Orientation-Dependent Exciton-Plasmon Coupling in Embedded Organic/Metal Nanowire Heterostructures.
Li, Yong Jun; Hong, Yan; Peng, Qian; Yao, Jiannian; Zhao, Yong Sheng
2017-10-24
The excitation of surface plasmons by optical emitters based on exciton-plasmon coupling is important for plasmonic devices with active optical properties. It has been theoretically demonstrated that the orientation of exciton dipole can significantly influence the coupling strength, yet systematic study of the coupling process in nanostructures is still hindered by the lack of proper material systems. In this work, we have experimentally investigated the orientation-dependent exciton-plasmon coupling in a rationally designed organic/metal nanowire heterostructure system. The heterostructures were prepared by inserting silver nanowires into crystalline organic waveguides during the self-assembly of dye molecules. Structures with different exciton orientations exhibited varying coupling efficiencies. The near-field exciton-plasmon coupling facilitates the design of nanophotonic devices based on the directional surface plasmon polariton propagations.
Devices based on surface plasmon interference filters
NASA Technical Reports Server (NTRS)
Wang, Yu (Inventor)
2001-01-01
Devices based on surface plasmon filters having at least one metal-dielectric interface to support surface plasmon waves. A multi-layer-coupled surface plasmon notch filter is provided to have more than two symmetric metal-dielectric interfaces coupled with one another to produce a transmission spectral window with desired spectral profile and bandwidth. Such notch filters can form various color filtering devices for color flat panel displays.
Plasmon-Exciton Coupling Interaction for Surface Catalytic Reactions.
Wang, Jingang; Lin, Weihua; Xu, Xuefeng; Ma, Fengcai; Sun, Mengtao
2018-05-01
In this review, we firstly reveal the physical principle of plasmon-exciton coupling interaction with steady absorption spectroscopy, and ultrafast transition absorption spectroscopy, based on the pump-prop technology. Secondly, we introduce the fabrication of electro-optical device of two-dimensional semiconductor-nanostructure noble metals hybrid, based on the plasmon-exciton coupling interactions. Thirdly, we introduce the applications of plasmon-exciton coupling interaction in the field of surface catalytic reactions. Lastly, the perspective of plasmon-exciton coupling interaction and applications closed this review. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Golmakaniyoon, Sepideh; Hernandez-Martinez, Pedro Ludwig; Demir, Hilmi Volkan; Sun, Xiao Wei
2016-01-01
Surface plasmon (SP) coupling has been successfully applied to nonradiative energy transfer via exciton-plasmon-exciton coupling in conventionally sandwiched donor-metal film-acceptor configurations. However, these structures lack the desired efficiency and suffer poor photoemission due to the high energy loss. Here, we show that the cascaded exciton-plasmon-plasmon-exciton coupling in stratified architecture enables an efficient energy transfer mechanism. The overlaps of the surface plasmon modes at the metal-dielectric and dielectric-metal interfaces allow for strong cross-coupling in comparison with the single metal film configuration. The proposed architecture has been demonstrated through the analytical modeling and numerical simulation of an oscillating dipole near the stratified nanostructure of metal-dielectric-metal-acceptor. Consistent with theoretical and numerical results, experimental measurements confirm at least 50% plasmon resonance energy transfer enhancement in the donor-metal-dielectric-metal-acceptor compared to the donor-metal-acceptor structure. Cascaded plasmon-plasmon coupling enables record high efficiency for exciton transfer through metallic structures. PMID:27698422
Surface Plasmon Coupling and Control Using Spherical Cap Structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gong, Yu; Joly, Alan G.; Zhang, Xin
2017-06-05
Propagating surface plasmons (PSPs) launched from a protruded silver spherical cap structure are investigated using photoemission electron microscopy (PEEM) and finite difference time domain (FDTD) calculations. Our combined experimental and theoretical findings reveal that PSP coupling efficiency is comparable to conventional etched-in plasmonic coupling structures. Additionally, plasmon propagation direction can be varied by a linear rotation of the driving laser polarization. A simple geometric model is proposed in which the plasmon direction selectivity is proportional to the projection of the linear laser polarization on the surface normal. An application for the spherical cap coupler as a gate device is proposed.more » Overall, our results indicate that protruded cap structures hold great promise as elements in emerging surface plasmon applications.« less
NASA Astrophysics Data System (ADS)
Badiya, Pradeep Kumar; Patnaik, Sai Gourang; Srinivasan, Venkatesh; Reddy, Narendra; Manohar, Chelli Sai; Vedarajan, Raman; Mastumi, Noriyoshi; Belliraj, Siva Kumar; Ramamurthy, Sai Sathish
2017-10-01
We report the use of silver decorated plant proteins as spacer material for augmented surface plasmon-coupled emission (120-fold enhancement) and plasmon-enhanced Raman scattering. We extracted several proteins from different plant sources [Triticum aestivum (TA), Aegle marmelos (AM), Ricinus communis (RC), Jatropha curcas (JC) and Simarouba glauca (SG)] followed by evaluation of their optical properties and simulations to rationalize observed surface plasmon resonance. Since the properties exhibited by protein thin films is currently gaining research interest, we have also carried out simulation studies with Ag-protein biocomposites as spacer materials in metal-dielectric-metal planar microcavity architecture for guided emission of Fabry-Perot mode-coupled fluorescence.
NASA Astrophysics Data System (ADS)
Wan, Xiu-mei; Gao, Ran; Lu, Dan-feng; Qi, Zhi-mei
2018-01-01
Surface plasmon-coupled emission has been widely used in fluorescence imaging, biochemical sensing, and enhanced Raman spectroscopy. A self-referenced directional enhanced Raman scattering for simultaneous detection of surface and bulk effects by using plasmon waveguide resonance (PWR) based surface plasmon-coupled emission has been proposed and experimentally demonstrated. Raman scattering was captured on the prism side in Kretschmann-surface plasmon-coupled emission. The distinct penetration depths (δ) of the evanescent field for the transverse electric (TE) and transverse magnetic (TM) modes result in different detected distances of the Raman signal. The experimental results demonstrate that the self-referenced directional enhanced Raman scattering of the TE and TM modes based on the PWR can detect and distinguish the surface and bulk effects simultaneously, which appears to have potential applications in researches of chemistry, medicine, and biology.
Radiative decay engineering 3. Surface plasmon-coupled directional emission
Lakowicz, Joseph R.
2009-01-01
A new method of fluorescence detection that promises to increase sensitivity by 20- to 1000-fold is described. This method will also decrease the contribution of sample autofluorescence to the detected signal. The method depends on the coupling of excited fluorophores with the surface plasmon resonance present in thin metal films, typically silver and gold. The phenomenon of surface plasmon-coupled emission (SPCE) occurs for fluorophores 20–250 nm from the metal surface, allowing detection of fluorophores over substantial distances beyond the metal–sample interface. SPCE depends on interactions of the excited fluorophore with the metal surface. This interaction is independent of the mode of excitation; that is, it does not require evanescent wave or surface-plasmon excitation. In a sense, SPCE is the inverse process of the surface plasmon resonance absorption of thin metal films. Importantly, SPCE occurs over a narrow angular distribution, converting normally isotropic emission into easily collected directional emission. Up to 50% of the emission from unoriented samples can be collected, much larger than typical fluorescence collection efficiencies near 1% or less. SPCE is due only to fluorophores near the metal surface and may be regarded as emission from the induced surface plasmons. Autofluorescence from more distal parts of the sample is decreased due to decreased coupling. SPCE is highly polarized and autofluorescence can be further decreased by collecting only the polarized component or only the light propagating with the appropriate angle. Examples showing how simple optical configurations can be used in diagnostics, sensing, or biotechnology applications are presented. Surface plasmon-coupled emission is likely to find widespread applications throughout the biosciences. PMID:14690679
Lee, Dong-Jin; Yim, Hae-Dong; Lee, Seung-Gol; O, Beom-Hoan
2011-10-10
We propose a tiny surface plasmon resonance (SPR) sensor integrated on a silicon waveguide based on vertical coupling into a finite thickness metal-insulator-metal (f-MIM) plasmonic waveguide structure acting as a Fabry-Perot resonator. The resonant characteristics of vertically coupled f-MIM plasmonic waveguides are theoretically investigated and optimized. Numerical results show that the SPR sensor with a footprint of ~0.0375 μm2 and a sensitivity of ~635 nm/RIU can be designed at a 1.55 μm transmission wavelength.
Lee, Jiwon; Zhang, Qianpeng; Park, Seungyoung; Choe, Ayoung; Fan, Zhiyong; Ko, Hyunhyub
2016-01-13
Plasmonic systems based on particle-film plasmonic couplings have recently attracted great attention because of the significantly enhanced electric field at the particle-film gaps. Here, we introduce a hybrid plasmonic architecture utilizing combined plasmonic effects of particle-film gap plasmons and silver film over nanosphere (AgFON) substrates. When gold nanoparticles (AuNPs) are assembled on AgFON substrates with controllable particle-film gap distances, the AuNP-AgFON system supports multiple plasmonic couplings from interparticle, particle-film, and crevice gaps, resulting in a huge surface-enhanced Raman spectroscopy (SERS) effect. We show that the periodicity of AgFON substrates and the particle-film gaps greatly affects the surface plasmon resonances, and thus, the SERS effects due to the interplay between multiple plasmonic couplings. The optimally designed AuNP-AgFON substrate shows a SERS enhancement of 233 times compared to the bare AgFON substrate. The ultrasensitive SERS sensing capability is also demonstrated by detecting glutathione, a neurochemical molecule that is an important antioxidant, down to the 10 pM level.
Multipole surface plasmons in metallic nanohole arrays
NASA Astrophysics Data System (ADS)
Nishida, Munehiro; Hatakenaka, Noriyuki; Kadoya, Yutaka
2015-06-01
The quasibound electromagnetic modes for the arrays of nanoholes perforated in thin gold film are analyzed both numerically by the rigorous coupled wave analysis (RCWA) method and semianalytically by the coupled mode method. It is shown that when the size of the nanohole occupies a large portion of the unit cell, the surface plasmon polaritons (SPPs) at both sides of the film are combined by the higher order waveguide modes of the holes to produce multipole surface plasmons: coupled surface plasmon modes with multipole texture on the elec-tric field distributions. Further, it is revealed that the multipole texture either enhances or suppresses the couplings between SPPs depending on their diffraction orders and also causes band inversion and reconstruction in the coupled SPP band structure. Due to the multipole nature of the quasibound modes, multiple dark modes coexist to produce a variety of Fano resonance structures on the transmission and reflection spectra.
Applications of Graphene to Photonics
2014-07-01
to plasmonic properties that stem from its two-dimensional electron gas (2DEG) and strong surface plasmon polariton (SPP) coupling in the visible and...have been created by coupling to surface plasmon polaritons (SPP) in the graphene. In one case, an attenuated total reflectance geometry was considered... polariton mode in graphene, then a SPP is excited in graphene and the reflectivity of the EM wave is reduced. The coupling of both TE and TM
Li, Xiaowei; Huang, Lingling; Tan, Qiaofeng; Bai, Benfeng; Jin, Guofan
2011-03-28
A semi-circular plasmonic launcher integrated with dielectric-loaded surface plasmon-polaritons waveguide (DLSPPW) is proposed and analyzed theoretically, which can focus and efficiently couple the excited surface plasmon polaritons (SPPs) into the DLSPPW via the highly matched spatial field distribution with the waveguide mode in the focal plane. By tuning the incident angle or polarization of the illuminating beam, it is shown that the launcher may be conveniently used as a switch or a multiplexer that have potential applications in plasmonic circuitry. Furthermore, from an applicational point of view, it is analyzed how the coupling performance of the launcher can be further improved by employing multiple semi-circular slits.
Direct optical measurement of light coupling into planar waveguide by plasmonic nanoparticles.
Pennanen, Antti M; Toppari, J Jussi
2013-01-14
Coupling of light into a thin layer of high refractive index material by plasmonic nanoparticles has been widely studied for application in photovoltaic devices, such as thin-film solar cells. In numerous studies this coupling has been investigated through measurement of e.g. quantum efficiency or photocurrent enhancement. Here we present a direct optical measurement of light coupling into a waveguide by plasmonic nanoparticles. We investigate the coupling efficiency into the guided modes within the waveguide by illuminating the surface of a sample, consisting of a glass slide coated with a high refractive index planar waveguide and plasmonic nanoparticles, while directly measuring the intensity of the light emitted out of the waveguide edge. These experiments were complemented by transmittance and reflectance measurements. We show that the light coupling is strongly affected by thin-film interference, localized surface plasmon resonances of the nanoparticles and the illumination direction (front or rear).
Optomechanical coupling in phoxonic–plasmonic slab cavities with periodic metal strips
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Tzy-Rong; Institute of Optoelectronic Sciences, National Taiwan Ocean University, Keelung 20224, Taiwan; Huang, Yin-Chen
2015-05-07
We theoretically investigate the optomechanical (OM) coupling of submicron cavities formed in one-dimensional phoxonic–plasmonic slabs. The phoxonic–plasmonic slabs are structured by depositing periodic Ag strips onto the top surfaces of dielectric GaAs slabs to produce dual band gaps for both electromagnetic and acoustic waves, thereby inducing the coupling of surface plasmons with photons for tailoring the OM coupling. We quantify the OM coupling by calculating the temporal modulation of the optical resonance wavelength with the acoustic phonon-induced photoelastic (PE) and moving-boundary (MB) effects. We also consider the appearance of a uniform Ag layer on the bottom surface of the slabsmore » to modulate the photonic–plasmonic coupling. The results show that the PE and MB effects can be constructive or destructive in the overall OM coupling, and their magnitudes depend not only on the quality factors of the resonant modes but also on the mode area, mode overlap, and individual symmetries of the photonic–phononic mode pairs. Lowering the mode area could be effective for enhancing the OM coupling of subwavelength photons and phonons. This study introduces possible engineering applications to achieve enhanced interaction between photons and phonons in nanoscale OM devices.« less
NASA Astrophysics Data System (ADS)
Dai, Yanqiu; Xu, Huimei; Wang, Haoyu; Lu, Yonghua; Wang, Pei
2018-06-01
We experimentally demonstrated a high sensitivity of surface plasmon resonance (SPR) sensor with silver rectangular grating coupling. The reflection spectra of the silver gratings indicated that surface plasmon resonance can be excited by either positive or negative order diffraction of the grating, depending on the period of the gratings. Comparing to prism-coupled SPR sensor, the sensitivities are higher for negative order diffraction coupling in bigger coupling angle, but much smaller for positive order diffraction coupling of the gratings. High sensitivity of 254.13 degree/RIU is experimentally realized by grating-based SPR sensor in the negative diffraction excitation mode. Our work paves the way for compact and sensitive SPR sensor in the applications of biochemical and gas sensing.
Exciton-plasmon coupling interactions: from principle to applications
NASA Astrophysics Data System (ADS)
Cao, En; Lin, Weihua; Sun, Mengtao; Liang, Wenjie; Song, Yuzhi
2018-01-01
The interaction of exciton-plasmon coupling and the conversion of exciton-plasmon-photon have been widely investigated experimentally and theoretically. In this review, we introduce the exciton-plasmon interaction from basic principle to applications. There are two kinds of exciton-plasmon coupling, which demonstrate different optical properties. The strong exciton-plasmon coupling results in two new mixed states of light and matter separated energetically by a Rabi splitting that exhibits a characteristic anticrossing behavior of the exciton-LSP energy tuning. Compared to strong coupling, such as surface-enhanced Raman scattering, surface plasmon (SP)-enhanced absorption, enhanced fluorescence, or fluorescence quenching, there is no perturbation between wave functions; the interaction here is called the weak coupling. SP resonance (SPR) arises from the collective oscillation induced by the electromagnetic field of light and can be used for investigating the interaction between light and matter beyond the diffraction limit. The study on the interaction between SPR and exaction has drawn wide attention since its discovery not only due to its contribution in deepening and broadening the understanding of SPR but also its contribution to its application in light-emitting diodes, solar cells, low threshold laser, biomedical detection, quantum information processing, and so on.
Lee, Kuang-Li; Chang, Chia-Chun; You, Meng-Lin; Pan, Ming-Yang; Wei, Pei-Kuen
2018-06-27
Improving surface sensitivities of nanostructure-based plasmonic sensors is an important issue to be addressed. Among the SPR measurements, the wavelength interrogation is commonly utilized. We proposed using blue-shifted surface plasmon mode and Fano resonance, caused by the coupling of a cavity mode (angle-independent) and the surface plasmon mode (angle-dependent) in a long-periodicity silver nanoslit array, to increase surface (wavelength) sensitivities of metallic nanostructures. It results in an improvement by at least a factor of 4 in the spectral shift as compared to sensors operated under normal incidence. The improved surface sensitivity was attributed to a high refractive index sensitivity and the decrease of plasmonic evanescent field caused by two effects, the Fano coupling and the blue-shifted resonance. These concepts can enhance the sensing capability and be applicable to various metallic nanostructures with periodicities.
Li, Yingying; Pan, Guiming; Liu, Qiyu; Ma, Liang; Xie, Ying; Zhou, Li; Hao, Zhonghua; Wang, Ququan
2018-06-04
Dual plasmonic Au@Cu 2-x S core-shell nanorods (NRs) have been fabricated by using a hydrothermal method and plasmon-coupled effect between the Au core and Cu 2-x S shell in the near-infrared (NIR) region. The extinction spectrum of Au@Cu 2-x S NRs is dominated by the surface plasmon resonance (SPR) of the Cu 2-x S shell, the transverse surface plasmon resonance (TSPR), and the longitudinal surface plasmon resonance (LSPR) of the Au NRs. With the Cu 2-x S shell increasing (fixed Au NRs), the TSPR peak slightly redshifts and the LSPR and SPR peaks blueshift, owing to competition between the redshift of the refractive index effect and blueshift from the plasmon coupled effect. Although, for Au@Cu 2 S NRs, only TSPR and LSPR peaks can be seen and a redshift arises with the increasing Cu 2 S shell thickness, implying that no plasmonic coupling between Au NRs and Cu 2 S shell occurred. The extinction spectrum of the Au@Cu 2-x S NRs with three coupled resonance peaks is simulated by using the FDTD method, taking into account the electron-transfer effect. The dispersion properties of the coupling of Au@Cu 2-x S NRs with the LSPR of the initial Au core are studied experimentally by changing the length of the Au NRs, which are explained theoretically by the coupled harmonic oscillator model. The calculated coupled coefficients between SPR of the Cu 2-x S shell and LSPR of the Au NRs is 180 meV, which is much stronger than that of TSPR of Au NRs of 55 meV. Finally, the enhanced photothermal effect of Au@Cu 2-x S NRs has been demonstrated. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Yakimov, A. I.; Kirienko, V. V.; Armbrister, V. A.; Bloshkin, A. A.; Dvurechenskii, A. V.
2018-04-01
The photodetection improvement previously observed in mid-infrared (IR) quantum dot photodetectors (QDIPs) coupled with periodic metal metasurfaces is usually attributed to the surface light trapping and confinement due to generation of surface plasmon waves (SPWs). In the present work, a Ge/Si QDIP integrated with a metal plasmonic structure is fabricated to experimentally measure the photoresponse enhancement and verify that this enhancement is caused by the excitation of the mid-IR surface plasmons. A 50 nm-thick gold film perforated with a 1.2 μm-period two-dimensional square array of subwavelength holes is employed as a plasmonic coupler to convert the incident electromagnetic IR radiation into SPWs. Measurements of the polarization and angular dependencies of the photoresponse allow us to determine the dispersion of plasmon modes. We find that experimental dispersion relations agree well with that derived from a computer simulation for fundamental plasmon resonance, which indicates that the photodetection improvement in the mid-IR spectral region is actually caused by the excitations of surface plasmon Bloch waves.
Strong coupling between surface plasmon polariton and laser dye rhodamine 800
NASA Astrophysics Data System (ADS)
Valmorra, Federico; Bröll, Markus; Schwaiger, Stephan; Welzel, Nadine; Heitmann, Detlef; Mendach, Stefan
2011-08-01
We report on strong coupling between surface plasmon polaritons on a thin silver film and laser dye Rhodamine 800. Attenuated total reflection measurements reveal that the pure surface plasmon polaritons interact with the Rhodamine 800 absorption lines exhibiting pronounced anticrossings in the dispersion relation. We show that the corresponding energy gap can be tailored by the concentration of dye molecules in the dielectric matrix between 50 meV and 70 meV. We can well model our data by a classical transfer matrix approach as well as by a quantum mechanical coupled oscillator ansatz.
2014-02-11
of refraction in the region of the “lens”, successfully focusing surface plasmon polaritons (SPP). SUPERABSORBERS: The team used the Rigorous Coupled...PLASMONIC FOCUSING: The team constructed a device capable of splitting and focusing surface plasmon polaritons into different locations depending on the...surface plasmon polaritons , plasmonics 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18, NUMBER OF PAGES 19 19a. NAME
NASA Astrophysics Data System (ADS)
Chang, Ying-Feng; Chen, Ran-Chou; Li, Ying-Chang; Yu, Chih-Jen; Hsieh, Bao-Yu; Chou, Chien
2007-11-01
Alpha-fetoprotein (AFP) detection by using a localized surface plasmon coupled fluorescence (LSPCF) fiber-optic biosensor is setup and experimentally demonstrated. It is based on gold nanoparticle (GNP) and coupled with localized surface plasmon wave on the surface of GNP. In this experiment, the fluorophores are labeled on anti-AFP which are bound to protein A conjugated GNP. Thus, LSPCF is excited with high efficiency in the near field of localized surface plasmon wave. Therefore, not only the sensitivity of LSPCF biosensor is enhanced but also the specific selectivity of AFP is improved. Experimentally, the ability of real time measurement in the range of AFP concentration from 0.1ng/ml to 100ng/ml was detected. To compare with conventional methods such as enzyme-linked immunosorbent assay (ELISA) or radioimmunoassay (RIA), the LSPCF fiber-optic biosensor performs higher or comparable detection sensitivity, respectively.
UV Nano-Lights - Nonlinear Quantum Dot-Plasmon Coupling
2016-06-20
AFRL-AFOSR-JP-TR-2016-0072 UV Nano-Lights - Nonlinear Quantum Dot- Plasmon Coupling Eric Waclawik QUEENSLAND UNIVERSITY OF TECHNOLOGY Final Report 06...Final 3. DATES COVERED (From - To) 03 Feb 2014 to 02 Feb 2016 4. TITLE AND SUBTITLE UV Nano-Lights - Nonlinear Quantum Dot- Plasmon Coupling 5a...in the form of the localised surface plasmon resonance of the gold component of nanoparticle hybrids could enhance nonlinear emission by several
UV Nano Lights - Nonlinear Quantum Dot-Plasmon Coupling
2016-06-20
AFRL-AFOSR-JP-TR-2016-0072 UV Nano-Lights - Nonlinear Quantum Dot- Plasmon Coupling Eric Waclawik QUEENSLAND UNIVERSITY OF TECHNOLOGY Final Report 06...Final 3. DATES COVERED (From - To) 03 Feb 2014 to 02 Feb 2016 4. TITLE AND SUBTITLE UV Nano-Lights - Nonlinear Quantum Dot- Plasmon Coupling 5a...in the form of the localised surface plasmon resonance of the gold component of nanoparticle hybrids could enhance nonlinear emission by several
NASA Astrophysics Data System (ADS)
Fandan, R.; Pedrós, J.; Schiefele, J.; Boscá, A.; Martínez, J.; Calle, F.
2018-05-01
Surface plasmon polaritons in graphene couple strongly to surface phonons in polar substrates leading to hybridized surface plasmon-phonon polaritons (SPPPs). We demonstrate that a surface acoustic wave (SAW) can be used to launch propagating SPPPs in graphene/h-BN heterostructures on a piezoelectric substrate like AlN, where the SAW-induced surface modulation acts as a dynamic diffraction grating. The efficiency of the light coupling is greatly enhanced by the introduction of the h-BN film as compared to the bare graphene/AlN system. The h-BN interlayer not only significantly changes the dispersion of the SPPPs but also enhances their lifetime. The strengthening of the SPPPs is shown to be related to both the higher carrier mobility induced in graphene and the coupling with h-BN and AlN surface phonons. In addition to surface phonons, hyperbolic phonons polaritons (HPPs) appear in the case of multilayer h-BN films leading to hybridized hyperbolic plasmon-phonon polaritons (HPPPs) that are also mediated by the SAW. These results pave the way for engineering SAW-based graphene/h-BN plasmonic devices and metamaterials covering the mid-IR to THz range.
Split-orientation-modulated plasmon coupling in disk/sector dimers
NASA Astrophysics Data System (ADS)
Zhu, Xupeng; Chen, Yiqin; Shi, Huimin; Zhang, Shi; Liu, Quanhui; Duan, Huigao
2017-06-01
The coupled asymmetric plasmonic nanostructures allow more compact nanophotonics integration and easier optical control in practical applications, such as directional scattering and near-field control. Here, we carried out a systematic and in-depth study on the plasmonic coupling of an asymmetric gold disk/sector dimer, and investigated the light-matter interaction in such an asymmetric coupled complex nanostructures. The results demonstrated that the positions and the intensity of plasmon resonance peak as well as the spatial distribution of electric fields around the surface in the coupled disk/sector dimer can be tuned by changing the azimuth angle of the gold sector. Based on Simpson-Peterson approximation, we proposed a model to understand the obtained plasmon properties of asymmetric coupled disk/sector dimers by introducing an offset parameter between the geometry center and dipole center of the sector. The experimental results agree well with the simulations. Our study provides an insight to tune the plasmon coupling behavior via adjusting the plasmon dipole center position in coupling systems.
Strong Coupling of Localized Surface Plasmons to Excitons in Light-Harvesting Complexes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsargorodska, Anna; Cartron, Michaël L.; Vasilev, Cvetelin
Gold nanostructure arrays exhibit surface plasmon resonances that split after attaching light harvesting complexes 1 and 2 (LH1 and LH2) from purple bacteria. The splitting is attributed to strong coupling between the localized surface plasmon resonances and excitons in the light-harvesting complexes. Wild-type and mutant LH1 and LH2 from Rhodobacter sphaeroides containing different carotenoids yield different splitting energies, demonstrating that the coupling mechanism is sensitive to the electronic states in the light harvesting complexes. Plasmon–exciton coupling models reveal different coupling strengths depending on the molecular organization and the protein coverage, consistent with strong coupling. Strong coupling was also observed formore » self-assembling polypeptide maquettes that contain only chlorins. However, it is not observed for monolayers of bacteriochlorophyll, indicating that strong plasmon–exciton coupling is sensitive to the specific presentation of the pigment molecules.« less
Strong Coupling of Localized Surface Plasmons to Excitons in Light-Harvesting Complexes
Tsargorodska, Anna; Cartron, Michaël L.; Vasilev, Cvetelin; ...
2016-09-30
Gold nanostructure arrays exhibit surface plasmon resonances that split after attaching light harvesting complexes 1 and 2 (LH1 and LH2) from purple bacteria. The splitting is attributed to strong coupling between the localized surface plasmon resonances and excitons in the light-harvesting complexes. Wild-type and mutant LH1 and LH2 from Rhodobacter sphaeroides containing different carotenoids yield different splitting energies, demonstrating that the coupling mechanism is sensitive to the electronic states in the light harvesting complexes. Plasmon–exciton coupling models reveal different coupling strengths depending on the molecular organization and the protein coverage, consistent with strong coupling. Strong coupling was also observed formore » self-assembling polypeptide maquettes that contain only chlorins. However, it is not observed for monolayers of bacteriochlorophyll, indicating that strong plasmon–exciton coupling is sensitive to the specific presentation of the pigment molecules.« less
Molony, Ryan D.; Rice, James M.; Yuk, Jongseol; Shetty, Vivek; Dey, Dipak; Lawrence, David A.; Lynes, Michael A.
2012-01-01
Biological indicators have numerous and widespread utility in personalized medicine, but the measurement of these indicators also pose many technological and practical challenges. Blood/plasma has typically been used as the sample source with which to measure these indicators, but the invasiveness associated with procurement of samples has led to increased interest in saliva as an attractive alternative. However, there are unique issues associated with the measurement of saliva biomarkers. These issues are compounded by the imperfect correlation between saliva and plasma with respect to biomarker profiles. In this manuscript, we address the technical challenges associated with saliva biomarker quantification describe a high-content microarray assay that employs both grating-coupled surface plasmon resonance imaging surface plasmon coupled emission modalities in a highly sensitive assay that has a large dynamic range. This powerful approach provides the tools to map the proteome of saliva, which in turn should greatly enhance the utility of salivary biomarker profiles in personalized medicine. PMID:22896008
Probing Subdiffraction Limit Separations with Plasmon Coupling Microscopy: Concepts and Applications
Wu, Linxi
2014-01-01
Due to their advantageous materials properties, noble metal nanoparticles are versatile tools in biosensing and imaging. A characteristic feature of gold and silver nanoparticles is their ability to sustain localized surface plasmons that provide both large optical cross-sections and extraordinary photophysical stability. Plasmon Coupling Microscopy takes advantage of the beneficial optical properties and utilizes electromagnetic near-field coupling between individual noble metal nanoparticle labels to resolve subdiffraction limit separations in an all-optical fashion. This Tutorial provides an introduction into the physical concepts underlying distance dependent plasmon coupling, discusses potential experimental implementations of Plasmon Coupling Microscopy, and reviews applications in the area of biosensing and imaging. PMID:24390574
Coupling effects in 3D plasmonic structures templated by Morpho butterfly wings.
He, Jiaqing; Shen, Qingchen; Yang, Shuai; He, Gufeng; Tao, Peng; Song, Chengyi; Wu, Jianbo; Deng, Tao; Shang, Wen
2018-01-03
This paper presents the study of the coupling effects of three dimensional (3D) plasmonic nanostructures templated by Morpho butterfly wings. Different from the random deposition of metallic nanoparticles (NPs) or conformal coating of metallic layers on butterfly wings reported previously, the 3D plasmonic nanostructures studied in this work consist of gold (Au) nanostrips quasi-periodically arranged in 3D, which allows us to investigate the plasmonic coupling effects. Through refractive index (RI) matching, the plasmonic coupling can be differentiated from the optical contribution of butterfly wings. By tuning the deposition thickness of Au from 30 to 90 nm, the plasmonic coupling effects between the 3D Au nanostrips are gradually enhanced. In particular, the near-field coupling results in two resonant modes and enhances the surface-enhanced Raman scattering (SERS) signals.
Dark plasmonic breathing modes in silver nanodisks.
Schmidt, Franz-Philipp; Ditlbacher, Harald; Hohenester, Ulrich; Hohenau, Andreas; Hofer, Ferdinand; Krenn, Joachim R
2012-11-14
We map the complete plasmonic spectrum of silver nanodisks by electron energy loss spectroscopy and show that the mode which couples strongest to the electron beam has radial symmetry with no net dipole moment. Therefore, this mode does not couple to light and has escaped from observation in optical experiments. This radial breathing mode has the character of an extended two-dimensional surface plasmon with a wavenumber determined by the circular disk confinement. Its strong near fields can impact the hybridization in coupled plasmonic nanoparticles as well as couplings with nearby quantum emitters.
Yin, Yin; Wang, Jiawei; Lu, Xueyi; Hao, Qi; Saei Ghareh Naz, Ehsan; Cheng, Chuanfu; Ma, Libo; Schmidt, Oliver G
2018-04-24
In situ generation of silver nanoparticles for selective coupling between localized plasmonic resonances and whispering-gallery modes (WGMs) is investigated by spatially resolved laser dewetting on microtube cavities. The size and morphology of the silver nanoparticles are changed by adjusting the laser power and irradiation time, which in turn effectively tune the photon-plasmon coupling strength. Depending on the relative position of the plasmonic nanoparticles spot and resonant field distribution of WGMs, selective coupling between the localized surface plasmon resonances (LSPRs) and WGMs is experimentally demonstrated. Moreover, by creating multiple plasmonic-nanoparticle spots on the microtube cavity, the field distribution of optical axial modes is freely tuned due to multicoupling between LSPRs and WGMs. The multicoupling mechanism is theoretically investigated by a modified quasipotential model based on perturbation theory. This work provides an in situ fabrication of plasmonic nanoparticles on three-dimensional microtube cavities for manipulating photon-plasmon coupling which is of interest for optical tuning abilities and enhanced light-matter interactions.
Laboratory Experiments for Exploring the Surface Plasmon Resonance
ERIC Educational Resources Information Center
Pluchery, Olivier; Vayron, Romain; Van, Kha-Man
2011-01-01
The surface plasmon wave is a surface wave confined at the interface between a dielectric and a metal. The excitation of the surface plasmon resonance (SPR) on a gold thin film is discussed within the Kretschmann configuration, where the coupling with the excitation light is achieved by means of a prism in total reflection. The electromagnetic…
STEM-EELS analysis of multipole surface plasmon modes in symmetry-broken AuAg nanowire dimers
NASA Astrophysics Data System (ADS)
Schubert, Ina; Sigle, Wilfried; van Aken, Peter A.; Trautmann, Christina; Toimil-Molares, Maria Eugenia
2015-03-01
Surface plasmon coupling in nanowires separated by small gaps generates high field enhancements at the position of the gap and is thus of great interest for sensing applications. It is known that the nanowire dimensions and in particular the symmetry of the structures has strong influence on the plasmonic properties of the dimer structure. Here, we report on multipole surface plasmon coupling in symmetry-broken AuAg nanowire dimers. Our dimers, consisting of two nanowires with different lengths and separated by gaps of only 10 to 30 nm, were synthesized by pulsed electrochemical deposition in ion track-etched polymer templates. Electron energy-loss spectroscopy in scanning transmission electron microscopy allows us to resolve up to nine multipole order surface plasmon modes of these dimers spectrally separated from each other. The spectra evidence plasmon coupling between resonances of different multipole order, resulting in the generation of additional plasmonic modes. Since such complex structures require elaborated synthesis techniques, dimer structures with complex composition, morphology and shape are created. We demonstrate that finite element simulations on pure Au dimers can predict the generated resonances in the fabricated structures. The excellent agreement of our experiment on AuAg dimers with finite integration simulations using CST microwave studio manifests great potential to design complex structures for sensing applications.
Broadband and broadangle SPP antennas based on plasmonic crystals with linear chirp.
Bouillard, J-S; Vilain, S; Dickson, W; Wurtz, G A; Zayats, A V
2012-01-01
Plasmonic technology relies on the coupling of light to surface electromagnetic modes on smooth or structured metal surfaces. While some applications utilise the resonant nature of surface polaritons, others require broadband characteristics. We demonstrate unidirectional and broadband plasmonic antennas with large acceptance angles based on chirped plasmonic gratings. Near-field optical measurements have been used to visualise the excitation of surface plasmon polaritons by such aperiodic structures. These weakly aperiodic plasmonic crystals allow the formation of a trapped rainbow-type effect in a two-dimensional geometry as surface polaritons of different frequencies are coherently excited in different locations over the plasmonic structure. Both the crystal's finite size and the finite lifetime of plasmonic states are crucial for the generation of broadband surface plasmon polaritons. This approach presents new opportunities for building unidirectional, broadband and broad-angle plasmonic couplers for sensing purposes, information processing, photovoltaic applications and shaping and manipulating ultrashort optical pulses.
Broadband and broadangle SPP antennas based on plasmonic crystals with linear chirp
Bouillard, J.-S; Vilain, S.; Dickson, W.; Wurtz, G. A.; Zayats, A. V.
2012-01-01
Plasmonic technology relies on the coupling of light to surface electromagnetic modes on smooth or structured metal surfaces. While some applications utilise the resonant nature of surface polaritons, others require broadband characteristics. We demonstrate unidirectional and broadband plasmonic antennas with large acceptance angles based on chirped plasmonic gratings. Near-field optical measurements have been used to visualise the excitation of surface plasmon polaritons by such aperiodic structures. These weakly aperiodic plasmonic crystals allow the formation of a trapped rainbow-type effect in a two-dimensional geometry as surface polaritons of different frequencies are coherently excited in different locations over the plasmonic structure. Both the crystal's finite size and the finite lifetime of plasmonic states are crucial for the generation of broadband surface plasmon polaritons. This approach presents new opportunities for building unidirectional, broadband and broad-angle plasmonic couplers for sensing purposes, information processing, photovoltaic applications and shaping and manipulating ultrashort optical pulses. PMID:23170197
Narrow groove plasmonic nano-gratings for surface plasmon resonance sensing
Dhawan, Anuj; Canva, Michael; Vo-Dinh, Tuan
2011-01-01
We present a novel surface plasmon resonance (SPR) configuration based on narrow groove (sub-15 nm) plasmonic nano-gratings such that normally incident radiation can be coupled into surface plasmons without the use of prism-coupling based total internal reflection, as in the classical Kretschmann configuration. This eliminates the angular dependence requirements of SPR-based sensing and allows development of robust miniaturized SPR sensors. Simulations based on Rigorous Coupled Wave Analysis (RCWA) were carried out to numerically calculate the reflectance - from different gold and silver nano-grating structures - as a function of the localized refractive index of the media around the SPR nano-gratings as well as the incident radiation wavelength and angle of incidence. Our calculations indicate substantially higher differential reflectance signals, on localized change of refractive index in the narrow groove plasmonic gratings, as compared to those obtained from conventional SPR-based sensing systems. Furthermore, these calculations allow determination of the optimal nano-grating geometric parameters - i. e. nanoline periodicity, spacing between the nanolines, as well as the height of the nanolines in the nano-grating - for highest sensitivity to localized change of refractive index, as would occur due to binding of a biomolecule target to a functionalized nano-grating surface. PMID:21263620
Li, Qiang; Pan, Deng; Wei, Hong; Xu, Hongxing
2018-03-14
Hybrid systems composed of multiple quantum emitters coupled with plasmonic waveguides are promising building blocks for future integrated quantum nanophotonic circuits. The techniques that can super-resolve and selectively excite contiguous quantum emitters in a diffraction-limited area are of great importance for studying the plasmon-mediated interaction between quantum emitters and manipulating the single plasmon generation and propagation in plasmonic circuits. Here we show that multiple quantum dots coupled with a silver nanowire can be controllably excited by tuning the interference field of surface plasmons on the nanowire. Because of the period of the interference pattern is much smaller than the diffraction limit, we demonstrate the selective excitation of two quantum dots separated by a distance as short as 100 nm. We also numerically demonstrate a new kind of super-resolution imaging method that combines the tunable surface plasmon interference pattern on the NW with the structured illumination microscopy technique. Our work provides a novel high-resolution optical excitation and imaging method for the coupled systems of multiple quantum emitters and plasmonic waveguides, which adds a new tool for studying and manipulating single quantum emitters and single plasmons for quantum plasmonic circuitry applications.
Compact Magnetic Antennas for Directional Excitation of Surface Plasmons
2012-07-01
Steininger, G.; Koch, M.; von Plessen, G.; Feldmann, J. Launching surface plasmons into nanoholes in metal films. Appl. Phys. Lett. 2000, 76, 140−142...plasmons at single nanoholes in Au films. Appl. Phys. Lett. 2004, 85, 467−469. (14) Baudrion, A.-L.; et al. Coupling efficiency of light to surface
Plasmon-assisted optical vias for photonic ASICS
Skogen, Erik J.; Vawter, Gregory A.; Tauke-Pedretti, Anna
2017-03-21
The present invention relates to optical vias to optically connect multilevel optical circuits. In one example, the optical via includes a surface plasmon polariton waveguide, and a first optical waveguide formed on a first substrate is coupled to a second optical waveguide formed on a second substrate by the surface plasmon polariton waveguide. In some embodiments, the first optical waveguide includes a transition region configured to convert light from an optical mode to a surface plasmon polariton mode or from a surface plasmon polariton mode to an optical mode.
Margapoti, Emanuela; Gentili, Denis; Amelia, Matteo; Credi, Alberto; Morandi, Vittorio; Cavallini, Massimiliano
2014-01-21
We report on the tailoring of quantum dot (QD) emission efficiency by localized surface plasmon polaritons in self-organized mesoscopic rings. Ag nanoparticles (NPs) with CdSe QDs embedded in a polymeric matrix are spatially organised in mesoscopic rings and coupled in a tuneable fashion by breath figure formation. The mean distance between NPs and QDs and consequently the intensity of QD photoluminescence, which is enhanced by the coupling of surface plasmons and excitons, are tuned by acting on the NP concentration.
Extraction of surface plasmons in organic light-emitting diodes via high-index coupling.
Scholz, Bert J; Frischeisen, Jörg; Jaeger, Arndt; Setz, Daniel S; Reusch, Thilo C G; Brütting, Wolfgang
2012-03-12
The efficiency of organic light-emitting diodes (OLEDs) is still limited by poor light outcoupling. In particular, the excitation of surface plasmon polaritons (SPPs) at metal-organic interfaces represents a major loss channel. By combining optical simulations and experiments on simplified luminescent thin-film structures we elaborate the conditions for the extraction of SPPs via coupling to high-index media. As a proof-of-concept, we demonstrate the possibility to extract light from wave-guided modes and surface plasmons in a top-emitting white OLED by a high-index prism.
Yang, A P; Du, L P; Meng, F F; Yuan, X C
2018-05-17
Electromagnetic fields at near-field exhibit distinctive properties with respect to their free-space counterparts. In particular, an optical transverse spin appearing in a confined electromagnetic field provides the foundation for many intriguing physical effects and applications. We present a transverse spin coupling configuration where plasmonic nanoparticles are employed to couple the transverse spin in a focused beam to that of a surface plasmon polariton. The plasmonic resonance of nanoparticles on a metal film plays a significant role in transverse spin coupling. We demonstrate in experiments that Ag and Au nanoparticles yield distinct imaging patterns when scanned over a focused field, because of their different plasmonic responses to the transverse and longitudinal electric fields. Such resonance-dependent spin-coupling enables the identification of nanoparticles using a focused field, as well as electric field mapping of a specific field component of a focused beam using a plasmonic nanoparticle. These interesting findings regarding the transverse spin coupling with a plasmonic nanoparticle may find valuable applications in near-field and nano-optics.
Surface-enhanced Raman spectroscopy on coupled two-layer nanorings
NASA Astrophysics Data System (ADS)
Hou, Yumin; Xu, Jun; Wang, Pengwei; Yu, Dapeng
2010-05-01
A reproducible quasi-three-dimensional structure, composed of top and bottom concentric nanorings with same periodicity but different widths and no overlapping at the perpendicular direction, is built up by a separation-layer method, which results in huge enhancement of surface-enhanced Raman spectroscopy (SERS) due to the coupling of plasmons. Simulations show plasmonic focusing with "hot arcs" of electromagnetic enhancement meeting the need of quantitative SERS with extremely high sensitivities. In addition, the separation-layer method opens a simple and effective way to adjust the coupling of plasmons among nanostructures which is essential for the fabrication of SERS-based sensors.
NASA Astrophysics Data System (ADS)
Zhang, Zu-Yin; Wang, Li-Na; Hu, Hai-Feng; Li, Kang-Wen; Ma, Xun-Peng; Song, Guo-Feng
2013-10-01
We investigate the sensitivity and figure of merit (FOM) of a localized surface plasmon (LSP) sensor with gold nanograting on the top of planar metallic film. The sensitivity of the localized surface plasmon sensor is 317 nm/RIU, and the FOM is predicted to be above 8, which is very high for a localized surface plasmon sensor. By employing the rigorous coupled-wave analysis (RCWA) method, we analyze the distribution of the magnetic field and find that the sensing property of our proposed system is attributed to the interactions between the localized surface plasmon around the gold nanostrips and the surface plasmon polarition on the surface of the gold planar metallic film. These findings are important for developing high FOM localized surface plasmon sensors.
Observation of plasmon propagation, redirection, and fan-out in silver nanowires.
Sanders, Aric W; Routenberg, David A; Wiley, Benjamin J; Xia, Younan; Dufresne, Eric R; Reed, Mark A
2006-08-01
We report the coupling of free-space photons (vacuum wavelength of 830 nm) to surface plasmon modes of a silver nanowire. The launch of propagating plasmons, and the subsequent emission of photons, is selective and occurs only at ends and other discontinuities of the nanowire. In addition, we observe that the nanowires redirect the plasmons through turns of radii as small as 4 microm. We exploit the radiating nature of discontinuities to find a plasmon propagation length >3 +/- 1 microm. Finally, we observe that interwire plasmon coupling occurs for overlapping wires, demonstrating plasmon fan-out at subwavelength scales.
Chen, Jianjun; Sun, Chengwei; Li, Hongyun; Gong, Qihuang
2014-11-21
Surface-plasmon-polariton (SPP) launchers, which can couple the free space light to the SPPs on the metal surface, are among the key elements for the plasmonic devices and nano-photonic systems. Downscaling the SPP launchers below the diffraction limit and directly delivering the SPPs to the desired subwavelength plasmonic waveguides are of importance for high-integration plasmonic circuits. By designing a submicron double-slit structure with different slit widths, an ultra-broadband (>330 nm) unidirectional SPP launcher is realized theoretically and experimentally based on the different phase delays of SPPs propagating along the metal surface and the near-field interfering effect. More importantly, the broadband and unidirectional properties of the SPP launcher are still maintained when the slit length is reduced to a subwavelength scale. This can make the launcher occupy only a very small area of <λ(2)/10 on the metal surface. Such a robust unidirectional SPP launcher beyond the diffraction limit can be directly coupled to a subwavelength plasmonic waveguide efficiently, leading to an ultra-tight SPP source, especially as a subwavelength localized guided SPP source.
Hybrid surface-phonon-plasmon polariton modes in graphene/monolayer h-BN heterostructures.
Brar, Victor W; Jang, Min Seok; Sherrott, Michelle; Kim, Seyoon; Lopez, Josue J; Kim, Laura B; Choi, Mansoo; Atwater, Harry
2014-07-09
Infrared transmission measurements reveal the hybridization of graphene plasmons and the phonons in a monolayer hexagonal boron nitride (h-BN) sheet. Frequency-wavevector dispersion relations of the electromagnetically coupled graphene plasmon/h-BN phonon modes are derived from measurement of nanoresonators with widths varying from 30 to 300 nm. It is shown that the graphene plasmon mode is split into two distinct optical modes that display an anticrossing behavior near the energy of the h-BN optical phonon at 1370 cm(-1). We explain this behavior as a classical electromagnetic strong-coupling with the highly confined near fields of the graphene plasmons allowing for hybridization with the phonons of the atomically thin h-BN layer to create two clearly separated new surface-phonon-plasmon-polariton (SPPP) modes.
Coupling Solar Energy into Reactions: Materials Design for Surface Plasmon-Mediated Catalysis.
Long, Ran; Li, Yu; Song, Li; Xiong, Yujie
2015-08-26
Enabled by surface plasmons, noble metal nanostructures can interact with and harvest incident light. As such, they may serve as unique media to generate heat, supply energetic electrons, and provide strong local electromagnetic fields for chemical reactions through different mechanisms. This solar-to-chemical pathway provides a new approach to solar energy utilization, alternative to conventional semiconductor-based photocatalysis. To provide readers with a clear picture of this newly recognized process, this review presents coupling solar energy into chemical reactions through plasmonic nanostructures. It starts with a brief introduction of surface plasmons in metallic nanostructures, followed by a demonstration of tuning plasmonic features by tailoring their physical parameters. Owing to their tunable plasmonic properties, metallic materials offer a platform to trigger and drive chemical reactions at the nanoscale, as systematically overviewed in this article. The design rules for plasmonic materials for catalytic applications are further outlined based on existing examples. At the end of this article, the challenges and opportunities for further development of plasmonic-mediated catalysis toward energy and environmental applications are discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Al-Baiaty, Zahraa; Cumming, Benjamin P.; Gan, Xiaosong; Gu, Min
2018-02-01
We demonstrate that the optically detected magnetic resonance (ODMR) signal of a nitrogen vacancy (NV) centre can be coupled to propagating surface plasmons for the detection of the NV centre spin states, and of external magnetic fields. By coupling the spin dependent luminescence signal of a NV centre in a nanodiamond (ND) to a chemically synthesized silver nanowire, we demonstrate the readout of the ODMR signal as a reduction in the surface plasmon polariton intensity, with improved contrast in comparison to the emission from the NV centre. Furthermore, on the application of a permanent magnetic field from zero to 13 G, we demonstrate that the Zeeman splitting of the magnetic spin states of the nitrogen vacancy centre ground states can also be detected in the coupled surface plasmons. This is an important step in the development of a compact on-chip information processing system utilizing the nitrogen vacancy in nanodiamond as an on-chip source with efficient magnetometry sensing properties.
NASA Astrophysics Data System (ADS)
Li, Yufeng; Wang, Shuai; Su, Xilin; Tang, Weihan; Li, Qiang; Guo, Maofeng; Zhang, Ye; Zhang, Minyan; Yun, Feng; Hou, Xun
2017-11-01
Ag coated microgroove with extreme large aspect-ratio of 500:1 was fabricated on p-GaN capping layer to investigate the coupling behavior between quantum wells and surface plasmon in highly spatial resolution. Significant photoluminescence enhancement was observed when the distance between Ag film and QWs was reduced from 220 nm to about 20 nm. A maximum enhancement ratio of 18-fold was achieved at the groove bottom where the surface plasmonic coupling was considered the strongest. Such enhancement ratio was found highly affected by the excitation power density. It also shows high correlation to the internal quantum efficiency as a function of coupling effect and a maximum Purcell Factor of 1.75 was estimated at maximum coupling effect, which matches number calculated independently from the time-resolved photoluminescence measurement. With such Purcell Factor, the efficiency was greatly enhanced and the droop was significantly suppressed.
Plasmon-emitter interaction using integrated ring grating-nanoantenna structures.
Rahbany, Nancy; Geng, Wei; Bachelot, Renaud; Couteau, Christophe
2017-05-05
Overcoming the diffraction limit to achieve high optical resolution is one of the main challenges in the fields of plasmonics, nanooptics and nanophotonics. In this work, we introduce novel plasmonic structures consisting of nanoantennas (nanoprisms, single bowtie nanoantennas and double bowtie nanoantennas) integrated in the center of ring diffraction gratings. Propagating surface plasmon polaritons (SPPs) are generated by the ring grating and coupled with localized surface plasmons (LSPs) at the nanoantennas exciting emitters placed in their gap. SPPs are widely used for optical waveguiding but provide low resolution due to their weak spatial confinement. In contrast, LSPs provide excellent sub-wavelength confinement but induce large losses. The phenomenon of SPP-LSP coupling witnessed in our structures allows for achieving more precise focusing at the nanoscale, causing an increase in the fluorescence emission of the emitters. Finite-difference time-domain simulations as well as experimental fabrication and optical characterization results are presented to study plasmon-emitter coupling between an ensemble of dye molecules and our integrated plasmonic structures. A comparison is given to highlight the importance of each structure on the photoluminescence and radiative decay enhancement of the molecules.
Plasmon-emitter interaction using integrated ring grating-nanoantenna structures
NASA Astrophysics Data System (ADS)
Rahbany, Nancy; Geng, Wei; Bachelot, Renaud; Couteau, Christophe
2017-05-01
Overcoming the diffraction limit to achieve high optical resolution is one of the main challenges in the fields of plasmonics, nanooptics and nanophotonics. In this work, we introduce novel plasmonic structures consisting of nanoantennas (nanoprisms, single bowtie nanoantennas and double bowtie nanoantennas) integrated in the center of ring diffraction gratings. Propagating surface plasmon polaritons (SPPs) are generated by the ring grating and coupled with localized surface plasmons (LSPs) at the nanoantennas exciting emitters placed in their gap. SPPs are widely used for optical waveguiding but provide low resolution due to their weak spatial confinement. In contrast, LSPs provide excellent sub-wavelength confinement but induce large losses. The phenomenon of SPP-LSP coupling witnessed in our structures allows for achieving more precise focusing at the nanoscale, causing an increase in the fluorescence emission of the emitters. Finite-difference time-domain simulations as well as experimental fabrication and optical characterization results are presented to study plasmon-emitter coupling between an ensemble of dye molecules and our integrated plasmonic structures. A comparison is given to highlight the importance of each structure on the photoluminescence and radiative decay enhancement of the molecules.
Dheur, Marie-Christine; Devaux, Eloïse; Ebbesen, Thomas W.; Baron, Alexandre; Rodier, Jean-Claude; Hugonin, Jean-Paul; Lalanne, Philippe; Greffet, Jean-Jacques; Messin, Gaétan; Marquier, François
2016-01-01
Surface plasmon polaritons are electromagnetic waves coupled to collective electron oscillations propagating along metal-dielectric interfaces, exhibiting a bosonic character. Recent experiments involving surface plasmons guided by wires or stripes allowed the reproduction of quantum optics effects, such as antibunching with a single surface plasmon state, coalescence with a two-plasmon state, conservation of squeezing, or entanglement through plasmonic channels. We report the first direct demonstration of the wave-particle duality for a single surface plasmon freely propagating along a planar metal-air interface. We develop a platform that enables two complementary experiments, one revealing the particle behavior of the single-plasmon state through antibunching, and the other one where the interferences prove its wave nature. This result opens up new ways to exploit quantum conversion effects between different bosonic species as shown here with photons and polaritons. PMID:26998521
Integrated fiber-coupled launcher for slow plasmon-polariton waves.
Della Valle, Giuseppe; Longhi, Stefano
2012-01-30
We propose and numerically demonstrate an integrated fiber-coupled launcher for slow surface plasmon-polaritons. The device is based on a novel plasmonic mode-converter providing efficient power transfer from the fast to the slow modes of a metallic nanostripe. Total coupling efficiency with standard single-mode fiber approaching 30% (including ohmic losses) has been numerically predicted for a 25-µm long gold-based device operating at 1.55 µm telecom wavelength.
Partially coherent surface plasmon modes
NASA Astrophysics Data System (ADS)
Niconoff, G. M.; Vara, P. M.; Munoz-Lopez, J.; Juárez-Morales, J. C.; Carbajal-Dominguez, A.
2011-04-01
Elementary long-range plasmon modes are described assuming an exponential dependence of the refractive index in the neighbourhood of the interface dielectric-metal thin film. The study is performed using coupling mode theory. The interference between two long-range plasmon modes generated that way allows the synthesis of surface sinusoidal plasmon modes, which can be considered as completely coherent generalized plasmon modes. These sinusoidal plasmon modes are used for the synthesis of new partially coherent surface plasmon modes, which are obtained by means of an incoherent superposition of sinusoidal plasmon modes where the period of each one is considered as a random variable. The kinds of surface modes generated have an easily tuneable profile controlled by means of the probability density function associated to the period. We show that partially coherent plasmon modes have the remarkable property to control the length of propagation which is a notable feature respect to the completely coherent surface plasmon mode. The numerical simulation for sinusoidal, Bessel, Gaussian and Dark Hollow plasmon modes are presented.
Lin, Albert; Fu, Sze-Ming; Chung, Yen-Kai; Lai, Shih-Yun; Tseng, Chi-Wei
2013-01-14
Surface plasmon enhancement has been proposed as a way to achieve higher absorption for thin-film photovoltaics, where surface plasmon polariton(SPP) and localized surface plasmon (LSP) are shown to provide dense near field and far field light scattering. Here it is shown that controlled far-field light scattering can be achieved using successive coupling between surface plasmonic (SP) nano-particles. Through genetic algorithm (GA) optimization, energy transfer between discrete nano-particles (ETDNP) is identified, which enhances solar cell efficiency. The optimized energy transfer structure acts like lumped-element transmission line and can properly alter the direction of photon flow. Increased in-plane component of wavevector is thus achieved and photon path length is extended. In addition, Wood-Rayleigh anomaly, at which transmission minimum occurs, is avoided through GA optimization. Optimized energy transfer structure provides 46.95% improvement over baseline planar cell. It achieves larger angular scattering capability compared to conventional surface plasmon polariton back reflector structure and index-guided structure due to SP energy transfer through mode coupling. Via SP mediated energy transfer, an alternative way to control the light flow inside thin-film is proposed, which can be more efficient than conventional index-guided mode using total internal reflection (TIR).
Direct Observation of Optical Field Phase Carving in the Vicinity of Plasmonic Metasurfaces.
Dagens, B; Février, M; Gogol, P; Blaize, S; Apuzzo, A; Magno, G; Mégy, R; Lerondel, G
2016-07-13
Plasmonic surfaces are mainly used for their optical intensity concentration properties that allow for enhancement of physical interaction like in nonlinear optics, optical sensors, or tweezers. Phase response in plasmonic resonances can also play a major role, especially in a periodic assembly of plasmonic resonators like metasurfaces. Here we show that localized surface plasmons collectively excited by a guided mode in a metallic nanostructure periodic chain present nonmonotonous phase variation along the 1D metasurface, resulting from both selective Bloch mode coupling and dipolar coupling. As shown by near-field measurements, the phase profile of the highly concentrated optical field is carved out in the vicinity of the metallic metasurface, paving the way to unusual local optical functions.
Optical properties of plasmonic nanostructures: Theory & experiments
NASA Astrophysics Data System (ADS)
Bala Krishna, Juluri
Metal nanoparticles and thin films enable localization of electromagnetic energy in the form of localized surface plasmon resonances (LSPR) and propagating surface plasmons respectively. This research field, also known as plasmonics, involves understanding and fabricating innovative nanostructures designed to manage and utilize localized light in the nanoscale. Advances in plasmonics will facilitate innovation in sensing, biomedical engineering, energy harvesting and nanophotonic devices. In this thesis, three aspects of plasmonics are studied: 1) active plasmonic systems using charge-induced plasmon shifts (CIPS) and plasmon-molecule resonant coupling; 2) scalable solutions to fabricate large electric field plasmonic nanostructures; and 3) controlling the propagation of designer surface plasmons (DSPs) using parabolic graded media. The full potential of plasmonics can be realized with active plasmonic devices which provide tunable plasmon resonances. The work reported here develops both an understanding for and realization of various mechanisms to achieve tunable plasmonic systems. First, we show that certain nanoparticle geometries and material compositions enable large CIPS. Second, we propose and investigate systems which exhibit coupling between molecular and plasmonic resonances where energy splitting is observed due to interactions between plasmons and molecules. Large electric field nanostructures have many promising applications in the areas of surface enhanced Raman spectroscopy, higher harmonic light generation, and enhanced uorescence. High throughput techniques that utilize simple nanofabrication are essential their advancement. We contribute to this effort by using a salting-out quenching technique and colloidal lithography to fabricate nanodisc dimers and cusp nanostructures that allow localization of large electric fields, and are comparable to structures fabricated by conventional lithography/milling techniques. Designer surface plasmons (DSPs) are surface waves that are localized to the interface between a structured perfect electric conductor (PEC) surface and dielectric medium. Terahertz (THz) DSPs excited on microscale structured PEC are localized in the out-of-plane direction, with negligible in-plane localization. We addressed this problem by subjecting DSPs to a parabolic graded-index structure. Lateral confinement such as focusing, collimation, and waveguiding of DSPs is demonstrated. Such control will pave the way towards THz energy concentration, diffusion, guiding, and beam aperture modifcation.
Nguyen, Mai; Kanaev, Andrei; Sun, Xiaonan; Lacaze, Emmanuelle; Lau-Truong, Stéphanie; Lamouri, Aazdine; Aubard, Jean; Felidj, Nordin; Mangeney, Claire
2015-11-24
A smart and highly SERS-active plasmonic platform was designed by coupling regular arrays of nanotriangles to colloidal gold nanorods via a thermoresponsive polymer spacer (poly(N-isopropylacrylamide), PNIPAM). The substrates were prepared by combining a top-down and a bottom-up approach based on nanosphere lithography, surface-initiated controlled radical polymerization, and colloidal assembly. This multistep strategy provided regular hexagonal arrays of nanotriangles functionalized by polymer brushes and colloidal gold nanorods, confined exclusively on the nanotriangle surface. Interestingly, one could finely tune the gold nanorod impregnation on the polymer-coated nanostructures by adjusting the polymer layer thickness, leading to highly coupled plasmonic systems for intense SERS signal. Moreover, the thermoresponsive properties of the PNIPAM brushes could be wisely handled in order to monitor the SERS activity of the nanostructures coupled via this polymer spacer. The coupled hybrid plasmonic nanostructures designed in this work are therefore very promising smart platforms for the sensitive detection of analytes by SERS.
Nanoporous Gold Nanocomposites as a Versatile Platform for Plasmonic Engineering and Sensing
Zhao, Fusheng; Zeng, Jianbo; Shih, Wei-Chuan
2017-01-01
Plasmonic metal nanostructures have shown great potential in sensing applications. Among various materials and structures, monolithic nanoporous gold disks (NPGD) have several unique features such as three-dimensional (3D) porous network, large surface area, tunable plasmonic resonance, high-density hot-spots, and excellent architectural integrity and environmental stability. They exhibit a great potential in surface-enhanced spectroscopy, photothermal conversion, and plasmonic sensing. In this work, interactions between smaller colloidal gold nanoparticles (AuNP) and individual NPGDs are studied. Specifically, colloidal gold nanoparticles with different sizes are loaded onto NPGD substrates to form NPG hybrid nanocomposites with tunable plasmonic resonance peaks in the near-infrared spectral range. Newly formed plasmonic hot-spots due to the coupling between individual nanoparticles and NPG disk have been identified in the nanocomposites, which have been experimentally studied using extinction and surface-enhanced Raman scattering. Numerical modeling and simulations have been employed to further unravel various coupling scenarios between AuNP and NPGDs. PMID:28657586
2014-01-01
SYMBOLS Acronym Definition SPP Surface Plasmon Polaritons RHC Right-Hand Circular LHC Left-Hand Circular FIB Focused Ion Beam RHS Right-Handed Spiral CCD Charge-Coupled Detector FWHM Full Width at Half Maximum
Interference of conically scattered light in surface plasmon resonance.
Webster, Aaron; Vollmer, Frank
2013-02-01
Surface plasmon polaritons on thin metal films are a well studied phenomena when excited using prism coupled geometries such as the Kretschmann attenuated total reflection configuration. Here we describe a novel interference pattern in the conically scattered light emanating from such a configuration when illuminated by a focused beam. We observe conditions indicating only self-interference of scattered surface plasmon polaritions without any contributions from specular reflection. The spatial evolution of this field is described in the context of Fourier optics and has applications in highly sensitive surface plasmon based biosensing.
Transparent Conducting Oxides for Infrared Plasmonic Waveguides: ZnO (Preprint)
2014-01-15
dependence of mobility (µ) on thickness (d). 15. SUBJECT TERMS microcavity; polariton ; strong coupling; ZnO 16. SECURITY CLASSIFICATION OF: 17...dimensions below the diffraction limit. Keywords: microcavity; polariton ; strong coupling; ZnO INTRODUCTION The field of plasmonics has received...optical computing and chips, enhanced signal detectors, etc3. Surface plasmon polaritons (SPPs) are quasi-particles or excitations that result from
Ultrafast and nonlinear surface-enhanced Raman spectroscopy.
Gruenke, Natalie L; Cardinal, M Fernanda; McAnally, Michael O; Frontiera, Renee R; Schatz, George C; Van Duyne, Richard P
2016-04-21
Ultrafast surface-enhanced Raman spectroscopy (SERS) has the potential to study molecular dynamics near plasmonic surfaces to better understand plasmon-mediated chemical reactions such as plasmonically-enhanced photocatalytic or photovoltaic processes. This review discusses the combination of ultrafast Raman spectroscopic techniques with plasmonic substrates for high temporal resolution, high sensitivity, and high spatial resolution vibrational spectroscopy. First, we introduce background information relevant to ultrafast SERS: the mechanisms of surface enhancement in Raman scattering, the characterization of plasmonic materials with ultrafast techniques, and early complementary techniques to study molecule-plasmon interactions. We then discuss recent advances in surface-enhanced Raman spectroscopies with ultrafast pulses with a focus on the study of molecule-plasmon coupling and molecular dynamics with high sensitivity. We also highlight the challenges faced by this field by the potential damage caused by concentrated, highly energetic pulsed fields in plasmonic hotspots, and finally the potential for future ultrafast SERS studies.
Extrinsic polarization-controlled optical anisotropy in plasmon-black phosphorus coupled system
NASA Astrophysics Data System (ADS)
Liu, Zizhuo; Wells, Spencer A.; Butun, Serkan; Palacios, Edgar; Hersam, Mark C.; Aydin, Koray
2018-07-01
Two-dimensional black phosphorus (BP) has drawn extensive research interest due to its promising anisotropic photonic and electronic properties. Here, we study anisotropic optical absorption and photoresponse of exfoliated BP flakes at visible frequencies. We enhance this intrinsic optical anisotropy in BP flakes by coupling plasmonic rectangular nanopatch arrays that support localized surface plasmon resonances. In particular, by combining extrinsic anisotropic plasmonic nanostructures lithographically aligned with intrinsically anisotropic BP flakes, we demonstrate for the first time a combined anisotropic plasmonic-semiconductor coupling that provides significant control over the polarization-dependent optical properties of the plasmon-BP hybrid material system, enhancing polarization-sensitive responses to a larger degree. This hybrid material system not only unveils the plasmon-enhanced mechanisms in BP, but also provides novel controllable functionalities in optoelectronic device applications involving polarization-sensitive optical and electrical responses.
Extrinsic polarization-controlled optical anisotropy in plasmon-black phosphorus coupled system.
Liu, Zizhuo; Wells, Spencer A; Butun, Serkan; Palacios, Edgar; Hersam, Mark C; Aydin, Koray
2018-07-13
Two-dimensional black phosphorus (BP) has drawn extensive research interest due to its promising anisotropic photonic and electronic properties. Here, we study anisotropic optical absorption and photoresponse of exfoliated BP flakes at visible frequencies. We enhance this intrinsic optical anisotropy in BP flakes by coupling plasmonic rectangular nanopatch arrays that support localized surface plasmon resonances. In particular, by combining extrinsic anisotropic plasmonic nanostructures lithographically aligned with intrinsically anisotropic BP flakes, we demonstrate for the first time a combined anisotropic plasmonic-semiconductor coupling that provides significant control over the polarization-dependent optical properties of the plasmon-BP hybrid material system, enhancing polarization-sensitive responses to a larger degree. This hybrid material system not only unveils the plasmon-enhanced mechanisms in BP, but also provides novel controllable functionalities in optoelectronic device applications involving polarization-sensitive optical and electrical responses.
Hybrid optical materials of plasmon-coupled CdSe/ZnS coreshells for photonic applications
Seo, Jaetae; Fudala, Rafal; Kim, Wan-Joong; Rich, Ryan; Tabibi, Bagher; Cho, Hyoyeong; Gryczynski, Zygmunt; Gryczynski, Ignacy; Yu, William
2013-01-01
A hybrid optical nanostructure of plasmon-coupled SQDs was developed for photonic applications. The coupling distances between the mono-layers of Au nanoparticles with a surface concentration of ~9.18 × 10−4 nm−2 and CdSe/ZnS SQDs with that of ~3.7 × 10−3 nm−2 were controlled by PMMA plasma etching. Time-resolved spectroscopy of plasmon-coupled SQDs revealed a strong shortening of the longest lifetime and ~9-fold PL enhancement. Polarization-resolved PL spectroscopy displayed linear polarization and depolarization at near- and far-field plasmon-coupling, respectively. The physical origin of PL enhancement could be attributable to both the large local field enhancement and the fast resonant energy transfer. PMID:23457661
Quantum Yield of Single Surface Plasmons Generated by a Quantum Dot Coupled with a Silver Nanowire.
Li, Qiang; Wei, Hong; Xu, Hongxing
2015-12-09
The interactions between surface plasmons (SPs) in metal nanostructures and excitons in quantum emitters (QEs) lead to many interesting phenomena and potential applications that are strongly dependent on the quantum yield of SPs. The difficulty in distinguishing all the possible exciton recombination channels hinders the experimental determination of SP quantum yield. Here, we experimentally measured for the first time the quantum yield of single SPs generated by the exciton-plasmon coupling in a system composed of a single quantum dot and a silver nanowire (NW). By utilizing the SP guiding property of the NW, the decay rates of all the exciton recombination channels, i.e., direct free space radiation channel, SP generation channel, and nonradiative damping channel, are quantitatively obtained. It is determined that the optimum emitter-NW coupling distance for the largest SP quantum yield is about 10 nm, resulting from the different distance-dependent decay rates of the three channels. These results are important for manipulating the coupling between plasmonic nanostructures and QEs and developing on-chip quantum plasmonic devices for potential nanophotonic and quantum information applications.
Liu, Zhengqi; Liu, Guiqiang; Liu, Xiaoshan; Huang, Shan; Wang, Yan; Pan, Pingping; Liu, Mulin
2015-06-12
Resonant plasmonic and metamaterial absorbers are of particular interest for applications in a wide variety of nanotechnologies including thermophotovoltaics, photothermal therapy, hot-electron collection and biosensing. However, it is rather challenging to realize ultra-narrow absorbers using plasmonic materials due to large optical losses in metals that inevitably decrease the quality of optical resonators. Here, we theoretically report methods to achieve an ultra-narrow light absorption meta-surface by using photonic modes of the optical cavities, which strongly couple with the plasmon resonances of the metallic nanostructures. Multispectral light absorption with absorption amplitude exceeding 99% and a bandwidth approaching 10 nm is achieved at the optical frequencies. Moreover, by introducing a thick dielectric coupling cavity, the number of absorption bands can be strongly increased and the bandwidth can even be narrowed to less than 5 nm due to the resonant spectrum splitting enabled by strong coupling between the plasmon resonances and the optical cavity modes. Designing such optical cavity-coupled meta-surface structures is a promising route for achieving ultra-narrow multiband absorbers, which can be used in absorption filters, narrow-band multispectral thermal emitters and thermophotovoltaics.
NASA Astrophysics Data System (ADS)
Francois, Alexandre; Boehm, Jonathan; Penno, Megan; Hoffmann, Peter; Monro, Tanya M.
2011-05-01
The management of threats such as pandemics and explosives, and of health and the environment requires the rapid deployment of highly sensitive detection tools. Sensors based on Surface Plasmon Resonance (SPR) allow rapid, labelfree, highly sensitive detection, and indeed this phenomenon underpins the only label-free optical biosensing technology that is available commercially. In these sensors, the existence of surface plasmons is inferred indirectly from absorption features that correspond to the coupling of light to the surface plasmon. Although SPR is not intrinsically a radiative process, under certain conditions the surface plasmon can itself couple to the local photon states, and emit light. Here we show for the first time that by collecting and characterising this re-emitted light, it is possible to realise new SPR sensing architectures that are more compact, versatile and robust than existing approaches. It is applicable to a range of SPR geometries, including optical fibres. As an example, this approach has been used to demonstrate the detection of a protein identified as a being a biomarker for cancer.
Some optical and catalytic properties of metallic nanoparticles
NASA Astrophysics Data System (ADS)
Tabor, Christopher Eugene
Nanomaterials have been the focus of many previous publications and studies. This fact is due to the wealth of new and tunable properties that exist when a material is confined in size. This thesis discusses some of those properties pertaining to metallic nanoparticles. The primarily focus is on the plasmonic properties of gold nanoparticles with a final chapter discussing nanocatalysis and the nature of nanocatalytic reactions. The strong electromagnetic field that is induced at the surface of a plasmonic nanoparticle can be utilized for many important applications, including spectroscopic enhancements for molecular sensors and electromagnetic waveguides for sub-wavelength light manipulation. For many of these applications, it is necessary to use two or more nanoparticles in close proximity with overlapping plasmonic fields. Knowledge of how these overlapping fields are affected by the particle orientation, size, and shape is critically important, not only in understanding the fundamental properties of plasmons but also in designing future architectures that employ plasmonic particles. The field of metallic nanoparticles is introduced from its beginning, with artistic use as early as the 4th century AD through current applications and understanding. The broad spectrum of current methodologies for fabricating nanoparticles is discussed, from top down methods using lithography and from bottom up methods using metal salt reduction in solution. There are several methods used in this thesis, all of which are discussed in great detail, with some details pertaining to the specific instrumentation used here. The first study is on the transfer of surface supported gold nanoprisms from a substrate into solution using photo-thermal heating with a femtosecond pulse coincident with the plasmon resonance frequency of the nanoprisms. The mechanism of transfer is discovered to be due to super heating of solvent molecules dissolved at the particle-substrate interface. This process is studied as a function of irradiance fluence and solvent. The stability of the unprotected nanoprisms in solution is discussed. This technique has applications for creating a colloidal suspension of nanoparticle without a surfactant layer covering the surface. The particles can be chemically functionalized with any desired moiety for specific solution phase applications. The second study is on the fundamentals of plasmonic near-field coupling between two plasmonic nanoparticles as a function of the nanoparticle size, shape, and orientation. Experimental results using electron beam lithography fabricated samples are used to better understand the plasmonic coupling between dimers. Previously, the coupling between plasmonic fields around nanoparticles has been described as a near-exponential decay dependence on interparticle separation. This decay was proposed to be consistent among all sizes and shapes of nanoparticles, which was quantitatively measured using the best-fit decay length in units of the nanoparticle size. Experimental proof is presented of the shape dependence of this decay length, which is roughly 50% greater for nanoprisms than for nanodiscs, nanospheres, and nanoellipses. This was shown using simulated and experimental data. Using simulated results, the coupling decay length was shown to be independent of size for all nanoparticle shapes examined. Additionally, the effect of particle orientation on the coupling of the induced nearfields of the plasmonic particles is intensely investigated. Systematic studies using a combination of experimental samples and computer simulations are presented that examine the role of one particle's orientation to another within a plasmonic dimer system. This dependence is compared to the mathematically derived dependence and shown to be in excellent agreement. The plasmon hybridization method is given as a straightforward method to understand and predict the effect of plasmon near-field coupling on orientation. Previous methods used to understand the effect of separation on the plasmon coupling are incorporated into this method. As an extension, the coupling between plasmonic nanoparticles is shown in a common application, namely surface enhanced Raman scattering. This phenomenon is studied using colloidally prepared silver nanocubes deposited on a substrate using the Langmuir-Blodgett technique. Using various surface pressures during deposition, the surface density of the deposited nanocubes can be controlled, and thus the degree of plasmonic coupling. By controlling the plasmonic coupling, the enhancement of the Raman scattering from the PVP capping layer was altered and a correlation between the enhancement and the plasmon field intensity is reported. The final study investigates the nature of nanocatalysis for several reactions using metal nanoparticles. Arguably, the largest unanswered question currently in nanocatalysis is the nature of the catalytic reaction, namely homogeneous catalysis or heterogeneous catalysis. This question has been very difficult to answer because of the lack of current techniques to completely restrict one form of catalysis. The issue is reviewed in this thesis with new insights discussed while using experiments that show evidence of both sides of the issues, homogeneous and heterogeneous.
