilized mutant of the enzyme phosphoglycerate kinase (PGK) and of its stable control inside the cell. Unlike the green fluorescent protein control's diffusion coefficient, PGK's diffusion coefficient is a non-monotonic function of temperature, signaling ‘sticking’ of the protein in the cytosol as it begins to unfold. The temperature-dependent increase and subsequent decrease of the PGK diffusion coefficient in the cytosol is greater than a simple size-scaling model suggests. Chaperone binding of the unfolding protein inside the cell is one plausible candidate for even slower diffusion of PGK, and we test the plausibility of this hypothesis experimentally, although we do not rule out other candidates. PMID:25436502
Coupled protein diffusion and folding in the cell.
Guo, Minghao; Gelman, Hannah; Gruebele, Martin
2014-01-01
When a protein unfolds in the cell, its diffusion coefficient is affected by its increased hydrodynamic radius and by interactions of exposed hydrophobic residues with the cytoplasmic matrix, including chaperones. We characterize protein diffusion by photobleaching whole cells at a single point, and imaging the concentration change of fluorescent-labeled protein throughout the cell as a function of time. As a folded reference protein we use green fluorescent protein. The resulting region-dependent anomalous diffusion is well characterized by 2-D or 3-D diffusion equations coupled to a clustering algorithm that accounts for position-dependent diffusion. Then we study diffusion of a destabilized mutant of the enzyme phosphoglycerate kinase (PGK) and of its stable control inside the cell. Unlike the green fluorescent protein control's diffusion coefficient, PGK's diffusion coefficient is a non-monotonic function of temperature, signaling 'sticking' of the protein in the cytosol as it begins to unfold. The temperature-dependent increase and subsequent decrease of the PGK diffusion coefficient in the cytosol is greater than a simple size-scaling model suggests. Chaperone binding of the unfolding protein inside the cell is one plausible candidate for even slower diffusion of PGK, and we test the plausibility of this hypothesis experimentally, although we do not rule out other candidates.
Tseng, Jui-Pin
2017-02-01
This investigation establishes the global cluster synchronization of complex networks with a community structure based on an iterative approach. The units comprising the network are described by differential equations, and can be non-autonomous and involve time delays. In addition, units in the different communities can be governed by different equations. The coupling configuration of the network is rather general. The coupling terms can be non-diffusive, nonlinear, asymmetric, and with heterogeneous coupling delays. Based on this approach, both delay-dependent and delay-independent criteria for global cluster synchronization are derived. We implement the present approach for a nonlinearly coupled neural network with heterogeneous coupling delays. Two numerical examples are given to show that neural networks can behave in a variety of new collective ways under the synchronization criteria. These examples also demonstrate that neural networks remain synchronized in spite of coupling delays between neurons across different communities; however, they may lose synchrony if the coupling delays between the neurons within the same community are too large, such that the synchronization criteria are violated. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lu, Yanfei; Lekszycki, Tomasz
2016-10-01
During fracture healing, a series of complex coupled biological and mechanical phenomena occurs. They include: (i) growth and remodelling of bone, whose Young's modulus varies in space and time; (ii) nutrients' diffusion and consumption by living cells. In this paper, we newly propose to model these evolution phenomena. The considered features include: (i) a new constitutive equation for growth simulation involving the number of sensor cells; (ii) an improved equation for nutrient concentration accounting for the switch between Michaelis-Menten kinetics and linear consumption regime; (iii) a new constitutive equation for Young's modulus evolution accounting for its dependence on nutrient concentration and variable number of active cells. The effectiveness of the model and its predictive capability are qualitatively verified by numerical simulations (using COMSOL) describing the healing of bone in the presence of damaged tissue between fractured parts.
NASA Astrophysics Data System (ADS)
Ji, Y.; Shen, C.
2014-03-01
With consideration of magnetic field line curvature (FLC) pitch angle scattering and charge exchange reactions, the O+ (>300 keV) in the inner magnetosphere loss rates are investigated by using an eigenfunction analysis. The FLC scattering provides a mechanism for the ring current O+ to enter the loss cone and influence the loss rates caused by charge exchange reactions. Assuming that the pitch angle change is small for each scattering event, the diffusion equation including a charge exchange term is constructed and solved; the eigenvalues of the equation are identified. The resultant loss rates of O+ are approximately equal to the linear superposition of the loss rate without considering the charge exchange reactions and the loss rate associated with charge exchange reactions alone. The loss time is consistent with the observations from the early recovery phases of magnetic storms.
A New Ghost Cell/Level Set Method for Moving Boundary Problems: Application to Tumor Growth
Macklin, Paul
2011-01-01
In this paper, we present a ghost cell/level set method for the evolution of interfaces whose normal velocity depend upon the solutions of linear and nonlinear quasi-steady reaction-diffusion equations with curvature-dependent boundary conditions. Our technique includes a ghost cell method that accurately discretizes normal derivative jump boundary conditions without smearing jumps in the tangential derivative; a new iterative method for solving linear and nonlinear quasi-steady reaction-diffusion equations; an adaptive discretization to compute the curvature and normal vectors; and a new discrete approximation to the Heaviside function. We present numerical examples that demonstrate better than 1.5-order convergence for problems where traditional ghost cell methods either fail to converge or attain at best sub-linear accuracy. We apply our techniques to a model of tumor growth in complex, heterogeneous tissues that consists of a nonlinear nutrient equation and a pressure equation with geometry-dependent jump boundary conditions. We simulate the growth of glioblastoma (an aggressive brain tumor) into a large, 1 cm square of brain tissue that includes heterogeneous nutrient delivery and varied biomechanical characteristics (white matter, gray matter, cerebrospinal fluid, and bone), and we observe growth morphologies that are highly dependent upon the variations of the tissue characteristics—an effect observed in real tumor growth. PMID:21331304
6Li in a three-body model with realistic Forces: Separable versus nonseparable approach
NASA Astrophysics Data System (ADS)
Hlophe, L.; Lei, Jin; Elster, Ch.; Nogga, A.; Nunes, F. M.
