Sample records for coupled thmc processes

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Liange; Li, Lianchong; Rutqvist, Jonny

    Clay/shale has been considered as potential host rock for geological disposal of high-level nuclear waste throughout the world, because of its low permeability, low diffusion coefficient, high retention capacity for radionuclides, and capability to self-seal fractures induced by tunnel excavation. For example, Callovo-Oxfordian argillites at the Bure site, France (Fouche et al., 2004), Toarcian argillites at the Tournemire site, France (Patriarche et al., 2004), Opalinus Clay at the Mont Terri site, Switzerland (Meier et al., 2000), and Boom clay at the Mol site, Belgium (Barnichon and Volckaert, 2003) have all been under intensive scientific investigation (at both field and laboratorymore » scales) for understanding a variety of rock properties and their relationships to flow and transport processes associated with geological disposal of nuclear waste. Clay/shale formations may be generally classified as indurated or plastic clays (Tsang and Hudson, 2010). The latter (including Boom clay) is a softer material without high cohesion; its deformation is dominantly plastic. During the lifespan of a clay repository, the repository performance is affected by complex thermal, hydrogeological, mechanical, chemical (THMC) processes, such as heat release due to radionuclide decay, multiphase flow, formation of damage zones, radionuclide transport, waste dissolution, and chemical reactions. All these processes are related to each other. An in-depth understanding of these coupled processes is critical for the performance assessment (PA) of the repository. These coupled processes may affect radionuclide transport by changing transport paths (e.g., formation and evolution of excavation damaged zone (EDZ)) and altering flow, mineral, and mechanical properties that are related to radionuclide transport. While radionuclide transport in clay formation has been studied using laboratory tests (e,g, Appelo et al. 2010, Garcia-Gutierrez et al., 2008, Maes et al., 2008), short-term field tests (e.g. Garcia-Gutierrez et al. 2006, Soler et al. 2008, van Loon et al. 2004, Wu et al. 2009) and numerical modeling (de Windt et al. 2003; 2006), the effects of THMC processes on radionuclide transport are not fully investigated. The objectives of the research activity documented in this report are to improve a modeling capability for coupled THMC processes and to use it to evaluate the THMC impacts on radionuclide transport. This research activity addresses several key Features, Events and Processes (FEPs), including FEP 2.2.08, Hydrologic Processes, FEP 2.2.07, Mechanical Processes and FEP 2.2.09, Chemical Process— Transport, by studying near-field coupled THMC processes in clay/shale repositories and their impacts on radionuclide transport. This report documents the progress that has been made in FY12. Section 2 discusses the development of THMC modeling capability. Section 3 reports modeling results of THMC impacts on radionuclide transport. Planned work for the remaining months of FY12 and proposed work for FY13 are presented in Section 4.« less

  2. A Coupled THMC model of FEBEX mock-up test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Liange; Samper, Javier

    2008-09-15

    FEBEX (Full-scale Engineered Barrier EXperiment) is a demonstration and research project for the engineered barrier system (EBS) of a radioactive waste repository in granite. It includes two full-scale heating and hydration tests: the in situ test performed at Grimsel (Switzerland) and a mock-up test operating at CIEMAT facilities in Madrid (Spain). The mock-up test provides valuable insight on thermal, hydrodynamic, mechanical and chemical (THMC) behavior of EBS because its hydration is controlled better than that of in situ test in which the buffer is saturated with water from the surrounding granitic rock. Here we present a coupled THMC model ofmore » the mock-up test which accounts for thermal and chemical osmosis and bentonite swelling with a state-surface approach. The THMC model reproduces measured temperature and cumulative water inflow data. It fits also relative humidity data at the outer part of the buffer, but underestimates relative humidities near the heater. Dilution due to hydration and evaporation near the heater are the main processes controlling the concentration of conservative species while surface complexation, mineral dissolution/precipitation and cation exchanges affect significantly reactive species as well. Results of sensitivity analyses to chemical processes show that pH is mostly controlled by surface complexation while dissolved cations concentrations are controlled by cation exchange reactions.« less

  3. Understanding the THMC evolution of bentonite barrier — modeling an in situ test for bentonite backfilled engineered barrier system

    NASA Astrophysics Data System (ADS)

    Zheng, L.; Xu, H.; Rutqvist, J.; Birkholzer, J. T.

    2016-12-01

    The most common buffer material for engineered barrier system (EBS) is compacted bentonite, which features low permeability and high retardation of radionuclide transport. The safety functions of EBS bentonite include limiting transport in the near field; damping the shear movement of the host rock; preventing the sinking of canisters, limiting pressure on the canister and rock, and reducing microbial activity. To assess whether EBS bentonite can maintain these favorable features when undergoing heating from the waste package and hydration from the host rock, we need a thorough understanding of the thermal, hydrological, mechanical, and chemical evolution of bentonite under disposal conditions. The FEBEX (Full-scale Engineered Barrier EXperiment) in situ test was dismantled after 18 years' heating and hydration. The comprehensive THMC data obtained in the test provide a unique opportunity to validate coupled THMC models and deepen our understanding of the THMC evolution in bentonite. In this presentation, coupled THMC models were developed for the in situ test. Water content data obtained after dismantling and relative humidity data measured real time showed that the hydration of bentonite is slower than predicted by the typical Darcy flow model. Including Non-Darcian flow into the model however leads a significant underestimation of the relative humidity data. The reason could be that the calibration of relative permeability (and retention curve) already encompasses the nonlinear relationship between gradient and flux for bentonite, which would obviate the consideration of Non-Darcian flow in the model. THMC models that take into account the porosity and permeability changes due to mechanical processes match reasonably well all the THM data. However, they did not provide a desirable fit of the measured Cl concentration profile, further calibration of porosity/permeability changes over the course of hydration and swelling and considering thermal osmosis eventually lead to a model that sufficiently explain all the THMC data. Model results also showed that transport processes, i.e. advection and diffusion, control the concentration profile of conservative species (Cl for example) and play a major role in shaping the profile of most reactive species except pH and bicarbonate.

  4. Understanding the Alteration of Bentonite Backfill Using Coupled THMC Modeling for a Long Term Heater Test at the Grimsel Underground Research Lab

    NASA Astrophysics Data System (ADS)

    Birkholzer, J. T.; Zheng, L.; Xu, H.; Rutqvist, J.

    2017-12-01

    Compacted bentonite is commonly used as backfill material in emplacement tunnels of nuclear waste repositories because of its low permeability, high swelling pressure, and retardation capacity of radionuclide. To assess whether this backfill material can maintain these favorable features when undergoing heating from the waste package and hydration from the host rock, we need a thorough understanding of the thermal, hydrological, mechanical, and chemical evolution of bentonite under disposal conditions. Dedicated field tests integrated with THMC modeling provide an effective way to deepen such understanding. Here, we present coupled THMC models for an in situ heater test which was conducted at the Grimsel Test Site in Switzerland for 18 years. The comprehensive monitoring data obtained in the test provide a unique opportunity to evaluate bentonite integrity and test coupled THMC models. We developed a modeling strategy where conceptual model complexity is increased gradually by adding/testing processes such as Non-Darcian flow, enhanced vapor diffusion, thermal osmosis and different constitutive relationships for permeability/porosity changes due to swelling. The final THMC model explains well all the THM data and the concentration profiles of conservative chemical species. Over the course of modeling the in situ test, we learned that (1) including Non-Darcian flow into the model leads to a significant underestimation of hydration rate of bentonite, (2) chemical data provide an important additional piece of information for calibrating a THM model; (3) key processes needed to reproduce the data include vapor diffusion, as well as porosity and permeability changes due to swelling and thermal osmosis; (4) the concentration profiles of cations (calcium, potassium, magnesium and sodium) were largely shaped by transport processes despite their concentration levels being affected by mineral dissolution/precipitation and cation exchange. The concentration profiles of pH, bicarbonate and sulphate were largely determined by chemical reactions. These findings enable more reliable calculation of the time frame and condition of the early unsaturated phase in bentonite, the porosity and permeability after the bentonite becomes fully saturated, and how transport processes interact with reactions.

  5. DECOVALEX-THMC Task D: Long-Term Permeability/Porosity Changes inthe EDZ and Near Field due to THM and THC Processes in Volcanic andCrystaline-Bentonite Systems, Status Report October 2005

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Birkholzer, J.; Rutqvist, J.; Sonnenthal, E.

    The DECOVALEX project is an international cooperativeproject initiated by SKI, the Swedish Nuclear Power Inspectorate, withparticipation of about 10 international organizations. The name DECOVALEXstands for DEvelopment of COupled models and their VALidation againstExperiments. The general goal of this project is to encouragemultidisciplinary interactive and cooperative research on modelingcoupled processes in geologic formations in support of the performanceassessment for underground storage of radioactive waste. Three multi-yearproject stages of DECOVALEX have been completed in the past decade,mainly focusing on coupled thermal-hydrological-mechanicalprocesses.Currently, a fourth three-year project stage of DECOVALEX isunder way, referred to as DECOVALEX-THMC. THMC stands for Thermal,Hydrological, Mechanical, and Chemical processes.more » The new project stageaims at expanding the traditional geomechanical scope of the previousDECOVALEX project stages by incorporating geochemical processes importantfor repository performance. The U.S. Department of Energy (DOE) leadsTask D of the new DECOVALEX phase, entitled "Long-termPermeability/Porosity Changes in the EDZ and Near Field due to THC andTHM Processes for Volcanic and Crystalline-Bentonite Systems." In itsleadership role for Task D, DOE coordinates and sets the direction forthe cooperative research activities of the international research teamsengaged in Task D.« less

  6. Investigation of Coupled Processes and Impact of High Temperature Limits in Argillite Rock: FY17 Progress. Predecisional Draft

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Liange; Rutqvist, Jonny; Xu, Hao

    The focus of research within the Spent Fuel and Waste Science and Technology (SFWST) (formerly called Used Fuel Disposal) Campaign is on repository-induced interactions that may affect the key safety characteristics of EBS bentonite and an argillaceous rock. These include thermal-hydrologicalmechanical- chemical (THMC) process interactions that occur as a result of repository construction and waste emplacement. Some of the key questions addressed in this report include the development of fracturing in the excavation damaged zone (EDZ) and THMC effects on the near-field argillaceous rock and buffer materials and petrophysical characteristics, particularly the impacts of temperature rise caused by waste heat.more » This report documents the following research activities. Section 2 presents THM model developments and validation, including modeling of underground heater experiments at Mont Terri and Bure underground research laboratories (URLs). The heater experiments modeled are the Mont Terri FE (Full-scale Emplacement) Experiment, conducted as part of the Mont Terri Project, and the TED in heater test conducted in Callovo-Oxfordian claystone (COx) at the Meuse/Haute-Marne (MHM) underground research laboratory in France. The modeling of the TED heater test is one of the Tasks of the DEvelopment of COupled Models and their VAlidation against EXperiments (DECOVALEX)-2019 project. Section 3 presents the development and application of thermal-hydrological-mechanical-chemical (THMC) modeling to evaluate EBS bentonite and argillite rock responses under different temperatures (100 °C and 200 °C). Model results are presented to help to understand the impact of high temperatures on the properties and behavior of bentonite and argillite rock. Eventually the process model will support a robust GDSA model for repository performance assessments. Section 4 presents coupled THMC modeling for an in situ test conducted at Grimsel underground laboratory in Switzerland in the Full-Scale Engineered Barrier Experiment Dismantling Project (FEBEX-DP). The data collected in the test after almost two decades of heating and two dismantling events provide a unique opportunity of validating coupled THMC models and enhancing our understanding of coupled THMC process in EBS bentonite. Section 5 presents a planned large in-situ test, “HotBENT,” at Grimsel Test Site, Switzerland. In this test, bentonite backfilled EBS in granite will be heated up to 200 °C, where the most relevant features of future emplacement conditions can be adequately reproduced. Lawrence Berkeley National Laboratory (LBNL) has very actively participated in the project since the very beginning and have conducted scoping calculations in FY17 to facilitate the final design of the experiment. Section 6 presents present LBNL’s activities for modeling gas migration in clay related to Task A of the international DECOVALEX-2019 project. This is an international collaborative activity in which DOE and LBNL gain access to unique laboratory and field data of gas migration that are studied with numerical modeling to better understand the processes, to improve numerical models that could eventually be applied in the performance assessment for nuclear waste disposal in clay host rocks and bentonite backfill. Section 7 summarizes the main research accomplishments for FY17 and proposes future work activities.« less

  7. DECOVALEX Project: from 1992 to 2007

    NASA Astrophysics Data System (ADS)

    Tsang, Chin-Fu; Stephansson, Ove; Jing, Lanru; Kautsky, Fritz

    2009-05-01

    The DECOVALEX project is a unique international research collaboration, initiated in 1992, for advancing the understanding and mathematical modelling of coupled thermo-hydro-mechanical (THM) and thermo-hydro-mechanical-chemical (THMC) processes in geological systems—subjects of importance for performance assessment of radioactive waste repositories in geological formations. From 1992 up to 2007, the project has made important progress and played a key role in the development of numerical modelling of coupled processes in fractured rocks and buffer/backfill materials. The project has been conducted by research teams supported by a large number of radioactive-waste-management organizations and regulatory authorities, including those of Canada, China, Finland, France, Japan, Germany, Spain, Sweden, UK, and the USA. Through this project, in-depth knowledge has been gained of coupled THM and THMC processes associated with nuclear waste repositories, as well as numerical simulation models for their quantitative analysis. The knowledge accumulated from this project, in the form of a large number of research reports and international journal and conference papers in the open literature, has been applied effectively in the implementation and review of national radioactive-waste-management programmes in the participating countries. This paper presents an overview of the project.

  8. Motivation, description, and summary status of geomechanical andgeochemical modeling studies in Task D of the InternationalDECOVALEX-THMC Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Birkholzer, J.T.; Barr, D.; Rutqvist, J.

    2005-11-15

    The DECOVALEX project is an international cooperativeproject initiated by SKI, the Swedish Nuclear Power Inspectorate, withparticipation of about 10 international organizations. The general goalof this project is to encourage multidisciplinary interactive andcooperative research on modelling coupledthermo-hydro-mechanical-chemical (THMC) processes in geologic formationsin support of the performance assessment for underground storage ofradioactive waste. One of the research tasks, initiated in 2004 by theU.S. Department of Energy (DOE), addresses the long-term impact ofgeomechanical and geochemical processes on the flow conditions near wasteemplacement tunnels. Within this task, four international research teamsconduct predictive analysis of the coupled processes in two genericrepositories, using multiple approaches andmore » different computer codes.Below, we give an overview of the research task and report its currentstatus.« less

  9. User's Guide of TOUGH2-EGS. A Coupled Geomechanical and Reactive Geochemical Simulator for Fluid and Heat Flow in Enhanced Geothermal Systems Version 1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fakcharoenphol, Perapon; Xiong, Yi; Hu, Litang

    TOUGH2-EGS is a numerical simulation program coupling geomechanics and chemical reactions for fluid and heat flows in porous media and fractured reservoirs of enhanced geothermal systems. The simulator includes the fully-coupled geomechanical (THM) module, the fully-coupled geochemical (THC) module, and the sequentially coupled reactive geochemistry (THMC) module. The fully-coupled flow-geomechanics model is developed from the linear elastic theory for the thermo-poro-elastic system and is formulated with the mean normal stress as well as pore pressure and temperature. The chemical reaction is sequentially coupled after solution of flow equations, which provides the flow velocity and phase saturation for the solute transportmore » calculation at each time step. In addition, reservoir rock properties, such as porosity and permeability, are subjected to change due to rock deformation and chemical reactions. The relationships between rock properties and geomechanical and chemical effects from poro-elasticity theories and empirical correlations are incorporated into the simulator. This report provides the user with detailed information on both mathematical models and instructions for using TOUGH2-EGS for THM, THC or THMC simulations. The mathematical models include the fluid and heat flow equations, geomechanical equation, reactive geochemistry equations, and discretization methods. Although TOUGH2-EGS has the capability for simulating fluid and heat flows coupled with both geomechanical and chemical effects, it is up to the users to select the specific coupling process, such as THM, THC, or THMC in a simulation. There are several example problems illustrating the applications of this program. These example problems are described in details and their input data are presented. The results demonstrate that this program can be used for field-scale geothermal reservoir simulation with fluid and heat flow, geomechanical effect, and chemical reaction in porous and fractured media.« less

  10. 25 Years of DECOVALEX - Research Advances and Lessons Learned from an International Model Comparison Initiative

    NASA Astrophysics Data System (ADS)

    Birkholzer, J. T.

    2017-12-01

    This presentation provides an overview of an international research and model comparison collaboration (DECOVALEX) for advancing the understanding and modeling of coupled thermo-hydro-mechanical-chemical (THMC) processes in geological systems. Prediction of these coupled effects is an essential part of the performance and safety assessment of geologic disposal systems for radioactive waste and spent nuclear fuel, and is also relevant for a range of other sub-surface engineering activities. DECOVALEX research activities have been supported by a large number of radioactive-waste-management organizations and regulatory authorities. Research teams from more than a dozen international partner organizations have participated in the comparative modeling evaluation of complex field and laboratory experiments in the UK, Switzerland, Japan, France and Sweden. Together, these tasks (1) have addressed a wide range of relevant issues related to engineered and natural system behavior in argillaceous, crystalline and other host rocks, (2) have yielded in-depth knowledge of coupled THM and THMC processes associated with nuclear waste repositories and wider geo-engineering applications, and (3) have advanced the capability, as well as demonstrated the suitability, of numerical simulation models for quantitative analysis.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rutqvist, Jonny; Blanco-Martin, Laura; Molins, Sergi

    In this report, we present FY2015 progress by Lawrence Berkeley National Laboratory (LBNL) related to modeling of coupled thermal-hydrological-mechanical-chemical (THMC) processes in salt and their effect on brine migration at high temperatures. This is a combined milestone report related to milestone Salt R&D Milestone “Modeling Coupled THM Processes and Brine Migration in Salt at High Temperatures” (M3FT-15LB0818012) and the Salt Field Testing Milestone (M3FT-15LB0819022) to support the overall objectives of the salt field test planning.

  12. A coupled THMC model of a heating and hydration laboratory experiment in unsaturated compacted FEBEX bentonite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, L.; Samper, J.; Montenegro, L.

    2010-05-01

    Unsaturated compacted bentonite is foreseen by several countries as a backfill and sealing material in high-level radioactive waste repositories. The strong interplays between thermal (T), hydrodynamic (H), mechanical (M) and chemical (C) processes during the hydration stage of a repository call for fully coupled THMC models. Validation of such THMC models is prevented by the lack of comprehensive THMC experiments and the difficulties of experimental methods to measure accurately the chemical composition of bentonite porewater. We present here a non-isothermal multiphase flow and multicomponent reactive solute transport model for a deformable medium of a heating and hydration experiment performed onmore » a sample of compacted FEBEX bentonite. Besides standard solute transport and geochemical processes, the model accounts for solute cross diffusion and thermal and chemical osmosis. Bentonite swelling is solved with a state-surface approach. The THM model is calibrated with transient temperature, water content and porosity data measured at the end of the experiment. The reactive transport model is calibrated with porewater chemical data derived from aqueous extract data. Model results confirm that thermal osmosis is relevant for the hydration of FEBEX bentonite while chemical osmosis can be safely neglected. Dilution and evaporation are the main processes controlling the concentration of conservative species. Dissolved cations are mostly affected by calcite dissolution-precipitation and cation exchange reactions. Dissolved sulphate is controlled by gypsum/anhydrite dissolution-precipitation. pH is mostly buffered by protonation/deprotonation via surface complexation. Computed concentrations agree well with inferred aqueous extract data at all sections except near the hydration boundary where cation data are affected by a sampling artifact. The fit of Cl{sup -} data is excellent except for the data near the heater. The largest deviations of the model from inferred aqueous extract data occur for dissolved SO{sub 4}{sup 2-} which is underpredicted by the model. There are uncertainties on the amount of gypsum available for dissolution and its dissolution mechanism (kinetics or local equilibrium).« less

  13. Coupled THMC models for bentonite in clay repository for nuclear waste

    NASA Astrophysics Data System (ADS)

    Zheng, L.; Rutqvist, J.; Birkholzer, J. T.; Li, Y.; Anguiano, H. H.

    2015-12-01

    Illitization, the transformation of smectite to illite, could compromise some beneficiary features of an engineered barrier system (EBS) that is composed primarily of bentonite and clay host rock. It is a major determining factor to establish the maximum design temperature of the repositories because it is believed that illitization could be greatly enhanced at temperatures higher than 100 oC and thus significantly lower the sorption and swelling capacity of bentonite and clay rock. However, existing experimental and modeling studies on the occurrence of illitization and related performance impacts are not conclusive, in part because the relevant couplings between the thermal, hydrological, chemical, and mechanical (THMC) processes have not been fully represented in the models. Here we present fully coupled THMC simulations of a generic nuclear waste repository in a clay formation with bentonite-backfilled EBS. Two scenarios were simulated for comparison: a case in which the temperature in the bentonite near the waste canister can reach about 200 oC and a case in which the temperature in the bentonite near the waste canister peaks at about 100 oC. The model simulations demonstrate that illitization is in general more significant at higher temperatures. We also compared the chemical changes and the resulting swelling stress change for two types of bentonite: Kunigel-VI and FEBEX bentonite. Higher temperatures also lead to much higher stress in the near field, caused by thermal pressurization and vapor pressure buildup in the EBS bentonite and clay host rock. Chemical changes lead to a reduction in swelling stress, which is more pronounced for Kunigel-VI bentonite than for FEBEX bentonite.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rutqvist, Jonny; Blanco Martin, Laura; Mukhopadhyay, Sumit

    In this report, we present FY2014 progress by Lawrence Berkeley National Laboratory (LBNL) related to modeling of coupled thermal-hydrological-mechanical-chemical (THMC) processes in salt and their effect on brine migration at high temperatures. LBNL’s work on the modeling of coupled THMC processes in salt was initiated in FY2012, focusing on exploring and demonstrating the capabilities of an existing LBNL modeling tool (TOUGH-FLAC) for simulating temperature-driven coupled flow and geomechanical processes in salt. This work includes development related to, and implementation of, essential capabilities, as well as testing the model against relevant information and published experimental data related to the fate andmore » transport of water. we provide more details on the FY2014 work, first presenting updated tools and improvements made to the TOUGH-FLAC simulator, and the use of this updated tool in a new model simulation of long-term THM behavior within a generic repository in a salt formation. This is followed by the description of current benchmarking and validations efforts, including the TSDE experiment. We then present the current status in the development of constitutive relationships and the dual-continuum model for brine migration. We conclude with an outlook for FY2015, which will be much focused on model validation against field experiments and on the use of the model for the design studies related to a proposed heater experiment.« less

  15. Illitization within bentonite engineered barrier system in clay repositories for nuclear waste and its effect on the swelling stress: a coupled THMC modeling study

    NASA Astrophysics Data System (ADS)

    Zheng, L.; Rutqvist, J.; Birkholzer, J. T.; Liu, H. H.

    2014-12-01

    Geological repositories for disposal of high-level nuclear waste generally rely on a multi-barrier system to isolate radioactive waste from the biosphere. An engineered barrier system (EBS), which comprises in many design concepts a bentonite backfill, is widely used. Clay formations have been considered as a host rock throughout the world. Illitization, the transformation of smectite to illite, could compromise some beneficiary features of EBS bentonite and clay host rock such as sorption and swelling capacity. It is the major determining factor to establish the maximum design temperature of the repositories because it is believed that illitization could be greatly enhanced at temperatures higher than 100 oC. However, existing experimental and modeling studies on the occurrence of illitization and related performance impacts are not conclusive, in part because the relevant couplings between the thermal, hydrological, chemical, and mechanical (THMC) processes have not been fully represented in the models. Here we present a fully coupled THMC simulation study of a generic nuclear waste repository in a clay formation with a bentonite-backfilled EBS. Two scenarios were simulated for comparison: a case in which the temperature in the bentonite near the waste canister can reach about 200 oC and a case in which the temperature in the bentonite near the waste canister peaks at about 100 oC. The model simulations demonstrate that illitization is in general more significant under higher temperature. However, the quantity of illitization is affected by many chemical factors and therefore varies a great deal. The most important chemical factors are the concentration of K in the pore water as well as the abundance and dissolution rate of K-feldspar. For the particular case and bentonite properties studied, the reduction in swelling stress as a result of chemical changes vary from 2% up to 70% depending on chemical and temperature conditions, and key mechanical parameters. The modeling work is illustrative in light of the relative importance of different processes occurring in EBS bentonite and clay host rock at higher than 100 oC conditions, and could be of greater use when site specific data are available.

  16. Evaluation of used fuel disposition in clay-bearing rock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jove-Colon, Carlos F.; Hammond, Glenn Edward; Kuhlman, Kristopher L.

    The R&D program from the DOE Used Fuel Disposition Campaign (UFDC) has documented key advances in coupled Thermal-Hydrological-Mechanical-Chemical (THMC) modeling of clay to simulate its complex dynamic behavior in response to thermal and hydrochemical feedbacks. These efforts have been harnessed to assess the isolation performance of heat-generating nuclear waste in a deep geological repository in clay/shale/argillaceous rock formations. This report describes the ongoing disposal R&D efforts on the advancement and refinement of coupled THMC process models, hydrothermal experiments on barrier clay interactions, used fuel and canister material degradation, thermodynamic database development, and reactive transport modeling of the near-field under non-isothermalmore » conditions. These play an important role to the evaluation of sacrificial zones as part of the EBS exposure to thermally-driven chemical and transport processes. Thermal inducement of chemical interactions at EBS domains enhances mineral dissolution/precipitation but also generates mineralogical changes that result in mineral H2O uptake/removal (hydration/dehydration reactions). These processes can result in volume changes that can affect the interface / bulk phase porosities and the mechanical (stress) state of the bentonite barrier. Characterization studies on bentonite barrier samples from the FEBEX-DP international activity have provided important insight on clay barrier microstructures (e.g., microcracks) and interactions at EBS interfaces. Enhancements to the used fuel degradation model outlines the need to include the effects of canister corrosion due the strong influence of H2 generation on the source term.« less

  17. Geomechanical/Geochemical Modeling Studies Conducted within theInternational DECOVALEX Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Birkholzer, J.T.; Rutqvist, J.; Sonnenthal, E.L.