Enhanced Optical Transmission Mediated by Localized Plasmons in Anisotropic, 3D Nanohole Arrays
Yang, Jiun-Chan; Gao, Hanwei; Suh, Jae Yong; Zhou, Wei; Lee, Min Hyung; Odom, Teri W.
2010-01-01
This paper describes 3D nanohole arrays whose high optical transmission is mediated more by localized surface plasmon (LSP) excitations than by surface plasmon polaritons (SPPs). First, LSPs on 3D hole arrays lead to optical transmission an order of magnitude higher than 2D planar hole arrays. Second, LSP-mediated transmission is broadband and more tunable than SPP-enhanced transmission which is restricted by Bragg coupling. Third, for the first time, two types of surface plasmons can be selectively excited and manipulated on the same plasmonic substrate. This new plasmonic substrate fabricated by high-throughput nanolithography techniques paves the way for cutting-edge optoelectronic and biomedical applications. PMID:20698633
Petoukhoff, Christopher E.; O'Carroll, Deirdre M.
2015-01-01
Interactions between absorbers and plasmonic metasurfaces can give rise to unique optical properties not present for either of the individual materials and can influence the performance of a host of optical sensing and thin-film optoelectronic applications. Here we identify three distinct mode types of absorber-coated plasmonic metasurfaces: localized and propagating surface plasmons and a previously unidentified optical mode type called absorption-induced scattering. The extinction of the latter mode type can be tuned by controlling the morphology of the absorber coating and the spectral overlap of the absorber with the plasmonic modes. Furthermore, we show that surface plasmons are backscattered when the crystallinity of the absorber is low but are absorbed for more crystalline absorber coatings. This work furthers our understanding of light–matter interactions between absorbers and surface plasmons to enable practical optoelectronic applications of metasurfaces. PMID:26271900
NASA Astrophysics Data System (ADS)
Smerieri, M.; Vattuone, L.; Savio, L.; Langer, T.; Tegenkamp, C.; Pfnür, H.; Silkin, V. M.; Rocca, M.
2014-10-01
Understanding acoustic surface plasmons (ASPs) in the presence of nanosized gratings is necessary for the development of future devices that couple light with ASPs. We show here by experiment and theory that two ASPs exist on Au(788), a vicinal surface with an ordered array of monoatomic steps. The ASPs propagate across the steps as long as their wavelength exceeds the terrace width, thereafter becoming localized. Our investigation identifies, for the first time, ASPs coupled with intersubband transitions involving multiple surface-state subbands.
SERS of Methylene Blue induced by plasmonic coupled nanoparticle arrays
NASA Astrophysics Data System (ADS)
Kaydashev, V. E.; Lyanguzov, N. V.; Anokhin, A. S.; Chernishov, A.; Kaidashev, E. M.
2018-04-01
We study the surface enhanced Raman scattering of Methylene Blue (MB) dye molecules induced by large quasihomogeneous arrays of plasmon coupled 5-8 nm Au nanoparticle separated by distances less than 10 nm. Also, the variation of the fluorescence enhancement/SERS properties for as-prepared coupled particles and agglomerated particles obtained upon heat treatment and percolation-like films is analyzed for two measurement protocols, i.e. when measured through the solution and for a monolayer of MB molecules chemisorbed on a surface.
Coupling of individual quantum emitters to channel plasmons.
Bermúdez-Ureña, Esteban; Gonzalez-Ballestero, Carlos; Geiselmann, Michael; Marty, Renaud; Radko, Ilya P; Holmgaard, Tobias; Alaverdyan, Yury; Moreno, Esteban; García-Vidal, Francisco J; Bozhevolnyi, Sergey I; Quidant, Romain
2015-08-07
Efficient light-matter interaction lies at the heart of many emerging technologies that seek on-chip integration of solid-state photonic systems. Plasmonic waveguides, which guide the radiation in the form of strongly confined surface plasmon-polariton modes, represent a promising solution to manipulate single photons in coplanar architectures with unprecedented small footprints. Here we demonstrate coupling of the emission from a single quantum emitter to the channel plasmon polaritons supported by a V-groove plasmonic waveguide. Extensive theoretical simulations enable us to determine the position and orientation of the quantum emitter for optimum coupling. Concomitantly with these predictions, we demonstrate experimentally that 42% of a single nitrogen-vacancy centre emission efficiently couples into the supported modes of the V-groove. This work paves the way towards practical realization of efficient and long distance transfer of energy for integrated solid-state quantum systems.
Imaging slit-coupled surface plasmon polaritons using conventional optical microscopy.
Mehfuz, R; Chowdhury, F A; Chau, K J
2012-05-07
We develop a technique that now enables surface plasmon polaritons (SPPs) coupled by nano-patterned slits in a metal film to be detected using conventional optical microscopy with standard objective lenses. The crux of this method is an ultra-thin polymer layer on the metal surface, whose thickness can be varied over a nanoscale range to enable controllable tuning of the SPP momentum. At an optimal layer thickness for which the SPP momentum matches the momentum of light emerging from the slit, the SPP coupling efficiency is enhanced about six times relative to that without the layer. The enhanced efficiency results in distinctive and bright plasmonic signatures near the slit visible by naked eye under an optical microscope. We demonstrate how this capability can be used for parallel measurement through a simple experiment in which the SPP propagation distance is extracted from a single microscope image of an illuminated array of nano-patterned slits on a metal surface. We also use optical microscopy to image the focal region of a plasmonic lens and obtain results consistent with a previously-reported results using near-field optical microscopy. Measurement of SPPs near a nano-slit using conventional and widely-available optical microscopy is an important step towards making nano-plasmonic device technology highly accessible and easy-to-use.
Kim, Taehyo; Kang, Saewon; Heo, Jungwoo; Cho, Seungse; Kim, Jae Won; Choe, Ayoung; Walker, Bright; Shanker, Ravi; Ko, Hyunhyub; Kim, Jin Young
2018-05-21
Improved performance in plasmonic organic solar cells (OSCs) and organic light-emitting diodes (OLEDs) via strong plasmon-coupling effects generated by aligned silver nanowire (AgNW) transparent electrodes decorated with core-shell silver-silica nanoparticles (Ag@SiO 2 NPs) is demonstrated. NP-enhanced plasmonic AgNW (Ag@SiO 2 NP-AgNW) electrodes enable substantially enhanced radiative emission and light absorption efficiency due to strong hybridized plasmon coupling between localized surface plasmons (LSPs) and propagating surface plasmon polaritons (SPPs) modes, which leads to improved device performance in organic optoelectronic devices (OODs). The discrete dipole approximation (DDA) calculation of the electric field verifies a strongly enhanced plasmon-coupling effect caused by decorating core-shell Ag@SiO 2 NPs onto the AgNWs. Notably, an electroluminescence efficiency of 25.33 cd A -1 (at 3.2 V) and a power efficiency of 25.14 lm W -1 (3.0 V) in OLEDs, as well as a power conversion efficiency (PCE) value of 9.19% in OSCs are achieved using hybrid Ag@SiO 2 NP-AgNW films. These are the highest values reported to date for optoelectronic devices based on AgNW electrodes. This work provides a new design platform to fabricate high-performance OODs, which can be further explored in various plasmonic and optoelectronic devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Dong, H M; Yang, Y H; Yang, G W
2015-03-05
We demonstrate an individual ZnO hexagonal microrod on the surface of an Au substrate which can become new sources for manufacturing miniature ZnO plasmon lasers by surface plasmon polariton coupling to whispering-gallery modes (WGMs). We also demonstrate that the rough surface of Au substrates can acquire a more satisfied enhancement of ZnO emission if the surface geometry of Au substrates is appropriate. Furthermore, we achieve high Q factor and super low threshold plasmonic WGM lasing from an individual ZnO hexagonal microrod on the surface of the Au substrate, in which Q factor can reach 5790 and threshold is 0.45 KW/cm(2) which is the lowest value reported to date for ZnO nanostructures lasing, at least 10 times smaller than that of ZnO at the nanometer. Electron transfer mechanisms are proposed to understand the physical origin of quenching and enhancement of ZnO emission on the surface of Au substrates. These investigations show that this novel coupling mode holds a great potential of ZnO hexagonal micro- and nanorods for data storage, bio-sensing, optical communications as well as all-optic integrated circuits.
Directional emission from dye-functionalized plasmonic DNA superlattice microcavities
Park, Daniel J.; Ku, Jessie C.; Sun, Lin; Lethiec, Clotilde M.; Stern, Nathaniel P.; Schatz, George C.; Mirkin, Chad A.
2017-01-01
Three-dimensional plasmonic superlattice microcavities, made from programmable atom equivalents comprising gold nanoparticles functionalized with DNA, are used as a testbed to study directional light emission. DNA-guided nanoparticle colloidal crystallization allows for the formation of micrometer-scale single-crystal body-centered cubic gold nanoparticle superlattices, with dye molecules coupled to the DNA strands that link the particles together, in the form of a rhombic dodecahedron. Encapsulation in silica allows one to create robust architectures with the plasmonically active particles and dye molecules fixed in space. At the micrometer scale, the anisotropic rhombic dodecahedron crystal habit couples with photonic modes to give directional light emission. At the nanoscale, the interaction between the dye dipoles and surface plasmons can be finely tuned by coupling the dye molecules to specific sites of the DNA particle-linker strands, thereby modulating dye–nanoparticle distance (three different positions are studied). The ability to control dye position with subnanometer precision allows one to systematically tune plasmon–excition interaction strength and decay lifetime, the results of which have been supported by electrodynamics calculations that span length scales from nanometers to micrometers. The unique ability to control surface plasmon/exciton interactions within such superlattice microcavities will catalyze studies involving quantum optics, plasmon laser physics, strong coupling, and nonlinear phenomena. PMID:28053232
Ultrasmooth Patterned Metals for Plasmonics and Metamaterials
NASA Astrophysics Data System (ADS)
Nagpal, Prashant; Lindquist, Nathan C.; Oh, Sang-Hyun; Norris, David J.
2009-07-01
Surface plasmons are electromagnetic waves that can exist at metal interfaces because of coupling between light and free electrons. Restricted to travel along the interface, these waves can be channeled, concentrated, or otherwise manipulated by surface patterning. However, because surface roughness and other inhomogeneities have so far limited surface-plasmon propagation in real plasmonic devices, simple high-throughput methods are needed to fabricate high-quality patterned metals. We combined template stripping with precisely patterned silicon substrates to obtain ultrasmooth pure metal films with grooves, bumps, pyramids, ridges, and holes. Measured surface-plasmon-propagation lengths on the resulting surfaces approach theoretical values for perfectly flat films. With the use of our method, we demonstrated structures that exhibit Raman scattering enhancements above 107 for sensing applications and multilayer films for optical metamaterials.
Color-Tunable ZnO/GaN Heterojunction LEDs Achieved by Coupling with Ag Nanowire Surface Plasmons.
Yang, Liu; Wang, Yue; Xu, Haiyang; Liu, Weizhen; Zhang, Cen; Wang, Chunliang; Wang, Zhongqiang; Ma, Jiangang; Liu, Yichun
2018-05-09
Color-tunable light-emitting devices (LEDs) have a great impact on our daily life. Herein, LEDs with tunable electroluminescence (EL) color were achieved via introducing Ag nanowires surface plasmons into p-GaN/n-ZnO film heterostructures. By optimizing the surface coverage density of coated Ag nanowires, the EL color was changed continuously from yellow-green to blue-violet. Transient-state and temperature-variable fluorescence emission characterizations uncovered that the spontaneous emission rate and the internal quantum efficiency of the near-UV emission were increased as a consequence of the resonance coupling interaction between Ag nanowires surface plasmons and ZnO excitons. This effect induces the selective enhancement of the blue-violet EL component but suppresses the defect-related yellow-green emission, leading to the observed tunable EL color. The proposed strategy of introducing surface plasmons can be further applied to many other kinds of LEDs for their selective enhancement of EL intensity and effective adjustment of the emission color.
Electrically driven plasmon-exciton coupled random lasing in ZnO metal-semiconductor-metal devices
NASA Astrophysics Data System (ADS)
Suja, Mohammad; Debnath, Bishwajit; Bashar, Sunayna B.; Su, Longxing; Lake, Roger; Liu, Jianlin
2018-05-01
Electrically driven plasmon-exciton coupled random lasing is demonstrated by incorporating Ag nanoparticles on Cu-doped ZnO metal-semiconductor-metal (MSM) devices. Both photoluminescence and electroluminescence studies show that emission efficiencies have been enhanced significantly due to coupling between ZnO excitons and Ag surface plasmons. With the incorporation of Ag nanoparticles on ZnO MSM structures, internal quantum efficiency up to 6 times is demonstrated. Threshold current for lasing is decreased by as much as 30% while the output power is increased up to 350% at an injection current of 40 mA. A numerical simulation study reveals that hole carriers are generated in the ZnO MSM devices from impact ionization processes for subsequent plasmon-exciton coupled lasing.
Resonant Scattering of Surface Plasmon Polaritons by Dressed Quantum Dots
2014-06-23
Resonant scattering of surface plasmon polaritons by dressed quantum dots Danhong Huang,1 Michelle Easter,2 Godfrey Gumbs,3 A. A. Maradudin,4 Shawn... polariton waves (SPP) by embedded semiconductor quantum dots above the dielectric/metal interface is explored in the strong-coupling regime. In con- trast to...induced polarization field, treated as a source term9 arising from photo-excited electrons, allows for a resonant scattering of surface plasmon- polariton
Radiation characteristics of Leaky Surface Plasmon polaritons of graphene
NASA Astrophysics Data System (ADS)
Mohadesi, V.; Asgari, A.; Siahpoush, V.
2018-07-01
High efficient coupling of graphene surface plasmons to far field radiation is possible by some techniques and can be used in the radiating applications. Besides of the coupling efficiency, the angular distribution of the radiated power is an important parameter in the radiating devices performance. In this paper we investigate the gain of the far field radiation related to the coupling of graphene surface plasmons via a high permittivity medium located close to the graphene. Our results show that high directive radiation and high coupling efficiency can be obtained by this technique and gain and directivity of radiation can be modified by graphene characteristics such as chemical potential and also quality of the graphene. Raising the chemical potential of graphene leads to increase the gain of the radiation as the result of amplifying the directivity of the radiation. Furthermore, high values of relaxation time lead to high directive and strong coupling which raises the maximum value of gain in efficient coupling angle. Tunable characteristics of gain and directivity in this structure can be important designing reconfigurable THz radiating devices.
Highly doped InP as a low loss plasmonic material for mid-IR region.
Panah, M E Aryaee; Takayama, O; Morozov, S V; Kudryavtsev, K E; Semenova, E S; Lavrinenko, A V
2016-12-12
We study plasmonic properties of highly doped InP in the mid-infrared (IR) range. InP was grown by metal-organic vapor phase epitaxy (MOVPE) with the growth conditions optimized to achieve high free electron concentrations by doping with silicon. The permittivity of the grown material was found by fitting the calculated infrared reflectance spectra to the measured ones. The retrieved permittivity was then used to simulate surface plasmon polaritons (SPPs) propagation on flat and structured surfaces, and the simulation results were verified in direct experiments. SPPs at the top and bottom interfaces of the grown epilayer were excited by the prism coupling. A high-index Ge hemispherical prism provides efficient coupling conditions of SPPs on flat surfaces and facilitates acquiring their dispersion diagrams. We observed diffraction into symmetry-prohibited diffraction orders stimulated by the excitation of surface plasmon-polaritons in a periodically structured epilayer. Characterization shows good agreement between the theory and experimental results and confirms that highly doped InP is an effective plasmonic material aiming it for applications in the mid-IR wavelength range.
Zhang, Cai; Tang, Ning; Shang, Liangliang; Fu, Lei; Wang, Weiying; Xu, Fujun; Wang, Xinqiang; Ge, Weikun; Shen, Bo
2017-05-24
We report the enhancement of the polarization and internal quantum efficiency (IQE) of deep-UV LEDs by evaporating Al nanoparticles on the device surface to induce localized surface plasmons (LSPs). The deep-UV LEDs polarization is improved due to part of TM emission turns into TE emission through LSPs coupling. The significantly enhanced IQE is attributed to LSPs coupling, which suppress the participation of delocalized and dissociated excitons to non-radiative recombination process.
Plasmonic refractive index sensing using strongly coupled metal nanoantennas: nonlocal limitations.
Wang, Hancong
2018-06-25
Localized surface plasmon resonance based on coupled metallic nanoparticles has been extensively studied in the refractive index sensing and the detection of molecules. The amount of resonance peak-shift depends on the refractive index of surrounding medium and the geometry/symmetry of plasmonic oligomers. It has recently been found that as the feature size or the gap distance of plasmonic nanostructures approaches several nanometers, quantum effects can change the plasmon coupling in nanoparticles. However, most of the research on plasmonic sensing has been done based on classical local calculations even for the interparticle gap below ~3 nm, in which the nonlocal screening plays an important role. Here, we theoretically investigate the nonlocal effect on the evolution of various plasmon resonance modes in strongly coupled nanoparticle dimer and trimer antennas with the gap down to 1 nm. Then, the refractive index sensing in these nonlocal systems is evaluated and compared with the results in classical calculations. We find that in the nonlocal regime, both refractive index sensibility factor and figure of merit are actually smaller than their classical counterparts mainly due to the saturation of plasmon shifts. These results would be beneficial for the understanding of interaction between light and nonlocal plasmonic nanostructures and the development of plasmonic devices such as nanosensors and nanoantennas.
Approaching the strong coupling limit in single plasmonic nanorods interacting with J-aggregates
Zengin, Gülis; Johansson, Göran; Johansson, Peter; Antosiewicz, Tomasz J.; Käll, Mikael; Shegai, Timur
2013-01-01
We studied scattering and extinction of individual silver nanorods coupled to the J-aggregate form of the cyanine dye TDBC as a function of plasmon – exciton detuning. The measured single particle spectra exhibited a strongly suppressed scattering and extinction rate at wavelengths corresponding to the J-aggregate absorption band, signaling strong interaction between the localized surface plasmon of the metal core and the exciton of the surrounding molecular shell. In the context of strong coupling theory, the observed “transparency dips” correspond to an average vacuum Rabi splitting of the order of 100 meV, which approaches the plasmon dephasing rate and, thereby, the strong coupling limit for the smallest investigated particles. These findings could pave the way towards ultra-strong light-matter interaction on the nanoscale and active plasmonic devices operating at room temperature. PMID:24166360
Shin, Taeho; Cho, Kyung-Sang; Yun, Dong-Jin; Kim, Jinwoo; Li, Xiang-Shu; Moon, Eui-Seong; Baik, Chan-Wook; Il Kim, Sun; Kim, Miyoung; Choi, Jun Hee; Park, Gyeong-Su; Shin, Jai-Kwang; Hwang, Sungwoo; Jung, Tae-Sung
2016-05-17
We examine exciton recombination, energy-, and charge transfer in multilayer CdS/ZnS quantum dots (QDs) on silver plasmonic resonators using photoluminescence (PL) and excitation spectroscopy along with kinetic modeling and simulations. The exciton dynamics including all the processes are strongly affected by the separation distance between QDs and silver resonators, excitation wavelength, and QD film thickness. For a direct contact or very small distance, interfacial charge transfer and tunneling dominate over intrinsic radiative recombination and exciton energy transfer to surface plasmons (SPs), resulting in PL suppression. With increasing distance, however, tunneling diminishes dramatically, while long-range exciton-SP coupling takes place much faster (>6.5 ns) than intrinsic recombination (~200 ns) causing considerable PL enhancement. The exciton-SP coupling strength shows a strong dependence on excitation wavelengths, suggesting the state-specific dynamics of excitons and the down-conversion of surface plasmons involved. The overlayers as well as the bottom monolayer of QD multilayers exhibit significant PL enhancement mainly through long-range exciton-SP coupling. The overall emission behaviors from single- and multilayer QD films on silver resonators are described quantitatively by a photophysical kinetic model and simulations. The present experimental and simulation results provide important and useful design rules for QD-based light harvesting applications using the exciton-surface plasmon coupling.
Shin, Taeho; Cho, Kyung-Sang; Yun, Dong-Jin; Kim, Jinwoo; Li, Xiang-Shu; Moon, Eui-Seong; Baik, Chan-Wook; Il Kim, Sun; Kim, Miyoung; Choi, Jun Hee; Park, Gyeong-Su; Shin, Jai-Kwang; Hwang, Sungwoo; Jung, Tae-Sung
2016-01-01
We examine exciton recombination, energy-, and charge transfer in multilayer CdS/ZnS quantum dots (QDs) on silver plasmonic resonators using photoluminescence (PL) and excitation spectroscopy along with kinetic modeling and simulations. The exciton dynamics including all the processes are strongly affected by the separation distance between QDs and silver resonators, excitation wavelength, and QD film thickness. For a direct contact or very small distance, interfacial charge transfer and tunneling dominate over intrinsic radiative recombination and exciton energy transfer to surface plasmons (SPs), resulting in PL suppression. With increasing distance, however, tunneling diminishes dramatically, while long-range exciton-SP coupling takes place much faster (>6.5 ns) than intrinsic recombination (~200 ns) causing considerable PL enhancement. The exciton-SP coupling strength shows a strong dependence on excitation wavelengths, suggesting the state-specific dynamics of excitons and the down-conversion of surface plasmons involved. The overlayers as well as the bottom monolayer of QD multilayers exhibit significant PL enhancement mainly through long-range exciton-SP coupling. The overall emission behaviors from single- and multilayer QD films on silver resonators are described quantitatively by a photophysical kinetic model and simulations. The present experimental and simulation results provide important and useful design rules for QD-based light harvesting applications using the exciton-surface plasmon coupling. PMID:27184469
NASA Astrophysics Data System (ADS)
Sukharev, Maxim; Pachter, Ruth
2018-03-01
We study theoretically the optical response of a WS2 monolayer located near periodic metal nanostructured arrays in two and three dimensions. The emphasis of the simulations is on the strong coupling between excitons supported by WS2 and surface plasmon-polaritons supported by various periodic plasmonic interfaces. It is demonstrated that a monolayer of WS2 placed in close proximity of periodic arrays of either slits or holes results in a Rabi splitting of the corresponding surface plasmon-polariton resonance as revealed in calculated transmission and reflection spectra. The nonlinear regime, at which the few-layer WS2 exhibits experimentally third harmonic generation (THG), is studied in detail. Monolayer transition metal dichalcogenides (TMDs) do not exhibit THG because they are non-centrosymmetric, but here we use the monolayer as an approximation to a thin TMD nanostructure. We show that in the strong coupling regime the third harmonic signal is significantly affected by plasmon-polaritons and the symmetry of hybrid exciton-plasmon modes. It is also shown that the local electromagnetic field induced by plasmons is the major contributor to the enhancement of the third harmonic signal in three dimensions. The local electromagnetic fields resulting from the third harmonic generation are greatly localized and highly sensitive to the environment, thus making it a great tool for nano-probes.
Hill, Ryan T
2015-01-01
The unique optical properties of plasmon resonant nanostructures enable exploration of nanoscale environments using relatively simple optical characterization techniques. For this reason, the field of plasmonics continues to garner the attention of the biosensing community. Biosensors based on propagating surface plasmon resonances (SPRs) in films are the most well-recognized plasmonic biosensors, but there is great potential for the new, developing technologies to surpass the robustness and popularity of film-based SPR sensing. This review surveys the current plasmonic biosensor landscape with emphasis on the basic operating principles of each plasmonic sensing technique and the practical considerations when developing a sensing platform with the various techniques. The 'gold standard' film SPR technique is reviewed briefly, but special emphasis is devoted to the up-and-coming localized surface plasmon resonance and plasmonically coupled sensor technology. © 2014 Wiley Periodicals, Inc.
Wang, Kai; Schonbrun, Ethan; Crozier, Kenneth B
2009-07-01
We experimentally demonstrate the enhanced propulsion of gold nanoparticles by surface plasmon polaritons (SPPs). Three dimensional finite difference time domain (FDTD) simulations indicate considerably enhanced optical forces due to the field enhancement provided by SPPs and the near-field coupling between the gold particles and the film. This coupling is an important part of the enhanced propulsion phenomenon. Finally, the measured optical force is compared with that predicted by FDTD simulations and proven to be reasonable.
Shang, Qiuyu; Zhang, Shuai; Liu, Zhen; Chen, Jie; Yang, Pengfei; Li, Chun; Li, Wei; Zhang, Yanfeng; Xiong, Qihua; Liu, Xinfeng; Zhang, Qing
2018-06-13
Manipulating strong light-matter interaction in semiconductor microcavities is crucial for developing high-performance exciton polariton devices with great potential in next-generation all-solid state quantum technologies. In this work, we report surface plasmon enhanced strong exciton-photon interaction in CH 3 NH 3 PbBr 3 perovskite nanowires. Characteristic anticrossing behaviors, indicating a Rabi splitting energy up to ∼564 meV, are observed near exciton resonance in hybrid perovskite nanowire/SiO 2 /Ag cavity at room temperature. The exciton-photon coupling strength is enhanced by ∼35% on average, which is mainly attributed to surface plasmon induced localized excitation field redistribution. Further, systematic studies on SiO 2 thickness and nanowire dimension dependence of exciton-photon interaction are presented. These results provide new avenues to achieve extremely high coupling strengths and push forward the development of electrically pumped and ultralow threshold small lasers.
Wu, Wei-Te; Chen, Chien-Hsing; Chiang, Chang-Yue; Chau, Lai-Kwan
2018-05-31
A simple theoretical model was developed to analyze the extinction spectrum of gold nanoparticles (AuNPs) on the fiber core and glass surfaces in order to aid the determination of the surface coverage and surface distribution of the AuNPs on the fiber core surface for sensitivity optimization of the fiber optic particle plasmon resonance (FOPPR) sensor. The extinction spectrum of AuNPs comprises of the interband absorption of AuNPs, non-interacting plasmon resonance (PR) band due to isolated AuNPs, and coupled PR band of interacting AuNPs. When the surface coverage is smaller than 12.2%, the plasmon coupling effect can almost be ignored. This method is also applied to understand the refractive index sensitivity of the FOPPR sensor with respect to the non-interacting PR band and the coupled PR band. In terms of wavelength sensitivity at a surface coverage of 18.6%, the refractive index sensitivity of the coupled PR band (205.5 nm/RIU) is greater than that of the non-interacting PR band (349.1 nm/RIU). In terms of extinction sensitivity, refractive index sensitivity of the coupled PR band (-3.86/RIU) is similar to that of the non-interacting PR band (-3.93/RIU). Both maximum wavelength and extinction sensitivities were found at a surface coverage of 15.2%.
Surface plasmon coupled chemiluminescence during adsorption of oxygen on magnesium surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagemann, Ulrich; Nienhaus, Hermann, E-mail: hermann.nienhaus@uni-due.de
The dissociative adsorption of oxygen molecules on magnesium surfaces represents a non-adiabatic reaction exhibiting exoelectron emission, chemicurrent generation, and weak chemiluminescence. Using thin film Mg/Ag/p-Si(111) Schottky diodes with 1 nm Mg on a 10-60 nm thick Ag layer as 2π-photodetectors, the chemiluminescence is internally detected with a much larger efficiency than external methods. The chemically induced photoyield shows a maximum for a Ag film thickness of 45 nm. The enhancement is explained by surface plasmon coupled chemiluminescence, i.e., surface plasmon polaritons are effectively excited in the Ag layer by the oxidation reaction and decay radiatively leading to the observed photocurrent.more » Model calculations of the maximum absorption in attenuated total reflection geometry support the interpretation. The study demonstrates the extreme sensitivity and the practical usage of internal detection schemes for investigating surface chemiluminescence.« less
UV-SPR biosensor for biomolecular interaction studies
NASA Astrophysics Data System (ADS)
Geiss, F. A.; Fossati, S.; Khan, I.; Gisbert Quilis, N.; Knoll, W.; Dostalek, J.
2017-05-01
UV surface plasmon resonance (SPR) for direct in situ detection of protein binding events is reported. A crossed relief aluminum grating was employed for diffraction coupling to surface plasmons as an alternative to more commonly used attenuated total reflection method. Wavelength interrogation of SPR was carried out by using transmission measurements in order to probe odorant-binding protein 14 (OBP14) of the honey bee (Apis mellifera). The native oxide layer on the top of an aluminum grating sensor chip allows for covalent coupling of protein molecules by using regular silane-based linkers. The probing of bound OBP14 protein at UV with confined field of surface plasmons holds potential for further studies of interaction with recently developed artificial fluorescent odorants.
Wang, Mingsong; Krasnok, Alex; Zhang, Tianyi; Scarabelli, Leonardo; Liu, He; Wu, Zilong; Liz-Marzán, Luis M; Terrones, Mauricio; Alù, Andrea; Zheng, Yuebing
2018-05-01
Tunable Fano resonances and plasmon-exciton coupling are demonstrated at room temperature in hybrid systems consisting of single plasmonic nanoparticles deposited on top of the transition metal dichalcogenide monolayers. By using single Au nanotriangles (AuNTs) on monolayer WS 2 as model systems, Fano resonances are observed from the interference between a discrete exciton band of monolayer WS 2 and a broadband plasmonic mode of single AuNTs. The Fano lineshape depends on the exciton binding energy and the localized surface plasmon resonance strength, which can be tuned by the dielectric constant of surrounding solvents and AuNT size, respectively. Moreover, a transition from weak to strong plasmon-exciton coupling with Rabi splitting energies of 100-340 meV is observed by rationally changing the surrounding solvents. With their tunable plasmon-exciton interactions, the proposed WS 2 -AuNT hybrids can open new pathways to develop active nanophotonic devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fast Electron Spectroscopy of Enhanced Plasmonic N anoantenna Resonances
NASA Astrophysics Data System (ADS)
Day, Jared K.
Surface plasmons are elementary excitations of the collective and coherent oscillations of conductive band electrons coupled with photons at the surface of metals. Surface plasmons of metallic nanostructures can efficiently couple to light making them a new class of optical antennas that can confine and control light at nanometer scale dimensions. Nanoscale optical antennas can be used to enhance the energy transfer between nanoscale systems and freely-propagating radiation. Plasmonic nanoantennas have already been used to enhance single molecule detection, diagnosis and treat cancer, harvest solar energy, to create metamaterials with new optical properties and to enhance photo-chemical reactions. The applications for plasmonic nanoantennas are only limited by the fundamental understanding of their unique optical properties and the rational design of new coupled antenna systems. It is therefore necessary to interrogate and image the local electromagnetic response of nanoantenna systems to establish intuition between near-field coupling dynamics and far-field optical properties. This thesis focuses on the characterization and enhancement of the longitudinal multipolar plasmonic resonances of Au nanorod nanoantennas. To better understand these resonances fast electron spectroscopy is used to both visualize and probe the near- and far-field properties of multipolar resonances of individual nanorods and more complex nanorod systems through cathodoluminescence (CL). CL intensity maps show that coupled nanorod systems enhance and alter nanorod resonances away from ideal resonant behavior creating hybridized longitudinal modes that expand and relax at controllable locations along the nanorod. These measurements show that complex geometries can strengthen and alter the local density of optical states for nanoantenna designs with more functionality and better control of localized electromagnetic fields. Finally, the electron excitations are compared to plane wave optical stimulation both experimentally and through Finite Difference Time Domain simulations to begin to develop a qualitative picture of how the local density of optical states affects the far-field optical scattering properties of plasmonic nanoantennas.
Control of Plasmon Dynamics in Coupled Plasmonic Hybrid Mode Microcavities
2012-07-10
the electromagnetic resonances , the development of plasmonic metamaterials with negative index of refraction opened a new perspective towards achieving...signals in a deep-subwavelength regime, spatially localized surface plasmons show strong electronic resonances that allow their use for the design of...ring resonators ,21 and metallic photonic crystals .22,23 In this paper we focus our attention on a silicon-based plasmonic pulsar; essentially, we address
Rivera, V A G; Ledemi, Yannick; Pereira-da-Silva, Marcelo A; Messaddeq, Younes; Marega, Euclydes
2016-01-04
This manuscript reports on the interaction between (2)F5/2→(2)F7/2 radiative transition from Yb(3+) ions and localized surface plasmon resonance (from gold/silver nanoparticles) in a tungsten-tellurite glass. Such an interaction, similar to the down-conversion process, results in the Yb(3+) emission in the near-infrared region via resonant and non-resonant energy transfers. We associated such effects with the dynamic coupling described by the variations generated by the Hamiltonian HDC in either the oscillator strength, or the local crystal field, i.e. the line shape changes in the emission band. Here, the Yb(3+) ions emission is achieved through plasmon-photon coupling, observable as an enhancement or quenching in the luminescence spectra. Metallic nanoparticles have light-collecting capability in the visible spectrum and can accumulate almost all the photon energy on a nanoscale, which enable the excitation and emission of the Yb(3+) ions in the near-infrared region. This plasmon-photon conversion was evaluated from the cavity's quality factor (Q) and the coupling (g) between the nanoparticles and the Yb(3+) ions. We have found samples of low-quality cavities and strong coupling between the nanoparticles and the Yb(3+) ions. Our research can be extended towards the understanding of new plasmon-photon converters obtained from interactions between rare-earth ions and localized surface plasmon resonance.
Rivera, V. A. G.; Ledemi, Yannick; Pereira-da-Silva, Marcelo A.; Messaddeq, Younes; Marega Jr, Euclydes
2016-01-01
This manuscript reports on the interaction between 2F5/2→2F7/2 radiative transition from Yb3+ ions and localized surface plasmon resonance (from gold/silver nanoparticles) in a tungsten-tellurite glass. Such an interaction, similar to the down-conversion process, results in the Yb3+ emission in the near-infrared region via resonant and non-resonant energy transfers. We associated such effects with the dynamic coupling described by the variations generated by the Hamiltonian HDC in either the oscillator strength, or the local crystal field, i.e. the line shape changes in the emission band. Here, the Yb3+ ions emission is achieved through plasmon-photon coupling, observable as an enhancement or quenching in the luminescence spectra. Metallic nanoparticles have light-collecting capability in the visible spectrum and can accumulate almost all the photon energy on a nanoscale, which enable the excitation and emission of the Yb3+ ions in the near-infrared region. This plasmon-photon conversion was evaluated from the cavity’s quality factor (Q) and the coupling (g) between the nanoparticles and the Yb3+ ions. We have found samples of low-quality cavities and strong coupling between the nanoparticles and the Yb3+ ions. Our research can be extended towards the understanding of new plasmon-photon converters obtained from interactions between rare-earth ions and localized surface plasmon resonance. PMID:26725938
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nyamekye, Charles K. A.; Weibel, Stephen C.; Bobbitt, Jonathan M.
Directional-surface-plasmon-coupled Raman scattering (directional RS) has the combined benefits of surface plasmon resonance and Raman spectroscopy, and provides the ability to measure adsorption and monolayer-sensitive chemical information. Directional RS is performed by optically coupling a 50-nm gold film to a Weierstrass prism in the Kretschmann configuration and scanning the angle of the incident laser under total internal reflection. The collected parameters on the prism side of the interface include a full surface-plasmon-polariton cone and the full Raman signal radiating from the cone as a function of incident angle. An instrument for performing directional RS and a quantitative study of themore » instrumental parameters are herein reported. To test the sensitivity and quantify the instrument parameters, self-assembled monolayers and 10 to 100-nm polymer films are studied. The signals are found to be well-modeled by two calculated angle-dependent parameters: three-dimensional finite-difference time-domain calculations of the electric field generated in the sample layer and projected to the far-field, and Fresnel calculations of the reflected light intensity. This is the first report of the quantitative study of the full surface-plasmon-polariton cone intensity, cone diameter, and directional Raman signal as a function of incident angle. We propose that directional RS is a viable alternative to surface plasmon resonance when added chemical information is beneficial.« less
Nyamekye, Charles K. A.; Weibel, Stephen C.; Bobbitt, Jonathan M.; ...
2017-09-15
Directional-surface-plasmon-coupled Raman scattering (directional RS) has the combined benefits of surface plasmon resonance and Raman spectroscopy, and provides the ability to measure adsorption and monolayer-sensitive chemical information. Directional RS is performed by optically coupling a 50-nm gold film to a Weierstrass prism in the Kretschmann configuration and scanning the angle of the incident laser under total internal reflection. The collected parameters on the prism side of the interface include a full surface-plasmon-polariton cone and the full Raman signal radiating from the cone as a function of incident angle. An instrument for performing directional RS and a quantitative study of themore » instrumental parameters are herein reported. To test the sensitivity and quantify the instrument parameters, self-assembled monolayers and 10 to 100-nm polymer films are studied. The signals are found to be well-modeled by two calculated angle-dependent parameters: three-dimensional finite-difference time-domain calculations of the electric field generated in the sample layer and projected to the far-field, and Fresnel calculations of the reflected light intensity. This is the first report of the quantitative study of the full surface-plasmon-polariton cone intensity, cone diameter, and directional Raman signal as a function of incident angle. We propose that directional RS is a viable alternative to surface plasmon resonance when added chemical information is beneficial.« less
Huo, Si-Xin; Liu, Qian; Cao, Shuo-Hui; Cai, Wei-Peng; Meng, Ling-Yan; Xie, Kai-Xin; Zhai, Yan-Yun; Zong, Cheng; Yang, Zhi-Lin; Ren, Bin; Li, Yao-Qun
2015-06-04
Surface-enhanced Raman scattering (SERS) is a unique analytical technique that provides fingerprint spectra, yet facing the obstacle of low collection efficiency. In this study, we demonstrated a simple approach to measure surface plasmon-coupled directional enhanced Raman scattering by means of the reverse Kretschmann configuration (RK-SPCR). Highly directional and p-polarized Raman scattering of 4-aminothiophenol (4-ATP) was observed on a nanoparticle-on-film substrate at 46° through the prism coupler with a sharp angle distribution (full width at half-maximum of ∼3.3°). Because of the improved collection efficiency, the Raman scattering signal was enhanced 30-fold over the conventional SERS mode; this was consistent with finite-difference time-domain simulations. The effect of nanoparticles on the coupling efficiency of propagated surface plasmons was investigated. Possessing straightforward implementation and directional enhancement of Raman scattering, RK-SPCR is anticipated to simplify SERS instruments and to be broadly applicable to biochemical assays.
Effect of Intermolecular Distance on Surface-Plasmon-Assisted Catalysis.
Wu, Shiwei; Liu, Yu; Ma, Caiqing; Wang, Jing; Zhang, Yao; Song, Peng; Xia, Lixin
2018-06-26
4-Aminothiophenol (PATP) and 4-aminophenyl disulfide (APDS) in contact with silver will form H 2 N-C 6 H 4 -S-Ag (PATP-Ag), and under the conditions of surface-enhanced Raman spectroscopy (SERS), a coupling reaction will generate 4,4-dimercaptoazobenzene (DMAB). DMAB is strongly Raman-active, showing strong peaks at ν ≈ 1140, 1390, and 1432 cm -1 , and is widely used in surface-plasmon-assisted catalysis. Using APDS, PATP, p-nitrothiophenol (PNTP), and p-nitrodiphenyl disulfide (NPDS) as probe molecules, Raman spectroscopy and imaging techniques have been used to study the effect of intermolecular distance on surface-plasmon-assisted catalysis. Theoretically, PATP-Ag formed from APDS will be bound at proximal Ag atoms on the Ag surface due to S-S bond cleavage. The results show that APDS is more prone to surface-plasmon-assisted catalytic coupling due to the smaller distance between surface PATP-Ag moieties than those derived from PATP. Therefore, APDS has a higher reaction efficiency, better Raman activity, and better Raman imaging than does PATP. Analogous experiments with PNTP and NPDS gave similar results. Thus, this technique has great application prospects in the fields of surface chemistry and materials chemistry.
Surface-polariton propagation for scanning near-field optical microscopy application.
Keilmann, F
1999-01-01
Surface plasmon-, phonon- and exciton-polaritons exist on specific materials in specific spectral regions. We assess the properties of such travelling surface-bound electromagnetic waves relevant for scanning near-field optical microscopy applications, i.e. the tightness of surface binding, the attenuation, the phase velocity and the coupling with free-space electromagnetic waves. These quantities can be directly determined by photographic imaging of surface plasmon- and surface phonon-polaritons, in both the visible and mid-infared regions. Focusing of mid-infrared surface plasmons is demonstrated. Surface waveguides to transport and focus photons to the tip of a scanning near-field probe are outlined.
Shaping plasmon beams via the controlled illumination of finite-size plasmonic crystals
Bouillard, J.-S.; Segovia, P.; Dickson, W.; Wurtz, G. A.; Zayats, A. V.
2014-01-01
Plasmonic crystals provide many passive and active optical functionalities, including enhanced sensing, optical nonlinearities, light extraction from LEDs and coupling to and from subwavelength waveguides. Here we study, both experimentally and numerically, the coherent control of SPP beam excitation in finite size plasmonic crystals under focussed illumination. The correct combination of the illuminating spot size, its position relative to the plasmonic crystal, wavelength and polarisation enables the efficient shaping and directionality of SPP beam launching. We show that under strongly focussed illumination, the illuminated part of the crystal acts as an antenna, launching surface plasmon waves which are subsequently filtered by the surrounding periodic lattice. Changing the illumination conditions provides rich opportunities to engineer the SPP emission pattern. This offers an alternative technique to actively modulate and control plasmonic signals, either via micro- and nano-electromechanical switches or with electro- and all-optical beam steering which have direct implications for the development of new integrated nanophotonic devices, such as plasmonic couplers and switches and on-chip signal demultiplexing. This approach can be generalised to all kinds of surface waves, either for the coupling and discrimination of light in planar dielectric waveguides or the generation and control of non-diffractive SPP beams. PMID:25429786
Agarwal, Daksh; Aspetti, Carlos O; Cargnello, Matteo; Ren, MingLiang; Yoo, Jinkyoung; Murray, Christopher B; Agarwal, Ritesh
2017-03-08
The field of plasmonics has attracted considerable attention in recent years because of potential applications in various fields such as nanophotonics, photovoltaics, energy conversion, catalysis, and therapeutics. It is becoming increasing clear that intrinsic high losses associated with plasmons can be utilized to create new device concepts to harvest the generated heat. It is therefore important to design cavities, which can harvest optical excitations efficiently to generate heat. We report a highly engineered nanowire cavity, which utilizes a high dielectric silicon core with a thin plasmonic film (Au) to create an effective metallic cavity to strongly confine light, which when coupled with localized surface plasmons in the nanoparticles of the thin metal film produces exceptionally high temperatures upon laser irradiation. Raman spectroscopy of the silicon core enables precise measurements of the cavity temperature, which can reach values as high as 1000 K. The same Si-Au cavity with enhanced plasmonic activity when coupled with TiO 2 nanorods increases the hydrogen production rate by ∼40% compared to similar Au-TiO 2 system without Si core, in ethanol photoreforming reactions. These highly engineered thermoplasmonic devices, which integrate three different cavity concepts (high refractive index core, metallo-dielectric cavity, and localized surface plasmons) along with the ease of fabrication demonstrate a possible pathway for designing optimized plasmonic devices with applications in energy conversion and catalysis.
Surface plasmon polariton laser based on a metallic trench Fabry-Perot resonator
Zhu, Wenqi; Xu, Ting; Wang, Haozhu; Zhang, Cheng; Deotare, Parag B.; Agrawal, Amit; Lezec, Henri J.
2017-01-01
Recent years have witnessed a growing interest in the development of small-footprint lasers for potential applications in small-volume sensing and on-chip optical communications. Surface plasmons—electromagnetic modes evanescently confined to metal-dielectric interfaces—offer an effective route to achieving lasing at nanometer-scale dimensions when resonantly amplified in contact with a gain medium. We achieve narrow-linewidth visible-frequency lasing at room temperature by leveraging surface plasmons propagating in an open Fabry-Perot cavity formed by a flat metal surface coated with a subwavelength-thick layer of optically pumped gain medium and orthogonally bound by a pair of flat metal sidewalls. We show how the lasing threshold and linewidth can be lowered by incorporating a low-profile tapered grating on the cavity floor to couple the excitation beam into a pump surface plasmon polariton providing a strong modal overlap with the gain medium. Low-perturbation transmission-configuration sampling of the lasing plasmon mode is achieved via an evanescently coupled recessed nanoslit, opening the way to high–figure of merit refractive index sensing of analytes interacting with the open metallic trench. PMID:28989962
Microfluidic transmission surface plasmon resonance enhancement for biosensor applications
NASA Astrophysics Data System (ADS)
Lertvachirapaiboon, Chutiparn; Baba, Akira; Ekgasit, Sanong; Shinbo, Kazunari; Kato, Keizo; Kaneko, Futao
2017-01-01
The microfluidic transmission surface plasmon resonance (MTSPR) constructed by assembling a gold-coated grating substrate with a microchannel was employed for biosensor application. The transmission surface plasmon resonance spectrum obtained from the MTSPR sensor chip showed a strong and narrow surface plasmon resonance (SPR) peak located between 650 and 800 nm. The maximum SPR excitation was observed at an incident angle of 35°. The MTSPR sensor chip was employed for glucose sensor application. Gold-coated grating substrates were functionalized using 3-mercapto-1-propanesulfonic acid sodium salt and subsequently functionalized using a five-bilayer poly(allylamine hydrochloride)/poly(sodium 4-styrenesulfonate) to facilitate the coupling/decoupling of the surface plasmon and to prepare a uniform surface for sensing. The detection limit of our developed system for glucose was 2.31 mM. This practical platform represents a high possibility of further developing several biomolecules, multiplex systems, and a point-of-care assay for practical biosensor applications.
Rossi, Stefano; Gazzola, Enrico; Capaldo, Pietro; Borile, Giulia; Romanato, Filippo
2018-05-18
Surface Plasmon Resonance (SPR)-based sensors have the advantage of being label-free, enzyme-free and real-time. However, their spreading in multidisciplinary research is still mostly limited to prism-coupled devices. Plasmonic gratings, combined with a simple and cost-effective instrumentation, have been poorly developed compared to prism-coupled system mainly due to their lower sensitivity. Here we describe the optimization and signal enhancement of a sensing platform based on phase-interrogation method, which entails the exploitation of a nanostructured sensor. This technique is particularly suitable for integration of the plasmonic sensor in a lab-on-a-chip platform and can be used in a microfluidic chamber to ease the sensing procedures and limit the injected volume. The careful optimization of most suitable experimental parameters by numerical simulations leads to a 30⁻50% enhancement of SPR response, opening new possibilities for applications in the biomedical research field while maintaining the ease and versatility of the configuration.
Rossi, Stefano; Gazzola, Enrico; Capaldo, Pietro; Borile, Giulia; Romanato, Filippo
2018-01-01
Surface Plasmon Resonance (SPR)-based sensors have the advantage of being label-free, enzyme-free and real-time. However, their spreading in multidisciplinary research is still mostly limited to prism-coupled devices. Plasmonic gratings, combined with a simple and cost-effective instrumentation, have been poorly developed compared to prism-coupled system mainly due to their lower sensitivity. Here we describe the optimization and signal enhancement of a sensing platform based on phase-interrogation method, which entails the exploitation of a nanostructured sensor. This technique is particularly suitable for integration of the plasmonic sensor in a lab-on-a-chip platform and can be used in a microfluidic chamber to ease the sensing procedures and limit the injected volume. The careful optimization of most suitable experimental parameters by numerical simulations leads to a 30–50% enhancement of SPR response, opening new possibilities for applications in the biomedical research field while maintaining the ease and versatility of the configuration. PMID:29783711
Nan, Fan; Cheng, Zi-Qiang; Wang, Ya-Lan; Zhang, Qing; Zhou, Li; Yang, Zhong-Jian; Zhong, Yu-Ting; Liang, Shan; Xiong, Qihua; Wang, Qu-Quan
2014-01-01
Colloidal semiconductor quantum dots have three-dimensional confined excitons with large optical oscillator strength and gain. The surface plasmons of metallic nanostructures offer an efficient tool to enhance exciton-exciton coupling and excitation energy transfer at appropriate geometric arrangement. Here, we report plasmon-mediated cooperative emissions of approximately one monolayer of ensemble CdSe/ZnS quantum dots coupled with silver nanorod complex cavities at room temperature. Power-dependent spectral shifting, narrowing, modulation, and amplification are demonstrated by adjusting longitudinal surface plasmon resonance of silver nanorods, reflectivity and phase shift of silver nanostructured film, and mode spacing of the complex cavity. The underlying physical mechanism of the nonlinear excitation energy transfer and nonlinear emissions are further investigated and discussed by using time-resolved photoluminescence and finite-difference time-domain numerical simulations. Our results suggest effective strategies to design active plasmonic complex cavities for cooperative emission nanodevices based on semiconductor quantum dots. PMID:24787617
Chiral surface and edge plasmons in ferromagnetic conductors
NASA Astrophysics Data System (ADS)
Zhang, Steven S.-L.; Vignale, Giovanni
2018-06-01
The recently introduced concept of "surface Berry plasmons" is studied in the concrete instance of a ferromagnetic conductor in which the Berry curvature, generated by spin-orbit (SO) interaction, has opposite signs for carrier with spins parallel or antiparallel to the magnetization. By using collisionless hydrodynamic equations with appropriate boundary conditions, we study both the surface plasmons of a three-dimensional ferromagnetic conductor and the edge plasmons of a two-dimensional one. The anomalous velocity and the broken inversion symmetry at the surface or the edge of the conductor create a "handedness" whereby the plasmon frequency depends not only on the angle between the wave vector and the magnetization, but also on the direction of propagation along a given line. In particular, we find that the frequency of the edge plasmon depends on the direction of propagation along the edge. These Berry curvature effects are compared and contrasted with similar effects on plasmon dispersions induced by an external magnetic field in the absence of Berry curvature. We argue that Berry curvature effects may be used to control the direction of propagation of the surface plasmons via coupling with the magnetization of ferromagnetic conductors, and thus create a link between plasmonics and spintronics.
NASA Astrophysics Data System (ADS)
Wang, Boyun; Zeng, Qingdong; Xiao, Shuyuan; Xu, Chen; Xiong, Liangbin; Lv, Hao; Du, Jun; Yu, Huaqing
2017-11-01
We theoretically and numerically investigate a low-power, ultrafast, and dynamic all-optical tunable plasmon induced transparency (PIT) in two stub resonators side-coupled with a metal-dielectric-metal (MDM) plasmonic waveguide system. The optical Kerr effect is enhanced by the local electromagnetic field of surface plasmon polaritons (SPPs) and the plasmonic waveguide based on graphene-Ag composite material structures with large effective Kerr nonlinear coefficient. An ultrafast response time of the order of 1 ps is reached because of ultrafast carrier relaxation dynamics of graphene. With dynamically tuning the propagation phase of the plasmonic waveguide, π-phase shift of the transmission spectrum in the PIT system is achieved under excitation of a pump light with an intensity as low as 5.8 MW cm-2. The group delay is controlled between 0.14 and 0.67 ps. Moreover, the tunable bandwidth of about 42 nm is obtained. For the indirect coupling between two stub cavities or the phase coupling scheme, the phase shift multiplication effect of the PIT effect is found. All observed schemes are analyzed rigorously through finite-difference time-domain simulations and coupled-mode formalism. This work not only paves the way towards the realization of on-chip integrated nanophotonic devices but also opens the possibility of the construction of ultrahigh-speed information processing chips based on plasmonic circuits.
Low-loss plasmon-assisted electro-optic modulator.
Haffner, Christian; Chelladurai, Daniel; Fedoryshyn, Yuriy; Josten, Arne; Baeuerle, Benedikt; Heni, Wolfgang; Watanabe, Tatsuhiko; Cui, Tong; Cheng, Bojun; Saha, Soham; Elder, Delwin L; Dalton, Larry R; Boltasseva, Alexandra; Shalaev, Vladimir M; Kinsey, Nathaniel; Leuthold, Juerg
2018-04-01
For nearly two decades, researchers in the field of plasmonics 1 -which studies the coupling of electromagnetic waves to the motion of free electrons near the surface of a metal 2 -have sought to realize subwavelength optical devices for information technology 3-6 , sensing 7,8 , nonlinear optics 9,10 , optical nanotweezers 11 and biomedical applications 12 . However, the electron motion generates heat through ohmic losses. Although this heat is desirable for some applications such as photo-thermal therapy, it is a disadvantage in plasmonic devices for sensing and information technology 13 and has led to a widespread view that plasmonics is too lossy to be practical. Here we demonstrate that the ohmic losses can be bypassed by using 'resonant switching'. In the proposed approach, light is coupled to the lossy surface plasmon polaritons only in the device's off state (in resonance) in which attenuation is desired, to ensure large extinction ratios between the on and off states and allow subpicosecond switching. In the on state (out of resonance), destructive interference prevents the light from coupling to the lossy plasmonic section of a device. To validate the approach, we fabricated a plasmonic electro-optic ring modulator. The experiments confirm that low on-chip optical losses, operation at over 100 gigahertz, good energy efficiency, low thermal drift and a compact footprint can be combined in a single device. Our result illustrates that plasmonics has the potential to enable fast, compact on-chip sensing and communications technologies.
Perfect coupling of light to a periodic dielectric/metal/dielectric structure
NASA Astrophysics Data System (ADS)
Wang, Zhengling; Li, Shiqiang; Chang, R. P. H.; Ketterson, John B.
2014-07-01
Using the finite difference time domain method, it is demonstrated that perfect coupling can be achieved between normally incident light and a periodic dielectric/metal/dielectric structure. The structure serves as a diffraction grating that excites modes related to the long range surface plasmon and short range surface plasmon modes that propagate on continuous metallic films. By optimizing the structural dimensions, perfect coupling is achieved between the incident light and these modes. A high Q of 697 and an accompanying ultrasharp linewidth of 0.8 nm are predicted for a 10 nm silver film for optimal conditions.
NASA Astrophysics Data System (ADS)
Zhao, Fusheng; Zenasni, Oussama; Li, Jingting; Shih, Wei-Chuan
2017-02-01
Localized surface plasmon resonance (LSPR) arises from the interaction of light with noble metal nanoparticles, which induces a collective oscillation in the free electrons. The size and shape of the metallic nanostructure significantly impact LSPR frequency and strength. Nanoplasmonic sensor has become a recent research focus due to its significant signal enhancement and robust signal transduction measured by extinction spectroscopy, fluorescence, Raman scattering, and absorption spectroscopy. Dark-field microscopy, in contrast, reports the scattered photons after light-matter interactions. In this case, the nanoparticles can be understood as dipole radiators whose free electrons oscillate in concert. Coupled with spectroscopy, this platform allows the collection of plasmonically scattered spectra from gold nanoparticles. Plasmonic coupling between electron-beam lithography patterned gold nanodisks (AuND) and colloidal gold nanoparticles (AuNP) can change the plasmonic resonance of the original entities, and can be effectively studied by dark-field hyperspectral microscopy. Typically, a pronounced redshift can be observed when plasmonic coupling occurs. When these nano-entities are functionalized with interactive surface moieties, biochemistry and molecular processes can be studied. In this paper, we will present the capability of assessing the process of immobilizing streptavidin-functionalized AuNPs on an array of biotin-terminated AuNDs. By monitoring changes in the LSPR band of AuNDs, we are able to evaluate similar processes in other molecular systems. In addition, plasmon coupling induced scattering intensity variations can be measured by an electron-multiplied charge-coupled device camera for rapid in situ monitoring. This method can potentially be useful in studying dynamic biophysical and biochemical processes in situ.
Kim, Seyoon; Jang, Min Seok; Brar, Victor W.; ...
2016-08-08
In this paper, subwavelength metallic slit arrays have been shown to exhibit extraordinary optical transmission, whereby tunneling surface plasmonic waves constructively interfere to create large forward light propagation. The intricate balancing needed for this interference to occur allows for resonant transmission to be highly sensitive to changes in the environment. Here we demonstrate that extraordinary optical transmission resonance can be coupled to electrostatically tunable graphene plasmonic ribbons to create electrostatic modulation of mid-infrared light. Absorption in graphene plasmonic ribbons situated inside metallic slits can efficiently block the coupling channel for resonant transmission, leading to a suppression of transmission. Full-wave simulationsmore » predict a transmission modulation of 95.7% via this mechanism. Experimental measurements reveal a modulation efficiency of 28.6% in transmission at 1,397 cm –1, corresponding to a 2.67-fold improvement over transmission without a metallic slit array. This work paves the way for enhancing light modulation in graphene plasmonics by employing noble metal plasmonic structures.« less
Plasmonic Surface Lattice Resonances: A Review of Properties and Applications.
Kravets, V G; Kabashin, A V; Barnes, W L; Grigorenko, A N
2018-06-27
When metal nanoparticles are arranged in an ordered array, they may scatter light to produce diffracted waves. If one of the diffracted waves then propagates in the plane of the array, it may couple the localized plasmon resonances associated with individual nanoparticles together, leading to an exciting phenomenon, the drastic narrowing of plasmon resonances, down to 1-2 nm in spectral width. This presents a dramatic improvement compared to a typical single particle resonance line width of >80 nm. The very high quality factors of these diffractively coupled plasmon resonances, often referred to as plasmonic surface lattice resonances, and related effects have made this topic a very active and exciting field for fundamental research, and increasingly, these resonances have been investigated for their potential in the development of practical devices for communications, optoelectronics, photovoltaics, data storage, biosensing, and other applications. In the present review article, we describe the basic physical principles and properties of plasmonic surface lattice resonances: the width and quality of the resonances, singularities of the light phase, electric field enhancement, etc. We pay special attention to the conditions of their excitation in different experimental architectures by considering the following: in-plane and out-of-plane polarizations of the incident light, symmetric and asymmetric optical (refractive index) environments, the presence of substrate conductivity, and the presence of an active or magnetic medium. Finally, we review recent progress in applications of plasmonic surface lattice resonances in various fields.
An ultrafast nanotip electron gun triggered by grating-coupled surface plasmons
NASA Astrophysics Data System (ADS)
Schröder, Benjamin; Sivis, Murat; Bormann, Reiner; Schäfer, Sascha; Ropers, Claus
2015-12-01
We demonstrate multiphoton photoelectron emission from gold nanotips induced by nanofocusing surface plasmons, resonantly excited on the tip shaft by a grating coupler. The tip is integrated into an electron gun assembly, which facilitates control over the spatial emission sites and allows us to disentangle direct grating emission from plasmon-triggered apex emission. The nanoscale source size of this electron gun concept enables highly coherent electron pulses with applications in ultrafast electron imaging and diffraction.
An ultrafast nanotip electron gun triggered by grating-coupled surface plasmons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schröder, Benjamin; Sivis, Murat; Bormann, Reiner
We demonstrate multiphoton photoelectron emission from gold nanotips induced by nanofocusing surface plasmons, resonantly excited on the tip shaft by a grating coupler. The tip is integrated into an electron gun assembly, which facilitates control over the spatial emission sites and allows us to disentangle direct grating emission from plasmon-triggered apex emission. The nanoscale source size of this electron gun concept enables highly coherent electron pulses with applications in ultrafast electron imaging and diffraction.
Harnessing surface plasmons for solar energy conversion
NASA Technical Reports Server (NTRS)
Anderson, L. M.
1983-01-01
NASA research on the feasibility of solar-energy conversion using surface plasmons is reviewed, with a focus on inelastic-tunnel-diode techniques for power extraction. The need for more efficient solar converters for planned space missions is indicated, and it is shown that a device with 50-percent efficiency could cost up to 40 times as much per sq cm as current Si cells and still be competitive. The parallel-processing approach using broadband carriers and tunable diodes is explained, and the physics of surface plasmons on metal surfaces is outlined. Technical problems being addressed include phase-matching sunlight to surface plasmons, minimizing ohmic losses and reradiation in energy transport, coupling into the tunnels by mode conversion, and gaining an understanding of the tunnel-diode energy-conversion process. Diagrams illustrating the design concepts are provided.
Optimization of top coupling grating for very long wavelength QWIP based on surface plasmon
NASA Astrophysics Data System (ADS)
Wang, Guodong; Shen, Junling; Liu, Xiaolian; Ni, Lu; Wang, Saili
2017-09-01
The relative coupling efficiency of two-dimensional (2D) grating based on surface plasmon for very long wavelength quantum well infrared detector is analyzed by using the three-dimensional finite-difference time domain (3D-FDTD) method algorithm. The relative coupling efficiency with respect to the grating parameters, such as grating pitch, duty ratio, and grating thickness, is analyzed. The calculated results show that the relative coupling efficiency would reach the largest value for the 14.5 μm incident infrared light when taking the grating pitch as 4.4 μm, the duty ratio as 0.325, and the grating thickness as 0.07 μm, respectively.
Resonant tunneling effects on cavity-embedded metal film caused by surface-plasmon excitation.
Lan, Yung-Chiang; Chang, Che-Jung; Lee, Peng-Hsiao
2009-01-01
We investigate cavity-modulated resonant tunneling through a silver film with periodic grooves on both surfaces. A strip cavity embedded in the film affects tunneling frequencies via a coupling mode and waveguide mode. In the coupling mode, both the resonant tunneling through the gap between the groove and the cavity and the cavity itself form an entire resonant structure. In the waveguide mode, however, the cavity functions as a surface-plasmon waveguide. Hence, tunneling frequencies are close to resonant absorption frequencies of the groove structure and are irrelevant to cavity properties.
Agarwal, Daksh; Aspetti, Carlos O.; Cargnello, Matteo; ...
2017-02-06
The field of plasmonics has attracted considerable attention in recent years because of potential applications in various fields such as nanophotonics, photovoltaics, energy conversion, catalysis, and therapeutics. It is becoming increasing clear that intrinsic high losses associated with plasmons can be utilized to create new device concepts to harvest the generated heat. It is therefore important to design cavities, which can harvest optical excitations efficiently to generate heat. In this paper, we report a highly engineered nanowire cavity, which utilizes a high dielectric silicon core with a thin plasmonic film (Au) to create an effective metallic cavity to strongly confinemore » light, which when coupled with localized surface plasmons in the nanoparticles of the thin metal film produces exceptionally high temperatures upon laser irradiation. Raman spectroscopy of the silicon core enables precise measurements of the cavity temperature, which can reach values as high as 1000 K. The same Si–Au cavity with enhanced plasmonic activity when coupled with TiO 2 nanorods increases the hydrogen production rate by ~40% compared to similar Au–TiO 2 system without Si core, in ethanol photoreforming reactions. Finally, these highly engineered thermoplasmonic devices, which integrate three different cavity concepts (high refractive index core, metallo-dielectric cavity, and localized surface plasmons) along with the ease of fabrication demonstrate a possible pathway for designing optimized plasmonic devices with applications in energy conversion and catalysis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agarwal, Daksh; Aspetti, Carlos O.; Cargnello, Matteo
The field of plasmonics has attracted considerable attention in recent years because of potential applications in various fields such as nanophotonics, photovoltaics, energy conversion, catalysis, and therapeutics. It is becoming increasing clear that intrinsic high losses associated with plasmons can be utilized to create new device concepts to harvest the generated heat. It is therefore important to design cavities, which can harvest optical excitations efficiently to generate heat. In this paper, we report a highly engineered nanowire cavity, which utilizes a high dielectric silicon core with a thin plasmonic film (Au) to create an effective metallic cavity to strongly confinemore » light, which when coupled with localized surface plasmons in the nanoparticles of the thin metal film produces exceptionally high temperatures upon laser irradiation. Raman spectroscopy of the silicon core enables precise measurements of the cavity temperature, which can reach values as high as 1000 K. The same Si–Au cavity with enhanced plasmonic activity when coupled with TiO 2 nanorods increases the hydrogen production rate by ~40% compared to similar Au–TiO 2 system without Si core, in ethanol photoreforming reactions. Finally, these highly engineered thermoplasmonic devices, which integrate three different cavity concepts (high refractive index core, metallo-dielectric cavity, and localized surface plasmons) along with the ease of fabrication demonstrate a possible pathway for designing optimized plasmonic devices with applications in energy conversion and catalysis.« less
Fluorescence Enhancement on Large Area Self-Assembled Plasmonic-3D Photonic Crystals.
Chen, Guojian; Wang, Dongzhu; Hong, Wei; Sun, Lu; Zhu, Yongxiang; Chen, Xudong
2017-03-01
Discontinuous plasmonic-3D photonic crystal hybrid structures are fabricated in order to evaluate the coupling effect of surface plasmon resonance and the photonic stop band. The nanostructures are prepared by silver sputtering deposition on top of hydrophobic 3D photonic crystals. The localized surface plasmon resonance of the nanostructure has a symbiotic relationship with the 3D photonic stop band, leading to highly tunable characteristics. Fluorescence enhancements of conjugated polymer and quantum dot based on these hybrid structures are studied. The maximum fluorescence enhancement for the conjugated polymer of poly(5-methoxy-2-(3-sulfopropoxy)-1,4-phenylenevinylene) potassium salt by a factor of 87 is achieved as compared with that on a glass substrate due to the enhanced near-field from the discontinuous plasmonic structures, strong scattering effects from rough metal surface with photonic stop band, and accelerated decay rates from metal-coupled excited state of the fluorophore. It is demonstrated that the enhancement induced by the hybrid structures has a larger effective distance (optimum thickness ≈130 nm) than conventional plasmonic systems. It is expected that this approach has tremendous potential in the field of sensors, fluorescence-imaging, and optoelectronic applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Integrated amorphous silicon-aluminum long-range surface plasmon polariton (LR-SPP) waveguides
NASA Astrophysics Data System (ADS)
Sturlesi, Boaz; Grajower, Meir; Mazurski, Noa; Levy, Uriel
2018-03-01
We demonstrate the design, fabrication, and experimental characterization of a long range surface plasmon polariton waveguide that is compatible with complementary metal-oxide semiconductor backend technology. The structure consists of a thin aluminum strip embedded in amorphous silicon. This configuration offers a symmetric environment in which surface plasmon polariton modes undergo minimal loss. Furthermore, the plasmonic mode profile matches the modes of the dielectric (amorphous silicon) waveguide, thus allowing efficient coupling between silicon photonics and plasmonic platforms. The propagation length of the plasmonic waveguide was measured to be about 27 μm at the telecom wavelength around 1550 nm, in good agreement with numerical simulations. As such, the waveguide features both tight mode confinement and decent propagation length. On top of its photonic properties, placing a metal within the structure may also allow for additional functionalities such as photo-detection, thermo-optic tuning, and electro-optic control to be implemented.
One-dimensional Tamm plasmons: Spatial confinement, propagation, and polarization properties
NASA Astrophysics Data System (ADS)
Chestnov, I. Yu.; Sedov, E. S.; Kutrovskaya, S. V.; Kucherik, A. O.; Arakelian, S. M.; Kavokin, A. V.
2017-12-01
Tamm plasmons are confined optical states at the interface of a metal and a dielectric Bragg mirror. Unlike conventional surface plasmons, Tamm plasmons may be directly excited by an external light source in both TE and TM polarizations. Here we consider the one-dimensional propagation of Tamm plasmons under long and narrow metallic stripes deposited on top of a semiconductor Bragg mirror. The spatial confinement of the field imposed by the stripe and its impact on the structure and energy of Tamm modes are investigated. We show that the Tamm modes are coupled to surface plasmons arising at the stripe edges. These plasmons form an interference pattern close to the bottom surface of the stripe that involves modification of both the energy and loss rate for the Tamm mode. This phenomenon is pronounced only in the case of TE polarization of the Tamm mode. These findings pave the way to application of laterally confined Tamm plasmons in optical integrated circuits as well as to engineering potential traps for both Tamm modes and hybrid modes of Tamm plasmons and exciton polaritons with meV depth.
Huang, Danhong; Iurov, Andrii; Gumbs, Godfrey
2018-05-23
In this paper, we deal with the electromagnetic coupling between an incident surface-plasmon-polariton wave and relativistic electrons in two graphene layers. Our previous investigation was limited to single-layer graphene (Iurov et al 2017 Phys. Rev. B 96 081408). However, the present work, is both an expanded and extended version of this previous Phys. Rev. B paper after having included very detailed theoretical formalisms and extensive comparisons of results from either one or two graphene layers embedded in a dielectric medium. The additional retarded Coulomb interaction between two graphene layers will compete with the coupling between the single graphene layer and the surface of a conductor. Consequently, some distinctive features, such as triply-hybridized absorption peaks and a new acoustic-like graphene plasmon mode within the anticrossing region, have been found for the double-layer graphene system. Physically, our theory is self-consistent, in comparison with a commonly adopted perturbative theory, for studying hybrid light-plasmon modes and the electron back action on photons. Instead of usual radiation or grating-deflection field coupling, a surface-plasmon-polariton localized field coupling is introduced with completely different dispersion relations for radiative (small wave numbers) and evanescent (large wave numbers) field modes. Technically, the exactly calculated effective scattering matrix for this theory can be employed to construct an effective-medium theory in order to improve the accuracy of the well-known finite-difference time-domain method for solving Maxwell's equations numerically. Practically, the predicted triply-hybridized absorption peaks can excite polaritons only, giving rise to a possible polariton-condensation based laser.
NASA Astrophysics Data System (ADS)
Huang, Danhong; Iurov, Andrii; Gumbs, Godfrey
2018-05-01
In this paper, we deal with the electromagnetic coupling between an incident surface-plasmon-polariton wave and relativistic electrons in two graphene layers. Our previous investigation was limited to single-layer graphene (Iurov et al 2017 Phys. Rev. B 96 081408). However, the present work, is both an expanded and extended version of this previous Phys. Rev. B paper after having included very detailed theoretical formalisms and extensive comparisons of results from either one or two graphene layers embedded in a dielectric medium. The additional retarded Coulomb interaction between two graphene layers will compete with the coupling between the single graphene layer and the surface of a conductor. Consequently, some distinctive features, such as triply-hybridized absorption peaks and a new acoustic-like graphene plasmon mode within the anticrossing region, have been found for the double-layer graphene system. Physically, our theory is self-consistent, in comparison with a commonly adopted perturbative theory, for studying hybrid light-plasmon modes and the electron back action on photons. Instead of usual radiation or grating-deflection field coupling, a surface-plasmon-polariton localized field coupling is introduced with completely different dispersion relations for radiative (small wave numbers) and evanescent (large wave numbers) field modes. Technically, the exactly calculated effective scattering matrix for this theory can be employed to construct an effective-medium theory in order to improve the accuracy of the well-known finite-difference time-domain method for solving Maxwell’s equations numerically. Practically, the predicted triply-hybridized absorption peaks can excite polaritons only, giving rise to a possible polariton-condensation based laser.
Plasmonic superfocusing on metallic tips for near-field optical imaging and spectroscopy
NASA Astrophysics Data System (ADS)
Neacsu, Catalin C.; Olmon, Rob; Berweger, Samuel; Kappus, Alexandria; Kirchner, Friedrich; Ropers, Claus; Saraf, Lax; Raschke, Markus B.
2008-03-01
Realization of localized light sources through nonlocal excitation is important in the context of plasmon photonics, molecular sensing, and in particular near-field optical techniques. Here, the efficient conversion of propagating surface plasmons, launched on the shaft of a scanning probe tip, into localized plasmon at the apex provides a true nanoconfined light source. Focused ion beam milling is used to generate periodic surface nanostructures on the tip shaft that allow for tailoring the plasmon excitation. Using ultrashort visible and mid-IR transients the dynamics of the propagation and subsequent scattered emission is characterized. The strong field enhancement and spatial field confinement at the apex is demonstrated studying the coupling of the tip in near-field interaction with a flat sample surface. It is used in scattering near-field spectroscopic imaging (s-SNOM) to probe surface nanostructures with spatial resolution down to 10 nm.
Gan, C H; Nash, G R
2013-11-01
Broadband and tunable control of surface plasmon polaritons in the near-infrared and visible spectrum is demonstrated theoretically and numerically with a pair of phased nanoslits. We establish, with simulations supported by a coupled wave model, that by dividing the incident power equally between two input channels, the maximum plasmon intensity deliverable to either side of the nanoslit pair is twice that for an isolated slit. For a broadband source, a compact device with nanoslit separation of the order of a tenth of the wavelength is shown to steer nearly all the generated plasmons to one side for the same phase delay, thereby achieving a broadband unidirectional plasmon launcher. The reported effect can be applied to the design of ultra-broadband and efficient tunable plasmonic devices.