2017-12-01
Background: Deuteron induced reactions are widely used to probe nuclear structure and astrophysical information. Those (d ,p ) reactions may be viewed as three-body reactions and described with Faddeev techniques. Purpose: Faddeev equations in momentum space have a long tradition of utilizing separable interactions in order to arrive at sets of coupled integral equations in one variable. However, it needs to be demonstrated that their solution based on separable interactions agrees exactly with solutions based on nonseparable forces. Methods: Momentum space Faddeev equations are solved with nonseparable and separable forces as coupled integral equations. Results: The ground state of 6Li is calculated via momentum space Faddeev equations using the CD-Bonn neutron-proton force and a Woods-Saxon type neutron(proton)-4He force. For the latter the Pauli-forbidden S -wave bound state is projected out. This result is compared to a calculation in which the interactions in the two-body subsystems are represented by separable interactions derived in the Ernst-Shakin-Thaler (EST) framework. Conclusions: We find that calculations based on the separable representation of the interactions and the original interactions give results that agree to four significant figures for the binding energy, provided that energy and momentum support points of the EST expansion are chosen independently. The momentum distributions computed in both approaches also fully agree with each other.
NASA Astrophysics Data System (ADS)
Senthamarai, R.; Jana Ranjani, R.
2018-04-01
In this paper, a mathematical model of an amperometric biosensor at mixed enzyme kinetics and diffusion limitation in the case of substrate inhibition has been developed. The model is based on time dependent reaction diffusion equation containing a non -linear term related to non -Michaelis - Menten kinetics of the enzymatic reaction. Solution for the concentration of the substrate has been derived for all values of parameters using the homotopy perturbation method. All the approximate analytic expressions of substrate concentration are compared with simulation results using Scilab/Matlab program. Finally, we have given a satisfactory agreement between them.
Li, Bo; Zhao, Yanxiang
2013-01-01
Central in a variational implicit-solvent description of biomolecular solvation is an effective free-energy functional of the solute atomic positions and the solute-solvent interface (i.e., the dielectric boundary). The free-energy functional couples together the solute molecular mechanical interaction energy, the solute-solvent interfacial energy, the solute-solvent van der Waals interaction energy, and the electrostatic energy. In recent years, the sharp-interface version of the variational implicit-solvent model has been developed and used for numerical computations of molecular solvation. In this work, we propose a diffuse-interface version of the variational implicit-solvent model with solute molecular mechanics. We also analyze both the sharp-interface and diffuse-interface models. We prove the existence of free-energy minimizers and obtain their bounds. We also prove the convergence of the diffuse-interface model to the sharp-interface model in the sense of Γ-convergence. We further discuss properties of sharp-interface free-energy minimizers, the boundary conditions and the coupling of the Poisson-Boltzmann equation in the diffuse-interface model, and the convergence of forces from diffuse-interface to sharp-interface descriptions. Our analysis relies on the previous works on the problem of minimizing surface areas and on our observations on the coupling between solute molecular mechanical interactions with the continuum solvent. Our studies justify rigorously the self consistency of the proposed diffuse-interface variational models of implicit solvation.
NASA Astrophysics Data System (ADS)
Grössing, Gerhard
2002-04-01
The Klein-Gordon equation is shown to be equivalent to coupled partial differential equations for a sub-quantum Brownian movement of a “particle”, which is both passively affected by, and actively affecting, a diffusion process of its generally nonlocal environment. This indicates circularly causal, or “cybernetic”, relationships between “particles” and their surroundings. Moreover, in the relativistic domain, the original stochastic theory of Nelson is shown to hold as a limiting case only, i.e., for a vanishing quantum potential.
The well-posedness of the Kuramoto-Sivashinsky equation
NASA Technical Reports Server (NTRS)
Tadmor, E.
1984-01-01
The Kuramoto-Sivashinsky equation arises in a variety of applications, among which are modeling reaction diffusion systems, flame propagation and viscous flow problems. It is considered here, as a prototype to the larger class of generalized Burgers equations: those consist of a quadratic nonlinearity and an arbitrary linear parabolic part. It is shown that such equations are well posed, thus admitting a unique smooth solution, continuously dependent on its initial data. As an attractive alternative to standard energy methods, existence and stability are derived in this case, by patching in the large short time solutions without loss of derivatives.
The well-posedness of the Kuramoto-Sivashinsky equation
NASA Technical Reports Server (NTRS)
Tadmor, E.
1986-01-01
The Kuramoto-Sivashinsky equation arises in a variety of applications, among which are modeling reaction diffusion systems, flame propagation and viscous flow problems. It is considered here, as a prototype to the larger class of generalized Burgers equations: those consist of a quadratic nonlinearity and an arbitrary linear parabolic part. It is shown that such equations are well posed, thus admitting a unique smooth solution, continuously dependent on its initial data. As an attractive alternative to standard energy methods, existence and stability are derived in this case, by patching in the large short time solutions without 'loss of derivatives'.
Transport mechanisms of contaminants released from fine sediment in rivers
NASA Astrophysics Data System (ADS)
Cheng, Pengda; Zhu, Hongwei; Zhong, Baochang; Wang, Daozeng
2015-12-01
Contaminants released from sediment into rivers are one of the main problems to study in environmental hydrodynamics. For contaminants released into the overlying water under different hydrodynamic conditions, the mechanical mechanisms involved can be roughly divided into convective diffusion, molecular diffusion, and adsorption/desorption. Because of the obvious environmental influence of fine sediment (D_{90}= 0.06 mm), non-cohesive fine sediment, and cohesive fine sediment are researched in this paper, and phosphorus is chosen for a typical adsorption of a contaminant. Through theoretical analysis of the contaminant release process, according to different hydraulic conditions, the contaminant release coupling mathematical model can be established by the N-S equation, the Darcy equation, the solute transport equation, and the adsorption/desorption equation. Then, the experiments are completed in an open water flume. The simulation results and experimental results show that convective diffusion dominates the contaminant release both in non-cohesive and cohesive fine sediment after their suspension, and that they contribute more than 90 % of the total release. Molecular diffusion and desorption have more of a contribution for contaminant release from unsuspended sediment. In unsuspension sediment, convective diffusion is about 10-50 times larger than molecular diffusion during the initial stages under high velocity; it is close to molecular diffusion in the later stages. Convective diffusion is about 6 times larger than molecular diffusion during the initial stages under low velocity, it is about a quarter of molecular diffusion in later stages, and has a similar level with desorption/adsorption. In unsuspended sediment, a seepage boundary layer exists below the water-sediment interface, and various release mechanisms in that layer mostly dominate the contaminant release process. In non-cohesive fine sediment, the depth of that layer increases linearly with shear stress. In cohesive fine sediment, the range seepage boundary is different from that in non-cohesive sediment, and that phenomenon is more obvious under a lower shear stress.