    2005-10-19

    The DECOVALEX project is an international cooperative project initiated by SKI, the Swedish Nuclear Power Inspectorate, with participation of about 10 international organizations. The general goal of this project is to encourage multidisciplinary interactive and cooperative research on modeling coupled thermo-hydro-mechanical-chemical (THMC) processes in geologic formations in support of the performance assessment for underground storage of radioactive waste. One of the research tasks, initiated in 2004 by the U.S. Department of Energy (DOE), addresses the long-term impact of geomechanical and geochemical processes on the flow conditions near waste emplacement tunnels. Within this task, four international research teams conduct predictive analysismore » of the coupled processes in two generic repositories, using multiple approaches and different computer codes. Below, we give an overview of the research task and report its current status.« less

  18. Geomechanical/ Geochemical Modeling Studies onducted Within the International DECOVALEX Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J.T. Birkholzer; J. Rutqvist; E.L. Sonnenthal

    2006-02-01

    The DECOVALEX project is an international cooperative project initiated by SKI, the Swedish Nuclear Power Inspectorate, with participation of about 10 international organizations. The general goal of this project is to encourage multidisciplinary interactive and cooperative research on modeling coupled thermo-hydro-mechanical-chemical (THMC) processes in geologic formations in support of the performance assessment for underground storage of radioactive waste. One of the research tasks, initiated in 2004 by the U.S. Department of Energy (DOE), addresses the long-term impact of geomechanical and geochemical processes on the flow conditions near waste emplacement tunnels. Within this task, four international research teams conduct predictive analysismore » of the coupled processes in two generic repositories, using multiple approaches and different computer codes. Below, we give an overview of the research task and report its current status.« less

  19. Integrated Modeling and Experiments to Characterize Coupled Thermo-hydro-geomechanical-chemical processes in Hydraulic Fracturing

    NASA Astrophysics Data System (ADS)

    Viswanathan, H. S.; Carey, J. W.; Karra, S.; Porter, M. L.; Rougier, E.; Kang, Q.; Makedonska, N.; Hyman, J.; Jimenez Martinez, J.; Frash, L.; Chen, L.

    2015-12-01

    Hydraulic fracturing phenomena involve fluid-solid interactions embedded within coupled thermo-hydro-mechanical-chemical (THMC) processes over scales from microns to tens of meters. Feedbacks between processes result in complex dynamics that must be unraveled if one is to predict and, in the case of unconventional resources, facilitate fracture propagation, fluid flow, and interfacial transport processes. The proposed work is part of a broader class of complex systems involving coupled fluid flow and fractures that are critical to subsurface energy issues, such as shale oil, geothermal, carbon sequestration, and nuclear waste disposal. We use unique LANL microfluidic and triaxial core flood experiments integrated with state-of-the-art numerical simulation to reveal the fundamental dynamics of fracture-fluid interactions to characterize the key coupled processes that impact hydrocarbon production. We are also comparing CO2-based fracturing and aqueous fluids to enhance production, greatly reduce waste water, while simultaneously sequestering CO2. We will show pore, core and reservoir scale simulations/experiments that investigate the contolling mechanisms that control hydrocarbon production.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manteufel, R.D.; Ahola, M.P.; Turner, D.R.

    A literature review has been conducted to determine the state of knowledge available in the modeling of coupled thermal (T), hydrologic (H), mechanical (M), and chemical (C) processes relevant to the design and/or performance of the proposed high-level waste (HLW) repository at Yucca Mountain, Nevada. The review focuses on identifying coupling mechanisms between individual processes and assessing their importance (i.e., if the coupling is either important, potentially important, or negligible). The significance of considering THMC-coupled processes lies in whether or not the processes impact the design and/or performance objectives of the repository. A review, such as reported here, is usefulmore » in identifying which coupled effects will be important, hence which coupled effects will need to be investigated by the US Nuclear Regulatory Commission in order to assess the assumptions, data, analyses, and conclusions in the design and performance assessment of a geologic reposit``. Although this work stems from regulatory interest in the design of the geologic repository, it should be emphasized that the repository design implicitly considers all of the repository performance objectives, including those associated with the time after permanent closure. The scope of this review is considered beyond previous assessments in that it attempts with the current state-of-knowledge) to determine which couplings are important, and identify which computer codes are currently available to model coupled processes.« less

  1. Modeling of Coupled Thermo-Hydro-Mechanical-Chemical Processes for Bentonite in a Clay-rock Repository for Heat-generating Nuclear Waste

    NASA Astrophysics Data System (ADS)

    Xu, H.; Rutqvist, J.; Zheng, L.; Birkholzer, J. T.

    2016-12-01

    Engineered Barrier Systems (EBS) that include a bentonite-based buffer are designed to isolate the high-level radioactive waste emplaced in tunnels in deep geological formations. The heat emanated from the waste can drive the moisture flow transport and induce strongly coupled Thermal (T), Hydrological (H), Mechanical (M) and Chemical (C) processes within the bentonite buffer and may also impact the evolution of the excavation disturbed zone and the sealing between the buffer and walls of an emplacement tunnel The flow and contaminant transport potential along the disturbed zone can be minimized by backfilling the tunnels with bentonite, if it provides enough swelling stress when hydrated by the host rock. The swelling capability of clay minerals within the bentonite is important for sealing gaps between bentonite block, and between the EBS and the surrounding host rock. However, a high temperature could result in chemical alteration of bentonite-based buffer and backfill materials through illitization, which may compromise the function of these EBS components by reducing their plasticity and capability to swell under wetting. Therefore, an adequate THMC coupling scheme is required to understand and to predict the changes of bentonite for identifying whether EBS bentonite can sustain higher temperatures. More comprehensive links between chemistry and mechanics, taking advantage of the framework provided by a dual-structure model, named Barcelona Expansive Model (BExM), was implemented in TOUGHREACT-FLAC3D and is used to simulate the response of EBS bentonite in in clay formation for a generic case. The current work is to evaluate the chemical changes in EBS bentonite and the effects on the bentonite swelling stress under high temperature. This work sheds light on the interaction between THMC processes, evaluates the potential deterioration of EBS bentonite and supports the decision making in the design of a nuclear waste repository in light of the maximum allowance temperature.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Liange; Rutqvist, Jonny; Kim, Kunhwi

    The focus of research within the UFD Campaign is on repository-induced interactions that may affect the key safety characteristics of an argillaceous rock. These include thermal-hydrological-mechanical-chemical (THMC) process interactions that occur as a result of repository construction and waste emplacement. Some of the key questions addressed in this report include the development of fracturing in the excavation damaged zone (EDZ) and THMC effects on the near-field argillaceous rock and buffer minerals and petrophysical characteristics, particularly the impacts of induced temperature rise caused by waste heat.

  3. Increasing the production efficiency and reducing the environmental impacts of hydraulic fracturing

    NASA Astrophysics Data System (ADS)

    Viswanathan, H. S.

    2016-12-01

    Shale gas is an unconventional fossil energy resource profoundly impacting US energy independence and is projected to last for at least 100 years. Production of methane and other hydrocarbons from low permeability shale involves hydraulic fracturing of rock, establishing fracture connectivity, and multiphase fluid-flow and reaction processes all of which are poorly understood. The result is inefficient extraction with many environmental concerns. A science-based capability is required to quantify the governing mesoscale fluid-solid interactions, including microstructural control of fracture patterns and the interaction of engineered fluids with hydrocarbon flow. These interactions depend on coupled thermo-hydro-mechanical-chemical (THMC) processes over scales from microns to tens of meters. Determining the key mechanisms in subsurface THMC systems has been impeded due to the lack of sophisticated experimental methods to measure fracture aperture and connectivity, multiphase permeability, and chemical exchange capacities at the high temperature, pressure, and stresses present in the subsurface. In this study, we developed and prototyped the microfluidic and triaxial core flood experiments required to reveal the fundamental dynamics of fracture-fluid interactions. The goal is transformation of hydraulic fracturing from present ad hoc approaches to science-based strategies while safely enhancing production. Specifically, we have demonstrated an integrated experimental/modeling approach that allows for a comprehensive characterization of fluid-solid interactions and develop models that can be used to determine the reservoir operating conditions necessary to gain a degree of control over fracture generation, fluid flow, and interfacial processes over a range of subsurface conditions.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Danko, George L

    To increase understanding of the energy extraction capacity of Enhanced Geothermal System(s) (EGS), a numerical model development and application project is completed. The general objective of the project is to develop and apply a new, data-coupled Thermal-Hydrological-Mechanical-Chemical (T-H-M-C) model in which the four internal components can be freely selected from existing simulation software without merging and cross-combining a diverse set of computational codes. Eight tasks are completed during the project period. The results are reported in five publications, an MS thesis, twelve quarterly, and two annual reports to DOE. Two US patents have also been issued during the project period,more » with one patent application originated prior to the start of the project. The “Multiphase Physical Transport Modeling Method and Modeling System” (U.S. Patent 8,396,693 B2, 2013), a key element in the GHE sub-model solution, is successfully used for EGS studies. The “Geothermal Energy Extraction System and Method" invention (U.S. Patent 8,430,166 B2, 2013) originates from the time of project performance, describing a new fluid flow control solution. The new, coupled T-H-M-C numerical model will help analyzing and designing new, efficient EGS systems.« less

  5. A Model to Couple Flow, Thermal and Reactive Chemical Transport, and Geo-mechanics in Variably Saturated Media

    NASA Astrophysics Data System (ADS)

    Yeh, G. T.; Tsai, C. H.

    2015-12-01

    This paper presents the development of a THMC (thermal-hydrology-mechanics-chemistry) process model in variably saturated media. The governing equations for variably saturated flow and reactive chemical transport are obtained based on the mass conservation principle of species transport supplemented with Darcy's law, constraint of species concentration, equation of states, and constitutive law of K-S-P (Conductivity-Degree of Saturation-Capillary Pressure). The thermal transport equation is obtained based on the conservation of energy. The geo-mechanic displacement is obtained based on the assumption of equilibrium. Conventionally, these equations have been implicitly coupled via the calculations of secondary variables based on primary variables. The mechanisms of coupling have not been obvious. In this paper, governing equations are explicitly coupled for all primary variables. The coupling is accomplished via the storage coefficients, transporting velocities, and conduction-dispersion-diffusion coefficient tensor; one set each for every primary variable. With this new system of equations, the coupling mechanisms become clear. Physical interpretations of every term in the coupled equations will be discussed. Examples will be employed to demonstrate the intuition and superiority of these explicit coupling approaches. Keywords: Variably Saturated Flow, Thermal Transport, Geo-mechanics, Reactive Transport.

  6. Integrated Experimental and Computational Study of Hydraulic Fracturing and the Use of Alternative Fracking Fluids

    NASA Astrophysics Data System (ADS)

    Viswanathan, H.; Carey, J. W.; Karra, S.; Porter, M. L.; Rougier, E.; Zhang, D.; Makedonska, N.; Middleton, R. S.; Currier, R.; Gupta, R.; Lei, Z.; Kang, Q.; O'Malley, D.; Hyman, J.

    2014-12-01

    Shale gas is an unconventional fossil energy resource that is already having a profound impact on US energy independence and is projected to last for at least 100 years. Production of methane and other hydrocarbons from low permeability shale involves hydrofracturing of rock, establishing fracture connectivity, and multiphase fluid-flow and reaction processes all of which are poorly understood. The result is inefficient extraction with many environmental concerns. A science-based capability is required to quantify the governing mesoscale fluid-solid interactions, including microstructural control of fracture patterns and the interaction of engineered fluids with hydrocarbon flow. These interactions depend on coupled thermo-hydro-mechanical-chemical (THMC) processes over scales from microns to tens of meters. Determining the key mechanisms in subsurface THMC systems has been impeded due to the lack of sophisticated experimental methods to measure fracture aperture and connectivity, multiphase permeability, and chemical exchange capacities at the high temperature, pressure, and stresses present in the subsurface. This project uses innovative high-pressure microfluidic and triaxial core flood experiments on shale to explore fracture-permeability relations and the extraction of hydrocarbon. These data are integrated with simulations including lattice Boltzmann modeling of pore-scale processes, finite-element/discrete element models of fracture development in the near-well environment, discrete-fracture modeling of the reservoir, and system-scale models to assess the economics of alternative fracturing fluids. The ultimate goal is to make the necessary measurements to develop models that can be used to determine the reservoir operating conditions necessary to gain a degree of control over fracture generation, fluid flow, and interfacial processes over a range of subsurface conditions.

  7. REDBACK: an Open-Source Highly Scalable Simulation Tool for Rock Mechanics with Dissipative Feedbacks

    NASA Astrophysics Data System (ADS)

    Poulet, T.; Veveakis, M.; Paesold, M.; Regenauer-Lieb, K.

    2014-12-01

    Multiphysics modelling has become an indispensable tool for geoscientists to simulate the complex behaviours observed in their various fields of study where multiple processes are involved, including thermal, hydraulic, mechanical and chemical (THMC) laws. This modelling activity involves simulations that are computationally expensive and its soaring uptake is tightly linked to the increasing availability of supercomputing power and easy access to powerful nonlinear solvers such as PETSc (http://www.mcs.anl.gov/petsc/). The Multiphysics Object-Oriented Simulation Environment (MOOSE) is a finite-element, multiphysics framework (http://mooseframework.org) that can harness such computational power and allow scientists to develop easily some tightly-coupled fully implicit multiphysics simulations that run automatically in parallel on large clusters. This open-source framework provides a powerful tool to collaborate on numerical modelling activities and we are contributing to its development with REDBACK (https://github.com/pou036/redback), a module for Rock mEchanics with Dissipative feedBACKs. REDBACK builds on the tensor mechanics finite strain implementation available in MOOSE to provide a THMC simulator where the energetic formulation highlights the importance of all dissipative terms in the coupled system of equations. We show first applications of fully coupled dehydration reactions triggering episodic fluid transfer through shear zones (Alevizos et al, 2014). The dimensionless approach used allows focusing on the critical underlying variables which are driving the resulting behaviours observed and this tool is specifically designed to study material instabilities underpinning geological features like faulting, folding, boudinage, shearing, fracturing, etc. REDBACK provides a collaborative and educational tool which captures the physical and mathematical understanding of such material instabilities and provides an easy way to apply this knowledge to realistic scenarios, where the size and complexity of the geometries considered, along with the material parameters distributions, add as many sources of different instabilities. References: Alevizos, S., T. Poulet, and E. Veveakis (2014), J. Geophys. Res., 119, 4558-4582, doi:10.1002/2013JB010070.

  8. A New Analytic-Adaptive Model for EGS Assessment, Development and Management Support

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Danko, George L

    To increase understanding of the energy extraction capacity of Enhanced Geothermal System(s) (EGS), a numerical model development and application project is completed. The general objective of the project is to develop and apply a new, data-coupled Thermal-Hydrological-Mechanical-Chemical (T-H-M-C) model in which the four internal components can be freely selected from existing simulation software without merging and cross-combining a diverse set of computational codes. Eight tasks are completed during the project period. The results are reported in five publications, an MS thesis, twelve quarterly, and two annual reports to DOE. Two US patents have also been issued during the project period,more » with one patent application originated prior to the start of the project. The “Multiphase Physical Transport Modeling Method and Modeling System” (U.S. Patent 8,396,693 B2, 2013), a key element in the GHE sub-model solution, is successfully used for EGS studies. The “Geothermal Energy Extraction System and Method" invention (U.S. Patent 8,430,166 B2, 2013) originates from the time of project performance, describing a new fluid flow control solution. The new, coupled T-H-M-C numerical model will help analyzing and designing new, efficient EGS systems.« less

  9. Study on Potential Changes in Geological and Disposal Environment Caused by 'Natural Phenomena' on a HLW Disposal System

    NASA Astrophysics Data System (ADS)

    Kawamura, M.; Umeda, K.; Ohi, T.; Ishimaru, T.; Niizato, T.; Yasue, K.; Makino, H.

    2007-12-01

    We have developed a formal evaluation method to assess the potential impact of natural phenomena (earthquakes and faulting; volcanism; uplift, subsidence, denudation and sedimentation; climatic and sea-level changes) on a High Level Radioactive Waste (HLW) Disposal System. In 2000, we had developed perturbation scenarios in a generic and conservative sense and illustrated the potential impact on a HLW disposal system. As results of the development of perturbation scenarios, two points were highlighted for consideration in subsequent work: improvement of the scenarios from the viewpoints of reality, transparency, traceability and consistency and avoiding extreme conservatism. Subsequently, we have thus developed a new procedure for describing such perturbation scenarios based on further studies of the characteristics of these natural perturbation phenomena in Japan. The approach to describing the perturbation scenario is effectively developed in five steps: Step 1: Description of potential process of phenomena and their impacts on the geological environment. Step 2: Characterization of potential changes of geological environment in terms of T-H-M-C (Thermal - Hydrological - Mechanical - Chemical) processes. The focus is on specific T-H-M-C parameters that influence geological barrier performance, utilizing the input from Step 1. Step 3: Classification of potential influences, based on similarity of T-H-M-C perturbations. This leads to development of perturbation scenarios to serve as a basis for consequence analysis. Step 4: Establishing models and parameters for performance assessment. Step 5: Calculation and assessment. This study focuses on identifying key T-H-M-C process associated with perturbations at Step 2. This framework has two advantages. First one is assuring maintenance of traceability during the scenario construction processes, facilitating the production and structuring of suitable records. The second is providing effective elicitation and organization of information from a wide range of investigations of earth sciences within a performance assessment context. In this framework, scenario development work proceeds in a stepwise manner, to ensure clear identification of the impact of processes associated with these phenomena on a HLW disposal system. Output is organized to create credible scenarios with required transparency, consistency, traceability and adequate conservatism. In this presentation, the potential impact of natural phenomena in the viewpoint of performance assessment for HLW disposal will be discussed and modeled using the approach.

  10. Imbedded-Fracture Formulation of THMC Processes in Fractured Media

    NASA Astrophysics Data System (ADS)

    Yeh, G. T.; Tsai, C. H.; Sung, R.

    2016-12-01

    Fractured media consist of porous materials and fracture networks. There exist four approaches to mathematically formulating THMC (Thermal-Hydrology-Mechanics-Chemistry) processes models in the system: (1) Equivalent Porous Media, (2) Dual Porosity or Dual Continuum, (3) Heterogeneous Media, and (4) Discrete Fracture Network. The first approach cannot explicitly explore the interactions between porous materials and fracture networks. The second approach introduces too many extra parameters (namely, exchange coefficients) between two media. The third approach may make the problems too stiff because the order of material heterogeneity may be too much. The fourth approach ignore the interaction between porous materials and fracture networks. This talk presents an alternative approach in which fracture networks are modeled with a lower dimension than the surrounding porous materials. Theoretical derivation of mathematical formulations will be given. An example will be illustrated to show the feasibility of this approach.

  11. Quantifying Risks and Uncertainties Associated with Induced Seismicity due to CO2 Injection into Geologic Formations with Faults

    NASA Astrophysics Data System (ADS)

    Hou, Z.; Nguyen, B. N.; Bacon, D. H.; White, M. D.; Murray, C. J.

    2016-12-01

    A multiphase flow and reactive transport simulator named STOMP-CO2-R has been developed and coupled to the ABAQUS® finite element package for geomechanical analysis enabling comprehensive thermo-hydro-geochemical-mechanical (THMC) analyses. The coupled THMC simulator has been applied to analyze faulted CO2 reservoir responses (e.g., stress and strain distributions, pressure buildup, slip tendency factor, pressure margin to fracture) with various complexities in fault and reservoir structures and mineralogy. Depending on the geological and reaction network settings, long-term injection of CO2 can have a significant effect on the elastic stiffness and permeability of formation rocks. In parallel, an uncertainty quantification framework (UQ-CO2), which consists of entropy-based prior uncertainty representation, efficient sampling, geostatistical reservoir modeling, and effective response surface analysis, has been developed for quantifying risks and uncertainties associated with CO2 sequestration. It has been demonstrated for evaluating risks in CO2 leakage through natural pathways and wellbores, and for developing predictive reduced order models. Recently, a parallel STOMP-CO2-R has been developed and the updated STOMP/ABAQUS model has been proven to have a great scalability, which makes it possible to integrate the model with the UQ framework to effectively and efficiently explore multidimensional parameter space (e.g., permeability, elastic modulus, crack orientation, fault friction coefficient) for a more systematic analysis of induced seismicity risks.

  12. DR Argillite Disposal R&D at LBNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Liange; Kim, Kunhwi; Xu, Hao

    2016-08-12

    Within the Natural Barrier System (NBS) group of the Used Fuel Disposition (UFD) Campaign at the Department of Energy’s (DOE) Office of Nuclear Energy, LBNL’s research activities have focused on understanding and modeling EDZ evolution and the associated coupled processes and impacts of high temperature on parameters and processes relevant to performance of a clay repository to establish the technical base for the maximum allowable temperature. This report documents results from some of these activities. These activities address key Features, Events, and Processes (FEPs), which have been ranked in importance from medium to high, as listed in Table 7 ofmore » the Used Fuel Disposition Campaign Disposal Research and Development Roadmap (FCR&D-USED-2011-000065 REV0) (Nutt, 2011). Specifically, they address FEP 2.2.01, Excavation Disturbed Zone, for clay/shale, by investigating how coupled processes affect EDZ evolution; FEP 2.2.05, Flow and Transport Pathways; and FEP 2.2.08, Hydrologic Processes, and FEP 2.2.07, Mechanical Processes, and FEP 2.2.09, Chemical Process—Transport, by studying near-field coupled THMC processes in clay/shale repositories. The activities documented in this report also address a number of research topics identified in Research & Development (R&D) Plan for Used Fuel Disposition Campaign (UFDC) Natural System Evaluation and Tool Development (Wang 2011), including Topics S3, Disposal system modeling – Natural System; P1, Development of discrete fracture network (DFN) model; P14, Technical basis for thermal loading limits; and P15 Modeling of disturbed rock zone (DRZ) evolution (clay repository).« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rutqvist, Jonny; Blanco Martin, Laura; Mukhopadhyay, Sumit

    The modeling efforts in support of the field test planning conducted at LBNL leverage on recent developments of tools for modeling coupled thermal-hydrological-mechanical-chemical (THMC) processes in salt and their effect on brine migration at high temperatures. This work includes development related to, and implementation of, essential capabilities, as well as testing the model against relevant information and published experimental data related to the fate and transport of water. These are modeling capabilities that will be suitable for assisting in the design of field experiment, especially related to multiphase flow processes coupled with mechanical deformations, at high temperature. In this report,more » we first examine previous generic repository modeling results, focusing on the first 20 years to investigate the expected evolution of the different processes that could be monitored in a full-scale heater experiment, and then present new results from ongoing modeling of the Thermal Simulation for Drift Emplacement (TSDE) experiment, a heater experiment on the in-drift emplacement concept at the Asse Mine, Germany, and provide an update on the ongoing model developments for modeling brine migration. LBNL also supported field test planning activities via contributions to and technical review of framework documents and test plans, as well as participation in workshops associated with field test planning.« less

  14. International Collaboration on Spent Fuel Disposition in Crystalline Media: FY17 Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yifeng; Hadgu, Teklu; Kainina, Elena

    Active participation in international R&D is crucial for achieving the Spent Fuel Waste Science & Technology (SFWST) long-term goals of conducting “experiments to fill data needs and confirm advanced modeling approaches” and of having a “robust modeling and experimental basis for evaluation of multiple disposal system options” (by 2020). DOE’s Office of Nuclear Energy (NE) has developed a strategic plan to advance cooperation with international partners. The international collaboration on the evaluation of crystalline disposal media at Sandia National Laboratories (SNL) in FY17 focused on the collaboration through the Development of Coupled Models and their Validation against Experiments (DECOVALEX-2019) project.more » The DECOVALEX project is an international research and model comparison collaboration, initiated in 1992, for advancing the understanding and modeling of coupled thermo-hydro-mechanical-chemical (THMC) processes in geological systems. SNL has been participating in three tasks of the DECOVALEX project: Task A. Modeling gas injection experiments (ENGINEER), Task C. Modeling groundwater recovery experiment in tunnel (GREET), and Task F. Fluid inclusion and movement in the tight rock (FINITO).« less

  15. Coupled Thermo-Hydro-Mechanical Numerical Framework for Simulating Unconventional Formations

    NASA Astrophysics Data System (ADS)

    Garipov, T. T.; White, J. A.; Lapene, A.; Tchelepi, H.

    2016-12-01

    Unconventional deposits are found in all world oil provinces. Modeling these systems is challenging, however, due to complex thermo-hydro-mechanical processes that govern their behavior. As a motivating example, we consider in situ thermal processing of oil shale deposits. When oil shale is heated to sufficient temperatures, kerogen can be converted to oil and gas products over a relatively short timespan. This phase change dramatically impact both the mechanical and hydrologic properties of the rock, leading to strongly coupled THMC interactions. Here, we present a numerical framework for simulating tightly-coupled chemistry, geomechanics, and multiphase flow within a reservoir simulator (the AD-GPRS General Purpose Research Simulator). We model changes in constitutive behavior of the rock using a thermoplasticity model that accounts for microstructural evolution. The multi-component, multiphase flow and transport processes of both mass and heat are modeled at the macroscopic (e.g., Darcy) scale. The phase compositions and properties are described by a cubic equation of state; Arrhenius-type chemical reactions are used to represent kerogen conversion. The system of partial differential equations is discretized using a combination of finite-volumes and finite-elements, respectively, for the flow and mechanics problems. Fully implicit and sequentially implicit method are used to solve resulting nonlinear problem. The proposed framework is verified against available analytical and numerical benchmark cases. We demonstrate the efficiency, performance, and capabilities of the proposed simulation framework by analyzing near well deformation in an oil shale formation.

  16. Scenario simulation based assessment of subsurface energy storage

    NASA Astrophysics Data System (ADS)

    Beyer, C.; Bauer, S.; Dahmke, A.