NASA Astrophysics Data System (ADS)
Franςois, A.; Boehm, J.; Oh, S. Y.; Kok, T.; Monro, T. M.
2011-06-01
The management of threats such as pandemics and explosives, and of health and the environment requires the rapid deployment of highly sensitive detection tools. Sensors based on Surface Plasmon Resonance (SPR) allow rapid, labelfree, highly sensitive detection, and indeed this phenomenon underpins the only label-free optical biosensing technology that is available commercially. In these sensors, the existence of surface plasmons is inferred indirectly from absorption features that correspond to the coupling of light to the surface plasmon. Although SPR is not intrinsically a radiative process, under certain conditions the surface plasmon can itself couple to the local photon states, and emit light as first described byKretschmann. Here we show that by collecting and characterising this re-emitted light, it is possible to realise new SPR sensing architectures that are more compact, versatile and robust than existing approaches. This approach addresses existing practical limitations associated with current SPR technologies, including bulk, cost and calibration. It is applicable to a range of SPR geometries, including optical fibres, planar waveguides and prism configurations, and is in principle capable of detecting multiple analytes simultaneously. Moreover, this technique allows to combine SPR sensing and fluorescence sensing into a single platform which has never been demonstrated before and consequently use these two methods for a more reliable diagnostic. As an example, this approach has been used to demonstrate the rapid detection of the seasonal influenza virus.
NASA Astrophysics Data System (ADS)
Itoh, Tamitake; Yamamoto, Yuko S.
2017-11-01
Electronic transition rates of a molecule located at a crevasse or a gap of a plasmonic nanoparticle (NP) dimer are largely enhanced up to the factor of around 106 due to electromagnetic (EM) coupling between plasmonic and molecular electronic resonances. The coupling rate is determined by mode density of the EM fields at the crevasse and the oscillator strength of the local electronic resonance of a molecule. The enhancement by EM coupling at a gap of plasmonic NP dimer enables us single molecule (SM) Raman spectroscopy. Recently, this type of research has entered a new regime wherein EM enhancement effects cannot be treated by conventional theorems, namely EM mechanism. Thus, such theorems used for the EM enhancement effect should be re-examined. We here firstly summarize EM mechanism by using surface-enhanced Raman scattering (SERS), which is common in EM enhancement phenomena. Secondly, we focus on recent two our studies on probing SM fluctuation by SERS within the spatial resolution of sub-nanometer scales. Finally, we discuss the necessity of re-examining the EM mechanism with respect to two-fold breakdowns of the weak coupling assumption: the breakdown of Kasha's rule induced by the ultra-fast plasmonic de-excitation and the breakdown of the weak coupling by EM coupling rates exceeding both the plasmonic and molecular excitonic dephasing rates.
Plasmonic nanopipette biosensor.
Masson, Jean-Francois; Breault-Turcot, Julien; Faid, Rita; Poirier-Richard, Hugo-Pierre; Yockell-Lelièvre, Hélène; Lussier, Félix; Spatz, Joachim P
2014-09-16
Integrating a SERS immunoassay on a plasmonic "patch clamp" nanopipette enabled nanobiosensing for the detection of IgG. A SERS response was obtained using a sandwich assay benefiting from plasmon coupling between a capture Au nanoparticle (AuNP) on a nanotip and a second AuNP modified with a Raman active reporter and an antibody selective for IgG. The impact of nanoparticle shape and surface coverage was investigated alongside the choice of Raman active reporter, deposition pH, and plasmonic coupling, in an attempt to fully understand the plasmonic properties of nanopipettes and to optimize the nanobiosensor for the detection of IgG. These probes will find applications in various fields due to their nanoscale size leading to the possibility of spatially and temporally addressing their location near cells to monitor secretion of biomolecules.
The effect of TiO2 phase on the surface plasmon resonance of silver thin film
NASA Astrophysics Data System (ADS)
Hong, Ruijin; Jing, Ming; Tao, Chunxian; Zhang, Dawei
2016-10-01
A series of silver films with various thicknesses were deposited on TiO2 covered silica substrates by magnetron sputtering at room temperature. The effects of TiO2 phase on the structure, optical properties and surface plasmon resonance of silver thin films were investigated by x-ray diffraction, optical absorption and Raman scattering measurements, respectively. By adjusting the silver layer thickness, the resonance wavelength shows a redshift, which is due to a change in the electromagnetic field coupling strength from the localized surface plasmons excited between the silver thin film and TiO2 layer. Raman scattering measurement results showed that optical absorption plays an important role in surface plasmon enhancement, which is also related to different crystal phase.
Cosine-Gauss plasmon beam: a localized long-range nondiffracting surface wave.
Lin, Jiao; Dellinger, Jean; Genevet, Patrice; Cluzel, Benoit; de Fornel, Frederique; Capasso, Federico
2012-08-31
A new surface wave is introduced, the cosine-Gauss beam, which does not diffract while it propagates in a straight line and tightly bound to the metallic surface for distances up to 80 μm. The generation of this highly localized wave is shown to be straightforward and highly controllable, with varying degrees of transverse confinement and directionality, by fabricating a plasmon launcher consisting of intersecting metallic gratings. Cosine-Gauss beams have potential for applications in plasmonics, notably for efficient coupling to nanophotonic devices, opening up new design possibilities for next-generation optical interconnects.
Danilov, Artem; Tselikov, Gleb; Wu, Fan; Kravets, Vasyl G; Ozerov, Igor; Bedu, Frederic; Grigorenko, Alexander N; Kabashin, Andrei V
2018-05-01
When excited over a periodic metamaterial lattice of gold nanoparticles (~ 100nm), localized plasmon resonances (LPR) can be coupled by a diffraction wave propagating along the array plane, which leads to a drastic narrowing of plasmon resonance lineshapes (down to a few nm full-width-at-half-maximum) and the generation of singularities of phase of reflected light. These phenomena look very promising for the improvement of performance of plasmonic biosensors, but conditions of implementation of such diffractively coupled plasmonic resonances, also referred to as plasmonic surface lattice resonances (PSLR), are not always compatible with biosensing arrangement implying the placement of the nanoparticles between a glass substrate and a sample medium (air, water). Here, we consider conditions of excitation and properties of PSLR over arrays of glass substrate-supported single and double Au nanoparticles (~ 100-200nm), arranged in a periodic metamaterial lattice, in direct and Attenuated Total Reflection (ATR) geometries, and assess their sensitivities to variations of refractive index (RI) of the adjacent sample dielectric medium. First, we identify medium (PSLR air , PSLR wat for air and water, respectively) and substrate (PSLR sub ) modes corresponding to the coupling of individual plasmon oscillations at medium- and substrate-related diffraction cut-off edges. We show that spectral sensitivity of medium modes to RI variations is determined by the lattice periodicity in both direct and ATR geometries (~ 320nm per RIU change in our case), while substrate mode demonstrates much lower sensitivity. We also show that phase sensitivity of PSLR can exceed 10 5 degrees of phase shift per RIU change and thus outperform the relevant parameter for all other plasmonic sensor counterparts. We finally demonstrate the applicability of surface lattice resonances in plasmonic metamaterial arrays to biosensing using standard streptavidin-biotin affinity model. Combining advantages of nanoscale architectures, including drastic concentration of electric field, possibility of manipulation at the nanoscale etc, and high phase and spectral sensitivities, PSLRs promise the advancement of current state-of-the-art plasmonic biosensing technology toward single molecule label-free detection. Copyright © 2017 Elsevier B.V. All rights reserved.
Polarization-Directed Surface Plasmon Polariton Launching
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gong, Yu; Joly, Alan G.; El-Khoury, Patrick Z.
The relative intensities of propagating surface plasmons (PSPs) simultaneously launched from opposing edges of a symmetric trench structure etched into a silver thin film may be controllably varied by tuning the linear polarization of the driving field. This is demonstrated through transient multiphoton photoemission electron microscopy measurements performed using a pair of spatially separated phase-locked femtosecond pulses. Our measurements are rationalized using finite-difference time domain simulations, which reveal that the coupling efficiency into the PSP modes is inversely proportional to the magnitude of the localized surface plasmon fields excited at the trench edges. Additional experiments on single step edges alsomore » show asymmetric PSP launching with respect to polarization, analogous to the trench results. Our combined experimental and computational results allude to the interplay between localized and propagating surface plasmon modes in the trench; strong coupling to the localized modes at the edges correlates to weak coupling to the PSP modes. Simultaneous excitation of the electric fields localized at both edges of the trench results in complex interactions between the right- and left-side PSP modes with Fabry-Perot and cylindrical modes. This results in a trench width-dependent PSP intensity ratio using otherwise identical driving fields. A systematic exploration of polarization directed PSP launching from a series of trench structures reveals an optimal PSP contrast ratio of 4.2 using a 500 nm-wide trench.« less
Giant plasmonic mode splitting in THz metamaterials mediated by coupling with Lorentz phonon mode
NASA Astrophysics Data System (ADS)
Yu, Leilei; Huang, Yuanyuan; Liu, Changji; Hu, Fangrong; Jin, Yanping; Yan, Yi; Xu, Xinlong
2018-04-01
Giant plasmonic mode splitting has been observed in THz metamaterials due to the mediation by the Lorentz phonon dielectric material. This splitting mode is confirmed by the surface current distribution, indicating that plasmonic modes behave like dipole resonances, while the phonon mode behaves like multipole resonance due to coupling. The splitting of the plasmonic modes demonstrates an anti-crossing behavior with the change in Lorentz central frequency, which suggests that there is energy redistribution between plasmon and phonon modes. Similar to the Stark effect, the splitting frequency difference increases with the increasing direct current dielectric function. We also propose an interaction Hamiltonian to understand the physical mechanism of the plasmonic splitting. Furthermore, the splitting is convincible for small Lorentz dielectrics such as sugar and amino acid in the THz region, which could be used for biomolecular sensing applications.
Surface plasmon-mediated energy transfer of electrically-pumped excitons
An, Kwang Hyup; Shtein, Max; Pipe, Kevin P.
2015-08-25
An electrically pumped light emitting device emits a light when powered by a power source. The light emitting device includes a first electrode, a second electrode including an outer surface, and at least one active organic semiconductor disposed between the first and second electrodes. The device also includes a dye adjacent the outer surface of the second electrode such that the second electrode is disposed between the dye and the active organic semiconductor. A voltage applied by the power source across the first and second electrodes causes energy to couple from decaying dipoles into surface plasmon polariton modes, which then evanescently couple to the dye to cause the light to be emitted.
NASA Astrophysics Data System (ADS)
Chiu, Nan-Fu; Huang, Teng-Yi; Kuo, Chun-Chuan
2015-05-01
We describe a fundamental study on the plasmonic properties and advanced biosensing mechanisms of functionalized graphene. We discuss a specific design using modified carboxyl groups, which can modulate surface plasmon (SP) coupling and provide an advantage for their binding to the sensing layer with high-performance affinity in an immunological reaction. The functionalized graphene-based surface plasmon resonance (SPR) biosensors have three advantages: high performance, high sensitivity, and excellent molecular kinetic response. In the future, functionalized graphene sheets will make a unique contribution to photonic and SPR diagnosis devices. We wish to highlight the essential characteristics of functionalized graphene-based SPR biosensors to assist researchers in developing and advancing suitable biosensors for unique applications.
Mock, Jack J.; Hill, Ryan T.; Tsai, Yu-Ju; Chilkoti, Ashutosh; Smith, David R.
2012-01-01
The localized surface plasmon resonance (LSPR) spectrum associated with a gold nanoparticle (NP) coupled to a gold film exhibits extreme sensitivity to the nano-gap region where the fields are tightly localized. The LSPR of an ensemble of film-coupled NPs can be observed using an illumination scheme similar to that used to excite the surface plasmon resonance (SPR) of a thin metallic film; however, in the present system, the light is used to probe the highly sensitive distance-dependent LSPR of the gaps between NPs and film rather than the delocalized SPR of the film. We show that the SPR and LSPR spectral contributions can be readily distinguished, and we compare the sensitivities of both modes to displacements in the average gap between a collection of NPs and the gold film. The distance by which the NPs are suspended in solution above the gold film is fixed via a thin molecular spacer layer, and can be further modulated by subjecting the NPs to a quasistatic electric field. The observed LSPR spectral shifts triggered by the applied voltage can be correlated with Angstrom scale displacements of the NPs, suggesting the potential for chip-scale or flow-cell plasmonic nanoruler devices with extreme sensitivity. PMID:22429053
NASA Astrophysics Data System (ADS)
Chen, Sy-Hann; Jhong, Jhen-Yu
2011-08-01
This study achieved a substantial enhancement in electroluminescence by coupling localized surface plasmons in a single layer of Ag nanoparticles. Thermal evaporation was used to fabricate 20-nm Ag particles sandwiched between a gallium-doped zinc oxide film and a glass substrate to form novel window materials for use in polymer light-emitting diodes (PLEDs). The PLEDs discussed herein are single-layer devices based on a poly(9,9-di-n-octyl-2,7-fluorene) (PFO) emissive layer. In addition to low cost, this novel fabrication method can effectively prevent interruption or degradation of the charge transport properties of the active layer to meet the high performance requirements of PLEDs. Due to the surface-plasmon-enhanced emission, the electroluminescence intensity was increased by nearly 1-fold, compared to that of the same PLED without the interlayer of Ag nanoparticles.
Cuadra, Jorge; Baranov, Denis G; Wersäll, Martin; Verre, Ruggero; Antosiewicz, Tomasz J; Shegai, Timur
2018-03-14
Formation of dressed light-matter states in optical structures, manifested as Rabi splitting of the eigen energies of a coupled system, is one of the key effects in quantum optics. In pursuing this regime with semiconductors, light is usually made to interact with excitons, electrically neutral quasiparticles of semiconductors; meanwhile interactions with charged three-particle states, trions, have received little attention. Here, we report on strong interaction between localized surface plasmons in silver nanoprisms and excitons and trions in monolayer tungsten disulfide (WS 2 ). We show that the plasmon-exciton interactions in this system can be efficiently tuned by controlling the charged versus neutral exciton contribution to the coupling process. In particular, we show that a stable trion state emerges and couples efficiently to the plasmon resonance at low temperature by forming three bright intermixed plasmon-exciton-trion polariton states. Our findings open up a possibility to exploit electrically charged polaritons at the single nanoparticle level.
Huang, Peng; Lin, Jing; Li, Wanwan; Rong, Pengfei; Wang, Zhe; Wang, Shouju; Wang, Xiaoping; Sun, Xiaolian; Aronova, Maria; Niu, Gang; Leapman, Richard D; Nie, Zhihong; Chen, Xiaoyuan
2013-12-23
The hierarchical assembly of gold nanoparticles (GNPs) allows the localized surface plasmon resonance peaks to be engineered to the near-infrared (NIR) region for enhanced photothermal therapy (PTT). Herein we report a novel theranostic platform based on biodegradable plasmonic gold nanovesicles for photoacoustic (PA) imaging and PTT. The disulfide bond at the terminus of a PEG-b-PCL block-copolymer graft enables dense packing of GNPs during the assembly process and induces ultrastrong plasmonic coupling between adjacent GNPs. The strong NIR absorption induced by plasmon coupling and very high photothermal conversion efficiency (η=37%) enable simultaneous thermal/PA imaging and enhanced PTT efficacy with improved clearance of the dissociated particles after the completion of PTT. The assembly of various nanocrystals with tailored optical, magnetic, and electronic properties into vesicle architectures opens new possibilities for the construction of multifunctional biodegradable platforms for biomedical applications. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ultrafast Surface-Enhanced Raman Probing of the Role of Hot Electrons in Plasmon-Driven Chemistry.
Brandt, Nathaniel C; Keller, Emily L; Frontiera, Renee R
2016-08-18
Hot electrons generated through plasmonic excitations in metal nanostructures show great promise for efficiently driving chemical reactions with light. However, the lifetime, yield, and mechanism of action of plasmon-generated hot electrons involved in a given photocatalytic process are not well understood. Here, we develop ultrafast surface-enhanced Raman scattering (SERS) as a direct probe of plasmon-molecule interactions in the plasmon-catalyzed dimerization of 4-nitrobenzenethiol to p,p'-dimercaptoazobenzene. Ultrafast SERS probing of these molecular reporters in plasmonic hot spots reveals transient Fano resonances, which we attribute to near-field coupling of Stokes-shifted photons to hot electron-driven metal photoluminescence. Surprisingly, we find that hot spots that yield more photoluminescence are much more likely to drive the reaction, which indirectly proves that plasmon-generated hot electrons induce the photochemistry. These ultrafast SERS results provide insight into the relative reactivity of different plasmonic hot spot environments and quantify the ultrafast lifetime of hot electrons involved in plasmon-driven chemistry.
Plasmon Ruler with Ångstrom Length Resolution
Hill, Ryan T.; Mock, Jack J.; Hucknall, Angus; Wolter, Scott D.; Jokerst, Nan M.; Smith, David R.; Chilkoti, Ashutosh
2012-01-01
We demonstrate a plasmon nanoruler using a coupled film-nanoparticle (film-NP) format that is well suited for investigating the sensitivity extremes of plasmonic coupling. Because it is relatively straightforward to functionalize bulk, surface plasmon supporting films such as gold, we are able to precisely control plasmonic gap dimensions by creating ultra-thin molecular spacer layers on the gold films, on top of which we immobilize plasmon resonant nanoparticles (NPs). Each immobilized NP becomes coupled to the underlying film and functions as a plasmon nanoruler, exhibiting a distance-dependent resonance red-shift in its peak plasmon wavelength as it approaches the film. Due to the uniformity of response from the film-NPs to separation distance, we are able to use extinction and scattering measurements from ensembles of film-NPs to characterize the coupling effect over a series of very short separation distances – ranging from 5 – 20 Å – and combine these measurements with similar data from larger separation distances extending out to 27 nm. We find that the film-NP plasmon nanoruler is extremely sensitive at very short film-NP separation distances, yielding spectral shifts as large as 5 nm for every 1 Å change in separation distance. The film-NP coupling at extremely small spacings is so uniform and reliable that we are able to usefully probe gap dimensions where the classical Drude model of the conducting electrons in the metals is no longer descriptive; for gap sizes smaller than a few nanometers, either quantum or semi-classical models of the carrier response must be employed to predict the observed wavelength shifts. We find that, despite the limitations, large field enhancements and extreme sensitivity persist down to even the smallest gap sizes. PMID:22966857
Plasmon ruler with angstrom length resolution.
Hill, Ryan T; Mock, Jack J; Hucknall, Angus; Wolter, Scott D; Jokerst, Nan M; Smith, David R; Chilkoti, Ashutosh
2012-10-23
We demonstrate a plasmon nanoruler using a coupled film nanoparticle (film-NP) format that is well-suited for investigating the sensitivity extremes of plasmonic coupling. Because it is relatively straightforward to functionalize bulk surface plasmon supporting films, such as gold, we are able to precisely control plasmonic gap dimensions by creating ultrathin molecular spacer layers on the gold films, on top of which we immobilize plasmon resonant nanoparticles (NPs). Each immobilized NP becomes coupled to the underlying film and functions as a plasmon nanoruler, exhibiting a distance-dependent resonance red shift in its peak plasmon wavelength as it approaches the film. Due to the uniformity of response from the film-NPs to separation distance, we are able to use extinction and scattering measurements from ensembles of film-NPs to characterize the coupling effect over a series of very short separation distances-ranging from 5 to 20 Å-and combine these measurements with similar data from larger separation distances extending out to 27 nm. We find that the film-NP plasmon nanoruler is extremely sensitive at very short film-NP separation distances, yielding spectral shifts as large as 5 nm for every 1 Å change in separation distance. The film-NP coupling at extremely small spacings is so uniform and reliable that we are able to usefully probe gap dimensions where the classical Drude model of the conducting electrons in the metals is no longer descriptive; for gap sizes smaller than a few nanometers, either quantum or semiclassical models of the carrier response must be employed to predict the observed wavelength shifts. We find that, despite the limitations, large field enhancements and extreme sensitivity persist down to even the smallest gap sizes.
Thermally generated metals for plasmonic coloring and surface-enhanced Raman sensing
NASA Astrophysics Data System (ADS)
Huang, Zhenping; Chen, Jian; Liu, Guiqiang; Wang, Yan; Liu, Yi; Tang, Li; Liu, Zhengqi
2018-03-01
Spectral coloring glass and its application on the surface-enhanced Raman scattering are demonstrated experimentally via a simple and moderate heat-treating of the top ultrathin gold film to create discrete nanoparticles, which can produce localized surface plasmon resonances and strong plasmonic near-field coupling effects. Ultrathin metal films with a wide range of thicknesses are investigated by different heat-treatment processes. The annealed metal films have been demonstrated with a series of spectral coloring responses. Moreover, the microscopy images of the metal film structures confirm the formation of distinct geometry features in these operation procedures. Densely packed nanoparticles are observed for the ultrathin metal film with the single-digit level of thickness. With increasing the film thickness over 10 nm, metallic clusters and porous morphologies can be obtained. Importantly, the metallic resonators can provide enhanced Raman scattering with the detection limit down to 10 - 7 molL - 1 of Rhodamine 6G molecules due to the excitation of plasmon resonances and strong near-field coupling effects. These features hold great potential for large-scale and low-cost production of colored glass and Raman substrate.
Role of Absorbing Nanocrystal Cores in Soft Photonic Crystals: A Spectroscopy and SANS Study.
Rauh, Astrid; Carl, Nico; Schweins, Ralf; Karg, Matthias
2018-01-23
Periodic superstructures of plasmonic nanoparticles have attracted significant interest because they can support coupled plasmonic modes, making them interesting for plasmonic lasing, metamaterials, and as light-management structures in thin-film optoelectronic devices. We have recently shown that noble metal hydrogel core-shell colloids allow for the fabrication of highly ordered 2-dimensional plasmonic lattices that show surface lattice resonances as the result of plasmonic/diffractive coupling (Volk, K.; Fitzgerald, J. P. S.; Ruckdeschel, P.; Retsch, M.; König, T. A. F.; Karg, M. Reversible Tuning of Visible Wavelength Surface Lattice Resonances in Self-Assembled Hybrid Monolayers. Adv. Optical Mater. 2017, 5, 1600971, DOI: 10.1002/adom.201600971). In the present work, we study the photonic properties and structure of 3-dimensional crystalline superstructures of gold hydrogel core-shell colloids and their pitted counterparts without gold cores. We use far-field extinction spectroscopy to investigate the optical response of these superstructures. Narrow Bragg peaks are measured, independently of the presence or absence of the gold cores. All crystals show a significant reduction in low-wavelength scattering. This leads to a significant enhancement of the plasmonic properties of the samples prepared from gold-nanoparticle-containing core-shell colloids. Plasmonic/diffractive coupling is not evident, which we mostly attribute to the relatively small size of the gold cores limiting the effective coupling strength. Small-angle neutron scattering is applied to study the crystal structure. Bragg peaks of several orders clearly assignable to an fcc arrangement of the particles are observed for all crystalline samples in a broad range of volume fractions. Our results indicate that the nanocrystal cores do not influence the overall crystallization behavior or the crystal structure. These are important prerequisites for future studies on photonic materials built from core-shell particles, in particular, the development of new photonic materials from plasmonic nanocrystals.
Tan, Chuan Fu; Su Su Zin, Aung Kyi; Chen, Zhihui; Liow, Chi Hao; Phan, Huy Thong; Tan, Hui Ru; Xu, Qing-Hua; Ho, Ghim Wei
2018-05-22
One-dimensional (1D) metallic nanocrystals constitute an important class of plasmonic materials for localization of light into subwavelength dimensions. Coupled with their intrinsic conductive properties and extended optical paths for light absorption, metallic nanowires are prevalent in light-harnessing applications. However, the transverse surface plasmon resonance (SPR) mode of traditional multiply twinned nanowires often suffers from weaker electric field enhancement due to its low degree of morphological curvature in comparison to other complex anisotropic nanocrystals. Herein, simultaneous anisotropic stellation and excavation of multiply twinned nanowires are demonstrated through a site-selective galvanic reaction for a pronounced manipulation of light-matter interaction. The introduction of longitudinal extrusions and cavitation along the nanowires leads to a significant enhancement in plasmon field with reduced quenching of localized surface plasmon resonance (LSPR). The as-synthesized multimetallic nanostartubes serve as a panchromatic plasmonic framework for incorporation of photocatalytic materials for plasmon-assisted solar fuel production.
NASA Astrophysics Data System (ADS)
Bedogni, Elena; Kaneko, Satoshi; Fujii, Shintaro; Kiguchi, Manabu
2017-03-01
We have fabricated Au nanoparticle arrays on the flexible poly(dimethylsiloxane) (PDMS) film. The nanoparticles were bound to the film via a covalent bond by a ligand exchange reaction. Thanks to the strong chemical bonding, highly stable and uniformly dispersed Au nanoparticle arrays were fixed on the PDMS film. The Au nanoparticle arrays were characterized by the UV-vis, scanning electron microscope (SEM) and surface enhanced Raman scattering (SERS). The UV-vis and SEM measurements showed the uniformity of the surface-dispersed Au nanoparticles, and SERS measurement confirmed the chemistry of the PDMS film. Reflecting the high stability and the uniformity of the Au nanoparticle arrays, the plasmon wavelength of the Au nanoparticles reversely changed with modulation of the interparticle distance, which was induced by the stretching of the PDMS film. The plasmon wavelength linearly decreased from 664 to 591 nm by stretching of 60%. The plasmon wavelength shift can be explained by the change in the strength of the plasmon coupling which is mechanically controlled by the mechanical strain.
Nested plasmonic resonances: extraordinary enhancement of linear and nonlinear interactions.
de Ceglia, Domenico; Vincenti, Maria Antonietta; Akozbek, Neset; Bloemer, Mark J; Scalora, Michael
2017-02-20
Plasmonic resonators can provide large local electric fields when the gap between metal components is filled with an ordinary dielectric. We consider a new concept consisting of a hybrid nanoantenna obtained by introducing a resonant, plasmonic nanoparticle strategically placed inside the gap of an aptly sized metallic antenna. The system exhibits two nested, nearly overlapping plasmonic resonances whose signature is a large field enhancement at the surface and within the bulk of the plasmonic nanoparticle that leads to unusually strong, linear and nonlinear light-matter coupling.
Electron beam imaging and spectroscopy of plasmonic nanoantenna resonances
NASA Astrophysics Data System (ADS)
Vesseur, E. J. R.
2011-07-01
Nanoantennas are metal structures that provide strong optical coupling between a nanoscale volume and the far field. This coupling is mediated by surface plasmons, oscillations of the free electrons in the metal. Increasing the control over the resonant plasmonic field distribution opens up a wide range of applications of nanoantennas operating both in receiving and transmitting mode. This thesis presents how the dispersion and confinement of surface plasmons in nanoantennas are resolved and further engineered. Fabrication of nanostructures is done using focused ion beam milling (FIB) in metallic surfaces. We demonstrate that patterning in single-crystal substrates allows us to precisely control the geometry in which plasmons are confined. The nanoscale properties of the resonant plasmonic fields are resolved using a new technique developed in this thesis: angle- and polarization controlled cathodoluminescence (CL) imaging spectroscopy. The use of a tightly focused electron beam allows us to probe the optical antenna properties with deep subwavelength resolution. We show using this technique that nanoantennas consisting of 500-1200 nm long polycrystalline Au nanowires support standing plasmon waves. We directly observe the plasmon wavelengths which we use to derive the dispersion relation of guided nanowire plasmons. A 590-nm-long ridge-shaped nanoantenna was fabricated using FIB milling on a single-crystal Au substrate, demonstrating a level of control over the fabrication impossible with polycrystalline metals. CL experiments show that the ridge supports multiple-order resonances. The confinement of surface plasmons to the ridge is confirmed by boundary-element-method (BEM) calculations. The resonant modes in plasmonic whispering gallery cavities consisting of a FIB-fabricated circular groove are resolved. We find an excellent agreement between boundary element method calculations and the measured CL emission from the ring-shaped cavities. The calculations show that the ring supports resonances with increasing azimuthal or radial order. The smallest cavity fits only one wavelength in its circumference. We theoretically show that in these cavities, spontaneous emission can be enhanced over a broad spectral band due to the small modal volume of the plasmon resonances. A Purcell factor >2000 was found. We further study the mode symmetries and coupling of the ring resonances using far-field excitation, fluorescence, angle-resolved cathodoluminescence and photoelectron emission microscopy. We demonstrate spectral reshaping of emitters, mode-specific angular emission patterns, and a mode-selective excitation by incoming light, and we directly resolve the modal fields at high resolution. In the next chapter, we present metal-insulator-metal plasmon waveguides in which we engineer the dispersion to reach a refractive index of zero. Using spatially- and angle-resolved CL we directly observe the spatial mode profiles and determine the dispersion relation of plasmon modes. At the cutoff frequency, the emission pattern corresponds to that of a line dipole antenna demonstrating the entire waveguide is in phase (n=0). A strongly enhanced density of optical states is directly observed at cutoff from the enhanced CL intensity. Finally, we present 5 possible applications: a localized surface plasmon sensor, a plasmon ring laser, template stripping technique, an in-situ monitor of ionoluminescence and cathodoluminescence in a FIB system and a single-photon source.
Integrated optical isolators using magnetic surface plasmon (Presentation Recording)
NASA Astrophysics Data System (ADS)
Shimizu, Hiromasa; Kaihara, Terunori; Umetsu, Saori; Hosoda, Masashi
2015-09-01
Optical isolators are one of the essential components to protect semiconductor laser diodes (LDs) from backward reflected light in integrated optics. In order to realize optical isolators, nonreciprocal propagation of light is necessary, which can be realized by magnetic materials. Semiconductor optical isolators have been strongly desired on Si and III/V waveguides. We have developed semiconductor optical isolators based on nonreciprocal loss owing to transverse magneto-optic Kerr effect, where the ferromagnetic metals are deposited on semiconductor optical waveguides1). Use of surface plasmon polariton at the interface of ferromagnetic metal and insulator leads to stronger optical confinement and magneto-optic effect. It is possible to modulate the optical confinement by changing the magnetic field direction, thus optical isolator operation is proposed2, 3). We have investigated surface plasmons at the interfaces between ferrimagnetic garnet/gold film, and applications to waveguide optical isolators. We assumed waveguides composed of Au/Si(38.63nm)/Ce:YIG(1700nm)/Si(220nm)/Si , and calculated the coupling lengths between Au/Si(38.63nm)/Ce:YIG plasmonic waveguide and Ce:YIG/Si(220nm)/Si waveguide for transversely magnetized Ce:YIG with forward and backward directions. The coupling length was calculated to 232.1um for backward propagating light. On the other hand, the coupling was not complete, and the length was calculated to 175.5um. The optical isolation by using the nonreciprocal coupling and propagation loss was calculated to be 43.7dB when the length of plasmonic waveguide is 700um. 1) H. Shimizu et al., J. Lightwave Technol. 24, 38 (2006). 2) V. Zayets et al., Materials, 5, 857-871 (2012). 3) J. Montoya, et al, J. Appl. Phys. 106, 023108, (2009).
NASA Astrophysics Data System (ADS)
Yeshchenko, Oleg A.; Kozachenko, Viktor V.; Naumenko, Antonina P.; Berezovska, Nataliya I.; Kutsevol, Nataliya V.; Chumachenko, Vasyl A.; Haftel, Michael; Pinchuk, Anatoliy O.
2018-05-01
We study the effects of coupling between plasmonic metal nanoparticles and a thin metal film by using light extinction spectroscopy. A planar monolayer of gold nanoparticles located near an aluminum thin film (thicknesses within the range of 0-62 nm) was used to analyze the coupling between the monolayer and the thin metal film. SPR peak area increase for polymer coated Au NPs, non-monotonical behavior of the peak area for bare Au NPs, as well as red shift and broadening of SPR at the increase of the Al film thickness have been observed. These effects are rationalized as a result of coupling of the layer of Au NPs with Al film through the field of localized surface plasmons in Au NPs that causes the excitation of collective plasmonic gap mode in the nanostructure. An additional mechanism for bare Au NPs is the non-radiative damping of SPR that is caused by the electrical contact between metal NPs and film.
Su, Chia-Ying; Lin, Chun-Han; Yao, Yu-Feng; Liu, Wei-Heng; Su, Ming-Yen; Chiang, Hsin-Chun; Tsai, Meng-Che; Tu, Charng-Gan; Chen, Hao-Tsung; Kiang, Yean-Woei; Yang, C C
2017-09-04
The high performance of a light-emitting diode (LED) with the total p-type thickness as small as 38 nm is demonstrated. By increasing the Mg doping concentration in the p-AlGaN electron blocking layer through an Mg pre-flow process, the hole injection efficiency can be significantly enhanced. Based on this technique, the high LED performance can be maintained when the p-type layer thickness is significantly reduced. Then, the surface plasmon coupling effects, including the enhancement of internal quantum efficiency, increase in output intensity, reduction of efficiency droop, and increase of modulation bandwidth, among the thin p-type LED samples of different p-type thicknesses that are compared. These advantageous effects are stronger as the p-type layer becomes thinner. However, the dependencies of these effects on p-type layer thickness are different. With a circular mesa size of 10 μm in radius, through surface plasmon coupling, we achieve the record-high modulation bandwidth of 625.6 MHz among c-plane GaN-based LEDs.
NASA Astrophysics Data System (ADS)
Wang, Hao; Zhao, Hua; Xu, Chao; Li, Liang; Hu, Guangwei; Zhang, Jingwen
2014-10-01
Photorefractive (PR) phase gratings were used in coupling energy between visible light and surface plasmon polaritons in indium-tin oxide (ITO)-coated iron-doped lithium niobate (Fe:LN) crystal slabs via electrostatic modification at the ITO/LN interface based on a strong photovoltaic effect. The energy coupling is considered to be responsible for several interesting observations: (1) dynamic reflectivity change from 3.25 to 37.0% of the very first reflection at the entrance slab interface, (2) total light reflectivity as high as 89%, and (3) two-dimensional diffraction patterns without external feedback needed.
Design and Development of Nanostructured Surfaces for Enhanced Optical Sensing
NASA Astrophysics Data System (ADS)
Santiago Cordoba, Miguel A.
At smaller size regimes, materials' physicochemical properties change with respect to bulk analogs. In the case of metal nanoparticles like gold or silver, specific wavelengths of light can induce a coherent oscillation of their conduction electrons, generating an optical field confined to the nanoparticle surface. This phenomenon is termed surface plasmon, and has been used as an enhancing mechanism in optical sensing, allowing the detection of foreign materials at small concentrations. The goal of this dissertation is to develop nanostructured materials relying on surface plasmons that can be combined with different optical sensing platforms in order to enhance current detection limits. Initially, we focus on the development of surfactant free, stimuli responsive nanoparticle thin films, which undergo an active release when exposed to a stimulus such as a change in pH. These nanoparticle thin films provide faster analyte particle transport and direct electronic coupling with the analyte molecule, all without attenuating the evanescent wave from the optical transducer to the particle. These stimuli responsive nanostructured substrates are tested within a surface enhanced Raman platform for the detection of biomolecular probes at sub-nanomolar concentrations and microL sample sizes. Furthermore, the developed nanosubstrates can be patterned, providing a versatile nanoparticle thin film for multiplexing analysis, offering a substantial advantage over conventional surface based nanoparticle detection methods. Our results encouraged further optimization of light-matter interactions in optical detection platforms. It is for that reason that this dissertation evolves towards confined optical systems. Particularly, whispering gallery microcavities confine electromagnetic waves - at high volumes - at the boundary of a dielectric resonator. In this dissertation, we examined the sensitivity of whispering gallery modes combining optical microcavities with plasmonic nanoparticles in analogy to a "nanoantenna". First, our hybrid methodology is tested by analyzing the resonant wavelength displacement of a whispering gallery mode cavity upon perturbation with a gold nanoparticle layer containing a model protein. Next, we developed a real-time optical sensing platform relying on whispering gallery microcavities and surface plasmons, and then tested it for the detection of a model protein at fM concentration (less than 1000 protein molecules). Finally, this plasmonic-photonic coupling process involving whispering gallery modes is studied via a self-referenced methodology relying on the mode splitting of a whispering gallery resonance. Specifically, we studied the mode splitting evolution of a resonant whispering gallery microcavity as a function of gold nanoparticle adherence with varying diameters. Mode splitting increases as the localized surface plasmon wavelength of the nanoparticle approaches the spectral line of the whispering gallery mode. Plasmonic-photonic coupling observed in this study provides a novel alternative to achieve single particle detection using mode splitting, as well as understanding optimization of particle size for plasmonic-photonic coupling. The study described herein opens a new way to optimize current optical sensing technology, enabling not only the detection of an analyte, but also the execution of fundamental studies of analyte interactions at ultralow concentrations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Chun-Han; Su, Chia-Ying; Chen, Chung-Hui
Further reduction of the efficiency droop effect and further enhancements of internal quantum efficiency (IQE) and output intensity of a surface plasmon coupled, blue-emitting light-emitting diode (LED) by inserting a dielectric interlayer (DI) of a lower refractive index between p-GaN and surface Ag nanoparticles are demonstrated. The insertion of a DI leads to a blue shift of the localized surface plasmon (LSP) resonance spectrum and increases the LSP coupling strength at the quantum well emitting wavelength in the blue range. With SiO{sub 2} as the DI, a thinner DI leads to a stronger LSP coupling effect, when compared with themore » case of a thicker DI. By using GaZnO, which is a dielectric in the optical range and a good conductor under direct-current operation, as the DI, the LSP coupling results in the highest IQE, highest LED output intensity, and weakest droop effect.« less
Plasmonically amplified fluorescence bioassay with microarray format
NASA Astrophysics Data System (ADS)
Gogalic, S.; Hageneder, S.; Ctortecka, C.; Bauch, M.; Khan, I.; Preininger, Claudia; Sauer, U.; Dostalek, J.
2015-05-01
Plasmonic amplification of fluorescence signal in bioassays with microarray detection format is reported. A crossed relief diffraction grating was designed to couple an excitation laser beam to surface plasmons at the wavelength overlapping with the absorption and emission bands of fluorophore Dy647 that was used as a label. The surface of periodically corrugated sensor chip was coated with surface plasmon-supporting gold layer and a thin SU8 polymer film carrying epoxy groups. These groups were employed for the covalent immobilization of capture antibodies at arrays of spots. The plasmonic amplification of fluorescence signal on the developed microarray chip was tested by using interleukin 8 sandwich immunoassay. The readout was performed ex situ after drying the chip by using a commercial scanner with high numerical aperture collecting lens. Obtained results reveal the enhancement of fluorescence signal by a factor of 5 when compared to a regular glass chip.
2014-01-01
Semiconductor nanowires, due to their unique electronic, optical, and chemical properties, are firmly placed at the forefront of nanotechnology research. The rich physics of semiconductor nanowire optics arises due to the enhanced light–matter interactions at the nanoscale and coupling of optical modes to electronic resonances. Furthermore, confinement of light can be taken to new extremes via coupling to the surface plasmon modes of metal nanostructures integrated with nanowires, leading to interesting physical phenomena. This Perspective will examine how the optical properties of semiconductor nanowires can be altered via their integration with highly confined plasmonic nanocavities that have resulted in properties such as orders of magnitude faster and more efficient light emission and lasing. The use of plasmonic nanocavities for tailored optical absorption will also be discussed in order to understand and engineer fundamental optical properties of these hybrid systems along with their potential for novel applications, which may not be possible with purely dielectric cavities. PMID:25396030
NASA Astrophysics Data System (ADS)
Hong, Ruijin; Ji, Jialin; Tao, Chunxian; Zhang, Dawei
2016-10-01
Au/ZnO/Ag sandwich structure films were fabricated by DC magnetron sputter at room temperature. The tunability of the surface plasmon resonance wavelength was realized by varying the thickness of ZnO thin film. The effects of ZnO layer on the optical properties of Au/ZnO/Au thin films were investigated by optical absorption and Raman scattering measurements. It has been found that both the surface plasmon resonance frequency and SERS can be controlled by adjusting the thickness of ZnO layer due to the coupling of metal and semiconductor.
Terahertz plasmonic Bessel beamformer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Monnai, Yasuaki; Shinoda, Hiroyuki; Jahn, David
We experimentally demonstrate terahertz Bessel beamforming based on the concept of plasmonics. The proposed planar structure is made of concentric metallic grooves with a subwavelength spacing that couple to a point source to create tightly confined surface waves or spoof surface plasmon polaritons. Concentric scatterers periodically incorporated at a wavelength scale allow for launching the surface waves into free space to define a Bessel beam. The Bessel beam defined at 0.29 THz has been characterized through terahertz time-domain spectroscopy. This approach is capable of generating Bessel beams with planar structures as opposed to bulky axicon lenses and can be readily integratedmore » with solid-state terahertz sources.« less
Surface plasmon-enhanced light-emitting diodes using silver nanoparticles embedded in p-GaN.
Cho, Chu-Young; Kwon, Min-Ki; Lee, Sang-Jun; Han, Sang-Heon; Kang, Jang-Won; Kang, Se-Eun; Lee, Dong-Yul; Park, Seong-Ju
2010-05-21
We demonstrate the surface plasmon-enhanced blue light-emitting diodes (LEDs) using Ag nanoparticles embedded in p-GaN. A large increase in optical output power of 38% is achieved at an injection current of 20 mA due to an improved internal quantum efficiency of the LEDs. The enhancement of optical output power is dependent on the density of the Ag nanoparticles. This improvement can be attributed to an increase in the spontaneous emission rate through resonance coupling between the excitons in multiple quantum wells and localized surface plasmons in Ag nanoparticles embedded in p-GaN.
Thermodynamic limit to photonic-plasmonic light-trapping in thin films on metals
NASA Astrophysics Data System (ADS)
Schiff, E. A.
2011-11-01
We calculate the maximum optical absorptance enhancements in thin semiconductor films on metals due to structures that diffuse light and couple it to surface plasmon polaritons. The calculations can be used to estimate plasmonic effects on light-trapping in solar cells. The calculations are based on the statistical distribution of energy in the electromagnetic modes of the structure, which include surface plasmon polariton modes at the metal interface as well as the trapped waveguide modes in the film. The enhancement has the form 4n2+nλ/h (n - film refractive index, λ - optical wavelength, h - film thickness), which is an increase beyond the non-plasmonic "classical" enhancement 4n2. Larger resonant enhancements occur for wavelengths near the surface plasmon frequency; these add up to 2 mA/cm2 to the photocurrent of a solar cell based on a 500 nm film of crystalline silicon. We also calculated the effects of plasmon dissipation in the metal. Dissipation rates typical of silver reverse the resonant enhancement effect for silicon, but a non-resonant enhancement remains.
Advanced Space-Based Detectors
2014-07-17
to surface-plasmon- polariton interactions on nanopatterned metal surfaces. A plasmon is the quasiparticle resulting from the quantization of plasma...excited by an optical field, a polariton is the result. Polaritons are quasiparticles resulting from a strong coupling of EM waves with an electric...dipole-carrying excitation. Thus, a polariton is the result of the mixing of a photon with an excitation of a material. Phonon- polaritons result from
Competition and evolution of dielectric waveguide mode and plasmonic waveguide mode
NASA Astrophysics Data System (ADS)
Yuan, Sheng-Nan; Fang, Yun-Tuan
2017-10-01
In order to study the coupling and evolution law of the waveguide mode and two plasmonic surface modes, we construct a line defect waveguide based on hexagonal honeycomb plasmonic photonic crystal. Through adjusting the radius of the edge dielectric rods, the competition and evolution behaviors occur between dielectric waveguide mode and plasmonic waveguide mode. There are three status: only plasmonic waveguide modes occur for rA < 0.09a; only dielectric waveguide modes occur for rA > 0.25a; two kinds of modes coexist for 0.09a < rA < 0.25a. The plasmonic waveguide mode has advantages in achieving slow light.
Patoka, Piotr; Ulrich, Georg; Nguyen, Ariana E.; ...
2016-01-13
Here, nanoscale plasmonic phenomena observed in single and bi-layers of molybdenum disulfide (MoS 2) on silicon dioxide (SiO 2) are reported. A scattering type scanning near-field optical microscope (s-SNOM) with a broadband synchrotron radiation (SR) infrared source was used. We also present complementary optical mapping using tunable CO 2-laser radiation. Specifically, there is a correlation of the topography of well-defined MoS 2 islands grown by chemical vapor deposition, as determined by atomic force microscopy, with the infrared (IR) signature of MoS 2. The influence of MoS 2 islands on the SiO 2 phonon resonance is discussed. The results reveal themore » plasmonic character of the MoS 2 structures and their interaction with the SiO 2 phonons leading to an enhancement of the hybridized surface plasmon-phonon mode. A theoretical analysis shows that, in the case of monolayer islands, the coupling of the MoS 2 optical plasmon mode to the SiO 2 surface phonons does not affect the infrared spectrum significantly. For two-layer MoS 2, the coupling of the extra inter-plane acoustic plasmon mode with the SiO 2 surface transverse phonon leads to a remarkable increase of the surface phonon peak at 794 cm -1. This is in agreement with the experimental data. These results show the capability of the s-SNOM technique to study local multiple excitations in complex non-homogeneous structures.« less
Ultrafine and Smooth Full Metal Nanostructures for Plasmonics
NASA Astrophysics Data System (ADS)
Zhu, Xinli; Zhang, Jaseng; Xu, Jun; Liao, Zhimin; Wu, Xiaosong; Yu, Dapeng
2013-03-01
Surface plasmon polaritons (SPPs), which are coupled excitations of electrons bound to a metal-dielectric interface, show great potential for application in future nanoscale photonic systems due to the strong field confinement at the nanoscale, intensive local field enhancement, and interplay between strongly localized and propagating SPPs. The fabrication of sufficiently smooth metal surface with nanoscale feature size is crucial for SPPs to have practical applications. A template stripping (ST) method combined with PMMA as a template was successfully developed to create extraordinarily smooth metal nanostructures with a desirable feature size and morphology for plasmonics and metamaterials. The advantages of this method, including the high resolution, precipitous top-to bottom profile with a high aspect ratio, and three-dimensional characteristics, make it very suitable for the fabrication of plasmonic structures. By using this ST method, boxing ring-shaped nanocavities have been fabricated and the confined modes of surface plasmon polaritons in these nanocavities have been investigated and imaged by using cathodoluminescence spectroscopy. The mode of the out-of-plane field components of surface plasmon polaritons dominates the experimental mode patterns, indicating that the electron beam locally excites the out-of-plane field component of surface plasmon polaritons, and quality factors can be directly acquired. Numerous applications, such as plasmonic filter, nanolaser, and efficient light-emitting devices, can be expected to arise from these developments.
UV plasmonic enhancement through three dimensional nano-cavity antenna array in aluminum
NASA Astrophysics Data System (ADS)
Mao, Jieying; Stevenson, Peter; Montanaric, Danielle; Wang, Yunshan; Shumaker-Parry, Jennifer S.; Harris, Joel M.; Blair, Steve
2017-08-01
Metallic nanostructure can enhance fluorescence through excited surface plasmons which increase the local field as well as improve its quantum efficiency. When coupling to cavity resonance with proper gap dimension, gap hot spots can be generated to interact with fluorescence at their excitation/emission region in UV. A 3D nano-cavity antenna array in Aluminum has been conducted to generate local hot spot resonant at fluorescence emission resonance. Giant field enhancement has been achieved through coupling fundamental resonance modes of nanocavity into surface plasmons polaritons (SPPs). In this work, two distinct plasmonic structure of 3D resonant cavity nanoantenna has been studied and its plasmonic response has been scaled down to the UV regime through finite-difference-time-domain (FDTD) method. Two different strategies for antenna fabrication will be conducted to obtain D-coupled Dots-on-Pillar Antenna array (D2PA) through Focus Ion Beam (FIB) and Cap- Hole Pair Antenna array (CHPA) through nanosphere template lithography (NTL). With proper optimization of the structures, D2PA and CHPA square array with 280nm pitch have achieved distinct enhancement at fluorophore emission wavelength 350nm and excitation wavelength 280nm simultaneously. Maximum field enhancement can reach 20 and 65 fold in the gap of D2PA and CHPA when light incident from substrate, which is expected to greatly enhance fluorescent quantum efficiency that will be confirmed in fluorescence lifetime measurement.
Physical chemistry of Nanogap-Enhanced Raman Scattering (NERS)
NASA Astrophysics Data System (ADS)
Suh, Yung Doug; Kim, Hyun Woo
2017-08-01
Plasmonically coupled electromagnetic field localization has generated a variety of new concepts and applications, and this has been one of the hottest topics in nanoscience, materials science, chemistry, physics and engineering and increasingly more important over the last decade. In particular, plasmonically coupled nanostructures with ultra-small gap ( 1-nm or smaller) gap have been of special interest due to their ultra-strong optical properties that can be useful for a variety of signal enhancements such surface-enhanced Raman scattering (SERS) and nanoantenna. These promising nanostructures with extraordinarily strong optical signal, however, have rendered a limited success in widespread use and commercialization largely due to the lack of designing principles, high-yield synthetic strategies with nm-level structural controllability and reproducibility and lack of systematic single-molecule and single-particle level studies. All these are extremely important challenges because even small changes ( 1 nm) of the coupled nanogap structures can significant affect plasmon mode and signal intensity and therefore structural and signal reproducibility and controllability can be in question. The plasmonic nanogap-enhanced Raman scattering (NERS) is defined as the plasmonic nanogap-based Raman signal enhancement within plasmonic nanogap particles with 1 nm gap and a Raman dye positioned inside the gap.
Retardation effects on the dispersion and propagation of plasmons in metallic nanoparticle chains
NASA Astrophysics Data System (ADS)
Downing, Charles A.; Mariani, Eros; Weick, Guillaume
2018-01-01
We consider a chain of regularly-spaced spherical metallic nanoparticles, where each particle supports three degenerate localized surface plasmons. Due to the dipolar interaction between the nanoparticles, the localized plasmons couple to form extended collective modes. Using an open quantum system approach in which the collective plasmons are interacting with vacuum electromagnetic modes and which, importantly, readily incorporates retardation via the light-matter coupling, we analytically evaluate the resulting radiative frequency shifts of the plasmonic bandstructure. For subwavelength-sized nanoparticles, our analytical treatment provides an excellent quantitative agreement with the results stemming from laborious numerical calculations based on fully-retarded solutions to Maxwell’s equations. Indeed, the explicit expressions for the plasmonic spectrum which we provide showcase how including retardation gives rise to a logarithmic singularity in the bandstructure of transverse-polarized plasmons. We further study the impact of retardation effects on the propagation of plasmonic excitations along the chain. While for the longitudinal modes, retardation has a negligible effect, we find that the retarded dipolar interaction can significantly modify the plasmon propagation in the case of transverse-polarized modes. Moreover, our results elucidate the analogy between radiative effects in nanoplasmonic systems and the cooperative Lamb shift in atomic physics.
Marrying Excitons and Plasmons in Monolayer Transition-Metal Dichalcogenides
NASA Astrophysics Data System (ADS)
Van Tuan, Dinh; Scharf, Benedikt; Žutić, Igor; Dery, Hanan
2017-10-01
Just as photons are the quanta of light, plasmons are the quanta of orchestrated charge-density oscillations in conducting media. Plasmon phenomena in normal metals, superconductors, and doped semiconductors are often driven by long-wavelength Coulomb interactions. However, in crystals whose Fermi surface is comprised of disconnected pockets in the Brillouin zone, collective electron excitations can also attain a shortwave component when electrons transition between these pockets. In this work, we show that the band structure of monolayer transition-metal dichalcogenides gives rise to an intriguing mechanism through which shortwave plasmons are paired up with excitons. The coupling elucidates the origin for the optical sideband that is observed repeatedly in monolayers of WSe2 and WS2 but not understood. The theory makes it clear why exciton-plasmon coupling has the right conditions to manifest itself distinctly only in the optical spectra of electron-doped tungsten-based monolayers.
Transition-Metal Decorated Aluminum Nanocrystals.
Swearer, Dayne F; Leary, Rowan K; Newell, Ryan; Yazdi, Sadegh; Robatjazi, Hossein; Zhang, Yue; Renard, David; Nordlander, Peter; Midgley, Paul A; Halas, Naomi J; Ringe, Emilie
2017-10-24
Recently, aluminum has been established as an earth-abundant alternative to gold and silver for plasmonic applications. Particularly, aluminum nanocrystals have shown to be promising plasmonic photocatalysts, especially when coupled with catalytic metals or oxides into "antenna-reactor" heterostructures. Here, a simple polyol synthesis is presented as a flexible route to produce aluminum nanocrystals decorated with eight varieties of size-tunable transition-metal nanoparticle islands, many of which have precedence as heterogeneous catalysts. High-resolution and three-dimensional structural analysis using scanning transmission electron microscopy and electron tomography shows that abundant nanoparticle island decoration in the catalytically relevant few-nanometer size range can be achieved, with many islands spaced closely to their neighbors. When coupled with the Al nanocrystal plasmonic antenna, these small decorating islands will experience increased light absorption and strong hot-spot generation. This combination makes transition-metal decorated aluminum nanocrystals a promising material platform to develop plasmonic photocatalysis, surface-enhanced spectroscopies, and quantum plasmonics.
Surface plasmon-assisted microscope.
Borejdo, Julian; Gryczynski, Zygmunt; Fudala, Rafal; Joshi, Chaitanya R; Borgmann, Kathleen; Ghorpade, Anuja; Gryczynski, Ignacy
2018-06-01
Total internal reflection microscopy (TIRF) has been a powerful tool in biological research. The most valuable feature of the method has been the ability to image 100- to 200-nm-thick layer of cell features adjacent to a coverslip, such as membrane lipids, membrane receptors, and structures proximal-to-basal membranes. Here, we demonstrate an alternative method of imaging thin-layer proximal-to-basal membranes by placing a sample on a high refractive index coverslip covered by a thin layer of gold. The sample is illuminated using the Kretschmann method (i.e., from the top to an aqueous medium). Fluorophores that are close to the metal surface induce surface plasmons in the metal film. Fluorescence from fluorophores near the metal surface couple with surface plasmons allowing them to penetrate the metal surface and emerge at a surface plasmon coupled emission angle. The thickness of the detection layer is further reduced in comparison with TIRF by metal quenching of fluorophores at a close proximity (below 10 nm) to a surface. Fluorescence is collected by a high NA objective and imaged by EMCCD or converted to a signal by avalanche photodiode fed by a single-mode optical fiber inserted in the conjugate image plane of the objective. The system avoids complications of through-the-objective TIRF associated with shared excitation and emission light path, has thin collection thickness, produces excellent background rejection, and is an effective method to study molecular motion. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
Localized Surface Plasmon Resonance Biosensing: Current Challenges and Approaches
Unser, Sarah; Bruzas, Ian; He, Jie; Sagle, Laura
2015-01-01
Localized surface plasmon resonance (LSPR) has emerged as a leader among label-free biosensing techniques in that it offers sensitive, robust, and facile detection. Traditional LSPR-based biosensing utilizes the sensitivity of the plasmon frequency to changes in local index of refraction at the nanoparticle surface. Although surface plasmon resonance technologies are now widely used to measure biomolecular interactions, several challenges remain. In this article, we have categorized these challenges into four categories: improving sensitivity and limit of detection, selectivity in complex biological solutions, sensitive detection of membrane-associated species, and the adaptation of sensing elements for point-of-care diagnostic devices. The first section of this article will involve a conceptual discussion of surface plasmon resonance and the factors affecting changes in optical signal detected. The following sections will discuss applications of LSPR biosensing with an emphasis on recent advances and approaches to overcome the four limitations mentioned above. First, improvements in limit of detection through various amplification strategies will be highlighted. The second section will involve advances to improve selectivity in complex media through self-assembled monolayers, “plasmon ruler” devices involving plasmonic coupling, and shape complementarity on the nanoparticle surface. The following section will describe various LSPR platforms designed for the sensitive detection of membrane-associated species. Finally, recent advances towards multiplexed and microfluidic LSPR-based devices for inexpensive, rapid, point-of-care diagnostics will be discussed. PMID:26147727
Plasmonic Library Based on Substrate-Supported Gradiential Plasmonic Arrays
2014-01-01
We present a versatile approach to produce macroscopic, substrate-supported arrays of plasmonic nanoparticles with well-defined interparticle spacing and a continuous particle size gradient. The arrays thus present a “plasmonic library” of locally noncoupling plasmonic particles of different sizes, which can serve as a platform for future combinatorial screening of size effects. The structures were prepared by substrate assembly of gold-core/poly(N-isopropylacrylamide)-shell particles and subsequent post-modification. Coupling of the localized surface plasmon resonance (LSPR) could be avoided since the polymer shell separates the encapsulated gold cores. To produce a particle array with a broad range of well-defined but laterally distinguishable particle sizes, the substrate was dip-coated in a growth solution, which resulted in an overgrowth of the gold cores controlled by the local exposure time. The kinetics was quantitatively analyzed and found to be diffusion rate controlled, allowing for precise tuning of particle size by adjusting the withdrawal speed. We determined the kinetics of the overgrowth process, investigated the LSPRs along the gradient by UV–vis extinction spectroscopy, and compared the spectroscopic results to the predictions from Mie theory, indicating the absence of local interparticle coupling. We finally discuss potential applications of these substrate-supported plasmonic particle libraries and perspectives toward extending the concept from size to composition variation and screening of plasmonic coupling effects. PMID:25137554
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirschner, Matthew S.; Ding, Wendu; Li, Yuxiu
In this study, we demonstrate that coherent acoustic phonons derived from plasmonic nanoparticles can modulate electronic interactions with proximal excitonic molecular species. A series of gold bipyramids with systematically varied aspect ratios and corresponding localized surface plasmon resonance energies, functionalized with a J-aggregated thiacarbocyanine dye molecule, produce two hybridized states that exhibit clear anti-crossing behavior with a Rabi splitting energy of 120 meV. In metal nanoparticles, photoexcitation generates coherent acoustic phonons that cause oscillations in the plasmon resonance energy. In the coupled system, these photo-generated oscillations alter the metal nanoparticle’s energetic contribution to the hybridized system and, as a result,more » change the coupling between the plasmon and exciton. We demonstrate that such modulations in the hybridization is consistent across a wide range of bipyramid ensembles. We also use Finite-Difference Time Domain calculations to develop a simple model describing this behavior. Lastly, such oscillatory plasmonic-excitonic nanomaterials (OPENs) offer a route to manipulate and dynamically-tune the interactions of plasmonic/excitonic systems and unlock a range of potential applications.« less
Huang, Xin; Jiang, Chunyan; Du, Chunhua; Jing, Liang; Liu, Mengmeng; Hu, Weiguo; Wang, Zhong Lin
2016-12-27
With a promising prospect of light-emitting diodes as an attractive alternative to conventional light sources, remaining challenges still cannot be addressed owing to their limited efficiency. Among the continued scientific efforts, significant improvement on the emission efficiency has been achieved via either piezo-phototronic effect-based strain modulation or resonant excitation of plasmons in metallic nanostructures. Here, we present the investigation on the coupling process between piezo-phototronic effect and localized surface plasmonic resonance for enhancing the photoluminescence of InGaN/GaN quantum wells coated with Ag nanoparticles. The underlying physical mechanism of experimental results originates from tuning plasmonic resonance controlled by the shift of emission wavelength via piezo-phototronic effect, and it is further confirmed with the support of theoretical calculations. As a result, our research provides an approach to the integration of plasmonics with piezo-phototronic effect and brings widespread applications to high-efficiency artificial lighting, on-chip integrated plasmonic circuits, subwavelength optical communication, and micro-optoelectronic mechanical systems.
Byers, Chad P.; Zhang, Hui; Swearer, Dayne F.; Yorulmaz, Mustafa; Hoener, Benjamin S.; Huang, Da; Hoggard, Anneli; Chang, Wei-Shun; Mulvaney, Paul; Ringe, Emilie; Halas, Naomi J.; Nordlander, Peter; Link, Stephan; Landes, Christy F.
2015-01-01
The optical properties of metallic nanoparticles are highly sensitive to interparticle distance, giving rise to dramatic but frequently irreversible color changes. By electrochemical modification of individual nanoparticles and nanoparticle pairs, we induced equally dramatic, yet reversible, changes in their optical properties. We achieved plasmon tuning by oxidation-reduction chemistry of Ag-AgCl shells on the surfaces of both individual and strongly coupled Au nanoparticle pairs, resulting in extreme but reversible changes in scattering line shape. We demonstrated reversible formation of the charge transfer plasmon mode by switching between capacitive and conductive electronic coupling mechanisms. Dynamic single-particle spectroelectrochemistry also gave an insight into the reaction kinetics and evolution of the charge transfer plasmon mode in an electrochemically tunable structure. Our study represents a highly useful approach to the precise tuning of the morphology of narrow interparticle gaps and will be of value for controlling and activating a range of properties such as extreme plasmon modulation, nanoscopic plasmon switching, and subnanometer tunable gap applications. PMID:26665175
Enabling High Efficiency Nanoplasmonics with Novel Nanoantenna Architectures
Cohen, Moshik; Shavit, Reuven; Zalevsky, Zeev
2015-01-01
Surface plasmon polaritons (SPPs) are propagating excitations that arise from coupling of light with collective electron oscillations. Characterized by high field intensity and nanometric dimensions, SPPs fashion rapid expansion of interest from fundamental and applicative perspectives. However, high metallic losses at optical frequencies still make nanoplasmonics impractical when high absolute efficiency is paramount, with major challenge is efficient plasmon generation in deep nanoscale. Here we introduce the Plantenna, the first reported nanodevice with the potential of addressing these limitations utilizing novel plasmonic architecture. The Plantenna has simple 2D structure, ultracompact dimensions and is fabricated on Silicon chip for future CMOS integration. We design the Plantenna to feed channel (20 nm × 20 nm) nanoplasmonic waveguides, achieving 52% coupling efficiency with Plantenna dimensions of λ3/17,000. We theoretically and experimentally show that the Plantenna enormously outperforms dipole couplers, achieving 28 dB higher efficiency with broad polarization diversity and huge local field enhancement. Our findings confirm the Plantenna as enabling device for high efficiency plasmonic technologies such as quantum nanoplasmonics, molecular strong coupling and plasmon nanolasers. PMID:26620270
Feng, Yulong; Chen, Zhizhong; Jiang, Shuang; Li, Chengcheng; Chen, Yifan; Zhan, Jinglin; Chen, Yiyong; Nie, Jingxin; Jiao, Fei; Kang, Xiangning; Li, Shunfeng; Yu, Tongjun; Zhang, Guoyi; Shen, Bo
2018-04-16
We analyzed the coupling behavior between the localized surface plasmon (LSP) and quantum wells (QWs) using cathodoluminescence (CL) in a green light-emitting diodes (LED) with Ag nanoparticles (NPs) filled in photonic crystal (PhC) holes. Photoluminescence (PL) suppression and CL enhancement were obtained for the same green LED sample with the Ag NP array. Time-resolved PL (TRPL) results indicate strong coupling between the LSP and the QWs. Three-dimensional (3D) finite difference time domain (FDTD) simulation was performed using a three-body model consisting of two orthogonal dipoles and a single Ag NP. The LSP–QWs coupling effect was separated from the electron-beam (e-beam)–LSP–QW system by linear approximation. The energy dissipation was significantly reduced by the z-dipole introduction under the e-beam excitation. In this paper, the coupling mechanism is discussed and a novel emission structure is proposed.
Generation of attosecond electron packets via conical surface plasmon electron acceleration
Greig, S. R.; Elezzabi, A. Y.
2016-01-01
We present a method for the generation of high kinetic energy attosecond electron packets via magnetostatic and aperture filtering of conical surface plasmon (SP) accelerated electrons. The conical SP waves are excited by coupling an ultrafast radially polarized laser beam to a conical silica lens coated with an Ag film. Electromagnetic and particle tracking models are employed to characterize the ultrafast electron packets. PMID:26764129
Phonon-Driven Oscillatory Plasmonic Excitonic Nanomaterials
Kirschner, Matthew S.; Ding, Wendu; Li, Yuxiu; ...
2017-12-01
In this study, we demonstrate that coherent acoustic phonons derived from plasmonic nanoparticles can modulate electronic interactions with proximal excitonic molecular species. A series of gold bipyramids with systematically varied aspect ratios and corresponding localized surface plasmon resonance energies, functionalized with a J-aggregated thiacarbocyanine dye molecule, produce two hybridized states that exhibit clear anti-crossing behavior with a Rabi splitting energy of 120 meV. In metal nanoparticles, photoexcitation generates coherent acoustic phonons that cause oscillations in the plasmon resonance energy. In the coupled system, these photo-generated oscillations alter the metal nanoparticle’s energetic contribution to the hybridized system and, as a result,more » change the coupling between the plasmon and exciton. We demonstrate that such modulations in the hybridization is consistent across a wide range of bipyramid ensembles. We also use Finite-Difference Time Domain calculations to develop a simple model describing this behavior. Lastly, such oscillatory plasmonic-excitonic nanomaterials (OPENs) offer a route to manipulate and dynamically-tune the interactions of plasmonic/excitonic systems and unlock a range of potential applications.« less
Localized surface plasmon and exciton interaction in silver-coated cadmium sulphide quantum dots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh, P.; Rustagi, K. C.; Vasa, P.
2015-05-15
Localized surface plasmon and exciton coupling has been investigated on colloidal solutions of silver-coated CdS nanoparticles (NPs), synthesized by gamma irradiation. Two broad photoluminescence (PL) bands (blue/red) corresponding to band to band and defect state transitions have been observed for the bare and coated samples. In case of bare CdS NPs, the intensity of the red PL peak is about ten times higher than the blue PL peak intensity. However, on coating the CdS NPs with silver, the peak intensity of the blue PL band gets enhanced and becomes equal to that of the red PL band. High-resolution transmission electronmore » microscopic (HRTEM) images adequately demonstrate size distribution of these metal/semiconductor nanocomposites. UV-Vis absorption studies show quantum confinement effect in these semiconductor quantum dot (SQD) systems. Absorption spectrum of silver-coated SQDs shows signature of surface plasmon-exciton coupling which has been theoretically verified.« less
Controlling Quantum-dot Light Absorption and Emission by a Surface-plasmon Field
2014-11-03
as well as photon conversion by a surface-plasmon- polariton near field is explored for a quantum dot located above a metal surface. In contrast to the...2009). 7. D. Dini, R. Köhler, A. Tredicucci, G. Biasiol, and L. Sorba, “Microcavity polariton splitting of intersubband transitions,” Phys. Rev. Lett...S. De Liberato, C. Ciuti, P. Klang, G. Strasser, and C. Sirtori, “Ultrastrong light-matter coupling regime with polariton dots,” Phys. Rev. Lett. 105
NASA Astrophysics Data System (ADS)
Wang, Lei-Ming; Zhang, Lingxiao; Seideman, Tamar; Petek, Hrvoje
2012-10-01
We study by numerical simulations the excitation and propagation dynamics of coupled surface plasmon polariton (SPP) wave packets (WPs) in optically thin Ag films and a bulk Ag/vacuum interface under the illumination of a subwavelength slit by 400 nm continuous wave (cw) and femtosecond pulsed light. The generated surface fields include contributions from both SPPs and quasicylindrical waves, which dominate in different regimes. We explore aspects of the coupled SPP modes in Ag thin films, including symmetry, propagation, attenuation, and the variation of coupling with incident angle and film thickness. Simulations of the electromagnetic transients initiated with femtosecond pulses reveal new features of coupled SPP WP generation and propagation in thin Ag films. Our results show that, under pulsed excitation, the SPP modes in an Ag thin film break up into two distinct bound surface wave packets characterized by marked differences in symmetries, group velocities, attenuation lengths, and dispersion properties. The nanometer spatial and femtosecond temporal scale excitation and propagation dynamics of the coupled SPP WPs are revealed in detail by movies recording the evolution of their transient field distributions.
Plasmonic mode converter for controlling optical impedance and nanoscale light-matter interaction.
Hung, Yun-Ting; Huang, Chen-Bin; Huang, Jer-Shing
2012-08-27
To enable multiple functions of plasmonic nanocircuits, it is of key importance to control the propagation properties and the modal distribution of the guided optical modes such that their impedance matches to that of nearby quantum systems and desired light-matter interaction can be achieved. Here, we present efficient mode converters for manipulating guided modes on a plasmonic two-wire transmission line. The mode conversion is achieved through varying the path length, wire cross section and the surrounding index of refraction. Instead of pure optical interference, strong near-field coupling of surface plasmons results in great momentum splitting and modal profile variation. We theoretically demonstrate control over nanoantenna radiation and discuss the possibility to enhance nanoscale light-matter interaction. The proposed converter may find applications in surface plasmon amplification, index sensing and enhanced nanoscale spectroscopy.
Baba, Akira; Aoki, Nobutaka; Shinbo, Kazunari; Kato, Keizo; Kaneko, Futao
2011-06-01
In this study, we demonstrate the fabrication of grating-coupled surface plasmon resonance (SPR) enhanced organic thin-film photovoltaic cells and their improved photocurrent properties. The cell consists of a grating substrate/silver/P3HT:PCBM/PEDOT:PSS structure. Blu-ray disk recordable substrates are used as the diffraction grating substrates on which silver films are deposited by vacuum evaporation. P3HT:PCBM films are spin-coated on silver/grating substrates. Low conductivity PEDOT:PSS/PDADMAC layer-by-layer ultrathin films deposited on P3HT:PCBM films act as the hole transport layer, whereas high conductivity PEDOT:PSS films deposited by spin-coating act as the anode. SPR excitations are observed in the fabricated cells upon irradiation with white light. Up to a 2-fold increase in the short-circuit photocurrent is observed when the surface plasmon (SP) is excited on the silver gratings as compared to that without SP excitation. The finite-difference time-domain simulation indicates that the electric field in the P3HT:PCBM layer can be increased using the grating-coupled SP technique. © 2011 American Chemical Society
Hill, Ryan T.
2015-01-01
The unique optical properties of plasmon resonant nanostructures enable exploration of nanoscale environments using relatively simple optical characterization techniques. For this reason, the field of plasmonics continues to garner the attention of the biosensing community. Biosensors based on propagating surface plasmon resonances (SPRs) in films are the most well-recognized plasmonic biosensors, but there is great potential for the new, developing technologies to surpass the robustness and popularity of film-based SPR sensing. This review surveys the current plasmonic biosensor landscape with emphasis on the basic operating principles of each plasmonic sensing technique and the practical considerations when developing a sensing platform with the various techniques. The “gold standard” film SPR technique is reviewed briefly, but special emphasis is devoted to the up-and-coming LSPR-based and plasmonically coupled sensor technology. PMID:25377594
Luminescence quantum yields of gold nanoparticles varying with excitation wavelength
NASA Astrophysics Data System (ADS)
Cheng, Yuqing; He, Yingbo; Zhao, Jingyi; Shen, Hongming; Xia, Keyu; Lua, Guowei; Gong, Qihuang
2016-11-01
Luminescence quantum yields (QYs) of gold nanoparticles including nanorods, nanobipyramids and nanospheres are measured elaborately at single nanoparticle level with different excitation wavelengths. It is found that the QYs of the nanostructures are essentially dependent on the excitation wavelength. The QY is higher when the excitation wavelength is blue-detuned and close to the nanoparticles' surface plasmon resonant peak. A phenomenological model based on plasmonic resonator concept is proposed to understand the experimental findings. The excitation wavelength dependent of QY is attributed to the wavelength dependent coupling efficiency between the free electrons oscillation and the intrinsic plasmon resonant radiative mode. These studies should contribute to the understanding of one-photon luminescence from metallic nanostructures and plasmonic surface enhanced spectroscopy.
Enhanced antibody recognition with a magneto-optic surface plasmon resonance (MO-SPR) sensor.
Manera, Maria Grazia; Ferreiro-Vila, Elías; Garcia-Martin, José Miguel; Garcia-Martin, Antonio; Rella, Roberto
2014-08-15
A comparison between sensing performance of traditional SPR (Surface Plasmon Resonance) and magneto-optic SPR (MOSPR) transducing techniques is presented in this work. MOSPR comes from an evolution of traditional SPR platform aiming at modulating Surface Plasmon wave by the application of an external magnetic field in transverse configuration. Previous work demonstrated that, when the Plasmon resonance is excited in these structures, the external magnetic field induces a modification of the coupling of the incident light with the Surface Plasmon Polaritons (SPP). Besides, these structures can lead to an enhancement in the magneto-optical (MO) activity when the SPP is excited. This phenomenon is exploited in this work to demonstrate the possibility to use the enhanced MO signal as proper transducer signal for investigating biomolecular interactions in liquid phase. To this purpose, the transducer surface was functionalized by thiol chemistry and used for recording the binding between Bovine Serum Albumin molecules immobilized onto the surface and its complementary target. Higher sensing performance in terms of sensitivity and lower limit of detection of the MOSPR biosensor with respect to traditional SPR sensors is demonstrated. Copyright © 2014 Elsevier B.V. All rights reserved.