Existence and non-existence of transition fronts in mixed ignition-monostable media
NASA Astrophysics Data System (ADS)
Graham, Cole; Shean Lim, Tau; Ma, Andrew; Weber, David
2018-02-01
We study transition fronts for one-dimensional reaction-diffusion equations with compactly-perturbed ignition-monostable reactions. We establish an almost sharp condition on reactions which characterizes the existence and non-existence of fronts. In particular, we prove that a strong inhomogeneity in the reaction prevents formation of transition fronts, while a weak inhomogeneity gives rise to a front. Our work extends the results and methods introduced in Nolen et al 2012 (Arch. Ration. Mech. Anal. 203 217-46), which studied the same question in inhomogeneous KPP media.
A hybrid algorithm for coupling partial differential equation and compartment-based dynamics
Yates, Christian A.
2016-01-01
Stochastic simulation methods can be applied successfully to model exact spatio-temporally resolved reaction–diffusion systems. However, in many cases, these methods can quickly become extremely computationally intensive with increasing particle numbers. An alternative description of many of these systems can be derived in the diffusive limit as a deterministic, continuum system of partial differential equations (PDEs). Although the numerical solution of such PDEs is, in general, much more efficient than the full stochastic simulation, the deterministic continuum description is generally not valid when copy numbers are low and stochastic effects dominate. Therefore, to take advantage of the benefits of both of these types of models, each of which may be appropriate in different parts of a spatial domain, we have developed an algorithm that can be used to couple these two types of model together. This hybrid coupling algorithm uses an overlap region between the two modelling regimes. By coupling fluxes at one end of the interface and using a concentration-matching condition at the other end, we ensure that mass is appropriately transferred between PDE- and compartment-based regimes. Our methodology gives notable reductions in simulation time in comparison with using a fully stochastic model, while maintaining the important stochastic features of the system and providing detail in appropriate areas of the domain. We test our hybrid methodology robustly by applying it to several biologically motivated problems including diffusion and morphogen gradient formation. Our analysis shows that the resulting error is small, unbiased and does not grow over time. PMID:27628171
NASA Technical Reports Server (NTRS)
Grossman, B.; Cinella, P.
1988-01-01
A finite-volume method for the numerical computation of flows with nonequilibrium thermodynamics and chemistry is presented. A thermodynamic model is described which simplifies the coupling between the chemistry and thermodynamics and also results in the retention of the homogeneity property of the Euler equations (including all the species continuity and vibrational energy conservation equations). Flux-splitting procedures are developed for the fully coupled equations involving fluid dynamics, chemical production and thermodynamic relaxation processes. New forms of flux-vector split and flux-difference split algorithms are embodied in a fully coupled, implicit, large-block structure, including all the species conservation and energy production equations. Several numerical examples are presented, including high-temperature shock tube and nozzle flows. The methodology is compared to other existing techniques, including spectral and central-differenced procedures, and favorable comparisons are shown regarding accuracy, shock-capturing and convergence rates.
Effective equations governing an active poroelastic medium
2017-01-01
In this work, we consider the spatial homogenization of a coupled transport and fluid–structure interaction model, to the end of deriving a system of effective equations describing the flow, elastic deformation and transport in an active poroelastic medium. The ‘active’ nature of the material results from a morphoelastic response to a chemical stimulant, in which the growth time scale is strongly separated from other elastic time scales. The resulting effective model is broadly relevant to the study of biological tissue growth, geophysical flows (e.g. swelling in coals and clays) and a wide range of industrial applications (e.g. absorbant hygiene products). The key contribution of this work is the derivation of a system of homogenized partial differential equations describing macroscale growth, coupled to transport of solute, that explicitly incorporates details of the structure and dynamics of the microscopic system, and, moreover, admits finite growth and deformation at the pore scale. The resulting macroscale model comprises a Biot-type system, augmented with additional terms pertaining to growth, coupled to an advection–reaction–diffusion equation. The resultant system of effective equations is then compared with other recent models under a selection of appropriate simplifying asymptotic limits. PMID:28293138
Interdiffusion and reaction between U and Zr
NASA Astrophysics Data System (ADS)
Park, Y.; Newell, R.; Mehta, A.; Keiser, D. D.; Sohn, Y. H.
2018-04-01
The microstructural development and diffusion kinetics were examined for the binary U vs. Zr system using solid-to-solid diffusion couples, U vs. Zr, annealed at 580 °C for 960 h, 650 °C for 480 h, 680 °C for 240 h, and 710 °C for 96 h. Scanning and transmission electron microscopies with X-ray energy dispersive spectroscopy were employed for detailed microstructural and compositional analyses. Interdiffusion and reaction in U vs. Zr diffusion couples primarily produced: δ-UZr2 solid solution (hP3) and α‧-U at 580 °C; and (γU,βZr) solid solution (cI2) and α‧-U at 650°, 680° and 710 °C. The α‧-phase was confirmed as a reduced variant of the α-U orthorhombic structure with lattice parameters, a × b × c = 2.65 × 5.40 × 4.75 (Å) with a negligible solubility for Zr at room temperature. Concentration profiles were examined to determine interdiffusion coefficients, integrated interdiffusion coefficients, and intrinsic diffusion coefficients using Boltzmann-Matano, Wagner, and Heumann analyses, respectively. Composition-dependence of interdiffusion coefficients were documented for α-U, δ-UZr2 (at 580 °C) and (γU,βZr) solid solution (at 650°, 680° and 710 °C). U was determined to intrinsically diffuse faster than Zr, approximately by an order of magnitude, in the δ-UZr2 at 580 °C, and (γU,βZr) phases at 650°, 680° and 710 °C. Based on Darken's approach, thermodynamic data available in literature were coupled to estimate the tracer diffusion coefficients and atomic mobilities of U and Zr.
Mathematical analysis of a sharp-diffuse interfaces model for seawater intrusion
NASA Astrophysics Data System (ADS)
Choquet, C.; Diédhiou, M. M.; Rosier, C.
2015-10-01
We consider a new model mixing sharp and diffuse interface approaches for seawater intrusion phenomena in free aquifers. More precisely, a phase field model is introduced in the boundary conditions on the virtual sharp interfaces. We thus include in the model the existence of diffuse transition zones but we preserve the simplified structure allowing front tracking. The three-dimensional problem then reduces to a two-dimensional model involving a strongly coupled system of partial differential equations of parabolic type describing the evolution of the depths of the two free surfaces, that is the interface between salt- and freshwater and the water table. We prove the existence of a weak solution for the model completed with initial and boundary conditions. We also prove that the depths of the two interfaces satisfy a coupled maximum principle.