    2014-12-01

    Energy production from renewable sources such as solar or wind power is characterized by temporally varying power supply. The politically intended transition towards renewable energies in Germany („Energiewende") hence requires the installation of energy storage technologies to compensate for the fluctuating production. In this context, subsurface energy storage represents a viable option due to large potential storage capacities and the wide prevalence of suited geological formations. Technologies for subsurface energy storage comprise cavern or deep porous media storage of synthetic hydrogen or methane from electrolysis and methanization, or compressed air, as well as heat storage in shallow or moderately deep porous formations. Pressure build-up, fluid displacement or temperature changes induced by such operations may affect local and regional groundwater flow, geomechanical behavior, groundwater geochemistry and microbiology. Moreover, subsurface energy storage may interact and possibly be in conflict with other "uses" like drinking water abstraction or ecological goods and functions. An utilization of the subsurface for energy storage therefore requires an adequate system and process understanding for the evaluation and assessment of possible impacts of specific storage operations on other types of subsurface use, the affected environment and protected entities. This contribution presents the framework of the ANGUS+ project, in which tools and methods are developed for these types of assessments. Synthetic but still realistic scenarios of geological energy storage are derived and parameterized for representative North German storage sites by data acquisition and evaluation, and experimental work. Coupled numerical hydraulic, thermal, mechanical and reactive transport (THMC) simulation tools are developed and applied to simulate the energy storage and subsurface usage scenarios, which are analyzed for an assessment and generalization of the imposed THMC-processes, mutual effects and influences on protected entities. The scenario analyses allow the deduction of monitoring concepts as well as a first methodology for large scale spatial planning of the geological subsurface. This concept is illustrated for different storage options and their impacts in space and time.

  17. Geological Disposal of Nuclear Waste: Investigating the Thermo-Hygro-Mechanical-Chemical (THMC) Coupled Processes at the Waste Canister- Bentonite Barrier Interface

    NASA Astrophysics Data System (ADS)

    Davies, C. W.; Davie, D. C.; Charles, D. A.

    2015-12-01

    Geological disposal of nuclear waste is being increasingly considered to deal with the growing volume of waste resulting from the nuclear legacy of numerous nations. Within the UK there is 650,000 cubic meters of waste safely stored and managed in near-surface interim facilities but with no conclusive permanent disposal route. A Geological Disposal Facility with incorporated Engineered Barrier Systems are currently being considered as a permanent waste management solution (Fig.1). This research focuses on the EBS bentonite buffer/waste canister interface, and experimentally replicates key environmental phases that would occur after canister emplacement. This progresses understanding of the temporal evolution of the EBS and the associated impact on its engineering, mineralogical and physicochemical state and considers any consequences for the EBS safety functions of containment and isolation. Correlation of engineering properties to the physicochemical state is the focus of this research. Changes to geotechnical properties such as Atterberg limits, swelling pressure and swelling kinetics are measured after laboratory exposure to THMC variables from interface and batch experiments. Factors affecting the barrier, post closure, include corrosion product interaction, precipitation of silica, near-field chemical environment, groundwater salinity and temperature. Results show that increasing groundwater salinity has a direct impact on the buffer, reducing swelling capacity and plasticity index by up to 80%. Similarly, thermal loading reduces swelling capacity by 23% and plasticity index by 5%. Bentonite/steel interaction studies show corrosion precipitates diffusing into compacted bentonite up to 3mm from the interface over a 4 month exposure (increasing with temperature), with reduction in swelling capacity in the affected zone, probably due to the development of poorly crystalline iron oxides. These results indicate that groundwater conditions, temperature and corrosion may affect the engineering performance of the bentonite buffer such that any interfaces between bentonite blocks that may be present immediately following buffer emplacement may persist in the longer term.

  18. A THC Simulator for Modeling Fluid-Rock Interactions

    NASA Astrophysics Data System (ADS)

    Hamidi, Sahar; Galvan, Boris; Heinze, Thomas; Miller, Stephen

    2014-05-01

    Fluid-rock interactions play an essential role in many earth processes, from a likely influence on earthquake nucleation and aftershocks, to enhanced geothermal system, carbon capture and storage (CCS), and underground nuclear waste repositories. In THC models, two-way interactions between different processes (thermal, hydraulic and chemical) are present. Fluid flow influences the permeability of the rock especially if chemical reactions are taken into account. On one hand solute concentration influences fluid properties while, on the other hand, heat can affect further chemical reactions. Estimating heat production from a naturally fractured geothermal systems remains a complex problem. Previous works are typically based on a local thermal equilibrium assumption and rarely consider the salinity. The dissolved salt in fluid affects the hydro- and thermodynamical behavior of the system by changing the hydraulic properties of the circulating fluid. Coupled thermal-hydraulic-chemical models (THC) are important for investigating these processes, but what is needed is a coupling to mechanics to result in THMC models. Although similar models currently exist (e.g. PFLOTRAN), our objective here is to develop algorithms for implementation using the Graphics Processing Unit (GPU) computer architecture to be run on GPU clusters. To that aim, we present a two-dimensional numerical simulation of a fully coupled non-isothermal non-reactive solute flow. The thermal part of the simulation models heat transfer processes for either local thermal equilibrium or nonequilibrium cases, and coupled to a non-reactive mass transfer described by a non-linear diffusion/dispersion model. The flow process of the model includes a non-linear Darcian flow for either saturated or unsaturated scenarios. For the unsaturated case, we use the Richards' approximation for a mixture of liquid and gas phases. Relative permeability and capillary pressure are determined by the van Genuchten relations. Permeability of rock is controlled by porosity, which is itself related to effective stress. The theoretical model is solved using explicit finite differences, and runs in parallel mode with OpenMP. The code is fully modular so that any combination of current THC processes, one- and two-phase, can be chosen. Future developments will include dissolution and precipitation of chemical components in addition to chemical erosion.

  19. The physical hydrogeology of ore deposits

    USGS Publications Warehouse

    Ingebritsen, Steven E.; Appold, M.S.

    2012-01-01

    Hydrothermal ore deposits represent a convergence of fluid flow, thermal energy, and solute flux that is hydrogeologically unusual. From the hydrogeologic perspective, hydrothermal ore deposition represents a complex coupled-flow problem—sufficiently complex that physically rigorous description of the coupled thermal (T), hydraulic (H), mechanical (M), and chemical (C) processes (THMC modeling) continues to challenge our computational ability. Though research into these coupled behaviors has found only a limited subset to be quantitatively tractable, it has yielded valuable insights into the workings of hydrothermal systems in a wide range of geologic environments including sedimentary, metamorphic, and magmatic. Examples of these insights include the quantification of likely driving mechanisms, rates and paths of fluid flow, ore-mineral precipitation mechanisms, longevity of hydrothermal systems, mechanisms by which hydrothermal fluids acquire their temperature and composition, and the controlling influence of permeability and other rock properties on hydrothermal fluid behavior. In this communication we review some of the fundamental theory needed to characterize the physical hydrogeology of hydrothermal systems and discuss how this theory has been applied in studies of Mississippi Valley-type, tabular uranium, porphyry, epithermal, and mid-ocean ridge ore-forming systems. A key limitation in the computational state-of-the-art is the inability to describe fluid flow and transport fully in the many ore systems that show evidence of repeated shear or tensional failure with associated dynamic variations in permeability. However, we discuss global-scale compilations that suggest some numerical constraints on both mean and dynamically enhanced crustal permeability. Principles of physical hydrogeology can be powerful tools for investigating hydrothermal ore formation and are becoming increasingly accessible with ongoing advances in modeling software.

  20. Generic Argillite/Shale Disposal Reference Case

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Liange; Colon, Carlos Jové; Bianchi, Marco

    Radioactive waste disposal in a deep subsurface repository hosted in clay/shale/argillite is a subject of widespread interest given the desirable isolation properties, geochemically reduced conditions, and widespread geologic occurrence of this rock type (Hansen 2010; Bianchi et al. 2013). Bianchi et al. (2013) provides a description of diffusion in a clay-hosted repository based on single-phase flow and full saturation using parametric data from documented studies in Europe (e.g., ANDRA 2005). The predominance of diffusive transport and sorption phenomena in this clay media are key attributes to impede radionuclide mobility making clay rock formations target sites for disposal of high-level radioactivemore » waste. The reports by Hansen et al. (2010) and those from numerous studies in clay-hosted underground research laboratories (URLs) in Belgium, France and Switzerland outline the extensive scientific knowledge obtained to assess long-term clay/shale/argillite repository isolation performance of nuclear waste. In the past several years under the UFDC, various kinds of models have been developed for argillite repository to demonstrate the model capability, understand the spatial and temporal alteration of the repository, and evaluate different scenarios. These models include the coupled Thermal-Hydrological-Mechanical (THM) and Thermal-Hydrological-Mechanical-Chemical (THMC) models (e.g. Liu et al. 2013; Rutqvist et al. 2014a, Zheng et al. 2014a) that focus on THMC processes in the Engineered Barrier System (EBS) bentonite and argillite host hock, the large scale hydrogeologic model (Bianchi et al. 2014) that investigates the hydraulic connection between an emplacement drift and surrounding hydrogeological units, and Disposal Systems Evaluation Framework (DSEF) models (Greenberg et al. 2013) that evaluate thermal evolution in the host rock approximated as a thermal conduction process to facilitate the analysis of design options. However, the assumptions and the properties (parameters) used in these models are different, which not only make inter-model comparisons difficult, but also compromise the applicability of the lessons learned from one model to another model. The establishment of a reference case would therefore be helpful to set up a baseline for model development. A generic salt repository reference case was developed in Freeze et al. (2013) and the generic argillite repository reference case is presented in this report. The definition of a reference case requires the characterization of the waste inventory, waste form, waste package, repository layout, EBS backfill, host rock, and biosphere. This report mainly documents the processes in EBS bentonite and host rock that are potentially important for performance assessment and properties that are needed to describe these processes, with brief description other components such as waste inventory, waste form, waste package, repository layout, aquifer, and biosphere. A thorough description of the generic argillite repository reference case will be given in Jové Colon et al. (2014).« less

  1. Underground Coalfires as an Incentive and Challenge to THMC Modeling

    NASA Astrophysics Data System (ADS)

    Wuttke, Manfred W.; Fischer, Christian; Gusat, Dorel; Meyer, Uwe; Schmidt, Martin

    2010-05-01

    Spontaneous combustion of coal has become a world wide problem often caused by technical operations in coal mining areas. It affects human activities locally but even more important globally through the contribution to global warming by emitting substantial amounts of greenhouse gases like carbondioxid. Investigations of underground coalfires so far mainly with the aim of their mitigation have revealed a network of complex interactions between thermal, hydraulic, mechanical and chemical processes in this unique systems. Numerical modeling at the moment is only at the brink of being helpful to support the fire fighting in the field, but has already served as a tool to test the overall understanding of coal fire processes and to estimate their environmental impacts. This work aims at summarizing the status of THMC modeling of underground coalfires, mainly from the perspective of the Sino-German Coalfire Project, and gives an overview of the open questions and challenges to rise to if one is up to comprehensive and meaningful modeling work. The main topics are: The fluid transport through fractured porous media is driven by chemical processes at high temperatures causing high pressure gradients. Transport processes occur on different timescales. Thermal and mechanical stresses cause fracturing in the porous media on a huge range of scales, thus constantly changing the pathways for oxygen supply and exhaust gas removal. To investigate any extinction process one has to consider multi phase transport with phase changes (evaporation and condensation of water, transport of mud and cementation, etc.). To interpret surface signatures like temperature anomalies one has to link the underground processes to atmospheric heat transport including radiation. Coal fires are highly individual, threedimensional systems in general without any symmetry. Other problems in geoscience and geoengineering (like nuclear waste deposition, geothermal energy utilization, carbon dioxide sequestration) require a comparably complex approach to modeling. Although the details make it impossible to apply a single code implementation to all systems, their investigations go in similar ways. There is a need for modular code systems with open access for the various communities to maximize the shared synergistic effects.

  2. Thermo-hydro-mechanical-chemical processes in fractured-porous media: Benchmarks and examples

    NASA Astrophysics Data System (ADS)

    Kolditz, O.; Shao, H.; Görke, U.; Kalbacher, T.; Bauer, S.; McDermott, C. I.; Wang, W.

    2012-12-01

    The book comprises an assembly of benchmarks and examples for porous media mechanics collected over the last twenty years. Analysis of thermo-hydro-mechanical-chemical (THMC) processes is essential to many applications in environmental engineering, such as geological waste deposition, geothermal energy utilisation, carbon capture and storage, water resources management, hydrology, even climate change. In order to assess the feasibility as well as the safety of geotechnical applications, process-based modelling is the only tool to put numbers, i.e. to quantify future scenarios. This charges a huge responsibility concerning the reliability of computational tools. Benchmarking is an appropriate methodology to verify the quality of modelling tools based on best practices. Moreover, benchmarking and code comparison foster community efforts. The benchmark book is part of the OpenGeoSys initiative - an open source project to share knowledge and experience in environmental analysis and scientific computation.

  3. M4SF-17LL010301071: Thermodynamic Database Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zavarin, M.; Wolery, T. J.

    2017-09-05

    This progress report (Level 4 Milestone Number M4SF-17LL010301071) summarizes research conducted at Lawrence Livermore National Laboratory (LLNL) within the Argillite Disposal R&D Work Package Number M4SF-17LL01030107. The DR Argillite Disposal R&D control account is focused on the evaluation of important processes in the analysis of disposal design concepts and related materials for nuclear fuel disposal in clay-bearing repository media. The objectives of this work package are to develop model tools for evaluating impacts of THMC process on long-term disposal of spent fuel in argillite rocks, and to establish the scientific basis for high thermal limits. This work is contributing tomore » the GDSA model activities to identify gaps, develop process models, provide parameter feeds and support requirements providing the capability for a robust repository performance assessment model by 2020.« less

  4. Evaluation of Used Fuel Disposition in Clay-Bearing Rock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jové Colón, Carlos F.; Weck, Philippe F.; Sassani, David H.

    2014-08-01

    Radioactive waste disposal in shale/argillite rock formations has been widely considered given its desirable isolation properties (low permeability), geochemically reduced conditions, anomalous groundwater pressures, and widespread geologic occurrence. Clay/shale rock formations are characterized by their high content of clay minerals such as smectites and illites where diffusive transport and chemisorption phenomena predominate. These, in addition to low permeability, are key attributes of shale to impede radionuclide mobility. Shale host-media has been comprehensively studied in international nuclear waste repository programs as part of underground research laboratories (URLs) programs in Switzerland, France, Belgium, and Japan. These investigations, in some cases a decademore » or more long, have produced a large but fundamental body of information spanning from site characterization data (geological, hydrogeological, geochemical, geomechanical) to controlled experiments on the engineered barrier system (EBS) (barrier clay and seals materials). Evaluation of nuclear waste disposal in shale formations in the USA was conducted in the late 70’s and mid 80’s. Most of these studies evaluated the potential for shale to host a nuclear waste repository but not at the programmatic level of URLs in international repository programs. This report covers various R&D work and capabilities relevant to disposal of heat-generating nuclear waste in shale/argillite media. Integration and cross-fertilization of these capabilities will be utilized in the development and implementation of the shale/argillite reference case planned for FY15. Disposal R&D activities under the UFDC in the past few years have produced state-of-the-art modeling capabilities for coupled Thermal-Hydrological-Mechanical-Chemical (THMC), used fuel degradation (source term), and thermodynamic modeling and database development to evaluate generic disposal concepts. The THMC models have been developed for shale repository leveraging in large part on the information garnered in URLs and laboratory data to test and demonstrate model prediction capability and to accurately represent behavior of the EBS and the natural (barrier) system (NS). In addition, experimental work to improve our understanding of clay barrier interactions and TM couplings at high temperatures are key to evaluate thermal effects as a result of relatively high heat loads from waste and the extent of sacrificial zones in the EBS. To assess the latter, experiments and modeling approaches have provided important information on the stability and fate of barrier materials under high heat loads. This information is central to the assessment of thermal limits and the implementation of the reference case when constraining EBS properties and the repository layout (e.g., waste package and drift spacing). This report is comprised of various parts, each one describing various R&D activities applicable to shale/argillite media. For example, progress made on modeling and experimental approaches to analyze physical and chemical interactions affecting clay in the EBS, NS, and used nuclear fuel (source term) in support of R&D objectives. It also describes the development of a reference case for shale/argillite media. The accomplishments of these activities are summarized as follows: Development of a reference case for shale/argillite; Investigation of Reactive Transport and Coupled THM Processes in EBS: FY14; Update on Experimental Activities on Buffer/Backfill Interactions at elevated Pressure and Temperature; and Thermodynamic Database Development: Evaluation Strategy, Modeling Tools, First-Principles Modeling of Clay, and Sorption Database Assessment;ANL Mixed Potential Model For Used Fuel Degradation: Application to Argillite and Crystalline Rock Environments.« less

  5. The Database Management Module of the Splice System.

    DTIC Science & Technology

    1983-06-01

    standardization is the only wise chocs . E. FUNCTIONS OF THE EATABASE MkNAGEMENT MODULE As a result of onqoing research in thmc impl1msntaticn of SPLICE, thns...u an e-v Offset by one or mc--l orders of ma#-inuIs inorcvesnnt --L tue execution time cf user transacdrioas. Purthermore, ’is s-toraqe requlrement

  6. Modeling Coupled Processes in Clay Formations for Radioactive Waste Disposal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Hui-Hai; Rutqvist, Jonny; Zheng, Liange

    As a result of the termination of the Yucca Mountain Project, the United States Department of Energy (DOE) has started to explore various alternative avenues for the disposition of used nuclear fuel and nuclear waste. The overall scope of the investigation includes temporary storage, transportation issues, permanent disposal, various nuclear fuel types, processing alternatives, and resulting waste streams. Although geologic disposal is not the only alternative, it is still the leading candidate for permanent disposal. The realm of geologic disposal also offers a range of geologic environments that may be considered, among those clay shale formations. Figure 1-1 presents themore » distribution of clay/shale formations within the USA. Clay rock/shale has been considered as potential host rock for geological disposal of high-level nuclear waste throughout the world, because of its low permeability, low diffusion coefficient, high retention capacity for radionuclides, and capability to self-seal fractures induced by tunnel excavation. For example, Callovo-Oxfordian argillites at the Bure site, France (Fouche et al., 2004), Toarcian argillites at the Tournemire site, France (Patriarche et al., 2004), Opalinus clay at the Mont Terri site, Switzerland (Meier et al., 2000), and Boom clay at Mol site, Belgium (Barnichon et al., 2005) have all been under intensive scientific investigations (at both field and laboratory scales) for understanding a variety of rock properties and their relations with flow and transport processes associated with geological disposal of nuclear waste. Clay/shale formations may be generally classified as indurated and plastic clays (Tsang et al., 2005). The latter (including Boom clay) is a softer material without high cohesion; its deformation is dominantly plastic. For both clay rocks, coupled thermal, hydrological, mechanical and chemical (THMC) processes are expected to have a significant impact on the long-term safety of a clay repository. For example, the excavation-damaged zone (EDZ) near repository tunnels can modify local permeability (resulting from induced fractures), potentially leading to less confinement capability (Tsang et al., 2005). Because of clay's swelling and shrinkage behavior (depending on whether the clay is in imbibition or drainage processes), fracture properties in the EDZ are quite dynamic and evolve over time as hydromechanical conditions change. To understand and model the coupled processes and their impact on repository performance is critical for the defensible performance assessment of a clay repository. Within the Natural Barrier System (NBS) group of the Used Fuel Disposition (UFD) Campaign at DOE's Office of Nuclear Energy, LBNL's research activities have focused on understanding and modeling such coupled processes. LBNL provided a report in this April on literature survey of studies on coupled processes in clay repositories and identification of technical issues and knowledge gaps (Tsang et al., 2010). This report will document other LBNL research activities within the natural system work package, including the development of constitutive relationships for elastic deformation of clay rock (Section 2), a THM modeling study (Section 3) and a THC modeling study (Section 4). The purpose of the THM and THC modeling studies is to demonstrate the current modeling capabilities in dealing with coupled processes in a potential clay repository. In Section 5, we discuss potential future R&D work based on the identified knowledge gaps. The linkage between these activities and related FEPs is presented in Section 6.« less

  7. Anion responsive Europium (III) complexes for Optical Sensing and PARACEST MRI

    NASA Astrophysics Data System (ADS)

    Buttarazzi, Leandro Alfredo

    The Eu(III) complexes of 1-(acetyl-7-Methyl-4-(trifluoromethyl) quinolin-2(1H)-one)4,7,10 tris(2-hydroxypropyl)-1,4,7,10-tetraazacycladodecane (Eu(S-THPC)3+ ) and 1-(acetyl-dioctadecylamine)4,7,10 tris(hydroxypropyl)-1,4,7,10-tetraazacycladodecane (Eu(S-THMC)3+) were studied in order to develop complexes that are both optical sensors and MRI contrast agents that respond to biologically relevant anions. Both complexes are related to Eu(S-THP) where S-THP = (1S,4S,7S,10S)-1,4,7,10-tetrakis(2-hydroxypropyl)-1,4,7,10-tetraazacyclododecane. Eu(III) excitation, emission and time resolved luminescence spectroscopy experiments were used to study binding of the anions. One complex, Eu(THPC)3+ has an appended carbostyril dye for sensitization of Eu(III) luminescence. Luminescence experiments were done on this complex in order to quantify the effectiveness of the energy transfer from the dye to the lanthanide and to obtain binding constants of the anions from the Eu(III) emission peaks. Emission spectra were obtained by exciting the chromophore at 340 nm. Our results suggest that phosphate binds with a dissociation constant (Kd) of 4.2mM and citrate binds with a Kd of 228 uM. The quantum yield for the complex was low compared to other reported complexes in literature. Eu(S-THMC) 3+, and Eu(S-THMAC)3+ containing long carbon chains for incorporation into liposomes were explored as an approach to develop complexes with increased sensitivity as CEST agents. CEST experiments with the complex incorporated into a liposome and as a micelle were carried out. Liposome formation was achieved but no CEST effect was observed with two different lanthanide complexes. Eu(S-THMC)3+ gave the most promising results by showing CEST in acetonitrile and 50/50 acetonitrile/H 2O. However further experiments with this complex in buffered aqueous solution failed. Yb(S-THMAC)3+ solubility was poor in both acetonitrile and in water and this likely prevented the observation of CEST spectra.

  8. Pore Characterization of Shale Rock and Shale Interaction with Fluids at Reservoir Pressure-Temperature Conditions Using Small-Angle Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Ding, M.; Hjelm, R.; Watkins, E.; Xu, H.; Pawar, R.

    2015-12-01

    Oil/gas produced from unconventional reservoirs has become strategically important for the US domestic energy independence. In unconventional realm, hydrocarbons are generated and stored in nanopores media ranging from a few to hundreds of nanometers. Fundamental knowledge of coupled thermo-hydro-mechanical-chemical (THMC) processes that control fluid flow and propagation within nano-pore confinement is critical for maximizing unconventional oil/gas production. The size and confinement of the nanometer pores creates many complex rock-fluid interface interactions. It is imperative to promote innovative experimental studies to decipher physical and chemical processes at the nanopore scale that govern hydrocarbon generation and mass transport of hydrocarbon mixtures in tight shale and other low permeability formations at reservoir pressure-temperature conditions. We have carried out laboratory investigations exploring quantitative relationship between pore characteristics of the Wolfcamp shale from Western Texas and the shale interaction with fluids at reservoir P-T conditions using small-angle neutron scattering (SANS). We have performed SANS measurements of the shale rock in single fluid (e.g., H2O and D2O) and multifluid (CH4/(30% H2O+70% D2O)) systems at various pressures up to 20000 psi and temperature up to 150 oF. Figure 1 shows our SANS data at different pressures with H2O as the pressure medium. Our data analysis using IRENA software suggests that the principal changes of pore volume in the shale occurred on smaller than 50 nm pores and pressure at 5000 psi (Figure 2). Our results also suggest that with increasing P, more water flows into pores; with decreasing P, water is retained in the pores.

  9. On thermal properties of hard rocks as a host environment of an underground thermal energy storage

    NASA Astrophysics Data System (ADS)

    Novakova, L.; Hladky, R.; Broz, M.; Novak, P.; Lachman, V.; Sosna, K.; Zaruba, J.; Metelkova, Z.; Najser, J.

    2013-12-01

    With increasing focus on environmentally friendly technologies waste heat recycling became an important issue. Under certain circumstances subsurface environment could be utilized to accommodate relatively large quantity of heat. Industrial waste heat produced during warm months can be stored in an underground thermal energy storage (UTES) and used when needed. It is however a complex task to set up a sustainable UTES for industrial scale. Number of parameters has to be studied and evaluated by means of thermohydromechanical and chemical coupling (THMC) before any UTES construction. Thermal characteristics of various rocks and its stability under thermal loading are amongst the most essential. In the Czech Republic study two complementary projects THMC processes during an UTES operation. The RESEN project (www.resen.cz) employs laboratory tests and experiments to characterise thermal properties of hard rocks in the Bohemian Massif. Aim of the project is to point out the most suitable rock environment in the Bohemian Massif for moderate to ultra-high temperature UTES construction (Sanyal, 2005). The VITA project (www.geology.cz/mokrsko) studies THM coupling in non-electrical temperature UTES using long term in-situ experiment. In both projects thermal properties of rocks were studied. Thermal conductivity and capacity were measured on rock samples. In addition an influence of increasing temperature and moisture content was considered. Ten hard rocks were investigated. The set included two sandstones, two ignibrites, a melaphyr, a syenite, two granites, a gneiss and a serpentinite. For each rock there were measured thermal conductivity and capacity of at least 54 dried samples. Subsequently, the samples were heated up to 380°C in 8 hours and left to cool down. Thermal characteristics were measured during the heating period and after the sample reached room temperature. Heating and cooling cycle was repeated 7 to 10 times to evaluate possible UTES-like degradation of the studied rocks. The studies revealed thermal loading caused rapid decrease of thermal conductivity of a rock. The decrease of up to 30.6% was observed in sandstones. Reduction up to 16% was found in the granite, 12.3% in the syenite, 12.1% in the gneiss, 10.1% in the serpentinite, 8.1% in the melaphyr and 5.9 - 6.5% in ignimbites. Thermal loading initiated insignificant decrement of the thermal capacity. The capacity loss was usually less than 2%. Increasing content of water caused increase in the measured thermal characteristics. Saturated melaphyr showed 29% higher conductivity and 17.8% higher capacity comparing to the dried one. In the ignibrites there was found growth up to 23.5% in the thermal conductivity and 14.9% in the capacity, 12.1-17.6% and 4.5-5.9% in granites, 9.1% and 11.1% in the serpetinite, 7.9% and 7.9% in the gneiss and 1.2% and 3.4% in the syenite. This work was funded by the Technology Agency of the CR (TA01020348) and Ministry of Industry and trade of the CR (FR-TI3/325). Reference Sanyal, S.K., 2005. Classification of geothermal systems - a possible scheme, Proceedings, 30th Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California, p. 85-88.