Ding, Qianqian; Shi, Ying; Chen, Maodu; Li, Hui; Yang, Xianzhong; Qu, Yingqi; Liang, Wenjie; Sun, Mengtao
2016-01-01
Using the ultrafast pump-probe transient absorption spectroscopy, the femtosecond-resolved plasmon-exciton interaction of graphene-Ag nanowire hybrids is experimentally investigated, in the VIS-NIR region. The plasmonic lifetime of Ag nanowire is about 150 ± 7 femtosecond (fs). For a single layer of graphene, the fast dynamic process at 275 ± 77 fs is due to the excitation of graphene excitons, and the slow process at 1.4 ± 0.3 picosecond (ps) is due to the plasmonic hot electron interaction with phonons of graphene. For the graphene-Ag nanowire hybrids, the time scale of the plasmon-induced hot electron transferring to graphene is 534 ± 108 fs, and the metal plasmon enhanced graphene plasmon is about 3.2 ± 0.8 ps in the VIS region. The graphene-Ag nanowire hybrids can be used for plasmon-driven chemical reactions. This graphene-mediated surface-enhanced Raman scattering substrate significantly increases the probability and efficiency of surface catalytic reactions co-driven by graphene-Ag nanowire hybridization, in comparison with reactions individually driven by monolayer graphene or single Ag nanowire. This implies that the graphene-Ag nanowire hybrids can not only lead to a significant accumulation of high-density hot electrons, but also significantly increase the plasmon-to-electron conversion efficiency, due to strong plasmon-exciton coupling. PMID:27601199
Effect of the size of silver nanoparticles on SERS signal enhancement
NASA Astrophysics Data System (ADS)
He, Rui Xiu; Liang, Robert; Peng, Peng; Norman Zhou, Y.
2017-08-01
The localized surface plasmon resonance arising from plasmonic materials is beneficial in solution-based and thin-film sensing applications, which increase the sensitivity of the analyte being tested. Silver nanoparticles from 35 to 65 nm in diameter were synthesized using a low-temperature method and deposited in a monolayer on a (3-aminopropyl)triethoxysilane (APTES)-functionalized glass slide. The effect of particle size on monolayer structure, optical behavior, and surface-enhanced Raman scattering (SERS) is studied. While increasing particle size decreases particle coverage, it also changes the localized surface plasmon resonance and thus the SERS activity of individual nanoparticles. Using a laser excitation wavelength of 633 nm, the stronger localized surface plasmon resonance coupling to this excitation wavelength at larger particle sizes trumps the loss in surface coverage, and greater SERS signals are observed. The SERS signal enhancement accounts for the higher SERS signal, which was verified using a finite element model of a silver nanoparticle dimer with various nanoparticle sizes and separation distances.
Ag Nanotwin-Assisted Grain Growth-Induced by Stress in SiO₂/Ag/SiO₂ Nanocap Arrays.
Zhang, Fan; Wang, Yaxin; Zhang, Yongjun; Chen, Lei; Liu, Yang; Yang, Jinghai
2018-06-14
A trilayer SiO₂/Ag/SiO₂ nanocap array was prepared on a two-dimensional template. When annealed at different temperatures, the curvature of the SiO₂/Ag/SiO₂ nanocap arrays increased, which led to Ag nanocap shrinkage. The stress provided by the curved SiO₂ layer induced the formation of Ag nanotwins. Ag nanotwins assisted the growth of nanoparticles when the neighboring nanotwins changed the local misorientations. Nanocap shrinkage reduced the surface plasmon resonance (SPR) coupling between neighboring nanocaps; concurrently, grain growth decreased the SPR coupling between the particles in each nanocap, which led to a red shift of the localized surface plasmon resonance (LSPR) bands and decreased the surface-enhanced Raman scattering (SERS) signals.
A Plasmonic based Ultracompact Polarization Beam Splitter on Silicon-on-Insulator Waveguides
Tan, Qilong; Huang, Xuguang; Zhou, Wen; Yang, Kun
2013-01-01
An ultracompact polarization beam splitter (PBS) is designed on silicon-on-insulator (SOI) platform based on the localized surface plasmons (LSPs) excited by particular polarization light. The device uses nanoscale silver cylinders as the polarization selection between two silicon waveguides of a directional coupler. The transverse-magnetic (TM) polarization light excites localized surface plasmons and is coupled into the cross port of the directional coupler with a low insert loss, while the transverse-electric (TE) polarization light is under restriction. The PBS has a coupling layer with 50 nm width and 1.1 μm length supporting broadband operation. The simulation calculations show that 22.06dB and 23.06dB of extinction ratios for the TE and TM polarizations were obtained, together with insertion losses of 0.09dB and 0.40dB. PMID:23856635
Coupling between graphene and intersubband collective excitations in quantum wells
NASA Astrophysics Data System (ADS)
Gonzalez de la Cruz, G.
2017-08-01
Recently, strong light-matter coupling between the electromagnetic modes in plasmonic metasurfaces with quantum-engineering electronic intersubband transitions in quantum wells has been demonstrated experimentally (Benz et al., [14], Lee et al., [15]). These novel materials combining different two-dimensional electronic systems offer new opportunities for tunable optical devices and fundamental studies of collective excitations driven by interlayer Coulomb interactions. In this work, our aim is to study the plasmon spectra of a hybrid structure consisting of conventional two-dimensional electron gas (2DEG) in a semiconductor quantum well and a graphene sheet with an interlayer separation of a. This electronic bilayer structure is immersed in a nonhomgeneous dielectric background of the system. We use a simple model in which the graphene surface plasmons and both; the intrasubband and intersubband collective electron excitations in the quantum well are coupled via screened Coulomb interaction. Here we calculate the dispersion of these relativistic/nonrelativistic new plasmon modes taking into account the thickness of the quantum well providing analytical expressions in the long-wavelength limit.
Out-of-Plane Designed Soft Metasurface for Tunable Surface Plasmon Polariton.
Liu, Xin; Huang, Zhao; Zhu, Chengkai; Wang, Li; Zang, Jianfeng
2018-02-14
Reliable and repeatable tunability gives functional diversity for reconfigurable plasmonics devices, while reversible and large mechanical deformation enabled by soft materials provides a new way for the global or partial regulation of metadevices. Here, we demonstrate a soft metasurface with an out-of-plane design for tuning the energy of surface plasmon polaritons (SPPs) bloch wave using theory, simulation, and experiments. Our metasurface is composed of two-layered gold nanoribbon arrays (2GNRs) on a soft substrate. The out-of-plane coupling mechanism is systematically analyzed in terms of separation height effect. Moreover, by harnessing mechanical deformation, continuously tunable plasmonic resonance has been achieved in the visible and near-infrared ranges. We further studied the angle-dependent reflection spectra of our metastructure. Compared with its planar counterpart, our soft and two-layered metastructure exhibits diverse tunability and significant field enhancement by out-of-plane interactions. Our approach in designing soft metasurface with out-of-plane structures can be extended to more-complex photonic devices and finds prominent applications such as biosensing, high-density plasmonic circuits, surface-enhanced luminescence, and surface-enhanced Raman scattering.
NASA Astrophysics Data System (ADS)
Sukharev, Maxim; Charron, Eric
2017-03-01
We extend the model of exciton-plasmon materials to include a rovibrational structure of molecules using wave-packet propagations on electronic potential energy surfaces. Our model replaces conventional two-level emitters with more complex molecules, allowing us to examine the influence of alignment and vibrational dynamics on strong coupling with surface plasmon-polaritons. We apply the model to a hybrid system comprising a thin layer of molecules placed on top of a periodic array of slits. Rigorous simulations are performed for two types of molecular systems described by vibrational bound-bound and bound-continuum electronic transitions. Calculations reveal new features in transmission, reflection, and absorption spectra, including the observation of significantly higher values of the Rabi splitting and vibrational patterns clearly seen in the corresponding spectra. We also examine the influence of anisotropic initial conditions on optical properties of hybrid materials, demonstrating that the optical response of the system is significantly affected by an initial prealignment of the molecules. Our work demonstrates that prealigned molecules could serve as an efficient probe for the subdiffraction characterization of the near-field near metal interfaces.
Chubinidze, Ketevan; Partsvania, Besarion; Sulaberidze, Tamaz; Khuskivadze, Aleksandre; Davitashvili, Elene; Koshoridze, Nana
2014-11-01
We have experimentally demonstrated that the emission of visible light from the polymer matrix doped with luminescent dye and gold nanoparticles (GNPs) can be enhanced with the use of surface plasmon coupling. GNPs can enhance the luminescence intensity of nearby luminescent dye because of the interactions between the dipole moments of the dye and the surface plasmon field of the GNPs. The electric charge on the GNPs and the distance between GNPs and luminescent dye molecules have a significant effect on the luminescence intensity, and this enhancement depends strongly upon the excitation wavelength of the pumping laser source. In particular, by matching the plasmon frequency of GNPs to the frequency of the laser light source we have observed a strong luminescence enhancement of the nanocomposite consisting of GNPs coupled with luminescent dye Nile blue 690 perchlorate. This ability of controlling luminescence can be beneficially used in developing contrast agents for highly sensitive and specific optical sensing and imaging. This opens new possibilities for plasmonic applications in the solar energy field.
Plasmonic bio-sensing for the Fenna-Matthews-Olson complex
NASA Astrophysics Data System (ADS)
Chen, Guang-Yin; Lambert, Neill; Shih, Yen-An; Liu, Meng-Han; Chen, Yueh-Nan; Nori, Franco
2017-01-01
We study theoretically the bio-sensing capabilities of metal nanowire surface plasmons. As a specific example, we couple the nanowire to specific sites (bacteriochlorophyll) of the Fenna-Matthews-Olson (FMO) photosynthetic pigment protein complex. In this hybrid system, we find that when certain sites of the FMO complex are subject to either the suppression of inter-site transitions or are entirely disconnected from the complex, the resulting variations in the excitation transfer rates through the complex can be monitored through the corresponding changes in the scattering spectra of the incident nanowire surface plasmons. We also find that these changes can be further enhanced by changing the ratio of plasmon-site couplings. The change of the Fano lineshape in the scattering spectra further reveals that “site 5” in the FMO complex plays a distinct role from other sites. Our results provide a feasible way, using single photons, to detect mutation-induced, or bleaching-induced, local defects or modifications of the FMO complex, and allows access to both the local and global properties of the excitation transfer in such systems.
Kuo, Yang; Su, Chia-Ying; Hsieh, Chieh; Chang, Wen-Yen; Huang, Chu-An; Kiang, Yean-Woei; Yang, C C
2015-09-15
The radiated power enhancement (suppression) of an in- (out-of-) plane-oriented radiating dipole at a desired emission wavelength in the deep-ultraviolet (UV) range when it is coupled with a surface plasmon (SP) resonance mode induced on a nearby Al nanoparticle (NP) is demonstrated. Also, it is found that the enhanced radiated power propagates mainly in the direction from the Al NP toward the dipole. Such SP coupling behaviors can be used for suppressing the transverse-magnetic (TM)-polarized emission, enhancing the transverse-electric-polarized emission, and reducing the UV absorption of the p-GaN layer in an AlGaN-based deep-UV light-emitting diode by embedding a sphere-like Al NP in its p-AlGaN layer.
Pixel-level plasmonic microcavity infrared photodetector
Jing, You Liang; Li, Zhi Feng; Li, Qian; Chen, Xiao Shuang; Chen, Ping Ping; Wang, Han; Li, Meng Yao; Li, Ning; Lu, Wei
2016-01-01
Recently, plasmonics has been central to the manipulation of photons on the subwavelength scale, and superior infrared imagers have opened novel applications in many fields. Here, we demonstrate the first pixel-level plasmonic microcavity infrared photodetector with a single quantum well integrated between metal patches and a reflection layer. Greater than one order of magnitude enhancement of the peak responsivity has been observed. The significant improvement originates from the highly confined optical mode in the cavity, leading to a strong coupling between photons and the quantum well, resulting in the enhanced photo-electric conversion process. Such strong coupling from the localized surface plasmon mode inside the cavity is independent of incident angles, offering a unique solution to high-performance focal plane array devices. This demonstration paves the way for important infrared optoelectronic devices for sensing and imaging. PMID:27181111
Organic plasmon-emitting diodes for detecting refractive index variation.
Chiu, Nan-Fu; Cheng, Chih-Jen; Huang, Teng-Yi
2013-06-28
A photo-excited organic layer on a metal thin film with a corrugated substrate was used to generate surface plasmon grating coupled emissions (SPGCEs). Directional emissions corresponded to the resonant condition of surface plasmon modes on the Au/air interface. In experimental comparisons of the effects of different pitch sizes on the plasmonic band-gap, the obtained SPGCEs were highly directional, with intensity increases as large as 10.38-fold. The FWHM emission spectrum was less than 70 nm. This method is easily applicable to detecting refractive index changes by using SP-coupled fluorophores in which wavelength emissions vary by viewing angle. The measurements and calculations in this study confirmed that the color wavelength of the SPGCE changed from 545.3 nm to 615.4 nm at certain viewing angles, while the concentration of contacting glucose increased from 10 to 40 wt%, which corresponded to a refractive index increase from 1.3484 to 1.3968. The organic plasmon-emitting diode exhibits a wider linearity range and a resolution of the experimental is 1.056 × 10-3 RIU. The sensitivity of the detection limit for naked eye of the experimental is 0.6 wt%. At a certain viewing angle, a large spectral shift is clearly distinguishable by the naked eye unaided by optoelectronic devices. These experimental results confirm the potential applications of the organic plasmon-emitting diodes in a low-cost, integrated, and disposable refractive-index sensor.
Plasmon-polaritonic bands in sequential doped graphene superlattices
NASA Astrophysics Data System (ADS)
Ramos-Mendieta, Felipe; Palomino-Ovando, Martha; Hernández-López, Alejandro; Fuentecilla-Cárcamo, Iván
Doped graphene has the extraordinary quality of supporting two types of surface excitations that involve electric charges (the transverse magnetic surface plasmons) or electric currents (the transverse electric modes). We have studied numerically the collective modes that result from the coupling of surface plasmons in doped graphene multilayers. By use of structured supercells with fixed dielectric background and inter layer separation, we found a series of plasmon-polaritonic bands of structure dependent on the doping sequence chosen for the graphene sheets. Periodic and quasiperiodic sequences for the graphene chemical potential have been studied. Our results show that transverse magnetic bands exist only in the low frequency regime but transverse electric bands arise within specific ranges of higher frequencies. Our calculations are valid for THz frequencies and graphene sheets with doping levels between 0.1 eV and 1.2 eV have been considered. AHL and IFC aknowledge fellowship support from CONACYT México.
NASA Astrophysics Data System (ADS)
Manurung, R. V.; Wu, C. T.; Chattopadhyay, S.
2018-03-01
Upconversion nanoparticles (UCNPs) converts near-infrared excitation to visible emission with advantages e.g. photostable, non-blinking, and background-free probes for bioimaging and biosensor. However, low quantum yield and low efficiency (∼1%) as drawback need to be enhanced. A plasmonic gold nano-structured surface was designed and fabricated to couple with the 980 nm radiation and produce plasmonic enhancement of the upconversion luminescence. The synthesis of the UCNPs was done by thermal decomposition and SiO2 coating prepared by the reverse microemulsion process. Here, we report a novel tunable plasmon-enhanced fluorescence by modulating the thickness and surface roughness of gold island film on Si. The localized surface plasmon resonance (LSPR) at 980 nm was obtained, matched with the native excitation of UCNPs resulting in maximum enhancement of 10-fold of green emission band at 540 nm for the Er-doped UCNPs.
Aslan, Kadir; Leonenko, Zoya; Lakowicz, Joseph R; Geddes, Chris D
2005-09-01
The effects of thermally annealed silver island films have been studied with regard to their potential applicability in applications of metal-enhanced fluorescence, an emerging tool in nano-biotechnology. Silver island films were thermally annealed between 75 and 250 degrees C for several hours. As a function of both time and annealing temperature, the surface plasmon band at approximately 420 nm both diminished and was blue shifted. These changes in plasmon resonance have been characterized using both absorption measurements, as well as topographically using Atomic Force Microscopy. Subsequently, the net changes in plasmon absorption are interpreted as the silver island films becoming spherical and growing in height, as well as an increased spacing between the particles. Interestingly, when the annealed surfaces are coated with a fluorescein-labeled protein, significant enhancements in fluorescence are observed, scaling with annealing temperature and time. These observations strongly support our recent hypothesis that the extent of metal-enhanced fluorescence is due to the ability of surface plasmons to radiate coupled fluorophore fluorescence. Given that the extinction spectrum of the silvered films is comprised of both an absorption and scattering component, and that these components are proportional to the diameter cubed and to the sixth power, respectively, then larger structures are expected to have a greater scattering contribution to their extinction spectrum and, therefore, more efficiently radiate coupled fluorophore emission. Subsequently, we have been able to correlate our increases in fluorescence emission with an increased particle size, providing strong experiment evidence for our recently reported metal-enhanced fluorescence, facilitated by radiating plasmons hypothesis.
Fang, Wei; Li, Gao-Xiang; Yang, Yaping; Ficek, Zbigniew
2017-02-06
We study the dynamics of two two-level atoms embedded near to the interface of paired meta-material slabs, one of negative permeability and the other of negative permittivity. This combination generates a strong surface plasmon field at the interface between the meta-materials. It is found that the symmetric and antisymmetric modes of the two-atom system couple to the plasmonic field with different Rabi frequencies. Including the Ohmic losses of the materials we find that the Rabi frequencies exhibit threshold behaviour which distinguish between the non-Markovian (memory preserving) and Markovian (memoryless) regimes of the evolution. Moreover, it is found that significantly different dynamics occur for the resonant and an off-resonant couplings of the plasmon field to the atoms. In the case of the resonant coupling, the field does not appear as a dissipative reservoir to the atoms. We adopt the image method and show that the dynamics of the two atoms coupled to the plasmon field are analogous to the dynamics of a four-atom system in a rectangular configuration. A large and long living entanglement mediated by the plasmonic field in both Markovian and non-Markovian regimes of the evolution is predicted. We also show that a simultaneous Markovian and non-Markovian regime of the evolution may occur in which the memory effects exist over a finite evolution time. In the case of an off-resonant coupling of the atoms to the plasmon field, the atoms interact with each other by exchanging virtual photons which results in the dynamics corresponding to those of two atoms coupled to a common reservoir. In addition, the entanglement is significantly enhanced.
Fan, J R; Wu, W G; Chen, Z J; Zhu, J; Li, J
2017-03-09
As plasmonic antennas for surface-plasmon-assisted control of optical fields at specific frequencies, metallic nanostructures have recently emerged as crucial optical components for fascinating plasmonic color engineering. Particularly, plasmonic resonant nanocavities can concentrate lightwave energy to strongly enhance light-matter interactions, making them ideal candidates as optical elements for fine-tuning color displays. Inspired by the color mixing effect found on butterfly wings, a new type of plasmonic, multiresonant, narrow-band (the minimum is about 45 nm), high-reflectance (the maximum is about 95%), and dynamic color-tuning reflector is developed. This is achieved from periodic patterns of plasmonic resonant nanocavities in free-standing capped-pillar nanostructure arrays. Such cavity-coupling structures exhibit multiple narrow-band selective and continuously tunable reflections via plasmon standing-wave resonances. Consequently, they can produce a variety of dark-field vibrant reflective colors with good quality, strong color signal and fine tonal variation at the optical diffraction limit. This proposed multicolor scheme provides an elegant strategy for realizing personalized and customized applications in ultracompact photonic data storage and steganography, colorimetric sensing, 3D holograms and other plasmon-assisted photonic devices.
Ion beam induced optical and surface modification in plasmonic nanostructures
NASA Astrophysics Data System (ADS)
Singh, Udai B.; Gautam, Subodh K.; Kumar, Sunil; Hooda, Sonu; Ojha, Sunil; Singh, Fouran
2016-07-01
In present work, ion irradiation induced nanostructuring has been exploited as an efficient and effective tool for synthesis of coupled plasmonics nanostructures by using 1.2 MeV Xe ions on Au/ZnO/Au system deposited on glass substrate. The results are correlated on the basis of their optical absorption, surface morphologies and enhanced sensitivity of evolved phonon modes by using UV Visible spectroscopy, scanning electron microscopy (SEM), and Raman spectroscopy (RS), respectively. Optical absorbance spectra of plasmonic nanostructures (NSs) show a decrease in band gap, which may be ascribed to the formation of defects with ion irradiation. The surface morphology reveals the formation of percolated NSs upon ion irradiation and Rutherford backscattering spectrometry (RBS) study clearly shows the formation of multilayer system. Furthermore, RS measurements on samples are studied to understand the enhanced sensitivity of ion irradiation induced phonon mode at 573 cm-1 along with other modes. As compared to pristine sample, a stronger and pronounced evolution of these phonon modes is observed with further ion irradiation, which indicates localized surface plasmon results with enhanced intensity of phonon modes of Zinc oxide (ZnO) material. Thus, such plasmonic NSs can be used as surface enhanced Raman scattering (SERS) substrates.
Resonances of nanoparticles with poor plasmonic metal tips
NASA Astrophysics Data System (ADS)
Ringe, Emilie; Desantis, Christopher J.; Collins, Sean M.; Duchamp, Martial; Dunin-Borkowski, Rafal E.; Skrabalak, Sara E.; Midgley, Paul A.
2015-11-01
The catalytic and optical properties of metal nanoparticles can be combined to create platforms for light-driven chemical energy storage and enhanced in-situ reaction monitoring. However, the heavily damped plasmon resonances of many catalytically active metals (e.g. Pt, Pd) prevent this dual functionality in pure nanostructures. The addition of catalytic metals at the surface of efficient plasmonic particles thus presents a unique opportunity if the resonances can be conserved after coating. Here, nanometer resolution electron-based techniques (electron energy loss, cathodoluminescence, and energy dispersive X-ray spectroscopy) are used to show that Au particles incorporating a catalytically active but heavily damped metal, Pd, sustain multiple size-dependent localized surface plasmon resonances (LSPRs) that are narrow and strongly localized at the Pd-rich tips. The resonances also couple with a dielectric substrate and other nanoparticles, establishing that the full range of plasmonic behavior is observed in these multifunctional nanostructures despite the presence of Pd.
Mechanism of Prism-Coupled Scanning Tunneling Microscope Light Emission
NASA Astrophysics Data System (ADS)
Iida, Wataru; Ahamed, Jamal U.; Katano, Satoshi; Uehara, Yoichi
2011-09-01
We have investigated the mechanism of scanning tunneling microscope light emission (STM-LE) in a prism-coupled configuration using finite difference time domain analysis. In this configuration, the sample is a metallic thin film evaporated on the bottom surface of a hemispherical glass prism. STM light emitted into the prism (prism-side emission) through the metallic film is measured. Since both localized surface plasmons (LSP) and surface plasmon polaritons (SPP) contribute to prism-side emission, this emission is stronger than that in conventional STM-LE measured from the sample surface side, which is radiated by LSP alone. We show that the spatial resolution of prism-side emission is determined not by the propagation length of SPP, but by the lateral size of LSP, similarly to conventional (i.e., tip side) STM-LE. Thus, we conclude that, by using the prism-coupled configuration, the signal level of STM-LE improves without the loss of spatial resolution attained in tip side emission.
Surface plasmon mediated Raman scattering in metal nanoparticles
NASA Astrophysics Data System (ADS)
Bachelier, G.; Mlayah, A.
2004-05-01
The Raman scattering due to confined acoustic vibrations in metal particles is studied theoretically. Various coupling mechanisms between the surface plasmon polaritons and the confined vibrations are investigated. Their relative contribution to the light scattering is discussed. We found that two mechanisms play an important role: (i) modulation of the interband dielectric susceptibility via deformation potential due to pure radial vibrations and (ii) modulation of the surface polarization charges by quadripolar vibrations. The dependence of the Raman spectra on the nanoparticles size and size distribution and on the excitation energy is studied in connection with the nature of the excited plasmon-polariton states. We found a good agreement between calculated line shapes and relatives intensities of the Raman bands and the experimental spectra reported in the literature.
NASA Astrophysics Data System (ADS)
Tawa, Keiko; Sasakawa, Chisato; Yamamura, Shohei; Shibata, Izumi; Kataoka, Masatoshi
2015-09-01
A plasmonic chip which is a metal coated substrate with grating structure can provide the enhanced fluorescence by the grating-coupled surface plasmon field. In our previous studies, bright epi-fluorescence microscopic imaging of neuron cells and sensitive immunosesnsing have been reported. In this study, two kinds of breast cancer cells, MCF-7 and MDA-MB231, were observed with epi-fluorescence microscope on the plasmonic chip with 2D hole-arrays . They were multicolor stained with 4', 6-diamidino-2-phenylindole (DAPI) and allophycocyanin (APC)-labeled anti-epithelial cell adhesion molecule (EpCAM) antibody. Our plasmonic chip provided the brighter fluorescence images of these cells compared with the glass slide. Even in the cells including few EpCAM, the distribution of EpCAM was clearly observed in the cell membrane. It was found that the plasmonic chip can be one of the powerful tools to detect the marker protein existing around the chip surface even at low concentration.
Highly efficient on-chip direct electronic-plasmonic transducers
NASA Astrophysics Data System (ADS)
Du, Wei; Wang, Tao; Chu, Hong-Son; Nijhuis, Christian A.
2017-10-01
Photonic elements can carry information with a capacity exceeding 1,000 times that of electronic components, but, due to the optical diffraction limit, these elements are large and difficult to integrate with modern-day nanoelectronics or upcoming packages, such as three-dimensional integrated circuits or stacked high-bandwidth memories1-3. Surface plasmon polaritons can be confined to subwavelength dimensions and can carry information at high speeds (>100 THz)4-6. To combine the small dimensions of nanoelectronics with the fast operating speed of optics via plasmonics, on-chip electronic-plasmonic transducers that directly convert electrical signals into plasmonic signals (and vice versa) are required. Here, we report electronic-plasmonic transducers based on metal-insulator-metal tunnel junctions coupled to plasmonic waveguides with high-efficiency on-chip generation, manipulation and readout of plasmons. These junctions can be readily integrated into existing technologies, and we thus believe that they are promising for applications in on-chip integrated plasmonic circuits.
Plasmonic tunnel junctions for single-molecule redox chemistry.
de Nijs, Bart; Benz, Felix; Barrow, Steven J; Sigle, Daniel O; Chikkaraddy, Rohit; Palma, Aniello; Carnegie, Cloudy; Kamp, Marlous; Sundararaman, Ravishankar; Narang, Prineha; Scherman, Oren A; Baumberg, Jeremy J
2017-10-20
Nanoparticles attached just above a flat metallic surface can trap optical fields in the nanoscale gap. This enables local spectroscopy of a few molecules within each coupled plasmonic hotspot, with near thousand-fold enhancement of the incident fields. As a result of non-radiative relaxation pathways, the plasmons in such sub-nanometre cavities generate hot charge carriers, which can catalyse chemical reactions or induce redox processes in molecules located within the plasmonic hotspots. Here, surface-enhanced Raman spectroscopy allows us to track these hot-electron-induced chemical reduction processes in a series of different aromatic molecules. We demonstrate that by increasing the tunnelling barrier height and the dephasing strength, a transition from coherent to hopping electron transport occurs, enabling observation of redox processes in real time at the single-molecule level.
Whispering-gallery nanocavity plasmon-enhanced Raman spectroscopy
Zhang, Jing; Li, Jinxing; Tang, Shiwei; Fang, Yangfu; Wang, Jiao; Huang, Gaoshan; Liu, Ran; Zheng, Lirong; Cui, Xugao; Mei, Yongfeng
2015-01-01
The synergy effect in nature could enable fantastic improvement of functional properties and associated effects. The detection performance of surface-enhanced Raman scattering (SERS) can be highly strengthened under the cooperation with other factors. Here, greatly-enhanced SERS detection is realized based on rolled-up tubular nano-resonators decorated with silver nanoparticles. The synergy effect between whispering-gallery-mode (WGM) and surface plasmon leads to an extra enhancement at the order of 105 compared to non-resonant flat SERS substrates, which can be well tuned by altering the diameter of micron- and nanotubes and the excitation laser wavelengths. Such synchronous and coherent coupling between plasmonics and photonics could lead to new principle and design for various sub-wavelength optical devices, e.g. plasmonic waveguides and hyperbolic metamaterials. PMID:26443526
Zhu, Zhuan; Yuan, Jiangtan; Zhou, Haiqing; ...
2016-04-19
The monolithic integration of electronics and photonics has attracted enormous attention due to its potential applications. A major challenge to this integration is the identification of suitable materials that can emit and absorb light at the same wavelength. In this paper we utilize unique excitonic transitions in WS 2 monolayers and show that WS 2 exhibits a perfect overlap between its absorption and photoluminescence spectra. By coupling WS 2 to Ag nanowires, we then show that WS 2 monolayers are able to excite and absorb surface plasmons of Ag nanowires at the same wavelength of exciton photoluminescence. This resonant absorptionmore » by WS 2 is distinguished from that of the ohmic propagation loss of silver nanowires, resulting in a short propagation length of surface plasmons. Our demonstration of resonant optical generation and detection of surface plasmons enables nanoscale optical communication and paves the way for on-chip electronic–photonic integrated circuits.« less
NASA Astrophysics Data System (ADS)
Warrier, Anita R.; Gandhimathi, R.
2018-04-01
We report on enhancement of photoluminescence of SnS quantum dots by embedding them in a mesh of Sn nanostructures. SnS quantum dots with band gap ˜2.7 eV are embedded in a mesh of Sn nanostructures, that are synthesized from tin chloride solution using sodium borohydride as reducing agent. The synthesized Sn nanostructures have a morphology dependent, tunable surface plasmon resonance ranging from UV region (295 nm) to visible region (400 nm) of the electromagnetic spectrum. In the SnS-Sn nanohybrids, the excitons are strongly coupled with plasmons leading to a shift in the excitonic binding energy (˜ 400 meV). Due to the influence of Sn nanoparticles on the SnS quantum dots, the photoluminescence and Raman line intensity is enhanced by an order of ˜103 The enhancement is more pronounced for Sn nanosheets due to the large surface area and visible light surface plasmon resonance.
Predicting plasmonic coupling with Mie-Gans theory in silver nanoparticle arrays
NASA Astrophysics Data System (ADS)
Ranjan, M.
2013-09-01
Plasmonic coupling is observed in the self-aligned arrays of silver nanoparticles grown on ripple-patterned substrate. Large differences observed in the plasmon resonance wavelength, measured and calculated using Mie-Gans theory, predict that strong plasmonic coupling exists in the nanoparticles arrays. Even though plasmonic coupling exists both along and across the arrays, but it is found to be much stronger along the arrays due to shorter interparticle gap and particle elongation. This effect is responsible for observed optical anisotropy in such arrays. Measured red-shift even in the transverse plasmon resonance mode with the increasing nanoparticles aspect ratio in the arrays, deviate from the prediction of Mie-Gans theory. This essentially means that plasmonic coupling is dominating over the shape anisotropy. Plasmon resonance tuning is presented by varying the plasmonic coupling systematically with nanoparticles aspect ratio and ripple wavelength. Plasmon resonance red-shifts with the increasing aspect ratio along the ripple, and blue-shifts with the increasing ripple wavelength across the ripple. Therefore, reported bottom-up approach for fabricating large area-coupled nanoparticle arrays can be used for various field enhancement-based plasmonic applications.
Photoinduced currents in metal-barrier-metal junctions
NASA Technical Reports Server (NTRS)
Guedes, M. P.; Gustafson, T. K.; Heiblum, M.; Siu, D. P.; Slayman, C. W.; Whinnery, J. R.; Yasuoka, Y.
1978-01-01
The fabrication and application of metal-barrier-metal tunneling junctions for radiative interactions are discussed. Particular attention is given to the photolithographic fabrication of small area devices and the coupling to such devices via surface plasmon waves which play an important role at infrared and optical frequencies. It has been shown that the junction electron tunneling currents can be strongly coupled to surface plasmon junction modes, and spontaneous and stimulated emission of the latter are possible as well as nonlinear interactions. Finally, results demonstrating the photo-excitation of electrons with subsequent tunneling induced by ultraviolet radiation are presented. It is estimated that quantum efficiencies of the order of 5% and higher are possible in the ultraviolet region.
T-matrix method in plasmonics: An overview
NASA Astrophysics Data System (ADS)
Khlebtsov, Nikolai G.
2013-07-01
Optical properties of isolated and coupled plasmonic nanoparticles (NPs) are of great interest for many applications in nanophotonics, nanobiotechnology, and nanomedicine owing to rapid progress in fabrication, characterization, and surface functionalization technologies. To simulate optical responses from plasmonic nanostructures, various electromagnetic analytical and numerical methods have been adapted, tested, and used during the past two decades. Currently, the most popular numerical techniques are those that do not suffer from geometrical and composition limitations, e.g., the discrete dipole approximation (DDA), the boundary (finite) element method (BEM, FEM), the finite difference time domain method (FDTDM), and others. However, the T-matrix method still has its own niche in plasmonic science because of its great numerical efficiency, especially for systems with randomly oriented particles and clusters. In this review, I consider the application of the T-matrix method to various plasmonic problems, including dipolar, multipolar, and anisotropic properties of metal NPs; sensing applications; surface enhanced Raman scattering; optics of 1D-3D nanoparticle assemblies; plasmonic particles and clusters near and on substrates; and manipulation of plasmonic NPs with laser tweezers.
Ma, Zhongyuan; Ni, Xiaodong; Zhang, Wenping; Jiang, Xiaofan; Yang, Huafeng; Yu, Jie; Wang, Wen; Xu, Ling; Xu, Jun; Chen, Kunji; Feng, Duan
2014-11-17
A significant enhancement of blue light emission from amorphous oxidized silicon nitride (a-SiNx:O) films is achieved by introduction of ordered and size-controllable arrays of Ag nanoparticles between the silicon substrate and a-SiNx:O films. Using hexagonal arrays of Ag nanoparticles fabricated by nanosphere lithography, the localized surface plasmons (LSPs) resonance can effectively increase the internal quantum efficiency from 3.9% to 13.3%. Theoretical calculation confirms that the electromagnetic field-intensity enhancement is through the dipole surface plasma coupling with the excitons of a-SiNx:O films, which demonstrates a-SiNx:O films with enhanced blue emission are promising for silicon-based light-emitting applications by patterned Ag arrays.
Rapid and PCR-free DNA detection by nanoaggregation-enhanced chemiluminescence
Renu Singh; Alexandra Feltmeyer; Olga Saiapina; Jennifer Juzwik; Brett Arenz; Abdennour Abbas
2017-01-01
The aggregation of gold nanoparticles (AuNPs) is known to induce an enhancement of localized surface plasmon resonance due to the coupling of plasmonic fields of adjacent nanoparticles. Here we show that AuNPs aggregation also causes a significant enhancement of chemiluminescence in the presence of luminophores. The phenomenon is used to introduce a rapid and sensitive...
Nanoantioxidant-driven plasmon enhanced proton-coupled electron transfer
NASA Astrophysics Data System (ADS)
Sotiriou, Georgios A.; Blattmann, Christoph O.; Deligiannakis, Yiannis
2015-12-01
Proton-coupled electron transfer (PCET) reactions involve the transfer of a proton and an electron and play an important role in a number of chemical and biological processes. Here, we describe a novel phenomenon, plasmon-enhanced PCET, which is manifested using SiO2-coated Ag nanoparticles functionalized with gallic acid (GA), a natural antioxidant molecule that can perform PCET. These GA-functionalized nanoparticles show enhanced plasmonic response at near-IR wavelengths, due to particle agglomeration caused by the GA molecules. Near-IR laser irradiation induces strong local hot-spots on the SiO2-coated Ag nanoparticles, as evidenced by surface enhanced Raman scattering (SERS). This leads to plasmon energy transfer to the grafted GA molecules that lowers the GA-OH bond dissociation enthalpy by at least 2 kcal mol-1 and therefore facilitates PCET. The nanoparticle-driven plasmon-enhancement of PCET brings together the so far unrelated research domains of nanoplasmonics and electron/proton translocation with significant impact on applications based on interfacial electron/proton transfer.Proton-coupled electron transfer (PCET) reactions involve the transfer of a proton and an electron and play an important role in a number of chemical and biological processes. Here, we describe a novel phenomenon, plasmon-enhanced PCET, which is manifested using SiO2-coated Ag nanoparticles functionalized with gallic acid (GA), a natural antioxidant molecule that can perform PCET. These GA-functionalized nanoparticles show enhanced plasmonic response at near-IR wavelengths, due to particle agglomeration caused by the GA molecules. Near-IR laser irradiation induces strong local hot-spots on the SiO2-coated Ag nanoparticles, as evidenced by surface enhanced Raman scattering (SERS). This leads to plasmon energy transfer to the grafted GA molecules that lowers the GA-OH bond dissociation enthalpy by at least 2 kcal mol-1 and therefore facilitates PCET. The nanoparticle-driven plasmon-enhancement of PCET brings together the so far unrelated research domains of nanoplasmonics and electron/proton translocation with significant impact on applications based on interfacial electron/proton transfer. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04942c
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melentev, G. A., E-mail: gamelen@spbstu.ru; Shalygin, V. A.; Vorobjev, L. E.
2016-03-07
We present the results of experimental and theoretical studies of the surface plasmon polariton excitations in heavily doped GaN epitaxial layers. Reflection and emission of radiation in the frequency range of 2–20 THz including the Reststrahlen band were investigated for samples with grating etched on the sample surface, as well as for samples with flat surface. The reflectivity spectrum for p-polarized radiation measured for the sample with the surface-relief grating demonstrates a set of resonances associated with excitations of different surface plasmon polariton modes. Spectral peculiarities due to the diffraction effect have been also revealed. The characteristic features of themore » reflectivity spectrum, namely, frequencies, amplitudes, and widths of the resonance dips, are well described theoretically by a modified technique of rigorous coupled-wave analysis of Maxwell equations. The emissivity spectra of the samples were measured under epilayer temperature modulation by pulsed electric field. The emissivity spectrum of the sample with surface-relief grating shows emission peaks in the frequency ranges corresponding to the decay of the surface plasmon polariton modes. Theoretical analysis based on the blackbody-like radiation theory well describes the main peculiarities of the observed THz emission.« less
When are surface plasmon polaritons excited in the Kretschmann-Raether configuration?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foley, IV, Jonathan J.; Harutyunyan, Hayk; Rosenmann, Daniel
It is widely believed that the reflection minimum in a Kretschmann-Raether experiment results from direct coupling into surface plasmon polariton modes. Our experimental results provide a surprising discrepancy between the leakage radiation patterns of surface plasmon polaritons (SPPs) launched on a layered gold/germanium film compared to the K-R minimum, clearly challenging this belief. We provide definitive evidence that the reflectance dip in K-R experiments does not correlate with excitation of an SPP mode, but rather corresponds to a particular type of perfectly absorbing (PA) mode. Results from rigorous electrodynamics simulations show that the PA mode can only exist under externalmore » driving, whereas the SPP can exist in regions free from direct interaction with the driving field. These simulations show that it is possible to indirectly excite propagating SPPs guided by the reflectance minimum in a K-R experiment, but demonstrate the efficiency can be lower by more than a factor of 3. We find that optimal coupling into the SPP can be guided by the square magnitude of the Fresnel transmission amplitude.« less
When are Surface Plasmon Polaritons Excited in the Kretschmann-Raether Configuration?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foley IV, Jonathan J.; Harutyunyan, Hayk; Rosenmann, Daniel
It is widely believed that the reflection minimum in a Kretschmann-Raether experiment results from direct coupling into surface plasmon polariton modes. Our experimental results provide a surprising discrepancy between the leakage radiation patterns of surface plasmon polaritons (SPPs) launched on a layered gold/germanium film compared to the K-R minimum, clearly challenging this belief. We provide definitive evidence that the reflectance dip in K-R experiments does not correlate with excitation of an SPP mode, but rather corresponds to a particular type of perfectly absorbing (PA) mode. Results from rigorous electrodynamics simulations show that the PA mode can only exist under externalmore » driving, whereas the SPP can exist in regions free from direct interaction with the driving field. These simulations show that it is possible to indirectly excite propagating SPPs guided by the reflectance minimum in a K-R experiment, but demonstrate the efficiency can be lower by more than a factor of 3. We find that optimal coupling into the SPP can be guided by the square magnitude of the Fresnel transmission amplitude.« less
When are surface plasmon polaritons excited in the Kretschmann-Raether configuration?
Foley, IV, Jonathan J.; Harutyunyan, Hayk; Rosenmann, Daniel; ...
2015-04-23
It is widely believed that the reflection minimum in a Kretschmann-Raether experiment results from direct coupling into surface plasmon polariton modes. Our experimental results provide a surprising discrepancy between the leakage radiation patterns of surface plasmon polaritons (SPPs) launched on a layered gold/germanium film compared to the K-R minimum, clearly challenging this belief. We provide definitive evidence that the reflectance dip in K-R experiments does not correlate with excitation of an SPP mode, but rather corresponds to a particular type of perfectly absorbing (PA) mode. Results from rigorous electrodynamics simulations show that the PA mode can only exist under externalmore » driving, whereas the SPP can exist in regions free from direct interaction with the driving field. These simulations show that it is possible to indirectly excite propagating SPPs guided by the reflectance minimum in a K-R experiment, but demonstrate the efficiency can be lower by more than a factor of 3. We find that optimal coupling into the SPP can be guided by the square magnitude of the Fresnel transmission amplitude.« less
NASA Astrophysics Data System (ADS)
Xing, Jieying; Chen, Yinsong; Liu, Yuebo; Liang, Jiezhi; Chen, Jie; Ren, Yuan; Han, Xiaobiao; Zhong, Changming; Yang, Hang; Huang, Dejia; Hou, Yaqian; Wu, Zhisheng; Liu, Yang; Zhang, Baijun
2018-05-01
We demonstrate the enhancement of emission of InGaN/GaN multiple-quantum-well nanorods by nearly a factor of 2 by coupling them to localized surface plasmons of Au nano-particles (NPs). The Au NPs are fabricated in situ on the nanorods using a Ni/SiO2/Au/SiNx compound functional layer. This layer serves as a combination dry-etch mask for fabricating the nanorods and the Au NPs, as well as providing isolation necessary to prevent fluorescence quenching. Time-resolved photoluminescence measurements confirm that emission enhancement originates from the coupling.
Observation of radiative surface plasmons in metal-oxide-metal tunnel junctions
NASA Technical Reports Server (NTRS)
Donohue, J. F.; Yang, E. Y.
1986-01-01
A peak in the UV region of the spectrum of light emitted from metal-oxide-metal (MOM) tunnel junctions has been observed at room temperature. Both the amplitude and wavelength of the peak are sensitive to applied junction bias. The UV peak corresponds to the normal or radiative surface plasmon mode while a visible peak, also present in the present spectra and reported in past MOM literature, is due to the tangential or nonradiative mode. The radiative mode requires no surface roughness or gratings for photon coupling. The results show that it is possible to obtain radiative surface plasmon production followed by a direct decay into photons with MOM tunnel diodes. A MOM diode with a double anode structure is found to emit light associated only with the nonradiative mode. The thickness dependence of the UV peak, along with the experimental results of the double anode MOM diode and the ratio of the UV peak to visible peak, support the contention that the UV light emission is indeed due to the radiative surface plasmon.
NASA Astrophysics Data System (ADS)
Amirjani, Amirmostafa; Bagheri, Mozhgan; Heydari, Mojgan; Hesaraki, Saeed
2016-09-01
In this work, a rapid and simple colorimetric method based on the surface plasmon resonance of silver nanoparticles (AgNPs) was developed for the detection of the drug Timolol. The method used is based on the interaction of Timolol with the surface of the as-synthesized AgNPs, which promotes aggregation of the nanoparticles. This aggregation exploits the surface plasmon resonance through the electric dipole-dipole interaction and coupling among the agglomerated particles, hence bringing forth distinctive changes in the spectra as well as the color of colloidal silver. UV-vis spectrophotometery was used to monitor the changes of the localized surface plasmon resonance of AgNPs at wavelengths of 400 and 550 nm. The developed colorimetric sensor has a wide dynamic range of 1.0 × 10-7 M-1.0 × 10-3 M for detection of Timolol with a low detection limit of 1.2 × 10-6 M. The proposed method was successfully applied for the determination of Timolol concentration in ophthalmic eye-drop solution with a response time lower than 40 s.
NASA Astrophysics Data System (ADS)
Hu, Jianbo; Zhang, Hang; Sun, Yi; Misochko, Oleg V.; Nakamura, Kazutaka G.
2018-04-01
The coupling between longitudinal optical (LO) phonons and plasmons plays a fundamental role in determining the performance of doped semiconductor devices. In this work, we report a comparative investigation into the dependence of the coupling on temperature and doping in n - and p -type GaAs by using ultrafast coherent phonon spectroscopy. A suppression of coherent oscillations has been observed in p -type GaAs at lower temperature, strikingly different from n -type GaAs and other materials in which coherent oscillations are strongly enhanced by cooling. We attribute this unexpected observation to a cooling-induced elongation of the depth of the depletion layer which effectively increases the screening time of the surface field due to a slow diffusion of photoexcited carriers in p -type GaAs. Such an increase breaks the requirement for the generation of coherent LO phonons and, in turn, LO phonon-plasmon coupled modes because of their delayed formation in time.
NASA Astrophysics Data System (ADS)
Lopata, Kenneth; Smith, Holden
The coupled dynamics of molecular chromophores and plasmons at surface of metal nanostructures are important for a range of processes such as molecular sensing, light harvesting, and near-field photochemistry. Modeling these dynamics from first principles, however, is challenging, as the large system sizes precludes a purely quantum mechanical treatment. In this talk I will present an approach based on propagating the plasmonic currents and fields using electrodynamics (finite-difference time-domain) with each chromophore described using an isolated quantum sub-region embedded in the overall classical background. This approach can be readily parallelized over these quantum regions, which enables large multiscale simulations of tens or hundreds of dyes, each of which is described individually by real-time time-dependent density functional theory. Application to gold nanoparticles coated with malachite green and rhodamine 6G monolayers shows good agreement with experimentally measured coupling spectra, including the polariton peaks, as well as the plasmon and molecular depletions. This research was supported by the Louisiana Board of Regents Research Competitiveness Subprogram under Contract Number LEQSF(2014-17)-RD-A-0.
Plasmonic structure: fiber grating formed by gold nanorods on a tapered fiber.
Trevisanutto, J O; Linhananta, A; Das, G
2016-12-15
The authors demonstrated the fabrication of a fiber Bragg grating-like plasmonic nanostructure on the surface of a tapered optical fiber using gold nanorods (GNRs). A multimode optical fiber with core and cladding diameters of 105 and 125 μm, respectively, was used to make a tapered fiber using a dynamic etching process. The tip diameter was ∼100 nm. Light from a laser was coupled to the untapered end of the fiber, which produced a strong evanescent field around the tapered section of the fiber. The gradient force due to the evanescent field trapped the GNRs on the surface of the tapered fiber. The authors explored possible causes of the GNR distribution. The plasmonic structure will be a good candidate for sensing based on surface enhanced Raman scattering.
NASA Astrophysics Data System (ADS)
Li, Xiaowei; Tan, Qiaofeng; Bai, Benfeng; Jin, Guofan
2011-06-01
We demonstrate experimentally the directional excitation of surface plasmon polaritons (SPPs) on a metal film by a subwavelength double slit under backside illumination, based on the interference of SPPs generated by the two slits. By varying the incident angle, the SPPs can be tunably directed into two opposite propagating directions with a predetermined splitting ratio. Under certain incident angle, unidirectional SPP excitation can be achieved. This compact directional SPP coupler is potentially useful for many on-chip applications. As an example, we show the integration of the double-slit couplers with SPP Bragg mirrors, which can effectively realize selective coupling of SPPs into different ports in an integrated plasmonic chip.
Excitation of propagating surface plasmons with a scanning tunnelling microscope.
Wang, T; Boer-Duchemin, E; Zhang, Y; Comtet, G; Dujardin, G
2011-04-29
Inelastic electron tunnelling excitation of propagating surface plasmon polaritons (SPPs) on a thin gold film is demonstrated. This is done by combining a scanning tunnelling microscope (STM) with an inverted optical microscope. Analysis of the leakage radiation in both the image and Fourier planes unambiguously shows that the majority (up to 99.5%) of the detected photons originate from propagating SPPs with propagation lengths of the order of 10 µm. The remaining photon emission is localized under the STM tip and is attributed to a tip-gold film coupled plasmon resonance as evidenced by the bimodal spectral distribution and enhanced emission intensity observed using a silver STM tip for excitation.
Single Nanoparticle Plasmonic Sensors
Sriram, Manish; Zong, Kelly; Vivekchand, S. R. C.; Gooding, J. Justin
2015-01-01
The adoption of plasmonic nanomaterials in optical sensors, coupled with the advances in detection techniques, has opened the way for biosensing with single plasmonic particles. Single nanoparticle sensors offer the potential to analyse biochemical interactions at a single-molecule level, thereby allowing us to capture even more information than ensemble measurements. We introduce the concepts behind single nanoparticle sensing and how the localised surface plasmon resonances of these nanoparticles are dependent upon their materials, shape and size. Then we outline the different synthetic approaches, like citrate reduction, seed-mediated and seedless growth, that enable the synthesis of gold and silver nanospheres, nanorods, nanostars, nanoprisms and other nanostructures with tunable sizes. Further, we go into the aspects related to purification and functionalisation of nanoparticles, prior to the fabrication of sensing surfaces. Finally, the recent developments in single nanoparticle detection, spectroscopy and sensing applications are discussed. PMID:26473866
Organic Plasmon-Emitting Diodes for Detecting Refractive Index Variation
Chiu, Nan-Fu; Cheng, Chih-Jen; Huang, Teng-Yi
2013-01-01
A photo-excited organic layer on a metal thin film with a corrugated substrate was used to generate surface plasmon grating coupled emissions (SPGCEs). Directional emissions corresponded to the resonant condition of surface plasmon modes on the Au/air interface. In experimental comparisons of the effects of different pitch sizes on the plasmonic band-gap, the obtained SPGCEs were highly directional, with intensity increases as large as 10.38-fold. The FWHM emission spectrum was less than 70 nm. This method is easily applicable to detecting refractive index changes by using SP-coupled fluorophores in which wavelength emissions vary by viewing angle. The measurements and calculations in this study confirmed that the color wavelength of the SPGCE changed from 545.3 nm to 615.4 nm at certain viewing angles, while the concentration of contacting glucose increased from 10 to 40 wt%, which corresponded to a refractive index increase from 1.3484 to 1.3968. The organic plasmon-emitting diode exhibits a wider linearity range and a resolution of the experimental is 1.056 × 10−3 RIU. The sensitivity of the detection limit for naked eye of the experimental is 0.6 wt%. At a certain viewing angle, a large spectral shift is clearly distinguishable by the naked eye unaided by optoelectronic devices. These experimental results confirm the potential applications of the organic plasmon-emitting diodes in a low-cost, integrated, and disposable refractive-index sensor. PMID:23812346
Dong, Guoxiang; Shi, Hongyu; He, Yuchen; Zhang, Anxue; Wei, Xiaoyong; Zhuang, Yongyong; Du, Bai; Xia, Song; Xu, Zhuo
2016-12-06
The surface plasmon polaritons (SPPs) have many potential application due to their local field enhancement and sub-wavelength characteristics. Recently, the gradient metasurface is introduced to couple the spoof SPPs in microwave frequency band. One of the most important issue which should be solved is the narrowband of spoof SPPs coupling on the gradient metasurface. Here, the metasurface is proposed to achieve the wideband helicity dependent directional spoof SPPs coupling for circular polarized light. Our research show that the coupling frequency of spoof SPPs on the gradient metasurface is determined by the dispersion of the metasurface, so the coupling frequency can be controlled by dispersion design. The careful design of each cell geometric parameters has provided many appropriate dispersion relations possessed by just one metasurface. The wave vector matching between the propagating wave and the spoof SPPs has been achieved at several frequencies for certain wave vector provided by the metasurface, which leads to wideband spoof SPPs coupling. This work has shown that wideband helicity dependent directional spoof SPPs coupling has been achieved with a high efficiency. Hence, the proposed wideband spoof SPPs coupling presents the improvement in practice applications.
Dong, Guoxiang; Shi, Hongyu; He, Yuchen; Zhang, Anxue; Wei, Xiaoyong; Zhuang, Yongyong; Du, Bai; Xia, Song; Xu, Zhuo
2016-01-01
The surface plasmon polaritons (SPPs) have many potential application due to their local field enhancement and sub-wavelength characteristics. Recently, the gradient metasurface is introduced to couple the spoof SPPs in microwave frequency band. One of the most important issue which should be solved is the narrowband of spoof SPPs coupling on the gradient metasurface. Here, the metasurface is proposed to achieve the wideband helicity dependent directional spoof SPPs coupling for circular polarized light. Our research show that the coupling frequency of spoof SPPs on the gradient metasurface is determined by the dispersion of the metasurface, so the coupling frequency can be controlled by dispersion design. The careful design of each cell geometric parameters has provided many appropriate dispersion relations possessed by just one metasurface. The wave vector matching between the propagating wave and the spoof SPPs has been achieved at several frequencies for certain wave vector provided by the metasurface, which leads to wideband spoof SPPs coupling. This work has shown that wideband helicity dependent directional spoof SPPs coupling has been achieved with a high efficiency. Hence, the proposed wideband spoof SPPs coupling presents the improvement in practice applications. PMID:27922132
Mulpur, Pradyumna; Podila, Ramakrishna; Ramamurthy, Sai Sathish; Kamisetti, Venkataramaniah; Rao, Apparao M.
2015-01-01
In this study, we present the use of C60 as an active spacer material on a silver (Ag) based surface plasmon coupled emission (SPCE) platform. In addition to its primary role of protecting the Ag thin film from oxidation, the incorporation of C60 facilitated the achievement of 30-fold enhancement in the emission intensity of rhodamine b (RhB) fluorophore. The high signal yield was attributed to the unique π-π interactions between C60 thin films and RhB, which enabled efficient transfer of energy of RhB emission to Ag plasmon modes. Furthermore, minor variations in the C60 film thickness yielded large changes in the enhancement and angularity properties of the SPCE signal, which can be exploited for sensing applications. Finally, the low-cost fabrication process of the Ag-C60 thin film stacks render C60 based SPCE substrates ideal, for the economic and simplistic detection of analytes. PMID:25785916
Guiding, bending, and splitting of coupled defect surface modes in a surface-wave photonic crystal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Zhen; Gao, Fei; Zhang, Baile, E-mail: blzhang@ntu.edu.sg
2016-01-25
We experimentally demonstrate a type of waveguiding mechanism for coupled surface-wave defect modes in a surface-wave photonic crystal. Unlike conventional spoof surface plasmon waveguides, waveguiding of coupled surface-wave defect modes is achieved through weak coupling between tightly localized defect cavities in an otherwise gapped surface-wave photonic crystal, as a classical wave analogue of tight-binding electronic wavefunctions in solid state lattices. Wave patterns associated with the high transmission of coupled defect surface modes are directly mapped with a near-field microwave scanning probe for various structures including a straight waveguide, a sharp corner, and a T-shaped splitter. These results may find usemore » in the design of integrated surface-wave devices with suppressed crosstalk.« less
Zhang, Si; Liang, Yuzhang; Jing, Qiang; Lu, Zhenda; Lu, Yanqing; Xu, Ting
2017-11-07
Metal halide perovskite nanocrystals (NCs) as a new kind of promising optoelectronic material have attracted wide attention due to their high photoluminescence (PL) quantum yield, narrow emission linewidth and wideband color tunability. Since the PL intensity always has a direct influence on the performance of optoelectronic devices, it is of vital importance to improve the perovskite NCs' fluorescence emission efficiency. Here, we synthesize three inorganic perovskite NCs and experimentally demonstrate a broadband fluorescence enhancement of perovskite NCs by exploiting plasmonic nanostructured surface consisting of nanogrooves array. The strong near-field optical localization associated with surface plasmon polariton-coupled emission effect generated by the nanogrooves array can significantly boost the absorption of perovskite NCs and tailor the fluorescence emissions. As a result, the PL intensities of perovskite NCs are broadband enhanced with a maximum factor higher than 8-fold achieved in experimental demonstration. Moreover, the high efficiency PL of perovskite NCs embedded in the polymer matrix layer on the top of plasmonic nanostructured surface can be maintained for more than three weeks. These results imply that plasmonic nanostructured surface is a good candidate to stably broadband enhance the PL intensity of perovskite NCs and further promote their potentials in the application of visible-light-emitting devices.
Grating coupled SPR microarray analysis of proteins and cells in blood from mice with breast cancer.
Mendoza, A; Torrisi, D M; Sell, S; Cady, N C; Lawrence, D A
2016-01-21
Biomarker discovery for early disease diagnosis is highly important. Of late, much effort has been made to analyze complex biological fluids in an effort to develop new markers specific for different cancer types. Recent advancements in label-free technologies such as surface plasmon resonance (SPR)-based biosensors have shown promise as a diagnostic tool since there is no need for labeling or separation of cells. Furthermore, SPR can provide rapid, real-time detection of antigens from biological samples since SPR is highly sensitive to changes in surface-associated molecular and cellular interactions. Herein, we report a lab-on-a-chip microarray biosensor that utilizes grating-coupled surface plasmon resonance (GCSPR) and grating-coupled surface plasmon coupled fluorescence (GCSPCF) imaging to detect circulating tumor cells (CTCs) from a mouse model (FVB-MMTV-PyVT). GCSPR and GCSPCF analysis was accomplished by spotting antibodies to surface cell markers, cytokines and stress proteins on a nanofabricated GCSPR microchip and screening blood samples from FVB control mice or FVB-MMTV-PyVT mice with developing mammary carcinomas. A transgenic MMTV-PyVT mouse derived cancer cell line was also analyzed. The analyses indicated that CD24, CD44, CD326, CD133 and CD49b were expressed in both cell lines and in blood from MMTV-PyVT mice. Furthermore, cytokines such as IL-6, IL-10 and TNF-α, along with heat shock proteins HSP60, HSP27, HSc70(HSP73), HSP90 total, HSP70/HSc70, HSP90, HSP70, HSP90 alpha, phosphotyrosine and HSF-1 were overexpressed in MMTV-PyVT mice.
Deep-subwavelength magnetic-coupling-dominant interaction among magnetic localized surface plasmons
NASA Astrophysics Data System (ADS)
Gao, Zhen; Gao, Fei; Zhang, Youming; Zhang, Baile
2016-05-01
Magnetic coupling is generally much weaker than electric Coulomb interaction. This also applies to the well-known magnetic "meta-atoms," or split-ring resonators (SRRs) as originally proposed by Pendry et al. [IEEE Trans. Microwave Theory Tech. 47, 2075 (1999), 10.1109/22.798002], in which the associated electric dipole moments usually dictate their interaction. As a result, stereometamaterials, a stack of identical SRRs, were found with electric coupling so strong that the dispersion from merely magnetic coupling was overturned. Recently, other workers have proposed a new concept of magnetic localized surface plasmons, supported on metallic spiral structures (MSSs) at a deep-subwavelength scale. Here, we experimentally demonstrate that a stack of these magnetic "meta-atoms" can have dominant magnetic coupling in both of its two configurations. This allows magnetic-coupling-dominant energy transport along a one-dimensional stack of MSSs, as demonstrated with near-field transmission measurement. Our work not only applies this type of magnetic "meta-atom" into metamaterial construction, but also provides possibilities of magnetic metamaterial design in which the electric interaction no longer takes precedence.
NASA Astrophysics Data System (ADS)
Ceperley, Daniel Peter
This thesis presents a Finite-Difference Time-Domain simulation framework as well as both scientific observations and quantitative design data for emerging optical devices. These emerging applications required the development of simulation capabilities to carefully control numerical experimental conditions, isolate and quantifying specific scattering processes, and overcome memory and run-time limitations on large device structures. The framework consists of a new version 7 of TEMPEST and auxiliary tools implemented as Matlab scripts. In improving the geometry representation and absorbing boundary conditions in TEMPEST from v6 the accuracy has been sustained and key improvements have yielded application specific speed and accuracy improvements. These extensions include pulsed methods, PML for plasmon termination, and plasmon and scattered field sources. The auxiliary tools include application specific methods such as signal flow graphs of plasmon couplers, Bloch mode expansions of sub-wavelength grating waves, and back-propagation methods to characterize edge scattering in diffraction masks. Each application posed different numerical hurdles and physical questions for the simulation framework. The Terrestrial Planet Finder Coronagraph required accurate modeling of diffraction mask structures too large for solely FDTD analysis. This analysis was achieved through a combination of targeted TEMPEST simulations and full system simulator based on thin mask scalar diffraction models by Ball Aerospace for JPL. TEMPEST simulation showed that vertical sidewalls were the strongest scatterers, adding nearly 2lambda of light per mask edge, which could be reduced by 20° undercuts. TEMPEST assessment of coupling in rapid thermal annealing was complicated by extremely sub-wavelength features and fine meshes. Near 100% coupling and low variability was confirmed even in the presence of unidirectional dense metal gates. Accurate analysis of surface plasmon coupling efficiency by small surface features required capabilities to isolate these features and cleanly illuminate them with plasmons and plane-waves. These features were shown to have coupling cross-sections up to and slightly exceeding their physical size. Long run-times for TEMPEST simulations of finite length gratings were overcome with a signal flow graph method. With these methods a plasmon coupler with over a 10lambda 100% capture length was demonstrated. Simulation of 3D nano-particle arrays utilized TEMPEST v7's pulsed methods to minimize the number of multi-day simulations. These simulations led to the discovery that interstitial plasmons were responsible for resonant absorption and transmission but not reflection. Simulation of a sub-wavelength grating mirror using pulsed sources to map resonant spectra showed that neither coupled guided waves nor coupled isolated resonators accurately described the operation. However, a new model based on vertical propagation of lateral Bloch modes with zero phase progression efficiently characterized the device and provided principles for designing similar devices at other wavelengths.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koya, Alemayehu Nana; Ji, Boyu; Hao, Zuoqiang
2015-09-21
Combined effects of polarization, split gap, and rod width on the resonance hybridization and near field properties of strongly coupled gold dimer-rod nanosystem are comparatively investigated in the light of the constituent nanostructures. By aligning polarization of the incident light parallel to the long axis of the nanorod, introducing small split gaps to the dimer walls, and varying width of the nanorod, we have simultaneously achieved resonance mode coupling, huge near field enhancement, and prolonged plasmon lifetime. As a result of strong coupling between the nanostructures and due to an intense confinement of near fields at the split and dimer-rodmore » gaps, the extinction spectrum of the coupled nanosystem shows an increase in intensity and blueshift in wavelength. Consequently, the near field lifespan of the split-nanosystem is prolonged in contrast to the constituent nanostructures and unsplit-nanosystem. On the other hand, for polarization of the light perpendicular to the long axis of the nanorod, the effect of split gap on the optical responses of the coupled nanosystem is found to be insignificant compared to the parallel polarization. These findings and such geometries suggest that coupling an array of metallic split-ring dimer with long nanorod can resolve the huge radiative loss problem of plasmonic waveguide. In addition, the Fano-like resonances and immense near field enhancements at the split and dimer-rod gaps imply the potentials of the nanosystem for practical applications in localized surface plasmon resonance spectroscopy and sensing.« less
Hageneder, Simone; Bauch, Martin; Dostalek, Jakub
2016-08-15
This paper investigates plasmonic amplification in two commonly used optical configurations for fluorescence readout of bioassays - epifluorescence (EPF) and total internal reflection fluorescence (TIRF). The plasmonic amplification in the EPF configuration was implemented by using crossed gold diffraction grating and Kretschmann geometry of attenuated total reflection method (ATR) was employed in the TIRF configuration. Identical assay, surface architecture for analyte capture, and optics for the excitation, collection and detection of emitted fluorescence light intensity were used in both TIRF and EPF configurations. Simulations predict that the crossed gold diffraction grating (EPF) can amplify the fluorescence signal by a factor of 10(2) by the combination of surface plasmon-enhanced excitation and directional surface plasmon-coupled emission in the red part of spectrum. This factor is about order of magnitude higher than that predicted for the Kretschmann geometry (TIRF) which only took advantage of the surface plasmon-enhanced excitation. When applied for the readout of sandwich interleukin 6 (IL-6) immunoassay, the plasmonically amplified EPF geometry designed for Alexa Fluor 647 labels offered 4-times higher fluorescence signal intensity compared to TIRF. Interestingly, both geometries allowed reaching the same detection limit of 0.4pM despite of the difference in the fluorescence signal enhancement. This is attributed to inherently lower background of fluorescence signal for TIRF geometry compared to that for EPF which compensates for the weaker fluorescence signal enhancement. The analysis of the inflammation biomarker IL-6 in serum at medically relevant concentrations and the utilization of plasmonic amplification for the fluorescence measurement of kinetics of surface affinity reactions are demonstrated for both EPF and TIRF readout. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Guo, Zexuan; Jiang, Dayong; Hu, Nan; Yang, Xiaojiang; Zhang, Wei; Duan, Yuhan; Gao, Shang; Liang, Qingcheng; Zheng, Tao; Lv, Jingwen
2018-06-01
We proposed and demonstrated MgZnO metal-semiconductor-metal (MSM) ultraviolet photodetectors (UV) assisted with surface plasmons (SPs) prepared by the radio frequency magnetron sputtering deposition method. After the decoration of their surface with Pt nanoparticles (NPs), the responsivity of all the electrode spacing (3, 5, and 8 μm) photodetectors were enhanced dramatically; to our surprise, comparing with them the responsivity of larger spacing sample, more SPs were gathered which are smaller than others in turn. A physical mechanism focused on SPs and depletion width is given to explain the above results.
Imaging surface plasmon polaritons using proximal self-assembled InGaAs quantum dots
NASA Astrophysics Data System (ADS)
Bracher, Gregor; Schraml, Konrad; Blauth, Mäx; Wierzbowski, Jakob; López, Nicolás Coca; Bichler, Max; Müller, Kai; Finley, Jonathan J.; Kaniber, Michael
2014-07-01
We present optical investigations of hybrid plasmonic nanosystems consisting of lithographically defined plasmonic Au-waveguides or beamsplitters on GaAs substrates coupled to proximal self-assembled InGaAs quantum dots. We designed a sample structure that enabled us to precisely tune the distance between quantum dots and the sample surface during nano-fabrication and demonstrated that non-radiative processes do not play a major role for separations down to ˜ 10 nm. A polarized laser beam focused on one end of the plasmonic nanostructure generates propagating surface plasmon polaritons that, in turn, create electron-hole pairs in the GaAs substrate during propagation. These free carriers are subsequently captured by the quantum dots ˜ 25 nm below the surface, giving rise to luminescence. The intensity of the spectrally integrated quantum dot luminescence is used to image the propagating plasmon modes. As the waveguide width reduces from 5 μ m to 1 μ m, we clearly observe different plasmonic modes at the remote waveguide end, enabling their direct imaging in real space. This imaging technique is applied to a plasmonic beamsplitter facilitating the determination of the splitting ratio between the two beamsplitter output ports as the interaction length L i is varied. A splitting ratio of 50:50 is observed for L i ˜ 9 ± 1 μ m and 1 μ m wide waveguides for excitation energies close to the GaAs band edge. Our experimental findings are in good agreement with mode profile and finite difference time domain simulations for both waveguides and beamsplitters.
Low threshold optical bistability in one-dimensional gratings based on graphene plasmonics.
Guo, Jun; Jiang, Leyong; Jia, Yue; Dai, Xiaoyu; Xiang, Yuanjiang; Fan, Dianyuan
2017-03-20
Optical bistability of graphene surface plasmon is investigated numerically, using grating coupling method at normal light incidence. The linear surface plasmon resonance is strongly dependent on Femi-level of graphene, hence it can be tuned in a large wavelength range. Due to the field enhancement of graphene surface plasmon resonance and large third-order nonlinear response of graphene, a low-threshold optical hysteresis has been observed. The threshold value with 20MW/cm2 and response time with 1.7ps have been verified. Especially, it is found that this optical bistability phenomenon is angular insensitivity for near 15° incident angle. The threshold of optical bistability can be further lowered to 0.5MW/cm2 by using graphene nanoribbons, and the response time is also shorten to 800fs. We believe that our results will find potential applications in bistable devices and all-optical switching from mid-IR to THz range.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hendrickson, Joshua R., E-mail: joshua.hendrickson.4@us.af.mil; Leedy, Kevin; Cleary, Justin W.
Near-perfect light absorption in subwavelength trench arrays etched in highly conductive gallium-doped zinc oxide films was experimentally observed in the mid infrared regime. At wavelengths corresponding to the resonant excitation of surface plasmons, up to 99% of impinging light is efficiently trapped and absorbed in the periodic trenches. Scattering cross sectional calculations reveal that each individual trench acts like a vertical split ring resonator with a broad plasmon resonance spectrum. The coupling of these individual plasmon resonators in the grating structure leads to enhanced photon absorption and significant resonant spectral linewidth narrowing. Ellipsometry measurements taken before and after device fabricationmore » result in different permittivity values for the doped zinc oxide material, indicating that localized annealing occurred during the plasma etching process due to surface heating. Simulations, which incorporate a 50 nm annealed region at the zinc oxide surface, are in a good agreement with the experimental results.« less
Investigation on surface-plasmon-enhanced light emission of InGaN/GaN multiple quantum wells
NASA Astrophysics Data System (ADS)
Yu, Zhenzhong; Li, Qiang; Fan, Qigao; Zhu, Yixin
2018-05-01
We demonstrate surface-plasmon (SP) enhanced light emission from InGaN/GaN near ultraviolet (NUV) multiple quantum wells (MQWs) using Ag thin films and nano-particles (NPs). Two types of Ag NP arrays are fabricated on the NUV-MQWs, one is fabricated on p-GaN layer with three different sizes of about 120, 160 and 240 nm formed by self-assembled process, while the other is embedded close to the MQWs. In addition, the influence of the surface plasmon polariton (SPP) and localized surface plasmon (LSP) in NUV-MQWs has been investigated by photoluminescence (PL) measurement. Both PL measurements and theoretical simulation results show that the NUV light would be extracted more effectively under LSP mode than that of SPP mode. The highest enhancement of PL intensity is increased by 324% for the sample with NPs embedded in etched p-GaN near the MQWs as compared with the bare MQWs, also is about 1.24 times higher than the MQW sample covered with Ag NPs on the surface, indicating strong surface scattering and SP coupling between Ag NPs and NUV-MQWs.
Boerigter, Calvin; Campana, Robert; Morabito, Matthew; ...
2016-01-28
Plasmonic metal nanoparticles enhance chemical reactions on their surface when illuminated with light of particular frequencies. It has been shown that these processes are driven by excitation of localized surface plasmon resonance (LSPR). The interaction of LSPR with adsorbate orbitals can lead to the injection of energized charge carriers into the adsorbate, which can result in chemical transformations. The mechanism of the charge injection process (and role of LSPR) is not well understood. Here we shed light on the specifics of this mechanism by coupling optical characterization methods, mainly wavelength-dependent Stokes and anti-Stokes SERS, with kinetic analysis of photocatalytic reactionsmore » in an Ag nanocube–methylene blue plasmonic system. We propose that localized LSPR-induced electric fields result in a direct charge transfer within the molecule–adsorbate system. Lastly, these observations provide a foundation for the development of plasmonic catalysts that can selectively activate targeted chemical bonds, since the mechanism allows for tuning plasmonic nanomaterials in such a way that illumination can selectively enhance desired chemical pathways.« less
NASA Astrophysics Data System (ADS)
Du, Zhidong; Chen, Chen; Pan, Liang
2017-04-01
Maskless lithography using parallel electron beamlets is a promising solution for next generation scalable maskless nanolithography. Researchers have focused on this goal but have been unable to find a robust technology to generate and control high-quality electron beamlets with satisfactory brightness and uniformity. In this work, we will aim to address this challenge by developing a revolutionary surface-plasmon-enhanced-photoemission (SPEP) technology to generate massively-parallel electron beamlets for maskless nanolithography. The new technology is built upon our recent breakthroughs in plasmonic lenses, which will be used to excite and focus surface plasmons to generate massively-parallel electron beamlets through photoemission. Specifically, the proposed SPEP device consists of an array of plasmonic lens and electrostatic micro-lens pairs, each pair independently producing an electron beamlet. During lithography, a spatial optical modulator will dynamically project light onto individual plasmonic lenses to control the switching and brightness of electron beamlets. The photons incident onto each plasmonic lens are concentrated into a diffraction-unlimited spot as localized surface plasmons to excite the local electrons to near their vacuum levels. Meanwhile, the electrostatic micro-lens extracts the excited electrons to form a focused beamlet, which can be rastered across a wafer to perform lithography. Studies showed that surface plasmons can enhance the photoemission by orders of magnitudes. This SPEP technology can scale up the maskless lithography process to write at wafers per hour. In this talk, we will report the mechanism of the strong electron-photon couplings and the locally enhanced photoexcitation, design of a SPEP device, overview of our proof-of-concept study, and demonstrated parallel lithography of 20-50 nm features.