A Model for the Oxidation of C/SiC Composite Structures
NASA Technical Reports Server (NTRS)
Sullivan, Roy M.
2003-01-01
A mathematical theory and an accompanying numerical scheme have been developed for predicting the oxidation behavior of C/SiC composite structures. The theory is derived from the mechanics of the flow of ideal gases through a porous solid. Within the mathematical formulation, two diffusion mechanisms are possible: (1) the relative diffusion of one species with respect to the mixture, which is concentration gradient driven and (2) the diffusion associated with the average velocity of the gas mixture, which is total gas pressure gradient driven. The result of the theoretical formulation is a set of two coupled nonlinear differential equations written in terms of the oxidant and oxide partial pressures. The differential equations must be solved simultaneously to obtain the partial vapor pressures of the oxidant and oxides as a function of space and time. The local rate of carbon oxidation is determined as a function of space and time using the map of the local oxidant partial vapor pressure along with the Arrhenius rate equation. The nonlinear differential equations are cast into matrix equations by applying the Bubnov-Galerkin weighted residual method, allowing for the solution of the differential equations numerically. The end result is a numerical scheme capable of determining the variation of the local carbon oxidation rates as a function of space and time for any arbitrary C/SiC composite structures.
Numerical modeling of the dynamic response of a bioluminescent bacterial biosensor.
Affi, Mahmoud; Solliec, Camille; Legentilhomme, Patrick; Comiti, Jacques; Legrand, Jack; Jouanneau, Sulivan; Thouand, Gérald
2016-12-01
Water quality and water management are worldwide issues. The analysis of pollutants and in particular, heavy metals, is generally conducted by sensitive but expensive physicochemical methods. Other alternative methods of analysis, such as microbial biosensors, have been developed for their potential simplicity and expected moderate cost. Using a biosensor for a long time generates many changes in the growth of the immobilized bacteria and consequently alters the robustness of the detection. This work simulated the operation of a biosensor for the long-term detection of cadmium and improved our understanding of the bioluminescence reaction dynamics of bioreporter bacteria inside an agarose matrix. The choice of the numerical tools is justified by the difficulty to measure experimentally in every condition the biosensor functioning during a long time (several days). The numerical simulation of a biomass profile is made by coupling the diffusion equation and the consumption/reaction of the nutrients by the bacteria. The numerical results show very good agreement with the experimental profiles. The growth model verified that the bacterial growth is conditioned by both the diffusion and the consumption of the nutrients. Thus, there is a high bacterial density in the first millimeter of the immobilization matrix. The growth model has been very useful for the development of the bioluminescence model inside the gel and shows that a concentration of oxygen greater than or equal to 22 % of saturation is required to maintain a significant level of bioluminescence. A continuous feeding of nutrients during the process of detection of cadmium leads to a biofilm which reduces the diffusion of nutrients and restricts the presence of oxygen from the first layer of the agarose (1 mm) and affects the intensity of the bioluminescent reaction. The main advantage of this work is to link experimental works with numerical models of growth and bioluminescence in order to provide a general purpose model to understand, anticipate, or predict the dysfunction of a biosensor using immobilized bioluminescent bioreporter in a matrix.
NASA Astrophysics Data System (ADS)
Peirce, Anthony P.; Rabitz, Herschel
1988-08-01
The boundary element (BE) technique is used to analyze the effect of defects on one-dimensional chemically active surfaces. The standard BE algorithm for diffusion is modified to include the effects of bulk desorption by making use of an asymptotic expansion technique to evaluate influences near boundaries and defect sites. An explicit time evolution scheme is proposed to treat the non-linear equations associated with defect sites. The proposed BE algorithm is shown to provide an efficient and convergent algorithm for modelling localized non-linear behavior. Since it exploits the actual Green's function of the linear diffusion-desorption process that takes place on the surface, the BE algorithm is extremely stable. The BE algorithm is applied to a number of interesting physical problems in which non-linear reactions occur at localized defects. The Lotka-Volterra system is considered in which the source, sink and predator-prey interaction terms are distributed at different defect sites in the domain and in which the defects are coupled by diffusion. This example provides a stringent test of the stability of the numerical algorithm. Marginal stability oscillations are analyzed for the Prigogine-Lefever reaction that occurs on a lattice of defects. Dissipative effects are observed for large perturbations to the marginal stability state, and rapid spatial reorganization of uniformly distributed initial perturbations is seen to take place. In another series of examples the effect of defect locations on the balance between desorptive processes on chemically active surfaces is considered. The effect of dynamic pulsing at various time-scales is considered for a one species reactive trapping model. Similar competitive behavior between neighboring defects previously observed for static adsorption levels is shown to persist for dynamic loading of the surface. The analysis of a more complex three species reaction process also provides evidence of competitive behavior between neighboring defect sites. The proposed BE algorithm is shown to provide a useful technique for analyzing the effect of defect sites on chemically active surfaces.
NASA Astrophysics Data System (ADS)
Xu, Dazhi; Cao, Jianshu
2016-08-01
The concept of polaron, emerged from condense matter physics, describes the dynamical interaction of moving particle with its surrounding bosonic modes. This concept has been developed into a useful method to treat open quantum systems with a complete range of system-bath coupling strength. Especially, the polaron transformation approach shows its validity in the intermediate coupling regime, in which the Redfield equation or Fermi's golden rule will fail. In the polaron frame, the equilibrium distribution carried out by perturbative expansion presents a deviation from the canonical distribution, which is beyond the usual weak coupling assumption in thermodynamics. A polaron transformed Redfield equation (PTRE) not only reproduces the dissipative quantum dynamics but also provides an accurate and efficient way to calculate the non-equilibrium steady states. Applications of the PTRE approach to problems such as exciton diffusion, heat transport and light-harvesting energy transfer are presented.