  10. Episodic Tremor and Slip (ETS) as a chaotic multiphysics spring

    NASA Astrophysics Data System (ADS)

    Veveakis, E.; Alevizos, S.; Poulet, T.

    2017-03-01

    Episodic Tremor and Slip (ETS) events display a rich behaviour of slow and accelerated slip with simple oscillatory to complicated chaotic time series. It is commonly believed that the fast events appearing as non volcanic tremors are signatures of deep fluid injection. The fluid source is suggested to be related to the breakdown of hydrous phyllosilicates, mainly the serpentinite group minerals such as antigorite or lizardite that are widespread in the top of the slab in subduction environments. Similar ETS sequences are recorded in different lithologies in exhumed crustal carbonate-rich thrusts where the fluid source is suggested to be the more vigorous carbonate decomposition reaction. If indeed both types of events can be understood and modelled by the same generic fluid release reaction AB(solid) ⇌A(solid) +B(fluid) , the data from ETS sequences in subduction zones reveal a geophysically tractable temporal evolution with no access to the fault zone. This work reviews recent advances in modelling ETS events considering the multiphysics instabilities triggered by the fluid release reaction and develops a thermal-hydraulic-mechanical-chemical oscillator (THMC spring) model for such mineral reactions (like dehydration and decomposition) in Megathrusts. We describe advanced computational methods for THMC instabilities and discuss spectral element and finite element solutions. We apply the presented numerical methods to field examples of this important mechanism and reproduce the temporal signature of the Cascadia and Hikurangi trench with a serpentinite oscillator.

  11. Multiphysics processes in partially saturated fractured rock: Experiments and models from Yucca Mountain

    NASA Astrophysics Data System (ADS)

    Rutqvist, Jonny; Tsang, Chin-Fu

    2012-09-01

    The site investigations at Yucca Mountain, Nevada, have provided us with an outstanding data set, one that has significantly advanced our knowledge of multiphysics processes in partially saturated fractured geological media. Such advancement was made possible, foremost, by substantial investments in multiyear field experiments that enabled the study of thermally driven multiphysics and testing of numerical models at a large spatial scale. The development of coupled-process models within the project have resulted in a number of new, advanced multiphysics numerical models that are today applied over a wide range of geoscientific research and geoengineering applications. Using such models, the potential impact of thermal-hydrological-mechanical (THM) multiphysics processes over the long-term (e.g., 10,000 years) could be predicted and bounded with some degree of confidence. The fact that the rock mass at Yucca Mountain is intensively fractured enabled continuum models to be used, although discontinuum models were also applied and are better suited for analyzing some issues, especially those related to predictions of rockfall within open excavations. The work showed that in situ tests (rather than small-scale laboratory experiments alone) are essential for determining appropriate input parameters for multiphysics models of fractured rocks, especially related to parameters defining how permeability might evolve under changing stress and temperature. A significant laboratory test program at Yucca Mountain also made important contributions to the field of rock mechanics, showing a unique relation between porosity and mechanical properties, a time dependency of strength that is significant for long-term excavation stability, a decreasing rock strength with sample size using very large core experiments, and a strong temperature dependency of the thermal expansion coefficient for temperatures up to 200°C. The analysis of in situ heater experiments showed that fracture closure/opening caused by changes in normal stress across fractures was the dominant mechanism for thermally induced changes in intrinsic fracture permeability during rock mass heating/cooling and that fracture shear dilation appears to be less significant. Significant effort was devoted to predicting the long-term stability of underground excavations under (mechanical) strength degradation and seismic loading, perhaps one of the most challenging tasks within the project. We note that such long-term strength degradation is actually an example of a chemically mediated process governed by underlying (microscopic) stress corrosion and chemical diffusion processes. In the Yucca Mountain Project, such chemically mediated mechanical changes were considered implicitly through model calibrations against laboratory and in situ heater experiments at temperatures anticipated to be experienced by the rock. A possible future research direction would be to simulate such processes mechanistically in a complete coupled THMC framework where C denotes chemical processes.

  12. Fracture characterization in a deep geothermal reservoir

    NASA Astrophysics Data System (ADS)

    Rühaak, Wolfram; Hehn, Vera; Hassanzadegan, Alireza; Tischner, Torsten

    2017-04-01

    At the geothermal research drilling Horstberg in North West Germany studies for the characterization of a vertical fracture are performed. The fracture was created by a massive hydraulic stimulation in 2003 in approx. 3700 m depth within rocks of the middle Buntsandstein. The fracture surface is in the order of 100,000 m2, depending on the flow rate at which water is injected. Besides hydraulic characterization, multiple tracer tests are planned. At the depth of interest the reservoir temperature is around 150 °C, pressure is around 600 bar (60 MPa) and due to salinity the water density is around 1200 kg/m3. Knowledge of tracer stability and behavior at these reservoir conditions is limited. Additionally, the planned tracer tests will be performed within one single borehole. In a closed cycle water is injected into the inner pipe of the well (tubing), which is separated by a permanent packer from the outer pipe (annulus). The water is produced back from the annulus approximately 150 m above the injection point. Thus, the circulation of thermal water between two sandstone layers via an artificial fracture can be achieved. Tests will be carried out with different flow rates and accordingly with different pressures, resulting in different fracture areas. Due to this test setup tracer signals will be stacked and will remain for a longer time in the fracture - which is the reason why different tracers are required. For an optimal characterization both conservative and reactive tracers will be used and different injection methods (continuous, instantaneous and pulsed) will be applied. For a proper setup of the tracer test numerical modelling studies are performed in advance. The relevant thermal, hydraulic and chemical processes (mainly adsorption and degredation) are coupled, resulting in a THC model; additionally the dependence of fracture aperture and area on fluid pressure has to be considered. Instead of applying a mechanically coupled model (THMC) a simplified approach is applied which takes the pressure dependence of the fracture permeability into account by using constitutive relations. Results of this modeling study will be presented together with details of the planned field study.

  13. Exemplifying the Effects of Parameterization Shortcomings in the Numerical Simulation of Geological Energy and Mass Storage

    NASA Astrophysics Data System (ADS)

    Dethlefsen, Frank; Tilmann Pfeiffer, Wolf; Schäfer, Dirk

    2016-04-01

    Numerical simulations of hydraulic, thermal, geomechanical, or geochemical (THMC-) processes in the subsurface have been conducted for decades. Often, such simulations are commenced by applying a parameter set that is as realistic as possible. Then, a base scenario is calibrated on field observations. Finally, scenario simulations can be performed, for instance to forecast the system behavior after varying input data. In the context of subsurface energy and mass storage, however, these model calibrations based on field data are often not available, as these storage actions have not been carried out so far. Consequently, the numerical models merely rely on the parameter set initially selected, and uncertainties as a consequence of a lack of parameter values or process understanding may not be perceivable, not mentioning quantifiable. Therefore, conducting THMC simulations in the context of energy and mass storage deserves a particular review of the model parameterization with its input data, and such a review so far hardly exists to the required extent. Variability or aleatory uncertainty exists for geoscientific parameter values in general, and parameters for that numerous data points are available, such as aquifer permeabilities, may be described statistically thereby exhibiting statistical uncertainty. In this case, sensitivity analyses for quantifying the uncertainty in the simulation resulting from varying this parameter can be conducted. There are other parameters, where the lack of data quantity and quality implies a fundamental changing of ongoing processes when such a parameter value is varied in numerical scenario simulations. As an example for such a scenario uncertainty, varying the capillary entry pressure as one of the multiphase flow parameters can either allow or completely inhibit the penetration of an aquitard by gas. As the last example, the uncertainty of cap-rock fault permeabilities and consequently potential leakage rates of stored gases into shallow compartments are regarded as recognized ignorance by the authors of this study, as no realistic approach exists to determine this parameter and values are best guesses only. In addition to these aleatory uncertainties, an equivalent classification is possible for rating epistemic uncertainties describing the degree of understanding processes such as the geochemical and hydraulic effects following potential gas intrusions from deeper reservoirs into shallow aquifers. As an outcome of this grouping of uncertainties, prediction errors of scenario simulations can be calculated by sensitivity analyses, if the uncertainties are identified as statistical. However, if scenario uncertainties exist or even recognized ignorance has to be attested to a parameter or a process in question, the outcomes of simulations mainly depend on the decision of the modeler by choosing parameter values or by interpreting the occurring of processes. In that case, the informative value of numerical simulations is limited by ambiguous simulation results, which cannot be refined without improving the geoscientific database through laboratory or field studies on a longer term basis, so that the effects of the subsurface use may be predicted realistically. This discussion, amended by a compilation of available geoscientific data to parameterize such simulations, will be presented in this study.

  14. A catchment-scale groundwater model including sewer pipe leakage in an urban system

    NASA Astrophysics Data System (ADS)

    Peche, Aaron; Fuchs, Lothar; Spönemann, Peter; Graf, Thomas; Neuweiler, Insa

    2016-04-01

    Keywords: pipe leakage, urban hydrogeology, catchment scale, OpenGeoSys, HYSTEM-EXTRAN Wastewater leakage from subsurface sewer pipe defects leads to contamination of the surrounding soil and groundwater (Ellis, 2002; Wolf et al., 2004). Leakage rates at pipe defects have to be known in order to quantify contaminant input. Due to inaccessibility of subsurface pipe defects, direct (in-situ) measurements of leakage rates are tedious and associated with a high degree of uncertainty (Wolf, 2006). Proposed catchment-scale models simplify leakage rates by neglecting unsaturated zone flow or by reducing spatial dimensions (Karpf & Krebs, 2013, Boukhemacha et al., 2015). In the present study, we present a physically based 3-dimensional numerical model incorporating flow in the pipe network, in the saturated zone and in the unsaturated zone to quantify leakage rates on the catchment scale. The model consists of the pipe network flow model HYSTEM-EXTAN (itwh, 2002), which is coupled to the subsurface flow model OpenGeoSys (Kolditz et al., 2012). We also present the newly developed coupling scheme between the two flow models. Leakage functions specific to a pipe defect are derived from simulations of pipe leakage using spatially refined grids around pipe defects. In order to minimize computational effort, these leakage functions are built into the presented numerical model using unrefined grids around pipe defects. The resulting coupled model is capable of efficiently simulating spatially distributed pipe leakage coupled with subsurficial water flow in a 3-dimensional environment. References: Boukhemacha, M. A., Gogu, C. R., Serpescu, I., Gaitanaru, D., & Bica, I. (2015). A hydrogeological conceptual approach to study urban groundwater flow in Bucharest city, Romania. Hydrogeology Journal, 23(3), 437-450. doi:10.1007/s10040-014-1220-3. Ellis, J. B., & Revitt, D. M. (2002). Sewer losses and interactions with groundwater quality. Water Science and Technology, 45(3), 195-202. itwh (2002). Modellbeschreibung, Institut für technisch-wissenschaftliche Hydrologie GmbH, Hannover. Karpf, C. & Krebs, P. (2013). Modelling of groundwater infiltration into sewer systems. Urban Water Journal, 10:4, 221-229, DOI: 10.1080/1573062X.2012.724077. Kolditz, O., Bauer, S. et al. (2012). OpenGeoSys: an open source initiative for numerical simulation of thermo-hydro-mechanical/chemical (THM/C) processes in porous media. Env. Earth Sci. 67(2):589-599. Wolf, L., Held, I., Eiswirth, M., & Hötzl, H. (2004). Impact of leaky sewers on groundwater quality. Acta Hydrochimica et Hydrobiologica, 32(4-5), 361-373. doi:10.1002/aheh.200400538. Wolf, L. (2006). Influence of leaky sewer systems on groundwater resources beneath the city of Rastatt, Germany. Dissertation, University of Karlsruhe.

  15. ogs6 - a new concept for porous-fractured media simulations

    NASA Astrophysics Data System (ADS)

    Naumov, Dmitri; Bilke, Lars; Fischer, Thomas; Rink, Karsten; Wang, Wenqing; Watanabe, Norihiro; Kolditz, Olaf

    2015-04-01

    OpenGeoSys (OGS) is a scientific open-source initiative for numerical simulation of thermo-hydro-mechanical/chemical (THMC) processes in porous and fractured media, continuously developed since the mid-eighties. The basic concept is to provide a flexible numerical framework for solving coupled multi-field problems. OGS is targeting mainly on applications in environmental geoscience, e.g. in the fields of contaminant hydrology, water resources management, waste deposits, or geothermal energy systems, but it has also been successfully applied to new topics in energy storage recently. OGS is actively participating several international benchmarking initiatives, e.g. DECOVALEX (waste management), CO2BENCH (CO2 storage and sequestration), SeSBENCH (reactive transport processes) and HM-Intercomp (coupled hydrosystems). Despite the broad applicability of OGS in geo-, hydro- and energy-sciences, several shortcomings became obvious concerning the computational efficiency as well as the code structure became too sophisticated for further efficient development. OGS-5 was designed for object-oriented FEM applications. However, in many multi-field problems a certain flexibility of tailored numerical schemes is essential. Therefore, a new concept was designed to overcome existing bottlenecks. The paradigms for ogs6 are: - Flexibility of numerical schemes (FEM#FVM#FDM), - Computational efficiency (PetaScale ready), - Developer- and user-friendly. ogs6 has a module-oriented architecture based on thematic libraries (e.g. MeshLib, NumLib) on the large scale and uses object-oriented approach for the small scale interfaces. Usage of a linear algebra library (Eigen3) for the mathematical operations together with the ISO C++11 standard increases the expressiveness of the code and makes it more developer-friendly. The new C++ standard also makes the template meta-programming technique code used for compile-time optimizations more compact. We have transitioned the main code development to the GitHub code hosting system (https://github.com/ufz/ogs). The very flexible revision control system Git in combination with issue tracking, developer feedback and the code review options improve the code quality and the development process in general. The continuous testing procedure of the benchmarks as it was established for OGS-5 is maintained. Additionally unit testing, which is automatically triggered by any code changes, is executed by two continuous integration frameworks (Jenkins CI, Travis CI) which build and test the code on different operating systems (Windows, Linux, Mac OS), in multiple configurations and with different compilers (GCC, Clang, Visual Studio). To improve the testing possibilities further, XML based file input formats are introduced helping with automatic validation of the user contributed benchmarks. The first ogs6 prototype version 6.0.1 has been implemented for solving generic elliptic problems. Next steps are envisaged to transient, non-linear and coupled problems. Literature: [1] Kolditz O, Shao H, Wang W, Bauer S (eds) (2014): Thermo-Hydro-Mechanical-Chemical Processes in Fractured Porous Media: Modelling and Benchmarking - Closed Form Solutions. In: Terrestrial Environmental Sciences, Vol. 1, Springer, Heidelberg, ISBN 978-3-319-11893-2, 315pp. http://www.springer.com/earth+sciences+and+geography/geology/book/978-3-319-11893-2 [2] Naumov D (2015): Computational Fluid Dynamics in Unconsolidated Sediments: Model Generation and Discrete Flow Simulations, PhD thesis, Technische Universität Dresden.

  16. Quantitative diagnosis and prognosis framework for concrete degradation due to alkali-silica reaction

    NASA Astrophysics Data System (ADS)

    Mahadevan, Sankaran; Neal, Kyle; Nath, Paromita; Bao, Yanqing; Cai, Guowei; Orme, Peter; Adams, Douglas; Agarwal, Vivek

    2017-02-01

    This research is seeking to develop a probabilistic framework for health diagnosis and prognosis of aging concrete structures in nuclear power plants that are subjected to physical, chemical, environment, and mechanical degradation. The proposed framework consists of four elements: monitoring, data analytics, uncertainty quantification, and prognosis. The current work focuses on degradation caused by ASR (alkali-silica reaction). Controlled concrete specimens with reactive aggregate are prepared to develop accelerated ASR degradation. Different monitoring techniques — infrared thermography, digital image correlation (DIC), mechanical deformation measurements, nonlinear impact resonance acoustic spectroscopy (NIRAS), and vibro-acoustic modulation (VAM) — are studied for ASR diagnosis of the specimens. Both DIC and mechanical measurements record the specimen deformation caused by ASR gel expansion. Thermography is used to compare the thermal response of pristine and damaged concrete specimens and generate a 2-D map of the damage (i.e., ASR gel and cracked area), thus facilitating localization and quantification of damage. NIRAS and VAM are two separate vibration-based techniques that detect nonlinear changes in dynamic properties caused by the damage. The diagnosis results from multiple techniques are then fused using a Bayesian network, which also helps to quantify the uncertainty in the diagnosis. Prognosis of ASR degradation is then performed based on the current state of degradation obtained from diagnosis, by using a coupled thermo-hydro-mechanical-chemical (THMC) model for ASR degradation. This comprehensive approach of monitoring, data analytics, and uncertainty-quantified diagnosis and prognosis will facilitate the development of a quantitative, risk informed framework that will support continuous assessment and risk management of structural health and performance.

  17. Stress heterogeneity above and within a deep geothermal reservoir: From borehole observations to geomechanical modelling

    NASA Astrophysics Data System (ADS)

    Seithel, Robin; Peters, Max; Lesueur, Martin; Kohl, Thomas

    2017-04-01

    Overpressured reservoir conditions, local stress concentrations or a locally rotated stress field can initiate substantial problems during drilling or reservoir exploitation. Increasing geothermal utilization in the Molasse basin area in S-Germany is faced with such problems of deeply seated reservoir sections. In several wells, radial fluid flow systems are interpreted as highly porous layers. However, in nearby wells a combination of linear fluid flow, local stress heterogeneities and structural geology hint to a rather fault dominated reservoir (Seithel et al. 2015). Due to missing knowledge of the stress magnitude, stress orientation and their coupling to reservoir response, we will present a THMC model of critical formations and the geothermal reservoir targeting nearby faults. In an area south of Munich, where several geothermal wells are constructed, such wells are interpreted and integrated into a 30 x 30 km simulated model area. One of the main objectives here is to create a geomechanical reservoir model in a thermo-mechanical manner in order to understand the coupling between reservoir heterogeneities and stress distributions. To this end, stress analyses of wellbore data and laboratory tests will help to calibrate a reliable model. In order to implement the complex geological structure of the studied wedge-shaped foreland basin, an automatic export of lithology, fault and borehole data (e.g. from Petrel) into a FE mesh is used. We will present a reservoir-scale model that considers thermo-mechanic effects and analyze their influence on reservoir deformation, fluid flow and stress concentration. We use the currently developed finite element application REDBACK (https://github.com/pou036/redback), inside the MOOSE framework (Poulet et al. 2016). We show that mechanical heterogeneities nearby fault zones and their orientation within the stress field correlate to fracture pattern, interpreted stress heterogeneities or variegated flow systems within the reservoir. REFERENCES Poulet, T.; Paesold, M.; Veveakis, M. (2016), Multi-Physics Modelling of Fault Mechanics Using REDBACK. A Parallel Open-Source Simulator for Tightly Coupled Problems. Rock Mechanics and Rock Engineering. doi: 10.1007/s00603-016-0927-y. Seithel, R.; Steiner, U.; Müller, B.I.R.; Hecht, Ch.; Kohl, T. (2015), Local stress anomaly in the Bavarian Molasse Basin, Geothermal Energy 3(1), p.77. doi:10.1186/s40517-014-0023-z

  18. OpenGeoSys: An Open-Source Initiative for Numerical Simulation of Thermo-Hydro-Mechanical/Chemical (THM/C) Processes in Porous Media

    NASA Astrophysics Data System (ADS)

    Watanabe, N.; Bilke, L.; Fischer, T.; Kalbacher, T.; Nagel, T.; Naumov, D.; Rink, K.; Shao, H.; Wang, W.; Kolditz, O.

    2014-12-01

    The current understanding of geochemical reactions in reservoirs for geological carbon sequestration (GCS) is largely based on aqueous chemistry (CO2 dissolves in reservoir brine and brine reacts with rocks). However, only a portion of the injected supercritical (sc) CO2 dissolves before the buoyant plume contacts caprock, where it is expected to reside for a long time. Although numerous studies have addressed scCO2-mineral reactions occurring within adsorbed aqueous films, possible reactions resulting from direct CO2-rock contact remain less understood. Does CO2 as a supercritical phase react with reservoir rocks? Do mineral react differently with scCO2 than with dissolved CO2? We selected muscovite, one of the more stable and common rock-forming silicate minerals, to react with scCO2 phase (both water-saturated and water-free) and compared with CO2-saturated-brine. The reacted basal surfaces were analyzed using atomic force microscopy and X-ray photoelectron spectroscopy for examining the changes in surface morphology and chemistry. The results show that scCO2 (regardless of its water content) altered muscovite considerably more than CO2-saturated brine; suggest CO2 diffusion into mica interlayers and localized mica dissolution into scCO2 phase. The mechanisms underlying these observations and their implications for GCS need further exploration.

  19. Controls on Permeability Evolution in Fractured-Sorbing Media

    NASA Astrophysics Data System (ADS)

    Elsworth, D.

    2017-12-01

    A critical component in the desire to recover energy and fuels from the subsurface, or to sequester energy-related and other wastes, is the ability to control properties that influence the transport and storage of mass, fluids and energy. In fractured media, permeabilities are strongly dependent on effective stresses. In turn, effective stresses (M) are mediated by changes in fluid pressures (H), compositions of the permeating fluids and permeated rocks (C) and changes in temperature (T) - and sometimes influenced by biological (B) processes. First we explore the role of specific complex THMC(B) interactions in mediating changes in permeability in response to a change in spherical stress. These include the roles of differential strains, induced within shales by changes in pressure (H), gas concentration (C) or temperature (T), in driving changes in permeability, in particular where the effects of sorption are pronounced. We show that the influence of such pressure-, sorption- and thermally-induced changes in damage and porosity are countered, by the first order resetting effects of creep that influence the crack distribution within the fractured aggregate. Second, we explore linkages where friction and instability control the response to changes in differential stress. Changes in permeability are controlled by styles of deformation - brittle versus ductile - with modes of deformation in turn mediated by mineralogy of both native and altered mineral constituents, the evolving scale of deformation and in the progress of deformation through the dynamic loading cycle.

  20. Identification of heme oxygenase-1 stimulators by a convenient ELISA-based bilirubin quantification assay.

    PubMed

    Rücker, Hannelore; Amslinger, Sabine

    2015-01-01

    The upregulation of heme oxygenase-1 (HO-1) has proven to be a useful tool for fighting inflammation. In order to identify new HO-1 inducers, an efficient screening method was developed which can provide new lead structures for drug research. We designed a simple ELISA-based HO-1 enzyme activity assay, which allows for the screening of 12 compounds in parallel in the setting of a 96-well plate. The well-established murine macrophage cell line RAW264.7 is used and only about 26µg of protein from whole cell lysates is needed for the analysis of HO-1 activity. The quantification of HO-1 activity is based on an indirect ELISA using the specific anti-bilirubin antibody 24G7 to quantify directly bilirubin in the whole cell lysate, applying a horseradish peroxidase-tagged antibody together with ortho-phenylenediamine and H2O2 for detection. The bilirubin is produced on the action of HO enzymes by converting their substrate heme to biliverdin and additional recombinant biliverdin reductase together with NADPH at pH 7.4 in buffer. This sensitive assay allows for the detection of 0.57-82pmol bilirubin per sample in whole cell lysates. Twenty-three small molecules, mainly natural products with an α,β-unsaturated carbonyl unit such as polyphenols, including flavonoids and chalcones, terpenes, an isothiocyanate, and the drug oltipraz were tested at typically 6 or 24h incubation with RAW264.7 cells. The activity of known HO-1 inducers was confirmed, while the chalcones cardamonin, flavokawain A, calythropsin, 2',3,4'-trihydroxy-4-methoxychalcone (THMC), and 2',4'-dihydroxy-3,4-dimethoxychalcone (DHDMC) were identified as new potent HO-1 inducers. The highest inductive power after 6h incubation was found at 10µM for DHDMC (6.1-fold), carnosol (3.9-fold), butein (3.1-fold), THMC (2.9-fold), and zerumbone (2.5-fold). Moreover, the time dependence of HO-1 protein production for DHDMC was compared to its enzyme activity, which was further evaluated in the presence of lipopolysaccharide and the specific HO-1 inhibitor tin protoporphyrin IX. Taken together, we developed a convenient and highly sensitive ELISA-based HO-1 enzyme activity assay, allowing the identification and characterization of molecules potentially useful for the treatment of inflammatory and autoimmune diseases. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Large-scale thermal convection of viscous fluids in a faulted system: 3D test case for numerical codes

    NASA Astrophysics Data System (ADS)

    Magri, Fabien; Cacace, Mauro; Fischer, Thomas; Kolditz, Olaf; Wang, Wenqing; Watanabe, Norihiro

    2017-04-01

    In contrast to simple homogeneous 1D and 2D systems, no appropriate analytical solutions exist to test onset of thermal convection against numerical models of complex 3D systems that account for variable fluid density and viscosity as well as permeability heterogeneity (e.g. presence of faults). Owing to the importance of thermal convection for the transport of energy and minerals, the development of a benchmark test for density/viscosity driven flow is crucial to ensure that the applied numerical models accurately simulate the physical processes at hands. The presented study proposes a 3D test case for the simulation of thermal convection in a faulted system that accounts for temperature dependent fluid density and viscosity. The linear stability analysis recently developed by Malkovsky and Magri (2016) is used to estimate the critical Rayleigh number above which thermal convection of viscous fluids is triggered. The numerical simulations are carried out using the finite element technique. OpenGeoSys (Kolditz et al., 2012) and Moose (Gaston et al., 2009) results are compared to those obtained using the commercial software FEFLOW (Diersch, 2014) to test the ability of widely applied codes in matching both the critical Rayleigh number and the dynamical features of convective processes. The methodology and Rayleigh expressions given in this study can be applied to any numerical model that deals with 3D geothermal processes in faulted basins as by example the Tiberas Basin (Magri et al., 2016). References Kolditz, O., Bauer, S., Bilke, L., Böttcher, N., Delfs, J. O., Fischer, T., U. J. Görke, T. Kalbacher, G. Kosakowski, McDermott, C. I., Park, C. H., Radu, F., Rink, K., Shao, H., Shao, H.B., Sun, F., Sun, Y., Sun, A., Singh, K., Taron, J., Walther, M., Wang,W., Watanabe, N., Wu, Y., Xie, M., Xu, W., Zehner, B., 2012. OpenGeoSys: an open-source initiative for numerical simulation of thermo-hydro-mechanical/chemical (THM/C) processes in porous media. Environmental Earth Sciences, 67(2), 589-599. Diersch, H. J, 2014. FEFLOW Finite Element Modeling of Flow, Mass and Heat Transport in Porous and Fractured Media, Springer-Verlag Berlin Heidelberg, ISBN 978-3-642-38738-8. Gaston D., Newman C., Hansen G., Lebrun-Grandie D, 2009. MOOSE: A parallel solution framework for coupled systems of nonlinear equations. Nucl. Engrg. Design, 239, 1,768-1778 Magri, F., Möller, S., Inbar, N., Möller, P., Raggad, M., Rödiger, T., Rosenthal, E., Siebert, C., 2016. 2D and 3D coexisting modes of thermal convection in fractured hydrothermal systems - Implications for transboundary flow in the Lower Yarmouk Gorge. Marine and Petroleum Geology 78, 750-758, DOI: /10.1016/j.marpetgeo.2016.10.002 Malkovsky, V. I., Magri, F., 2016. Thermal convection of temperature-dependent viscous fluids within three-dimensional faulted geothermal systems: estimation from linear and numerical analyses, Water Resour. Res., 52, 2855-2867, DOI:10.1002/2015WR018001.