Warrier, Anita R; Gandhimathi, R
2018-04-27
In this article, we report on enhancement in photoluminescence and Raman line intensity of SnS quantum dots embedded in a mesh of Sn nanostructures. SnS nanoparticles synthesized by homogenous precipitation method show strong quantum confinement with a band gap of ∼2.7 eV (blue shift of ∼1 eV compared to bulk SnS particles). The optical band gap of SnS quantum dots is controlled by varying the pH (∼0 to 2.25), ageing time (24 to 144 h) and molarity (0 to 2 M) of the precursors. These SnS nanoparticles are embedded in a mesh of Sn nanostructures which are synthesized from tin chloride by using sodium borohydride as reducing agent. The Sn nanostructures have a morphology dependent, tunable surface plasmon resonance (SPR), ranging from UV (∼295 nm) to visible region (∼400 nm) of the electromagnetic spectrum. In the SnS-Sn nanohybrids, the excitons are strongly coupled with plasmons leading to a shift in the excitonic binding energy (∼400 meV). The pure SnS quantum dots have a very weak photoluminescence peak at ∼560 nm and Raman shift of low intensity at 853.08 cm -1 , 1078.17 cm -1 , 1255.60 cm -1 , 1466.91 cm -1 . The coupling of SnS nanoparticles with Sn nanoparticles results in strong exciton-plasmon interactions leading to enhanced photoluminescence and Raman line intensity. The nanohybrids formed using Sn nanosheets whose SPR matches with absorption onset of the SnS nanoparticles shows an enhancement of ∼10 4 times higher than pure SnS nanoparticles. Thus, Sn nanosheet with surface plasmon resonance in visible region (400 nm) like Au and Ag is a promising material for surface enhanced Raman spectroscopy, plasmon assisted fluorescence imaging and for enhancing the emission intensity of semiconductors with weak emission intensity.
NASA Astrophysics Data System (ADS)
Warrier, Anita R.; Gandhimathi, R.
2018-07-01
In this article, we report on enhancement in photoluminescence and Raman line intensity of SnS quantum dots embedded in a mesh of Sn nanostructures. SnS nanoparticles synthesized by homogenous precipitation method show strong quantum confinement with a band gap of ∼2.7 eV (blue shift of ∼1 eV compared to bulk SnS particles). The optical band gap of SnS quantum dots is controlled by varying the pH (∼0 to 2.25), ageing time (24 to 144 h) and molarity (0 to 2 M) of the precursors. These SnS nanoparticles are embedded in a mesh of Sn nanostructures which are synthesized from tin chloride by using sodium borohydride as reducing agent. The Sn nanostructures have a morphology dependent, tunable surface plasmon resonance (SPR), ranging from UV (∼295 nm) to visible region (∼400 nm) of the electromagnetic spectrum. In the SnS-Sn nanohybrids, the excitons are strongly coupled with plasmons leading to a shift in the excitonic binding energy (∼400 meV). The pure SnS quantum dots have a very weak photoluminescence peak at ∼560 nm and Raman shift of low intensity at 853.08 cm‑1, 1078.17 cm‑1, 1255.60 cm‑1, 1466.91 cm‑1. The coupling of SnS nanoparticles with Sn nanoparticles results in strong exciton-plasmon interactions leading to enhanced photoluminescence and Raman line intensity. The nanohybrids formed using Sn nanosheets whose SPR matches with absorption onset of the SnS nanoparticles shows an enhancement of ∼104 times higher than pure SnS nanoparticles. Thus, Sn nanosheet with surface plasmon resonance in visible region (400 nm) like Au and Ag is a promising material for surface enhanced Raman spectroscopy, plasmon assisted fluorescence imaging and for enhancing the emission intensity of semiconductors with weak emission intensity.
Plasmonic ruler on field-effect devices for kinase drug discovery applications.
Bhalla, Nikhil; Formisano, Nello; Miodek, Anna; Jain, Aditya; Di Lorenzo, Mirella; Pula, Giordano; Estrela, Pedro
2015-09-15
Protein kinases are cellular switches that mediate phosphorylation of proteins. Abnormal phosphorylation of proteins is associated with lethal diseases such as cancer. In the pharmaceutical industry, protein kinases have become an important class of drug targets. This study reports a versatile approach for the detection of protein phosphorylation. The change in charge of the myelin basic protein upon phosphorylation by the protein kinase C-alpha (PKC-α) in the presence of adenosine 5'-[γ-thio] triphosphate (ATP-S) was detected on gold metal-insulator-semiconductor (Au-MIS) capacitor structures. Gold nanoparticles (AuNPs) can then be attached to the thio-phosphorylated proteins, forming a Au-film/AuNP plasmonic couple. This was detected by a localized surface plasmon resonance (LSPR) technique alongside MIS capacitance. All reactions were validated using surface plasmon resonance technique and the interaction of AuNPs with the thio-phosphorylated proteins quantified by quartz crystal microbalance. The plasmonic coupling was also visualized by simulations using finite element analysis. The use of this approach in drug discovery applications was demonstrated by evaluating the response in the presence of a known inhibitor of PKC-α kinase. LSPR and MIS on a single platform act as a cross check mechanism for validating kinase activity and make the system robust to test novel inhibitors. Copyright © 2015 Elsevier B.V. All rights reserved.
Sun, Jin; Li, Guang; Liang, WanZhen
2015-07-14
A real-time time-dependent density functional theory coupled with the classical electrodynamics finite difference time domain technique is employed to systematically investigate the optical properties of hybrid systems composed of silver nanoparticles (NPs) and organic adsorbates. The results demonstrate that the molecular absorption spectra throughout the whole energy range can be enhanced by the surface plasmon resonance of Ag NPs; however, the absorption enhancement ratio (AER) for each absorption band differs significantly from the others, leading to the quite different spectral profiles of the hybrid complexes in contrast to those of isolated molecules or sole NPs. Detailed investigations reveal that the AER is sensitive to the energy gap between the molecular excitation and plasmon modes. As anticipated, two separate absorption bands, corresponding to the isolated molecules and sole NPs, have been observed at a large energy gap. When the energy gap approaches zero, the molecular excitation strongly couples with the plasmon mode to form the hybrid exciton band, which possesses the significantly enhanced absorption intensity, a red-shifted peak position, a surprising strongly asymmetric shape of the absorption band, and the nonlinear Fano effect. Furthermore, the dependence of surface localized fields and the scattering response functions (SRFs) on the geometrical parameters of NPs, the NP-molecule separation distance, and the external-field polarizations has also been depicted.
NASA Astrophysics Data System (ADS)
Xie, Ze Tao; Ni, Feng Chao; Ma, Qi Chang; Tao, Jin; Li, Jian; Meng, Hongyun; Huang, Xu Guang
2018-07-01
Graphene metasurface has attracted a lot of attentions due to the unique tunability for exotic electromagnetic properties. In this work, we propose and numerically investigate a tunable metasurface with two non-coplanar and inter-perpendicular graphene nanoribbon arrays. The variation of transmission at different substrate thickness and the coupled mode are analyzed. It is shown that the Rabi-like splitting can be achieved by the coupling between localized and delocalized graphene surface plasmon polaritons. Tunable coupling strength and positions with different gate-voltages have been discussed. The effect of relaxation time and oblique incidences to resonant responses are also investigated. Additionally, we find an optical analogue of a spring, where the spectral dip vibrates around its equilibrium position at a certain wavelength. Our study suggests that the proposed structure is potentially attractive for realization of tunable double-channel filter, optical switch, and variable optical attenuator based on the graphene metasurface.
Kong, Xianming; Squire, Kenny; Li, Erwen; LeDuff, Paul; Rorrer, Gregory L; Tang, Suning; Chen, Bin; McKay, Christopher P; Navarro-Gonzalez, Rafael; Wang, Alan X
2016-12-01
In this paper, we described a new type of bioenabled nano-plasmonic sensors based on diatom photonic crystal biosilica with in-situ growth silver nanoparticles and demonstrated label-free chemical and biological sensing based on surface-enhanced Raman scattering (SERs) from complex samples. Diatoms are photosynthetic marine micro-organisms that create their own skeletal shells of hydrated amorphous silica, called frustules, which possess photonic crystal-like hierarchical micro- & nanoscale periodic pores. Our research shows that such hybrid plasmonic-biosilica nanostructures formed by cost-effective and eco-friendly bottom-up processes can achieve ultra-high limit of detection for medical applications, food sensing, water/air quality monitoring and geological/space research. The enhanced sensitivity comes from the optical coupling of the guided-mode resonance of the diatom frustules and the localized surface plasmons of the silver nanoparticles. Additionally, the nanoporous, ultra-hydrophilic diatom biosilica with large surface-to-volume ratio can concentrate more analyte molecules to the surface of the SERS substrates, which can help to detect biomolecules that cannot be easily adsorbed by metallic nanoparticles.
ITO-TiN-ITO Sandwiches for Near-Infrared Plasmonic Materials.
Chen, Chaonan; Wang, Zhewei; Wu, Ke; Chong, Haining; Xu, Zemin; Ye, Hui
2018-05-02
Indium tin oxide (ITO)-based sandwich structures with the insertion of ultrathin (<10 nm) titanium nitride (TiN) are investigated as near-infrared (NIR) plasmonic materials. The structural, electrical, and optical properties reveal the improvement of the sandwich structures stemmed from TiN insertion. TiN is a well-established alternative to noble metals such as gold, elevating the electron conductivity of sandwich structures as its thickness increases. Dielectric permittivities of TiN and top ITO layers show TiN-thickness-dependent properties, which lead to moderate and tunable effective permittivities for the sandwiches. The surface plasmon polaritons (SPP) of the ITO-TiN-ITO sandwich at the telecommunication window (1480-1570 nm) are activated by prism coupling using Kretschmann configuration. Compared with pure ITO films or sandwiches with metal insertion, the reflectivity dip for sandwiches with TiN is relatively deeper and wider, indicating the enhanced coupling ability in plasmonic materials for telecommunications. The SPP spatial profile, penetration depth, and degree of confinement, as well as the quality factors, demonstrate the applicability of such sandwiches for NIR plasmonic materials in various devices.
Single-electron induced surface plasmons on a topological nanoparticle
Siroki, G.; Lee, D.K.K.; Haynes, P. D.; Giannini, V.
2016-01-01
It is rarely the case that a single electron affects the behaviour of several hundred thousands of atoms. Here we demonstrate a phenomenon where this happens. The key role is played by topological insulators—materials that have surface states protected by time-reversal symmetry. Such states are delocalized over the surface and are immune to its imperfections in contrast to ordinary insulators. For topological insulators, the effects of these surface states will be more strongly pronounced in the case of nanoparticles. Here we show that under the influence of light a single electron in a topologically protected surface state creates a surface charge density similar to a plasmon in a metallic nanoparticle. Such an electron can act as a screening layer, which suppresses absorption inside the particle. In addition, it can couple phonons and light, giving rise to a previously unreported topological particle polariton mode. These effects may be useful in the areas of plasmonics, cavity electrodynamics and quantum information. PMID:27491515
Material influence on hot spot distribution in the nanoparticle heterodimer on film
NASA Astrophysics Data System (ADS)
Chen, Fang; Huang, Yingzhou; Wei, Hua; Wang, Shuxia; Zeng, Xiping; Cao, Wenbin; Wen, Weijia
2018-04-01
The metal nanoparticle aggregated on film, as an effective plasma enhancement pathway, has been widely used in various surface plasmon-related fields. In this study, the hot spots on the metal nanoparticle dimer composed of different materials (Agsbnd Au, Agsbnd Pd, and Agsbnd Cu) on metal (Au) film were investigated with finite element method. Based on the results, the hot spot distribution affected by the material can be confirmed by the electric field distribution of the metal nanoparticle dimer on the film. The aggregation effects of Au and Ag nanoparticles in Ausbnd Ag dimer system are not significant. However, for the Pdsbnd Ag dimer system, the hot spot aggregation effect is slightly larger than that of the Pd nanoparticle under the Ag nanoparticle. Besides, the non-uniform hot spots would bring about the light focusing phenomenon that the light intensity under Ag nanoparticle is almost 100 times greater than that under Cu nanoparticle in Agsbnd Cu dimer system. These results were further confirmed by the surface charge distribution, and analyzed based on the plasmonic hybridization theory. The data about the nanoparticle dimer on the dielectric (Si) film demonstrate the importance of induced image charges on the film surface in such a light focusing phenomenon. Our findings can enhance the understanding of the surface plasmon coupling in different materials, which may have great application prospects in surface plasmon-related fields, such as SERS, plasmonic enhanced solar cell, and plasmonic sensoring, etc.
NASA Astrophysics Data System (ADS)
Liu, Runhan; Yuan, Ying; Long, Huabao; Peng, Sha; Wei, Dong; Zhang, Xinyu; Wang, Haiwei; Xie, Changsheng
2018-02-01
The intense surface plasmons (SPs) can be generated by patterned metal nano-structure arrays, through coupling incident light onto the functioned metal surface, so as to construct highly constrained surface electromagnetic modes. Therefore, a localized micro-nano-field array with a highly compressed surface electron distribution, can also be shaped and even nano-focused over the surface, which will lead to a lot of special physical effects such as anti-reflection effect, and thus indicate many new potential applications in the field of nano-photonics and -optoelectronics. In this paper, several typical patterned sub-wavelength metal nano-structure arrays were designed according to the process, in which common silicon wafer was employed as the substrate material and aluminum as the metal film with different structural size and arrangement circle. In addition, by adjusting the dielectric constant of metal material appropriately, the power control effect on metallic nanostructure was simulated. The key properties such as the excitation intensity of the surface plasmons were studied by simulating the reflectivity characteristic curves and the electric field distribution of the nanostructure excited by incident infrared beams. It is found that the angle of corners, the arrangement cycle and the metal material properties of the patterned nano-structures can be utilized as key factors to control the excitation intensity of surface plasmons.
Karna, Sanjay; Mahat, Meg; Choi, Tae-Youl; Shimada, Ryoko; Wang, Zhiming; Neogi, Arup
2016-11-22
The light emission from reduced graphene oxide quantum dots (rGO-QDs) exhibit a significant enhancement in photoluminescence (PL) due to localized surface plasmon (LSP) interactions. Silver and gold nanoparticles (NPs) coupled to rGO nanoparticles exhibit the effect of resonant LSP coupling on the emission processes. Enhancement of the radiative recombination rate in the presence of Ag-NPs induced LSP tuned to the emission energy results in a four-fold increase in PL intensity. The localized field due to the resonantly coupled LSP modes induces n-π* transitions that are not observed in the absence of the resonant interaction of the plasmons with the excitons. An increase in the density of the Ag-NPs result in a detuning of the LSP energy from the emission energy of the nanoparticles. The detuning is due to the cumulative effect of the red-shift in the LSP energy and the electrostatic field induced blue shift in the PL energy of the rGO-QDs. The detuning quenches the PL emission from rGO-QDs at higher concentration of Ag NPs due to non-dissipative effects unlike plasmon induced Joule heating that occurs under resonance conditions. An increase in Au nanoparticles concentration results in an enhancement of PL emission due to electrostatic image charge effect.
Parallel-processing with surface plasmons, a new strategy for converting the broad solar spectrum
NASA Technical Reports Server (NTRS)
Anderson, L. M.
1982-01-01
A new strategy for efficient solar-energy conversion is based on parallel processing with surface plasmons: guided electromagnetic waves supported on thin films of common metals like aluminum or silver. The approach is unique in identifying a broadband carrier with suitable range for energy transport and an inelastic tunneling process which can be used to extract more energy from the more energetic carriers without requiring different materials for each frequency band. The aim is to overcome the fundamental 56-percent loss associated with mismatch between the broad solar spectrum and the monoenergetic conduction electrons used to transport energy in conventional silicon solar cells. This paper presents a qualitative discussion of the unknowns and barrier problems, including ideas for coupling surface plasmons into the tunnels, a step which has been the weak link in the efficiency chain.
Photonic crystal fiber temperature sensor with high sensitivity based on surface plasmon resonance
NASA Astrophysics Data System (ADS)
Wu, Junjun; Li, Shuguang; shi, Min; Feng, Xinxing
2018-07-01
A high sensitivity photonic crystal fiber (PCF) temperature sensor based on surface plasmon resonance is proposed and evaluated using the finite element method. Besides, the coupling phenomenon is studied. The gold layer deposited on the polishing surface of D-shape PCF is used as the metal to stimulate surface plasma, which can improves the sensitivity. Through exquisite design, the birefringence of the fiber is improved, which makes the loss of y-polarization far greater than the loss of x-polarization. The D-shape fiber avoids filling metal and liquid into the air-holes, which can contact with fluid directly to feel temperature. When the phase matching condition is satisfied, the core mode will couple with the surface plasma mode. The resonance position of y-polarization is very sensitive to the temperature change. The simulation shows that the PCF has high sensitivity of 36.86 nm/°C in y-polarization and wide detection that from 10 °C to 85 °C.
Perfect-absorption graphene metamaterials for surface-enhanced molecular fingerprint spectroscopy.
Guo, Xiangdong; Hu, Hai; Liao, Baoxin; Zhu, Xing; Yang, Xiaoxia; Dai, Qing
2018-05-04
Graphene plasmon with extremely strong light confinement and tunable resonance frequency represents a promising surface-enhanced infrared absorption (SEIRA) sensing platform. However, plasmonic absorption is relatively weak (approximately 1%-9%) in monolayer graphene nanostructures, which would limit its sensitivity. Here, we theoretically propose a hybrid plasmon-metamaterial structure that can realize perfect absorption in graphene with a low carrier mobility of 1000 cm 2 V -1 s -1 . This structure combines a gold reflector and a gold grating to the graphene plasmon structures, which introduce interference effect and the lightning-rod effect, respectively, and largely enhance the coupling of light to graphene. The vibration signal of trace molecules can be enhanced up to 2000-fold at the hotspot of the perfect-absorption structure, enabling the SEIRA sensing to reach the molecular level. This hybrid metal-graphene structure provides a novel path to generate high sensitivity in nanoscale molecular recognition for numerous applications.
Localized surface plasmon resonance properties of Ag nanorod arrays on graphene-coated Au substrate
NASA Astrophysics Data System (ADS)
Mu, Haiwei; Lv, Jingwei; Liu, Chao; Sun, Tao; Chu, Paul K.; Zhang, Jingping
2017-11-01
Localized surface plasmon resonance (LSPR) on silver nanorod (SNR) arrays deposited on a graphene-coated Au substrate is investigated by the discrete dipole approximation (DDA) method. The resonance peaks in the extinction spectra of the SNR/graphene/Au structure show significantly different profiles as SNR height, and refractive index of the surrounding medium are varied gradually. Numerical simulation reveals that the shifts in the resonance peaks arise from hybridization of multiple plasmon modes as a result of coupling between the SNR arrays and graphene-coated Au substrate. Moreover, the LSPR modes blue-shifts from 800 nm to 700 nm when the thickness of the graphene layer in the metal nanoparticle (NP) - graphene hybrid nanostructure increases from 1 nm to 5 nm, which attribute to charge transfer between the graphene layer and SNR arrays. The results provide insights into metal NP-graphene hybrid nanostructures which have potential applications in plasmonics.
Perfect-absorption graphene metamaterials for surface-enhanced molecular fingerprint spectroscopy
NASA Astrophysics Data System (ADS)
Guo, Xiangdong; Hu, Hai; Liao, Baoxin; Zhu, Xing; Yang, Xiaoxia; Dai, Qing
2018-05-01
Graphene plasmon with extremely strong light confinement and tunable resonance frequency represents a promising surface-enhanced infrared absorption (SEIRA) sensing platform. However, plasmonic absorption is relatively weak (approximately 1%-9%) in monolayer graphene nanostructures, which would limit its sensitivity. Here, we theoretically propose a hybrid plasmon-metamaterial structure that can realize perfect absorption in graphene with a low carrier mobility of 1000 cm2 V-1 s-1. This structure combines a gold reflector and a gold grating to the graphene plasmon structures, which introduce interference effect and the lightning-rod effect, respectively, and largely enhance the coupling of light to graphene. The vibration signal of trace molecules can be enhanced up to 2000-fold at the hotspot of the perfect-absorption structure, enabling the SEIRA sensing to reach the molecular level. This hybrid metal-graphene structure provides a novel path to generate high sensitivity in nanoscale molecular recognition for numerous applications.
Kühler, Paul; Weber, Max; Lohmüller, Theobald
2014-06-25
We demonstrate a strategy for surface-enhanced Raman spectroscopy (SERS) of supported lipid membranes with arrays of plasmonic nanoantennas. Colloidal lithography refined with plasma etching is used to synthesize arrays of triangular shaped gold nanoparticles. Reducing the separation distance between the triangle tips leads to plasmonic coupling and to a strong enhancement of the electromagnetic field in the nanotriangle gap. As a result, the Raman scattering intensity of molecules that are located at this plasmonic "hot-spot" can be increased by several orders of magnitude. The nanoantenna array is then embedded with a supported phospholipid membrane which is fluid at room temperature and spans the antenna gap. This configuration offers the advantage that molecules that are mobile within the bilayer membrane can enter the "hot-spot" region via diffusion and can therefore be measured by SERS without static entrapment or adsorption of the molecules to the antenna itself.
Infrared nanoantenna apparatus and method for the manufacture thereof
Peters, David W.; Davids, Paul; Leonhardt, Darin; Kim, Jin K.; Wendt, Joel R.; Klem, John F.
2014-06-10
An exemplary embodiment of the present invention is a photodetector comprising a semiconductor body, a periodically patterned metal nanoantenna disposed on a surface of the semiconductor body, and at least one electrode separate from the nanoantenna. The semiconductor body comprises an active layer in sufficient proximity to the nanoantenna for plasmonic coupling thereto. The nanoantenna is dimensioned to absorb electromagnetic radiation in at least some wavelengths not more than 12 .mu.m that are effective for plasmonic coupling into the active layer. The electrode is part of an electrode arrangement for obtaining a photovoltage or photocurrent in operation under appropriate stimulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Xiaowei; Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University, Beijing 100084; Tan Qiaofeng
2011-06-20
We demonstrate experimentally the directional excitation of surface plasmon polaritons (SPPs) on a metal film by a subwavelength double slit under backside illumination, based on the interference of SPPs generated by the two slits. By varying the incident angle, the SPPs can be tunably directed into two opposite propagating directions with a predetermined splitting ratio. Under certain incident angle, unidirectional SPP excitation can be achieved. This compact directional SPP coupler is potentially useful for many on-chip applications. As an example, we show the integration of the double-slit couplers with SPP Bragg mirrors, which can effectively realize selective coupling of SPPsmore » into different ports in an integrated plasmonic chip.« less
Efficient color display using low-absorption in-pixel color filters
NASA Technical Reports Server (NTRS)
Wang, Yu (Inventor)
2000-01-01
A display system having a non-absorbing and reflective color filtering array and a reflector to improve light utilization efficiency. One implementation of the color filtering array uses a surface plasmon filter having two symmetric metal-dielectric interfaces coupled with each other to produce a transmission optical wave at a surface plasmon resonance wavelength at one interface from a p-polarized input beam on the other interface. Another implementation of the color filtering array uses a metal-film interference filter having two dielectric layers and three metallic films.
Note: Model identification and analysis of bivalent analyte surface plasmon resonance data.
Tiwari, Purushottam Babu; Üren, Aykut; He, Jin; Darici, Yesim; Wang, Xuewen
2015-10-01
Surface plasmon resonance (SPR) is a widely used, affinity based, label-free biophysical technique to investigate biomolecular interactions. The extraction of rate constants requires accurate identification of the particular binding model. The bivalent analyte model involves coupled non-linear differential equations. No clear procedure to identify the bivalent analyte mechanism has been established. In this report, we propose a unique signature for the bivalent analyte model. This signature can be used to distinguish the bivalent analyte model from other biphasic models. The proposed method is demonstrated using experimentally measured SPR sensorgrams.
Plasmonic metamaterials with tuneable optical properties
NASA Astrophysics Data System (ADS)
Zayats, Anatoly
2008-03-01
Negative refraction in metamaterials has recently attracted significant attention due to its possible numerous applications in high-resolution imaging and photolithography with the so-called ``perfect lenses,'' for electromagnetic shielding (invisibility cloak), optical signal manipulation, etc. Among various realizations of negative index materials, plasmonic nanostructures play a prominent role as they allow negative refraction properties to be engineered in the visible and near infrared spectral ranges. The coupling of light to plasmonic modes, that are collective electronic excitations in metallic nanostructures, provides the possibility to confine the electromagnetic field on the sub-wavelength scale and manipulate it with high precision to achieve the desired mode dispersion and, thus, reflection, absorption and transmission properties of the nanostructures. In this talk we will discuss various pathways to control dispersion of the electromagnetic waves in plasmonic metamaterials, including plasmon polaritonic crystals and plasmonic nanorod arrays, and the approaches to active tuneability of their optical properties using optical and electric control signals. Both approaches take advantage of the very high sensitivity of surface plasmon mode dispersion on the refractive index of the dielectric adjacent to metallic nanostructure. Hybridization of plasmonic nanostructures with molecular species exhibiting nonlinear optical response allows the development of metamaterials with high effective nonlinear susceptibility due to the electromagnetic field enhancement related to plasmonic excitations. Signal and control light are then coupled to plasmonic modes that strongly interact via nonlinearity introduced by the hybridization. Concurrently, the use of electro-optically active dielectrics incorporated into plasmonic nanostructures provides the route to control optical signals electronically. Plasmonic metamaterials with tuneable optical properties can be used to control negative refraction and electromagnetic field propagation in various applications in nanophotonics, optoelectronics and optical communications.
NASA Astrophysics Data System (ADS)
Lei, Zeyu; Zhou, Xin; Yang, Jie; He, Xiaolong; Wang, Yalin; Yang, Tian
2017-04-01
Integrating surface plasmon resonance (SPR) devices upon single-mode fiber (SMF) end facets renders label-free biosensing systems that have a dip-and-read configuration, high compatibility with fiber-optic techniques, and in vivo monitoring capability, which however meets the challenge to match the performance of free-space counterparts. We report a second-order distributed feedback (DFB) SPR cavity on an SMF end facet and its application in protein interaction analysis. In our device, a periodic array of nanoslits in a gold film is used to couple fiber guided lightwaves to surface plasmon polaritons (SPPs) with its first order spatial Fourier component, while the second order spatial Fourier component provides DFB to SPP propagation and produces an SPP bandgap. A phase shift section in the DFB structure introduces an SPR defect state within the SPP bandgap, whose mode profile is optimized to match that of the SMF to achieve a reasonable coupling efficiency. We report an experimental refractive index sensitivity of 628 nm RIU-1, a figure-of-merit of 80 RIU-1, and a limit of detection of 7 × 10-6 RIU. The measurement of the real-time interaction between human immunoglobulin G molecules and their antibodies is demonstrated.
Two-dimensional quasistatic stationary short range surface plasmons in flat nanoprisms.
Nelayah, J; Kociak, M; Stéphan, O; Geuquet, N; Henrard, L; García de Abajo, F J; Pastoriza-Santos, I; Liz-Marzán, L M; Colliex, C
2010-03-10
We report on the nanometer scale spectral imaging of surface plasmons within individual silver triangular nanoprisms by electron energy loss spectroscopy and on related discrete dipole approximation simulations. A dependence of the energy and intensity of the three detected modes as function of the edge length is clearly identified both experimentally and with simulations. We show that for experimentally available prisms (edge lengths ca. 70 to 300 nm) the energies and intensities of the different modes show a monotonic dependence as function of the aspect ratio of the prisms. For shorter or longer prisms, deviations to this behavior are identified thanks to simulations. These modes have symmetric charge distribution and result from the strong coupling of the upper and lower triangular surfaces. They also form a standing wave in the in-plane direction and are identified as quasistatic short range surface plasmons of different orders as emphasized within a continuum dielectric model. This model explains in simple terms the measured and simulated energy and intensity changes as function of geometric parameters. By providing a unified vision of surface plasmons in platelets, such a model should be useful for engineering of the optical properties of metallic nanoplatelets.
Mettikolla, Prasad; Calander, Nils; Luchowski, Rafal; Gryczynski, Ignacy; Gryczynski, Zygmunt; Borejdo, Julian
2010-01-01
Familial hypertrophic cardiomyopathy (FHC) is a serious heart disease that often leads to a sudden cardiac death of young athletes. It is believed that the alteration of the kinetics of interaction between actin and myosin causes FHC by making the heart to pump blood inefficiently. We set out to check this hypothesis ex vivo. During contraction of heart muscle, a myosin cross-bridge imparts periodic force impulses to actin. The impulses are analyzed by fluorescence correlation spectroscopy (FCS) of fluorescently labeled actin. To minimize observation volume and background fluorescence, we carry out FCS measurements in surface plasmon coupled emission mode in a reverse Kretschmann configuration. Fluorescence is a result of near-field coupling of fluorophores excited in the vicinity of the metal-coated surface of a coverslip with the surface plasmons propagating in the metal. Surface plasmons decouple on opposite sides of the metal film and emit in a directional manner as far-field p-polarized radiation. We show that the rate of changes of orientation is significantly faster in contracting cardiac myofibrils of transgenic mice than wild type. These results are consistent with the fact that mutated heart muscle myosin translates actin faster in in vitro motility assays. PMID:20210485
Designing metal hemispheres on silicon ultrathin film solar cells for plasmonic light trapping.
Gao, Tongchuan; Stevens, Erica; Lee, Jung-kun; Leu, Paul W
2014-08-15
We systematically investigate the design of two-dimensional silver (Ag) hemisphere arrays on crystalline silicon (c-Si) ultrathin film solar cells for plasmonic light trapping. The absorption in ultrathin films is governed by the excitation of Fabry-Perot TEMm modes. We demonstrate that metal hemispheres can enhance absorption in the films by (1) coupling light to c-Si film waveguide modes and (2) exciting localized surface plasmon resonances (LSPRs). We show that hemisphere arrays allow light to couple to fundamental TEm and TMm waveguide modes in c-Si film as well as higher-order versions of these modes. The near-field light concentration of LSPRs also may increase absorption in the c-Si film, though these resonances are associated with significant parasitic absorption in the metal. We illustrate how Ag plasmonic hemispheres may be utilized for light trapping with 22% enhancement in short-circuit current density compared with that of a bare 100 nm thick c-Si ultrathin film solar cell.
NASA Astrophysics Data System (ADS)
Zhang, Jiatao
2016-10-01
Abstract: Including the shape and size effect, the controllable doping, hetero-composite and surface/interface are the prerequisite of colloidal nanocrystals for exploring their optoelectronic properties, such as fluorescence, plasmon-exciton coupling, efficient electron/hole separation, and enhanced photocatalysis applications. By controlling soft acid-base coordination reactions between cation molecular complexes and colloidal nanocrystals, we showed that chemical thermodynamics could drive nanoscale monocrystalline growth of the semiconductor shell on metal nano-substrates and the substitutional heterovalent doping in semiconductor nanocrystals. We have demonstrated evolution of relative position of Au and II-VI semiconductor in Au-Semi from symmetric to asymmetric configuration, different phosphines initiated morphology engineering, oriented attachment of quantum dots into micrometer nanosheets with synergistic control of surface/interface and doing, which can further lead to fine tuning of plasmon-exciton coupling. Therefore, different hydrogen photocatalytic performance, Plasmon enhanced photocatalysis properties have been achieved further which lead to the fine tuning of plasmon-exciton coupling. Substitutional heterovalent doping here enables the tailoring of optical, electronic properties and photocatalysis applications of semiconductor nanocrystals because of electronic impurities (p-, n-type doping) control. References: (1) J. Gui, J. Zhang*, et al. Angew. Chem. Int. Ed. 2015, 54, 3683. (2) Q. Zhao, J. Zhang*, etc., Adv. Mater. 2014, 26, 1387. (3) J. Liu, Q. Zhao, S. G. Wang*, J. Zhang*, etc., Adv. Mater. 2015, 27-2753-2761. (4) H. Qian, J. Zhang*, etc., NPG Asia Mater. (2015) 7, e152. (5) M. Ji, M. Xu, etc., J. Zhang*, Adv. Mater. 2016, in proof. (6) S. Yu, J. T. Zhang, Y. Tang, M. Ouyang*, Nano Lett. 2015, 15, 6282-6288. (7) J. Zhang, Y. Tang, K. Lee and M. Ouyang*, Science 2010, 327, 1634. (8) J. Zhang, Y. Tang, K. Lee, M. Ouyang*, Nature 2010, 466, 91.
NASA Astrophysics Data System (ADS)
Li, Xiaowei; Minamimoto, Hiro; Murakoshi, Kei
2018-05-01
The vibrational characteristics of ligand-capped lead sulfide (PbS) quantum dots (QDs) were clarified via electrochemical surface-enhanced Raman spectroscopy (EC-SERS) using a hybridized system of gold (Au) nanodimers and PbS QDs under electrochemical potential control. Enhanced electromagnetic field caused by the coupling of QDs with plasmonic Au nanodimers allowed the characteristic behavior of the ligand oleic acid (OA) on the PbS QD surface to be detected under electrochemical potential control. Binding modes between the QDs and OA molecules were characterized using synchronous two-dimensional correlation spectra at distinct electrochemical potentials, confirming that the bidentate bridging mode was probably the most stable mode even under relatively negative potential polarization. Changes in binding modes and molecular orientations resulted in fluctuations in EC-SERS spectra. The present observations strongly recommend the validity of the QD-plasmonic nanostructure coupled system for sensitive molecular detection via EC-SERS.
Chuang, Shih-Hao; Tsung, Cheng-Sheng; Chen, Ching-Ho; Ou, Sin-Liang; Horng, Ray-Hua; Lin, Cheng-Yi; Wuu, Dong-Sing
2015-02-04
In this study, a spin coating process in which the grating structure comprises an Ag nanoparticle layer coated on a p-GaN top layer of InGaN/GaN light-emitting diode (LED) was developed. Various sizes of plasmonic nanoparticles embedded in a transparent conductive layer were clearly observed after the deposition of indium tin oxide (ITO). The plasmonic nanostructure enhanced the light extraction efficiency of blue LED. Output power was 1.8 times the magnitude of that of conventional LEDs operating at 350 mA, but retained nearly the same current-voltage characteristic. Unlike in previous research on surface-plasmon-enhanced LEDs, the metallic nanoparticles were consistently deposited over the surface area. However, according to microstructural observation, ITO layer mixed with Ag-based nanoparticles was distributed at a distance of approximately 150 nm from the interface of ITO/p-GaN. Device performance can be improved substantially by using the three-dimensional distribution of Ag-based nanoparticles in the transparent conductive layer, which scatters the propagating light randomly and is coupled between the localized surface plasmon and incident light internally trapped in the LED structure through total internal reflection.
Tamm-plasmon and surface-plasmon hybrid-mode based refractometry in photonic bandgap structures.
Das, Ritwick; Srivastava, Triranjita; Jha, Rajan
2014-02-15
The transverse magnetic (TM) polarized hybrid modes formed as a consequence of coupling between Tamm plasmon polariton (TM-TPP) mode and surface plasmon polariton (SPP) mode exhibit interesting dispersive features for realizing a highly sensitive and accurate surface plasmon resonance (SPR) sensor. We found that the TM-TPP modes, formed at the interface of distributed Bragg reflector and metal, are strongly dispersive as compared to SPP modes at optical frequencies. This causes an appreciably narrow interaction bandwidth between TM-TPP and SPP modes, which leads to highly accurate sensing. In addition, appropriate tailoring of dispersion characteristics of TM-TPP as well as SPP modes could ensure high sensitivity of a novel SPR platform. By suitably designing the Au/TiO₂/SiO₂-based geometry, we propose a TM-TPP/SPP hybrid-mode sensor and achieve a sensitivity ≥900 nm/RIU with high detection accuracy (≥30 μm⁻¹) for analyte refractive indices varying between 1.330 and 1.345 in 600-700 nm wavelength range. The possibility to achieve desired dispersive behavior in any spectral band makes the sensing configuration an extremely attractive candidate to design sensors depending on the availability of optical sources.
Plasmonic Heterodimers with Binding Site-Dependent Hot Spot for Surface-Enhanced Raman Scattering.
Tian, Yuanyuan; Shuai, Zhenhua; Shen, Jingjing; Zhang, Lei; Chen, Shufen; Song, Chunyuan; Zhao, Baomin; Fan, Quli; Wang, Lianhui
2018-06-01
A novel plasmonic heterodimer nanostructure with a controllable self-assembled hot spot is fabricated by the conjugation of individual Au@Ag core-shell nanocubes (Au@Ag NCs) and varisized gold nanospheres (GNSs) via the biotin-streptavidin interaction from the ensemble to the single-assembly level. Due to their featured configurations, three types of heterogeneous nanostructures referred to as Vertice, Vicinity, and Middle are proposed and a single hot spot forms between the nanocube and nanosphere, which exhibits distinct diversity in surface plasmon resonance effect. Herein, the calculated surface-enhanced Raman scattering enhancement factors of the three types of heterodimers show a narrow distribution and can be tuned in orders of magnitude by controlling the size of GNSs onto individual Au@Ag NCs. Particularly, the Vertice heterodimer with unique configuration can provide extraordinary enhancement of the electric field for the single hot spot region due to the collaborative interaction of lightning rod effect and interparticle plasmon coupling effect. This established relationship between the architecture and the corresponding optical properties of the heterodimers provides the basis for creating controllable platforms which can be exploited in the applications of plasmonic devices, electronics, and biodetection. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
EDITORIAL: Focus on Plasmonics FOCUS ON PLASMONICS
NASA Astrophysics Data System (ADS)
Bozhevolnyi, Sergey; García-Vidal, Francisco
2008-10-01
Plasmonics is an emerging field in optics dealing with the so-called surface plasmons whose extraordinary properties are being both analyzed from a fundamental point of view and exploited for numerous technological applications. Surface plasmons associated with surface electron density oscillations decorating metal-dielectric interfaces were discovered by Rufus Ritchie in the 1950s. Since the seventies, the subwavelength confinement of electromagnetic fields as well as their enhancement inherent to the surface plasmon excitation has been widely used for spectroscopic purposes. Recent advances in nano-fabrication, characterization and modelling techniques have allowed unique properties of these surface electromagnetic modes to be explored with respect to subwavelength field localization and waveguiding, opening the path to truly nanoscale plasmonic optical devices. This area of investigation also has interesting links with research on photonic band gap materials and the field of optical metamaterials. Nowadays, plasmonics can be seen as a mature interdisciplinary area of research in which scientists coming from different backgrounds (chemistry, physics, optics and engineering) strive to discover and exploit new and exciting phenomena associated with surface plasmons. The already made and forthcoming discoveries will have impacts in many fields of science and technology, including not only photonics and materials science but also computation, biology and medicine, among others. This focus issue of New Journal of Physics is intended to cover all the aforementioned capabilities of surface plasmons by presenting a current overview of state-of-the-art advances achieved by the leading groups in this field of research. The below list of articles represents the first contributions to the collection and further additions will appear soon. Focus on Plasmonics Contents Nanoantenna array-induced fluorescence enhancement and reduced lifetimes Reuben M Bakker, Vladimir P Drachev, Zhengtong Liu, Hsiao-Kuan Yuan, Rasmus H Pedersen, Alexandra Boltasseva, Jiji Chen, Joseph Irudayaraj, Alexander V Kildishev and Vladimir M Shalaev Confinement and propagation characteristics of subwavelength plasmonic modes R F Oulton, G Bartal, D F P Pile and X Zhang Theory on the scattering of light and surface plasmon polaritons by arrays of holes and dimples in a metal film F de León-Pérez, G Brucoli, F J García-Vidal and L Martín-Moreno Shaping and manipulation of light fields with bottom-up plasmonic structures C Girard, E Dujardin, G Baffou and R Quidant Gold nanorods and nanospheroids for enhancing spontaneous emission A Mohammadi, V Sandoghdar and M Agio Generation of surface plasmons at single subwavelength slits: from slit to ridge plasmon J-Y Laluet, A Drezet, C Genet and T W Ebbesen Mode mapping of plasmonic stars using TPL microscopy P Ghenuche, S Cherukulappurath and R Quidant Controlling optical transmission through magneto-plasmonic crystals with an external magnetic field G A Wurtz, W Hendren, R Pollard, R Atkinson, L Le Guyader, A Kirilyuk, Th Rasing, I I Smolyaninov and A V Zayats Nanoplasmonic renormalization and enhancement of Coulomb interactions M Durach, A Rusina, V I Klimov and M I Stockman Bulk and surface sensitivities of surface plasmon waveguides Pierre Berini Mapping plasmons in nanoantennas via cathodoluminescence R Gómez-Medina, N Yamamoto, M Nakano and F J García de Abajo Theoretical analysis of gold nano-strip gap plasmon resonators T Søndergaard, J Jung, S I Bozhevolnyi and G Della Valle Surface plasmon polariton-mediated enhancement of the emission of dye molecules on metallic gratings J Gómez Rivas, G Vecchi and V Giannini Nanoshells to nanoeggs to nanocups: optical properties of reduced symmetry core-shell nanoparticles beyond the quasistatic limit Mark W Knight and Naomi J Halas Single emitters coupled to plasmonic nano-antennas: angular emission and collection efficiency T H Taminiau, F D Stefani and N F van Hulst Green's tensor calculations of plasmon resonances of single holes and hole pairs in thin gold films Joan Alegret, Peter Johansson and Mikael Käll Optical and terahertz near-field studies of surface plasmons in subwavelength metallic slits K J Ahn, K G Lee, H W Kihm, M A Seo, A J L Adam, P C M Planken and D S Kim Fluorescence enhancement through modified dye molecule absorption associated with the localized surface plasmon resonances of metallic dimers George Zoriniants and William L Barnes
On-fiber plasmonic interferometer for multi-parameter sensing
Zhang, Zhijian; Chen, Yongyao; Liu, Haijun; ...
2015-01-01
We demonstrate a novel miniature multi-parameter sensing device based on a plasmonic interferometer fabricated on a fiber facet in the optical communication wavelength range. This device enables the coupling between surface plasmon resonance and plasmonic interference in the structure, which are the two essential mechanisms for multi-parameter sensing. We experimentally show that these two mechanisms have distinctive responses to temperature and refractive index, rendering the device the capability of simultaneous temperature and refractive index measurement on an ultra-miniature form factor. A high refractive index sensitivity of 220 nm per refractive index unit (RIU) and a high temperature sensitivity of –60more » pm/ °C is achieved with our device.« less
Light trapping and surface plasmon enhanced high-performance NIR photodetector
Luo, Lin-Bao; Zeng, Long-Hui; Xie, Chao; Yu, Yong-Qiang; Liang, Feng-Xia; Wu, Chun-Yan; Wang, Li; Hu, Ji-Gang
2014-01-01
Heterojunctions near infrared (NIR) photodetectors have attracted increasing research interests for their wide-ranging applications in many areas such as military surveillance, target detection, and light vision. A high-performance NIR light photodetector was fabricated by coating the methyl-group terminated Si nanowire array with plasmonic gold nanoparticles (AuNPs) decorated graphene film. Theoretical simulation based on finite element method (FEM) reveals that the AuNPs@graphene/CH3-SiNWs array device is capable of trapping the incident NIR light into the SiNWs array through SPP excitation and coupling in the AuNPs decorated graphene layer. What is more, the coupling and trapping of freely propagating plane waves from free space into the nanostructures, and surface passivation contribute to the high on-off ratio as well. PMID:24468857
Exciton-Plasmon hybrids for surface catalysis detected by SERS.
Cao, En; Sun, Mengtao; Song, Yu-Zhi; Liang, Wenjie
2018-06-25
Surface plasmons (SPs), the free electrons are collectively excited on the metal surface, which have been successfully used in the analysis chemical and signal detection. Generally, SPs possess two types of decay channels. One of that is radiation decay by reemitting photons. The other way is producing hot electrons with high kinetic energy that named non-radiation, which can be applied in surface catalysis. When the excitation light with special wavelength is irradiated on the surface of pasmonic nanostructure, the strong coupling interaction between electrons and light will occur on that, followed by a series of unique properties. More than a decade, two-dimensional (2D) materials have become a hot topic of research, since the graphene was found in 2004. Recently, the combination of graphene with metal NPs has been shown lots of supernormal advantages in that, such as high stability and catalytic activity, which also has been successfully applied in plasmon-exciton co-driven chemical reactions. © 2018 IOP Publishing Ltd.
Wu, Dong; Yang, Liu; Liu, Chang; Xu, Zenghui; Liu, Yumin; Yu, Zhongyuan; Yu, Li; Chen, Lei; Ma, Rui; Ye, Han
2018-05-10
Plasmonic metasurfaces have attracted much attention in recent years owing to many promising prospects of applications such as polarization switching, local electric field enhancement (FE), near-perfect absorption, sensing, slow-light devices, and nanoantennas. However, many problems in these applications, like only gigahertz switching speeds of electro-optical switches, low-quality factor (Q) of plasmonic resonances, and relatively low figure of merit (FOM) of sensing, severely limit the further development of plasmonic metasurface. Besides, working as nanoantennas, it is also challenging to realize both local electric FE exceeding 100 and near-perfect absorption above 99%. Here, using finite element method and finite difference time domain methods respectively, we firstly report a novel optically tunable plasmonic metasurface based on the hybridization of in-plane near-field coupling and out-of-plane near-field coupling, which provides a good solution to these serious and urgent problems. A physical phenomenon of electromagnetically induced transparency is obtained by the destructive interference between two plasmon modes. At the same time, ultrasharp perfect absorption peaks with ultra-high Q-factor (221.43) is achieved around 1550 nm, which can lead to an ultra-high FOM (214.29) in sensing application. Particularly, by using indium-doped CdO, this metasurface is also firstly demonstrated to be a femtosecond optical reflective polarizer in near-infrared region, possessing an ultra-high polarization extinction ratio. Meanwhile, operating as nanoantennas, this metasurface achieves simultaneously strong local electric FE(|E loc |/|E 0 | > 100) and a near-perfect absorption above 99.9% for the first time, which will benefit a wide range of applications including photocatalytic water splitting and surface-enhanced infrared absorption.
NASA Astrophysics Data System (ADS)
Wu, Dong; Yang, Liu; Liu, Chang; Xu, Zenghui; Liu, Yumin; Yu, Zhongyuan; Yu, Li; Chen, Lei; Ma, Rui; Ye, Han
2018-05-01
Plasmonic metasurfaces have attracted much attention in recent years owing to many promising prospects of applications such as polarization switching, local electric field enhancement (FE), near-perfect absorption, sensing, slow-light devices, and nanoantennas. However, many problems in these applications, like only gigahertz switching speeds of electro-optical switches, low-quality factor (Q) of plasmonic resonances, and relatively low figure of merit (FOM) of sensing, severely limit the further development of plasmonic metasurface. Besides, working as nanoantennas, it is also challenging to realize both local electric FE exceeding 100 and near-perfect absorption above 99%. Here, using finite element method and finite difference time domain methods respectively, we firstly report a novel optically tunable plasmonic metasurface based on the hybridization of in-plane near-field coupling and out-of-plane near-field coupling, which provides a good solution to these serious and urgent problems. A physical phenomenon of electromagnetically induced transparency is obtained by the destructive interference between two plasmon modes. At the same time, ultrasharp perfect absorption peaks with ultra-high Q-factor (221.43) is achieved around 1550 nm, which can lead to an ultra-high FOM (214.29) in sensing application. Particularly, by using indium-doped CdO, this metasurface is also firstly demonstrated to be a femtosecond optical reflective polarizer in near-infrared region, possessing an ultra-high polarization extinction ratio. Meanwhile, operating as nanoantennas, this metasurface achieves simultaneously strong local electric FE(| E loc|/| E 0| > 100) and a near-perfect absorption above 99.9% for the first time, which will benefit a wide range of applications including photocatalytic water splitting and surface-enhanced infrared absorption.
Coherent Femtosecond Spectroscopy and Nonlinear Optical Imaging on the Nanoscale
NASA Astrophysics Data System (ADS)
Kravtsov, Vasily
Optical properties of many materials and macroscopic systems are defined by ultrafast dynamics of electronic, vibrational, and spin excitations localized on the nanoscale. Harnessing these excitations for material engineering, optical computing, and control of chemical reactions has been a long-standing goal in science and technology. However, it is challenging due to the lack of spectroscopic techniques that can resolve processes simultaneously on the nanometer spatial and femtosecond temporal scales. This thesis describes the fundamental principles, implementation, and experimental demonstration of a novel type of ultrafast microscopy based on the concept of adiabatic plasmonic nanofocusing. Simultaneous spatio-temporal resolution on a nanometer-femtosecond scale is achieved by using a near-field nonlinear optical response induced by ultrafast surface plasmon polaritons nanofocused on a metal tip. First, we study the surface plasmon response in metallic structures and evaluate its prospects and limitations for ultrafast near-field microscopy. Through plasmon emission-based spectroscopy, we investigate dephasing times and interplay between radiative and non-radiative decay rates of localized plasmons and their modification due to coupling. We identify a new regime of quantum plasmonic coupling, which limits the achievable spatial resolution to several angstroms but at the same time provides a potential channel for generating ultrafast electron currents at optical frequencies. Next, we study propagation of femtosecond wavepackets of surface plasmon polaritons on a metal tip. In time-domain interferometric measurements we detect group delays that correspond to slowing of the plasmon polaritons down to 20% of the speed of light at the tip apex. This provides direct experimental verification of the plasmonic nanofocusing mechanism and suggests enhanced nonlinear optical interactions at the tip apex. We then measure a plasmon-generated third-order nonlinear optical four-wave mixing response from the tip apex and investigate its microscopic mechanism. Our results reveal a significant contribution to the third order nonlinearity of plasmonic structures due to large near-field gradients associated with nanofocused plasmons. In combination with scanning probe imaging and femtosecond pulse shaping, the nanofocused four-wave mixing response provides a basis for a novel type of ultrafast optical microscopy on the nanoscale. We demonstrate its capabilities by nano-imaging the coherent dynamics of localized plasmonic modes in a rough gold film edge with simultaneous sub-50 nm spatial and sub-5 fs temporal resolution. We capture the coherent decay and extract the dephasing times of individual plasmonic modes. Lastly, we apply our technique to study nanoscale spatial heterogeneity of the nonlinear optical response in novel two-dimensional materials: monolayer and few-layer graphene. An enhanced four-wave mixing signal is revealed on the edges of graphene flakes. We investigate the mechanism of this enhancement by performing nano-imaging on a graphene field-effect transistor with the variable carrier density controlled by electrostatic gating.
Tuning the optical response of a dimer nanoantenna using plasmonic nanoring loads
Panaretos, Anastasios H.; Yuwen, Yu A.; Werner, Douglas H.; Mayer, Theresa S.
2015-01-01
The optical properties of a dimer type nanoantenna loaded with a plasmonic nanoring are investigated through numerical simulations and measurements of fabricated prototypes. It is demonstrated that by judiciously choosing the nanoring geometry it is possible to engineer its electromagnetic properties and thus devise an effective wavelength dependent nanoswitch. The latter provides a mechanism for controlling the coupling between the dimer particles, and in particular to establish a pair of coupled/de-coupled states for the total structure, that effectively results in its dual mode response. Using electron beam lithography the targeted structure has been accurately fabricated and the desired dual mode response of the nanoantenna was experimentally verified. The response of the fabricated structure is further analyzed numerically. This permits the visualization of the electromagnetic fields and polarization surface charge distributions when the structure is at resonance. In this way the switching properties of the plasmonic nanoring are revealed. The documented analysis illustrates the inherent tuning capabilities that plasmonic nanorings offer, and furthermore paves the way towards a practical implementation of tunable optical nanoantennas. Additionally, our analysis through an effective medium approach introduces the nanoring as a compact and efficient solution for realizing nanoscale circuits. PMID:25961804
Fiber Surface Modification Technology for Fiber-Optic Localized Surface Plasmon Resonance Biosensors
Zhang, Qiang; Xue, Chenyang; Yuan, Yanling; Lee, Junyang; Sun, Dong; Xiong, Jijun
2012-01-01
Considerable studies have been performed on the development of optical fiber sensors modified by gold nanoparticles based on the localized surface plasmon resonance (LSPR) technique. The current paper presents a new approach in fiber surface modification technology for biosensors. Star-shaped gold nanoparticles obtained through the seed-mediated solution growth method were found to self-assemble on the surface of tapered optical fibers via amino- and mercapto-silane coupling agents. Transmitted power spectra of 3-aminopropyltrimethoxy silane (APTMS)-modified fiber were obtained, which can verify that the silane coupling agent surface modification method is successful. Transmission spectra are characterized in different concentrations of ethanol and gentian violet solutions to validate the sensitivity of the modified fiber. Assembly using star-shaped gold nanoparticles and amino/mercapto silane coupling agent are analyzed and compared. The transmission spectra of the gold nanoparticles show that the nanoparticles are sensitive to the dielectric properties of the surrounding medium. After the fibers are treated in t-dodecylmercaptan to obtain their transmission spectra, APTMS-modified fiber becomes less sensitive to different media, except that modified by 3-mercaptopropyltrimethoxy silane (MPTMS). Experimental results of the transmission spectra show that the surface modified by the gold nanoparticles using MPTMS is firmer compared to that obtained using APTMS. PMID:22736974
Lee, Bumsu; Liu, Wenjing; Naylor, Carl H; Park, Joohee; Malek, Stephanie C; Berger, Jacob S; Johnson, A T Charlie; Agarwal, Ritesh
2017-07-12
Active control of light-matter interactions in semiconductors is critical for realizing next generation optoelectronic devices with real-time control of the system's optical properties and hence functionalities via external fields. The ability to dynamically manipulate optical interactions by applied fields in active materials coupled to cavities with fixed geometrical parameters opens up possibilities of controlling the lifetimes, oscillator strengths, effective mass, and relaxation properties of a coupled exciton-photon (or plasmon) system. Here, we demonstrate electrical control of exciton-plasmon coupling strengths between strong and weak coupling limits in a two-dimensional semiconductor integrated with plasmonic nanoresonators assembled in a field-effect transistor device by electrostatic doping. As a result, the energy-momentum dispersions of such an exciton-plasmon coupled system can be altered dynamically with applied electric field by modulating the excitonic properties of monolayer MoS 2 arising from many-body effects. In addition, evidence of enhanced coupling between charged excitons (trions) and plasmons was also observed upon increased carrier injection, which can be utilized for fabricating Fermionic polaritonic and magnetoplasmonic devices. The ability to dynamically control the optical properties of a coupled exciton-plasmonic system with electric fields demonstrates the versatility of the coupled system and offers a new platform for the design of optoelectronic devices with precisely tailored responses.
Imaging surface plasmon polaritons using proximal self-assembled InGaAs quantum dots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bracher, Gregor; Schraml, Konrad; Blauth, Mäx
2014-07-21
We present optical investigations of hybrid plasmonic nanosystems consisting of lithographically defined plasmonic Au-waveguides or beamsplitters on GaAs substrates coupled to proximal self-assembled InGaAs quantum dots. We designed a sample structure that enabled us to precisely tune the distance between quantum dots and the sample surface during nano-fabrication and demonstrated that non-radiative processes do not play a major role for separations down to ∼10 nm. A polarized laser beam focused on one end of the plasmonic nanostructure generates propagating surface plasmon polaritons that, in turn, create electron-hole pairs in the GaAs substrate during propagation. These free carriers are subsequently captured bymore » the quantum dots ∼25 nm below the surface, giving rise to luminescence. The intensity of the spectrally integrated quantum dot luminescence is used to image the propagating plasmon modes. As the waveguide width reduces from 5 μm to 1 μm, we clearly observe different plasmonic modes at the remote waveguide end, enabling their direct imaging in real space. This imaging technique is applied to a plasmonic beamsplitter facilitating the determination of the splitting ratio between the two beamsplitter output ports as the interaction length L{sub i} is varied. A splitting ratio of 50:50 is observed for L{sub i}∼9±1 μm and 1 μm wide waveguides for excitation energies close to the GaAs band edge. Our experimental findings are in good agreement with mode profile and finite difference time domain simulations for both waveguides and beamsplitters.« less
Cooperative bi-exponential decay of dye emission coupled via plasmons.
Lyvers, David P; Moazzezi, Mojtaba; de Silva, Vashista C; Brown, Dean P; Urbas, Augustine M; Rostovtsev, Yuri V; Drachev, Vladimir P
2018-06-22
Bi-exponential decay of dye fluorescence near the surface of plasmonic metamaterials and core-shell nanoparticles is shown to be an intrinsic property of the coupled system. Indeed, the Dicke, cooperative states involve two groups of transitions: super-radiant, from the most excited to the ground states and sub-radiant, which cannot reach the ground state. The relaxation in the sub-radiant system occurs mainly due to the interaction with the plasmon modes. Our theory shows that the relaxation leads to the population of the sub-radiant states by dephasing the super-radiant Dicke states giving rise to the bi-exponential decay in agreement with the experiments. We use a set of metamaterial samples consisting of gratings of paired silver nanostrips coated with Rh800 dye molecules, having resonances in the same spectral range. The bi-exponential decay is demonstrated for Au\\SiO 2 \\ATTO655 core-shell nanoparticles as well, which persists even when averaging over a broad range of the coupling parameter.
Plasmonic Manipulation of Light for Sensing and Photovoltaic Applications
NASA Astrophysics Data System (ADS)
Sobhani Khakestar, Heidar
Plasmonics is a successful new field of science and technology that exploits the exclusive optical properties of metallic nanostructures to manipulate and concentrate light at nano-meter length scales. When light hits the surface of gold or silver nanoparticles it can excite collective oscillations of the conduction electrons called surface plasmons. This surface plasmon undergoes two damping processes; it can decay into photon and reemit the plasmon energy as scattered energy or decay into electron-hole pair with the excitation energy equal to the energy of the plasmon resonance, known as absorption. This high energy electron subsequently undergoes into the carrier multiplication and eventually scatters into the electrons with lower energy. We used Finite-Difference Time-Domain (FDTD) and Finite-Element Method (Comsol) to design nanoscale structures to act as nanoantenna for light harvesting and consequently manipulating radiative and absorption properties of them for Sensing and Photovoltaic applications. To manipulate near and far field we designed our structures in a way that the bright and dark plasmon modes overlap and couple to each other. This process is called Fano resonance and introduces a transparency window in the far-field spectra. At the same time it increases the near-field enhancement. We applied the changes in near-field and far-field to SERS (Surface Enhanced Raman Spectroscopy) and LSPR (Localized Surface plasmon Resonance) shift for sensing purposes. We modeled Fano resonances with classical harmonic oscillator and reproduced the same feature with a simple equation of motion. We used this model to replicate scattering spectra from different geometries and explain the cathodoluminescence results obtained from nanoscale gold clusters structure. All of these nanoantenna optical properties and applications are due to the reemission ability of the plasmon energy to the vacuum and confining optical field, but the plasmon energy can decay into a high energy carrier rather than radiation. Photons coupled into metallic nanoantenna excite resonant plasmons, which can decay into energetic, hot electrons injected over a potential barrier at the nanoantenna-semiconductor interface, resulting in a photocurrent. We design a device which the range of its potential applications is extremely diverse. As silicon based detector capable of detecting sub-band gap photons, this device could be used in photovoltaic devices to harvest solar energy. Plasmon generated hot electrons can be used in photocatalytic dissociation of H2 molecules at the room temperature as well. The hot electrons in their higher energy states can populate the antibonding orbital of H2 molecules adsorbed on the metal surface and thus trigger the H2 molecule dissociation. The goal is to demonstrate the high efficiency of metallic photocatalytic systems by detecting the formation of HD molecules from the individual dissociation of two isotopes, H2 and D2. At the end we introduce lightning rod effect in metallic nanostructures and investigated the relation between the geometry properties of micrometer rod antennas and the electromagnetic field enhancement induced due to the lightning rod effect. At long wavelength, metals behave like perfect equipotential conductors and all the field enhancement results from the drop of potentials across the junctions between individual nanoparticles. This phenomenon is called lightning rod effect. By designing proper geometry we were able to utilize this effect to obtain enough electromagnetic enhancements in MIR region of spectrum to observe SEIRA signals from few hemoglobin molecules. Our simulation shows that the field enhancement obtained from this antenna does not depend sensitively on wavelength which is another advantage for SEIRA spectroscopy. We offered an analytical model to explore the coupling between the hemoglobin molecules and the Efield. We used this model to study the location effect of the molecule on the reflection signal. This technique allows us to detect the vibrational mode of molecules such as Hemoglobin in the real time and study their changes when the molecules are exposed to different environmental circumstances.
Babinet to the half: coupling of solid and inverse plasmonic structures.
Hentschel, Mario; Weiss, Thomas; Bagheri, Shahin; Giessen, Harald
2013-09-11
We study the coupling between the plasmonic resonances of solid and inverse metallic nanostructures. While the coupling between solid-solid and inverse-inverse plasmonic structures is well-understood, mixed solid-inverse systems have not yet been studied in detail. In particular, it remains unclear whether or not an efficient coupling is even possible and which prerequisites have to be met. We find that an efficient coupling between inverse and solid resonances is indeed possible, identify the necessary geometrical prerequisites, and demonstrate a novel solid-inverse plasmonic electromagnetically induced transparency (EIT) structure as well as a mixed chiral system. We furthermore show that for the coupling of asymmetric rod-shaped inverse and solid structures symmetry breaking is crucial. In contrast, highly symmetric structures such as nanodisks and nanoholes are straightforward to couple. Our results constitute a significant extension of the plasmonic coupling toolkit, and we thus envision the emergence of a large number of intriguing novel plasmonic coupling phenomena in mixed solid-inverse structures.
NASA Astrophysics Data System (ADS)
Pirunčík, Jiří; Kwiecien, Pavel; Fiala, Jan; Richter, Ivan
2017-05-01
This contribution is focused on the numerical studies of resonant processes in individual plasmonic nanostructures, with the attention particularly given to rectangular nanoparticles and concominant localized surface plasmon resonance processes. Relevant models for the description and anylysis of localized surface plasmon resonance are introduced, in particular: quasistatic approximation, Mie theory and in particular, a generalized (quasi)analytical approach for treating rectangularly shaped nanostructures. The parameters influencing resonant behavior of nanoparticles are analyzed with special interest in morphology and sensor applications. Results acquired with Lumerical FDTD Solutions software, using finite-difference time-domain simulation method, are shown and discussed. Simulations were mostly performed for selected nanostructures composed of finite rectangular nanowires with square cross-sections. Systematic analysis is made for single nanowires with varying length, parallel couple of nanowires with varying gap (cut -wires) and selected dolmen structures with varying gap between one nanowire transversely located with respect to parallel couple of nanowires (in both in-plane and -out-of-plane arrangements). The dependence of resonant peaks of cross-section spectral behavior (absorption, scattering, extinction) and their tunability via suitable structuring and morphology changes are primarily researched. These studies are then followed with an analysis of the effect of periodic arrangements. The results can be usable with respect to possible sensor applications.
Coherent perfect absorption mediated enhancement of transverse spin in a gap plasmon guide
NASA Astrophysics Data System (ADS)
Mukherjee, Samyobrata; Dutta Gupta, Subhasish
2017-01-01
We consider a symmetric gap plasmon guide (a folded Kretschmann configuration) supporting both symmetric and antisymmetric coupled surface plasmons. We calculate the transverse spin under illumination from both the sides like in coherent perfect absorption (CPA), whereby all the incident light can be absorbed to excite one of the modes of the structure. Significant enhancement in the transverse spin is shown to be possible when the CPA dip and the mode excitation are at the same frequency. The enhancement results from CPA-mediated total transfer of the incident light to either of the coupled modes and the associated large local fields. The effect is shown to be robust against small deviations from the symmetric structure. The transverse spin is localized in the structure since in the ambient dielectric there are only incident plane waves lacking any structure.
Rapid and Sensitive Detection of Brain-Derived Neurotrophic Factor with a Plasmonic Chip
NASA Astrophysics Data System (ADS)
Tawa, Keiko; Satoh, Mari; Uegaki, Koichi; Hara, Tomoko; Kojima, Masami; Kumanogoh, Haruko; Aota, Hiroyuki; Yokota, Yoshiki; Nakaoki, Takahiko; Umetsu, Mitsuo; Nakazawa, Hikaru; Kumagai, Izumi
2013-06-01
Plasmonic chips, which are grating replicas coated with thin metal layers and overlayers such as ZnO, were applied in immunosensors to improve their detection sensitivity. Fluorescence from labeled antibodies bound to plasmonic chips can be enhanced on the basis of a grating-coupled surface plasmon resonance (GC-SPR) field. In this study, as one of the representative candidate protein markers for brain disorders, the brain-derived neurotrophic factor (BDNF) was quantitatively measured by sandwich assay on a plasmonic chip and detected on our plasmonic chip in the concentration of 5-7 ng/mL within 40 min. Furthermore, BDNF was detected in the blood sera from three types of mice: wild-type mice and two types of mutant mice. This technique is promising as a new clinical diagnosis tool for brain disorders based on scientific evidence such as blood test results.
NASA Astrophysics Data System (ADS)
Zhao, Jianlin; Zhang, Jiwei; Dai, Siqing; Di, Jianglei; Xi, Teli
2018-02-01
Surface plasmon microscopy (SPM) is widely applied for label-free detection of changes of refractive index and concentration, as well as mapping thin films in near field. Traditionally, the SPM systems are based on the detection of light intensity or phase changes. Here, we present two kinds of surface plasmon holographic microscopy (SPHM) systems for amplitude- and phase-contrast imaging simultaneously. Through recording off-axis holograms and numerical reconstruction, the complex amplitude distributions of surface plasmon resonance (SPR) images can be obtained. According to the Fresnel's formula, in a prism/ gold/ dielectric structure, the reflection phase shift is uniquely decided by refractive index of the dielectric. By measuring the phase shift difference of the reflected light exploiting prism-coupling SPHM system based on common-path interference configuration, monitoring tiny refractive index variation and imaging biological tissue are performed. Furthermore, to characterize the thin film thickness in near field, we employ a four-layer SPR model in which the third film layer is within the evanescent field. The complex reflection coefficient, including the reflectivity and reflection phase shift, is uniquely decided by the film thickness. By measuring the complex amplitude distributions of the SPR images exploiting objective-coupling SPHM system based on common-path interference configuration, the thickness distributions of thin films are mapped with sub-nanometer resolution theoretically. Owing to its high temporal stability, the recommended SPHMs show great potentials for monitoring tiny refractive index variations, imaging biological tissues and mapping thin films in near field with dynamic, nondestructive and full-field measurement capabilities in chemistry, biomedicine field, etc.
Multifrequency multi-qubit entanglement based on plasmonic hot spots
Ren, Jun; Wu, Tong; Zhang, Xiangdong
2015-01-01
The theoretical method to study strong coupling between an ensemble of quantum emitters (QEs) and surface plasmons excited by the nanoparticle cluster has been presented by using a rigorous first-principles electromagnetic Green’s tensor technique. We have demonstrated that multi-qubit entanglements for two-level QEs can be produced at different coupling resonance frequencies, when they locate in the hot spots of the metallic nanoparticle cluster. The duration of quantum beats for such an entanglement can reach two orders longer than that for the entanglement in a photonic cavity. The phenomenon originates from collective coupling resonance excitation of the cluster. At the frequency of single scattering resonance, the entanglement cannot be produced although the single QE spontaneous decay rate is very big. PMID:26350051
Optimally designed gold nanorattles with strong built-in hotspots and weak polarization dependence
NASA Astrophysics Data System (ADS)
Zhang, Xuemin; Wang, Tieqiang; Li, Yunong; Fu, Yu; Guo, Lei
2017-12-01
Localized electromagnetic fields generated by interparticle plasmon coupling suffer greatly from nonreproducibility because they are extremely sensitive to the nanoparticle aggregation status and the incident polarization. Here, we synthesize gold nanorattles that exhibit inherent aggregation-insensitive hotspots due to the intraparticle core-shell plasmon coupling, and investigate the structural effect on the intraparticle coupling strength and its polarization dependence. Through optimizing the structural parameters, we successfully synthesize gold nanorattles with strong built-in hotspots and weak polarization dependence. These aggregation-insensitive and weakly polarization-dependent hotspots make the Raman enhancement from nanorattle aggregates show an unusual weak dependence on the particle aggregation status, which therefore affords the opportunity to fabricate uniform and reproducible surface enhanced Raman scattering substrates.
Optical interactions in a plasmonic particle coupled to a metallic film
NASA Astrophysics Data System (ADS)
Lévêque, Gäetan; Martin, Olivier J. F.
2006-10-01
The interplay between localized surface plasmon (LSP) and surface plasmon-polariton (SPP) is studied in detail in a system composed of a three-dimensional gold particle located at a short distance from a gold thin film. Important frequency shifts of the LSP associated with the particle are observed for spacing distances between 0 and 50 nm. Beyond this distance the LSP and SPP resonances overlap, although some cavity effects between the particle and the film can still be observed. In particular, when the spacing increases the field in the cavity decreases more slowly than one would expect from a simple image dipole interpretation. For short separations the coupling between the particle and the film can produce a dramatic enhancement of the electromagnetic field in the space between them, where the electric field intensity can reach 5000 times that of the illumination field. Several movies show the spectral and time evolutions of the field distribution in the system both in and out of resonance. The character of the different modes excited in the system is studied. They include dipolar and quadrupolar modes, the latter exhibiting essentially a magnetic response.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Zhuan; Yuan, Jiangtan; Zhou, Haiqing
The monolithic integration of electronics and photonics has attracted enormous attention due to its potential applications. A major challenge to this integration is the identification of suitable materials that can emit and absorb light at the same wavelength. In this paper we utilize unique excitonic transitions in WS 2 monolayers and show that WS 2 exhibits a perfect overlap between its absorption and photoluminescence spectra. By coupling WS 2 to Ag nanowires, we then show that WS 2 monolayers are able to excite and absorb surface plasmons of Ag nanowires at the same wavelength of exciton photoluminescence. This resonant absorptionmore » by WS 2 is distinguished from that of the ohmic propagation loss of silver nanowires, resulting in a short propagation length of surface plasmons. Our demonstration of resonant optical generation and detection of surface plasmons enables nanoscale optical communication and paves the way for on-chip electronic–photonic integrated circuits.« less
Nanoplasmonic lenses for bacteria sorting (Presentation Recording)
NASA Astrophysics Data System (ADS)
Zhu, Xiangchao; Yanik, Ahmet A.
2015-08-01
We demonstrate that patches of two dimensional arrays of circular plasmonic nanoholes patterned on gold-titanium thin film enables subwavelength focusing of visible light in far field region. Efficient coupling of the light with the excited surface plasmon at metal dielectric interface results in strong light transmission. As a result, surface plasmon plays an important role in the far field focusing behavior of the nanohole-aperture patches device. Furthermore, the focal length of the focused beam was found to be predominantly dependent on the overall size of the patch, which is in good agreement with that calculated by Rayleigh-Sommerfield integral formula. The focused light beam can be utilized to separate bio-particles in the dynamic range from 0.1 μm to 1 μm through mainly overcoming the drag force induced by fluid flow. In our proposed model, focused light generated by our plasmonic lenses will push the larger bio-particles in size back to the source of fluid flow and allow the smaller particles to move towards the central aperture of the patch. Such a new kind of plasmonic lenses open up possibility of sorting bacterium-like particles with plasmonic nanolenses, and also represent a promising tool in the field of virology.
NASA Astrophysics Data System (ADS)
Ye, Longfang; Xiao, Yifan; Liu, Yanhui; Zhang, Liang; Cai, Guoxiong; Liu, Qing Huo
2016-12-01
We demonstrate a novel route to achieving highly efficient and strongly confined spoof surface plasmon polaritons (SPPs) waveguides at subwavelength scale enabled by planar staggered plasmonic waveguides (PSPWs). The structure of these new waveguides consists of an ultrathin metallic strip with periodic subwavelength staggered double groove arrays supported by a flexible dielectric substrate, leading to unique staggered EM coupling and waveguiding phenomenon. The spoof SPP propagation properties, including dispersion relations and near field distributions, are numerically investigated. Furthermore, broadband coplanar waveguide (CPW) to planar staggered plasmonic waveguide (PSPW) transitions are designed to achieve smooth momentum matching and highly efficient spoof SPP mode conversion. By applying these transitions, a CPW-PSPW-CPW structure is designed, fabricated and measured to verify the PSPW’s propagation performance at microwave frequencies. The investigation results show the proposed PSPWs have excellent performance of deep subwavelength spoof SPPs confinement, long propagation length and low bend loss, as well as great design flexibility to engineer the propagation properties by adjusting their geometry dimensions and material parameters. Our work opens up a new avenue for development of various advanced planar integrated plasmonic devices and circuits in microwave and terahertz regimes.
Ye, Longfang; Xiao, Yifan; Liu, Yanhui; Zhang, Liang; Cai, Guoxiong; Liu, Qing Huo
2016-12-05
We demonstrate a novel route to achieving highly efficient and strongly confined spoof surface plasmon polaritons (SPPs) waveguides at subwavelength scale enabled by planar staggered plasmonic waveguides (PSPWs). The structure of these new waveguides consists of an ultrathin metallic strip with periodic subwavelength staggered double groove arrays supported by a flexible dielectric substrate, leading to unique staggered EM coupling and waveguiding phenomenon. The spoof SPP propagation properties, including dispersion relations and near field distributions, are numerically investigated. Furthermore, broadband coplanar waveguide (CPW) to planar staggered plasmonic waveguide (PSPW) transitions are designed to achieve smooth momentum matching and highly efficient spoof SPP mode conversion. By applying these transitions, a CPW-PSPW-CPW structure is designed, fabricated and measured to verify the PSPW's propagation performance at microwave frequencies. The investigation results show the proposed PSPWs have excellent performance of deep subwavelength spoof SPPs confinement, long propagation length and low bend loss, as well as great design flexibility to engineer the propagation properties by adjusting their geometry dimensions and material parameters. Our work opens up a new avenue for development of various advanced planar integrated plasmonic devices and circuits in microwave and terahertz regimes.