Reaction rates for mesoscopic reaction-diffusion kinetics
Hellander, Stefan; Hellander, Andreas; Petzold, Linda
2015-02-23
The mesoscopic reaction-diffusion master equation (RDME) is a popular modeling framework frequently applied to stochastic reaction-diffusion kinetics in systems biology. The RDME is derived from assumptions about the underlying physical properties of the system, and it may produce unphysical results for models where those assumptions fail. In that case, other more comprehensive models are better suited, such as hard-sphere Brownian dynamics (BD). Although the RDME is a model in its own right, and not inferred from any specific microscale model, it proves useful to attempt to approximate a microscale model by a specific choice of mesoscopic reaction rates. In thismore » paper we derive mesoscopic scale-dependent reaction rates by matching certain statistics of the RDME solution to statistics of the solution of a widely used microscopic BD model: the Smoluchowski model with a Robin boundary condition at the reaction radius of two molecules. We also establish fundamental limits on the range of mesh resolutions for which this approach yields accurate results and show both theoretically and in numerical examples that as we approach the lower fundamental limit, the mesoscopic dynamics approach the microscopic dynamics. Finally, we show that for mesh sizes below the fundamental lower limit, results are less accurate. Thus, the lower limit determines the mesh size for which we obtain the most accurate results.« less
Reaction rates for mesoscopic reaction-diffusion kinetics
Hellander, Stefan; Hellander, Andreas; Petzold, Linda
2016-01-01
The mesoscopic reaction-diffusion master equation (RDME) is a popular modeling framework frequently applied to stochastic reaction-diffusion kinetics in systems biology. The RDME is derived from assumptions about the underlying physical properties of the system, and it may produce unphysical results for models where those assumptions fail. In that case, other more comprehensive models are better suited, such as hard-sphere Brownian dynamics (BD). Although the RDME is a model in its own right, and not inferred from any specific microscale model, it proves useful to attempt to approximate a microscale model by a specific choice of mesoscopic reaction rates. In this paper we derive mesoscopic scale-dependent reaction rates by matching certain statistics of the RDME solution to statistics of the solution of a widely used microscopic BD model: the Smoluchowski model with a Robin boundary condition at the reaction radius of two molecules. We also establish fundamental limits on the range of mesh resolutions for which this approach yields accurate results and show both theoretically and in numerical examples that as we approach the lower fundamental limit, the mesoscopic dynamics approach the microscopic dynamics. We show that for mesh sizes below the fundamental lower limit, results are less accurate. Thus, the lower limit determines the mesh size for which we obtain the most accurate results. PMID:25768640
Surfing on Protein Waves: Proteophoresis as a Mechanism for Bacterial Genome Partitioning
NASA Astrophysics Data System (ADS)
Walter, J.-C.; Dorignac, J.; Lorman, V.; Rech, J.; Bouet, J.-Y.; Nollmann, M.; Palmeri, J.; Parmeggiani, A.; Geniet, F.
2017-07-01
Efficient bacterial chromosome segregation typically requires the coordinated action of a three-component machinery, fueled by adenosine triphosphate, called the partition complex. We present a phenomenological model accounting for the dynamic activity of this system that is also relevant for the physics of catalytic particles in active environments. The model is obtained by coupling simple linear reaction-diffusion equations with a proteophoresis, or "volumetric" chemophoresis, force field that arises from protein-protein interactions and provides a physically viable mechanism for complex translocation. This minimal description captures most known experimental observations: dynamic oscillations of complex components, complex separation, and subsequent symmetrical positioning. The predictions of our model are in phenomenological agreement with and provide substantial insight into recent experiments. From a nonlinear physics view point, this system explores the active separation of matter at micrometric scales with a dynamical instability between static positioning and traveling wave regimes triggered by the dynamical spontaneous breaking of rotational symmetry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azunre, P.
Here in this paper, two novel techniques for bounding the solutions of parametric weakly coupled second-order semilinear parabolic partial differential equations are developed. The first provides a theorem to construct interval bounds, while the second provides a theorem to construct lower bounds convex and upper bounds concave in the parameter. The convex/concave bounds can be significantly tighter than the interval bounds because of the wrapping effect suffered by interval analysis in dynamical systems. Both types of bounds are computationally cheap to construct, requiring solving auxiliary systems twice and four times larger than the original system, respectively. An illustrative numerical examplemore » of bound construction and use for deterministic global optimization within a simple serial branch-and-bound algorithm, implemented numerically using interval arithmetic and a generalization of McCormick's relaxation technique, is presented. Finally, problems within the important class of reaction-diffusion systems may be optimized with these tools.« less
Hybrid stochastic and deterministic simulations of calcium blips.
Rüdiger, S; Shuai, J W; Huisinga, W; Nagaiah, C; Warnecke, G; Parker, I; Falcke, M
2007-09-15
Intracellular calcium release is a prime example for the role of stochastic effects in cellular systems. Recent models consist of deterministic reaction-diffusion equations coupled to stochastic transitions of calcium channels. The resulting dynamics is of multiple time and spatial scales, which complicates far-reaching computer simulations. In this article, we introduce a novel hybrid scheme that is especially tailored to accurately trace events with essential stochastic variations, while deterministic concentration variables are efficiently and accurately traced at the same time. We use finite elements to efficiently resolve the extreme spatial gradients of concentration variables close to a channel. We describe the algorithmic approach and we demonstrate its efficiency compared to conventional methods. Our single-channel model matches experimental data and results in intriguing dynamics if calcium is used as charge carrier. Random openings of the channel accumulate in bursts of calcium blips that may be central for the understanding of cellular calcium dynamics.
Modelling wildland fire propagation by tracking random fronts
NASA Astrophysics Data System (ADS)
Pagnini, G.; Mentrelli, A.
2013-11-01
Wildland fire propagation is studied in literature by two alternative approaches, namely the reaction-diffusion equation and the level-set method. These two approaches are considered alternative each other because the solution of the reaction-diffusion equation is generally a continuous smooth function that has an exponential decay and an infinite support, while the level-set method, which is a front tracking technique, generates a sharp function with a finite support. However, these two approaches can indeed be considered complementary and reconciled. Turbulent hot-air transport and fire spotting are phenomena with a random character that are extremely important in wildland fire propagation. As a consequence the fire front gets a random character, too. Hence a tracking method for random fronts is needed. In particular, the level-set contourn is here randomized accordingly to the probability density function of the interface particle displacement. Actually, when the level-set method is developed for tracking a front interface with a random motion, the resulting averaged process emerges to be governed by an evolution equation of the reaction-diffusion type. In this reconciled approach, the rate of spread of the fire keeps the same key and characterizing role proper to the level-set approach. The resulting model emerges to be suitable to simulate effects due to turbulent convection as fire flank and backing fire, the faster fire spread because of the actions by hot air pre-heating and by ember landing, and also the fire overcoming a firebreak zone that is a case not resolved by models based on the level-set method. Moreover, from the proposed formulation it follows a correction for the rate of spread formula due to the mean jump-length of firebrands in the downwind direction for the leeward sector of the fireline contour.