  2. 3D Geological Model for "LUSI" - a Deep Geothermal System

    NASA Astrophysics Data System (ADS)

    Sohrabi, Reza; Jansen, Gunnar; Mazzini, Adriano; Galvan, Boris; Miller, Stephen A.

    2016-04-01

    Geothermal applications require the correct simulation of flow and heat transport processes in porous media, and many of these media, like deep volcanic hydrothermal systems, host a certain degree of fracturing. This work aims to understand the heat and fluid transport within a new-born sedimentary hosted geothermal system, termed Lusi, that began erupting in 2006 in East Java, Indonesia. Our goal is to develop conceptual and numerical models capable of simulating multiphase flow within large-scale fractured reservoirs such as the Lusi region, with fractures of arbitrary size, orientation and shape. Additionally, these models can also address a number of other applications, including Enhanced Geothermal Systems (EGS), CO2 sequestration (Carbon Capture and Storage CCS), and nuclear waste isolation. Fractured systems are ubiquitous, with a wide-range of lengths and scales, making difficult the development of a general model that can easily handle this complexity. We are developing a flexible continuum approach with an efficient, accurate numerical simulator based on an appropriate 3D geological model representing the structure of the deep geothermal reservoir. Using previous studies, borehole information and seismic data obtained in the framework of the Lusi Lab project (ERC grant n°308126), we present here the first 3D geological model of Lusi. This model is calculated using implicit 3D potential field or multi-potential fields, depending on the geological context and complexity. This method is based on geological pile containing the geological history of the area and relationship between geological bodies allowing automatic computation of intersections and volume reconstruction. Based on the 3D geological model, we developed a new mesh algorithm to create hexahedral octree meshes to transfer the structural geological information for 3D numerical simulations to quantify Thermal-Hydraulic-Mechanical-Chemical (THMC) physical processes.

  3. THMC Modeling of EGS Reservoirs -- Continuum through Discontinuum Representations. Capturing Reservoir Stimulation, Evolution and Induced Seismicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elsworth, Derek; Izadi, Ghazal; Gan, Quan

    This work has investigated the roles of effective stress induced by changes in fluid pressure, temperature and chemistry in contributing to the evolution of permeability and induced seismicity in geothermal reservoirs. This work has developed continuum models [1] to represent the progress or seismicity during both stimulation [2] and production [3]. These methods have been used to resolve anomalous observations of induced seismicity at the Newberry Volcano demonstration project [4] through the application of modeling and experimentation. Later work then focuses on the occurrence of late stage seismicity induced by thermal stresses [5] including the codifying of the timing andmore » severity of such responses [6]. Furthermore, mechanistic linkages between observed seismicity and the evolution of permeability have been developed using data from the Newberry project [7] and benchmarked against field injection experiments. Finally, discontinuum models [8] incorporating the roles of discrete fracture networks have been applied to represent stimulation and then thermal recovery for new arrangements of geothermal wells incorporating the development of flow manifolds [9] in order to increase thermal output and longevity in EGS systems.« less

  4. Numerical simulations of highly buoyant flows in the Castel Giorgio - Torre Alfina deep geothermal reservoir

    NASA Astrophysics Data System (ADS)

    Volpi, Giorgio; Crosta, Giovanni B.; Colucci, Francesca; Fischer, Thomas; Magri, Fabien

    2017-04-01

    Geothermal heat is a viable source of energy and its environmental impact in terms of CO2 emissions is significantly lower than conventional fossil fuels. However, nowadays its utilization is inconsistent with the enormous amount of energy available underneath the surface of the earth. This is mainly due to the uncertainties associated with it, as for example the lack of appropriate computational tools, necessary to perform effective analyses. The aim of the present study is to build an accurate 3D numerical model, to simulate the exploitation process of the deep geothermal reservoir of Castel Giorgio - Torre Alfina (central Italy), and to compare results and performances of parallel simulations performed with TOUGH2 (Pruess et al. 1999), FEFLOW (Diersch 2014) and the open source software OpenGeoSys (Kolditz et al. 2012). Detailed geological, structural and hydrogeological data, available for the selected area since early 70s, show that Castel Giorgio - Torre Alfina is a potential geothermal reservoir with high thermal characteristics (120 ° C - 150 ° C) and fluids such as pressurized water and gas, mainly CO2, hosted in a carbonate formation. Our two steps simulations firstly recreate the undisturbed natural state of the considered system and then perform the predictive analysis of the industrial exploitation process. The three adopted software showed a strong numerical simulations accuracy, which has been verified by comparing the simulated and measured temperature and pressure values of the geothermal wells in the area. The results of our simulations have demonstrated the sustainability of the investigated geothermal field for the development of a 5 MW pilot plant with total fluids reinjection in the same original formation. From the thermal point of view, a very efficient buoyant circulation inside the geothermal system has been observed, thus allowing the reservoir to support the hypothesis of a 50 years production time with a flow rate of 1050 t/h. Furthermore, with the modeled distances our simulations showed no interference effects between the production and re-injection wells. Besides providing valuable guidelines for future exploitation of the Castel Giorgio - Torre Alfina deep geothermal reservoir, this example also highlights the large applicability and the high performance of the OpenGeoSys open-source code in handling coupled hydro-thermal simulations. REFERENCES Diersch, H. J. (2014). FEFLOW Finite Element Modeling of Flow, Mass and Heat Transport in Porous and Fractured Media, Springer-Verlag Berlin Heidelberg, ISBN 978-3-642-38738-8. Kolditz, O., Bauer, S., Bilke, L., Böttcher, N., Delfs, J. O., Fischer, T., U. J. Görke, T. Kalbacher, G. Kosakowski, McDermott, C. I., Park, C. H., Radu, F., Rink, K., Shao, H., Shao, H.B., Sun, F., Sun, Y., Sun, A., Singh, K., Taron, J., Walther, M., Wang,W., Watanabe, N., Wu, Y., Xie, M., Xu, W., Zehner, B. (2012). OpenGeoSys: an open-source initiative for numerical simulation of thermo-hydro-mechanical/chemical (THM/C) processes in porous media. Environmental Earth Sciences, 67(2), 589-599. Pruess, K., Oldenburg, C. M., & Moridis, G. J. (1999). TOUGH2 user's guide version 2. Lawrence Berkeley National Laboratory.

  5. Clinical processes in behavioral couples therapy.

    PubMed

    Fischer, Daniel J; Fink, Brandi C

    2014-03-01

    Behavioral couples therapy is a broad term for couples therapies that use behavioral techniques based on principles of operant conditioning, such as reinforcement. Behavioral shaping and rehearsal and acceptance are clinical processes found across contemporary behavioral couples therapies. These clinical processes are useful for assessment and case formulation, as well as teaching couples new methods of conflict resolution. Although these clinical processes assist therapists in achieving efficient and effective therapeutic change with distressed couples by rapidly stemming couples' corrosive affective exchanges, they also address the thoughts, emotions, and issues of trust and intimacy that are important aspects of the human experience in the context of a couple. Vignettes are provided to illustrate the clinical processes described. (PsycINFO Database Record (c) 2014 APA, all rights reserved).

  6. Coping Processes of Couples Experiencing Infertility

    ERIC Educational Resources Information Center

    Peterson, Brennan D.; Newton, Christopher R.; Rosen, Karen H.; Schulman, Robert S.

    2006-01-01

    This study explored the coping processes of couples experiencing infertility. Participants included 420 couples referred for advanced reproductive treatments. Couples were divided into groups based on the frequency of their use of eight coping strategies. Findings suggest that coping processes, which are beneficial to individuals, may be…

  7. Description and Verification of a Novel Flow and Transport Model for Silicate-Gel Emplacement

    NASA Astrophysics Data System (ADS)

    Walther, M.; Solpuker, U.; Böttcher, N.; Kolditz, O.; Liedl, R.; Schwartz, F. W.

    2013-12-01

    Remediation of contamination is one of the basic tasks associated with groundwater management. While many different methods exist to reduce contaminant mass in situ, there is still a need for research on new approaches to significantly speed-up decontamination and to lower costs. Solpuker et al. (2012) describe flow-tank experiments that utilize dense, viscous silicate solutions to aid in the remediation process. The unique silicate solutions exhibit density-dependent flow and rapid gelation after some time that can be altered by adjusting the solute's composition. Based on the experiments, a novel approach was developed to simulate the behaviour of the rapidly gelating solute. The approach was implenented in the open-source software package OpenGeoSys (Kolditz et al. 2012). Specifically, the method involves simulating two mass transport processes: one is related to the density-dependent flow, while the other does not alter the fluid density but is designed to provide a first order decay process. While both concentrations are subject to standard mass transport processes (i.e. advection, dispersion, diffusion), the difference in the two concentrations yields information on the residence time of the injected solute. This information can be used to calculate the fluid viscosity and the appropriate change in fluid properties when gelation takes place. As with all models that involve the implementation of ';new' physics, it is crucial to verify the ability of the code to rigorously reproduce the vital processes that describe the movement of fluids and solutes. This step is particularly important here because such a density-dependent, viscosity-changing flow and transport process poses unique requirements in terms of stability for the numerical code. Therefore, our theoretical approach was verified successfully against the experimental data for three different gelation behaviors. Comparison of both, laboratory and numerical results, show that the key processes can be reproduced correctly, including e.g. persistence of solute in regions of gelation due to high viscosity, or concentration-dependent gelation. Further research is needed to relate the empirical parameters describing the viscosity-change function to measurable laboratory data, or to study field-scale implementations. Literature SOLPUKER, U., HAWKINS, J., SCHINCARIOL, R., IBARAKI, M., & SCHWARTZ, F. W. (2012). HARNESSING THE COMPLEX BEHAVIOR OF ULTRA-DENSE AND VISCOUS TREATMENT FLUIDS AS A STRATEGY FOR AQUIFER REMEDIATION. MODELS - REPOSITORIES OF KNOWLEDGE. MODELCARE2011, LEIPZIG, GERMANY. KOLDITZ, O., BAUER, S., BILKE, L., BÖTTCHER, N., DELFS, J. O., FISCHER, T., GÖRKE, U. J., ET AL. (2012). OPENGEOSYS: AN OPEN-SOURCE INITIATIVE FOR NUMERICAL SIMULATION OF THERMO-HYDRO-MECHANICAL/CHEMICAL (THM/C) PROCESSES IN POROUS MEDIA. ENVIRONMENTAL EARTH SCIENCES, 67(2), 589-599. DOI:10.1007/S12665-012-1546-X

  8. Health, trust, or "just understood": explicit and implicit condom decision-making processes among black, white, and interracial same-sex male couples.

    PubMed

    Campbell, Chadwick K; Gómez, Anu Manchikanti; Dworkin, Shari; Wilson, Patrick A; Grisham, Kirk K; McReynolds, Jaih; Vielehr, Peter; Hoff, Colleen

    2014-05-01

    Among gay and bisexual men, primary partners are a leading source of HIV infection. Trust, intimacy, and advancements in HIV treatment may impact same-sex male (SSM) couples' decisions to engage in unprotected anal intercourse (UAI). This qualitative study explored how Black, White and interracial couples discussed, and made decisions regarding condoms. Qualitative interviews were conducted with 48 SSM couples in the New York and San Francisco metropolitan areas. Stratified purposive sampling was used to include Black (n = 16), White (n = 17), and interracial (Black-White) (n = 15) couples. Twenty-six couples were concordant HIV-negative and 22 were HIV-discordant. Interviews were recorded, transcribed, coded, and analyzed using a grounded theory approach. Some couples described explicit processes, which involved active discussion, while others described implicit processes, where condom-use decisions occurred without any explicit discussion. These processes also differed by race and HIV status. Black couples tended to report condom-use as "just understood." White, HIV-discordant couples decided not to use condoms, with some identifying the HIV-positive partner's suppressed viral load and high CD4 count as deciding factors. After an unplanned episode of UAI, White, HIV-negative couples tended to discontinue condom use while Black HIV-negative couples decided to revert to using condoms. HIV prevention efforts focused on same-sex, male couples must consider the explicit/implicit nature of condom decision-making processes. Understanding differences in these processes and considering relationship dynamics, across race and HIV status, can promote the development of innovative couple-level, HIV prevention interventions.

  9. Influence of the geothermal fluid rheology in the large scale hydro-thermal circulation in Soultz-sous-Forêts reservoir.

    NASA Astrophysics Data System (ADS)

    Vallier, Bérénice; Magnenet, Vincent; Fond, Christophe; Schmittbuhl, Jean

    2017-04-01

    Many numerical models have been developed in deep geothermal reservoir engineering to interpret field measurements of the natural hydro-thermal circulations or to predict exploitation scenarios. They typically aim at analyzing the Thermo-Hydro-Mechanical and Chemical (THMC) coupling including complex rheologies of the rock matrix like thermo-poro-elasticity. Few approaches address in details the role of the fluid rheology and more specifically the non-linear sensitivity of the brine rheology with temperature and pressure. Here we use the finite element Code_Aster to solve the balance equations of a 2D THM model of the Soultz-sous-Forêts reservoir. The brine properties are assumed to depend on the fluid pressure and the temperature as in Magnenet et al. (2014). A sensitive parameter is the thermal dilatation of the brine that is assumed to depend quadratically with temperature as proposed by the experimental measurements of Rowe and Chou (1970). The rock matrix is homogenized at the scale of the equation resolution assuming to have a representative elementary volume of the fractured medium smaller than the mesh size. We still chose four main geological units to adjust the rock physic parameters at large scale: thermal conductivity, permeability, radioactive source production rate, elastic and Biot parameters. We obtain a three layer solution with a large hydro-thermal convection below the cover-basement transition. Interestingly, the geothermal gradient in the sedimentary layer is controlled by the radioactive production rate in the upper altered granite. The second part of the study deals with an inversion approach of the homogenized solid and fluid parameters at large scale using our direct THM model. The goal is to compare the large scale inverted estimates of the rock and brine properties with direct laboratory measurements on cores and discuss their upscaling in the context of a fractured network hydraulically active. Magnenet V., Fond C., Genter A. and Schmittbuhl J.: two-dimensional THM modelling of the large-scale natural hydrothermal circulation at Soultz-sous-Forêts, Geothermal Energy, (2014), 2, 1-17. Rowe A.M. and Chou J.C.S.: Pressure-volume-temperature-concentration relation of aqueous NaCl solutions, J. Chem. Eng. Data., (1970), 15, 61-66.

  10. Evaluation of Used Fuel Disposition in Clay-Bearing Rock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jove-Colon, Carlos F.; Weck, Philippe F.; Hammond, Glenn Edward

    Deep geological disposal of nuclear waste in clay/shale/argillaceous rock formations has received much consideration given its desirable attributes such as isolation properties (low permeability), geochemically reduced conditions, slow diffusion, sorbtive mineralogy, and geologically widespread (Jové Colón et al., 2014). There is a wealth of gained scientific expertise on the behavior of clay/shale/ argillaceous rock given its focus in international nuclear waste repository programs that includes underground research laboratories (URLs) in Switzerland, France, Belgium, and Japan. Jové Colón et al. (2014) have described some of these investigative efforts in clay rock ranging from site characterization to research on the engineered barriermore » system (EBS). Evaluations of disposal options that include nuclear waste disposition in clay/shale/argillaceous rock have determined that this host media can accommodate a wide range of waste types. R&D work within the Used Fuel Disposition Campaign (UFDC) assessing thermal effects and fluid-mineral interactions for the disposition of heat-generating waste have so far demonstrated the feasibility for the EBS and clay host rock to withstand high thermal loads. This report represents the continuation of disposal R&D efforts on the advancement and refinement of coupled Thermal-Hydrological-Mechanical-Chemical (THMC), hydrothermal experiments on clay interactions, used fuel degradation (source term), and thermodynamic modeling and database development. The development and implementation of a clay/shale/argillite reference case described in Jové Colón et al. (2014) for FY15 will be documented in another report (Mariner et al. 2015) – only a brief description will be given here. This clay reference case implementation is the result of integration efforts between the GDSA PA and disposal in argillite work packages. The assessment of sacrificial zones in the EBS is being addressed through experimental work along with 1D reactive-transport and reaction path modeling. The focus of these investigations into the nature of sacrificial zones is to evaluate the chemical effects of heterogeneous chemical reactions at EBS interfaces. The difference in barrier material types and the extent of chemical reactions within these interfacial domains generates changes in mineral abundances. These mineralogical alterations also result in volume changes that, although small, could affect the interface bulk porosity. As in previous deliverables, this report is structured according to various national laboratory contributions describing R&D activities applicable to clay/shale/argillite media.« less

  11. Synchronization and information processing by an on-off coupling

    NASA Astrophysics Data System (ADS)

    Wei, G. W.; Zhao, Shan

    2002-05-01

    This paper proposes an on-off coupling process for chaos synchronization and information processing. An in depth analysis for the net effect of a conventional coupling is performed. The stability of the process is studied. We show that the proposed controlled coupling process can locally minimize the smoothness and the fidelity of dynamical data. A digital filter expression for the on-off coupling process is derived and a connection is made to the Hanning filter. The utility and robustness of the proposed approach is demonstrated by chaos synchronization in Duffing oscillators, the spatiotemporal synchronization of noisy nonlinear oscillators, the estimation of the trend of a time series, and restoration of the contaminated solution of the nonlinear Schrödinger equation.

  12. A Review of the Research in Emotionally Focused Therapy for Couples.

    PubMed

    Wiebe, Stephanie A; Johnson, Susan M

    2016-09-01

    Emotionally Focused Therapy for Couples (EFT) is a brief evidence-based couple therapy based in attachment theory. Since the development of EFT, efficacy and effectiveness research has accumulated to address a range of couple concerns. EFT meets or exceeds the guidelines for classification as an evidence-based couple therapy outlined for couple and family research. Furthermore, EFT researchers have examined the process of change and predictors of outcome in EFT. Future research in EFT will continue to examine the process of change in EFT and test the efficacy and effectiveness of EFT in new applications and for couples of diverse backgrounds and concerns. © 2016 Family Process Institute.

  13. Nordic couples' decision-making processes during assisted reproduction treatments.

    PubMed

    Sol Olafsdottir, Helga; Wikland, Matts; Möller, Anders

    2013-06-01

    To study couples' perceptions of their decision-making process during the first three years of infertility treatments. This study is a part of a larger project studying the decision-making processes of 22 infertile heterosexual couples, recruited from fertility clinics in all five Nordic countries, over a three year period. A descriptive qualitative method was used. Process of decision-making during assisted reproduction treatments. Seventeen couples had succeeded in becoming parents after approximately three years. Our study suggests that the decision-making process during fertility treatments has three phases: (i) recognizing the decisions to be made, with subcategories; the driving force, mutual project, (ii) gathering knowledge and experience about the options, with subcategories; trust, patient competence, personalized support, and (iii) adapting decisions to possible options, with subcategories; strategic planning, adaption. The core category was "maintaining control in a situation of uncertainty." Two parallel processes affect couples' decision-making process, one within themselves and their relationship, and the other in their contact with the fertility clinic. Couples struggle to make decisions, trusting clinic personnel for guidance, knowledge, and understanding. Nevertheless, couples expressed disappointment with the clinics' reactions to their requests for shared decision-making. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Emotional Stroop interference for threatening words is related to reduced EEG δ-β coupling and low attentional control.

    PubMed

    Putman, Peter; Arias-Garcia, Elsa; Pantazi, Ioanna; van Schie, Charlotte

    2012-05-01

    Previously, electroencephalographic (EEG) delta-beta coupling (positive correlation between power in the fast beta and slow delta frequency bands) has been related to affective processing. For instance, differences in delta-beta coupling have been observed between people in a psychological stress condition and controls. We previously reported relationships between attentional threat processing and delta-beta coupling and individual differences in attentional control. The present study extended and replicated these findings in a large mixed gender sample (N=80). Results demonstrated that emotional Stroop task interference for threatening words was related to self-reported attentional inhibition capacity and frontal delta-beta coupling. There was no clear gender difference for delta-beta coupling (only a non-significant trend) and the relationship between delta-beta coupling and attentional threat-processing was not affected by gender. These results replicate and extend an earlier finding concerning delta-beta coupling and cognitive affect regulation and further clarify relationships between delta-beta coupling, attentional control, and threat-processing. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. The Challenges to Coupling Dynamic Geospatial Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldstein, N

    2006-06-23

    Many applications of modeling spatial dynamic systems focus on a single system and a single process, ignoring the geographic and systemic context of the processes being modeled. A solution to this problem is the coupled modeling of spatial dynamic systems. Coupled modeling is challenging for both technical reasons, as well as conceptual reasons. This paper explores the benefits and challenges to coupling or linking spatial dynamic models, from loose coupling, where information transfer between models is done by hand, to tight coupling, where two (or more) models are merged as one. To illustrate the challenges, a coupled model of Urbanizationmore » and Wildfire Risk is presented. This model, called Vesta, was applied to the Santa Barbara, California region (using real geospatial data), where Urbanization and Wildfires occur and recur, respectively. The preliminary results of the model coupling illustrate that coupled modeling can lead to insight into the consequences of processes acting on their own.« less

  16. Couple Consensus during Marital Joint Decision-Making: A Context, Process, Outcome Model.

    ERIC Educational Resources Information Center

    Godwin, Deborah D.; Scanzoni, John

    1989-01-01

    Tested conceptual model of context, processes, and outcomes of joint marital decision making of married couples (N=188) which specified spouses' process variables as individual-level measures and partners' consensus as a couple construct. Found context factor of spouses' emotional interdependence influenced both partners' coerciveness and degree…

  17. Processing device with self-scrubbing logic

    DOEpatents

    Wojahn, Christopher K.

    2016-03-01

    An apparatus includes a processing unit including a configuration memory and self-scrubber logic coupled to read the configuration memory to detect compromised data stored in the configuration memory. The apparatus also includes a watchdog unit external to the processing unit and coupled to the self-scrubber logic to detect a failure in the self-scrubber logic. The watchdog unit is coupled to the processing unit to selectively reset the processing unit in response to detecting the failure in the self-scrubber logic. The apparatus also includes an external memory external to the processing unit and coupled to send configuration data to the configuration memory in response to a data feed signal outputted by the self-scrubber logic.

  18. Decision-making process of prenatal screening described by pregnant women and their partners.

    PubMed

    Wätterbjörk, Inger; Blomberg, Karin; Nilsson, Kerstin; Sahlberg-Blom, Eva

    2015-10-01

    Pregnant women are often faced with having to decide about prenatal screening for Down's syndrome. However, the decision to participate in or refrain from prenatal screening can be seen as an important decision not only for the pregnant woman but also for both the partners. The aim of this study was to explore the couples' processes of decision making about prenatal screening. A total of 37 semi-structured interviews conducted at two time points were analysed using the interpretive description. The study was carried out in Maternal health-care centres, Örebro County Council, Sweden. Fifteen couples of different ages and with different experiences of pregnancy and childbirth were interviewed. Three different patterns of decision making were identified. For the couples in 'The open and communicative decision-making process', the process was straightforward and rational, and the couples discussed the decision with each other. 'The closed and personal decision-making process' showed an immediate and non-communicative decision making where the couples decided each for themselves. The couples showing 'The searching and communicative decision-making process' followed an arduous road in deciding whether to participate or not in prenatal screening and how to cope with the result. The decision-making process was for some couples a fairly straightforward decision, while for others it was a more complex process that required a great deal of consideration. © 2013 John Wiley & Sons Ltd.

  19. Processing device with self-scrubbing logic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wojahn, Christopher K.