Hybrid photonic-plasmonic crystal nanocavity sensors
NASA Astrophysics Data System (ADS)
Cheng, Pi-Ju; Chiang, Chih-Kai; Chou, Bo-Tsun; Huang, Zhen-Ting; Ku, Yun-Cheng; Kuo, Mao-Kuen; Hsu, Jin-Chen; Lin, Tzy-Rong
2018-02-01
We have investigated a hybrid photonic-plasmonic crystal nanocavity consisting of a silicon grating nanowire adjacent to a metal surface with a gain gap between them. The hybrid plasmonic cavity modes are highly confined in the gap due to the strong coupling of the photonic crystal cavity modes and the surface plasmonic gap modes. Using finite-element method (FEM), guided modes of the hybrid plasmonic waveguide (WG) were numerically determined at a wavelength of 1550 nm. The modal characteristics such as WG confinement factors and modal losses of the fundamental hybrid plasmonic modes were obtained as a function of groove depth at various gap heights. Furthermore, the band structure of the hybrid crystal modes corresponding to a wide band gap of 17.8 THz is revealed. To enclose the optical energy effectively, a single defect was introduced into the hybrid crystal. At a deep subwavelength defect length as small as 270 nm, the resonant mode exhibits a high quality factor of 567 and an ultrasmall mode volume of 1.9 × 10- 3 ( λ/ n eff)3 at the resonance wavelength of 1550 nm. Compared to conventional photonic crystal nanowire cavities in the absence of a metal surface, the factor Q/ V m is significantly enhanced by about 15 times. The designed hybrid photonic-plasmonic cavity sensors exhibit distinguished characteristics such as sensitivity of 443 nm/RIU and figure of merit of 129. The proposed nanocavities open new possibilities for various applications with strong light-matter interaction, such as biosensors and nanolasers.
Plasmon polaritons in cubic lattices of spherical metallic nanoparticles
NASA Astrophysics Data System (ADS)
Lamowski, Simon; Mann, Charlie-Ray; Hellbach, Felicitas; Mariani, Eros; Weick, Guillaume; Pauly, Fabian
2018-03-01
We theoretically investigate plasmon polaritons in cubic lattices of spherical metallic nanoparticles. The nanoparticles, each supporting triply-degenerate localized surface plasmons, couple through the Coulomb dipole-dipole interaction, giving rise to collective plasmons that extend over the whole metamaterial. The latter hybridize with photons forming plasmon polaritons, which are the hybrid light-matter eigenmodes of the system. We derive general analytical expressions to evaluate both plasmon and plasmon-polariton dispersions and the corresponding eigenstates. These are obtained within a Hamiltonian formalism, which takes into account retardation effects in the dipolar interaction between the nanoparticles and considers the dielectric properties of the nanoparticles as well as their surrounding. Within this model we predict polaritonic splittings in the near-infrared to the visible range of the electromagnetic spectrum that depend on polarization, lattice symmetry, and wave-vector direction. Finally, we show that the predictions of our model are in excellent quantitative agreement with conventional finite-difference frequency-domain simulations, but with the advantages of analytical insight and significantly reduced computational cost.
Substrate-induced interfacial plasmonics for photovoltaic conversion
Li, Xinxi; Jia, Chuancheng; Ma, Bangjun; Wang, Wei; Fang, Zheyu; Zhang, Guoqing; Guo, Xuefeng
2015-01-01
Surface plasmon resonance (SPR) is widely used as light trapping schemes in solar cells, because it can concentrate light fields surrounding metal nanostructures and realize light management at the nanoscale. SPR in photovoltaics generally occurs at the metal/dielectric interfaces. A well-defined interface is therefore required to elucidate interfacial SPR processes. Here, we designed a photovoltaic device (PVD) with an atomically flat TiO2 dielectric/dye/graphene/metal nanoparticle (NP) interface for quantitatively studying the SPR enhancement of the photovoltaic conversion. Theoretical and experimental results indicated that the graphene monolayer was transparent to the electromagnetic field. This transparency led to significant substrate-induced plasmonic hybridization at the heterostructure interface. Combined with interparticle plasmonic coupling, the substrate-induced plasmonics concentrated light at the interface and enhanced the photo-excitation of dyes, thus improving the photoelectric conversion. Such a mechanistic understanding of interfacial plasmonic enhancement will further promote the development of efficient plasmon-enhanced solar cells and composite photocatalysts. PMID:26412576
Nanoplasmonic probes of RNA folding and assembly during pre-mRNA splicing
NASA Astrophysics Data System (ADS)
Nguyen, Anh H.; Lee, Jong Uk; Sim, Sang Jun
2016-02-01
RNA splicing plays important roles in transcriptome and proteome diversity. Herein, we describe the use of a nanoplasmonic system that unveils RNA folding and assembly during pre-mRNA splicing wherein the quantification of mRNA splice variants is not taken into account. With a couple of SERS-probes and plasmonic probes binding at the boundary sites of exon-2/intron-2 and intron-2/exon-3 of the pre-mature RNA of the β-globin gene, the splicing process brings the probes into the plasmonic bands. For plasmonic probes, a plasmon shift increase of ~29 nm, corresponding to intron removal and exon-2 and exon-3 connection to form the mRNA molecule, is measured by plasmonic coupling. The increased scattering intensity and surface-enhanced Raman scattering (SERS) fingerprinting reveal the clear dynamics of pre-mRNA splicing. Moreover, a time-resolved experiment of individual RNA molecules exhibited a successful splicing and an inhibited splicing event by 33 μM biflavonoid isoginkgetin, a general inhibitor of RNA splicing. The results suggest that the RNA splicing is successfully monitored with the nanoplasmonic system. Thus, this platform can be useful for studying RNA nanotechnology, biomolecular folding, alternative splicing, and maturation of microRNA.
NASA Astrophysics Data System (ADS)
Panchenko, Evgeniy; Cadusch, Jasper J.; James, Timothy D.; Roberts, Ann
2017-02-01
Metal-semiconductor-metal (MSM) photodiodes are commonly used in ultrafast photoelectronic devices. Recently it was shown that localized surface plasmons can sufficiently enhance photodetector capabilities at both infrared and visible wavelengths. Such structures are of great interest since they can be used for fast, broadband detection. By utilizing the properties of plasmonic structures it is possible to design photodetectors that are sensitive to the polarization state of the incident wave. The direct electrical readout of the polarization state of an incident optical beam has many important applications, especially in telecommunications, bio-imaging and photonic computing. Furthermore, the fact that surface plasmon polaritons can circumvent the diffraction limit, opens up significant opportunities to use them to guide signals between logic gates in modern integrated circuits where small dimensions are highly desirable. Here we demonstrate two MSM photodetectors integrated with aluminum nanoantennas capable of distinguishing orthogonal states of either linearly or circularly polarized light with no additional filters. The localized plasmon resonances of the antennas lead to selective screening of the underlying silicon from light with a particular polarization state. The non-null response of the devices to each of the basis states expands the potential utility of the photodetectors while improving precision. We also demonstrate a design of waveguide-coupled MSM photodetector suitable for planar detection of surface plasmons.
Fiber-coupled dielectric-loaded plasmonic waveguides.
Gosciniak, Jacek; Volkov, Valentyn S; Bozhevolnyi, Sergey I; Markey, Laurent; Massenot, Sébastien; Dereux, Alain
2010-03-01
Fiber in- and out-coupling of radiation guided by dielectric-loaded surface plasmon-polariton waveguides (DLSPPWs) is realized using intermediate tapered dielectric waveguides. The waveguide structures fabricated by large-scale UV-lithography consist of 1-microm-thick polymer ridges tapered from 10-microm-wide ridges deposited directly on a magnesium fluoride substrate to 1-microm-wide ridges placed on a 50-nm-thick and 100-microm-wide gold stripe. Using fiber-to-fiber transmission measurements at telecom wavelengths, the performance of straight and bent DLSPPWs is characterized demonstrating the overall insertion loss below 24 dB, half of which is attributed to the DLSPPW loss of propagation over the 100-microm-long distance.
Plasmons in Dimensionally Mismatched Coulomb Coupled Graphene Systems.
Badalyan, S M; Shylau, A A; Jauho, A P
2017-09-22
We calculate the plasmon dispersion relation for Coulomb coupled metallic armchair graphene nanoribbons and doped monolayer graphene. The crossing of the plasmon curves, which occurs for uncoupled 1D and 2D systems, is split by the interlayer Coulomb coupling into a lower and an upper plasmon branch. The upper branch exhibits an unusual behavior with end points at finite q. Accordingly, the structure factor shows either a single or a double peak behavior, depending on the plasmon wavelength. The new plasmon structure is relevant to recent experiments, its properties can be controlled by varying the system parameters and be used in plasmonic applications.
NASA Astrophysics Data System (ADS)
Degl'Innocenti, R.; Zanotto, S.; Tredicucci, A.; Biasiol, G.; Sorba, L.
2011-12-01
We present the observation of the strong light-matter coupling regime between intersubband transitions of semiconductor quantum wells and the plasmonic-like resonances of a one dimensional metallic grating. Polariton spectra have been recorded in transmission employing a suspended membrane sample and are consistent with theoretical calculations. This arrangement, avoiding the complexity of dispersive substrate, is particularly attractive for the development of time-resolved pump-probe experiments.
Zhang, Zhiyang; Wang, Han; Chen, Zhaopeng; Wang, Xiaoyan; Choo, Jaebum; Chen, Lingxin
2018-08-30
Plasmonic colorimetric sensors have emerged as a powerful tool in chemical and biological sensing applications due to the localized surface plasmon resonance (LSPR) extinction in the visible range. Among the plasmonic sensors, the most famous sensing mode is the "aggregation" plasmonic colorimetric sensor which is based on plasmon coupling due to nanoparticle aggregation. Herein, this review focuses on the newly-developing plasmonic colorimetric sensing mode - the etching or the growth of metal nanoparticles induces plasmon changes, namely, "non-aggregation" plasmonic colorimetric sensor. This type of sensors has attracted increasing interest because of their exciting properties of high sensitivity, multi-color changes, and applicability to make a test strip. Of particular interest, the test strip by immobilization of nanoparticles on the substrate can avoid the influence of nanoparticle auto-aggregation and increase the simplicity in storage and use. Although there are many excellent reviews available that describe the advance of plasmonic sensors, limited attention has been paid to the plasmonic colorimetric sensors based on etching or growth of metal nanoparticles. This review highlights recent progress on strategies and application of "non-aggregation" plasmonic colorimetric sensors. We also provide some personal insights into current challenges associated with "non-aggregation" plasmonic colorimetric sensors and propose future research directions. Copyright © 2018 Elsevier B.V. All rights reserved.
Diffraction limited focusing and routing of gap plasmons by a metal-dielectric-metal lens
Dennis, Brian S.; Czaplewski, David A.; Haftel, Michael I.; ...
2015-08-12
Passive optical elements can play key roles in photonic applications such as plasmonic integrated circuits. Here we experimentally demonstrate passive gap-plasmon focusing and routing in two-dimensions. This is accomplished using a high numerical-aperture metal-dielectric-metal lens incorporated into a planar-waveguide device. Fabrication via metal sputtering, oxide deposition, electron- and focused-ion- beam lithography, and argon ion-milling is reported on in detail. Diffraction-limited focusing is optically characterized by sampling out-coupled light with a microscope. The measured focal distance and full-width-half-maximum spot size agree well with the calculated lens performance. The surface plasmon polariton propagation length is measured by sampling light from multiple out-couplermore » slits.« less
2009-01-01
The Pt nanoparticles (NPs), which posses the wider tunable localized-surface-plasmon (LSP) energy varying from deep ultraviolet to visible region depending on their morphology, were prepared by annealing Pt thin films with different initial mass-thicknesses. A sixfold enhancement of the 357 nm forward emission of ZnMgO was observed after capping with Pt NPs, which is due to the resonance coupling between the LSP of Pt NPs and the band-gap emission of ZnMgO. The other factors affecting the ultraviolet emission of ZnMgO, such as emission from Pt itself and light multi-scattering at the interface, were also discussed. These results indicate that Pt NPs can be used to enhance the ultraviolet emission through the LSP coupling for various wide band-gap semiconductors. PMID:20596433
Multi-Channel Hyperspectral Fluorescence Detection Excited by Coupled Plasmon-Waveguide Resonance
Du, Chan; Liu, Le; Zhang, Lin; Guo, Jun; Guo, Jihua; Ma, Hui; He, Yonghong
2013-01-01
We propose in this paper a biosensor scheme based on coupled plasmon-waveguide resonance (CPWR) excited fluorescence spectroscopy. A symmetrical structure that offers higher surface electric field strengths, longer surface propagation lengths and depths is developed to support guided waveguide modes for the efficient excitation of fluorescence. The optimal parameters for the sensor films are theoretically and experimentally investigated, leading to a detection limit of 0.1 nM (for a Cy5 solution). Multiplex analysis possible with the fluorescence detection is further advanced by employing the hyperspectral fluorescence technique to record the full spectra for every pixel on the sample plane. We demonstrate experimentally that highly overlapping fluorescence (Cy5 and Dylight680) can be distinguished and ratios of different emission sources can be determined accurately. This biosensor shows great potential for multiplex detections of fluorescence analytes. PMID:24129023
NASA Astrophysics Data System (ADS)
Guo, Xiaoxiao; Zhang, Yumeng; Fan, Baolu; Fan, Jiyang
2017-03-01
The quantum confinement effect is one of the crucial physical effects that discriminate a quantum material from its bulk material. It remains a mystery why the 6H-SiC quantum dots (QDs) do not exhibit an obvious quantum confinement effect. We study the photoluminescence of the coupled colloidal system of SiC QDs and Ag nanoparticles. The experimental result in conjunction with the theoretical calculation reveals that there is strong coupling between the localized electron-hole pair in the SiC QD and the localized surface plasmon in the Ag nanoparticle. It results in resonance energy transfer between them and resultant quenching of the blue surface-defect luminescence of the SiC QDs, leading to uncovering of a hidden near-UV emission band. This study shows that this emission band originates from the interband transition of the 6H-SiC QDs and it exhibits a remarkable quantum confinement effect.
Plasmon-organic fiber interactions in diamond-like carbon coated nanostructured gold films
NASA Astrophysics Data System (ADS)
Cielecki, Paweł Piotr; Sobolewska, Elżbieta Karolina; Kostiuočenko, Oksana; Leißner, Till; Tamulevičius, Tomas; Tamulevičius, Sigitas; Rubahn, Horst-Günter; Adam, Jost; Fiutowski, Jacek
2017-11-01
Gold is the most commonly used plasmonic material, however soft and prone to mechanical deformations. It has been shown that the durability of gold plasmonic substrates can be improved by applying a protective diamond-like carbon (DLC) coating. In this work, we investigate the influence of such protective layers on plasmonic interactions in organic-plasmonic hybrid systems. We consider systems, consisting of 1-Cyano-quaterphenylene nanofibers on top of gold nano-square plasmonic arrays, coated with protective layers of varying thickness. We numerically investigate the spectral position of surface plasmon polariton resonances and electric field intensity, as a function of protective layer thickness, using the finite-difference time-domain method. To confirm the numerically indicated field enhancement preservation on top of protective layers, we experimentally map the second harmonic response of organic nanofibers. Subsequently, we characterize the plasmonic coupling between organic nanofibers and underlying substrates, considered as one of the main loss channels for photoluminescence from nanofibers, by time-resolved photoluminescence spectroscopy. Our findings reveal that, for the investigated system, plasmonic interactions are preserved for DLC coatings up to 55 nm. This is relevant for the fabrication of new passive and active plasmonic components with increased durability and hence prolonged lifetime.
Bontempi, Nicolò; Vassalini, Irene; Danesi, Stefano; Ferroni, Matteo; Donarelli, Maurizio; Colombi, Paolo; Alessandri, Ivano
2018-05-03
Silicon is one of the most interesting candidates for plasmon-free surface-enhaced Raman scattering (SERS), because of its high-refractive index and thermal stability. However, here we demonstrate that the alleged thermal stability of silicon nanoshells irradiated by conventional Raman laser cannot be taken for granted. We investigated the opto-thermal behavior of SiO 2 /Si core/shell microbeads (Si-rex) irradiated with three common Raman laser sources (λ = 532, 633, 785 nm) under real working conditions. We obtained an experimental proof of the critical role played by bead size and aggregation in heat and light management, demonstrating that, in the case of strong opto-thermal coupling, the temperature can exceed that of the melting points of both core and shell components. In addition, we also show that weakly coupled beads can be utilized as stable substrates for plasmon-free SERS experiments.
Excitation of multiple surface-plasmon-polariton waves using a compound surface-relief grating
NASA Astrophysics Data System (ADS)
Faryad, Muhammad; Lakhtakia, Akhlesh
2012-01-01
The excitation of multiple surface-plasmon-polariton waves, all of the same frequency but different polarization states, phase speeds, spatial profiles and degrees of localization, by a compound surface-relief grating formed by a metal and a rugate filter, both of finite thickness, was studied using the rigorous coupled-wave approach. Each period of the compound surface-relief grating was chosen to have an integral number of periods of two different simple surface-relief gratings. The excitation of different SPP waves was inferred from the absorptance peaks that were independent of the thickness of the rugate filter. The excitation of each SPP wave could be attributed to either a simple surface-relief grating present in the compound surface-relief grating or to the compound surface-relief grating itself. However, the excitation of SPP waves was found to be less efficient with the compound surface-relief grating than with a simple surface-relief grating.
Submicron bidirectional all-optical plasmonic switches
Chen, Jianjun; Li, Zhi; Zhang, Xiang; Xiao, Jinghua; Gong, Qihuang
2013-01-01
Ultra-small all-optical switches are of importance in highly integrated optical communication and computing networks. However, the weak nonlinear light-matter interactions in natural materials present an enormous challenge to realize efficiently switching for the ultra-short interaction lengths. Here, we experimentally demonstrate a submicron bidirectional all-optical plasmonic switch with an asymmetric T-shape single slit. Sharp asymmetric spectra as well as significant field enhancements (about 18 times that in the conventional slit case) occur in the symmetry-breaking structure. Consequently, both of the surface plasmon polaritons propagating in the opposite directions on the metal surface are all-optically controlled inversely at the same time with the on/off switching ratios of >6 dB for the device lateral dimension of <1 μm. Moreover, in such a submicron structure, the coupling of free-space light and the on-chip bidirectional switching are integrated together. This submicron bidirectional all-optical switch may find important applications in the highly integrated plasmonic circuits. PMID:23486232
SERS study of surface plasmon resonance induced carrier movement in Au@Cu2O core-shell nanoparticles
NASA Astrophysics Data System (ADS)
Chen, Lei; Zhang, Fan; Deng, Xin-Yu; Xue, Xiangxin; Wang, Li; Sun, Yantao; Feng, Jing-Dong; Zhang, Yongjun; Wang, Yaxin; Jung, Young Mee
2018-01-01
A plasmon induced carrier movement enhanced mechanism of surface-enhanced Raman scattering (SERS) was investigated using a charge-transfer (CT) enhancement mechanism. Here, we designed a strategy to study SERS in Au@Cu2O nanoshell nanoparticles with different shell thicknesses. Among the plasmonically coupled nanostructures, Au spheres with Cu2O shells have been of special interest due to their ultrastrong electromagnetic fields and controllable carrier transfer properties, which are useful for SERS. Au@Cu2O nanoshell nanoparticles (NPs) with shell thicknesses of 48-56 nm are synthesized that exhibit high SERS activity. This high activity originates from plasmonic-induced carrier transfer from Au@Cu2O to 4-mercaptobenzoic acid (MBA). The CT transition from the valence band (VB) of Cu2O to the second excited π-π* transition of MBA, and is of b2 electronic symmetry, which was enhanced significantly. The Herzberg-Teller selection rules were employed to predict the observed enhanced b2 symmetry modes. The system constructed in this study combines the long-range electromagnetic effect of Au NPs, localized surface plasmon resonance (LSPR) of the Au@Cu2O nanoshell, and the CT contribution to assist in understanding the SERS mechanism based on LSPR-induced carrier movement in metal/semiconductor nanocomposites.
Huang, Zhulin; Lei, Xing; Liu, Ye; Wang, Zhiwei; Wang, Xiujuan; Wang, Zhaoming; Mao, Qinghe; Meng, Guowen
2015-08-12
Optical fiber-Raman devices integrated with plasmonic nanostructures have promising potentials for in situ probing remote liquid samples and biological samples. In this system, the fiber probe is required to simultaneously demonstrate stable surface enhanced Raman scattering (SERS) signals and high sensitivity toward the target species. Here we demonstrate a generic approach to integrate presynthesized plasmonic nanostructures with tapered fiber probes that are prepared by a dipping-etching method, through reversed electrostatic attraction between the silane couple agent modified silica fiber probe and the nanostructures. Using this approach, both negatively and positively charged plasmonic nanostructures with various morphologies (such as Au nanosphere, Ag nanocube, Au nanorod, Au@Ag core-shell nanorod) can be stably assembled on the tapered silica fiber probes. Attributed to the electrostatic force between the plasmonic units and the fiber surface, the nanostructures do not disperse in liquid samples easily, making the relative standard deviation of SERS signals as low as 2% in analyte solution. Importantly, the detection sensitivity of the system can be optimized by adjusting the cone angle (from 3.6° to 22°) and the morphology of nanostructures assembled on the fiber. Thus, the nanostructures-sensitized optical fiber-Raman probes show great potentials in the applications of SERS-based environmental detection of liquid samples.
Plasmon Resonance Methods in GPCR Signaling and Other Membrane Events
Alves, I.D.; Park, C.K.; Hruby, V.J.
2005-01-01
The existence of surface guided electromagnetic waves has been theoretically predicted from Maxwell’s equations and investigated during the first decades of the 20th century. However, it is only since the late 1960’s that they have attracted the interest of surface physicists and earned the moniker of “surface plasmon”. With the advent of commercially available instruments and well established theories, the technique has been used to study a wide variety of biochemical and biotechnological phenomena. Spectral response of the resonance condition serves as a sensitive indicator of the optical properties of thin films immobilized within a wavelength of the surface. This enhanced surface sensitivity has provided a boon to the surface sciences, and fosters collaboration between surface chemistry, physics and the ongoing biological and biotechnological revolution. Since then, techniques based on surface plasmons such as Surface Plasmon Resonance (SPR), SPR Imaging, Plasmon Waveguide Resonance (PWR) and others, have been increasingly used to determine the affinity and kinetics of a wide variety of real time molecular interactions such as protein-protein, lipid-protein and ligand-protein, without the need for a molecular tag or label. The physical-chemical methodologies used to immobilize membranes at the surface of these optical devices are reviewed, pointing out advantages and limitations of each method. The paper serves to summarize both historical and more recent developments of these technologies for investigating structure-function aspects of these molecular interactions, and regulation of specific events in signal transduction by G-protein coupled receptors (GPCRs). PMID:16101432
Chen, Hao Ming; Chen, Chih Kai; Chen, Chih-Jung; Cheng, Liang-Chien; Wu, Pin Chieh; Cheng, Bo Han; Ho, You Zhe; Tseng, Ming Lun; Hsu, Ying-Ya; Chan, Ting-Shan; Lee, Jyh-Fu; Liu, Ru-Shi; Tsai, Din Ping
2012-08-28
Artificial photosynthesis using semiconductors has been investigated for more than three decades for the purpose of transferring solar energy into chemical fuels. Numerous studies have revealed that the introduction of plasmonic materials into photochemical reaction can substantially enhance the photo response to the solar splitting of water. Until recently, few systematic studies have provided clear evidence concerning how plasmon excitation and which factor dominates the solar splitting of water in photovoltaic devices. This work demonstrates the effects of plasmons upon an Au nanostructure-ZnO nanorods array as a photoanode. Several strategies have been successfully adopted to reveal the mutually independent contributions of various plasmonic effects under solar irradiation. These have clarified that the coupling of hot electrons that are formed by plasmons and the electromagnetic field can effectively increase the probability of a photochemical reaction in the splitting of water. These findings support a new approach to investigating localized plasmon-induced effects and charge separation in photoelectrochemical processes, and solar water splitting was used herein as platform to explore mechanisms of enhancement of surface plasmon resonance.
Marinica, Dana Codruta; Zapata, Mario; Nordlander, Peter; Kazansky, Andrey K.; M. Echenique, Pedro; Aizpurua, Javier; Borisov, Andrei G.
2015-01-01
The ability of localized surface plasmons to squeeze light and engineer nanoscale electromagnetic fields through electron-photon coupling at dimensions below the wavelength has turned plasmonics into a driving tool in a variety of technological applications, targeting novel and more efficient optoelectronic processes. In this context, the development of active control of plasmon excitations is a major fundamental and practical challenge. We propose a mechanism for fast and active control of the optical response of metallic nanostructures based on exploiting quantum effects in subnanometric plasmonic gaps. By applying an external dc bias across a narrow gap, a substantial change in the tunneling conductance across the junction can be induced at optical frequencies, which modifies the plasmonic resonances of the system in a reversible manner. We demonstrate the feasibility of the concept using time-dependent density functional theory calculations. Thus, along with two-dimensional structures, metal nanoparticle plasmonics can benefit from the reversibility, fast response time, and versatility of an active control strategy based on applied bias. The proposed electrical manipulation of light using quantum plasmonics establishes a new platform for many practical applications in optoelectronics. PMID:26824066
NASA Astrophysics Data System (ADS)
Takagi, Kentaro; Nair, Selvakumar V.; Watanabe, Ryosuke; Seto, Keisuke; Kobayashi, Takayoshi; Tokunaga, Eiji
2017-12-01
Surface plasmon polariton (SPP) resonance spectra for noble metals (Au, Ag, and Cu) were comprehensively studied in the Kretschmann attenuated total reflection (ATR) geometry, in the wavelength (λ) range from 300 to 1000 nm with the angle of incidence (θ) ranging from 45 to 60° and the film thickness (d) ranging from 41 to 76 nm. The experimental plasmon resonance spectra were reproduced by a calculation that included the broadening effects as follows: (1) the imaginary part of the bulk dielectric constant, (2) the thickness-dependent radiative coupling of the SPP at the metal-air interface to the prism, (3) the lack of conservation of the wavevector parallel to the interface kx(k||) caused by the surface roughness, (4) scanning λ at a fixed θ (changing both energy and kx at the same time) over the SPP dispersion relation. For Au and Ag, the experimental results were in good agreement with the calculated results using the bulk dielectric constants, showing no film thickness dependence of the plasmon resonance energy. A method to extract the true width of the plasmon resonance from raw ATR spectra is proposed and the results are rigorously compared with those expected from the bulk dielectric function given in the literature. For Au and Ag, the width increases with energy, in agreement with that expected from the relaxation of bulk free electrons including the electron-electron interaction, but there is clear evidence of extra broadening, which is more significant for thinner films, possibly due to relaxation pathways intrinsic to plasmons near the interface. For Cu, the visibility of the plasmon resonance critically depends on the evaporation conditions, and low pressures and fast deposition rates are required. Otherwise, scattering from the surface roughness causes considerable broadening of the plasmon resonance, resulting in an apparently fixed resonance energy without clear incident angle dependence. For Cu, the observed plasmon dispersion agrees well with that expected from the bulk dielectric function even with nominal oxidation of the surface, but the widths at long wavelengths are much larger than those theoretically expected.
2015-01-01
By integrating silicon nanowires (∼150 nm diameter, 20 μm length) with an Ω-shaped plasmonic nanocavity, we are able to generate broadband visible luminescence, which is induced by high order hybrid nanocavity-surface plasmon modes. The nature of this super bandgap emission is explored via photoluminescence spectroscopy studies performed with variable laser excitation energies (1.959 to 2.708 eV) and finite difference time domain simulations. Furthermore, temperature-dependent photoluminescence spectroscopy shows that the observed emission corresponds to radiative recombination of unthermalized (hot) carriers as opposed to a resonant Raman process. PMID:25120156
Plasmonic Switches and Sensors Based on PANI-Coated Gold Nanostructures
NASA Astrophysics Data System (ADS)
Jiang, Nina
Gold nanostructures have been received intense and growing attention due to their unique properties associated with localized surface plasmon resonance (LSPR). The frequency and strength of the LSPR are highly dependent on the dielectric properties of the surrounding environment around gold nanostructures. Such dependence offers the essential basis for the achievement of plasmonic switching and sensing. While the plasmonic response of gold nanostructures is tuned by changing their dielectric environment, the external stimuli inducing the changes in the dielectric environment will be read out through the plasmonic response of gold nanostructures. As a consequence, plasmonic sensors and switches can be engineered by integrating active media that can respond to external stimuli with gold nanostructures. In this thesis research, I have achieved the coating of polyaniline (PANI) ' a conductive polymer, on gold nanostructures, and exploited the application of the core/shell nanostructures in plasmonic switching and sensing. Large modulation of the longitudinal plasmon resonance of single gold nanorods is achieved by coating PANI shell onto gold nanorods to produce colloidal plasmonic switches. The dielectric properties of PANI shell can be tuned by changing the proton-doping levels, which allows for the modulation of the plasmonic response of gold nanorods. The coated nanorods are sparsely housed in a simple microfluidic chamber. HCl and NaOH solutions are alternately pumped through the chamber for the realization of proton doping and dedoping. The plasmonic switching behavior is examined by monitoring the single-particle scattering spectra under the proton-doped and dedoped state of PANI. The coated nanorods exhibit a remarkable switching performance, with the modulation depth and scattering peak shift reaching 10 dB and 100 nm, respectively. Electrodynamic simulations are employed to confirm the plasmon switching behavior. I have further investigated the modulation of a macroscale array of PANI-coated gold nanorods immobilized on glass slides, whose performance is as good as that of the individual PANI-coated gold nanorods. With much smaller amounts of materials, my core/shell nanorod arrays show peak extinction values and maximal modulation depths that are comparable to those of PANI films with micrometer-scale thicknesses. Switching coupled surface plasmon relative to uncoupled one affords the possibility to achieve the modulation over a wide spectral band and with wealthy plasmonic responses. Thus, I have studied the active control of plasmon coupling in homodimers and homotrimers of PANI-coated gold nanospheres (PGNSs). The dimers and trimers are obtained by reducing the surfactant concentration in the polymerization process of PANI. The reversible proton-doping of PANI enables the control of plasmon coupling to succeed. When the plasmon coupling of the dimers is switched, the wavelength shift of the strongest scattering peak shows an exponential increase with the decrease of the interparticle gap distance. A giant wavelength shift of 231 nm is observed for the dimer with a shell thickness of 10 nm and a gap distance of 0.5 nm. Electrodynamic calculations ascertain that the wavelength shift of the strongest scattering peak originates from the tuning of the dipolar bonding plasmon resonance mode in the dimers. The quadrupolar bonding plasmon resonance mode is turned on and off by switching the doped and undoped state of the dimers with gap distances of less than 3 nm. The active tuning of plasmon coupling is further demonstrated with the trimers of PGNSs, which is sensitive to their configurations. In the triangular configuration, larger vertex angles lead to larger wavelength shifts for the plasmonic tuning. Another strategy for controlling the dielectric properties of PANI shell around gold nanostructures is to change its oxidation level. The variation of the oxidation state of PANI leads to the plasmonic peak wavelength shift. Based on this principle, I have fabricated (gold nanosphere core)/(oxidized PANI shell) plasmonic sensors. The sensors have great potential for sensing chemical and biological molecules with reducibility. By using ascorbic acid (AA) as a target analyte, the plasmonic sensor presents high sensing capability. The limit of detection is 0.5 muM, and the linear response range is from 0.5 muM to 10 muM. The limit of detection for my plasmonic sensor is lower than the lowest limit for AA sensors based on liquid chromatography, electrophoresis, and electrochemical method. The sensing performance of my plasmonic sensors is expected to be further improved by optimizing the amount of (gold nanosphere core)/(oxidized PANI shell) structures, or employing other gold nanostructures with higher refractive index sensitivities. I believe that the colloidal (metal core)/(PANI shell) nanostructures pave the way for the fabrication of high-performance, low-cost plasmonic switches as well as for the preparation of advanced, programmable chromic materials for a wide variety of applications, such as smart windows, military anti-counterfeiting and camouflage, environmental sensors and indicators. (Abstract shortened by UMI.).
Performance analysis of higher mode spoof surface plasmon polariton for terahertz sensing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yao, Haizi; Tu, Wanli; Zhong, Shuncong, E-mail: zhongshuncong@hotmail.com
2015-04-07
We investigated the spoof surface plasmon polaritons (SSPPs) on 1D grooved metal surface for terahertz sensing of refractive index of the filling analyte through a prism-coupling attenuated total reflection setup. From the dispersion relation analysis and the finite element method-based simulation, we revealed that the dispersion curve of SSPP got suppressed as the filling refractive index increased, which cause the coupling resonance frequency redshifting in the reflection spectrum. The simulated results for testing various refractive indexes demonstrated that the incident angle of terahertz radiation has a great effect on the performance of sensing. Smaller incident angle will result in amore » higher sensitive sensing with a narrower detection range. In the meanwhile, the higher order mode SSPP-based sensing has a higher sensitivity with a narrower detection range. The maximum sensitivity is 2.57 THz/RIU for the second-order mode sensing at 45° internal incident angle. The proposed SSPP-based method has great potential for high sensitive terahertz sensing.« less
NASA Astrophysics Data System (ADS)
Li, Kuanguo; Jiang, Kang; Zhang, Lan; Wang, Yong; Mao, Lei; Zeng, Jie; Lu, Yonghua; Wang, Pei
2016-04-01
Enhanced electromagnetic field in the tiny gaps between metallic nanostructures holds great promise in optical applications. Herein, we report novel out-of-plane nanogaps composed of micrometer-sized Ag triangular nanoplates (AgTN) on Ag films. Notably, the new coupled plasmonic structure can dramatically enhance the surface-enhanced Raman scattering (SERS) by visible laser excitation, although the micrometer-sized AgTN has localized plasmon resonance at infrared wavelength. This enhancement is derived from the gap plasmon polariton between the AgTN and Ag film, which is excited via the antenna effect of the corner and edge of the AgTN. Systematic SERS studies indicated that the plasmon enhancement was on the order of corner > edge > face. These results were further verified by theoretical simulations. Our device paves the way for rational design of sensitive SERS substrates by judiciously choosing appropriate nanoparticles and optimizing the gap distance.
Hybrid plasmonic systems: from optical transparencies to strong coupling and entanglement
NASA Astrophysics Data System (ADS)
Gray, Stephen K.
2018-02-01
Classical electrodynamics and quantum mechanical models of quantum dots and molecules interacting with plasmonic systems are discussed. Calculations show that just one quantum dot interacting with a plasmonic system can lead to interesting optical effects, including optical transparencies and more general Fano resonance features that can be tailored with ultrafast laser pulses. Such effects can occur in the limit of moderate coupling between quantum dot and plasmonic system. The approach to the strong coupling regime is also discussed. In cases with two or more quantum dots within a plasmonic system, the possibility of quantum entanglement mediated through the dissipative plasmonic structure arises.
Charge carrier dynamics and surface plasmon interaction in gold nanorod-blended organic solar cell
NASA Astrophysics Data System (ADS)
Rana, Aniket; Gupta, Neeraj; Lochan, Abhiram; Sharma, G. D.; Chand, Suresh; Kumar, Mahesh; Singh, Rajiv K.
2016-08-01
The inclusion of plasmonic nanoparticles into organic solar cell enhances the light harvesting properties that lead to higher power conversion efficiency without altering the device configuration. This work defines the consequences of the nanoparticle overloading amount and energy transfer process between gold nanorod and polymer (active matrix) in organic solar cells. We have studied the hole population decay dynamics coupled with gold nanorods loading amount which provides better understanding about device performance limiting factors. The exciton and plasmon together act as an interacting dipole; however, the energy exchange between these two has been elucidated via plasmon resonance energy transfer (PRET) mechanism. Further, the charge species have been identified specifically with respect to their energy levels appearing in ultrafast time domain. The specific interaction of these charge species with respective surface plasmon resonance mode, i.e., exciton to transverse mode of oscillation and polaron pair to longitudinal mode of oscillations, has been explained. Thus, our analysis reveals that PRET enhances the carrier population density in polymer via non-radiative process beyond the concurrence of a particular plasmon resonance oscillation mode and polymer absorption range. These findings give new insight and reveal specifically the factors that enhance and control the performance of gold nanorods blended organic solar cells. This work would lead in the emergence of future plasmon based efficient organic electronic devices.
Charge carrier dynamics and surface plasmon interaction in gold nanorod-blended organic solar cell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rana, Aniket; Lochan, Abhiram; Chand, Suresh
The inclusion of plasmonic nanoparticles into organic solar cell enhances the light harvesting properties that lead to higher power conversion efficiency without altering the device configuration. This work defines the consequences of the nanoparticle overloading amount and energy transfer process between gold nanorod and polymer (active matrix) in organic solar cells. We have studied the hole population decay dynamics coupled with gold nanorods loading amount which provides better understanding about device performance limiting factors. The exciton and plasmon together act as an interacting dipole; however, the energy exchange between these two has been elucidated via plasmon resonance energy transfer (PRET)more » mechanism. Further, the charge species have been identified specifically with respect to their energy levels appearing in ultrafast time domain. The specific interaction of these charge species with respective surface plasmon resonance mode, i.e., exciton to transverse mode of oscillation and polaron pair to longitudinal mode of oscillations, has been explained. Thus, our analysis reveals that PRET enhances the carrier population density in polymer via non-radiative process beyond the concurrence of a particular plasmon resonance oscillation mode and polymer absorption range. These findings give new insight and reveal specifically the factors that enhance and control the performance of gold nanorods blended organic solar cells. This work would lead in the emergence of future plasmon based efficient organic electronic devices.« less
Tunable plasmon-enhanced broadband light harvesting for perovskite solar cells
NASA Astrophysics Data System (ADS)
Que, Meidan; Zhu, Liangliang; Yang, Yawei; Liu, Jie; Chen, Peng; Chen, Wei; Yin, Xingtian; Que, Wenxiu
2018-04-01
In this work, we report a reliable method for synthesizing (Au, Au/Ag core)/(TiO2 shell) nanostructures with their plasmonic wavelengths covering the visible light region for perovskite solar cells. The mono- and bi-metallic core-shell nanoparticles exhibit tunable localized surface plasmon resonance wavelength and function as "light tentacle" to improve the photo-electricity conversion efficiency. Plasmonic nanoparticles with different sizes and shapes, different thicknesses of TiO2 shell and Ag interlayer are found to have a strong influence on the localized surface plasmon resonance enhancement effect. The experimental photovoltaic performance of perovskite solar cells is significantly enhanced when the plasmonic nanoparticles are embedded inmesoporous TiO2 scaffolds. A champion photo-electricity conversion efficiency of 17.85% is achieved with nanoparticles (Au/Ag, λLSPR = 650 nm), giving a 18.7% enhancement over that of the pristine device (15.04%). Finite-difference time-domain simulations show that nanorod Au in mesoporus TiO2 scaffold induces the most intense electromagnetic coupling, and provides a novel emitter for photon flux in mesoporous perovskite solar cells. These theoretical results are consistent with the corresponding experimental those. Thus, enhancing the incident light intensities around 650 nm will be most favorable to the improvement of the photo-electricity conversion efficiency of perovskite solar cells.
Dielectric loaded surface plasmon waveguides for datacom applications
NASA Astrophysics Data System (ADS)
Weeber, J.-C.; Hassan, K.; Nielsen, M. G.; Pitilakis, A.; Tsilipakos, O.; Kriezis, E. E.; Fatome, J.; Finot, C.; Markey, L.; Albrektsen, O.; Bozhevolnyi, S. I.; Dereux, A.
2012-04-01
We rst report on design, fabrication and characterizations of thermally-controlled plasmonic routers relying on the interference of a plasmonic and a photonic mode supported by wide enough dielectric loaded waveguides. We show that, by owing a current through the gold lm on which the dielectric waveguides are deposited, the length of the beating created by the interference of the two modes can be controlled accurately. By operating such a plasmonic dual-mode interferometer switch, symmetric extinction ratio of 7dB are obtained at the output ports of a 2x2 router. Next, we demonstrate ber-to-ber characterizations of stand-alone dielectric loaded surface plasmon waveguide (DLSPPW) devices by using grating couplers. The couplers are comprised of dielectric loaded gratings with carefully chosen periods and duty-cycles close to 0.5. We show that insertion loss below 10dB per coupler can be achieved with optimized gratings. This coupling scheme is used to operate Bit-Error-Rate (BER) measurements for the transmission of a 10Gbits/s signal along a stand-alone straight DLSPPW. We show in particular that these waveguides introduce a rather small BER power penalty (below 1dB) demonstrating the suitability of this plasmonic waveguiding platform for high-bit rate transmission.
Coherent Dirac plasmons in topological insulators
NASA Astrophysics Data System (ADS)
Mondal, Richarj; Arai, Akira; Saito, Yuta; Fons, Paul; Kolobov, Alexander V.; Tominaga, Junji; Hase, Muneaki
2018-04-01
We explore the ultrafast reflectivity response from photo-generated coupled phonon-surface Dirac plasmons in Sb2Te3 topological insulators several quintuple layers thick. The transient coherent phonon spectra obtained at different time frames exhibit a Fano-like asymmetric line shape of the A1g 2 mode, which is attributed to quantum interference between continuumlike coherent Dirac plasmons and phonons. By analyzing the time-dependent asymmetric line shape using the two-temperature model (TTM), it was determined that a Fano-like resonance persisted up to ≈1 ps after photo excitation with a relaxation profile dominated by Gaussian decay at ≤200 fs. The asymmetry parameter could be well described by the TTM for ≥200 fs, therefore suggesting the coherence time of the Dirac plasmon is ≈200 fs.
Optical absorption of suspended graphene based metal plasmonic grating in the visible range
NASA Astrophysics Data System (ADS)
Han, Y. X.; Chen, B. B.; Yang, J. B.; He, X.; Huang, J.; Zhang, J. J.; Zhang, Z. J.
2018-05-01
We employ finite-difference time-domain ( FDTD) method and Raman spectroscopy to study the properties of graphene, which is suspended on a gold/SiO2/Si grating structure with different trench depth of SiO2 layer. The absorption enhancement of suspended graphene and plasmonic resonance of metal grating are investigated in the visible range using 2D FDTD method. Moreover, it is found that the intensity of the Raman features depends very sensitively on the trench depth of SiO2 layer. Raman enhancement in our experiments is attributed to the enhanced optical absorption of graphene by near-field coupling based metal plasmonic grating. The enhanced absorption of suspended graphene modulated by localized surface plasmon resonance (LSPR) offers a potential application for opto-electromechanical devices.
Tunable band-stop plasmonic waveguide filter with symmetrical multiple-teeth-shaped structure.
Wang, Hongqing; Yang, Junbo; Zhang, Jingjing; Huang, Jie; Wu, Wenjun; Chen, Dingbo; Xiao, Gongli
2016-03-15
A nanometeric plasmonic filter with a symmetrical multiple-teeth-shaped structure is investigated theoretically and numerically. A tunable wide bandgap is achievable by adjusting the depth and number of teeth. This phenomenon can be attributed to the interference superposition of the reflected and transmitted waves from each tooth. Moreover, the effects of varying the number of identical teeth are also discussed. It is found that the bandgap width increases continuously with the increasing number of teeth. The finite difference time domain method is used to simulate and compute the coupling of surface plasmon polariton waves with different structures in this Letter. The plasmonic waveguide filter that we propose here may have meaningful applications in ultra-fine spectrum analysis and high-density nanoplasmonic integration circuits.
Diffraction limited focusing and routing of gap plasmons by a metal-dielectric-metal lens
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dennis, Brian S.; Czaplewski, David A.; Haftel, Michael I.
2015-01-01
Passive optical elements can play key roles in photonic applications such as plasmonic integrated circuits. Here we experimentally demonstrate passive gap-plasmon focusing and routing in two-dimensions. This is accomplished using a high numerical-aperture metal-dielectric-metal lens incorporated into a planar-waveguide device. Fabrication via metal sputtering, oxide deposition, electron-and focused-ion-beam lithography, and argon ion-milling is reported on in detail. Diffraction-limited focusing is optically characterized by sampling out-coupled light with a microscope. The measured focal distance and full-width-half-maximum spot size agree well with the calculated lens performance. The surface plasmon polariton propagation length is measured by sampling light from multiple out-coupler slits. (C)more » 2015 Optical Society of America« less
NASA Technical Reports Server (NTRS)
Fernandez, Salvador M.
2011-01-01
A cytometer now under development exploits spatial sorting of sampled cells on a microarray chip followed by use of grating-coupled surface-plasmon-resonance imaging (GCSPRI) to detect the sorted cells. This cytometer on a chip is a prototype of contemplated future miniature cytometers that would be suitable for rapidly identifying pathogens and other cells of interest in both field and laboratory applications and that would be attractive as alternatives to conventional flow cytometers. The basic principle of operation of a conventional flow cytometer requires fluorescent labeling of sampled cells, stringent optical alignment of a laser beam with a narrow orifice, and flow of the cells through the orifice, which is subject to clogging. In contrast, the principle of operation of the present cytometer on a chip does not require fluorescent labeling of cells, stringent optical alignment, or flow through a narrow orifice. The basic principle of operation of the cytometer on a chip also reduces the complexity, mass, and power of the associated laser and detection systems, relative to those needed in conventional flow cytometry. Instead of making cells flow in single file through a narrow flow orifice for sequential interrogation as in conventional flow cytometry, a liquid containing suspended sampled cells is made to flow over the front surface of a microarray chip on which there are many capture spots. Each capture spot is coated with a thin (approximately 50-nm) layer of gold that is, in turn, coated with antibodies that bind to cell-surface molecules characteristic of one the cell species of interest. The multiplicity of capture spots makes it possible to perform rapid, massively parallel analysis of a large cell population. The binding of cells to each capture spot gives rise to a minute change in the index of refraction at the surface of the chip. This change in the index of refraction is what is sensed in GCSPRI, as described briefly below. The identities of the various species in a sample of cells is spatially encoded in the chip by the pattern of capture spots. The number of cells of a particular species is determined from the magnitude of the GCSPRI signal from that spot. GCSPRI as used here can be summarized as follows: The cytometer chip is fabricated with a diffraction grating on its front surface. The chip is illuminated with a light emitting diode (LED) from the front. By proper choice of grating parameters and of the wavelength and the angle of incidence of a laser beam, laser light can be made to be coupled into an electromagnetic mode that resonates with surface plasmons and thus couples light into surface plasmons. Coupling of light into a surface plasmon at a given location reduces the amount of incident light reflected from that location. A change in the index of refraction at the surface of a capture spot gives rise to a change in the resonance condition. Depending on the specific design, the change in the index of refraction could manifest itself as a brightening or darkening, a change in the wavelength needed to excite the plasmon at a given angle of incidence, or a change in the angle of incidence needed to excite the plasmon at a given wavelength. Whereas a multiwavelength laser system with multichannel detection would be needed to detect multiple species in conventional flow cytometry, it suffices to use an LED and a single detector channel in the GCSPRI approach: this contributes significantly to reductions in cost, complexity, size, mass, and power. GCSPRI cytometer chips could be made of plastic and could be mass-produced cheaply by use of molding and other methods adopted from the manufacture of digital video disks. These methods are amenable to a high degree of miniaturization: such additional features as fluidic channels, reaction chambers, and fluid-coupling ports could readily be incorporated into the chips, without incurring substantial additional costs.
NASA Technical Reports Server (NTRS)
Fernandez, Salvador M.
2011-01-01
A cytometer now under development exploits spatial sorting of sampled cells on a microarray chip followed by use of grating-coupled surface-plasmon-resonance imaging (GCSPRI) to detect the sorted cells. This cytometer on a chip is a prototype of contemplated future miniature cytometers that would be suitable for rapidly identifying pathogens and other cells of interest in both field and laboratory applications and that would be attractive as alternatives to conventional flow cytometers. The basic principle of operation of a conventional flow cytometer requires fluorescent labeling of sampled cells, stringent optical alignment of a laser beam with a narrow orifice, and flow of the cells through the orifice, which is subject to clogging. In contrast, the principle of operation of the present cytometer on a chip does not require fluorescent labeling of cells, stringent optical alignment, or flow through a narrow orifice. The basic principle of operation of the cytometer on a chip also reduces the complexity, mass, and power of the associated laser and detection systems, relative to those needed in conventional flow cytometry. Instead of making cells flow in single file through a narrow flow orifice for sequential interrogation as in conventional flow cytometry, a liquid containing suspended sampled cells is made to flow over the front surface of a microarray chip on which there are many capture spots. Each capture spot is coated with a thin (.50-nm) layer of gold that is, in turn, coated with antibodies that bind to cell-surface molecules characteristic of the cell species of interest. The multiplicity of capture spots makes it possible to perform rapid, massively parallel analysis of a large cell population. The binding of cells to each capture spot gives rise to a minute change in the index of refraction at the surface of the chip. This change in the index of refraction is what is sensed in GCSPRI, as described briefly below. The identities of the various species in a sample of cells is spatially encoded in the chip by the pattern of capture spots. The number of cells of a particular species is determined from the magnitude of the GCSPRI signal from that spot. GCSPRI as used here can be summarized as follows: The cytometer chip is fabricated with a diffraction grating on its front surface. The chip is illuminated with a light emitting diode (LED) from the front. By proper choice of grating parameters and of the wavelength and the angle of incidence of a laser beam, laser light can be made to be coupled into an electromagnetic mode that resonates with surface plasmons and thus couples light into surface plasmons. Coupling of light into a surface plasmon at a given location reduces the amount of incident light reflected from that location. A change in the index of refraction at the surface of a capture spot gives rise to a change in the resonance condition. Depending on the specific design, the change in the index of refraction could manifest itself as a brightening or darkening, a change in the wavelength needed to excite the plasmon at a given angle of incidence, or a change in the angle of incidence needed to excite the plasmon at a given wavelength. Whereas a multiwavelength laser system with multichannel detection would be needed to detect multiple species in conventional flow cytometry, it suffices to use an LED and a single detector channel in the GCSPRI approach: this contributes significantly to reductions in cost, complexity, size, mass, and power. GCSPRI cytometer chips could be made of plastic and could be mass-produced cheaply by use of molding and other methods adopted from the manufacture of digital video disks. These methods are amenable to a high degree of miniaturization: such additional features as fluidic channels, reaction chambers, and fluid-coupling ports could readily be incorporated into the chips, without incurring substantial additional costs.
NASA Astrophysics Data System (ADS)
Saiki, Toshiharu
2016-09-01
Control of localized surface plasmon resonance (LSPR) excited on metal nanostructures has drawn attention for applications in dynamic switching of plasmonic devices. As a reversible active media for LSPR control, chalcogenide phase-change materials (PCMs) such as GeSbTe (GST) are promising for high-contrast robust plasmonic switching. Owing to the plasticity and the threshold behavior during both amorphization and crystallization of PCMs, PCM-based LSPR switching elements possess a dual functionality of memory and processing. Integration of LSPR switching elements so that they interact with each other will allow us to build non-von-Neumann computing devices. As a specific demonstration, we discuss the implementation of a cellular automata (CA) algorithm into interacting LSPR switching elements. In the model we propose, PCM cells, which can be in one of two states (amorphous and crystalline), interact with each other by being linked by a AuNR, whose LSPR peak wavelength is determined by the phase of PCM cells on the both sides. The CA program proceeds by irradiating with a light pulse train. The local rule set is defined by the temperature rise in the PCM cells induced by the LSPR of the AuNR, which is subject to the intensity and wavelength of the irradiating pulse. We also investigate the possibility of solving a problem analogous to the spin-glass problem by using a coupled dipole system, in which the individual coupling strengths can be modified to optimize the system so that the exact solution can be easily reached. For this algorithm, we propose an implementation based on an idea that coupled plasmon particles can create long-range spatial correlations, and the interaction of this with a phase-change material allows the coupling strength to be modified.
The Physics and Applications of a 3D Plasmonic Nanostructure
NASA Astrophysics Data System (ADS)
Terranova, Brandon B.
In this work, the dynamics of electromagnetic field interactions with free electrons in a 3D metallic nanostructure is evaluated theoretically. This dissertation starts by reviewing the relevant fundamentals of plasmonics and modern applications of plasmonic systems. Then, motivated by the need to have a simpler way of understanding the surface charge dynamics on complex plasmonic nanostructures, a new plasmon hybridization tree method is introduced. This method provides the plasmonicist with an intuitive way to determine the response of free electrons to incident light in complex nanostructures within the electrostatic regime. Next, a novel 3D plasmonic nanostructure utilizing reflective plasmonic coupling is designed to perform biosensing and plasmonic tweezing applications. By applying analytical and numerical methods, the effectiveness of this nanostructure at performing these applications is determined from the plasmonic response of the nanostructure to an excitation beam of coherent light. During this analysis, it was discovered that under certain conditions, this 3D nanostructure exhibits a plasmonic Fano resonance resulting from the interference of an in-plane dark mode and an out-of-plane bright mode. In evaluating this nanostructure for sensing changes in the local dielectric environment, a figure of merit of 68 is calculated, which is competitive with current localized surface plasmon resonance refractometric sensors. By evaluating the Maxwell stress tensor on a test particle in the vicinity of the nanostructure, it was found that under the right conditions, this plasmonic nanostructure design is capable of imparting forces greater than 10.5 nN on dielectric objects of nanoscale dimensions. The results obtained in these studies provides new routes to the design and engineering of 3D plasmonic nanostructures and Fano resonances in these systems. In addition, the nanostructure presented in this work and the design principles it utilizes have shown performance metrics which make it an important contribution to the fields of LSPR biosensing and plasmonic trapping and force transduction.
Excitation of ultrasharp trapped-mode resonances in mirror-symmetric metamaterials
NASA Astrophysics Data System (ADS)
Yang, Shengyan; Liu, Zhe; Xia, Xiaoxiang; E, Yiwen; Tang, Chengchun; Wang, Yujin; Li, Junjie; Wang, Li; Gu, Changzhi
2016-06-01
We experimentally demonstrate a metamaterial structure composed of two mirror-symmetric joint split ring resonators (JSRRs) that support extremely sharp trapped-mode resonance with a large modulation depth in the terahertz region. Contrary to the regular mirror-arranged SRR arrays in which both the subradiant inductive-capacitive (LC) resonance and quadrupole-mode resonance can be excited, our designed structure features a metallic microstrip bridging the adjacent SRRs, which leads to the emergence of an otherwise inaccessible ultrahigh-quality-factor resonance. The ultrasharp resonance occurs near the Wood-Rayleigh anomaly frequency, and the underlying mechanism can be attributed to the strong coupling between the in-plane propagating collective lattice surface mode originating from the array periodicity and localized surface plasmon resonance in mirror-symmetric coupled JSRRs, which dramatically reduces radiative damping. The ultrasharp resonance shows great potential for multifunctional applications such as plasmonic switching, low-power nonlinear processing, and chemical and biological sensing.
Compact Feeding Network for Array Radiations of Spoof Surface Plasmon Polaritons
NASA Astrophysics Data System (ADS)
Xu, Jun Jun; Yin, Jia Yuan; Zhang, Hao Chi; Cui, Tie Jun
2016-03-01
We propose a splitter feeding network for array radiations of spoof surface plasmon polaritons (SPPs), which are guided by ultrathin corrugated metallic strips. Based on the coupled mode theory, SPP fields along a single waveguide in a certain frequency range can be readily coupled into two adjacent branch waveguides with the same propagation constants. We propose to load U-shaped particles anti-symmetrically at the ends of such two branch waveguides, showing a high integration degree of the feeding network. By controlling linear phase modulations produced by the U-shaped particle chain, we demonstrate theoretically and experimentally that the SPP fields based on bound modes can be efficiently radiated to far fields in broadside direction. The proposed method shows that the symmetry of electromagnetic field modes can be exploited to the SPP transmission network, providing potential solutions to compact power dividers and combiners for microwave and optical devices and systems.
NASA Astrophysics Data System (ADS)
Narang, Prineha
This thesis puts forth a theory-directed approach coupled with spectroscopy aimed at the discovery and understanding of light-matter interactions in semiconductors and metals. The first part of the thesis presents the discovery and development of Zn-IV nitride materials. The commercial prominence in the optoelectronics industry of tunable semiconductor alloy materials based on nitride semiconductor devices, specifically InGaN, motivates the search for earth-abundant alternatives for use in efficient, high-quality optoelectronic devices. II-IV-N2 compounds, which are closely related to the wurtzite-structured III-N semiconductors, have similar electronic and optical properties to InGaN namely direct band gaps, high quantum efficiencies and large optical absorption coefficients. The choice of different group II and group IV elements provides chemical diversity that can be exploited to tune the structural and electronic properties through the series of alloys. The first theoretical and experimental investigation of the ZnSnxGe1--xN2 series as a replacement for III-nitrides is discussed here. The second half of the thesis shows ab-initio calculations for surface plasmons and plasmonic hot carrier dynamics. Surface plasmons, electromagnetic modes confined to the surface of a conductor-dielectric interface, have sparked renewed interest because of their quantum nature and their broad range of applications. The decay of surface plasmons is usually a detriment in the field of plasmonics, but the possibility to capture the energy normally lost to heat would open new opportunities in photon sensors, energy conversion devices and switching. A theoretical understanding of plasmon-driven hot carrier generation and relaxation dynamics in the ultrafast regime is presented here. Additionally calculations for plasmon-mediated upconversion as well as an energy-dependent transport model for these non-equilibrium carriers are shown. Finally, this thesis gives an outlook on the potential of non-equilibrium phenomena in metals and semiconductors for future light-based technologies.
Novel electrostatic attraction from plasmon fluctuations
Lau; Levine; Pincus
2000-05-01
In this Letter, we show that, at low temperatures, zero-point fluctuations of the plasmon modes of two mutually coupled 2D planar Wigner crystals give rise to a novel long-range attractive force. For the case where the distance d between two planar surfaces is large, this attractive force has an unusual power-law decay, which scales as d(-7/2), unlike other fluctuation-induced forces. Specifically, we note that its range is longer than the "standard" zero-temperature van der Waals interaction. This result may, in principle, be observed in bilayer electronic systems and provides insight into the nature of correlation effects for highly charged surfaces.
Mass transport on adsorbate multilayers studied by surface plasmon polariton wave excitation
NASA Astrophysics Data System (ADS)
Wang, X.; Fei, Y. Y.; Zhu, X. D.
2011-12-01
We excited surface-plasmon polariton waves (SPPW) on Cu(111) by coupling a monochromatic optical beam with a xenon multilayer thickness grating on the metal. The SPPW excitation was detected with an angle-resolved oblique-incidence reflectivity difference technique (OI-RD). The amplitude of the resonance OI-RD signal was a quadratic function of the grating modulation depth. By monitoring the decay of the resonance OI-RD signal as a function of time and temperature, we were able to study the mass transport of xenon that plays a key role in the annealing of a "rough" Xe multilayer crystalline film.
Volkov, Valentyn S; Han, Zhanghua; Nielsen, Michael G; Leosson, Kristjan; Keshmiri, Hamid; Gosciniak, Jacek; Albrektsen, Ole; Bozhevolnyi, Sergey I
2011-11-01
We report on the realization of long-range dielectric-loaded surface plasmon polariton waveguides (LR-DLSPPWs) consisting of straight and bent subwavelength dielectric ridges deposited on thin and narrow metal stripes supported by a dielectric buffer layer covering a low-index substrate. Using imaging with a near-field optical microscope and end-fire coupling with a tapered fiber connected to a tunable laser at telecommunication wavelengths (1425-1545 nm), we demonstrate low-loss (propagation length ∼500 μm) and well-confined (mode width ∼1 μm) LR-DLSPPW mode guiding and determine the propagation and bend loss.
Plasmonic core-satellite assemblies with high stability and yield (Conference Presentation)
NASA Astrophysics Data System (ADS)
Huang, Li-Ching; Lin, Tien-Hsin; Liu, Zhi-Yan; Chen, Jyun-Hao; Wang, Yi-Chen; Chen, Shiuan-Yeh
2016-09-01
Plasmonic structures are attractive due to their optical properties in the near-field and far-field. In the near-field, the enhanced field they generated strongly interacts with materials in proximity to the surface and even produces the quantum hybrid states in the strong coupling regime. In the far-field, the larger scattering cross section of plasmonic particles provides better contrast for tissue imaging. In addition, the strong absorption can generate substantial amount of heat for cancer cell elimination. These optical properties are usually engineered through tuning the size and morphology of individual nanoparticles by various chemical synthesis methods. The alternative way is to use coupled structure based on existing particles. The molecule-linked structure is a common way for 3D plasmonic materials. However, to produce a stable coupled structure in the solution phase is challenging. The formation of linkage between linker molecules is usually time-consuming and at low efficiency. Increasing the concentration of linker molecules may raise the reaction speed but also result in the random aggregation of particles. In this work, a polyelectrolyte coating is used to connect spherical nanoparticles of different sizes to form core-satellite assemblies (CSA). The coupled core-satellite structure is formed almost immediately after the solutions of two particles are mixed. The output efficiency is nearly 100%. The CSA is robust under the additional silica shell coating and strong laser illumination. The stability of this CSA is confirmed by the Raman spectra and this assembly can potentially be used as Raman tags.
Surface Plasmon Polariton Dependence on Metal Surface Morphology
2007-11-13
is equipped with a high efficiency collector consisting of a parabolic mirror and light guide (2, Fig. 8), which is directly coupled to the... compound of bφ = 0.7 eV and all other values as previously defined, a linear decrease in sheet charge is expected with a maximum value at Vg=0 and
Multiscale Modeling of Plasmon-Exciton Dynamics of Malachite Green Monolayers on Gold Nanoparticles
NASA Astrophysics Data System (ADS)
Smith, Holden; Karam, Tony; Haber, Louis; Lopata, Kenneth
A multi-scale hybrid quantum/classical approach using classical electrodynamics and a collection of discrete two level quantum system is used to investigate the coupling dynamics of malachite green monolayers adsorbed to the surface of a spherical gold nanoparticle (NP). This method utilizes finite difference time domain (FDTD) to describe the plasmonic response of the NP and a two-level quantum description for the molecule via the Maxwell/Liouville equation. The molecular parameters are parameterized using CASPT2 for the energies and transition dipole moments, with the dephasing lifetime fit to experiment. This approach is suited to simulating thousands of molecules on the surface of a plasmonic NP. There is good agreement with experimental extinction measurements, predicting the plasmon and molecule depletions. Additionally, this model captures the polariton peaks overlapped with a Fano-type resonance profile observed in the experimental extinction measurements. This technique shows promise for modeling plasmon/molecule interactions in chemical sensing and light harvesting in multi-chromophore systems. This material is based upon work supported by the National Science Foundation under the NSF EPSCoR Cooperative Agreement No. EPS-1003897 and the Louisiana Board of Regents Research Competitiveness Subprogram under Contract Number LEQSF(2014-17)-RD-A-0.
Multiscale Modeling of Plasmon-Exciton Dynamics of Malachite Green Monolayers on Gold Nanoparticles
NASA Astrophysics Data System (ADS)
Smith, Holden; Karam, Tony; Haber, Louis; Lopata, Kenneth
A multi-scale hybrid quantum/classical approach using classical electrodynamics and a collection of discrete two-level quantum system is used to investigate the coupling dynamics of malachite green monolayers adsorbed to the surface of a spherical gold nanoparticle (NP). This method utilizes finite difference time domain (FDTD) to describe the plasmonic response of the NP and a two-level quantum description for the molecule via the Maxwell/Liouville equation. The molecular parameters are parameterized using CASPT2 for the energies and transition dipole moments, with the dephasing lifetime fit to experiment. This approach is suited to simulating thousands of molecules on the surface of a plasmonic NP. There is good agreement with experimental extinction measurements, predicting the plasmon and molecule depletions. Additionally, this model captures the polariton peaks overlapped with a Fano-type resonance profile observed in the experimental extinction measurements. This technique shows promise for modeling plasmon/molecule interactions in chemical sensing and light harvesting in multi-chromophore systems. This material is based upon work supported by the National Science Foundation under the NSF EPSCoR Cooperative Agreement No. EPS-1003897 and by the Louisiana Board of Regents Research Competitiveness Subprogram under Contract Number LEQSF(2014-17)-RD-A-0.
NASA Astrophysics Data System (ADS)
Heilman, Alexander Lee
Optical microscopy and spectroscopy are invaluable tools for the physical and chemical characterization of materials and surfaces in a wide range of scientific disciplines. However, the application of conventional optical methods in the study of nanomaterials is inherently limited by diffraction. Tip-enhanced near-field optical microscopy (TENOM) is a hybrid technique that marries optical spectroscopy with scanning probe microscopy to overcome the spatial resolution limit imposed by diffraction. By coupling optical energy into the plasmonic modes of a sharp metal probe tip, a strong, localized optical field is generated near the tip's apex and is used to enhance spectroscopic emissions within a sub-diffraction-limited volume. In this thesis, we describe the design, construction, validation, and application of a custom TENOM instrument with a unique attenuated total reflectance (ATR)-geometry excitation/detection system. The specific goals of this work were: (i) to develop a versatile TENOM instrument capable of investigating a variety of optical phenomena at the nanoscale, (ii) to use the instrument to demonstrate chemical interrogation of surfaces with sub-diffraction-limited spatial resolution (i.e., at super resolution), (iii) to apply the instrument to study plasmonic phenomena that influence spectroscopic enhancement in TENOM measurements, and (iv) to leverage resulting insights to develop systematic improvements that expand the ultimate capabilities of near-field optical interrogation techniques. The TENOM instrument described herein is comprised of three main components: an atomic force microscope (AFM), a side-on confocal Raman microscope, and a novel ATR excitation/detection system. The design of each component is discussed along with the results of relevant validation experiments, which were performed to rigorously assess each component's performance. Finite-difference time-domain (FDTD) optical simulations were also developed and used extensively to evaluate the results of validation studies and to optimize experimental design and instrument performance. By combining and synchronizing the operation of the instrument's three components, we perform a variety of near-field optical experiments that demonstrate the instrument's functionality and versatility. ATR illumination is combined with a plasmonic AFM tip to show that: (i) the tip can quantitatively transduce the optical near-field (evanescent waves) above the surface by scattering photons into the far-field, (ii) the ATR geometry enables excitation and characterization of surface plasmon polaritons (SPPs), whose associated optical fields are shown to enhance Raman scattering from a thin layer of copper phthalocyanine (CuPc), and (iii) SPPs can be used to plasmonically excite the tip for super-resolution chemical imaging of patterned CuPc via tip-enhanced Raman spectroscopy (TERS). ATR-illumination TERS is quantitatively compared with side-on illumination. In both cases, spatial resolution was better than 40 nm and tip-on/tip-off Raman enhancement factors were >6500. Furthermore, ATR illumination was shown to provide similar Raman signal levels at lower "effective'' pump powers due to additional optical energy delivered by SPPs to the active region in the tip-surface gap. We also investigate the sensitivity of the TENOM instrument to changes in the plasmonic properties of the tip-surface system in the strongly-coupled regime at small tip-surface separations. Specifically, we demonstrate detection of a resonant plasmonic tip-surface mode (a gap plasmon) that dramatically influences the optical response of the system, and we use experimental results and FDTD simulations to support a hypothesized mechanism. Moreover, we confirm that the gap plasmon resonance has a strong effect on the enhancement of both fluorescence and Raman scattering, and we propose that this phenomenon could ultimately be exploited to improve sensitivity in super-resolution chemical imaging measurements. Finally, we recommend a straightforward modification to the TENOM instrument that could enable future application of these gap-mode plasmon resonances to increase spectroscopic enhancements by an order of magnitude.
NASA Astrophysics Data System (ADS)
Paliwal, Ayushi; Sharma, Anjali; Tomar, Monika; Gupta, Vinay
2016-04-01
Long range surface plasmon resonance (LRSPR) when exploited for sensing purpose exhibit less losses in comparison to the sensors based on conventional SPR technique leading to the development of highly sensitive refractive index sensor. In order to excite long range surface plasmon (LRSP) mode, a high refractive index prism is used as coupler and a thin metal layer is sandwiched between a dielectric having similar refractive index with that of another semi-infinite dielectric. LRSP mode has been excited in symmetric configuration where metal (Au) layer is sandwiched between the two similar refractive index dielectrics (LiF thin film and a fixed concentration of sugar solution) for realization of a refractive index sensor. When the concentration of sugar solution is slightly increased from 30% to 40%, the LRSPR angle increases from 64.6° to 67.9° and the sensor is found to be highly sensitive with sensitivity of 0.0911 °/(mg/dl).
Plasmon enhanced Raman scattering effect for an atom near a carbon nanotube
Bondarev, I. V.
2015-01-01
Quantum electrodynamics theory of the resonance Raman scattering is developed for an atom in a close proximity to a carbon nanotube. The theory predicts a dramatic enhancement of the Raman intensity in the strong atomic coupling regime to nanotube plasmon near-fields. This resonance scattering is a manifestation of the general electromagnetic surface enhanced Raman scattering effect, and can be used in designing efficient nanotube based optical sensing substrates for single atom detection, precision spontaneous emission control, and manipulation.
NASA Astrophysics Data System (ADS)
Kuiri, Probodh K.; Pramanik, Subhamay
2018-04-01
For an emitter based on bandgap emission, defect mediated emission has always been considered as the most important loss. Here, a novel approach which can overcome such emission loss is proposed using films of ZnO nanoparticles (NPs) on Ag NPs embedded in silica. The effects of the size of Ag NPs on the enhancement of ultra-violet (UV) photoluminescence (PL) of ZnO NPs for such a system have been studied. For the ZnO NPs without Ag NPs, two emission bands have been seen: one in the UV region and the other one in the visible region. This UV PL emission intensity has been seen to increase significantly with a drastic reduction of the visible PL emission intensity in the case of the sample containing ZnO NPs on silica embedded Ag NPs. A linear increase in UV emission with increase in the size of Ag NPs has been found. For the largest size of Ag NPs (˜10 nm, considered in the present study), the PL emission enhancement becomes about 4 times higher than that of sample without Ag NPs. The observed enhancement of the UV PL emission was caused by coupling between spontaneous emission in ZnO and surface plasmons of Ag. The larger Ag NPs provided a larger scattering cross section in coupling surface plasmons to light leading to an increase in UV emission. Thus, it is possible to convert the useless defect emission to the useful excitonic emission with a large enhancement factor.
Ahmadivand, Arash; Sinha, Raju; Gerislioglu, Burak; Karabiyik, Mustafa; Pala, Nezih; Shur, Michael
2016-11-15
We experimentally and numerically analyze the charge transfer THz plasmons using an asymmetric plasmonic assembly of metallic V-shaped blocks. The asymmetric design of the blocks allows for the excitation of classical dipolar and multipolar modes due to the capacitive coupling. Introducing a conductive microdisk between the blocks, we facilitated the excitation of the charge transfer plasmons and studied their characteristics along with the capacitive coupling by varying the size of the disk.