Thermodynamic Analysis of Chemically Reacting Mixtures-Comparison of First and Second Order Models.
Pekař, Miloslav
2018-01-01
Recently, a method based on non-equilibrium continuum thermodynamics which derives thermodynamically consistent reaction rate models together with thermodynamic constraints on their parameters was analyzed using a triangular reaction scheme. The scheme was kinetically of the first order. Here, the analysis is further developed for several first and second order schemes to gain a deeper insight into the thermodynamic consistency of rate equations and relationships between chemical thermodynamic and kinetics. It is shown that the thermodynamic constraints on the so-called proper rate coefficient are usually simple sign restrictions consistent with the supposed reaction directions. Constraints on the so-called coupling rate coefficients are more complex and weaker. This means more freedom in kinetic coupling between reaction steps in a scheme, i.e., in the kinetic effects of other reactions on the rate of some reaction in a reacting system. When compared with traditional mass-action rate equations, the method allows a reduction in the number of traditional rate constants to be evaluated from data, i.e., a reduction in the dimensionality of the parameter estimation problem. This is due to identifying relationships between mass-action rate constants (relationships which also include thermodynamic equilibrium constants) which have so far been unknown.
Hummer, Gerhard
2015-01-01
We present a new algorithm for simulating reaction-diffusion equations at single-particle resolution. Our algorithm is designed to be both accurate and simple to implement, and to be applicable to large and heterogeneous systems, including those arising in systems biology applications. We combine the use of the exact Green's function for a pair of reacting particles with the approximate free-diffusion propagator for position updates to particles. Trajectory reweighting in our free-propagator reweighting (FPR) method recovers the exact association rates for a pair of interacting particles at all times. FPR simulations of many-body systems accurately reproduce the theoretically known dynamic behavior for a variety of different reaction types. FPR does not suffer from the loss of efficiency common to other path-reweighting schemes, first, because corrections apply only in the immediate vicinity of reacting particles and, second, because by construction the average weight factor equals one upon leaving this reaction zone. FPR applications include the modeling of pathways and networks of protein-driven processes where reaction rates can vary widely and thousands of proteins may participate in the formation of large assemblies. With a limited amount of bookkeeping necessary to ensure proper association rates for each reactant pair, FPR can account for changes to reaction rates or diffusion constants as a result of reaction events. Importantly, FPR can also be extended to physical descriptions of protein interactions with long-range forces, as we demonstrate here for Coulombic interactions. PMID:26005592
A second-order closure analysis of turbulent diffusion flames. [combustion physics
NASA Technical Reports Server (NTRS)
Varma, A. K.; Fishburne, E. S.; Beddini, R. A.
1977-01-01
A complete second-order closure computer program for the investigation of compressible, turbulent, reacting shear layers was developed. The equations for the means and the second order correlations were derived from the time-averaged Navier-Stokes equations and contain third order and higher order correlations, which have to be modeled in terms of the lower-order correlations to close the system of equations. In addition to fluid mechanical turbulence models and parameters used in previous studies of a variety of incompressible and compressible shear flows, a number of additional scalar correlations were modeled for chemically reacting flows, and a typical eddy model developed for the joint probability density function for all the scalars. The program which is capable of handling multi-species, multistep chemical reactions, was used to calculate nonreacting and reacting flows in a hydrogen-air diffusion flame.
The chemical reaction mechanism of NO addition to two β and δ isoprene hydroxy–peroxy radical isomers is examined in detail using density functional theory, coupled cluster methods, and the energy resolved master equation formalism to provide estimates of rate co...
Fox, Don T.; Guo, Luanjing; Fujita, Yoshiko; ...
2015-12-17
Formation of mineral precipitates in the mixing interface between two reactant solutions flowing in parallel in porous media is governed by reactant mixing by diffusion and dispersion and is coupled to changes in porosity/permeability due to precipitation. The spatial and temporal distribution of mixing-dependent precipitation of barium sulfate in porous media was investigated with side-by-side injection of barium chloride and sodium sulfate solutions in thin rectangular flow cells packed with quartz sand. The results for homogeneous sand beds were compared to beds with higher or lower permeability inclusions positioned in the path of the mixing zone. In the homogeneous andmore » high permeability inclusion experiments, BaSO 4 precipitate (barite) formed in a narrow deposit along the length and in the center of the solution–solution mixing zone even though dispersion was enhanced within, and downstream of, the high permeability inclusion. In the low permeability inclusion experiment, the deflected BaSO 4 precipitation zone broadened around one side and downstream of the inclusion and was observed to migrate laterally toward the sulfate solution. A continuum-scale fully coupled reactive transport model that simultaneously solves the nonlinear governing equations for fluid flow, transport of reactants and geochemical reactions was used to simulate the experiments and provide insight into mechanisms underlying the experimental observations. Lastly, migration of the precipitation zone in the low permeability inclusion experiment could be explained by the coupling effects among fluid flow, reactant transport and localized mineral precipitation reaction.« less
A note on stress-driven anisotropic diffusion and its role in active deformable media.
Cherubini, Christian; Filippi, Simonetta; Gizzi, Alessio; Ruiz-Baier, Ricardo
2017-10-07
We introduce a new model to describe diffusion processes within active deformable media. Our general theoretical framework is based on physical and mathematical considerations, and it suggests to employ diffusion tensors directly influenced by the coupling with mechanical stress. The proposed generalised reaction-diffusion-mechanics model reveals that initially isotropic and homogeneous diffusion tensors turn into inhomogeneous and anisotropic quantities due to the intrinsic structure of the nonlinear coupling. We study the physical properties leading to these effects, and investigate mathematical conditions for its occurrence. Together, the mathematical model and the numerical results obtained using a mixed-primal finite element method, clearly support relevant consequences of stress-driven diffusion into anisotropy patterns, drifting, and conduction velocity of the resulting excitation waves. Our findings also indicate the applicability of this novel approach in the description of mechano-electric feedback in actively deforming bio-materials such as the cardiac tissue. Copyright © 2017. Published by Elsevier Ltd.
Abrams , Robert H.; Loague, Keith; Kent, Douglas B.