    An apparatus includes a processing unit including a configuration memory and self-scrubber logic coupled to read the configuration memory to detect compromised data stored in the configuration memory. The apparatus also includes a watchdog unit external to the processing unit and coupled to the self-scrubber logic to detect a failure in the self-scrubber logic. The watchdog unit is coupled to the processing unit to selectively reset the processing unit in response to detecting the failure in the self-scrubber logic. The apparatus also includes an external memory external to the processing unit and coupled to send configuration data to the configurationmore » memory in response to a data feed signal outputted by the self-scrubber logic.« less

  20. Fostering new relational experience: clinical process in couple psychotherapy.

    PubMed

    Marmarosh, Cheri L

    2014-03-01

    One of the most critical goals for couple psychotherapy is to foster a new relational experience in the session where the couple feels safe enough to reveal more vulnerable emotions and to explore their defensive withdrawal, aggressive attacking, or blaming. The lived intimate experience in the session offers the couple an opportunity to gain integrative insight into their feelings, expectations, and behaviors that ultimately hinder intimacy. The clinical processes that are necessary include empathizing with the couple and facilitating safety within the session, looking for opportunities to explore emotions, ruptures, and unconscious motivations that maintain distance in the relationship, and creating a new relational experience in the session that has the potential to engender integrative insight. These clinical processes will be presented with empirical support. Experts from a session will be used to highlight how these processes influence the couple and promote increased intimacy. (PsycINFO Database Record (c) 2014 APA, all rights reserved).

  1. An adaptive deep-coupled GNSS/INS navigation system with hybrid pre-filter processing

    NASA Astrophysics Data System (ADS)

    Wu, Mouyan; Ding, Jicheng; Zhao, Lin; Kang, Yingyao; Luo, Zhibin

    2018-02-01

    The deep-coupling of a global navigation satellite system (GNSS) with an inertial navigation system (INS) can provide accurate and reliable navigation information. There are several kinds of deeply-coupled structures. These can be divided mainly into coherent and non-coherent pre-filter based structures, which have their own strong advantages and disadvantages, especially in accuracy and robustness. In this paper, the existing pre-filters of the deeply-coupled structures are analyzed and modified to improve them firstly. Then, an adaptive GNSS/INS deeply-coupled algorithm with hybrid pre-filters processing is proposed to combine the advantages of coherent and non-coherent structures. An adaptive hysteresis controller is designed to implement the hybrid pre-filters processing strategy. The simulation and vehicle test results show that the adaptive deeply-coupled algorithm with hybrid pre-filters processing can effectively improve navigation accuracy and robustness, especially in a GNSS-challenged environment.

  2. Client Discourses on the Process of Seeking Same-Sex Couple Counselling

    ERIC Educational Resources Information Center

    Grove, Jan; Peel, Elizabeth; Owen-Pugh, Valerie

    2013-01-01

    How same-sex couples manage the process of seeking help for their relationships is an under-researched area. Twelve semi-structured interviews were conducted with 16 people who had engaged in same-sex couple counselling, and were analysed using discourse analysis. The ways in which the couples positioned themselves as part of a "minority…

  3. Signatures of Förster and Dexter transfer processes in coupled nanostructures for linear and two-dimensional coherent optical spectroscopy

    NASA Astrophysics Data System (ADS)

    Specht, Judith F.; Richter, Marten

    2015-03-01

    In this manuscript, we study the impact of the two Coulomb induced resonance energy transfer processes, Förster and Dexter coupling, on the spectral signatures obtained by double quantum coherence spectroscopy. We show that the specific coupling characteristics allow us to identify the underlying excitation transfer mechanism by means of specific signatures in coherent spectroscopy. Therefore, we control the microscopic calculated coupling strength of spin preserving and spin flipping Förster transfer processes by varying the mutual orientation of the two quantum emitters. The calculated spectra reveal the optical selection rules altered by Förster and Dexter coupling between two semiconductor quantum dots. We show that Dexter coupling between bright and dark two-exciton states occurs.

  4. Model coupling intraparticle diffusion/sorption, nonlinear sorption, and biodegradation processes

    USGS Publications Warehouse

    Karapanagioti, Hrissi K.; Gossard, Chris M.; Strevett, Keith A.; Kolar, Randall L.; Sabatini, David A.

    2001-01-01

    Diffusion, sorption and biodegradation are key processes impacting the efficiency of natural attenuation. While each process has been studied individually, limited information exists on the kinetic coupling of these processes. In this paper, a model is presented that couples nonlinear and nonequilibrium sorption (intraparticle diffusion) with biodegradation kinetics. Initially, these processes are studied independently (i.e., intraparticle diffusion, nonlinear sorption and biodegradation), with appropriate parameters determined from these independent studies. Then, the coupled processes are studied, with an initial data set used to determine biodegradation constants that were subsequently used to successfully predict the behavior of a second data set. The validated model is then used to conduct a sensitivity analysis, which reveals conditions where biodegradation becomes desorption rate-limited. If the chemical is not pre-equilibrated with the soil prior to the onset of biodegradation, then fast sorption will reduce aqueous concentrations and thus biodegradation rates. Another sensitivity analysis demonstrates the importance of including nonlinear sorption in a coupled diffusion/sorption and biodegradation model. While predictions based on linear sorption isotherms agree well with solution concentrations, for the conditions evaluated this approach overestimates the percentage of contaminant biodegraded by as much as 50%. This research demonstrates that nonlinear sorption should be coupled with diffusion/sorption and biodegradation models in order to accurately predict bioremediation and natural attenuation processes. To our knowledge this study is unique in studying nonlinear sorption coupled with intraparticle diffusion and biodegradation kinetics with natural media.

  5. Northeast Artificial Intelligence Consortium (NAIC). Volume 15. Strategies for Coupling Symbolic and Numerical Computation in Knowledge Base Systems

    DTIC Science & Technology

    1990-12-01

    Implementation of Coupled System 18 15.4. CASE STUDIES & IMPLEMENTATION EXAMPLES 24 15.4.1. The Case Studies of Coupled System 24 15.4.2. Example: Coupled System...occurs during specific phases of the problem-solving process. By decomposing the coupling process into its component layers we effectively study the nature...by the qualitative model, appropriate mathematical model is invoked. 5) The results are verified. If successful, stop. Else go to (2) and use an

  6. Effect of interface reaction and diffusion on stress-oxidation coupling at high temperature

    NASA Astrophysics Data System (ADS)

    Yue, Mengkun; Dong, Xuelin; Fang, Xufei; Feng, Xue

    2018-04-01

    High-temperature structural materials undergo oxidation during the service, and stress would generate in the oxide film. Understanding the coupling effect between stress and oxidation contributes to the understanding of material degradation and failure during the oxidation process. Here, we propose a model to investigative the coupling effect of stress and oxidation at high temperature by considering the three-stage oxidation process, where both the interface reaction and the diffusion process are present. The governing equations including the oxidation kinetics and stress equilibrium for isothermal oxidation under stress-oxidation coupling effect have been derived. The theory is validated by comparing with the experimental results of SiO2 grown on Si substrate. Results show that the coupling of stress and oxidation influences the growth of the oxide film by affecting all three stages of the oxidation process.

  7. The construction of a model of the process of couples' forgiveness in emotion-focused therapy for couples.

    PubMed

    Meneses, Catalina Woldarsky; Greenberg, Leslie S

    2011-10-01

    This study explored how forgiveness unfolds in the context of emotion-focused couples therapy (EFT-C) in eight cases of women betrayed by their partners. Forgiveness was defined as a process involving the reduction in negative feelings and the giving out of undeserved compassion. This was measured by changes in the pre- and posttreatment scores on the Enright Forgiveness Inventory, the Unfinished Business Resolution Scale, and a single item directly asking respondents to indicate their degree of forgiveness. A task analysis was performed to rigorously track the steps leading to forgiveness using videotapes of therapy sessions for eight couples. The performance of the four couples who forgave were compared with each other and then contrasted with the performance of another four couples who did not reach forgiveness at the end of therapy. Based on these observations, a model of the process of forgiveness in EFT-C and a process rating system were developed. © 2011 American Association for Marriage and Family Therapy.

  8. Female Couples Undergoing IVF with Partner Eggs (Co-IVF): Pathways to Parenthood.

    PubMed

    Yeshua, Arielle; Lee, Joseph A; Witkin, Georgia; Copperman, Alan B

    2015-06-01

    Egg sharing in female couples can be used to allow dual participation of female couples in the pregnancy process. The oocyte donor-partner provides the eggs and the recipient partner provides the uterine environment for gestation. We present descriptive data of our experience in female couples to establish a better understanding of utilization of co-in vitro fertilization (Co-IVF) for social and medical reasons. Female couples enrolled in a third party reproduction program that engaged in at least one Co-IVF cycle were included. Previous assisted reproductive technology (ART) cycle data, Co-IVF cycle information and pregnancy outcomes were evaluated. Female couples (n=21) who participated in Co-IVF cycles were analyzed. Over time, 16/21 (76%) of couples achieved at least one pregnancy, 9 (42%) couples delivered, and there are another 5 (23%) ongoing pregnancies. Our analysis presents descriptive data and sheds realistic expectations for Co-IVF couples. Co-IVF cycles can result in a shared experience with regard to the process of creating a family, while preserving a female couple's desire for dual partner participation in the gestational process. We encourage centers treating female couples to consider departing from traditional nomenclature of "donors" and "recipients" and adopting the nomenclature "Co-IVF" to describe the modern understanding of the shared experience. Even if female couples have experienced prior unsuccessful cycles, couples ultimately retain an excellent prognosis for reproductive success using Co-IVF.

  9. Gestural coupling and social cognition: Möbius Syndrome as a case study

    PubMed Central

    Krueger, Joel; Michael, John

    2012-01-01

    Social cognition researchers have become increasingly interested in the ways that behavioral, physiological, and neural coupling facilitate social interaction and interpersonal understanding. We distinguish two ways of conceptualizing the role of such coupling processes in social cognition: strong and moderate interactionism. According to strong interactionism (SI), low-level coupling processes are alternatives to higher-level individual cognitive processes; the former at least sometimes render the latter superfluous. Moderate interactionism (MI) on the other hand, is an integrative approach. Its guiding assumption is that higher-level cognitive processes are likely to have been shaped by the need to coordinate, modulate, and extract information from low-level coupling processes. In this paper, we present a case study on Möbius Syndrome (MS) in order to contrast SI and MI. We show how MS—a form of congenital bilateral facial paralysis—can be a fruitful source of insight for research exploring the relation between high-level cognition and low-level coupling. Lacking a capacity for facial expression, individuals with MS are deprived of a primary channel for gestural coupling. According to SI, they lack an essential enabling feature for social interaction and interpersonal understanding more generally and thus ought to exhibit severe deficits in these areas. We challenge SI's prediction and show how MS cases offer compelling reasons for instead adopting MI's pluralistic model of social interaction and interpersonal understanding. We conclude that investigations of coupling processes within social interaction should inform rather than marginalize or eliminate investigation of higher-level individual cognition. PMID:22514529

  10. The Experience of Chinese Couples Undergoing In Vitro Fertilization Treatment: Perception of the Treatment Process and Partner Support.

    PubMed

    Ying, Li-Ying; Wu, Lai Har; Loke, Alice Yuen

    2015-01-01

    Couples undergoing In Vitro Fertilization (IVF) Treatment suffer as dyads from the stressful experience of the painful treatment and the fear that the IVF cycle will fail. They are likely to report that their marital relationship has become unstable due to the prolonged period of treatment. This is a qualitative study that was conducted to explore the experiences that Chinese couples have had with IVF treatment, especially their perceptions of the process and the support between couples. The interviews revealed that couples suffered from the process, experiencing physical and emotional pain, struggling with the urgency and inflexibility of bearing a child, and experiencing disturbances in their daily routines and work. The participants described how they endured the hardships as a couple and how it affected their relationship. The couples felt that sharing feelings and supporting each other contribute to psychological well-being and improves the marital relationship. They also identified some unfavorable aspects in their partner relationship. They were ambivalent about receiving social support from friends and family members. With the couples indicating that the support that they received from each other affected their experience during the treatment process, it is suggested that a supportive intervention that focuses on enhancing the partnership of the couples and dealing with their inflexibility on the issue of bearing a child might result in improvements in the psychological status and marital relationship of infertile couples undergoing IVF treatment.

  11. The Experience of Chinese Couples Undergoing In Vitro Fertilization Treatment: Perception of the Treatment Process and Partner Support

    PubMed Central

    Ying, Li-Ying; Wu, Lai Har; Loke, Alice Yuen

    2015-01-01

    Background Couples undergoing In Vitro Fertilization (IVF) Treatment suffer as dyads from the stressful experience of the painful treatment and the fear that the IVF cycle will fail. They are likely to report that their marital relationship has become unstable due to the prolonged period of treatment. Methods This is a qualitative study that was conducted to explore the experiences that Chinese couples have had with IVF treatment, especially their perceptions of the process and the support between couples. Results The interviews revealed that couples suffered from the process, experiencing physical and emotional pain, struggling with the urgency and inflexibility of bearing a child, and experiencing disturbances in their daily routines and work. The participants described how they endured the hardships as a couple and how it affected their relationship. The couples felt that sharing feelings and supporting each other contribute to psychological well-being and improves the marital relationship. They also identified some unfavorable aspects in their partner relationship. They were ambivalent about receiving social support from friends and family members. Conclusions With the couples indicating that the support that they received from each other affected their experience during the treatment process, it is suggested that a supportive intervention that focuses on enhancing the partnership of the couples and dealing with their inflexibility on the issue of bearing a child might result in improvements in the psychological status and marital relationship of infertile couples undergoing IVF treatment. PMID:26431545

  12. Dyadic Processes in Early Marriage: Attributions, Behavior, and Marital Quality

    ERIC Educational Resources Information Center

    Durtschi, Jared A.; Fincham, Frank D.; Cui, Ming; Lorenz, Frederick O.; Conger, Rand D.

    2011-01-01

    Marital processes in early marriage are important for understanding couples' future marital quality. Spouses' attributions about a partner's behavior have been linked to marital quality, yet the mechanisms underlying this association remain largely unknown. When we used couple data from the Family Transitions Project (N = 280 couples) across the…

  13. Thermoelectrics in Coulomb-coupled quantum dots: Cotunneling and energy-dependent lead couplings

    NASA Astrophysics Data System (ADS)

    Walldorf, Nicklas; Jauho, Antti-Pekka; Kaasbjerg, Kristen

    2017-09-01

    We study thermoelectric effects in Coulomb-coupled quantum-dot (CCQD) systems beyond lowest-order tunneling processes and the often applied wide-band approximation. To this end, we present a master-equation (ME) approach based on a perturbative T -matrix calculation of the charge and heat tunneling rates and transport currents. Applying the method to transport through a noninteracting single-level QD, we demonstrate excellent agreement with the Landauer-Büttiker theory when higher-order (cotunneling) processes are included in the ME. Next, we study the effect of cotunneling and energy-dependent lead couplings on the heat currents in a system of two CCQDs. We find that cotunneling processes (i) can dominate the off-resonant heat currents at low temperature and bias compared to the interdot interaction, and (ii) give rise to a pronounced reduction of the cooling power achievable with the recently demonstrated Maxwell's demon cooling mechanism. Furthermore, we demonstrate that the cooling power can be boosted significantly by carefully engineering the energy dependence of the lead couplings to filter out undesired transport processes. Our findings emphasize the importance of higher-order cotunneling processes as well as engineered energy-dependent lead couplings in the optimization of the thermoelectric performance of CCQD systems.

  14. Therapy of a couple with a bipolar spouse.

    PubMed

    Witusik, Andrzej; Pietras, Tadeusz

    2017-10-23

    Qualitative analysis of therapy of a couple with a partner who has bipolar disorder is an important research paradigm in contemporary psychotherapy of mental disorders.The qualitative method of the study is important both from the cognitive point of view and for the evaluation of the therapeutic efficacy in the individual, idiographical aspect. The aim of the study is a qualitative analysis of the therapeutic process of a couple in which one partner suffers from bipolar affective disorder. The study of the couple therapy process utilized the qualitative research methodology using variouspsychotherapeutic paradigms indicating the interrelationships that exist between relapses of the disease and functioning of the couple. The importance of triangulation processes, inheritance of transgenerational myths and dysfunctional cognitive patterns in the functional destabilization of a couple with one partner suffering from bipolar affective disorder was indicated. The study of the couple therapy process utilized the qualitative research methodology using variouspsychotherapeutic paradigms indicating the interrelationships that exist between relapses of the disease and functioning of the couple. The importance of triangulation processes, inheritance of transgenerational myths and dysfunctional cognitive patterns in the functional destabilization of a couple with one partner suffering from bipolar affective disorder was indicated. The dysfunctionality of the discussed couple is largely due to the effects of bipolar disorder and related disturbances on marital functioning. The spectrum of autism in the child is probably related both to the genetic strain of predisposition to psychiatric disorders and to the dysfunctionality of the parental dyad. The presence of bipolar affective disorder in the partner's family is also a genetic burden. The wife's aggression represents probably a syndrome of adaptation to disease in the family. Aggression plays a morphostatic role in the couple integrity.In both families of origin of the spouses, the transgeneration myth placed the woman in the position of a strong and family-oriented person.

  15. Dark forces coupled to nonconserved currents

    NASA Astrophysics Data System (ADS)

    Dror, Jeff A.; Lasenby, Robert; Pospelov, Maxim

    2017-10-01

    New light vectors with dimension-4 couplings to Standard Model states have (energy/vectormass)2-enhanced production rates unless the current they couple to is conserved. These processes allow us to derive new constraints on the couplings of such vectors, that are significantly stronger than the previous literature for a wide variety of models. Examples include vectors with axial couplings to quarks and vectors coupled to currents (such as baryon number) that are only broken by the chiral anomaly. Our new limits arise from a range of processes, including rare Z decays and flavor-changing meson decays, and rule out a number of phenomenologically motivated proposals.

  16. "The best is always yet to come": Relationship stages and processes among young LGBT couples.

    PubMed

    Macapagal, Kathryn; Greene, George J; Rivera, Zenaida; Mustanski, Brian

    2015-06-01

    Limited research has examined relationship development among lesbian, gay, bisexual, and transgender (LGBT) couples in emerging adulthood. A better understanding of LGBT couples can inform the development of relationship education programs that reflect their unique needs. The following questions guided this study: (a) What are the stages and processes during young LGBT couples' relationship development? and (b) How do these compare with existing literature on heterosexual adults? A secondary goal was to explore similarities and differences between couples assigned male (MAAB) and female at birth (FAAB). Thirty-six couples completed interviews on their relationship history. Qualitative analyses showed that relationship stages and processes were similar to past research on heterosexuals, but participants' subjective experiences reflected their LGBT identities and emerging adulthood, which exerted additional stress on the relationship. These factors also affected milestones indicative of commitment among heterosexual adults (e.g., introducing partner to family). Mixed methods analyses indicated that MAAB couples described negotiating relationship agreements and safe sex in more depth than FAAB couples. Relationship development models warrant modifications to consider the impact of sexual and gender identity and emerging adulthood when applied to young LGBT couples. These factors should be addressed in interventions to promote relationship health among young LGBT couples. (c) 2015 APA, all rights reserved).

  17. Depression: The Differing Narratives of Couples in Couple Therapy

    ERIC Educational Resources Information Center

    Rautiainen, Eija-Liisa; Aaltonen, Jukka

    2010-01-01

    How does the spouse of a person with depression take part in constructing narratives of depression in couple therapy? In this study we examined couples' ways of co-constructing narratives of depression in couple therapy. Three couple therapy processes were chosen for the study, one spouse in each couple having been referred to an outpatient clinic…

  18. Low Variance Couplings for Stochastic Models of Intracellular Processes with Time-Dependent Rate Functions.

    PubMed

    Anderson, David F; Yuan, Chaojie

    2018-04-18

    A number of coupling strategies are presented for stochastically modeled biochemical processes with time-dependent parameters. In particular, the stacked coupling is introduced and is shown via a number of examples to provide an exceptionally low variance between the generated paths. This coupling will be useful in the numerical computation of parametric sensitivities and the fast estimation of expectations via multilevel Monte Carlo methods. We provide the requisite estimators in both cases.

  19. Efficient production of acetone-butanol-ethanol (ABE) from cassava by a fermentation-pervaporation coupled process.

    PubMed

    Li, Jing; Chen, Xiangrong; Qi, Benkun; Luo, Jianquan; Zhang, Yuming; Su, Yi; Wan, Yinhua

    2014-10-01

    Production of acetone-butanol-ethanol (ABE) from cassava was investigated with a fermentation-pervaporation (PV) coupled process. ABE products were in situ removed from fermentation broth to alleviate the toxicity of solvent to the Clostridium acetobutylicum DP217. Compared to the batch fermentation without PV, glucose consumption rate and solvent productivity increased by 15% and 21%, respectively, in batch fermentation-PV coupled process, while in continuous fermentation-PV coupled process running for 304 h, the substrate consumption rate, solvent productivity and yield increased by 58%, 81% and 15%, reaching 2.02 g/Lh, 0.76 g/Lh and 0.38 g/g, respectively. Silicalite-1 filled polydimethylsiloxane (PDMS)/polyacrylonitrile (PAN) membrane modules ensured media recycle without significant fouling, steadily generating a highly concentrated ABE solution containing 201.8 g/L ABE with 122.4 g/L butanol. After phase separation, a final product containing 574.3g/L ABE with 501.1g/L butanol was obtained. Therefore, the fermentation-PV coupled process has the potential to decrease the cost in ABE production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. A study of diazonium couplings with aromatic nucleophiles both in solution and on a polymer surface

    NASA Astrophysics Data System (ADS)

    Chng, Shuyun; Parker, Emily M.; Griffiths, Jon-Paul; Moloney, Mark G.; Wu, Linda Y. L.

    2017-04-01

    Diazonium coupling is a technique finding wider application to materials and biological science, for hybridization and linking processes, and for the construction of responsive surface functionality. For this reason, detailed examination of solution and surface processes was warranted, and results of such a study are reported here. The modification of polystyrene surfaces was examined as a model, and the process compared to a solution mimic using N,N-dimethylaniline. It was confirmed that solution and solid surface reactions proceed in a similar manner in terms of the chemical functionality generated, but with lower chemical efficiency and reaction times slower for the latter, in a reaction which was pH dependent. The solution process was shown to give only the trans-azo para- coupled products. Whilst there are clear similarities between the solution and surface chemistry, the efficiency of coupling at a surface is not necessarily replicated in the chemical yield of the mimicking solution processes, but nonetheless provides an alternative to other Click-type surface modifications. It should not be assumed that such couplings occur with quantitative efficiency at the surface.

  1. A study of increasing radical density and etch rate using remote plasma generator system

    NASA Astrophysics Data System (ADS)

    Lee, Jaewon; Kim, Kyunghyun; Cho, Sung-Won; Chung, Chin-Wook

    2013-09-01

    To improve radical density without changing electron temperature, remote plasma generator (RPG) is applied. Multistep dissociation of the polyatomic molecule was performed using RPG system. RPG is installed to inductively coupled type processing reactor; electrons, positive ions, radicals and polyatomic molecule generated in RPG and they diffused to processing reactor. The processing reactor dissociates the polyatomic molecules with inductively coupled power. The polyatomic molecules are dissociated by the processing reactor that is operated by inductively coupled power. Therefore, the multistep dissociation system generates more radicals than single-step system. The RPG was composed with two cylinder type inductively coupled plasma (ICP) using 400 kHz RF power and nitrogen gas. The processing reactor composed with two turn antenna with 13.56 MHz RF power. Plasma density, electron temperature and radical density were measured with electrical probe and optical methods.

  2. “The Best is Always Yet to Come”: Relationship Stages and Processes Among Young LGBT Couples

    PubMed Central

    Macapagal, Kathryn; Greene, George J.; Rivera, Zenaida A.; Mustanski, Brian

    2015-01-01

    Limited research has examined relationship development among lesbian, gay, bisexual, and transgender (LGBT) couples in emerging adulthood. A better understanding of LGBT couples can inform the development of relationship education programs that reflect their unique needs. The following questions guided this study: 1) what are the stages and processes during young LGBT couples’ relationship development? and 2) how do these compare to existing literature on heterosexual adults? A secondary goal was to explore similarities and differences between couples assigned male (MAAB) and female at birth (FAAB). Thirty-six couples completed interviews on their relationship history. Qualitative analyses showed that relationship stages and processes were similar to past research on heterosexuals, but participants’ subjective experiences reflected their LGBT identities and emerging adulthood, which exerted additional stress on the relationship. These factors also affected milestones indicative of commitment among heterosexual adults (e.g., introducing partner to family). Mixed-methods analyses indicated that MAAB couples described negotiating relationship agreements and safe sex in more depth than FAAB couples. Relationship development models warrant modifications to consider the impact of sexual and gender identity and emerging adulthood when applied to young LGBT couples. These factors should be addressed in interventions to promote relationship health among young LGBT couples. PMID:26053345

  3. On the Coupling Time of the Heat-Bath Process for the Fortuin-Kasteleyn Random-Cluster Model

    NASA Astrophysics Data System (ADS)

    Collevecchio, Andrea; Elçi, Eren Metin; Garoni, Timothy M.; Weigel, Martin

    2018-01-01

    We consider the coupling from the past implementation of the random-cluster heat-bath process, and study its random running time, or coupling time. We focus on hypercubic lattices embedded on tori, in dimensions one to three, with cluster fugacity at least one. We make a number of conjectures regarding the asymptotic behaviour of the coupling time, motivated by rigorous results in one dimension and Monte Carlo simulations in dimensions two and three. Amongst our findings, we observe that, for generic parameter values, the distribution of the appropriately standardized coupling time converges to a Gumbel distribution, and that the standard deviation of the coupling time is asymptotic to an explicit universal constant multiple of the relaxation time. Perhaps surprisingly, we observe these results to hold both off criticality, where the coupling time closely mimics the coupon collector's problem, and also at the critical point, provided the cluster fugacity is below the value at which the transition becomes discontinuous. Finally, we consider analogous questions for the single-spin Ising heat-bath process.