Coupling of Luminescent Solar Concentrators to Plasmonic Solar Cells
NASA Astrophysics Data System (ADS)
Wang, Shu-Yi
To make inexpensive solar cells is a continuous goal for solar photovoltaic (PV) energy industry. Thin film solar cells of various materials have been developed and continue to emerge in order to replace bulk silicon solar cells. A thin film solar cell not only uses less material but also requires a less expensive refinery process. In addition, other advantages coming along with small thickness are higher open circuit voltage and higher conversion efficiency. However, thin film solar cells, especially those made of silicon, have significant optical losses. In order to address this problem, this thesis investigates the spectral coupling of thin films PV to luminescent solar concentrators (LSC). LSC are passive devices, consisting of plastic sheets embedded with fluorescent dyes which absorb part of the incoming radiation spectrum and emit at specific wavelength. The emitted light is concentrated by total internal reflection to the edge of the sheet, where the PVs are placed. Since the light emitted from the LSC edge is usually in a narrow spectral range, it is possible to employ diverse strategies to enhance PV absorption at the peak of the emission wavelength. Employing plasmonic nanostructures has been shown to enhance absorption of thin films via forward scattering, diffraction and localized surface plasmon. These two strategies are theoretically investigated here for improving the absorption and elevating the output power of a thin film solar cell. First, the idea of spectral coupling of luminescent solar concentrators to plasmonic solar cells is introduced to assess its potential for increasing the power output. This study is carried out employing P3HT/PC60BM organic solar cells and LSC with Lumogen Red dyes. A simplified spectral coupling analysis is employed to predict the power density, considering the output spectrum of the LSC equivalent to the emission spectrum of the dye and neglecting any angular dependence. Plasmonic tuning is conducted to enhance absorption at the emission peak of the dye. A factorial increase in the output power density of coupled PV as compared to PV exposed directly to solar spectrum is observed for high light concentration on the edge. These initial results motivated a more in-depth study of coupled LSC-PV system, which took into account the radiative transport inside the realistic LSC. These investigations were carried out on LSCs using Lumogen Red305 and Rhodamine 6G dyes coupled to pristine and plasmonic ultra-thin film silicon solar cells. Prediction based on detailed balance shows that the coupled LSC-plasmonic solar cell can generate 63.7 mW/cm2 with a photocurrent density of 71.3 mA/cm2 which is higher than that of cSi solar cells available on current market. The second part of the thesis focuses on PV absorption enhancement techniques. First, the effect of vertical positioning of plasmonic nanostructures on absorption enhancement was theoretically investigated to understand which one of the three mechanisms usually responsible for the enhancement (forward scattering, diffraction and localized surface plamson) plays the dominant role. Simulation results suggested that the maximum enhancement occurred when placing the nanostructures in the rear side of the cell because of longer path length due to scattering. The experimental effort then switched focus on substrate patterning, which is a less expensive alternative to plasmonic absorption enhancement. Specifically, a nanostructured substrate was prepared by a simple electrochemical process based on two-step aluminum anodization technique. The absorption of thin film silicon deposited on these substrates showed a broadband enhancement. The overall photocurrent density was up to 40% higher than that of films deposited on flat substrates. In conclusion, the studies carried out in this thesis indicate that spectral coupling of LSCs to thin film solar cells could lead to significant improvements in PV output power density. Moreover, while the absorption of thin film solar cells can be enhanced by plasmonic nanostructures, it is shown that alternative methods, such as direct deposition of the films on inexpensively nanostructured substrates could also be employed to obtain significant enhancements. Combining these strategies may lead to inexpensive solar power harvesting systems with significant economic benefits. These strategies are not material-specific but applicable to a wide range of thin film solar cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Kuangcai; Lin, Chia -Cheng; Vela, Javier
In this study, three-layer core–shell plasmonic nanorods (Au/Ag/SiO 2–NRs), consisting of a gold nanorod core, a thin silver shell, and a thin silica layer, were synthesized and used as optical imaging probes under a differential interference contrast microscope for single particle orientation and rotational tracking. The localized surface plasmon resonance modes were enhanced upon the addition of the silver shell, and the anisotropic optical properties of gold nanorods were maintained. The silica coating enables surface functionalization with silane coupling agents and provides enhanced stability and biocompatibility. Taking advantage of the longitudinal LSPR enhancement, the orientation and rotational information of themore » hybrid nanorods on synthetic lipid bilayers and on live cell membranes were obtained with millisecond temporal resolution using a scientific complementary metal-oxide-semiconductor camera. The results demonstrate that the as-synthesized hybrid nanorods are promising imaging probes with improved sensitivity and good biocompatibility for single plasmonic particle tracking experiments in biological systems.« less
NASA Astrophysics Data System (ADS)
Glinka, Yuri D.; Babakiray, Sercan; Johnson, Trent A.; Holcomb, Mikel B.; Lederman, David
2016-09-01
Low-energy collective electronic excitations exhibiting sound-like linear dispersion have been intensively studied both experimentally and theoretically for a long time. However, coherent acoustic plasmon modes appearing in time-domain measurements are rarely observed due to Landau damping by the single-particle continua. Here we report on the observation of coherent acoustic Dirac plasmon (CADP) modes excited in indirectly (electrostatically) opposite-surface coupled films of the topological insulator Bi2Se3. Using transient second-harmonic generation, a technique capable of independently monitoring the in-plane and out-of-plane electron dynamics in the films, the GHz-range oscillations were observed without corresponding oscillations in the transient reflectivity. These oscillations were assigned to the transverse magnetic and transverse electric guided CADP modes induced by the evanescent guided Lamb acoustic waves and remained Landau undamped due to fermion tunnelling between the opposite-surface Dirac states.
Extending the high-order-harmonic spectrum using surface plasmon polaritons
NASA Astrophysics Data System (ADS)
Ebadian, H.; Mohebbi, M.
2017-08-01
Nanoparticle assisted high-order-harmonic generation by low-intensity ultrashort laser pulses in hydrogen atomic gas is studied. This work is based on surface plasmon-polariton coupling in metal-insulator-metal structures. The necessary laser intensity is provided by enhancement of the incident laser power in the vicinity of bowtie nanoparticles installed on an insulator-metal structure. The inhomogeneous electric field distribution in the Au nanobowtie gap region is investigated. Simulations show that the insulator layer installed on the Au metal film that supports the plasmon-polariton interactions has a dramatic effect on the field enhancement factor. High-order-harmonic generation cutoffs for different arrangements are calculated and results show that the metal-insulator-metal structure is an excellent device for high-order-harmonic generation purposes. Also, the harmonic cutoff order is extended to more than 170, which is a considerable value and will be an efficient source for extreme ultraviolet radiation.
NASA Astrophysics Data System (ADS)
Danilov, Artem; Tselikov, Gleb; Wu, Fan; Kravets, Vasyl G.; Ozerov, Igor; Bedu, Frederic; Grigorenko, Alexander N.; Kabashin, Andrei V.
2018-02-01
We investigate conditions of excitation and properties of Plasmonic Surface Lattice Resonances (PSLR) over glass substrate-supported Au nanoparticle dimers ( 100-200 nm) arranged in a periodic metamaterial lattice, in Attenuated Total Reflection (ATR) optical excitation geometry, and assess their sensitivities to variations of refractive index (RI) of the adjacent sample dielectric medium. We show that spectral sensitivity of PSLR to RI variations is determined by the lattice periodicity ( 320 nm per RIU change in our case), while ultranarrow resonance lineshapes (down to a few nm full-widthat-half-maximum) provide very high figure-of-merit values evidencing the possibility of ultrasensitive biosensing measurements. Combining advantages of nanoscale architectures, including a strong concentration of electric field, the possibility of manipulation at the nanoscale etc, and high phase and spectral sensitivities, PSLRs promise a drastic advancement of current state-of-the-art plasmonic biosensing technology.
Guo, Xiaoning; Hao, Caihong; Jin, Guoqiang; Zhu, Huai-Yong; Guo, Xiang-Yun
2014-02-10
Copper is a low-cost plasmonic metal. Efficient photocatalysts of copper nanoparticles on graphene support are successfully developed for controllably catalyzing the coupling reactions of aromatic nitro compounds to the corresponding azoxy or azo compounds under visible-light irradiation. The coupling of nitrobenzene produces azoxybenzene with a yield of 90 % at 60 °C, but azobenzene with a yield of 96 % at 90 °C. When irradiated with natural sunlight (mean light intensity of 0.044 W cm(-2) ) at about 35 °C, 70 % of the nitrobenzene is converted and 57 % of the product is azobenzene. The electrons of the copper nanoparticles gain the energy of the incident light through a localized surface plasmon resonance effect and photoexcitation of the bound electrons. The excited energetic electrons at the surface of the copper nanoparticles facilitate the cleavage of the NO bonds in the aromatic nitro compounds. Hence, the catalyzed coupling reaction can proceed under light irradiation and moderate conditions. This study provides a green photocatalytic route for the production of azo compounds and highlights a potential application for graphene. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Pechprasarn, Suejit; Chow, Terry W K; Somekh, Michael G
2018-06-04
In this paper, we present a direct method to measure surface wave attenuation arising from both ohmic and coupling losses using our recently developed phase spatial light modulator (phase-SLM) based confocal surface plasmon microscope. The measurement is carried out in the far-field using a phase-SLM to impose an artificial surface wave phase profile in the back focal plane (BFP) of a microscope objective. In other words, we effectively provide an artificially engineered backward surface wave by modulating the Goos Hänchen (GH) phase shift of the surface wave. Such waves with opposing phase and group velocities are well known in acoustics and electromagnetic metamaterials but usually require structured or layered surfaces, here the effective wave is produced externally in the microscope illumination path. Key features of the technique developed here are that it (i) is self-calibrating and (ii) can distinguish between attenuation arising from ohmic loss (k″ Ω ) and coupling (reradiation) loss (k″ c ). This latter feature has not been achieved with existing methods. In addition to providing a unique measurement the measurement occurs of over a localized region of a few microns. The results were then validated against the surface plasmons (SP) dip measurement in the BFP and a theoretical model based on a simplified Green's function.
NASA Astrophysics Data System (ADS)
Yin, Jun; Li, Jing; Kang, Junyong
2016-09-01
Recently, surface plasmon (SP)-exciton coupling has been wildly applied in nitride semiconductors in order to improve the spontaneous radiative recombination rate [1-3]. However, most works have been focused on the emission enhancement in InGaN-based blue or green light emitting diodes (LEDs). Practically, it is significantly important to improve the emission efficiency in deep-UV AlGaN-base quantum well (QW) structure due to its intrinsically low internal quantum efficiency (IQE) induced by the high defect density in its epitaxy layer [4]. But, the effective SP-exciton coupling with matched energy in deep-UV region is still a challenge issue due to the lack of appropriate metal structures and compatible fabrication techniques. In this work, the Al nanoparticles (NPs) were introduced by the nanosphere lithography (NSL) and deposition techniques into the AlGaN based MQWs with optimized size and structure. Due to the local surface plasmon (LSP) coupling with the excitons in QWs, emission enhancement in deep UV region has been achieved in the Al NPs decorated AlGaN MQWs structure with comparison to the bare MQWs. Theoretical calculations on the energy subbands of AlGaN QWs were further carried out to investigate the corresponding mechanisms, in which the hot carrier transition activated by SP-exciton coupling was believed to be mainly responsible for the enhancement. This work demonstrated a low cost, wafer scale fabrication process, which can be potentially employed to the practical SP-enhanced AlGaN-based deep UV LEDs with high IQEs.
Silver Film Surface Modification by Ion Bombardment Decreases Surface Plasmon Resonance Absorption.
Fryauf, David M; Diaz Leon, Juan J; Phillips, Andrew C; Kobayashi, Nobuhiko P
2017-05-10
Silver thin films covered with dielectric films serving as protective coatings are desired for telescope mirrors, but durable coatings have proved elusive. As part of an effort to develop long-lived protected-silver mirrors, silver thin films were deposited by electron beam evaporation using a physical vapor deposition system at the University of California Observatories Astronomical Coatings Lab. The silver films were later covered with a stack of dielectric films utilizing silicon nitride and titanium dioxide deposited by ion-assisted electron beam evaporation to fabricate protected mirrors. In-situ argon ion bombardment was introduced after silver deposition and prior to the deposition of dielectric films to assess its effects on the performance of the mirrors. We found that ion bombardment of the silver influenced surface morphology and reflectivity, and these effects correlated with time between silver deposition and ion bombardment. The overall reflectivity at wavelengths in the range of 350-800 nm was found to improve due to ion bombardment, which was qualitatively interpreted as a result of decreased surface plasmon resonance coupling. We suggest that the observed decrease in coupling is caused by silver grain boundary pinning due to ion bombardment suppressing silver surface diffusion, forming smoother silver-dielectric interfaces.
Hoang, Thang B; Akselrod, Gleb M; Mikkelsen, Maiken H
2016-01-13
Efficient and bright single photon sources at room temperature are critical components for quantum information systems such as quantum key distribution, quantum state teleportation, and quantum computation. However, the intrinsic radiative lifetime of quantum emitters is typically ∼10 ns, which severely limits the maximum single photon emission rate and thus entanglement rates. Here, we demonstrate the regime of ultrafast spontaneous emission (∼10 ps) from a single quantum emitter coupled to a plasmonic nanocavity at room temperature. The nanocavity integrated with a single colloidal semiconductor quantum dot produces a 540-fold decrease in the emission lifetime and a simultaneous 1900-fold increase in the total emission intensity. At the same time, the nanocavity acts as a highly efficient optical antenna directing the emission into a single lobe normal to the surface. This plasmonic platform is a versatile geometry into which a variety of other quantum emitters, such as crystal color centers, can be integrated for directional, room-temperature single photon emission rates exceeding 80 GHz.
Effective plasmonic mode-size converter.
Park, Hae-Ryeong; Park, Jong-Moon; Kim, Min-su; Ju, Jung Jin; Son, Jung-Han; Lee, Myung-Hyun
2011-10-24
Plasmonic mode-size converters (PMSCs) for long-range surface plasmon polaritons (LR-SPPs) at the wavelength of 1.55 μm are presented. The PMSC is composed of an insulator-metal-insulator waveguide (IMI-W), a laterally tapered insulator-metal-insulator-metal-insulator waveguide (LT-IMIMI-W), and an IMIMI-W in series. The mode-intensity sizes of the LR-SPPs for the IMI-W and the IMIMI-W were not only calculated using a finite element method but were also experimentally measured. The propagation losses of the IMI-W and the IMIMI-W as well as the coupling losses between them were analyzed by the cut-back method to investigate the effect of LT-IMIMI-Ws. By using the PMSC with a ~27 ° angled LT-IMIMI-W, the coupling loss between a polarization-maintaining fiber and a 3 μm-wide IMIMI-W was reduced by ~3.4 dB. Moreover, the resulting mode-intensity in the output of the PMSC was squeezed to ~35% of the mode-intensity in the input IMI-W. The PMSC may be potentially useful for bridging micro- to nano-plasmonic integrated circuits. © 2011 Optical Society of America
Reversible Gating of Plasmonic Coupling for Optical Signal Amplification.
Khoury, Christopher G; Fales, Andrew M; Vo-Dinh, Tuan
2016-07-20
Amplification of optical signals is useful for a wide variety of applications, ranging from data signal transmission to chemical sensing and biomedical diagnostics. One such application in chemical sensing is surface-enhanced Raman scattering (SERS), an important technique for increasing the Raman signal using the plasmonic effect of enhanced electromagnetic fields associated with metallic nanostructures. One of the most important limitations of SERS-based amplification is the difficulty to reproducibly control the SERS signal. Here, we describe the design and implementation of a unique hybrid system capable of producing reversible gating of plasmonic coupling for Raman signal amplification. The hybrid system is composed of two subsystems: (1) colloidal magneto-plasmonic nanoparticles for SERS enhancement and (2) a micromagnet substrate with an externally applied magnetic field to modulate the colloidal nanoparticles. For this proof of concept demonstration, the nanoparticles were labeled with a Raman-active dye, and it was shown that the detected SERS signal could be reproducibly modulated by controlling the externally applied magnetic field. The developed system provides a simple, robust, inexpensive, and reusable device for SERS signal modulation. These properties will open up new possibilities for optical signal amplification and gating as well for high-throughput, reproducible SERS detection.
NASA Astrophysics Data System (ADS)
Lin, Chun-Han; Tu, Charng-Gan; Yao, Yu-Feng; Chen, Sheng-Hung; Su, Chia-Ying; Chen, Hao-Tsung; Kiang, Yean-Woei; Yang, Chih-Chung
2017-02-01
Besides lighting, LEDs can be used for indoor data transmission. Therefore, a large modulation bandwidth becomes an important target in the development of visible LED. In this regard, enhancing the radiative recombination rate of carriers in the quantum wells of an LED is a useful method since the modulation bandwidth of an LED is related to the carrier decay rate besides the device RC time constant To increase the carrier decay rate in an LED without sacrificing its output power, the technique of surface plasmon (SP) coupling in an LED is useful. In this paper, the increases of modulation bandwidth by reducing mesa size, decreasing active layer thickness, and inducing SP coupling in blue- and green-emitting LEDs are illustrated. The results are demonstrated by comparing three different LED surface structures, including bare p-type surface, GaZnO current spreading layer, and Ag nanoparticles (NPs) for inducing SP coupling. In a single-quantum-well, blue-emitting LED with a circular mesa of 10 microns in radius, SP coupling results in a modulation bandwidth of 528.8 MHz, which is believed to be the record-high level. A smaller RC time constant can lead to a higher modulation bandwidth. However, when the RC time constant is smaller than 0.2 ns, its effect on modulation bandwidth saturates. The dependencies of modulation bandwidth on injected current density and carrier decay time confirm that the modulation bandwidth is essentially inversely proportional to a time constant, which is inversely proportional to the square-root of carrier decay rate and injected current density.
Huang, Xian-Rong; Peng, Ru-Wen
2010-04-01
Interactions between light and conducting microstructures or nanostructures can result in a variety of novel phenomena, but their underlying mechanisms have not been completely understood. From calculations of surface charge density waves on conducting gratings and by comparing them with classical surface plasmons, we revealed a general yet concrete picture regarding the coupling of light to free electron oscillation on structured conducting surfaces that can lead to oscillating subwavelength charge patterns (i.e., structured surface plasmons). New wavelets emitted from these light sources then destructively interfere to form evanescent waves. This principle, usually combined with other mechanisms, is mainly a geometrical effect that can be universally involved in light scattering from all periodic and non-periodic structures containing free electrons. This picture may provide clear guidelines for developing conductor-based nano-optical devices.
NASA Astrophysics Data System (ADS)
Hassani Gangaraj, Seyyed Ali
At the interface of two different media such as metal and vacuum, light can couple to the electrons of the metal to form a wave that is bound to the interface. This wave is called a surface plasmon-plariton (SPP), generally characterized by intense fields that decay quickly away from the interface. Due to their unique properties, SPPs have found a broad range of applications in various areas of science, including light harvesting, medical science, energy transfer and imaging. In addition to the widely studied classical plasmonics, quantum plasmonics is also attracting considerable interest in the electromagnetics and quantum optics communities. In this thesis several new areas of investigation into quantum plasmonics is presented, focusing on entanglement mediated by SPPs in several different environments: 3D waveguides, 2D surfaces and on photonic topological insulators. Entanglement is an experimentally verified property of nature where pairs of quantum systems are connected in some manner such that the quantum state of each system cannot be described independently. Generating, preserving, and controlling entanglement is necessary for many quantum computer implementations. It is highly desirable to control entanglement between two multi-level emitters such as quantum dots via a macroscopic, easily-adjusted external parameter. SPPs guided by the medium, as a coupling agent between quantum dots, are highly tunable and offer a promising way to achieve having control over a SPP mediated entanglement. We first consider two quantum dots placed above 3D finite length waveguides. We have restricted our consideration to two waveguides types, i.e. a metal nanowire and a groove waveguide. Our main results in this work are to show that realistic finite-length nanowire and groove waveguides, with their associated discontinuities, play a crucial role in the engineering of highly entangled states. It is demonstrated that proper positioning of the emitters with respect to the waveguide edges can lead to a significant increase in entanglement compared to the case of the emitter coupled to an infinite plasmonic waveguide. Moreover, even for the infinite-length case, discontinuities in the waveguides do not always play a detrimental role, to be more specific, an increase in entanglement compared to the unperturbed waveguides can be achieved by introducing coupling slots (engineered perturbations) into the structure. In addition to 3D environments, two dimensional (2D) materials are of intense interest due to their extraordinary capabilities to manipulate reflection and transmission characteristics, and beam-forming. Some notable examples of 2D layered crystals include graphene, black phosphorus (BP) and boron nitride. Graphene in particular has received considerable attention as a promising 2D surface for many applications relating to its integrability and electronic tune-ability. Black phosphorus is also a layered material that has recently been exfoliated into its multilayers, showing good electrical transport properties and promising optical charactristics. Most of the previous studies of the electromagnetic response of 2D surfaces and metallic surface plasmons have considered isotropic structures with omnidirectional plasmonic surface wave propagation on the plane of these materials. Such an omnidirectional surface wave propagation does not allow for launching energy from electromagnetic source to a specific target on the surface, which is a desirable characteristic. However, an appropriate structured anisotropic surface can provide such a capability, such as an array of graphene strips. In addition, by tuning of the graphene doping it is possible to have a hyperbolic surface response. Working in this regime of surface conductivity, it is possible to launch SPPs along a specific direction, which is tunable via doping of the graphene. In this work, the electromagnetic response of anisotropic 2D surfaces has been investigated based on the analysis of the Green's function for the surface plasmonic wave contribution of the Sommerfeld integral. The Sommerfeld integral form of the Green's function can be time-consuming to evaluate, and here, it has been shown that for the surface waves, this integral can be evaluated efficiently as a mixture of continuous and discrete spectrums associated to the radiation of the source into the ambient space and energy coupled to the SPPs. Graphene strip arrays provide directive surface waves in the low THz regime, and unperturbed black phosphorus provides a similar response for higher frequency ranges. All plasmonic devices are impacted by SPP diffraction at surface defects and discontinuities. In particular, for reciprocal materials a surface defect/discontinuity can both scatter a forward mode into a backward mode (and vice versa) and cause significant radiation/diffraction of the SPP. The presence of a backward state comes from time reversal (TR) symmetry; when broken, a backward state may be absent, and reflection at a discontinuity can be suppressed. As a result, surface energy becomes unidirectional and follows the contour of the interface. This type of system can be broadly classified as a photonic topological insulators (PTIs). The properties of PTIs are quantified by the Berry phase, Berry connection, and an invariant known as the Chern number. Also the physical meaning of the Berry phase, connection, and curvature, how these quantities arise in electromagnetic problems, and the significance of Chern numbers for unidirectional, scattering-immune surface wave propagation are discussed. The Chern numbers for the electromagnetic modes supported by a biased plasma have been calculated. It has been demonstrated that the modes supported by biased plasmas indeed possess non-trivial Chern numbers, which leads to the propagation of a topologically protected and unidirectional surface modes (energy) at the interface between the biased plasma and topologically trivial material. The ability to guide the energy from one quantum dot to another one is a great advantage to achieve highly entangled states. Here, in this thesis for the first time, we investigated the unidirectional surface wave assisted entanglement in PTIs. We have investigated spontaneous and pumped entanglement of two level systems (quantum dots) in the vicinity of a photonic topological insulator interface, which supports a unidirectional SPP in the common bandgap of the bulk materials. We also have derived a master equation for quantum dots interactions in a general three-dimensional, nonreciprocal, inhomogeneous and lossy environment. The resulting entanglement is shown to be extremely robust to defects occurring in the material system.
Surface plasmon quantum cascade lasers as terahertz local oscillators.
Hajenius, M; Khosropanah, P; Hovenier, J N; Gao, J R; Klapwijk, T M; Barbieri, S; Dhillon, S; Filloux, P; Sirtori, C; Ritchie, D A; Beere, H E
2008-02-15
We characterize a heterodyne receiver based on a surface-plasmon waveguide quantum cascade laser (QCL) emitting at 2.84 THz as a local oscillator, and an NbN hot electron bolometer as a mixer. We find that the envelope of the far-field pattern of the QCL is diffraction-limited and superimposed onto interference fringes, which are similar to those found in narrow double-metal waveguide QCLs. Compared to the latter, a more directional beam allows for better coupling of the radiation power to the mixer. We obtain a receiver noise temperature of 1050 K when the mixer is at 2 K, which, to our knowledge, is the highest sensitivity reported at frequencies beyond 2.5 THz.
Boozer, Christina; Kim, Gibum; Cong, Shuxin; Guan, Hannwen; Londergan, Timothy
2006-08-01
Surface plasmon resonance (SPR) biosensors have enabled a wide range of applications in which researchers can monitor biomolecular interactions in real time. Owing to the fact that SPR can provide affinity and kinetic data, unique features in applications ranging from protein-peptide interaction analysis to cellular ligation experiments have been demonstrated. Although SPR has historically been limited by its throughput, new methods are emerging that allow for the simultaneous analysis of many thousands of interactions. When coupled with new protein array technologies, high-throughput SPR methods give users new and improved methods to analyze pathways, screen drug candidates and monitor protein-protein interactions.
Yao, Yu-Feng; Lin, Chun-Han; Hsieh, Chieh; Su, Chia-Ying; Zhu, Erwin; Yang, Shaobo; Weng, Chi-Ming; Su, Ming-Yen; Tsai, Meng-Che; Wu, Shang-Syuan; Chen, Sheng-Hung; Tu, Charng-Gan; Chen, Hao-Tsung; Kiang, Yean-Woei; Yang, C C
2015-12-14
The combined effects of a few mechanisms for emission efficiency enhancement produced in the overgrowth of the transparent conductor layer of Ga-doped ZnO (GaZnO) on a surface Ag-nanoparticle (NP) coated light-emitting diode (LED), including surface plasmon (SP) coupling, current spreading, light extraction, and contact resistivity reduction, are demonstrated. With a relatively higher GaZnO growth temperature (350 °C), melted Ag NPs can be used as catalyst for forming GaZnO nanoneedles (NNs) through the vapor-liquid-solid growth mode such that light extraction efficiency can be increased. Meanwhile, residual Ag NPs are buried in a simultaneously grown GaZnO layer for inducing SP coupling. With a relatively lower GaZnO growth temperature (250 °C), all the Ag NPs are preserved for generating a stronger SP coupling effect. By using a thin annealed GaZnO interlayer on p-GaN before Ag NP fabrication, the contact resistivity at the GaZnO/p-GaN interface and hence the overall device resistance can be reduced. Although the use of this interlayer blue-shifts the localized surface plasmon resonance peak of the fabricated Ag NPs from the quantum well emission wavelength of the current study (535 nm) such that the SP coupling effect becomes weaker, it is useful for enhancing the SP coupling effect in an LED with a shorter emission wavelength.
Surface plasmon oscillations in a semi-bounded semiconductor plasma
NASA Astrophysics Data System (ADS)
M, SHAHMANSOURI; A, P. MISRA
2018-02-01
We study the dispersion properties of surface plasmon (SP) oscillations in a semi-bounded semiconductor plasma with the effects of the Coulomb exchange (CE) force associated with the spin polarization of electrons and holes as well as the effects of the Fermi degenerate pressure and the quantum Bohm potential. Starting from a quantum hydrodynamic model coupled to the Poisson equation, we derive the general dispersion relation for surface plasma waves. Previous results in this context are recovered. The dispersion properties of the surface waves are analyzed in some particular cases of interest and the relative influence of the quantum forces on these waves are also studied for a nano-sized GaAs semiconductor plasma. It is found that the CE effects significantly modify the behaviors of the SP waves. The present results are applicable to understand the propagation characteristics of surface waves in solid density plasmas.
Reactive thin polymer films as platforms for the immobilization of biomolecules.
Feng, Chuan Liang; Zhang, Zhihong; Förch, Renate; Knoll, Wolfgang; Vancso, G Julius; Schönherr, Holger
2005-01-01
Spin-coated thin films of poly(N-hydroxysuccinimidyl methacrylate) (PNHSMA) on oxidized silicon and gold surfaces were investigated as reactive layers for obtaining platforms for biomolecule immobilization with high molecular loading. The surface reactivity of PNHSMA films in coupling reactions with various primary amines, including amine-terminated poly(ethylene glycol) (PEG-NH2) and fluoresceinamine, was determined by Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), fluorescence microscopy, and ellipsometry measurements, respectively. The rate constants of PEG-NH2 attachment on the PNHSMA films were found to be significantly increased compared to the coupling on self-assembled monolayers (SAMs) of 11,11'-dithiobis(N-hydroxysuccinimidylundecanoate) (NHS-C10) on gold under the same conditions. More significantly, the PEG loading observed was about 3 times higher for the polymer thin films. These data indicate that the coupling reactions are not limited to the very surface of the polymer films, but proceed into the near-surface regions of the films. PNHSMA films were shown to be stable in contact with aqueous buffer; the swelling analysis, as performed by atomic force microscopy (AFM), indicated a film thickness independent swelling of approximately 2 nm. An increased loading was also observed by surface plasmon resonance for the covalent immobilization of amino-functionalized probe DNA. Hybridization of fluorescently labeled target DNA was successfully detected by fluorescence microscopy and surface plasmon resonance enhanced fluorescence spectroscopy (SPFS), thereby demonstrating that thin films of PNHSMA comprise an attractive and simple platform for the immobilization of biomolecules with high densities.
Color rendering based on a plasmon fullerene cavity.
Tsai, Fu-Cheng; Weng, Cheng-Hsi; Chen, Yu Lim; Shih, Wen-Pin; Chang, Pei-Zen
2018-04-16
Fullerene in the plasmon fullerene cavity is utilized to propagate plasmon energy in order to break the confinement of the plasmonic coupling effect, which relies on the influential near-field optical region. It acts as a plasmonic inductor for coupling gold nano-islands to the gold film; the separation distances of the upper and lower layers are longer than conventional plasmonic cavities. This coupling effect causes the discrete and continuum states to cooperate together in a cavity and produces asymmetric curve lines in the spectra, producing a hybridized resonance. The effect brings about a bright and saturated displaying film with abundant visible colors. In addition, the reflection spectrum is nearly omnidirectional, shifting by only 5% even when the incident angle changes beyond ± 60°. These advantages allow plasmon fullerene cavities to be applied to reflectors, color filters, visible chromatic sensors, and large-area display.
Multispectral plasmon coupling microscopy and its application in bio-imaging
NASA Astrophysics Data System (ADS)
Wang, Hongyun
A broad range of cellular activities, including receptor mediated endocytosis, signaling and receptor clustering, involve multi-body interactions between different cellular functionalities. Many of these interactions are dynamic in nature, making optical tools the method of choice for their investigation. Conventional optical microscopy has a resolution about 300nm, limited by the diffraction of light, which is insufficient to explore processes that occur on nanometer or tens of nanometer length scales. The aim of this thesis is to develop and validate a plasmon coupling microscopy (PCM), which utilizes the distance dependent spectral properties of coupled noble metal nanoparticles (NPs) to resolve distance changes between NP labels on deeply sub-diffraction length scales. This colorimetric approach is augmented with a polarization sensitive analysis of the scattered light of individual dimers to monitor simultaneously distance and orientation changes. The distance dependent polarization anisotropy in discrete dimers is investigated experimentally and theoretically. The performed analysis reveals that the polarization anisotropy is robust even against relatively large refractive index changes. The polarization sensitive PCM is then applied to characterize the lateral spatial organization of mammalian plasma membranes by analyzing the translational and rotational motion as well as the extension of discrete NP dimers during their diffusion on lysed HeLa cell membranes. The membrane is found to be compartmentalized with typical domain sizes on the order of 70nm. The functionality of plasmon coupling based imaging method is expanded further by developing a multispectral imaging modality for a quantitative analysis of the plasmon coupling between many noble metal immunolabels in a large field of view simultaneously. This approach provides information about the spatial organization of the silver nanoparticle labels and thus of targeted EGF receptor densities on the surface of epidermoid carcinoma cells (A431). Finally, multispectral plasmon coupling microscopy is applied to investigate the uptake and subsequent intracellular spatial distribution of silver nanoparticles in murine macrophage cells (J774A.1). The studies reveal that NP uptake is mediated by scavenger receptors and that the intracellular NP association and distribution are heterogeneous among cells in a cellular ensemble. The heterogeneity is demonstrated to be correlated with the maturation status of the macrophages.
NASA Astrophysics Data System (ADS)
Csete, M.; Sipos, Á.; Kőházi-Kis, A.; Szalai, A.; Szekeres, G.; Mathesz, A.; Csákó, T.; Osvay, K.; Bor, Zs.; Penke, B.; Deli, M. A.; Veszelka, Sz.; Schmatulla, A.; Marti, O.
2007-12-01
Two-dimensional gratings are generated on poly-carbonate films spin-coated onto thin gold-silver bimetallic layers by two-beam interference method. Sub-micrometer periodic polymer dots and stripes are produced illuminating the poly-carbonate surface by p- and s-polarized beams of a frequency quadrupled Nd:YAG laser, and crossed gratings are generated by rotating the substrates between two sequential treatments. It is shown by pulsed force mode atomic force microscopy that the mean value of the adhesion is enhanced on the dot-arrays and on the crossed gratings. The grating-coupling on the two-dimensional structures results in double peaks on the angle dependent resonance curves of the surface plasmons excited by frequency doubled Nd:YAG laser. The comparison of the resonance curves proves that a surface profile ensuring minimal undirected scattering is required to optimize the grating-coupling, in addition to the minimal modulation amplitude, and to the optimal azimuthal orientation. The secondary minima are the narrowest in presence of linear gratings on multi-layers having optimized composition, and on crossed structures consisting of appropriately oriented polymer stripes. The large coupling efficiency and adhesion result in high detection sensitivity on the crossed gratings. Bio-sensing is realized by monitoring the rotated-crossed grating-coupled surface plasmon resonance curves, and detecting the chemical heterogeneity by tapping-mode atomic force microscopy. The interaction of Amyloid-β peptide, a pathogenetic factor in Alzheimer disease, with therapeutical molecules is demonstrated.
Enhanced and tunable electric dipole-dipole interactions near a planar metal film
NASA Astrophysics Data System (ADS)
Zhou, Lei-Ming; Yao, Pei-Jun; Zhao, Nan; Sun, Fang-Wen
2017-08-01
We investigate the enhanced electric dipole-dipole interaction of surface plasmon polaritons (SPPs) supported by a planar metal film waveguide. By taking two nitrogen-vacancy (NV) center electric dipoles in diamond as an example, both the coupling strength and collective relaxation of two dipoles are studied with the numerical Green Function method. Compared to two-dipole coupling on a planar surface, metal film provides stronger and tunable coupling coefficients. Enhancement of the interaction between coupled NV center dipoles could have applications in both quantum information and energy transfer investigation. Our investigation provides systematic results for experimental applications based on a dipole-dipole interaction mediated with SPPs on a planar metal film.
Plasmon-induced carrier polarization in semiconductor nanocrystals.
Yin, Penghui; Tan, Yi; Fang, Hanbing; Hegde, Manu; Radovanovic, Pavle V
2018-06-01
Spintronics 1 and valleytronics 2 are emerging quantum electronic technologies that rely on using electron spin and multiple extrema of the band structure (valleys), respectively, as additional degrees of freedom. There are also collective properties of electrons in semiconductor nanostructures that potentially could be exploited in multifunctional quantum devices. Specifically, plasmonic semiconductor nanocrystals 3-10 offer an opportunity for interface-free coupling between a plasmon and an exciton. However, plasmon-exciton coupling in single-phase semiconductor nanocrystals remains challenging because confined plasmon oscillations are generally not resonant with excitonic transitions. Here, we demonstrate a robust electron polarization in degenerately doped In 2 O 3 nanocrystals, enabled by non-resonant coupling of cyclotron magnetoplasmonic modes 11 with the exciton at the Fermi level. Using magnetic circular dichroism spectroscopy, we show that intrinsic plasmon-exciton coupling allows for the indirect excitation of the magnetoplasmonic modes, and subsequent Zeeman splitting of the excitonic states. Splitting of the band states and selective carrier polarization can be manipulated further by spin-orbit coupling. Our results effectively open up the field of plasmontronics, which involves the phenomena that arise from intrinsic plasmon-exciton and plasmon-spin interactions. Furthermore, the dynamic control of carrier polarization is readily achieved at room temperature, which allows us to harness the magnetoplasmonic mode as a new degree of freedom in practical photonic, optoelectronic and quantum-information processing devices.
Plasmon-induced carrier polarization in semiconductor nanocrystals
NASA Astrophysics Data System (ADS)
Yin, Penghui; Tan, Yi; Fang, Hanbing; Hegde, Manu; Radovanovic, Pavle V.
2018-06-01
Spintronics1 and valleytronics2 are emerging quantum electronic technologies that rely on using electron spin and multiple extrema of the band structure (valleys), respectively, as additional degrees of freedom. There are also collective properties of electrons in semiconductor nanostructures that potentially could be exploited in multifunctional quantum devices. Specifically, plasmonic semiconductor nanocrystals3-10 offer an opportunity for interface-free coupling between a plasmon and an exciton. However, plasmon-exciton coupling in single-phase semiconductor nanocrystals remains challenging because confined plasmon oscillations are generally not resonant with excitonic transitions. Here, we demonstrate a robust electron polarization in degenerately doped In2O3 nanocrystals, enabled by non-resonant coupling of cyclotron magnetoplasmonic modes11 with the exciton at the Fermi level. Using magnetic circular dichroism spectroscopy, we show that intrinsic plasmon-exciton coupling allows for the indirect excitation of the magnetoplasmonic modes, and subsequent Zeeman splitting of the excitonic states. Splitting of the band states and selective carrier polarization can be manipulated further by spin-orbit coupling. Our results effectively open up the field of plasmontronics, which involves the phenomena that arise from intrinsic plasmon-exciton and plasmon-spin interactions. Furthermore, the dynamic control of carrier polarization is readily achieved at room temperature, which allows us to harness the magnetoplasmonic mode as a new degree of freedom in practical photonic, optoelectronic and quantum-information processing devices.
NASA Astrophysics Data System (ADS)
Faridi, Ehsan; Moradi, Maryam; Ansari, Narges; Ghasemi, Amir Hossein Baradaran; Afshar, Amir; Mohseni, Seyed Majid
2017-12-01
The demonstration of biosensors based on the surface plasmon effect holds promise for future high-sensitive electrodeless biodetection. The combination of magnetic effects with surface plasmon waves brings additional freedom to improve sensitivity and signal selectivity. Stacking biosensors with two-dimensional (2-D) materials, e.g., graphene (Gr) and MoS2, can influence plasmon waves and facilitate surface physiochemical properties as additional versatility aspects. We demonstrate magnetoplasmonic biosensors through the detuning of surface plasmon oscillation modes affected by magnetic effect via the presence of the NiFe (Py) layer and different light absorbers of Gr, MoS2, and Au ultrathin layers in three stacks of Au/Py/M(MoS2, Gr, Au) trilayers. We found minimum reflection, resonance angle shift, and transverse magneto-optical Kerr effect (TMOKE) responses of all sensors in the presence of the ss-DNA monolayer. Very few changes of ˜5×10-7 in the ss-DNA's refractive index result in valuable TMOKE response. We found that the presence of three-layer Gr and two-layer MoS2 on top of the Au/Py bilayer can dramatically increase the sensitivity by nine and four times, respectively, than the conventional Au/Co/Au trilayer. Our results show the highest reported DNA sensitivity based on the coupling of light with 2-D materials in magnetoplasmonic devices.
Poloidal and toroidal plasmons and fields of multilayer nanorings
NASA Astrophysics Data System (ADS)
Garapati, K. V.; Salhi, M.; Kouchekian, S.; Siopsis, G.; Passian, A.
2017-04-01
Composite and janus type metallodielectric nanoparticles are increasingly considered as a means to control the spatial and temporal behavior of electromagnetic fields in diverse applications such as coupling to quantum emitters, achieving invisibility cloaks, and obtaining quantum correlations between qubits. We investigate the surface modes of a toroidal nanostructure and obtain the canonical plasmon dispersion relations and resonance modes for arbitrarily layered nanorings. Unlike particle plasmon eigenmodes in other geometries, the amplitudes of the eigenmodes of tori exhibit a distinct forward and backward coupling. We present the plasmon dispersion relations for several relevant toroidal configurations in the quasistatic limit and obtain the dominant retarded dispersion relations of a single ring for comparison, discuss mode complementarity and hybridization, and introduce two new types of toroidal particles in the form of janus nanorings. The resonance frequencies for the first few dominant modes of a ring composed of plasmon supporting materials such as gold, silver, and aluminum are provided and compared to those for a silicon ring. A generalized Green's function is obtained for multilayer tori allowing for calculation of the scattering response to interacting fields. Employing the Green's function, the scalar electric potential distribution corresponding to individual poloidal and toroidal modes in response to an arbitrarily polarized external field and the field of electrons is obtained. The results are applied to obtain the local density of states and decay rate of a dipole near the center of the torus.
Classical plasma dynamics of Mie-oscillations in atomic clusters
NASA Astrophysics Data System (ADS)
Kull, H.-J.; El-Khawaldeh, A.
2018-04-01
Mie plasmons are of basic importance for the absorption of laser light by atomic clusters. In this work we first review the classical Rayleigh-theory of a dielectric sphere in an external electric field and Thomson’s plum-pudding model applied to atomic clusters. Both approaches allow for elementary discussions of Mie oscillations, however, they also indicate deficiencies in describing the damping mechanisms by electrons crossing the cluster surface. Nonlinear oscillator models have been widely studied to gain an understanding of damping and absorption by outer ionization of the cluster. In the present work, we attempt to address the issue of plasmon relaxation in atomic clusters in more detail based on classical particle simulations. In particular, we wish to study the role of thermal motion on plasmon relaxation, thereby extending nonlinear models of collective single-electron motion. Our simulations are particularly adopted to the regime of classical kinetics in weakly coupled plasmas and to cluster sizes extending the Debye-screening length. It will be illustrated how surface scattering leads to the relaxation of Mie oscillations in the presence of thermal motion and of electron spill-out at the cluster surface. This work is intended to give, from a classical perspective, further insight into recent work on plasmon relaxation in quantum plasmas [1].
Polarization-selective optical transmission through a plasmonic metasurface.
Pelzman, Charles; Cho, Sang-Yeon
2015-06-22
We present the design, fabrication, and experimental characterization of a nanoslit-based metasurface that offers polarization-selective optical transmission for advanced imaging applications. The metasurface consists of an array of meta-atoms, constructed with two orthogonally coupled subwavelength apertures. Highly enhanced optical transmission was achieved by selective excitation of surface plasmon waves on the metasurface. By rotating the orientation of the linearly polarized incident beam, switching of enhanced optical transmission bands through the metasurface was experimentally demonstrated. This demonstration is a significant step towards developing advanced multispectral imaging devices.
Subwavelength dielectric nanorod chains for energy transfer in the visible range.
Li, Dongdong; Zhang, Jingjing; Yan, Changchun; Xu, Zhengji; Zhang, Dao Hua
2017-10-15
We report a new type of energy transfer device, formed by a dielectric nanorod array embedded in a silver slab. Such dielectric chain structures allow surface plasmon wave guiding with large propagation length and highly suppressed crosstalk between adjacent transmission channels. The simulation results show that our proposed design can be used to enhance the energy transfer along the waveguide-like dielectric nanorod chains via coupled plasmons, where the energy spreading is effectively suppressed, and superior imaging properties in terms of resolution and energy transfer distance can be achieved.
Polarization-selective optical transmission through a plasmonic metasurface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pelzman, Charles; Cho, Sang-Yeon, E-mail: sangycho@nmsu.edu
2015-06-22
We present the design, fabrication, and experimental characterization of a nanoslit-based metasurface that offers polarization-selective optical transmission for advanced imaging applications. The metasurface consists of an array of meta-atoms, constructed with two orthogonally coupled subwavelength apertures. Highly enhanced optical transmission was achieved by selective excitation of surface plasmon waves on the metasurface. By rotating the orientation of the linearly polarized incident beam, switching of enhanced optical transmission bands through the metasurface was experimentally demonstrated. This demonstration is a significant step towards developing advanced multispectral imaging devices.
Nie, Kui-Ying; Tu, Xuecou; Li, Jing; Chen, Xuanhu; Ren, Fang-Fang; Zhang, Guo-Gang; Kang, Lin; Gu, Shulin; Zhang, Rong; Wu, Peiheng; Zheng, Youdou; Tan, Hark Hoe; Jagadish, Chennupati; Ye, Jiandong
2018-06-14
The ability to manipulate light-matter interaction in semiconducting nanostructures is fascinating for implementing functionalities in advanced optoelectronic devices. Here, we report the tailoring of radiative emissions in a ZnTe/ZnTe:O/ZnO core-shell single nanowire coupled with a one-dimensional aluminum bowtie antenna array. The plasmonic antenna enables changes in the excitation and emission processes, leading to an obvious enhancement of near band edge emission (2.2 eV) and subgap excitonic emission (1.7 eV) bound to intermediate band states in a ZnTe/ZnTe:O/ZnO core-shell nanowire as well as surface-enhanced Raman scattering at room temperature. The increase of emission decay rate in the nanowire/antenna system, probed by time-resolved photoluminescence spectroscopy, yields an observable enhancement of quantum efficiency induced by local surface plasmon resonance. Electromagnetic simulations agree well with the experimental observations, revealing a combined effect of enhanced electric near-field intensity and the improvement of quantum efficiency in the ZnTe/ZnTe:O/ZnO nanowire/antenna system. The capability of tailoring light-matter interaction in low-efficient emitters may provide an alternative platform for designing advanced optoelectronic and sensing devices with precisely controlled response.
Golub, Eyal; Pelossof, Gilad; Freeman, Ronit; Zhang, Hong; Willner, Itamar
2009-11-15
Metallic or semiconductor nanoparticles (NPs) are used as labels for the electrochemical, photoelectrochemical, or surface plasmon resonance (SPR) detection of cocaine using a common aptasensor configuration. The aptasensors are based on the use of two anticocaine aptamer subunits, where one subunit is assembled on a Au support, acting as an electrode or a SPR-active surface, and the second aptamer subunit is labeled with Pt-NPs, CdS-NPs, or Au-NPs. In the different aptasensor configurations, the addition of cocaine results in the formation of supramolecular complexes between the NPs-labeled aptamer subunits and cocaine on the metallic surface, allowing the quantitative analysis of cocaine. The supramolecular Pt-NPs-aptamer subunits-cocaine complex allows the detection of cocaine by the electrocatalyzed reduction of H(2)O(2). The photocurrents generated by the CdS-NPs-labeled aptamer subunits-cocaine complex, in the presence of triethanol amine as a hole scavenger, allows the photoelectrochemical detection of cocaine. The supramolecular Au-NPs-aptamer subunits-cocaine complex generated on the Au support allows the SPR detection of cocaine through the reflectance changes stimulated by the electronic coupling between the localized plasmon of the Au-NPs and the surface plasmon wave. All aptasensor configurations enable the analysis of cocaine with a detection limit in the range of 10(-6) to 10(-5) M. The major advantage of the sensing platform is the lack of background interfering signals.
Numerical investigation of a tunable band-pass plasmonic filter with a hollow-core ring resonator
NASA Astrophysics Data System (ADS)
Setayesh, Amir; Mirnaziry, S. Reza; Sadegh Abrishamian, Mohammad
2011-03-01
In this study, a compact nanoscale plasmonic filter which consists of two metal-insulator-metal (MIM) waveguides coupled to each other by a rectangular ring resonator is presented and investigated numerically. The propagating modes of surface plasmon polaritons (SPPs) are studied in this structure. By replacing a portion of the ring core with air, while the outer dimensions of the structure are kept constant, we illustrate the possibility of the redshift of resonant wavelengths in order to tune the resonance modes. This feature is useful for integrated circuits in which we have limitations on the outer dimensions of the filter structure and it is not possible to enlarge the dimension of the ring resonator to reach longer resonant wavelengths. The corresponding results are illustrated by the 2D finite-difference time-domain (FDTD) method. The proposed structure has potential applications in plasmonic integrated circuits and can be simply fabricated.
NASA Astrophysics Data System (ADS)
Du, Zhiyuan; Hu, Bin; Cyril, Planchon; Liu, Juan; Wang, Yongtian
2017-10-01
Local surface plasmonic resonance (LSPR) produced by metallic nano-structures is often sensitive to the refractive index of the surrounding media and can be applied for sensing. However, it often suffers from large line width caused by large plasmonic radiative damping, especially in the infrared (IR) frequencies, which reduces the sensitivity. Here we propose a hybrid structure consists of a graphene stripe and a gold gap-ring at short-IR frequencies (1-3 µm). Due to the low loss and high plasmonic confinement of graphene, LSPR line width of 6 nm is obtained. In addition, due to the strong coupling of the gold gap-ring with graphene stripe, the intensity of graphene LSPR is enhanced by 100 times. Simulation results show that the sensitivity of the sensor is ~1000 nm/RIU (refractive index unit) and the figure of merit (FoM) can reach up to 383.
Sun, Libin; Hu, Xiaolin; Wu, Qingjun; Wang, Liansheng; Zhao, Jun; Yang, Shumin; Tai, Renzhong; Fecht, Hans-Jorg; Zhang, Dong-Xian; Wang, Li-Qiang; Jiang, Jian-Zhong
2016-08-22
Plasmonic color filters in mass production have been restricted from current fabrication technology, which impede their applications. Soft-X-ray interference lithography (XIL) has recently generated considerable interest as a newly developed technique for the production of periodic nano-structures with resolution theoretically below 4 nm. Here we ameliorate XIL by adding an order sorting aperture and designing the light path properly to achieve perfect-stitching nano-patterns and fast fabrication of large-area color filters. The fill factor of nanostructures prepared on ultrathin Ag films can largely affect the transmission minimum of plasmonic color filters. By changing the fill factor, the color can be controlled flexibly, improving the utilization efficiency of the mask in XIL simultaneously. The calculated data agree well with the experimental results. Finally, an underlying mechanism has been uncovered after systematically analyzing the localized surface plasmon polaritons (LSPPs) coupling in electric field distribution.
Mid-infrared polaritonic coupling between boron nitride nanotubes and graphene.
Xu, Xiaoji G; Jiang, Jian-Hua; Gilburd, Leonid; Rensing, Rachel G; Burch, Kenneth S; Zhi, Chunyi; Bando, Yoshio; Golberg, Dmitri; Walker, Gilbert C
2014-11-25
Boron nitride (BN) is considered to be a promising substrate for graphene-based devices in part because its large band gap can serve to insulate graphene in layered heterostructures. At mid-infrared frequencies, graphene supports surface plasmon polaritons (SPPs), whereas hexagonal-BN (h-BN) is found to support surface phonon polaritons (SPhPs). We report on the observation of infrared polaritonic coupling between graphene SPPs and boron nitride nanotube (BNNT) SPhPs. Infrared scattering type scanning near-field optical microscopy is used to obtain spatial distribution of the two types of polaritons at the nanoscale. The observation suggests that those polaritons interact at the nanoscale in a one-dimensional/two-dimensional (1D/2D) geometry, exchanging energy in a nonplanar configuration at the nanoscale. Control of the polaritonic interaction is achieved by adjustment of the graphene Fermi level through voltage gating. Our observation suggests that boron nitride nanotubes and graphene can interact at mid-infrared frequencies and coherently exchange their energies at the nanoscale through the overlap of mutual electric near field of surface phonon polaritons and surface plasmon polaritons. Such interaction enables the design of nano-optical devices based on BNNT-graphene polaritonics in the mid-infrared range.
Dhama, Rakesh; Caligiuri, Vincenzo; Petti, Lucia; Rashed, Alireza R; Rippa, Massimo; Lento, Raffaella; Termine, Roberto; Caglayan, Humeyra; De Luca, Antonio
2018-01-23
Plasmonic quasi-periodic structures are well-known to exhibit several surprising phenomena with respect to their periodic counterparts, due to their long-range order and higher rotational symmetry. Thanks to their specific geometrical arrangement, plasmonic quasi-crystals offer unique possibilities in tailoring the coupling and propagation of surface plasmons through their lattice, a scenario in which a plethora of fascinating phenomena can take place. In this paper we investigate the extraordinary transmission phenomenon occurring in specifically patterned Thue-Morse nanocavities, demonstrating noticeable enhanced transmission, directly revealed by near-field optical experiments, performed by means of a scanning near-field optical microscope (SNOM). SNOM further provides an intuitive picture of confined plasmon modes inside the nanocavities and confirms that localization of plasmon modes is based on size and depth of nanocavities, while cross talk between close cavities via propagating plasmons holds the polarization response of patterned quasi-crystals. Our performed numerical simulations are in good agreement with the experimental results. Thus, the control on cavity size and incident polarization can be used to alter the intensity and spatial properties of confined cavity modes in such structures, which can be exploited in order to design a plasmonic device with customized optical properties and desired functionalities, to be used for several applications in quantum plasmonics.
Scattering-Type Surface-Plasmon-Resonance Biosensors
NASA Technical Reports Server (NTRS)
Wang, Yu; Pain, Bedabrata; Cunningham, Thomas; Seshadri, Suresh
2005-01-01
Biosensors of a proposed type would exploit scattering of light by surface plasmon resonance (SPR). Related prior biosensors exploit absorption of light by SPR. Relative to the prior SPR biosensors, the proposed SPR biosensors would offer greater sensitivity in some cases, enough sensitivity to detect bioparticles having dimensions as small as nanometers. A surface plasmon wave can be described as a light-induced collective oscillation in electron density at the interface between a metal and a dielectric. At SPR, most incident photons are either absorbed or scattered at the metal/dielectric interface and, consequently, reflected light is greatly attenuated. The resonance wavelength and angle of incidence depend upon the permittivities of the metal and dielectric. An SPR sensor of the type most widely used heretofore includes a gold film coated with a ligand a substance that binds analyte molecules. The gold film is thin enough to support evanescent-wave coupling through its thickness. The change in the effective index of refraction at the surface, and thus the change in the SPR response, increases with the number of bound analyte molecules. The device is illuminated at a fixed wavelength, and the intensity of light reflected from the gold surface opposite the ligand-coated surface is measured as a function of the angle of incidence. From these measurements, the angle of minimum reflection intensity is determined
Nanostructures Exploit Hybrid-Polariton Resonances
NASA Technical Reports Server (NTRS)
Anderson, Mark
2008-01-01
Nanostructured devices that exploit the hybrid-polariton resonances arising from coupling among photons, phonons, and plasmons are subjects of research directed toward the development of infrared-spectroscopic sensors for measuring extremely small quantities of molecules of interest. The spectroscopic techniques in question are surface enhanced Raman scattering (SERS) and surface enhanced infrared absorption (SEIRA). An important intermediate goal of this research is to increase the sensitivity achievable by these techniques. The basic idea of the approach being followed in this research is to engineer nanostructured devices and thereby engineer their hybrid-polariton resonances to concentrate infrared radiation incident upon their surfaces in such a manner as to increase the absorption of the radiation for SEIRA and measure the frequency shifts of surface vibrational modes. The underlying hybrid-polariton-resonance concept is best described by reference to experimental devices that have been built and tested to demonstrate the concept. The nanostructure of each such device includes a matrix of silicon carbide particles of approximately 1 micron in diameter that are supported on a potassium bromide (KBr) or poly(tetrafluoroethylene) [PTFE] window. These grains are sputter-coated with gold grains of 40-nm size (see figure). From the perspective of classical electrodynamics, in this nanostructure, that includes a particulate or otherwise rough surface, the electric-field portion of an incident electromagnetic field becomes concentrated on the particles when optical resonance conditions are met. Going beyond the perspective of classical electrodynamics, it can be seen that when the resonance frequencies of surface phonons and surface plasmons overlap, the coupling of the resonances gives rise to an enhanced radiation-absorption or -scattering mechanism. The sizes, shapes, and aggregation of the particles determine the frequencies of the resonances. Hence, the task of designing a nanostructure to exhibit the desired radiation-absorption properties translates, in large part, to selecting particle sizes and shapes to obtain the desired enhanced coupling of energy from photons to plasmons and phonons. To broaden the spectral region(s) of enhanced absorption, one would select a distribution of particle sizes and shapes.
Polarization-resolved optical response of plasmonic particle-on-film nanocavities
NASA Astrophysics Data System (ADS)
Zhang, Q.; Li, G.-C.; Lo, T. W.; Lei, D. Y.
2018-02-01
Placing a metal nanoparticle atop a metal film forms a plasmonic particle-on-film nanocavity. Such a nanocavity supports strong plasmonic coupling that results in rich hybridized plasmon modes, rendering the cavity a versatile platform for exploiting a wide range of plasmon-enhanced spectroscopy applications. In this paper, we fully address the polarization-resolved, orientation-dependent far-field optical responses of plasmonic monomer- and dimer-on-film nanocavities by numerical simulations and experiments. With polarization-resolved dark-field spectroscopy, the distinct plasmon resonances of these nanocavities are clearly determined from their scattering spectra. Moreover, the radiation patterns of respective plasmon modes, which are often mixed together in common dark-field imaging, can be unambiguously resolved with our proposed quasi-multispectral imaging method. Explicitly, the radiation pattern of the monomer-on-film nanocavity gradually transitions from a solid spot in the green imaging channel to a doughnut ring in the red channel when tuning the excitation polarization from parallel to perpendicular to the sample surface. This observation holds true for the plasmonic dimer-on-film nanocavity with the dimer axis aligned in the incidence plane; when the dimer axis is normal to the incidence plane, the pattern transitions from a solid spot to a doughnut ring both in the red channel. These studies not only demonstrate a flexible polarization control over the optical responses of plasmonic particle-on-film nanostructures but also enrich the optical tool kit for far-field imaging and spectroscopy characterization of various plasmonic nanostructures.
Dielectric Metasurface as a Platform for Spatial Mode Conversion in Nanoscale Waveguides.
Ohana, David; Desiatov, Boris; Mazurski, Noa; Levy, Uriel
2016-12-14
We experimentally demonstrate a nanoscale mode converter that performs coupling between the first two transverse electric-like modes of a silicon-on-insulator waveguide. The device operates by introducing a nanoscale periodic perturbation in its effective refractive index along the propagation direction and a graded effective index profile along its transverse direction. The periodic perturbation provides phase matching between the modes, while the graded index profile, which is realized by the implementation of nanoscale dielectric metasurface consisting of silicon features that are etched into the waveguide taking advantage of the effective medium concept, provides the overlap between the modes. Following the device design and numerical analysis using three-dimensional finite difference time domain simulations, we have fabricated the device and characterized it by directly measuring the modal content using optical imaging microscopy. From these measurements, the mode purity is estimated to be 95% and the transmission relative to an unperturbed strip waveguide is as high as 88%. Finally, we extend this approach to accommodate for the coupling between photonic and plasmonic modes. Specifically, we design and numerically demonstrate photonic to plasmonic mode conversion in a hybrid waveguide in which photonic and surface plasmon polariton modes can be guided in the silicon core and in the silicon/metal interface, respectively. The same method can also be used for coupling between symmetric and antisymmetric plasmonic modes in metal-insulator-metal or insulator-metal-insulator structures. On the basis of the current demonstration, we believe that such nanoscale dielectric metasurface-based mode converters can now be realized and become an important building block in future nanoscale photonic and plasmonic devices. Furthermore, the demonstrated platform can be used for the implementation of other chip scale components such as splitters, combiners couplers, and more.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hensen, Matthias; Heilpern, Tal; Gray, Stephen K.
Establishing strong coupling between spatially separated and thus selectively addressable quantum emitters is a key ingredient to complex quantum optical schemes in future technologies. Insofar as many plasmonic nanostructures are concerned, however, the energy transfer and mutual interaction strength between distant quantum emitters can fail to provide strong coupling. Here, based on mode hybridization, the longevity and waveguide character of an elliptical plasmon cavity are combined with intense and highly localized field modes of suitably designed nanoantennas. Based on FDTD simulations a quantum emitter-plasmon coupling strength hg = 16.7 meV is reached while simultaneously keeping a small plasmon resonance linemore » width h gamma(s) = 33 meV. This facilitates strong coupling, and quantum dynamical simulations reveal an oscillatory exchange of excited state population arid a notable degree of entanglement between the quantum emitters spatially separated by 1.8 mu m, i.e., about twice the operating wavelength.« less
Electron acceleration and high harmonic generation by relativistic surface plasmons
NASA Astrophysics Data System (ADS)
Cantono, Giada; Luca Fedeli Team; Andrea Sgattoni Team; Andrea Macchi Team; Tiberio Ceccotti Team
2016-10-01
Intense, short laser pulses with ultra-high contrast allow resonant surface plasmons (SPs) excitation on solid wavelength-scale grating targets, opening the way to the extension of Plasmonics in the relativistic regime and the manipulation of intense electromagnetic fields to develop new short, energetic, laser-synchronized radiation sources. Recent theoretical and experimental studies have explored the role of SP excitation in increasing the laser-target coupling and enhancing ion acceleration, high-order harmonic generation and surface electron acceleration. Here we present our results on SP driven electron acceleration from grating targets at ultra-high laser intensities (I = 5 ×1019 W/cm2, τ = 25 fs). When the resonant condition for SP excitation is fulfilled, electrons are emitted in a narrow cone along the target surface, with a total charge of about 100 pC and energy spectra peaked around 5 MeV. Distinguishing features of the resonant process were investigated by varying the incidence angle, grating type and with the support of 3D PIC simulations, which closely reproduced the experimental data. Open challenges and further measurements on high-order harmonic generation in presence of a relativistic SP will also be discussed.
Quasiparticle spectra from molecules to bulk
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vlček, Vojtěch; Rabani, Eran; Neuhauser, Daniel
We present a stochastic cumulant GW method, allowing us to map the evolution of photoemission spectra, quasiparticle energies, lifetimes, and emergence of collective excitations from molecules to bulklike systems with up to thousands of valence electrons, including Si nanocrystals and nanoplatelets. The quasiparticle energies rise due to their coupling with collective shake-up (plasmon) excitations, and this coupling leads to significant spectral weight loss (up to 50% for the low-energy states), shortening the lifetimes and shifting the spectral features to lower energies by as much as 0.6 eV. Such features are common to all the systems studied irrespective of their sizesmore » and shapes. For small and low-dimensional systems the surface plasmon resonances affect the frequency of the collective excitation and position of the satellites.« less
Quasiparticle spectra from molecules to bulk
Vlček, Vojtěch; Rabani, Eran; Neuhauser, Daniel
2018-03-16
We present a stochastic cumulant GW method, allowing us to map the evolution of photoemission spectra, quasiparticle energies, lifetimes, and emergence of collective excitations from molecules to bulklike systems with up to thousands of valence electrons, including Si nanocrystals and nanoplatelets. The quasiparticle energies rise due to their coupling with collective shake-up (plasmon) excitations, and this coupling leads to significant spectral weight loss (up to 50% for the low-energy states), shortening the lifetimes and shifting the spectral features to lower energies by as much as 0.6 eV. Such features are common to all the systems studied irrespective of their sizesmore » and shapes. For small and low-dimensional systems the surface plasmon resonances affect the frequency of the collective excitation and position of the satellites.« less
Tunneling-Electron-Induced Light Emission from Single Gold Nanoclusters.
Yu, Arthur; Li, Shaowei; Czap, Gregory; Ho, W
2016-09-14
The coupling of tunneling electrons with the tip-nanocluster-substrate junction plasmon was investigated by monitoring light emission in a scanning tunneling microscope (STM). Gold atoms were evaporated onto the ∼5 Å thick Al2O3 thin film grown on the NiAl (110) surface where they formed nanoclusters 3-7 nm wide. Scanning tunneling spectroscopy (STS) of these nanoclusters revealed quantum-confined electronic states. Spatially resolved photon imaging showed localized emission hot spots. Size dependent study and light emission from nanocluster dimers further support the viewpoint that coupling of tunneling electrons to the junction plasmon is the main radiative mechanism. These results showed the potential of the STM to reveal the electronic and optical properties of nanoscale metallic systems in the confined geometry of the tunnel junction.
Tunable all-optical plasmonic rectifier in nanoscale metal-insulator-metal waveguides.
Xu, Yi; Wang, Xiaomeng; Deng, Haidong; Guo, Kangxian
2014-10-15
We propose a tunable all-optical plasmonic rectifier based on the nonlinear Fano resonance in a metal-insulator-metal plasmonic waveguide and cavities coupling system. We develop a theoretical model based on the temporal coupled-mode theory to study the device physics of the nanoscale rectifier. We further demonstrate via the finite difference time domain numerical experiment that our idea can be realized in a plasmonic system with an ultracompact size of ~120×800 nm². The tunable plasmonic rectifier could facilitate the all-optical signal processing in nanoscale.
Phonon-assisted damping of plasmons in three- and two-dimensional metals
NASA Astrophysics Data System (ADS)
Caruso, Fabio; Novko, Dino; Draxl, Claudia
2018-05-01
We investigate the effects of crystal lattice vibrations on the dispersion of plasmons. The loss function of the homogeneous electron gas (HEG) in two and three dimensions is evaluated numerically in the presence of electronic coupling to an optical phonon mode. Our calculations are based on many-body perturbation theory for the dielectric function as formulated by the Hedin-Baym equations in the Fan-Migdal approximation. The coupling to phonons broadens the spectral signatures of plasmons in the electron-energy loss spectrum (EELS) and it induces the decay of plasmons on timescales shorter than 1 ps. Our results further reveal the formation of a kink in the plasmon dispersion of the two-dimensional HEG, which marks the onset of plasmon-phonon scattering. Overall, these features constitute a fingerprint of plasmon-phonon coupling in EELS of simple metals. It is shown that these effects may be accounted for by resorting to a simplified treatment of the electron-phonon interaction which is amenable to first-principles calculations.
Advanced Metacrystal Media for Aerospace Applications
2014-09-14
role of the surface C. Ciracì, E. Poutrina, M. Scalora , D. R. Smith Physical Review B 86, 115451 (2012) Plasmon ruler with Angstrom length...Poutrina, M. Scalora D. R. Smith Physical Review B 85, 201403(R) (2012) Enhancement of four-wave mixing processes by nanoparticle arrays coupled to
Li, Guangyuan; Zhang, Jiasen
2014-01-01
Ultra-broadband, efficient and unidirectional surface plasmon polariton (SPP) launching is of great concern in plasmonic devices and circuits. To address this challenge, a novel method adopting deep-subwavelength slits of subwavelength period (λSPP/4 ~ λSPP/3) in a thick metal film and under backside illumination is proposed. A new band pattern featuring broadband and wide angular characteristics, which is due to the coupling of the zeroth-order SPP resonance at the superstrate–metal interface and the first-order SPP resonance at the metal–substrate interface, is observed for the first time in the dispersion diagram. Unidirectional SPP launching efficiency of ~50%, ultra-broad bandwidth of up to 780 nm, covering the entire optical fiber communication bands, and relatively wide angular range of 7° are achieved. This remarkable efficient, ultra-broadband and wide angular performance is demonstrated by carefully designed experiments in the near infrared regime, showing good agreement with numerical results. PMID:25081812
Li, Guangyuan; Zhang, Jiasen
2014-08-01
Ultra-broadband, efficient and unidirectional surface plasmon polariton (SPP) launching is of great concern in plasmonic devices and circuits. To address this challenge, a novel method adopting deep-subwavelength slits of subwavelength period (λSPP/4 ~ λSPP/3) in a thick metal film and under backside illumination is proposed. A new band pattern featuring broadband and wide angular characteristics, which is due to the coupling of the zeroth-order SPP resonance at the superstrate-metal interface and the first-order SPP resonance at the metal-substrate interface, is observed for the first time in the dispersion diagram. Unidirectional SPP launching efficiency of ~50%, ultra-broad bandwidth of up to 780 nm, covering the entire optical fiber communication bands, and relatively wide angular range of 7° are achieved. This remarkable efficient, ultra-broadband and wide angular performance is demonstrated by carefully designed experiments in the near infrared regime, showing good agreement with numerical results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alam, B., E-mail: badrul.alam@uniroma1.it; Veroli, A.; Benedetti, A.
2016-08-28
A structure featuring vertical directional coupling of long-range surface plasmon polaritons between strip waveguides at λ = 1.55 μm is investigated with the aim of producing efficient elements that enable optical multilayer routing for 3D photonics. We have introduced a practical computational method to calculate the interaction on the bent part. This method allows us both to assess the importance of the interaction in the bent part and to control it by a suitable choice of the fabrication parameters that helps also to restrain effects due to fabrication issues. The scheme adopted here allows to reduce the insertion losses compared with othermore » planar and multilayer devices.« less
Current Approach in Surface Plasmons for Thin Film and Wire Array Solar Cell Applications
Zhou, Keya; Guo, Zhongyi; Liu, Shutian; Lee, Jung-Ho
2015-01-01
Surface plasmons, which exist along the interface of a metal and a dielectric, have been proposed as an efficient alternative method for light trapping in solar cells during the past ten years. With unique properties such as superior light scattering, optical trapping, guide mode coupling, near field concentration, and hot-electron generation, metallic nanoparticles or nanostructures can be tailored to a certain geometric design to enhance solar cell conversion efficiency and to reduce the material costs. In this article, we review current approaches on different kinds of solar cells, such as crystalline silicon (c-Si) and amorphous silicon (a-Si) thin film solar cells, organic solar cells, nanowire array solar cells, and single nanowire solar cells. PMID:28793457
Self-Similarity of Plasmon Edge Modes on Koch Fractal Antennas.
Bellido, Edson P; Bernasconi, Gabriel D; Rossouw, David; Butet, Jérémy; Martin, Olivier J F; Botton, Gianluigi A
2017-11-28
We investigate the plasmonic behavior of Koch snowflake fractal geometries and their possible application as broadband optical antennas. Lithographically defined planar silver Koch fractal antennas were fabricated and characterized with high spatial and spectral resolution using electron energy loss spectroscopy. The experimental data are supported by numerical calculations carried out with a surface integral equation method. Multiple surface plasmon edge modes supported by the fractal structures have been imaged and analyzed. Furthermore, by isolating and reproducing self-similar features in long silver strip antennas, the edge modes present in the Koch snowflake fractals are identified. We demonstrate that the fractal response can be obtained by the sum of basic self-similar segments called characteristic edge units. Interestingly, the plasmon edge modes follow a fractal-scaling rule that depends on these self-similar segments formed in the structure after a fractal iteration. As the size of a fractal structure is reduced, coupling of the modes in the characteristic edge units becomes relevant, and the symmetry of the fractal affects the formation of hybrid modes. This analysis can be utilized not only to understand the edge modes in other planar structures but also in the design and fabrication of fractal structures for nanophotonic applications.
Sykes, Matthew E; Stewart, Jon W; Akselrod, Gleb M; Kong, Xiang-Tian; Wang, Zhiming; Gosztola, David J; Martinson, Alex B F; Rosenmann, Daniel; Mikkelsen, Maiken H; Govorov, Alexander O; Wiederrecht, Gary P
2017-10-17
The creation of energetic electrons through plasmon excitation of nanostructures before thermalization has been proposed for a wide number of applications in optical energy conversion and ultrafast nanophotonics. However, the use of "nonthermal" electrons is primarily limited by both a low generation efficiency and their ultrafast decay. We report experimental and theoretical results on the use of broadband plasmonic nanopatch metasurfaces comprising a gold substrate coupled to silver nanocubes that produce large concentrations of hot electrons, which we measure using transient absorption spectroscopy. We find evidence for three subpopulations of nonthermal carriers, which we propose arise from anisotropic electron-electron scattering within sp-bands near the Fermi surface. The bimetallic character of the metasurface strongly impacts the physics, with dissipation occurring primarily in the gold, whereas the quantum process of hot electron generation takes place in both components. Our calculations show that the choice of geometry and materials is crucial for producing strong ultrafast nonthermal electron components.The creation of energetic electrons through plasmon excitation has implications in optical energy conversion and ultrafast nanophotonics. Here, the authors find evidence for three subpopulations of nonthermal carriers which arise from anisotropic electron-electron scattering near the Fermi surface.
Surface-Enhanced Raman Scattering Using Silica Whispering-Gallery Mode Resonators
NASA Technical Reports Server (NTRS)
Anderson, Mark S.
2013-01-01
The motivation of this work was to have robust spectroscopic sensors for sensitive detection and chemical analysis of organic and molecular compounds. The solution is to use silica sphere optical resonators to provide surface-enhanced spectroscopic signal. Whispering-gallery mode (WGM) resonators made from silica microspheres were used for surface-enhanced Raman scattering (SERS) without coupling to a plasmonic mechanism. Large Raman signal enhancement is observed by exclusively using 5.08-micron silica spheres with 785-nm laser excitation. The advantage of this non-plasmonic approach is that the active substrate is chemically inert silica, thermally stable, and relatively simple to fabricate. The Raman signal enhancement is broadly applicable to a wide range of molecular functional groups including aliphatic hydrocarbons, siloxanes, and esters. Applications include trace organic analysis, particularly for in situ planetary instruments that require robust sensors with consistent response.
Coupling of Molecular Emitters and Plasmonic Cavities beyond the Point-Dipole Approximation.
Neuman, Tomáš; Esteban, Ruben; Casanova, David; García-Vidal, Francisco J; Aizpurua, Javier
2018-04-11
As the size of a molecular emitter becomes comparable to the dimensions of a nearby optical resonator, the standard approach that considers the emitter to be a point-like dipole breaks down. By adoption of a quantum description of the electronic transitions of organic molecular emitters, coupled to a plasmonic electromagnetic field, we are able to accurately calculate the position-dependent coupling strength between a plasmon and an emitter. The spatial distribution of excitonic and photonic quantum states is found to be a key aspect in determining the dynamics of molecular emission in ultrasmall cavities both in the weak and strong coupling regimes. Moreover, we show that the extreme localization of plasmonic fields leads to the selection rule breaking of molecular excitations.
Quantum and Classical Plasmonic Phenomena in Nanoparticle Arrays
NASA Astrophysics Data System (ADS)
Govorov, Alexander; Besteiro, Lucas; Khosravi Khorashad, Larousse; Kong, Xiang-Tian; Roller, Eva-Maria; Liedl, Tim
Using both classical and quantum approaches, we model plasmonic phenomena in nanoparticle (NP) dimers and trimers. Using a model of three nanoparticles, we propose a mechanism of non-dissipative and ultrafast plasmon passage assisted by hot spots. For this, the NP trimer should include two Au-NPs and one Ag-NP. In the Au-Ag-Au trimer, the two Au-plasmons become coupled via the virtual plasmon of the Ag-NP. The efficient and ultra-fast passage of the Au-plasmons assisted by the virtual Ag-plasmon only becomes possible when the inter-NP gaps in the trimer are small. In this coupling regime, the inter-NP gap regions become plasmonic hot spots that greatly enhance the plasmonic passage effect. At this moment, the plasmonic passage phenomenon was already observed experimentally using optical spectroscopy and the DNA-origami NP complexes. Other systems of our interest were a NP dimer and a nanostar with plasmonic hot spots. For those systems, we predict strong enhancement of the generation of energetic (hot) carriers.
Electromagnetic Field Redistribution in Metal Nanoparticle on Graphene.
Li, Keke; Liu, Anping; Wei, Dapeng; Yu, Keke; Sun, Xiaonan; Yan, Sheng; Huang, Yingzhou
2018-04-25
Benefiting from the induced image charge on metal film, the light energy is confined on a film surface under metal nanoparticle dimer, which is called electromagnetic field redistribution. In this work, electromagnetic field distribution of metal nanoparticle monomer or dimer on graphene is investigated through finite-difference time-domain method. The results point out that the electromagnetic field (EM) redistribution occurs in this nanoparticle/graphene hybrid system at infrared region where light energy could also be confined on a monolayer graphene surface. Surface charge distribution was analyzed using finite element analysis, and surface-enhanced Raman spectrum (SERS) was utilized to verify this phenomenon. Furthermore, the data about dielectric nanoparticle on monolayer graphene demonstrate this EM redistribution is attributed to strong coupling between light-excited surface charge on monolayer graphene and graphene plasmon-induced image charge on dielectric nanoparticle surface. Our work extends the knowledge of monolayer graphene plasmon, which has a wide range of applications in monolayer graphene-related film.