1998-01-01
The work reported here is the first part of a larger effort focused on efficient numerical simulation of redox zone development in contaminated aquifers. The sequential use of various electron acceptors, which is governed by the energy yield of each reaction, gives rise to redox zones. The large difference in energy yields between the various redox reactions leads to systems of equations that are extremely ill-conditioned. These equations are very difficult to solve, especially in the context of coupled fluid flow, solute transport, and geochemical simulations. We have developed a general, rational method to solve such systems where we focus on the dominant reactions, compartmentalizing them in a manner that is analogous to the redox zones that are often observed in the field. The compartmentalized approach allows us to easily solve a complex geochemical system as a function of time and energy yield, laying the foundation for our ongoing work in which we couple the reaction network, for the development of redox zones, to a model of subsurface fluid flow and solute transport. Our method (1) solves the numerical system without evoking a redox parameter, (2) improves the numerical stability of redox systems by choosing which compartment and thus which reaction network to use based upon the concentration ratios of key constituents, (3) simulates the development of redox zones as a function of time without the use of inhibition factors or switching functions, and (4) can reduce the number of transport equations that need to be solved in space and time. We show through the use of various model performance evaluation statistics that the appropriate compartment choice under different geochemical conditions leads to numerical solutions without significant error. The compartmentalized approach described here facilitates the next phase of this effort where we couple the redox zone reaction network to models of fluid flow and solute transport.
Oxygen transport and stem cell aggregation in stirred-suspension bioreactor cultures.
Wu, Jincheng; Rostami, Mahboubeh Rahmati; Cadavid Olaya, Diana P; Tzanakakis, Emmanuel S
2014-01-01
Stirred-suspension bioreactors are a promising modality for large-scale culture of 3D aggregates of pluripotent stem cells and their progeny. Yet, cells within these clusters experience limitations in the transfer of factors and particularly O2 which is characterized by low solubility in aqueous media. Cultured stem cells under different O2 levels may exhibit significantly different proliferation, viability and differentiation potential. Here, a transient diffusion-reaction model was built encompassing the size distribution and ultrastructural characteristics of embryonic stem cell (ESC) aggregates. The model was coupled to experimental data from bioreactor and static cultures for extracting the effective diffusivity and kinetics of consumption of O2 within mouse (mESC) and human ESC (hESC) clusters. Under agitation, mESC aggregates exhibited a higher maximum consumption rate than hESC aggregates. Moreover, the reaction-diffusion model was integrated with a population balance equation (PBE) for the temporal distribution of ESC clusters changing due to aggregation and cell proliferation. Hypoxia was found to be negligible for ESCs with a smaller radius than 100 µm but became appreciable for aggregates larger than 300 µm. The integrated model not only captured the O2 profile both in the bioreactor bulk and inside ESC aggregates but also led to the calculation of the duration that fractions of cells experience a certain range of O2 concentrations. The approach described in this study can be employed for gaining a deeper understanding of the effects of O2 on the physiology of stem cells organized in 3D structures. Such frameworks can be extended to encompass the spatial and temporal availability of nutrients and differentiation factors and facilitate the design and control of relevant bioprocesses for the production of stem cell therapeutics.
High Temperature Degradation Mechanisms in Polymer Matrix Composites
NASA Technical Reports Server (NTRS)
Cunningham, Ronan A.
1996-01-01
Polymer matrix composites are increasingly used in demanding structural applications in which they may be exposed to harsh environments. The durability of such materials is a major concern, potentially limiting both the integrity of the structures and their useful lifetimes. The goal of the current investigation is to develop a mechanism-based model of the chemical degradation which occurs, such that given the external chemical environment and temperatures throughout the laminate, laminate geometry, and ply and/or constituent material properties, we can calculate the concentration of diffusing substances and extent of chemical degradation as functions of time and position throughout the laminate. This objective is met through the development and use of analytical models, coupled to an analysis-driven experimental program which offers both quantitative and qualitative information on the degradation mechanism. Preliminary analyses using a coupled diffusion/reaction model are used to gain insight into the physics of the degradation mechanisms and to identify crucial material parameters. An experimental program is defined based on the results of the preliminary analysis which allows the determination of the necessary material coefficients. Thermogravimetric analyses are carried out in nitrogen, air, and oxygen to provide quantitative information on thermal and oxidative reactions. Powdered samples are used to eliminate diffusion effects. Tests in both inert and oxidative environments allow the separation of thermal and oxidative contributions to specimen mass loss. The concentration dependency of the oxidative reactions is determined from the tests in pure oxygen. Short term isothermal tests at different temperatures are carried out on neat resin and unidirectional macroscopic specimens to identify diffusion effects. Mass loss, specimen shrinkage, the formation of degraded surface layers and surface cracking are recorded as functions of exposure time. Geometry effects in the neat resin, and anisotropic diffusion effects in the composites, are identified through the use of specimens with different aspect ratios. The data is used with the model to determine reaction coefficients and effective diffusion coefficients. The empirical and analytical correlations confirm the preliminary model results which suggest that mass loss at lower temperatures is dominated by oxidative reactions and that these reaction are limited by diffusion of oxygen from the surface. The mechanism-based model is able to successfully capture the basic physics of the degradation phenomena under a wide range of test conditions. The analysis-based test design is successful in separating out oxidative, thermal, and diffusion effects to allow the determination of material coefficients. This success confirms the basic picture of the process; however, a more complete understanding of some aspects of the physics are required before truly predictive capability can be achieved.
Multispecies diffusion models: A study of uranyl species diffusion
NASA Astrophysics Data System (ADS)
Liu, Chongxuan; Shang, Jianying; Zachara, John M.
2011-12-01
Rigorous numerical description of multispecies diffusion requires coupling of species, charge, and aqueous and surface complexation reactions that collectively affect diffusive fluxes. The applicability of a fully coupled diffusion model is, however, often constrained by the availability of species self-diffusion coefficients, as well as by computational complication in imposing charge conservation. In this study, several diffusion models with variable complexity in charge and species coupling were formulated and compared to describe reactive multispecies diffusion in groundwater. Diffusion of uranyl [U(VI)] species was used as an example in demonstrating the effectiveness of the models in describing multispecies diffusion. Numerical simulations found that a diffusion model with a single, common diffusion coefficient for all species was sufficient to describe multispecies U(VI) diffusion under a steady state condition of major chemical composition, but not under transient chemical conditions. Simulations revealed that for multispecies U(VI) diffusion under transient chemical conditions, a fully coupled diffusion model could be well approximated by a component-based diffusion model when the diffusion coefficient for each chemical component was properly selected. The component-based diffusion model considers the difference in diffusion coefficients between chemical components, but not between the species within each chemical component. This treatment significantly enhanced computational efficiency at the expense of minor charge conservation. The charge balance in the component-based diffusion model can be enforced, if necessary, by adding a secondary migration term resulting from model simplification. The effect of ion activity coefficient gradients on multispecies diffusion is also discussed. The diffusion models were applied to describe U(VI) diffusive mass transfer in intragranular domains in two sediments collected from U.S. Department of Energy's Hanford 300A, where intragranular diffusion is a rate-limiting process controlling U(VI) adsorption and desorption. The grain-scale reactive diffusion model was able to describe U(VI) adsorption/desorption kinetics that had been previously described using a semiempirical, multirate model. Compared with the multirate model, the diffusion models have the advantage to provide spatiotemporal speciation evolution within the diffusion domains.