  4. Differences in Pornography Use Among Couples: Associations with Satisfaction, Stability, and Relationship Processes.

    PubMed

    Willoughby, Brian J; Carroll, Jason S; Busby, Dean M; Brown, Cameron C

    2016-01-01

    The present study utilized a sample of 1755 adult couples in heterosexual romantic relationships to examine how different patterns of pornography use between romantic partners may be associated with relationship outcomes. While pornography use has been generally associated with some negative and some positive couple outcomes, no study has yet explored how differences between partners may uniquely be associated with relationship well-being. Results suggested that greater discrepancies between partners in pornography use were related to less relationship satisfaction, less stability, less positive communication, and more relational aggression. Mediation analyses suggested that greater pornography use discrepancies were primarily associated with elevated levels of male relational aggression, lower female sexual desire, and less positive communication for both partners which then predicted lower relational satisfaction and stability for both partners. Results generally suggest that discrepancies in pornography use at the couple level are related to negative couple outcomes. Specifically, pornography differences may alter specific couple interaction processes which, in turn, may influence relationship satisfaction and stability. Implications for scholars and clinicians interested in how pornography use is associated with couple process are discussed.

  5. Coupled Modeling of Flow, Transport, and Deformation during Hydrodynamically Unstable Displacement in Fractured Rocks

    NASA Astrophysics Data System (ADS)

    Jha, B.; Juanes, R.

    2015-12-01

    Coupled processes of flow, transport, and deformation are important during production of hydrocarbons from oil and gas reservoirs. Effective design and implementation of enhanced recovery techniques such as miscible gas flooding and hydraulic fracturing requires modeling and simulation of these coupled proceses in geologic porous media. We develop a computational framework to model the coupled processes of flow, transport, and deformation in heterogeneous fractured rock. We show that the hydrocarbon recovery efficiency during unstable displacement of a more viscous oil with a less viscous fluid in a fractured medium depends on the mechanical state of the medium, which evolves due to permeability alteration within and around fractures. We show that fully accounting for the coupling between the physical processes results in estimates of the recovery efficiency in agreement with observations in field and lab experiments.

  6. Surface thermochemical effects on TPS-coupled aerothermodynamics in hypersonic Martian gas flow

    NASA Astrophysics Data System (ADS)

    Yang, Xiaofeng; Gui, Yewei; Tang, Wei; Du, Yanxia; Liu, Lei; Xiao, Guangming; Wei, Dong

    2018-06-01

    This paper deals with the surface thermochemical effects on TPS-coupled aerothermodynamics in hypersonic Martian gas flow. An interface condition with finite-rate thermochemistry was established to balance the three-dimensional Navier-Stokes solver and TPS thermal response solver, and a series of coupled simulations of chemical non-equilibrium aerothermodynamics and structure heat transfer with various surface catalycities were performed for hypersonic Mars entries. The analysis of surface thermochemistry reveals that the surface chemical reactions have great contribution to aerodynamic heating, and the temperature-dependence of finite-rate catalysis highly influences the evolution of the coupling aerodynamic heating in the coupling process. For fixed free stream parameters with proper catalytic excitation energy, a "leap" phenomenon of the TPS-coupled heat flux with the coupling time appears in the initial stage of the coupling process, due to the strong thermochemical effects on the TPS surface.

  7. Solving coupled groundwater flow systems using a Jacobian Free Newton Krylov method

    NASA Astrophysics Data System (ADS)

    Mehl, S.

    2012-12-01

    Jacobian Free Newton Kyrlov (JFNK) methods can have several advantages for simulating coupled groundwater flow processes versus conventional methods. Conventional methods are defined here as those based on an iterative coupling (rather than a direct coupling) and/or that use Picard iteration rather than Newton iteration. In an iterative coupling, the systems are solved separately, coupling information is updated and exchanged between the systems, and the systems are re-solved, etc., until convergence is achieved. Trusted simulators, such as Modflow, are based on these conventional methods of coupling and work well in many cases. An advantage of the JFNK method is that it only requires calculation of the residual vector of the system of equations and thus can make use of existing simulators regardless of how the equations are formulated. This opens the possibility of coupling different process models via augmentation of a residual vector by each separate process, which often requires substantially fewer changes to the existing source code than if the processes were directly coupled. However, appropriate perturbation sizes need to be determined for accurate approximations of the Frechet derivative, which is not always straightforward. Furthermore, preconditioning is necessary for reasonable convergence of the linear solution required at each Kyrlov iteration. Existing preconditioners can be used and applied separately to each process which maximizes use of existing code and robust preconditioners. In this work, iteratively coupled parent-child local grid refinement models of groundwater flow and groundwater flow models with nonlinear exchanges to streams are used to demonstrate the utility of the JFNK approach for Modflow models. Use of incomplete Cholesky preconditioners with various levels of fill are examined on a suite of nonlinear and linear models to analyze the effect of the preconditioner. Comparisons of convergence and computer simulation time are made using conventional iteratively coupled methods and those based on Picard iteration to those formulated with JFNK to gain insights on the types of nonlinearities and system features that make one approach advantageous. Results indicate that nonlinearities associated with stream/aquifer exchanges are more problematic than those resulting from unconfined flow.

  8. Collaborative simulation method with spatiotemporal synchronization process control

    NASA Astrophysics Data System (ADS)

    Zou, Yisheng; Ding, Guofu; Zhang, Weihua; Zhang, Jian; Qin, Shengfeng; Tan, John Kian

    2016-10-01

    When designing a complex mechatronics system, such as high speed trains, it is relatively difficult to effectively simulate the entire system's dynamic behaviors because it involves multi-disciplinary subsystems. Currently,a most practical approach for multi-disciplinary simulation is interface based coupling simulation method, but it faces a twofold challenge: spatial and time unsynchronizations among multi-directional coupling simulation of subsystems. A new collaborative simulation method with spatiotemporal synchronization process control is proposed for coupling simulating a given complex mechatronics system across multiple subsystems on different platforms. The method consists of 1) a coupler-based coupling mechanisms to define the interfacing and interaction mechanisms among subsystems, and 2) a simulation process control algorithm to realize the coupling simulation in a spatiotemporal synchronized manner. The test results from a case study show that the proposed method 1) can certainly be used to simulate the sub-systems interactions under different simulation conditions in an engineering system, and 2) effectively supports multi-directional coupling simulation among multi-disciplinary subsystems. This method has been successfully applied in China high speed train design and development processes, demonstrating that it can be applied in a wide range of engineering systems design and simulation with improved efficiency and effectiveness.

  9. Scalable polylithic on-package integratable apparatus and method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khare, Surhud; Somasekhar, Dinesh; Borkar, Shekhar Y.

    Described is an apparatus which comprises: a first die including: a processing core; a crossbar switch coupled to the processing core; and a first edge interface coupled to the crossbar switch; and a second die including: a first edge interface positioned at a periphery of the second die and coupled to the first edge interface of the first die, wherein the first edge interface of the first die and the first edge interface of the second die are positioned across each other; a clock synchronization circuit coupled to the second edge interface; and a memory interface coupled to the clockmore » synchronization circuit.« less

  10. Parallel Algorithm Solves Coupled Differential Equations

    NASA Technical Reports Server (NTRS)

    Hayashi, A.

    1987-01-01

    Numerical methods adapted to concurrent processing. Algorithm solves set of coupled partial differential equations by numerical integration. Adapted to run on hypercube computer, algorithm separates problem into smaller problems solved concurrently. Increase in computing speed with concurrent processing over that achievable with conventional sequential processing appreciable, especially for large problems.

  11. Bounds on the Coupling of the Majoron to Light Neutrinos from Supernova Cooling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farzan, Yasaman

    2002-12-02

    We explore the role of Majoron (J) emission in the supernova cooling process, as a source of upper bound on the neutrino-Majoron coupling. We show that the strongest upper bound on the coupling to {nu}{sub 3} comes from the {nu}{sub e}{nu}{sub e} {yields} J process in the core of a supernova. We also find bounds on diagonal couplings of the Majoron to {nu}{sub {mu}({tau})}{nu}{sub {mu}({tau})} and on off-diagonal {nu}{sub e}{nu}{sub {mu}({tau})} couplings in various regions of the parameter space. We discuss the evaluation of cross-section for four-particle interactions ({nu}{nu} {yields} JJ and {nu}J {yields} {nu}J). We show that these aremore » typically dominated by three-particle sub-processes and do not give new independent constraints.« less

  12. Ultrafast spin exchange-coupling torque via photo-excited charge-transfer processes

    NASA Astrophysics Data System (ADS)

    Ma, X.; Fang, F.; Li, Q.; Zhu, J.; Yang, Y.; Wu, Y. Z.; Zhao, H. B.; Lüpke, G.

    2015-10-01

    Optical control of spin is of central importance in the research of ultrafast spintronic devices utilizing spin dynamics at short time scales. Recently developed optical approaches such as ultrafast demagnetization, spin-transfer and spin-orbit torques open new pathways to manipulate spin through its interaction with photon, orbit, charge or phonon. However, these processes are limited by either the long thermal recovery time or the low-temperature requirement. Here we experimentally demonstrate ultrafast coherent spin precession via optical charge-transfer processes in the exchange-coupled Fe/CoO system at room temperature. The efficiency of spin precession excitation is significantly higher and the recovery time of the exchange-coupling torque is much shorter than for the demagnetization procedure, which is desirable for fast switching. The exchange coupling is a key issue in spin valves and tunnelling junctions, and hence our findings will help promote the development of exchange-coupled device concepts for ultrafast coherent spin manipulation.

  13. Dissociative identity disorder and the process of couple therapy.

    PubMed

    Macintosh, Heather B

    2013-01-01

    Couple therapy in the context of dissociative identity disorder (DID) has been neglected as an area of exploration and development in the couple therapy and trauma literature. What little discussion exists focuses primarily on couple therapy as an adjunct to individual therapy rather than as a primary treatment for couple distress and trauma. Couple therapy researchers have begun to develop adaptations to provide effective support to couples dealing with the impact of childhood trauma in their relationships, but little attention has been paid to the specific and complex needs of DID patients in couple therapy (H. B. MacIntosh & S. Johnson, 2008 ). This review and case presentation explores the case of "Lisa," a woman diagnosed with DID, and "Don," her partner, and illustrates the themes of learning to communicate, handling conflicting needs, responding to child alters, and addressing sexuality and education through their therapy process. It is the hope of the author that this discussion will renew interest in the field of couple therapy in the context of DID, with the eventual goal of developing an empirically testable model of treatment for couples.

  14. The effects of work-related values on communication between R and D groups, part 1. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Douds, C. F.

    1970-01-01

    The research concerned with the liaison, interface, coupling, and technology transfer processes that occur in research and development is reported. Overviews of the functions of communication and coupling in the R and D processes, and the theoretical considerations of coupling, communication, and values are presented along with descriptions of the field research program and the instrumentation.

  15. MITLL Silicon Integrated Photonics Process: Design Guide

    DTIC Science & Technology

    2015-07-31

    Silicon Integrated Photonics Process Comprehensive Design Guide 16  Deep Etch for Fiber Coupling (DEEP_ETCH...facets for fiber coupling. Standard design layers for each process are defined in Section 3, but other options can be made available. Notes on...a silicon thinning process that can create very low loss waveguides (and which better suppresses back scatter and, therefore, resonance splitting in

  16. Wireless communication devices and movement monitoring methods

    DOEpatents

    Skorpik, James R.

    2006-10-31

    Wireless communication devices and movement monitoring methods are described. In one aspect, a wireless communication device includes a housing, wireless communication circuitry coupled with the housing and configured to communicate wireless signals, movement circuitry coupled with the housing and configured to provide movement data regarding movement sensed by the movement circuitry, and event processing circuitry coupled with the housing and the movement circuitry, wherein the event processing circuitry is configured to process the movement data, and wherein at least a portion of the event processing circuitry is configured to operate in a first operational state having a different power consumption rate compared with a second operational state.

  17. Vibronic coupling simulations for linear and nonlinear optical processes: Theory

    NASA Astrophysics Data System (ADS)

    Silverstein, Daniel W.; Jensen, Lasse

    2012-02-01

    A comprehensive vibronic coupling model based on the time-dependent wavepacket approach is derived to simulate linear optical processes, such as one-photon absorbance and resonance Raman scattering, and nonlinear optical processes, such as two-photon absorbance and resonance hyper-Raman scattering. This approach is particularly well suited for combination with first-principles calculations. Expressions for the Franck-Condon terms, and non-Condon effects via the Herzberg-Teller coupling approach in the independent-mode displaced harmonic oscillator model are presented. The significance of each contribution to the different spectral types is discussed briefly.

  18. Slower speed and stronger coupling: adaptive mechanisms of chaos synchronization.

    PubMed

    Wang, Xiao Fan

    2002-06-01

    We show that two initially weakly coupled chaotic systems can achieve synchronization by adaptively reducing their speed and/or enhancing the coupling strength. Explicit adaptive algorithms for speed reduction and coupling enhancement are provided. We apply these algorithms to the synchronization of two coupled Lorenz systems. It is found that after a long-time adaptive process, the two coupled chaotic systems can achieve synchronization with almost the minimum required coupling-speed ratio.

  19. Characteristics of the postcounseling reproductive decision-making process: an explorative study.

    PubMed

    Frets, P G; Verhage, F; Niermeijer, M F

    1991-09-01

    An in-depth, recorded interview of 30 couples 2-3 years after genetic counseling explored the characteristics of the postcounseling decision-making process, including the role of guilt feelings towards the proband. The study concerned couples with an affected child, sib, or spouse. Results were evaluated by 2 to 4 judges. In contrast to other studies, a generally unstructured decision-making process was found whereby guilt feelings played a significant role in more than half the couples. Guilt feelings were more predominant in couples with an affected sib than in those with an affected spouse. Lack of structure did not seem to complicate the decision-making process. Therefore, authors do not advocate promotion of structuring the decision-making process. Genetic counselors might focus on understanding counselees' feelings concerning the reproductive decision. Acceptance of apparently irrational considerations is particularly important, because these feelings indicate the influence of unconscious motives. Another important aspect of supporting counselees is to understand the role played by guilt feelings toward parents or an affected sib.

  20. Basin-scale hydrogeologic modeling

    NASA Astrophysics Data System (ADS)

    Person, Mark; Raffensperger, Jeff P.; Ge, Shemin; Garven, Grant

    1996-02-01

    Mathematical modeling of coupled groundwater flow, heat transfer, and chemical mass transport at the sedimentary basin scale has been increasingly used by Earth scientists studying a wide range of geologic processes including the formation of excess pore pressures, infiltration-driven metamorphism, heat flow anomalies, nuclear waste isolation, hydrothermal ore genesis, sediment diagenesis, basin tectonics, and petroleum generation and migration. These models have provided important insights into the rates and pathways of groundwater migration through basins, the relative importance of different driving mechanisms for fluid flow, and the nature of coupling between the hydraulic, thermal, chemical, and stress regimes. The mathematical descriptions of basin transport processes, the analytical and numerical solution methods employed, and the application of modeling to sedimentary basins around the world are the subject of this review paper. The special considerations made to represent coupled transport processes at the basin scale are emphasized. Future modeling efforts will probably utilize three-dimensional descriptions of transport processes, incorporate greater information regarding natural geological heterogeneity, further explore coupled processes, and involve greater field applications.

  1. Two-dimensional spectroscopy: An approach to distinguish Förster and Dexter transfer processes in coupled nanostructures

    NASA Astrophysics Data System (ADS)

    Specht, Judith F.; Knorr, Andreas; Richter, Marten

    2015-04-01

    The linear and two-dimensional coherent optical spectra of Coulomb-coupled quantum emitters are discussed with respect to the underlying coupling processes. We present a theoretical analysis of the two different resonance energy transfer mechanisms between coupled nanostructures: Förster and Dexter interaction. Our investigation shows that the features visible in optical spectra of coupled quantum dots can be traced back to the nature of the underlying coupling mechanism (Förster or Dexter). Therefore, we discuss how the excitation transfer pathways can be controlled by choosing particular laser polarizations and mutual orientations of the quantum emitters in coherent two-dimensional spectroscopy. In this context, we analyze to what extent the delocalized double-excitonic states are bound to the optical selection rules of the uncoupled system.

  2. Image Processing for Cameras with Fiber Bundle Image Relay

    DTIC Science & Technology

    length. Optical fiber bundles have been used to couple between this focal surface and planar image sensors . However, such fiber-coupled imaging systems...coupled to six discrete CMOS focal planes. We characterize the locally space-variant system impulse response at various stages: monocentric lens image...vignetting, and stitch together the image data from discrete sensors into a single panorama. We compare processed images from the prototype to those taken with

  3. Magnetosphere-ionosphere coupling: processes and rates

    NASA Astrophysics Data System (ADS)

    Lotko, W.

    Magnetosphere-ionosphere coupling describes the interaction between the collisionless plasma of the magnetosphere and the ionized and neutral collisional gases of the ionosphere and thermosphere. This coupling introduces feedback and scale interactivity in the form of a time-variable mass flux, electron energy flux and Poynting flux flowing between the two regions. Although delineation of an MI coupling region is somewhat ambiguous, at mid and high latitudes it may be considered as the region of the topside ionosphere and low-altitude magnetosphere where electromagnetic energy is converted to plasma beams and heat via collisionless dissipation processes. Above this region the magnetically guided transmission of electromagnetic power from distant magnetospheric dynamos encounters only weak attenuation. The ionospheric region below it is dominated by ionization processes and collisional cross-field transport and current closure. This tutorial will use observations, models and theory to characterize three major issues in MI coupling: (1) the production of plasma beams and heat in the coupling region; (2) the acceleration of ions leading to massive outflows; and (3) the length and time scale dependence of electromagnetic energy deposition at low altitude. Our success in identifying many of the key processes is offset by a lack of quantitative understanding of the factors controlling the rates of energy deposition and of the production of particle energy and mass fluxes.

  4. Selective aqueous extraction of organics coupled with trapping by membrane separation

    DOEpatents

    van Eikeren, Paul; Brose, Daniel J.; Ray, Roderick J.

    1991-01-01

    An improvement to processes for the selective extractation of organic solutes from organic solvents by water-based extractants is disclosed, the improvement comprising coupling various membrane separation processes with the organic extraction process, the membrane separation process being utilized to continuously recycle the water-based extractant and at the same time selectively remove or concentrate organic solute from the water-based extractant.

  5. Effect of resource constraints on intersimilar coupled networks.

    PubMed

    Shai, S; Dobson, S

    2012-12-01

    Most real-world networks do not live in isolation but are often coupled together within a larger system. Recent studies have shown that intersimilarity between coupled networks increases the connectivity of the overall system. However, unlike connected nodes in a single network, coupled nodes often share resources, like time, energy, and memory, which can impede flow processes through contention when intersimilarly coupled. We study a model of a constrained susceptible-infected-recovered (SIR) process on a system consisting of two random networks sharing the same set of nodes, where nodes are limited to interact with (and therefore infect) a maximum number of neighbors at each epidemic time step. We obtain that, in agreement with previous studies, when no limit exists (regular SIR model), positively correlated (intersimilar) coupling results in a lower epidemic threshold than negatively correlated (interdissimilar) coupling. However, in the case of the constrained SIR model, the obtained epidemic threshold is lower with negatively correlated coupling. The latter finding differentiates our work from previous studies and provides another step towards revealing the qualitative differences between single and coupled networks.

  6. Origins and originators: lesbian couples negotiating parental identities and sperm donor conception.

    PubMed

    Nordqvist, Petra

    2012-01-01

    Donor conception challenges conventional kinship idioms: the involvement of a gamete donor culturally raises questions about parentage and also the meaning of genetic heritage. Although there is now a growing body of literature exploring how people resorting to donor conception negotiate kinship and connectedness, this predominantly focuses on heterosexual couples. Little is yet known about how lesbian couples navigate these processes. This paper builds on a qualitative interview study comprising 25 lesbian couples in England and Wales with experiences of pursuing donor conception in the context of their couple relationship to explore how these couples negotiate the contribution of the donor. It explores how couples negotiate meanings of parenthood, genetic origins and the bodily process of conception. The paper argues that lesbian couples negotiate parental identities, biogenetic relationships and also the meaning of conception by disassembling and reassembling the meaning of kinship, parenthood, creation, origin and originator. Findings suggest that lesbian couples weave together old and new understandings of relatedness in complex patterns and that this enables them to assert authority as parents.

  7. Effect of resource constraints on intersimilar coupled networks

    NASA Astrophysics Data System (ADS)

    Shai, S.; Dobson, S.

    2012-12-01

    Most real-world networks do not live in isolation but are often coupled together within a larger system. Recent studies have shown that intersimilarity between coupled networks increases the connectivity of the overall system. However, unlike connected nodes in a single network, coupled nodes often share resources, like time, energy, and memory, which can impede flow processes through contention when intersimilarly coupled. We study a model of a constrained susceptible-infected-recovered (SIR) process on a system consisting of two random networks sharing the same set of nodes, where nodes are limited to interact with (and therefore infect) a maximum number of neighbors at each epidemic time step. We obtain that, in agreement with previous studies, when no limit exists (regular SIR model), positively correlated (intersimilar) coupling results in a lower epidemic threshold than negatively correlated (interdissimilar) coupling. However, in the case of the constrained SIR model, the obtained epidemic threshold is lower with negatively correlated coupling. The latter finding differentiates our work from previous studies and provides another step towards revealing the qualitative differences between single and coupled networks.

  8. Experiential avoidance, self-compassion, self-judgment and coping styles in infertility.

    PubMed

    Cunha, Marina; Galhardo, Ana; Pinto-Gouveia, José

    2016-12-01

    This study sought out to explore the existence of differences regarding emotion regulation processes (psychological inflexibility/experiential avoidance, self-judgment and self-compassion) and coping styles (emotional/detached, avoidant and rational) in three different groups of couples: 120 fertile couples (FG), 147 couples with an infertility diagnosis who were pursuing medical treatment for their fertility problem(s) (IG), and 59 couples with infertility applying for adoption (AG). Cross-sectional survey, using the couple as unit of analysis. Participants filled in paper-pencil questionnaires assessing coping styles, psychological inflexibility/experiential avoidance, self-judgment and self-compassion. IG couples, and particularly women, tend to use more experiential avoidance and self-judgment mechanisms and less emotional/detached coping style. When compared to FG couples, IG and AG couples tend to apply more avoidant coping strategies. AG couples showed higher self-compassion. Findings suggest that emotion regulation processes may be an important target in psychological interventions for patients dealing with infertility and with the demands of medical treatment. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Collisionless coupling processes in AMPTE releases

    NASA Technical Reports Server (NTRS)

    Lui, A. T. Y.

    1990-01-01

    An evaluation is made of results obtained to date by in situ measurements, numerical simulations, and theoretical considerations of Active Magnetospheric Particle Tracer Explorer chemical releases bearing on the nature of collisionless coupling processes. It is noted that both laminar and turbulent forces act to couple the solar wind momentum and energy to the release cloud; the magnetic field compression formed in this interaction plays an important intermediary role in coupling the two plasmas, and the intense electrostatic turbulence generated enhances the interaction. A scenario accounting for several features in the observed evolution of the December 27, 1984 artificial comet release is presented.

  10. Effect of process parameters on temperature distribution in twin-electrode TIG coupling arc

    NASA Astrophysics Data System (ADS)

    Zhang, Guangjun; Xiong, Jun; Gao, Hongming; Wu, Lin

    2012-10-01

    The twin-electrode TIG coupling arc is a new type of welding heat source, which is generated in a single welding torch that has two tungsten electrodes insulated from each other. This paper aims at determining the distribution of temperature for the coupling arc using the Fowler-Milne method under the assumption of local thermodynamic equilibrium. The influences of welding current, arc length, and distance between both electrode tips on temperature distribution of the coupling arc were analyzed. Based on the results, a better understanding of the twin-electrode TIG welding process was obtained.

  11. Strain of optic-fiber/giant magnetostrictive film structure in magnetic field by finite element analysis

    NASA Astrophysics Data System (ADS)

    Hu, Jiafei; Pan, Mengchun; Xin, Jianguang; Chen, Dixiang

    2008-12-01

    The magnetostrictive transducer is the most important part of the optic-fiber magnetic field sensor, and the optic-fiber/giant magnetostrictive(GMS) film coupled structure is a novel coupling form of the magnetostrictive transducer. Always we analyze the coupled structure based on the entire coupled structure being sputtered GMS material without tail-fibers. In practical application, the coupled structure has tail-fibers without films at two ends. When the entire coupled structure is immersed in the detected magnetic field, the detected magnetic field causes the GMS film strain then causing optic-fiber strain. This strain transmission process is different from it in the coupled structure entirely with GMS films without tail-fibers. The strain transmission relationship can be calculated theoretically in the coupled structure without tail-fibers, but it's complicated to theoretically calculate the strain transmission relationship in the coupled structure with tail-fibers. After large numbers of calculations and analyses by ANSYS software, we figure out some relationships of the two strain transmission processes in the respective structures and the stress distribution in the tail-fibers. These results are helpful to the practical application of the optic-fiber/ GMS film coupled structure.

  12. Ultrafast spin exchange-coupling torque via photo-excited charge-transfer processes

    DOE PAGES

    Ma, X.; Fang, F.; Li, Q.; ...

    2015-10-28

    In this study, optical control of spin is of central importance in the research of ultrafast spintronic devices utilizing spin dynamics at short time scales. Recently developed optical approaches such as ultrafast demagnetization, spin-transfer and spin-orbit torques open new pathways to manipulate spin through its interaction with photon, orbit, charge or phonon. However, these processes are limited by either the long thermal recovery time or the low-temperature requirement. Here we experimentally demonstrate ultrafast coherent spin precession via optical charge-transfer processes in the exchange-coupled Fe/CoO system at room temperature. The efficiency of spin precession excitation is significantly higher and the recoverymore » time of the exchange-coupling torque is much shorter than for the demagnetization procedure, which is desirable for fast switching. The exchange coupling is a key issue in spin valves and tunnelling junctions, and hence our findings will help promote the development of exchange-coupled device concepts for ultrafast coherent spin manipulation.« less

  13. A network model shows the importance of coupled processes in the microbial N cycle in the Cape Fear River Estuary

    NASA Astrophysics Data System (ADS)

    Hines, David E.; Lisa, Jessica A.; Song, Bongkeun; Tobias, Craig R.; Borrett, Stuart R.