Deterministic Coupling of Quantum Emitters in 2D Materials to Plasmonic Nanocavity Arrays.
Tran, Toan Trong; Wang, Danqing; Xu, Zai-Quan; Yang, Ankun; Toth, Milos; Odom, Teri W; Aharonovich, Igor
2017-04-12
Quantum emitters in two-dimensional materials are promising candidates for studies of light-matter interaction and next generation, integrated on-chip quantum nanophotonics. However, the realization of integrated nanophotonic systems requires the coupling of emitters to optical cavities and resonators. In this work, we demonstrate hybrid systems in which quantum emitters in 2D hexagonal boron nitride (hBN) are deterministically coupled to high-quality plasmonic nanocavity arrays. The plasmonic nanoparticle arrays offer a high-quality, low-loss cavity in the same spectral range as the quantum emitters in hBN. The coupled emitters exhibit enhanced emission rates and reduced fluorescence lifetimes, consistent with Purcell enhancement in the weak coupling regime. Our results provide the foundation for a versatile approach for achieving scalable, integrated hybrid systems based on low-loss plasmonic nanoparticle arrays and 2D materials.
Plasmonic EIT-like switching in bright-dark-bright plasmon resonators.
Chen, Junxue; Wang, Pei; Chen, Chuncong; Lu, Yonghua; Ming, Hai; Zhan, Qiwen
2011-03-28
In this paper we report the study of the electromagnetically induced transparency (EIT)-like transmission in the bright-dark-bright plasmon resonators. It is demonstrated that the interferences between the dark plasmons excited by two bright plasmon resonators can be controlled by the incident light polarization. The constructive interference strengthens the coupling between the bright and dark resonators, leading to a more prominent EIT-like transparency window of the metamaterial. In contrary, destructive interference suppresses the coupling between the bright and dark resonators, destroying the interference pathway that forms the EIT-like transmission. Based on this observation, the plasmonic EIT switching can be realized by changing the polarization of incident light. This phenomenon may find applications in optical switching and plasmon-based information processing.
Ni, Weihai; Chen, Huanjun; Su, Jing; Sun, Zhenhua; Wang, Jianfang; Wu, Hongkai
2010-04-07
The effects of various factors on the resonance coupling between elongated Au nanocrystals and organic dyes have been systematically investigated through the preparation of hybrid nanostructures between Au nanocrystals and the electrostatically adsorbed dye molecules. A nanocrystal sample is chosen for each dye to match the longitudinal plasmon resonance wavelength with the absorption peak wavelength of the dye as close as possible so that the resonance coupling strength can be maximized. The resonance coupling strength is found to approximately increase as the molecular volume-normalized absorptivity is increased. It is mainly determined by the plasmon resonance energy of the Au nanocrystals instead of their shapes and sizes. Moreover, the resonance coupling can be reversibly controlled if the dye in the hybrid nanostructures is pH-sensitive. The coupling can also be weakened in the presence of metal ions. These results will be highly useful for designing resonance coupling-based sensing devices and for plasmon-enhanced spectroscopy.
Hu, Min; Novo, Carolina; Funston, Alison; Wang, Haining; Staleva, Hristina; Zou, Shengli; Mulvaney, Paul; Xia, Younan; Hartland, Gregory V.
2008-01-01
This article provides a review of our recent Rayleigh scattering measurements on single metal nanoparticles. Two different systems will be discussed in detail: gold nanorods with lengths between 30 and 80 nm, and widths between 8 and 30 nm; and hollow gold–silver nanocubes (termed nanoboxes or nanocages depending on their exact morphology) with edge lengths between 100 and 160 nm, and wall thicknesses of the order of 10 nm. The goal of this work is to understand how the linewidth of the localized surface plasmon resonance depends on the size, shape, and environment of the nanoparticles. Specifically, the relative contributions from bulk dephasing, electron–surface scattering, and radiation damping (energy loss via coupling to the radiation field) have been determined by examining particles with different dimensions. This separation is possible because the magnitude of the radiation damping effect is proportional to the particle volume, whereas, the electron–surface scattering contribution is inversely proportional to the dimensions. For the nanorods, radiation damping is the dominant effect for thick rods (widths greater than 20 nm), while electron–surface scattering is dominant for thin rods (widths less than 10 nm). Rods with widths in between these limits have narrow resonances—approaching the value determined by the bulk contribution. For nanoboxes and nanocages, both radiation damping and electron–surface scattering are significant at all sizes. This is because these materials have thin walls, but large edge lengths and, therefore, relatively large volumes. The effect of the environment on the localized surface plasmon resonance has also been studied for nanoboxes. Increasing the dielectric constant of the surroundings causes a red-shift and an increase in the linewidth of the plasmon band. The increase in linewidth is attributed to enhanced radiation damping. PMID:18846243
Hu, Min; Novo, Carolina; Funston, Alison; Wang, Haining; Staleva, Hristina; Zou, Shengli; Mulvaney, Paul; Xia, Younan; Hartland, Gregory V
2008-01-01
This article provides a review of our recent Rayleigh scattering measurements on single metal nanoparticles. Two different systems will be discussed in detail: gold nanorods with lengths between 30 and 80 nm, and widths between 8 and 30 nm; and hollow gold-silver nanocubes (termed nanoboxes or nanocages depending on their exact morphology) with edge lengths between 100 and 160 nm, and wall thicknesses of the order of 10 nm. The goal of this work is to understand how the linewidth of the localized surface plasmon resonance depends on the size, shape, and environment of the nanoparticles. Specifically, the relative contributions from bulk dephasing, electron-surface scattering, and radiation damping (energy loss via coupling to the radiation field) have been determined by examining particles with different dimensions. This separation is possible because the magnitude of the radiation damping effect is proportional to the particle volume, whereas, the electron-surface scattering contribution is inversely proportional to the dimensions. For the nanorods, radiation damping is the dominant effect for thick rods (widths greater than 20 nm), while electron-surface scattering is dominant for thin rods (widths less than 10 nm). Rods with widths in between these limits have narrow resonances-approaching the value determined by the bulk contribution. For nanoboxes and nanocages, both radiation damping and electron-surface scattering are significant at all sizes. This is because these materials have thin walls, but large edge lengths and, therefore, relatively large volumes. The effect of the environment on the localized surface plasmon resonance has also been studied for nanoboxes. Increasing the dielectric constant of the surroundings causes a red-shift and an increase in the linewidth of the plasmon band. The increase in linewidth is attributed to enhanced radiation damping.
NASA Astrophysics Data System (ADS)
Jin, Gui; Huang, Xiaoyi
2018-02-01
We propose and demonstrate a metal-dielectric-metal(MDM) waveguide side coupled with two stubs to realize plasmon induced transparency (PIT) effect. The dispersion relation of the structure has been plotted by solving the dispersion equation of MDM three layer structure, the transmission spectrum is investigated by coupled mode theory (CMT) and Finite Element Method (FEM) simulation, the CMT results can. The surface plasmon device can also be used as a EIT-like filter with a variable full width of half-maximum (FWHM) and highest transmission over 88%. The maximum group index ng is 42 with a group velocity of 0.023ܿ and transmission of 48%, The normalized delay-bandwidth product (NDBP) can be modulated through changing the gap width of resonators and waveguide bus, the highest is 0.641 at gap width 10 nm, and lowest is 0.246 at 30 nm. The dispersion of group velocity (GVD) changes drastically at narrow gap width and becomes more and more flat at broader gap width, this opens up an avenue for designing optical buffers, switches and modulators.
Roiter, Yuri; Minko, Iryna; Nykypanchuk, Dmytro; Tokarev, Ihor; Minko, Sergiy
2012-01-07
The mechanism of nanoparticle actuation by stimuli-responsive polymer brushes triggered by changes in the solution pH was discovered and investigated in detail in this study. The finding explains the high spectral sensitivity of the composite ultrathin film composed of a poly(2-vinylpyridine) (P2VP) brush that tunes the spacing between two kinds of nanoparticles-gold nanoislands immobilized on a transparent support and gold colloidal particles adsorbed on the brush. The optical response of the film relies on the phenomenon of localized surface plasmon resonances in the noble metal nanoparticles, giving rise to an extinction band in visible spectra, and a plasmon coupling between the particles and the islands that has a strong effect on the band position and intensity. Since the coupling is controlled by the interparticle spacing, the pH-triggered swelling-shrinking transition in the P2VP brush leads to pronounced changes in the transmission spectra of the hybrid film. It was not established in the previous publications how the actuation of gold nanoparticles within a 10-15 nm interparticle distance could result in the 50-60 nm shift in the absorbance maximum in contrast to the model experiments and theoretical estimations of several nanometer shifts. In this work, the extinction band was deconvoluted into four spectrally separated and overlapping contributions that were attributed to different modes of interactions between the particles and the islands. These modes came into existence due to variations in the thickness of the grafted polymeric layer on the profiled surface of the islands. In situ atomic force microscopy measurements allowed us to explore the behavior of the Au particles as the P2VP brush switched between the swollen and collapsed states. In particular, we identified an interesting, previously unanticipated regime when a particle position in a polymer brush was switched between two distinct states: the particle exposed to the surface of the collapsed layer and the particle engulfed by the swollen brush. On average, the characteristic distance between the particles and the islands increased upon the brush swelling. The observed behavior was a result of the anchoring of the particles to polymeric chains that limited the particles' vertical motion range. The experimental findings will be used to design highly sensitive optical nanosensors based on a polymer-brush-modulated interparticle plasmon coupling.
Slot-grating flat lens for telecom wavelengths.
Pugh, Jonathan R; Stokes, Jamie L; Lopez-Garcia, Martin; Gan, Choon-How; Nash, Geoff R; Rarity, John G; Cryan, Martin J
2014-07-01
We present a stand-alone beam-focusing flat lens for use in the telecommunications wavelength range. Light incident on the back surface of the lens propagates through a subwavelength aperture and is heavily diffracted on exit and partially couples into a surface plasmon polariton and a surface wave propagating along the surface of the lens. Interference between the diffracted wave and re-emission from a grating patterned on the surface produces a highly collimated beam. We show for the first time a geometry at which a lens of this type can be used at telecommunication wavelengths (λ=1.55 μm) and identify the light coupling and re-emission mechanisms involved. Measured beam profile results at varying incident wavelengths show excellent agreement with Lumerical FDTD simulation results.
Ultrafast strong broadband light source generated in nanoscale plasmonic Au-AAO-Al structures
NASA Astrophysics Data System (ADS)
Han, Junbo; Yao, Linhua; Ma, Zongwei
we demonstrate an ultrafast strong broadband photoluminescence (PL) from Au-AAO-Al composite under low excitation power intensity of 3.8 34.5 GW /cm2. The emission wavelength is in the range of 450-1050 nm and the lifetime is under sub-nanosecond. Comparative studies of PL in Au-AAO-Al with different Au rod length and Au-AAO without Al coupling layer, together with the finite difference time domain (FDTD) calculations, present that the fast PL originates from the surface plasmon enhanced supercontinuum generation (SCG) in AAO membrane. The observations indicate that strong SCG could be realized in nanoscale plasmonic structures, which have promise applications in the minimization and integration of ultrafast lighting sources in photonic devices. National Natural Scientific Foundation of China (11404124).
NASA Astrophysics Data System (ADS)
Sonato, Agnese; Silvestri, Davide; Ruffato, Gianluca; Zacco, Gabriele; Romanato, Filippo; Morpurgo, Margherita
2013-12-01
Grating Coupled-Surface Plasmon reflectivity measurements carried out under azimuth and polarization control (GC-SPR φ ≠ 0°) were used to optimize the process of gold surface dressing with poly(ethylene oxide) (PEO) derivatives of different molecular weight, with the final goal to maximize the discrimination between specific and non-specific binding events occurring at the surface. The kinetics of surface deposition of thiol-ending PEOs (0.3, 2 and 5 kDa), introduced as antifouling layers, was monitored. Non-specific binding events upon immersion of the surfaces into buffers containing either 0.1% bovine serum albumin or 1% Goat Serum, were evaluated as a function of polymer size and density. A biorecognition event between avidin and biotin was then monitored in both buffers at selected low and high polymer surface densities and the contribution of analyte and fouling elements to the signal was precisely quantified. The 0.3 kDa PEO film was unable to protect the surface from non-specific interactions at any tested density. On the other hand, the 2 and 5 kDa polymers at their highest surface densities guaranteed full protection from non-specific interactions from both buffers. These densities were reached upon a long deposition time (24-30 h). The results pave the way toward the application of this platform for the detection of low concentration and small dimension analytes, for which both non-fouling and high instrumental sensitivity are fundamental requirements.
Faridi, Ehsan; Moradi, Maryam; Ansari, Narges; Baradaran Ghasemi, Amir Hossein; Afshar, Amir; Mohseni Armaki, Seyed Majid
2017-12-01
The demonstration of biosensors based on the surface plasmon effect holds promise for future high-sensitive electrodeless biodetection. The combination of magnetic effects with surface plasmon waves brings additional freedom to improve sensitivity and signal selectivity. Stacking biosensors with two-dimensional (2-D) materials, e.g., graphene (Gr) and MoS2, can influence plasmon waves and facilitate surface physiochemical properties as additional versatility aspects. We demonstrate magnetoplasmonic biosensors through the detuning of surface plasmon oscillation modes affected by magnetic effect via the presence of the NiFe (Py) layer and different light absorbers of Gr, MoS2, and Au ultrathin layers in three stacks of Au/Py/M(MoS2, Gr, Au) trilayers. We found minimum reflection, resonance angle shift, and transverse magneto-optical Kerr effect (TMOKE) responses of all sensors in the presence of the ss-DNA monolayer. Very few changes of ∼5×10-7 in the ss-DNA's refractive index result in valuable TMOKE response. We found that the presence of three-layer Gr and two-layer MoS2 on top of the Au/Py bilayer can dramatically increase the sensitivity by nine and four times, respectively, than the conventional Au/Co/Au trilayer. Our results show the highest reported DNA sensitivity based on the coupling of light with 2-D materials in magnetoplasmonic devices. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
Sarkar, S; Kanchibotla, B; Nelson, J D; Edwards, J D; Anderson, J; Tepper, G C; Bandyopadhyay, S
2014-10-08
The fluorescence of organic fluorophore molecules is enhanced when they are placed in contact with certain metals (Al, Ag, Cu, Au, etc.) whose surface plasmon waves couple into the radiative modes of the molecules and increase the radiative efficiency. Here, we report a hitherto unknown size dependence of this metal-enhanced fluorescence (MEF) effect in the nanoscale. When the molecules are deposited in nanoporous anodic alumina films with exposed aluminum at the bottom of the pores, they form organic nanowires standing on aluminum nanoparticles whose plasmon waves have much larger amplitudes. This increases the MEF strongly, resulting in several orders of magnitude increase in the fluorescence intensity of the organic fluorophores. The increase in intensity shows an inverse superlinear dependence on nanowire diameter because the nanowires also act as plasmonic "waveguides" that concentrate the plasmons and increase the coupling of the plasmons with the radiative modes of the molecules. Furthermore, if the nanoporous template housing the nanowires has built-in electric fields due to space charges, a strong molecule-specific red- or blue-shift is induced in the fluorescence peak owing to a renormalization of the dipole moment of the molecule. This can be exploited to detect minute amounts of target molecules in a mixture using their optical signature (fluorescence) despite the presence of confounding background signals. It can result in a unique new technology for biosensing and chemical sensing.
Poloidal and toroidal plasmons and fields of multilayer nanorings
Garapati, K. V.; Salhi, M.; Kouchekian, S.; ...
2017-04-17
Composite and janus type metallodielectric nanoparticles are increasingly considered as a means to control the spatial and temporal behavior of electromagnetic fields in diverse applications such as coupling to quantum emitters, achieving invisibility cloaks, and obtaining quantum correlations between qubits. We investigate the surface modes of a toroidal nanostructure and obtain the canonical plasmon dispersion relations and resonance modes for arbitrarily layered nanorings. Unlike particle plasmon eigenmodes in other geometries, the amplitudes of the eigenmodes of tori exhibit a distinct forward and backward coupling. We present the plasmon dispersion relations for several relevant toroidal configurations in the quasistatic limit andmore » obtain the dominant retarded dispersion relations of a single ring for comparison, discuss mode complementarity and hybridization, and introduce two new types of toroidal particles in the form of janus nanorings. The resonance frequencies for the first few dominant modes of a ring composed of plasmon supporting materials such as gold, silver, and aluminum are provided and compared to those for a silicon ring. A generalized Green's function is obtained for multilayer tori allowing for calculation of the scattering response to interacting fields. Employing the Green's function, the scalar electric potential distribution corresponding to individual poloidal and toroidal modes in response to an arbitrarily polarized external field and the field of electrons is obtained. The results are applied to obtain the local density of states and decay rate of a dipole near the center of the torus.« less
Matsui, Hiroaki; Furuta, Shinya; Hasebe, Takayuki; Tabata, Hitoshi
2016-05-11
This paper describes infrared plasmonic responses in three-dimensional (3D) assembled films of In2O3:Sn nanoparticles (NPs). The introduction of surface modifications to NPs can facilitate the production of electric-field interactions between NPs due to the creation of narrow crevices in the NP interfaces. In particular, the electric-field interactions along the in-plane and out-of-plane directions in the 3D assembled NP films allow for resonant splitting of plasmon excitations to the quadrupole and dipole modes, thereby realizing selective high reflections in the near- and mid-infrared range, respectively. The origins of these plasmonic properties were revealed from electric-field distributions calculated by electrodynamic simulations that agreed well with experimental results. The interparticle gaps and their derived plasmon couplings play an important role in producing high reflective performances in assembled NP films. These 3D assemblies of NPs can be further extended to produce large-size flexible films with high infrared reflectance, which simultaneously exhibit microwave transmittance essential for telecommunications. This study provides important insights for harnessing infrared optical responses using plasmonic technology for the fabrication of infrared thermal-shielding applications.
Focusing short-wavelength surface plasmons by a plasmonic mirror.
Ogut, Erdem; Yanik, Cenk; Kaya, Ismet Inonu; Ow-Yang, Cleva; Sendur, Kursat
2018-05-01
Emerging applications in nanotechnology, such as superresolution imaging, ultra-sensitive biomedical detection, and heat-assisted magnetic recording, require plasmonic devices that can generate intense optical spots beyond the diffraction limit. One of the important drawbacks of surface plasmon focusing structures is their complex design, which is significant for ease of integration with other nanostructures and fabrication at low cost. In this study, a planar plasmonic mirror without any nanoscale features is investigated that can focus surface plasmons to produce intense optical spots having lateral and vertical dimensions of λ/9.7 and λ/80, respectively. Intense optical spots beyond the diffraction limit were produced from the plasmonic parabolic mirror by exciting short-wavelength surface plasmons. The refractive index and numerical aperture of the plasmonic parabolic mirror were varied to excite short-wavelength surface plasmons. Finite-element method simulations of the plasmonic mirror and scanning near-field optical microscopy experiments have shown very good agreement.
Nanopillar Optical Antenna Avalanche Detectors
2014-08-30
tuning and hybridization of the optical absorption via Surface Plasmon Polariton Bloch Waves (SPP-BWs) and Localized Surface Plasmon Resonances (LSPRs...of the optical absorption via Surface Plasmon Polariton Bloch Waves (SPP-BWs) and Localized Surface Plasmon Resonances (LSPRs) will be discussed...Surface Plasmon Polariton Bloch wave (SPP-BW) 36, 40. Also, resonant-field enhancement occurs in bounded metallic/dielectric structures that support
Fluorescence enhancement and strong-coupling in faceted plasmonic nanocavities
NASA Astrophysics Data System (ADS)
Kongsuwan, Nuttawut; Demetriadou, Angela; Chikkaraddy, Rohit; Baumberg, Jeremy J.; Hess, Ortwin
2018-06-01
Emission properties of a quantum emitter can be significantly modified inside nanometre-sized gaps between two plasmonic nanostructures. This forms a nanoscopic optical cavity which allows single-molecule detection and single-molecule strong-coupling at room temperature. However, plasmonic resonances of a plasmonic nanocavity are highly sensitive to the exact gap morphology. In this article, we shed light on the effect of gap morphology on the plasmonic resonances of a faceted nanoparticle-on-mirror (NPoM) nanocavity and their interaction with quantum emitters. We find that with increasing facet width the NPoM nanocavity provides weaker field enhancement and thus less coupling strength to a single quantum emitter since the effective mode volume increases with the facet width. However, if multiple emitters are present, a faceted NPoM nanocavity is capable of accommodating a larger number of emitters, and hence the overall coupling strength is larger due to the collective and coherent energy exchange from all the emitters. Our findings pave the way to more efficient designs of nanocavities for room-temperature light-matter strong-coupling, thus providing a big step forward to a non-cryogenic platform for quantum technologies.
Plasmon-enhanced tilted fiber Bragg gratings with oriented silver nanowire coatings
NASA Astrophysics Data System (ADS)
Renoirt, J.-M.; Debliquy, M.; Albert, J.; Ianoul, A.; Caucheteur, C.
2014-05-01
(TFBG) covered by silver nanowires aligned perpendicularly to the fiber axis. TBFGs are a convenient way to measure surrounding refractive index, as they provide intrinsic temperature-insensitivity and preserve the optical fiber structural integrity. With bare TFBGs, sensitivity is about 60 nm/RIU (refractive index unit) while when coated with a gold thin film, surface plasmon resonance can be excited leading to a sensitivity about 600 nm/RIU. In our case, we show that localized plasmon resonances can be excited on silver nanowires. These nanowires (100 nm diameter and about 2.5 µm length) were synthetized by polyol process (ethylene glycol reducing silver nitrate in the presence of poly (vinyl pyrrolidone and sodium chloride). The nanowires were aligned and deposited perpendicularly to the fiber axis on the gratings using the Langmuir-Blodgett technique in order to maximise the coupling between azimuthally polarized light modes and the localized plasmons. Excitation of surface plasmons at wavelengths around 1.5 µm occurred, leading to a dip in the polarization dependent losses of the grating. This dip is highly dependent of the surrounding refractive index, leading to a sensitivity of 650 nm/RIU, which is a 10-fold increase compared to bare gratings. We obtain results equal or slightly higher than those obtained using a gold layer on TFBGs. In spite of the comparable bulk refractometric sensitivity, the use of these oriented nanowire layers provide significantly higher contact surface area for biochemical analysis using bioreceptors, and benefit from stronger polarization selectivity between azimuthal and radially polarized modes.
NASA Astrophysics Data System (ADS)
Talbayev, Diyar; Zhou, Jiangfeng; Lin, Shuai; Bhattarai, Khagendra
2017-05-01
Detection and identification of molecular materials based on their THz frequency vibrational resonances remains an open technological challenge. The need for such technology is illustrated by its potential uses in explosives detection (e.g., RDX) or identification of large biomolecules based on their THz-frequency vibrational fingerprints. The prevailing approaches to THz sensing often rely on a form of waveguide spectroscopy, either utilizing geometric waveguides, such as metallic parallel plate, or plasmonic waveguides made of structured metallic surfaces with sub-wavelength corrugation. The sensitivity of waveguide-based sensing devices is derived from the long (1 cm or longer) propagation and interaction distance of the THz wave with the analyte. We have demonstrated that thin InSb layers with metallic gratings can support high quality factor "true" surface plasmon (SP) resonances that can be used for THz plasmonic sensing. We find two strong SP absorption resonances in normal-incidence transmission and investigate their dispersion relations, dependence on InSb thickness, and the spatial distribution of the electric field. The sensitivity of this approach relies on the frequency shift of the SP resonance when the dielectric function changes in the immediate vicinity of the sensor, in the region of deeply sub-wavelength thickness. Our computational modeling indicates that the sensor sensitivity can exceed 0.25 THz per refractive index unit. One of the SP resonances also exhibits a splitting when tuned in resonance with a vibrational mode of an analyte, which could lead to new sensing modalities for the detection of THz vibrational features of the analyte.
Karalis, Aristeidis; Joannopoulos, J D
2016-07-01
We numerically demonstrate near-field planar ThermoPhotoVoltaic systems with very high efficiency and output power, at large vacuum gaps. Example performances include: at 1200 °K emitter temperature, output power density 2 W/cm(2) with ~47% efficiency at 300 nm vacuum gap; at 2100 °K, 24 W/cm(2) with ~57% efficiency at 200 nm gap; and, at 3000 °K, 115 W/cm(2) with ~61% efficiency at 140 nm gap. Key to this striking performance is a novel photonic design forcing the emitter and cell single modes to cros resonantly couple and impedance-match just above the semiconductor bandgap, creating there a 'squeezed' narrowband near-field emission spectrum. Specifically, we employ surface-plasmon-polariton thermal emitters and silver-backed semiconductor-thin-film photovoltaic cells. The emitter planar plasmonic nature allows for high-power and stable high-temperature operation. Our simulations include modeling of free-carrier absorption in both cell electrodes and temperature dependence of the emitter properties. At high temperatures, the efficiency enhancement via resonant mode cross-coupling and matching can be extended to even higher power, by appropriately patterning the silver back electrode to enforce also an absorber effective surface-plasmon-polariton mode. Our proposed designs can therefore lead the way for mass-producible and low-cost ThermoPhotoVoltaic micro-generators and solar cells.
‘Squeezing’ near-field thermal emission for ultra-efficient high-power thermophotovoltaic conversion
Karalis, Aristeidis; Joannopoulos, J. D.
2016-01-01
We numerically demonstrate near-field planar ThermoPhotoVoltaic systems with very high efficiency and output power, at large vacuum gaps. Example performances include: at 1200 °K emitter temperature, output power density 2 W/cm2 with ~47% efficiency at 300 nm vacuum gap; at 2100 °K, 24 W/cm2 with ~57% efficiency at 200 nm gap; and, at 3000 °K, 115 W/cm2 with ~61% efficiency at 140 nm gap. Key to this striking performance is a novel photonic design forcing the emitter and cell single modes to cros resonantly couple and impedance-match just above the semiconductor bandgap, creating there a ‘squeezed’ narrowband near-field emission spectrum. Specifically, we employ surface-plasmon-polariton thermal emitters and silver-backed semiconductor-thin-film photovoltaic cells. The emitter planar plasmonic nature allows for high-power and stable high-temperature operation. Our simulations include modeling of free-carrier absorption in both cell electrodes and temperature dependence of the emitter properties. At high temperatures, the efficiency enhancement via resonant mode cross-coupling and matching can be extended to even higher power, by appropriately patterning the silver back electrode to enforce also an absorber effective surface-plasmon-polariton mode. Our proposed designs can therefore lead the way for mass-producible and low-cost ThermoPhotoVoltaic micro-generators and solar cells. PMID:27363522
Synthesis of generalized surface plasmon beams
NASA Astrophysics Data System (ADS)
Martinez-Niconoff, G.; Munoz-Lopez, J.; Martinez-Vara, P.
2009-08-01
Surface plasmon modes can be considered as the analogous to plane waves for homogeneous media. The extension to partially coherent surface plasmon beams is obtained by means of the incoherent superposition of the interference between surface plasmon modes whose profile is controlled associating a probability density function to the structural parameters implicit in their representation. We show computational simulations for cosine, Bessel, gaussian and dark hollow surface plasmon beams.
NASA Astrophysics Data System (ADS)
Kumar, Shailesh; Lausen, Jens L.; Garcia-Ortiz, Cesar E.; Andersen, Sebastian K. H.; Roberts, Alexander S.; Radko, Ilya P.; Smith, Cameron L. C.; Kristensen, Anders; Bozhevolnyi, Sergey I.
2016-02-01
Nitrogen-vacancy (NV) centers in diamonds are interesting due to their remarkable characteristics that are well suited to applications in quantum-information processing and magnetic field sensing, as well as representing stable fluorescent sources. Multiple NV centers in nanodiamonds (NDs) are especially useful as biological fluorophores due to their chemical neutrality, brightness and room-temperature photostability. Furthermore, NDs containing multiple NV centers also have potential in high-precision magnetic field and temperature sensing. Coupling NV centers to propagating surface plasmon polariton (SPP) modes gives a base for lab-on-a-chip sensing devices, allows enhanced fluorescence emission and collection which can further enhance the precision of NV-based sensors. Here, we investigate coupling of multiple NV centers in individual NDs to the SPP modes supported by silver surfaces protected by thin dielectric layers and by gold V-grooves (VGs) produced via the self-terminated silicon etching. In the first case, we concentrate on monitoring differences in fluorescence spectra obtained from a source ND, which is illuminated by a pump laser, and from a scattering ND illuminated only by the fluorescence-excited SPP radiation. In the second case, we observe changes in the average NV lifetime when the same ND is characterized outside and inside a VG. Fluorescence emission from the VG terminations is also observed, which confirms the NV coupling to the VG-supported SPP modes.
NASA Astrophysics Data System (ADS)
Narushima, Kazuki; Ashizawa, Yoshito; Brachwitz, Kerstin; Hochmuth, Holger; Lorenz, Michael; Grundmann, Marius; Nakagawa, Katsuji
2016-07-01
The magnetic activity of surface plasmons in Au/MFe2O4 (M = Ni, Co, and Zn) polycrystalline bilayer films fabricated on a quartz glass substrate was studied for future magnetic sensor applications using surface plasmon resonance. The excitation of surface plasmons and their magnetic activity were observed in all investigated Au/MFe2O4 films. The magnetic activity of surface plasmons of the polycrystalline Au/NiFe2O4 film was larger than those of the other polycrystalline Au/MFe2O4 films, the epitaxial NiFe2O4 film, and metallic films. The large magnetic activity of surface plasmons of the polycrystalline film is controlled by manipulating surface plasmon excitation conditions and magnetic properties.
Femtosecond dynamics of monolayer MoS2-Ag nanoparticles hybrid probed at 532 nm
NASA Astrophysics Data System (ADS)
Xu, Xuefeng; Shi, Ying; Liu, Xiaochun; Sun, Mengtao
2018-01-01
In this communication, plasmon-exciton couplings of monolayer MoS2/Ag nanoparticles (NPs) hybrids with different sizes are investigated, using transient absorption spectra. Ultrafast dynamics of coupling interactions inside these hybrid structures are carefully examined at 532 nm, which can well interpret the apllication of plasmon-exciton coupling for the co-driven chemical reactions excited at 532 nm. Our experimental results can promote the deeper understanding on the physical mechanism of plasmon-excition interaction, and applications in different fields.
A phased antenna array for surface plasmons
Dikken, Dirk Jan W.; Korterik, Jeroen P.; Segerink, Frans B.; Herek, Jennifer L.; Prangsma, Jord C.
2016-01-01
Surface plasmon polaritons are electromagnetic waves that propagate tightly bound to metal surfaces. The concentration of the electromagnetic field at the surface as well as the short wavelength of surface plasmons enable sensitive detection methods and miniaturization of optics. We present an optical frequency plasmonic analog to the phased antenna array as it is well known in radar technology and radio astronomy. Individual holes in a thick gold film act as dipolar emitters of surface plasmon polaritons whose phase is controlled individually using a digital spatial light modulator. We show experimentally, using a phase sensitive near-field microscope, that this optical system allows accurate directional emission of surface waves. This compact and flexible method allows for dynamically shaping the propagation of plasmons and holds promise for nanophotonic applications employing propagating surface plasmons. PMID:27121099
Plasmon coupled Fabry-Perot lasing enhancement in graphene/ZnO hybrid microcavity.
Li, Jitao; Jiang, Mingming; Xu, Chunxiang; Wang, Yueyue; Lin, Yi; Lu, Junfeng; Shi, Zengliang
2015-03-19
The response of graphene surface plasmon (SP) in the ultraviolet (UV) region and the realization of short-wavelength semiconductor lasers not only are two hot research areas of great academic and practical significance, but also are two important issues lacked of good understanding. In this work, a hybrid Fabry-Perot (F-P) microcavity, comprising of monolayer graphene covered ZnO microbelt, was constructed to investigate the fundamental physics of graphene SP and the functional extension of ZnO UV lasing. Through the coupling between graphene SP modes and conventional optical microcavity modes of ZnO, improved F-P lasing performance was realized, including the lowered lasing threshold, the improved lasing quality and the remarkably enhanced lasing intensity. The underlying mechanism of the improved lasing performance was proposed based on theoretical simulation and experimental characterization. The results are helpful to design new types of optic and photoelectronic devices based on SP coupling in graphene/semiconductor hybrid structures.
Plasmon coupled Fabry-Perot lasing enhancement in graphene/ZnO hybrid microcavity
Li, Jitao; Jiang, Mingming; Xu, Chunxiang; Wang, Yueyue; Lin, Yi; Lu, Junfeng; Shi, Zengliang
2015-01-01
The response of graphene surface plasmon (SP) in the ultraviolet (UV) region and the realization of short-wavelength semiconductor lasers not only are two hot research areas of great academic and practical significance, but also are two important issues lacked of good understanding. In this work, a hybrid Fabry-Perot (F-P) microcavity, comprising of monolayer graphene covered ZnO microbelt, was constructed to investigate the fundamental physics of graphene SP and the functional extension of ZnO UV lasing. Through the coupling between graphene SP modes and conventional optical microcavity modes of ZnO, improved F-P lasing performance was realized, including the lowered lasing threshold, the improved lasing quality and the remarkably enhanced lasing intensity. The underlying mechanism of the improved lasing performance was proposed based on theoretical simulation and experimental characterization. The results are helpful to design new types of optic and photoelectronic devices based on SP coupling in graphene/semiconductor hybrid structures. PMID:25786359
Plasmon hybridization in complex metallic nanostructures
NASA Astrophysics Data System (ADS)
Hao, Feng
With Plasmon Hybridization (PH) and Finite-Difference Time-Domain (FDTD) method, we theoretically investigated the optical properties of some complex metallic nanostructures (coupled nanoparticle/wire, nanostars, nanorings and combined ring/disk nanocavity systems). We applied the analytical formulism of PH studying the plasmonic coupling of a spherical metallic nanoparticle and an infinite long cylindrical nanowire. The plasmon resonance of the coupled system is shown shifted in frequency, which highly depends on the polarization of incident light relative to the geometry of the structure. We also showed the nanoparticle serves as an efficient antenna coupling the electromagnetic radiation into the low-energy propagating wire plasmons. We performed an experimental and theoretical analysis of the optical properties of gold nanorings with different sizes and cross sections. For light polarized parallel to the ring, the optical spectrum sensitively depends on the incident angle. When light incidence is normal to the ring, two dipolar resonance is observed. As the incident light is titled, some previously dark mulipolar plasmon resonances will be excited as a consequence of the retardation. The concept of plasmon hybridization is combined with the power of brute-force numerical methods to understand the plasmonic properties of some very complicated nanostructures. We showed the plasmons of a gold nanostar are a result of hybridization of the plasmons of the core and the tips of the particle. The core serves as a nanoantenna, dramatically enhanced the optical spectrum and the field enhancement of the nanostar. We also applied this method analyzing the plasmonic modes of a nanocavity structure composed of a nanodisk with a surrounding minoring. For the concentric combination, we showed the nature of the plasmon modes can be understood as the plasmon hybrization of an individual ring and disk. The interation results in a blueshifted and broadened superradiant antibonding resonance and a redshifted and narrowed subradiant bonding plasmon. The electric field enhancement of the subradiant mode is significantly larger compared with its parent plasmon modes. For the nonconcentric ring/disk nanocavity, we showed the symmetry breaking caused the coupling betweem different multipolar plamons which results in a tunable Fano resonance. We also show the subradiant and the Fano resonances could be particularly useful in the LSPR and SERS sensing applications. In the thesis, we also presented an efficient dielectric function of gold and silver that is suitable for the FDTD simulations of the optical properties of various nanoparticles. The new dielectric function is able to account for the interband transition in gold and silver, and provides more precise calculations of the optical spectra compared to the Drude dielectric function that is normally used previously.
Plasmonic Solar Cells: From Rational Design to Mechanism Overview.
Jang, Yoon Hee; Jang, Yu Jin; Kim, Seokhyoung; Quan, Li Na; Chung, Kyungwha; Kim, Dong Ha
2016-12-28
Plasmonic effects have been proposed as a solution to overcome the limited light absorption in thin-film photovoltaic devices, and various types of plasmonic solar cells have been developed. This review provides a comprehensive overview of the state-of-the-art progress on the design and fabrication of plasmonic solar cells and their enhancement mechanism. The working principle is first addressed in terms of the combined effects of plasmon decay, scattering, near-field enhancement, and plasmonic energy transfer, including direct hot electron transfer and resonant energy transfer. Then, we summarize recent developments for various types of plasmonic solar cells based on silicon, dye-sensitized, organic photovoltaic, and other types of solar cells, including quantum dot and perovskite variants. We also address several issues regarding the limitations of plasmonic nanostructures, including their electrical, chemical, and physical stability, charge recombination, narrowband absorption, and high cost. Next, we propose a few potentially useful approaches that can improve the performance of plasmonic cells, such as the inclusion of graphene plasmonics, plasmon-upconversion coupling, and coupling between fluorescence resonance energy transfer and plasmon resonance energy transfer. This review is concluded with remarks on future prospects for plasmonic solar cell use.
Strong plasmon-exciton coupling in a hybrid system of gold nanostars and J-aggregates
2013-01-01
Hybrid materials formed by plasmonic nanostructures and J-aggregates provide a unique combination of highly localized and enhanced electromagnetic field in metal constituent with large oscillator strength and extremely narrow exciton band of the organic component. The coherent coupling of localized plasmons of the multispiked gold nanoparticles (nanostars) and excitons of JC1 dye J-aggregates results in a Rabi splitting reaching 260 meV. Importantly, broad absorption features of nanostars extending over a visible and near-infrared spectral range allowed us to demonstrate double Rabi splitting resulting from the simultaneous coherent coupling between plasmons of the nanostars and excitons of J-aggregates of two different cyanine dyes. PMID:23522305
Optofluidic cellular immunofunctional analysis by localized surface plasmon resonance
NASA Astrophysics Data System (ADS)
Kurabayashi, Katsuo; Oh, Bo-Ram
2014-08-01
Cytokine secretion assays provide the means to quantify intercellular-signaling proteins secreted by blood immune cells. These assays allow researchers and clinicians to obtain valuable information on the immune status of the donor. Previous studies have demonstrated that localized surface plasmon resonance (LSPR) effects enable label-free, real-time biosensing on a nanostructured metallic surface with simple optics and sensing tunability. However, limited sensitivity coupled with a lack of sample handling capability makes it challenging to implement LSPR biosensing in cellular functional immunoanalysis based on cytokine secretion assay. This paper describes our recent progress towards full development of a label-free LSPR biosensing technique to detect cell-secreted tumor necrosis factor (TNF)-α cytokines in clinical blood samples. We integrate LSPR bionanosensors in an optofluidic platform capable of handling target immune cells in a microfluidic chamber while readily permitting optical access for cytokine detection.
Dispersion and shape engineered plasmonic nanosensors
NASA Astrophysics Data System (ADS)
Jeong, Hyeon-Ho; Mark, Andrew G.; Alarcón-Correa, Mariana; Kim, Insook; Oswald, Peter; Lee, Tung-Chun; Fischer, Peer
2016-04-01
Biosensors based on the localized surface plasmon resonance (LSPR) of individual metallic nanoparticles promise to deliver modular, low-cost sensing with high-detection thresholds. However, they continue to suffer from relatively low sensitivity and figures of merit (FOMs). Herein we introduce the idea of sensitivity enhancement of LSPR sensors through engineering of the material dispersion function. Employing dispersion and shape engineering of chiral nanoparticles leads to remarkable refractive index sensitivities (1,091 nm RIU-1 at λ=921 nm) and FOMs (>2,800 RIU-1). A key feature is that the polarization-dependent extinction of the nanoparticles is now characterized by rich spectral features, including bipolar peaks and nulls, suitable for tracking refractive index changes. This sensing modality offers strong optical contrast even in the presence of highly absorbing media, an important consideration for use in complex biological media with limited transmission. The technique is sensitive to surface-specific binding events which we demonstrate through biotin-avidin surface coupling.
Planar integrated metasurfaces for highly-collimated terahertz quantum cascade lasers
Liang, Guozhen; Dupont, Emmanuel; Fathololoumi, Saeed; Wasilewski, Zbigniew R.; Ban, Dayan; Liang, Hou Kun; Zhang, Ying; Yu, Siu Fung; Li, Lianhe H.; Davies, Alexander Giles; Linfield, Edmund H.; Liu, Hui Chun; Wang, Qi Jie
2014-01-01
We report planar integration of tapered terahertz (THz) frequency quantum cascade lasers (QCLs) with metasurface waveguides that are designed to be spoof surface plasmon (SSP) out-couplers by introducing periodically arranged SSP scatterers. The resulting surface-emitting THz beam profile is highly collimated with a divergence as narrow as ~4° × 10°, which indicates a good waveguiding property of the metasurface waveguide. In addition, the low background THz power implies a high coupling efficiency for the THz radiation from the laser cavity to the metasurface structure. Furthermore, since all the structures are in-plane, this scheme provides a promising platform where well-established surface plasmon/metasurface techniques can be employed to engineer the emitted beam of THz QCLs controllably and flexibly. More importantly, an integrated active THz photonic circuit for sensing and communication applications could be constructed by incorporating other optoelectronic devices such as Schottky diode THz mixers, and graphene modulators and photodetectors. PMID:25403796
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Peng; Shen, Nian-Hai; Koschny, Thomas
Graphene, a two-dimensional material possessing extraordinary properties in electronics as well as mechanics, provides a great platform for various optoelectronic and opto-mechanical devices. Here in this article, we theoretically study the optical gradient force arising from the coupling of surface plasmon modes on parallel graphene sheets, which can be several orders stronger than that between regular dielectric waveguides. Furthermore, with an energy functional optimization model, possible force-induced deformation of graphene sheets is calculated. We show that the significantly enhanced optical gradient force may lead to mechanical state transitions of graphene sheets, which are accompanied by abrupt changes in reflection andmore » transmission spectra of the system. Our demonstrations illustrate the potential for a broader graphene-related applications such as force sensors and actuators.« less
Zhang, Peng; Shen, Nian-Hai; Koschny, Thomas; ...
2016-12-16
Graphene, a two-dimensional material possessing extraordinary properties in electronics as well as mechanics, provides a great platform for various optoelectronic and opto-mechanical devices. Here in this article, we theoretically study the optical gradient force arising from the coupling of surface plasmon modes on parallel graphene sheets, which can be several orders stronger than that between regular dielectric waveguides. Furthermore, with an energy functional optimization model, possible force-induced deformation of graphene sheets is calculated. We show that the significantly enhanced optical gradient force may lead to mechanical state transitions of graphene sheets, which are accompanied by abrupt changes in reflection andmore » transmission spectra of the system. Our demonstrations illustrate the potential for a broader graphene-related applications such as force sensors and actuators.« less
Chen, Cheng; Chen, Jingwen; Zhang, Jun; Wang, Shuai; Zhang, Wei; Liang, Renli; Dai, Jiangnan; Chen, Changqing
2016-12-01
We demonstrate the fabrication and characterization of localized surface plasmon (LSP)-enhanced n-ZnO quantum dot (QD)/MgO/p-GaN heterojunction light-emitting diodes (LEDs) by embedding Ag nanoparticles (Ag-NPs) into the ZnO/MgO interface. The maximum enhancement ration of the Ag-NP-decorated LEDs in electroluminescence (EL) is 4.3-fold by optimizing MgO electron-blocking layer thickness. The EL origination was investigated qualitatively in terms of photoluminescence (PL) results. Through analysis of the energy band structure of device and carrier transport mechanisms, it suggests that the EL enhancement is attributed to the increased rate of spontaneous emission and improved internal quantum efficiency induced by exciton-LSP coupling.
Surface plasmon enhanced cell microscopy with blocked random spatial activation
NASA Astrophysics Data System (ADS)
Son, Taehwang; Oh, Youngjin; Lee, Wonju; Yang, Heejin; Kim, Donghyun
2016-03-01
We present surface plasmon enhanced fluorescence microscopy with random spatial sampling using patterned block of silver nanoislands. Rigorous coupled wave analysis was performed to confirm near-field localization on nanoislands. Random nanoislands were fabricated in silver by temperature annealing. By analyzing random near-field distribution, average size of localized fields was found to be on the order of 135 nm. Randomly localized near-fields were used to spatially sample F-actin of J774 cells (mouse macrophage cell-line). Image deconvolution algorithm based on linear imaging theory was established for stochastic estimation of fluorescent molecular distribution. The alignment between near-field distribution and raw image was performed by the patterned block. The achieved resolution is dependent upon factors including the size of localized fields and estimated to be 100-150 nm.
NASA Astrophysics Data System (ADS)
Chen, Cheng; Chen, Jingwen; Zhang, Jun; Wang, Shuai; Zhang, Wei; Liang, Renli; Dai, Jiangnan; Chen, Changqing
2016-10-01
We demonstrate the fabrication and characterization of localized surface plasmon (LSP)-enhanced n-ZnO quantum dot (QD)/MgO/p-GaN heterojunction light-emitting diodes (LEDs) by embedding Ag nanoparticles (Ag-NPs) into the ZnO/MgO interface. The maximum enhancement ration of the Ag-NP-decorated LEDs in electroluminescence (EL) is 4.3-fold by optimizing MgO electron-blocking layer thickness. The EL origination was investigated qualitatively in terms of photoluminescence (PL) results. Through analysis of the energy band structure of device and carrier transport mechanisms, it suggests that the EL enhancement is attributed to the increased rate of spontaneous emission and improved internal quantum efficiency induced by exciton-LSP coupling.
Surface plasmon resonance phenomenon of the insulating state polyaniline
DOE Office of Scientific and Technical Information (OSTI.GOV)
Umiati, Ngurah Ayu Ketut, E-mail: ngurahayuketutumiati@gmail.com; Jurusan Fisika FMIPA Universitas Diponegoro, Jalan Prof. Soedarto, SH Tembalang Semarang 50275; Triyana, Kuwat
2015-04-16
Surface Plasmon Resonance (SPR) phenomenon of the insulating polyaniline (PANI) is has been observed. Surface Plasmon (SP) is the traveled electromagnetic wave that passes through the interface of dielectric metal and excited by attenuated total reflection (ATR) method in Kretschmannn configuration (Au-PANI prism). The resonance condition is observed through the angle of SPR in such condition that SP wave is coupled by the evanescent constant of laser beam. In this research, the laser beam was generated by He–Ne and its wavelength (λ) was 632,8 nm. SPR curve is obtained through observation of incidence angles of the laser beam in prism.more » SPR phenomenon at the boundary between Au – PANI layer has showed by reflection dip when the laser beam passes through the prism. In this early study, the observation was carried out through simulation Winspall 3.02 software and preliminary compared with some experimental data reported in other referred literatures. The results shows that the optimum layer of Au and polyaniline are 50 and 1,5 nm thick respectively. Our own near future experimental work would be further performed and reported elsewhere.« less
Prabhakar, Amit; Mukherji, Soumyo
2010-12-21
In this study, a novel embedded optical waveguide based sensor which utilizes localized surface plasmon resonance of gold nanoparticles coated on a C-shaped polymer waveguide is being reported. The sensor, as designed, can be used as an analysis chip for detection of minor variations in the refractive index of its microenvironment, which makes it suitable for wide scale use as an affinity biosensor. The C-shaped waveguide coupled with microfluidic channel was fabricated by single step patterning of SU8 on an oxidized silicon wafer. The absorbance due to the localized surface plasmon resonance (LSPR) of SU8 waveguide bound gold nano particle (GNP) was found to be linear with refractive index changes between 1.33 and 1.37. A GNP coated C-bent waveguide of 200 μ width with a bend radius of 1 mm gave rise to a sensitivity of ~5 ΔA/RIU at 530 nm as compared to the ~2.5 ΔA/RIU (refractive index units) of the same dimension bare C-bend SU8 waveguide. The resolution of the sensor probe was ~2 × 10(-4) RIU.
Spata, Vincent A; Carter, Emily A
2018-04-24
Nanoparticles synthesized from plasmonic metals can absorb low-energy light, producing an oscillation/excitation of their valence electron density that can be utilized in chemical conversions. For example, heterogeneous photocatalysis can be achieved within heterometallic antenna-reactor complexes (HMARCs), by coupling a reactive center at which a chemical reaction occurs to a plasmonic nanoparticle that acts as a light-absorbing antenna. For example, HMARCs composed of aluminum antennae and palladium (Pd) reactive centers have been demonstrated recently to catalyze selective hydrogenation of acetylene to ethylene. Here, we explore within a theoretical framework the rate-limiting step of hydrogen photodesorption from a Pd surface-crucial to achieving partial rather than full hydrogenation of acetylene-to understand the mechanism behind the photodesorption process within the HMARC assembly. To properly describe electronic excited states of the metal-molecule system, we employ embedded complete active space self-consistent field and n-electron valence state perturbation theory to second order within density functional embedding theory. The results of these calculations reveal that the photodesorption mechanism does not create a frequently invoked transient negative ion species but instead enhances population of available excited-state, low-barrier pathways that exhibit negligible charge-transfer character.
Excitation of surface plasmon polaritons by fluorescent light from organic nanofibers
NASA Astrophysics Data System (ADS)
Sobolewska, Elżbieta Karolina; Józefowski, Leszek; Kawalec, Tomasz; Leißner, Till; Rubahn, Horst-Günter; Adam, Jost; Fiutowski, Jacek
2017-11-01
Micro- and nano-scale systems with defined active elements acting as local surface plasmons polariton (SPP) sources are crucial for the development of future plasmonic circuits. We demonstrate SPP excitation by fluorescent light from crystalline organic para-hexaphenylene nanofibers deposited on a dielectric/metal surface. We characterize the SPPs using angle-resolved leakage radiation spectroscopy, in the excitation wavelength range 420 - 675 nm, corresponding to the nanofiber photoluminescence band. The nanofiber arrangement's capability to act as an SPP coupler for coherent as well as non-coherent excitation indicates its prospect for future integrated systems. To support our experimental results, we investigate the proposed geometries by analytical calculations and finite-difference-time-domain (FDTD) modelling. The experimentally obtained angular leakage radiation peak positions can readily be predicted by our analytical calculations. Nevertheless, the experimental results exhibit a distinct asymmetry in the peak intensities. In agreement with our FDTD calculations, we address this asymmetrical SPP excitation to the nanofiber molecular orientation. The proposed structure's high flexibility, the ease of selective positioning of organic nanofibers, together with the gained insight into its photon-SPP coupling mechanism show great promise towards future local SPP excitation-based integrated devices.
Active multiple plasmon-induced transparencies with detuned asymmetric multi-rectangle resonators
NASA Astrophysics Data System (ADS)
Liu, Dongdong; Wang, Jicheng; Lu, Jian
2016-11-01
The phenomenon of plasmon-induced transparency (PIT) is realized in surface plasmon polariton waveguide at the visible and near-infrared ranges. By adding one and two resonant cavities, the PIT peak(s) was (were) achieved due to destructive interference between the side-coupled rectangle cavity and the bus waveguide. The proposed structures were demonstrated by the finite element method. The simulation results showed that for three rectangle resonators system, not only can we manipulate each single PIT window, but also the double PIT windows simultaneously by adjusting one of the geometrical parameters of the system; for four rectangle resonators system, by changing the widths, the lengths and the refractive index of three cavities simultaneously, we would realize treble PIT peaks and induce an off-to-on PIT optical response. Our novel plasmonic structures and the findings pave the way for new design and engineering of highly integrated optical circuit such as nanoscale optical switching, nanosensor and wavelength-selecting nanostructure.
Huang, Chen-Han; Lin, Hsing-Ying; Lau, Ben-Chao; Liu, Chih-Yi; Chui, Hsiang-Chen; Tzeng, Yonhua
2010-12-20
We report on plasmon induced optical switching of electrical conductivity in two-dimensional (2D) arrays of silver (Ag) nanoparticles encapsulated inside nanochannels of porous anodic aluminum oxide (AAO) films. The reversible switching of photoconductivity greatly enhanced by an array of closely spaced Ag nanoparticles which are isolated from each other and from the ambient by thin aluminum oxide barrier layers are attributed to the improved electron transport due to the localized surface plasmon resonance and coupling among Ag nanoparticles. The photoconductivity is proportional to the power, and strongly dependent on the wavelength of light illumination. With Ag nanoparticles being isolated from the ambient environments by a thin layer of aluminum oxide barrier layer of controlled thickness in nanometers to tens of nanometers, deterioration of silver nanoparticles caused by environments is minimized. The electrochemically fabricated nanostructured Ag/AAO is inexpensive and promising for applications to integrated plasmonic circuits and sensors.
NASA Astrophysics Data System (ADS)
Guddala, Sriram; Narayana Rao, D.; Ramakrishna, S. Anantha
2016-06-01
A tri-layer metamaterial perfect absorber of light, consisting of (Al/ZnS/Al) films with the top aluminum layer patterned as an array of circular disk nanoantennas, is investigated for resonantly enhancing Raman scattering from C60 fullerene molecules deposited on the metamaterial. The metamaterial is designed to have resonant bands due to plasmonic and electromagnetic resonances at the Raman pump frequency (725 nm) as well as Stokes emission bands. The Raman scattering from C60 on the metamaterial with resonantly matched bands is measured to be enhanced by an order of magnitude more than C60 on metamaterials with off-resonant absorption bands peaking at 1090 nm. The Raman pump is significantly enhanced due to the resonance with a propagating surface plasmon band, while the highly impedance-matched electromagnetic resonance is expected to couple out the Raman emission efficiently. The nature and hybridization of the plasmonic and electromagnetic resonances to form compound resonances are investigated by numerical simulations.
NASA Astrophysics Data System (ADS)
Del Rosso, T.; Zaman, Q.; Cremona, M.; Pandoli, O.; Barreto, A. R. J.
2018-06-01
The degradation processes of tris(8-hydroxyquinoline) (Alq3) and tris(dibenzoylmethane) mono(1,10-phenanthroline)europium(III) (Eu(dbm)3(phen)) thin films are investigated by the use of AFM, photoluminescence and SPR spectroscopy. The plasmonic sensors are operated both in air and nitrogen environments, where they are irradiated with controlled doses of UVA radiation. AFM results don't reveal the formation of heterogeneous phases and crystallization under air exposure. The organic thin films change their refractive index under both types of exposure and act as a protective layer against oxidation for the SiO2/MPTS/metal interface of the plasmonic sensors. SPR measurements reveal a strict correlation between the refractive index increase and quenching of the photoluminescence of the organic thin films. The results are promising for the development of compact plasmonic UVA dosimeters in the surface plasmon coupled emission configuration (SPCE) with lanthanide β-diketonate complex materials (patent pending).
Kim, Hyoung-Il; Weon, Seunghyun; Kang, Homan; Hagstrom, Anna L; Kwon, Oh Seok; Lee, Yoon-Sik; Choi, Wonyong; Kim, Jae-Hong
2016-10-18
This study demonstrates the first reported photocatalytic decomposition of an indoor air pollutant, acetaldehyde, using low-energy, sub-bandgap photons harnessed through sensitized triplet-triplet annihilation (TTA) upconversion (UC). To utilize low-intensity noncoherent indoor light and maximize photocatalytic activity, we designed a plasmon-enhanced sub-bandgap photocatalyst device consisting of two main components: (1) TTA-UC rubbery polymer films containing broad-band plasmonic particles (Ag-SiO 2 ) to upconvert sub-bandgap photons, and (2) nanodiamond (ND)-loaded WO 3 as a visible-light photocatalyst composite. Effective decomposition of acetaldehyde was achieved using ND/WO 3 (E g = 2.8 eV) coupled with TTA-UC polymer films that emit blue photons (λ Em = 425 nm, 2.92 eV) upconverted from green photons (λ Ex = 532 nm, 2.33 eV), which are wasted in most environmental photocatalysis. The overall photocatalytic efficiency was amplified by the broad-band surface plasmon resonance of AgNP-SiO 2 particles incorporated into the TTA-UC films.
Zhao, Yuan; Yang, Dong; Li, Xiyu; Liu, Yu; Hu, Xiang; Zhou, Dianfa; Lu, Yalin
2017-01-19
We report a novel graphene-metal hybrid system by introducing monolayer graphene between gold nanoparticles (Au NPs) and silver nanohole (Ag NH) arrays. The design incorporates three key advantages to promote the surface-enhanced Raman scattering (SERS) sensing capacity: (i) making full use of the single-atomic feature of graphene for generating uniform sub-nanometer spaces; (ii) maintaining the bottom layer of Ag nanoarrays with an ordered manner for facilitating the transfer of graphene films and assembly of the top layer of Au NPs; (iii) integrating the advantages of the strong plasmonic effect of Ag, the chemical stability of Au, as well as the mechanical flexibility and biological compatibility of graphene. In this configuration, the plasmonic properties can be fine-tuned by separately optimizing the horizontal or vertical gaps between the metal NPs. Exactly, sub-20 nm spaces between the horizontally patterned Ag tips constructed by adjacent Ag NHs, and sub-nanometer scale graphene gaps between the vertically distributed Au NP-Ag NH have been achieved. Finite element numerical simulations demonstrate that the multi-dimensional plasmonic couplings (including the Au NP-Au NP, Au NP-Ag NH and Ag NH-Ag NH couplings) promote for the hybrid platform an electric field enhancement up to 137 times. Impressively, the as-prepared 3D Au NP-graphene-Ag NH array hybrid structure manifests ultrahigh SERS sensitivity with a detection limit of 10 -13 M for R6G molecules, as well as good reproducibility and stability. This work represents a step towards high-performance SERS substrate fabrication, and opens up a new route for graphene-plasmonic hybrids in SERS applications.
Conductor-gap-silicon plasmonic waveguides and passive components at subwavelength scale.
Wu, Marcelo; Han, Zhanghua; Van, Vien
2010-05-24
Subwavelength conductor-gap-silicon plasmonic waveguides along with compact S-bends and Y-splitters were theoretically investigated and experimentally demonstrated on a silicon-on-insulator platform. A thin SiO2 gap between the conductor layer and silicon core provides subwavelength confinement of light while a long propagation length of 40 microm was achieved. Coupling of light between the plasmonic and conventional silicon photonic waveguides was also demonstrated with a high efficiency of 80%. The compact sizes, low loss operation, efficient input/output coupling, combined with a CMOS-compatible fabrication process, make these conductor-gap-silicon plasmonic devices a promising platform for realizing densely-integrated plasmonic circuits.
Gold Nanoparticles Used as Protein Scavengers Enhance Surface Plasmon Resonance Signal
Ferreira de Macedo, Erenildo; Ducatti Formaggio, Daniela Maria; Salles Santos, Nivia; Batista Tada, Dayane
2017-01-01
Although several researchers had reported on methodologies for surface plasmon resonance (SPR) signal amplification based on the use of nanoparticles (NPs), the majority addressed the sandwich technique and low protein concentration. In this work, a different approach for SPR signal enhancement based on the use of gold NPs was evaluated. The method was used in the detection of two lectins, peanut agglutinin (PNA) and concanavalin A (ConA). Gold NPs were functionalized with antibodies anti-PNA and anti-ConA, and these NPs were used as protein scavengers in a solution. After being incubated with solutions of PNA or ConA, the gold NPs coupled with the collected lectins were injected on the sensor containing the immobilized antibodies. The signal amplification provided by this method was compared to the signal amplification provided by the direct coupling of PNA and ConA to gold NPs. Furthermore, both methods, direct coupling and gold NPs as protein scavengers, were compared to the direct detection of PNA and ConA in solution. Compared to the analysis of free protein, the direct coupling of PNA and ConA to gold NPs resulted in a signal amplification of 10–40-fold and a 13-fold decrease of the limit of detection (LOD), whereas the use of gold NPs as protein scavengers resulted in an SPR signal 40–50-times higher and an LOD 64-times lower. PMID:29186024
NASA Astrophysics Data System (ADS)
Huber, Rupert; Kübler, Carl; Tübel, Stefan; Leitenstorfer, Alfred
2006-02-01
We study the ultrafast transition of a pure longitudinal optical phonon resonance to a coupled phonon-plasmon system. Following 10-fs photoexcitation of intrinsic indium phosphide, ultrabroadband THz opto-electronics monitors the buildup of coherent beats of the emerging hybrid modes directly in the time domain with sub-cycle resolution. Mutual repulsion and redistribution of the oscillator strength of the interacting phonons and plasmons are seen to emerge on a delayed femtosecond time scale. Both branches of the mixed modes are monitored for various excitation densities N. We observe a pronounced anticrossing of the coupled resonances as a function of N. The characteristic formation time for phonon-plasmon coupling exhibits density dependence. The time is approximately set by one oscillation cycle of the upper branch of the mixed modes.
Explosives detection and identification using surface plasmon-coupled emission
NASA Astrophysics Data System (ADS)
Ja, Shiou-Jyh
2012-06-01
To fight against the explosives-related threats in defense and homeland security applications, a smarter sensing device that not only detects but differentiates multiple true threats from false positives caused by environmental interferents is essential. A new optical detection system is proposed to address these issues by using the temporal and spectroscopic information generated by the surface plasmon coupling emission (SPCE) effect. Innovative SPCE optics have been designed using Zemax software to project the fluorescence signal into clear "rainbow rings" on a CCD with subnanometer wavelength resolution. The spectroscopic change of the fluorescence signal and the time history of such changes due to the presence of a certain explosive analyte are unique and can be used to identify explosives. Thanks to high optical efficiency, reporter depositions as small as 160-μm in diameter can generate a sufficient signal, allowing a dense array of different reporters to be interrogated with wavelength multiplexing and detect a wide range of explosives. We have demonstrated detection and classification of explosives, such as TNT, NT, NM, RDX, PETN, and AN, with two sensing materials in a prototype.
NASA Astrophysics Data System (ADS)
He, Ju; Wang, Shuai; Chen, Jingwen; Wu, Feng; Dai, Jiangnan; Long, Hanling; Zhang, Yi; Zhang, Wei; Feng, Zhe Chuan; Zhang, Jun; Du, Shida; Ye, Lei; Chen, Changqing
2018-05-01
In this paper, we report a 2.6-fold deep ultraviolet emission enhancement of integrated photoluminescence (PL) intensity in AlGaN-based multi-quantum wells (MQWs) by introducing the coupling of local surface plasmons from Al nanoparticles (NPs) on a SiO2 dielectric interlayer with excitons and photons in MQWs at room temperature. In comparison to bare AlGaN MQWs, a significant 2.3-fold enhancement of the internal quantum efficiency, from 16% to 37%, as well as a 13% enhancement of photon extraction efficiency have been observed in the MQWs decorated with Al NPs on SiO2 dielectric interlayer. Polarization-dependent PL measurement showed that both the transverse electric and transverse magnetic mode were stronger than the original intensity in bare AlGaN MQWs, indicating a strong LSPs coupling process and vigorous scattering ability of the Al/SiO2 composite structure. These results were confirmed by the activation energy of non-radiative recombination from temperature-dependent PL measurement and the theoretical three dimensional finite difference time domain calculations.
Significant enhancement of yellow-green light emission of ZnO nanorod arrays using Ag island films
NASA Astrophysics Data System (ADS)
Lin, Chin-An; Tsai, Dung-Sheng; Chen, Cheng-Ying; He-Hau, Jr.
2011-03-01
Surface plasmon (SP) mediated emission from ZnO nanorod arrays (NRAs)/Ag/Si structures has been investigated. The ratio of visible emission to UV emission can be increased by over 30 times via coupling with SP without deterioration of the crystal quality. The fact that the effect of SP crucially depends on the size of Ag island films provides the feasibility to significantly enhance the yellow-green emission of the ZnO nanostructures without sacrificing the crystallinity of ZnO.Surface plasmon (SP) mediated emission from ZnO nanorod arrays (NRAs)/Ag/Si structures has been investigated. The ratio of visible emission to UV emission can be increased by over 30 times via coupling with SP without deterioration of the crystal quality. The fact that the effect of SP crucially depends on the size of Ag island films provides the feasibility to significantly enhance the yellow-green emission of the ZnO nanostructures without sacrificing the crystallinity of ZnO. Electronic supplementary information (ESI) available. See DOI: 10.1039/c0nr00732c
Confined surface plasmon sensors based on strongly coupled disk-in-volcano arrays.
Ai, Bin; Wang, Limin; Möhwald, Helmuth; Yu, Ye; Zhang, Gang
2015-02-14
Disk-in-volcano arrays are reported to greatly enhance the sensing performance due to strong coupling in the nanogaps between the nanovolcanos and nanodisks. The designed structure, which is composed of a nanovolcano array film and a disk in each cavity, is fabricated by a simple and efficient colloidal lithography method. By tuning structural parameters, the disk-in-volcano arrays show greatly enhanced resonances in the nanogaps formed by the disks and the inner wall of the volcanos. Therefore they respond to the surrounding environment with a sensitivity as high as 977 nm per RIU and with excellent linear dependence on the refraction index. Moreover, through mastering the fabrication process, biological sensing can be easily confined to the cavities of the nanovolcanos. The local responsivity has the advantages of maximum surface plasmon energy density in the nanogaps, reducing the sensing background and saving expensive reagents. The disk-in-volcano arrays also possess great potential in applications of optical and electrical trapping and single-molecule analysis, because they enable establishment of electric fields across the gaps.
He, Ju; Wang, Shuai; Chen, Jingwen; Wu, Feng; Dai, Jiangnan; Long, Hanling; Zhang, Yi; Zhang, Wei; Feng, Zhe Chuan; Zhang, Jun; Du, Shida; Ye, Lei; Chen, Changqing
2018-05-11
In this paper, we report a 2.6-fold deep ultraviolet emission enhancement of integrated photoluminescence (PL) intensity in AlGaN-based multi-quantum wells (MQWs) by introducing the coupling of local surface plasmons from Al nanoparticles (NPs) on a SiO 2 dielectric interlayer with excitons and photons in MQWs at room temperature. In comparison to bare AlGaN MQWs, a significant 2.3-fold enhancement of the internal quantum efficiency, from 16% to 37%, as well as a 13% enhancement of photon extraction efficiency have been observed in the MQWs decorated with Al NPs on SiO 2 dielectric interlayer. Polarization-dependent PL measurement showed that both the transverse electric and transverse magnetic mode were stronger than the original intensity in bare AlGaN MQWs, indicating a strong LSPs coupling process and vigorous scattering ability of the Al/SiO 2 composite structure. These results were confirmed by the activation energy of non-radiative recombination from temperature-dependent PL measurement and the theoretical three dimensional finite difference time domain calculations.
Ultrasensitive Biosensors Using Enhanced Fano Resonances in Capped Gold Nanoslit Arrays
Lee, Kuang-Li; Huang, Jhih-Bin; Chang, Jhih-Wei; Wu, Shu-Han; Wei, Pei-Kuen
2015-01-01
Nanostructure-based sensors are capable of sensitive and label-free detection for biomedical applications. However, plasmonic sensors capable of highly sensitive detection with high-throughput and low-cost fabrication techniques are desirable. We show that capped gold nanoslit arrays made by thermal-embossing nanoimprint method on a polymer film can produce extremely sharp asymmetric resonances for a transverse magnetic-polarized wave. An ultrasmall linewidth is formed due to the enhanced Fano coupling between the cavity resonance mode in nanoslits and surface plasmon resonance mode on periodic metallic surface. With an optimal slit length and width, the full width at half-maximum bandwidth of the Fano mode is only 3.68 nm. The wavelength sensitivity is 926 nm/RIU for 60-nm-width and 1,000-nm-period nanoslits. The figure of merit is up to 252. The obtained value is higher than the theoretically estimated upper limits of the prism-coupling SPR sensors and the previously reported record high figure-of-merit in array sensors. In addition, the structure has an ultrahigh intensity sensitivity up to 48,117%/RIU. PMID:25708955
Effect of interstitial palladium on plasmon-driven charge transfer in nanoparticle dimers.
Lerch, Sarah; Reinhard, Björn M
2018-04-23
Capacitive plasmon coupling between noble metal nanoparticles (NPs) is characterized by an increasing red-shift of the bonding dipolar plasmon mode (BDP) in the classical electromagnetic coupling regime. This model breaks down at short separations where plasmon-driven charge transfer induces a gap current between the NPs with a magnitude and separation dependence that can be modulated if molecules are present in the gap. Here, we use gap contained DNA as a scaffold for the growth of palladium (Pd) NPs in the gap between two gold NPs and investigate the effect of increasing Pd NP concentration on the BDP mode. Consistent with enhanced plasmon-driven charge transfer, the integration of discrete Pd NPs depolarizes the capacitive BDP mode over longer interparticle separations than is possible in only DNA-linked Au NPs. High Pd NP densities in the gap increases the gap conductance and induces the transition from capacitive to conductive coupling.
Generation of spin currents by surface plasmon resonance
Uchida, K.; Adachi, H.; Kikuchi, D.; Ito, S.; Qiu, Z.; Maekawa, S.; Saitoh, E.
2015-01-01
Surface plasmons, free-electron collective oscillations in metallic nanostructures, provide abundant routes to manipulate light–electron interactions that can localize light energy and alter electromagnetic field distributions at subwavelength scales. The research field of plasmonics thus integrates nano-photonics with electronics. In contrast, electronics is also entering a new era of spintronics, where spin currents play a central role in driving devices. However, plasmonics and spin-current physics have so far been developed independently. Here we report the generation of spin currents by surface plasmon resonance. Using Au nanoparticles embedded in Pt/BiY2Fe5O12 bilayer films, we show that, when the Au nanoparticles fulfill the surface-plasmon-resonance conditions, spin currents are generated across the Pt/BiY2Fe5O12 interface. This spin-current generation cannot be explained by conventional heating effects, requiring us to introduce nonequilibrium magnons excited by surface-plasmon-induced evanescent electromagnetic fields in BiY2Fe5O12. This plasmonic spin pumping integrates surface plasmons with spin-current physics, opening the door to plasmonic spintronics. PMID:25569821
Fluorescence enhancement by a dark plasmon mode
NASA Astrophysics Data System (ADS)
Peter, Manuel; Werra, Julia F. M.; Friesen, Cody; Achnitz, Doreen; Busch, Kurt; Linden, Stefan
2018-05-01
We investigate the fluorescence properties of colloidal quantum dots coupled to gold nanowire antennas. By varying the wire length, the plasmon modes of the nanoantennas are successively tuned through the emission band of the quantum dots. We observe a pronounced fluorescence enhancement both for short and long nanoantennas. These findings can be attributed to the coupling of the quantum dots to the bright dipole plasmon mode and the dark quadrupol plasmon mode, respectively. This interpretation is supported by numerical calculations of the far-field scattering spectra and the radiation rates.
Terahertz plasmon and surface-plasmon modes in hollow nanospheres
2012-01-01
We present a theoretical study of the electronic subband structure and collective electronic excitation associated with plasmon and surface plasmon modes in metal-based hollow nanosphere. The dependence of the electronic subband energy on the sample parameters of the hollow nanosphere is examined. We find that the subband states with different quantum numbers l degenerate roughly when the outer radius of the sphere is r2 ≥ 100 nm. In this case, the energy spectrum of a sphere is mainly determined by quantum number n. Moreover, the plasmon and surface plasmon excitations can be achieved mainly via inter-subband transitions from occupied subbands to unoccupied subbands. We examine the dependence of the plasmon and surface-plasmon frequencies on the shell thickness d and the outer radius r2 of the sphere using the standard random-phase approximation. We find that when a four-state model is employed for calculations, four branches of the plasmon and surface plasmon oscillations with terahertz frequencies can be observed, respectively. PMID:23092121
Terahertz plasmonic laser radiating in an ultra-narrow beam
Wu, Chongzhao; Khanal, Sudeep; Reno, John L.; ...
2016-07-07
Plasmonic lasers (spasers) generate coherent surface plasmon polaritons (SPPs) and could be realized at subwavelength dimensions in metallic cavities for applications in nanoscale optics. Plasmonic cavities are also utilized for terahertz quantum-cascade lasers (QCLs), which are the brightest available solid-state sources of terahertz radiation. A long standing challenge for spasers that are utilized as nanoscale sources of radiation, is their poor coupling to the far-field radiation. Unlike conventional lasers that could produce directional beams, spasers have highly divergent radiation patterns due to their subwavelength apertures. Here, we theoretically and experimentally demonstrate a new technique for implementing distributed feedback (DFB) thatmore » is distinct from any other previously utilized DFB schemes for semiconductor lasers. The so-termed antenna-feedback scheme leads to single-mode operation in plasmonic lasers, couples the resonant SPP mode to a highly directional far-field radiation pattern, and integrates hybrid SPPs in surrounding medium into the operation of the DFB lasers. Experimentally, the antenna-feedback method, which does not require the phase matching to a well-defined effective index, is implemented for terahertz QCLs, and single-mode terahertz QCLs with a beam divergence as small as 4°×4° are demonstrated, which is the narrowest beam reported for any terahertz QCL to date. Moreover, in contrast to a negligible radiative field in conventional photonic band-edge lasers, in which the periodicity follows the integer multiple of half-wavelengths inside the active medium, antenna-feedback breaks this integer limit for the first time and enhances the radiative field of the lasing mode. Terahertz lasers with narrow-beam emission will find applications for integrated as well as standoff terahertz spectroscopy and sensing. Furthermore, the antenna-feedback scheme is generally applicable to any plasmonic laser with a Fabry–Perot cavity irrespective of its operating wavelength and could bring plasmonic lasers closer to practical applications.« less