Diederichs, Frank
2012-01-01
ATP delivery and its usage are achieved by cycling of respective intermediates through interconnected coupled reactions. At steady state, cycling between coupled reactions always occurs at zero resistance of the whole cycle without dissipation of free energy. The cross-bridge cycle can also be described by a system of coupled reactions: one energising reaction, which energises myosin heads by coupled ATP splitting, and one de-energising reaction, which transduces free energy from myosin heads to coupled actin movement. The whole cycle of myosin heads via cross-bridge formation and dissociation proceeds at zero resistance. Dissipation of free energy from coupled reactions occurs whenever the input potential overcomes the counteracting output potential. In addition, dissipation is produced by uncoupling. This is brought about by a load dependent shortening of the cross-bridge stroke to zero, which allows isometric force generation without mechanical power output. The occurrence of maximal efficiency is caused by uncoupling. Under coupled conditions, Hill’s equation (velocity as a function of load) is fulfilled. In addition, force and shortening velocity both depend on [Ca2+]. Muscular fatigue is triggered when ATP consumption overcomes ATP delivery. As a result, the substrate of the cycle, [MgATP2−], is reduced. This leads to a switch off of cycling and ATP consumption, so that a recovery of [ATP] is possible. In this way a potentially harmful, persistent low energy state of the cell can be avoided. PMID:24957757
Fem Formulation for Heat and Mass Transfer in Porous Medium
NASA Astrophysics Data System (ADS)
Azeem; Soudagar, Manzoor Elahi M.; Salman Ahmed, N. J.; Anjum Badruddin, Irfan
2017-08-01
Heat and mass transfer in porous medium can be modelled using three partial differential equations namely, momentum equation, energy equation and mass diffusion. These three equations are coupled to each other by some common terms that turn the whole phenomenon into a complex problem with inter-dependable variables. The current article describes the finite element formulation of heat and mass transfer in porous medium with respect to Cartesian coordinates. The problem under study is formulated into algebraic form of equations by using Galerkin's method with the help of two-node linear triangular element having three nodes. The domain is meshed with smaller sized elements near the wall region and bigger size away from walls.
Introduction to Physical Intelligence
NASA Technical Reports Server (NTRS)
Zak, Michail
2011-01-01
A slight deviation from Newtonian dynamics can lead to new effects associated with the concept of physical intelligence. Non-Newtonian effects such as deviation from classical thermodynamic as well as quantum-like properties have been analyzed. A self-supervised (intelligent) particle that can escape from Brownian motion autonomously is introduced. Such a capability is due to a coupling of the particle governing equation with its own Liouville equation via an appropriate feedback. As a result, the governing equation is self-stabilized, and random oscillations are suppressed, while the Liouville equation takes the form of the Fokker-Planck equation with negative diffusion. Non- Newtonian properties of such a dynamical system as well as thermodynamical implications have been evaluated.
NASA Astrophysics Data System (ADS)
Ding, Hongxia; Chen, Shangbin; Zeng, Shuai; Zeng, Shaoqun; Liu, Qian; Luo, Qingming
2008-12-01
Spreading depression (SD) shows as propagating suppression of electrical activity, which relates with migraine and focal cerebral ischaemia. The putative mechanism of SD is the reaction-diffusion hypothesis involving potassium ions. In part inspired by optical imaging of two SD waves collision, we aimed to show the merged and large wavefront but not annihilation during collision by experimental and computational study. This paper modified Reggia et al established bistable equation with recovery to compute and visualize SD. Firstly, the media tissue of SD was assumed as one-dimensional continuum. The Crank-Nicholson method was used to solve the modified equations with recovery term. Then, the computation results were extended to two-dimensional space by symmetry. One individual SD was visualized as a concentric wave initiating from the stimulation point. The mergence but not annihilation of two colliding waves of SD was demonstrated. In addition, the dynamics of SD depending on the parameters was studied and presented. The results allied SD with the emerging concepts of volume transmission. This work not only supplied a paradigm to compute and visualize SD but also became a tool to explore the mechanisms of SD.
Field theory and diffusion creep predictions in polycrystalline aggregates
NASA Astrophysics Data System (ADS)
Villani, A.; Busso, E. P.; Forest, S.
2015-07-01
In polycrystals, stress-driven vacancy diffusion at high homologous temperatures leads to inelastic deformation. In this work, a novel continuum mechanics framework is proposed to describe the strain fields resulting from such a diffusion-driven process in a polycrystalline aggregate where grains and grain boundaries are explicitly considered. The choice of an anisotropic eigenstrain in the grain boundary region provides the driving force for the diffusive creep processes. The corresponding inelastic strain rate is shown to be related to the gradient of the vacancy flux. Dislocation driven deformation is then introduced as an additional mechanism, through standard crystal plasticity constitutive equations. The fully coupled diffusion-mechanical model is implemented into the finite element method and then used to describe the biaxial creep behaviour of FCC polycrystalline aggregates. The corresponding results revealed for the first time that such a coupled diffusion-stress approach, involving the gradient of the vacancy flux, can accurately predict the well-known macroscopic strain rate dependency on stress and grain size in the diffusion creep regime. They also predict strongly heterogeneous viscoplastic strain fields, especially close to grain boundaries triple junctions. Finally, a smooth transition from Herring and Coble to dislocation creep behaviour is predicted and compared to experimental results for copper.
Effect of shear stress on cell cultures and other reactor problems
NASA Technical Reports Server (NTRS)
Schleier, H.
1981-01-01
Anchorage dependent cell cultures in fluidized beds are tested. Feasibility calculations indicate the allowed parameters and estimate the shear stresses therein. In addition, the diffusion equation with first order reaction is solved for the spherical shell (double bubble) reactor with various constraints.