    2012-06-01

    Estuaries serve important ecological and economic functions including habitat provision and the removal of nutrients. Eutrophication can overwhelm the nutrient removal capacity of estuaries and poses a widely recognized threat to the health and function of these ecosystems. Denitrification and anaerobic ammonium oxidation (anammox) are microbial processes responsible for the removal of fixed nitrogen and diminish the effects of eutrophication. Both of these microbial removal processes can be influenced by direct inputs of dissolved inorganic nitrogen substrates or supported by microbial interactions with other nitrogen transforming pathways such as nitrification and dissimilatory nitrate reduction to ammonium (DNRA). The coupling of nitrogen removal pathways to other transformation pathways facilitates the removal of some forms of inorganic nitrogen; however, differentiating between direct and coupled nitrogen removal is difficult. Network modeling provides a tool to examine interactions among microbial nitrogen cycling processes and to determine the within-system history of nitrogen involved in denitrification and anammox. To examine the coupling of nitrogen cycling processes, we built a nitrogen budget mass balance network model in two adjacent 1 cm3 sections of bottom water and sediment in the oligohaline portion of the Cape Fear River Estuary, NC, USA. Pathway, flow, and environ ecological network analyses were conducted to characterize the organization of nitrogen flow in the estuary and to estimate the coupling of nitrification to denitrification and of nitrification and DNRA to anammox. Centrality analysis indicated NH4+ is the most important form of nitrogen involved in removal processes. The model analysis further suggested that direct denitrification and coupled nitrification-denitrification had similar contributions to nitrogen removal while direct anammox was dominant to coupled forms of anammox. Finally, results also indicated that partial nitrification-anammox may play an important role in anammox nitrogen removal in the Cape Fear River Estuary.

  14. Self-Consistent Magnetosphere-Ionosphere Coupling and Associated Plasma Energization Processes

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Six, N. Frank (Technical Monitor)

    2002-01-01

    Magnetosphere-Ionosphere (MI) coupling and associated with this process electron and ion energization processes have interested scientists for decades and, in spite of experimental and theoretical research efforts, are still ones of the least well known dynamic processes in space plasma physics. The reason for this is that the numerous physical processes associated with MI coupling occur over multiple spatial lengths and temporal scales. One typical example of MI coupling is large scale ring current (RC) electrodynamic coupling that includes calculation of the magnetospheric electric field that is consistent with the ring current (RC) distribution. A general scheme for numerical simulation of such large-scale magnetosphere-ionosphere coupling processes has been presented earlier in many works. The mathematical formulation of these models are based on "modified frozen-in flux theorem" for an ensemble of adiabatically drifting particles in the magnetosphere. By tracking the flow of particles through the inner magnetosphere, the bounce-averaged phase space density of the hot ions and electrons can be reconstructed and the magnetospheric electric field can be calculated such that it is consistent with the particle distribution in the magnetosphere. The new a self-consistent ring current model has been developed that couples electron and ion magnetospheric dynamics with calculation of electric field. Two new features were taken into account in addition to the RC ions, we solve an electron kinetic equation in our model, self-consistently including these results in the solution. Second, using different analytical relationships, we calculate the height integrated ionospheric conductances as the function of precipitated high energy magnetospheric electrons and ions as produced by our model. This results in fundamental changes to the electric potential pattern in the inner magnetosphere, with a smaller Alfven boundary than previous potential formulations would predict but one consistent with recent satellite observations. This leads to deeper penetration of the plasma sheet ions and electrons into the inner magnetosphere and more effective ring current ions and electron energization.

  15. Stochastic dynamics of coupled active particles in an overdamped limit

    NASA Astrophysics Data System (ADS)

    Ann, Minjung; Lee, Kong-Ju-Bock; Park, Pyeong Jun

    2015-10-01

    We introduce a model for Brownian dynamics of coupled active particles in an overdamped limit. Our system consists of several identical active particles and one passive particle. Each active particle is elastically coupled to the passive particle and there is no direct coupling among the active particles. We investigate the dynamics of the system with respect to the number of active particles, viscous friction, and coupling between the active and passive particles. For this purpose, we consider an intracellular transport process as an application of our model and perform a Brownian dynamics simulation using realistic parameters for processive molecular motors such as kinesin-1. We determine an adequate energy conversion function for molecular motors and study the dynamics of intracellular transport by multiple motors. The results show that the average velocity of the coupled system is not affected by the number of active motors and that the stall force increases linearly as the number of motors increases. Our results are consistent with well-known experimental observations. We also examine the effects of coupling between the motors and the cargo, as well as of the spatial distribution of the motors around the cargo. Our model might provide a physical explanation of the cooperation among active motors in the cellular transport processes.

  16. Exploring the Influence of Topography on Belowground C Processes Using a Coupled Hydrologic-Biogeochemical Model

    NASA Astrophysics Data System (ADS)

    Shi, Y.; Davis, K. J.; Eissenstat, D. M.; Kaye, J. P.; Duffy, C.; Yu, X.; He, Y.

    2014-12-01

    Belowground carbon processes are affected by soil moisture and soil temperature, but current biogeochemical models are 1-D and cannot resolve topographically driven hill-slope soil moisture patterns, and cannot simulate the nonlinear effects of soil moisture on carbon processes. Coupling spatially-distributed physically-based hydrologic models with biogeochemical models may yield significant improvements in the representation of topographic influence on belowground C processes. We will couple the Flux-PIHM model to the Biome-BGC (BBGC) model. Flux-PIHM is a coupled physically-based land surface hydrologic model, which incorporates a land-surface scheme into the Penn State Integrated Hydrologic Model (PIHM). The land surface scheme is adapted from the Noah land surface model. Because PIHM is capable of simulating lateral water flow and deep groundwater, Flux-PIHM is able to represent the link between groundwater and the surface energy balance, as well as the land surface heterogeneities caused by topography. The coupled Flux-PIHM-BBGC model will be tested at the Susquehanna/Shale Hills critical zone observatory (SSHCZO). The abundant observations, including eddy covariance fluxes, soil moisture, groundwater level, sap flux, stream discharge, litterfall, leaf area index, above ground carbon stock, and soil carbon efflux, make SSHCZO an ideal test bed for the coupled model. In the coupled model, each Flux-PIHM model grid will couple a BBGC cell. Flux-PIHM will provide BBGC with soil moisture and soil temperature information, while BBGC provides Flux-PIHM with leaf area index. Preliminary results show that when Biome- BGC is driven by PIHM simulated soil moisture pattern, the simulated soil carbon is clearly impacted by topography.

  17. Search for t Z' associated production induced by t c Z' couplings at the LHC

    NASA Astrophysics Data System (ADS)

    Hou, Wei-Shu; Kohda, Masaya; Modak, Tanmoy

    2017-07-01

    The P5' and RK anomalies, recently observed by the LHCb Collaboration in B →K(*) transitions, may indicate the existence of a new Z' boson, which may arise from gauged Lμ-Lτ symmetry. Flavor-changing neutral current Z' couplings, such as t c Z', can be induced by the presence of extra vector-like quarks. In this paper we study the LHC signatures of the induced right-handed t c Z' coupling that is inspired by, but not directly linked to, the B →K(*) anomalies. The specific processes studied are c g →t Z' and its conjugate process, each followed by Z'→μ+μ-. By constructing an effective theory for the t c Z' coupling, we first explore in a model-independent way the discovery potential of such a Z' at the 14 TeV LHC with 300 and 3000 fb-1 integrated luminosities. We then reinterpret the model-independent results within the gauged Lμ-Lτ model. In connection with t c Z', the model also implies the existence of a flavor-conserving c c Z' coupling, which can drive the c c ¯→Z'→μ+μ- process. Our study shows that existing LHC results for dimuon resonance searches already constrain the c c Z' coupling, and that the Z' can be discovered in either or both of the c g →t Z' and c c ¯→Z' processes. We further discuss the sensitivity to the left-handed t c Z' coupling and find that the coupling values favored by the B →K(*) anomalies lie slightly below the LHC discovery reach even with 3000 fb-1 .

  18. Couples Therapy: An Adlerian Perspective.

    ERIC Educational Resources Information Center

    Kern, Roy M.; And Others

    This book provides therapists with a theoretical base from which to view the dynamics of couples' relationships and the therapeutic process. The book's eight chapters are organized into three parts: "Adlerian Theory and Process"; "Therapeutic Interventions"; and "Special Issues in Marital Therapy." Chapter 1, Adlerian…

  19. Gene regulation and noise reduction by coupling of stochastic processes

    NASA Astrophysics Data System (ADS)

    Ramos, Alexandre F.; Hornos, José Eduardo M.; Reinitz, John

    2015-02-01

    Here we characterize the low-noise regime of a stochastic model for a negative self-regulating binary gene. The model has two stochastic variables, the protein number and the state of the gene. Each state of the gene behaves as a protein source governed by a Poisson process. The coupling between the two gene states depends on protein number. This fact has a very important implication: There exist protein production regimes characterized by sub-Poissonian noise because of negative covariance between the two stochastic variables of the model. Hence the protein numbers obey a probability distribution that has a peak that is sharper than those of the two coupled Poisson processes that are combined to produce it. Biochemically, the noise reduction in protein number occurs when the switching of the genetic state is more rapid than protein synthesis or degradation. We consider the chemical reaction rates necessary for Poisson and sub-Poisson processes in prokaryotes and eucaryotes. Our results suggest that the coupling of multiple stochastic processes in a negative covariance regime might be a widespread mechanism for noise reduction.

  20. Gene regulation and noise reduction by coupling of stochastic processes

    PubMed Central

    Hornos, José Eduardo M.; Reinitz, John

    2015-01-01

    Here we characterize the low noise regime of a stochastic model for a negative self-regulating binary gene. The model has two stochastic variables, the protein number and the state of the gene. Each state of the gene behaves as a protein source governed by a Poisson process. The coupling between the the two gene states depends on protein number. This fact has a very important implication: there exist protein production regimes characterized by sub-Poissonian noise because of negative covariance between the two stochastic variables of the model. Hence the protein numbers obey a probability distribution that has a peak that is sharper than those of the two coupled Poisson processes that are combined to produce it. Biochemically, the noise reduction in protein number occurs when the switching of genetic state is more rapid than protein synthesis or degradation. We consider the chemical reaction rates necessary for Poisson and sub-Poisson processes in prokaryotes and eucaryotes. Our results suggest that the coupling of multiple stochastic processes in a negative covariance regime might be a widespread mechanism for noise reduction. PMID:25768447

  1. Gene regulation and noise reduction by coupling of stochastic processes.

    PubMed

    Ramos, Alexandre F; Hornos, José Eduardo M; Reinitz, John

    2015-02-01

    Here we characterize the low-noise regime of a stochastic model for a negative self-regulating binary gene. The model has two stochastic variables, the protein number and the state of the gene. Each state of the gene behaves as a protein source governed by a Poisson process. The coupling between the two gene states depends on protein number. This fact has a very important implication: There exist protein production regimes characterized by sub-Poissonian noise because of negative covariance between the two stochastic variables of the model. Hence the protein numbers obey a probability distribution that has a peak that is sharper than those of the two coupled Poisson processes that are combined to produce it. Biochemically, the noise reduction in protein number occurs when the switching of the genetic state is more rapid than protein synthesis or degradation. We consider the chemical reaction rates necessary for Poisson and sub-Poisson processes in prokaryotes and eucaryotes. Our results suggest that the coupling of multiple stochastic processes in a negative covariance regime might be a widespread mechanism for noise reduction.

  2. The Experience of Couples in the Process of Treatment of Pathological Gambling: Couple vs. Individual Therapy.

    PubMed

    Tremblay, Joël; Dufour, Magali; Bertrand, Karine; Blanchette-Martin, Nadine; Ferland, Francine; Savard, Annie-Claude; Saint-Jacques, Marianne; Côté, Mélissa

    2017-01-01

    Context: Couple treatment for pathological gambling is an innovative strategy. There are some results supporting its potential effectiveness, but little is known about the subjective experiences of the participants. Objective: The aim of this article is to document the experiences of gamblers and their partners participating in one of two treatments, namely individual or couple. Method: In a study aiming to evaluate the efficacy of the Integrative Couple Treatment for Pathological Gambling (ICT-PG), couples who were entering specialized treatment for the addiction of one member who was a pathological gambler were randomly assigned to individual or ICT-PG. Nine months after their admission to treatment, gamblers and partners ( n = 21 couples; n = 13 ICT-PG; n = 8 individual treatment) were interviewed in semi-structured interviews. A sequenced thematization method was used to extract the major themes. Results: This study highlighted five major themes in the therapeutic process noted by the gamblers and their partners mainly after the couple treatment but also partly through the individual therapy. These were: (1) the gamblers' anxiety about having to reveal their gambling problems in couple therapy; (2) the wish to develop a mutually beneficial understanding of gambling and its effects on the partners in the two types of treatments; (3) the transformation of negative attributions through a more effective intra-couple communication fostered by the couple therapy; (4) the partners' contribution to changes in gambling behavior and prevention of relapses, which were both better supported in couple therapy; and (5) the interpersonal nature of gambling and its connections with the couples' relationship. However, gamblers who were in individual treatment were more likely to mention that their partners' involvement was not necessary. Participants likewise made a few recommendations about the conditions underlying the choice of one treatment method or the other. Discussion: Participants reported satisfaction with both treatment models, but their experience was more positive in couple treatment. Complementary benefits emerged from each form of treatment, which points to future treatments involving both types. Future research should explore both the couple processes associated with attempts to stop pathological gambling and the various ways of involving partners in the gamblers' treatment.

  3. The Experience of Couples in the Process of Treatment of Pathological Gambling: Couple vs. Individual Therapy

    PubMed Central

    Tremblay, Joël; Dufour, Magali; Bertrand, Karine; Blanchette-Martin, Nadine; Ferland, Francine; Savard, Annie-Claude; Saint-Jacques, Marianne; Côté, Mélissa

    2018-01-01

    Context: Couple treatment for pathological gambling is an innovative strategy. There are some results supporting its potential effectiveness, but little is known about the subjective experiences of the participants. Objective: The aim of this article is to document the experiences of gamblers and their partners participating in one of two treatments, namely individual or couple. Method: In a study aiming to evaluate the efficacy of the Integrative Couple Treatment for Pathological Gambling (ICT-PG), couples who were entering specialized treatment for the addiction of one member who was a pathological gambler were randomly assigned to individual or ICT-PG. Nine months after their admission to treatment, gamblers and partners (n = 21 couples; n = 13 ICT-PG; n = 8 individual treatment) were interviewed in semi-structured interviews. A sequenced thematization method was used to extract the major themes. Results: This study highlighted five major themes in the therapeutic process noted by the gamblers and their partners mainly after the couple treatment but also partly through the individual therapy. These were: (1) the gamblers' anxiety about having to reveal their gambling problems in couple therapy; (2) the wish to develop a mutually beneficial understanding of gambling and its effects on the partners in the two types of treatments; (3) the transformation of negative attributions through a more effective intra-couple communication fostered by the couple therapy; (4) the partners' contribution to changes in gambling behavior and prevention of relapses, which were both better supported in couple therapy; and (5) the interpersonal nature of gambling and its connections with the couples' relationship. However, gamblers who were in individual treatment were more likely to mention that their partners' involvement was not necessary. Participants likewise made a few recommendations about the conditions underlying the choice of one treatment method or the other. Discussion: Participants reported satisfaction with both treatment models, but their experience was more positive in couple treatment. Complementary benefits emerged from each form of treatment, which points to future treatments involving both types. Future research should explore both the couple processes associated with attempts to stop pathological gambling and the various ways of involving partners in the gamblers' treatment. PMID:29416520

  4. Magnetization switching behavior with competing anisotropies in epitaxial Co3FeN /MnN exchange-coupled bilayers

    NASA Astrophysics Data System (ADS)

    Hajiri, T.; Yoshida, T.; Jaiswal, S.; Filianina, M.; Borie, B.; Ando, H.; Asano, H.; Zabel, H.; Kläui, M.

    2016-11-01

    We report unusual magnetization switching processes and angular-dependent exchange bias effects in fully epitaxial Co3FeN /MnN bilayers, where magnetocrystalline anisotropy and exchange coupling compete, probed by longitudinal and transverse magneto-optic Kerr effect (MOKE) magnetometry. The MOKE loops show multistep jumps corresponding to the nucleation and propagation of 90∘ domain walls in as-grown bilayers. By inducing exchange coupling, we confirm changes of the magnetization switching process due to the unidirectional anisotropy field of the exchange coupling. Taking into account the experimentally obtained values of the fourfold magnetocrystalline anisotropy, the unidirectional anisotropy field, the exchange-coupling constant, and the uniaxial anisotropy including its direction, the calculated angular-dependent exchange bias reproduces the experimental results. These results demonstrate the essential role of the competition between magnetocrystalline anisotropy and exchange coupling for understanding and tailoring exchange-coupling phenomena usable for engineering switching in fully epitaxial bilayers made of tailored materials.

  5. How Significant is the Slope of the Sea-side Boundary for Modelling Seawater Intrusion in Coastal Aquifers?

    NASA Astrophysics Data System (ADS)

    Walther, Marc; Graf, Thomas; Kolditz, Olaf; Lield, Rudolf; Post, Vincent

    2017-04-01

    A large number of people live in coastal areas using the available water resources, which in (semi-)arid regions are often taken from groundwater resources as the only sufficient source. Compared to surface water, these usually provide a safe water supply due to the remediation and retention capabilities of the subsurface, their high yield, and potentially longer term stability. With a water withdrawal from a coastal aquifer, coastal water management, however, has to ensure that seawater intrusion is retained in order to keep the water salinity at an acceptable level for all water users (e.g. agriculture, industry, households). Besides monitoring of water levels and saline intrusion, it has become a common practice to use numerical modeling for evaluating the coastal water resources and projecting future scenarios. When applying a model, it is necessary for the simplifications implied during the conceptualization of the setup to include the relevant processes (here variable-density flow and mass transport) and sensitive parameters (for a steady state commonly hydraulic conductivity, density ratio, dispersivity). Additionally, the model's boundary conditions are essential to the simulation results. In order to reduce the number of elements, and thus, the computational burden, one simplification that is made in most regional scale saltwater intrusion applications, is to represent the sea-side boundary with a vertical geometry, contrary to the natural conditions, that usually show a very shallow decent of the interface between the aquifer and the open seawater. We use the scientific open-source modeling toolbox OpenGeoSys [1] to quantify the influence of this simplification on the saline intrusion, submarine groundwater discharge, and groundwater residence times. Using an ensemble of different shelf shapes for a steady state setup, we identified a significant dependency of saline intrusion length on the geometric parameters of the sea-side boundary. Results show that the additional effort to implement a sloped sea-side boundary may have a significant impact for assessing coastal water resources, and its influence may be of a similar magnitude as that of other common uncertainties in numerical modelling. Literature [1] Kolditz, O., Bauer, S., Bilke, L., Böttcher, N., Delfs, J. O., Fischer, T., Görke, U. J., et al. (2012). OpenGeoSys: an open-source initiative for numerical simulation of thermo-hydro-mechanical/chemical (THM/C) processes in porous media. Environmental Earth Sciences, 67(2), 589-599. doi:10.1007/s12665-012-1546-x

  6. Sensitivity of measurement-based purification processes to inner interactions

    NASA Astrophysics Data System (ADS)

    Militello, Benedetto; Napoli, Anna

    2018-02-01

    The sensitivity of a repeated measurement-based purification scheme to additional undesired couplings is analyzed, focusing on the very simple and archetypical system consisting of two two-level systems interacting with a repeatedly measured one. Several regimes are considered and in the strong coupling limit (i.e., when the coupling constant of the undesired interaction is very large) the occurrence of a quantum Zeno effect is proven to dramatically jeopardize the efficiency of the purification process.

  7. A Mathematical Model for Storage and Recall of Images using Targeted Synchronization of Coupled Maps.

    PubMed

    Palaniyandi, P; Rangarajan, Govindan

    2017-08-21

    We propose a mathematical model for storage and recall of images using coupled maps. We start by theoretically investigating targeted synchronization in coupled map systems wherein only a desired (partial) subset of the maps is made to synchronize. A simple method is introduced to specify coupling coefficients such that targeted synchronization is ensured. The principle of this method is extended to storage/recall of images using coupled Rulkov maps. The process of adjusting coupling coefficients between Rulkov maps (often used to model neurons) for the purpose of storing a desired image mimics the process of adjusting synaptic strengths between neurons to store memories. Our method uses both synchronisation and synaptic weight modification, as the human brain is thought to do. The stored image can be recalled by providing an initial random pattern to the dynamical system. The storage and recall of the standard image of Lena is explicitly demonstrated.

  8. More than One Way to Get There: Pathways of Change in Coparenting Conflict after a Preventive Intervention.

    PubMed

    Epstein, Kenneth; Pruett, Marsha Kline; Cowan, Philip; Cowan, Carolyn; Pradhan, Lisa; Mah, Elisabeth; Pruett, Kyle

    2015-12-01

    This study explored pathways of change in the levels of conflict couples experienced after Supporting Father Involvement, an evidence-based, prevention-oriented couples and parenting intervention that included a diverse low-income and working class group of participants. Pathways of change were examined for couples with baseline conflict scores that were initially low, medium, and high. The growth mixture model analysis found that the best-fitting model for change in couples' conflict was represented by three distinctly different change patterns. The intervention was most successful for High-Conflict couples. This finding contributes to a growing literature examining variations in how relationships change over time and the process of change, especially for couples in distress. This study supports further investigation into the impact and costs associated with universal interventions versus those that target specific groups of higher risk families. © 2015 Family Process Institute.

  9. Towards a Fine-Resolution Global Coupled Climate System for Prediction on Decadal/Centennial Scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McClean, Julie L.

    The over-arching goal of this project was to contribute to the realization of a fully coupled fine resolution Earth System Model simulation in which a weather-scale atmosphere is coupled to an ocean in which mesoscale eddies are largely resolved. Both a prototype fine-resolution fully coupled ESM simulation and a first-ever multi-decadal forced fine-resolution global coupled ocean/ice simulation were configured, tested, run, and analyzed as part of this grant. Science questions focused on the gains from the use of high horizontal resolution, particularly in the ocean and sea-ice, with respect to climatically important processes. Both these fine resolution coupled ocean/sea icemore » and fully-coupled simulations and precedent stand-alone eddy-resolving ocean and eddy-permitting coupled ocean/ice simulations were used to explore the high resolution regime. Overall, these studies showed that the presence of mesoscale eddies significantly impacted mixing processes and the global meridional overturning circulation in the ocean simulations. Fourteen refereed publications and a Ph.D. dissertation resulted from this grant.« less

  10. Using Bayesian Nonparametric Hidden Semi-Markov Models to Disentangle Affect Processes during Marital Interaction

    PubMed Central

    Griffin, William A.; Li, Xun

    2016-01-01

    Sequential affect dynamics generated during the interaction of intimate dyads, such as married couples, are associated with a cascade of effects—some good and some bad—on each partner, close family members, and other social contacts. Although the effects are well documented, the probabilistic structures associated with micro-social processes connected to the varied outcomes remain enigmatic. Using extant data we developed a method of classifying and subsequently generating couple dynamics using a Hierarchical Dirichlet Process Hidden semi-Markov Model (HDP-HSMM). Our findings indicate that several key aspects of existing models of marital interaction are inadequate: affect state emissions and their durations, along with the expected variability differences between distressed and nondistressed couples are present but highly nuanced; and most surprisingly, heterogeneity among highly satisfied couples necessitate that they be divided into subgroups. We review how this unsupervised learning technique generates plausible dyadic sequences that are sensitive to relationship quality and provide a natural mechanism for computational models of behavioral and affective micro-social processes. PMID:27187319

  11. Pulse transmission receiver with higher-order time derivative pulse generator

    DOEpatents

    Dress, Jr., William B.; Smith, Stephen F.

    2003-08-12

    Systems and methods for pulse-transmission low-power communication modes are disclosed. A pulse transmission receiver includes: a front-end amplification/processing circuit; a synchronization circuit coupled to the front-end amplification/processing circuit; a clock coupled to the synchronization circuit; a trigger signal generator coupled to the clock; and at least one higher-order time derivative pulse generator coupled to the trigger signal generator. The systems and methods significantly reduce lower-frequency emissions from pulse transmission spread-spectrum communication modes, which reduces potentially harmful interference to existing radio frequency services and users and also simultaneously permit transmission of multiple data bits by utilizing specific pulse shapes.

  12. Modeling of inter-neuronal coupling medium and its impact on neuronal synchronization

    PubMed Central

    Iqbal, Muhammad; Hong, Keum-Shik

    2017-01-01

    In this paper, modeling of the coupling medium between two neurons, the effects of the model parameters on the synchronization of those neurons, and compensation of coupling strength deficiency in synchronization are studied. Our study exploits the inter-neuronal coupling medium and investigates its intrinsic properties in order to get insight into neuronal-information transmittance and, there from, brain-information processing. A novel electrical model of the coupling medium that represents a well-known RLC circuit attributable to the coupling medium’s intrinsic resistive, inductive, and capacitive properties is derived. Surprisingly, the integration of such properties reveals the existence of a natural three-term control strategy, referred to in the literature as the proportional integral derivative (PID) controller, which can be responsible for synchronization between two neurons. Consequently, brain-information processing can rely on a large number of PID controllers based on the coupling medium properties responsible for the coherent behavior of neurons in a neural network. Herein, the effects of the coupling model (or natural PID controller) parameters are studied and, further, a supervisory mechanism is proposed that follows a learning and adaptation policy based on the particle swarm optimization algorithm for compensation of the coupling strength deficiency. PMID:28486505

  13. Theoretical Characterization of Charge Transport in Chromia (α-Cr2O3)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iordanova, Nellie I.; Dupuis, Michel; Rosso, Kevin M.

    2005-08-15

    Transport of conduction electrons and holes through the lattice of ?-Cr2O3 (chromia) is modeled as a valence alternation of chromium cations using ab initio electronic structure calculations and electron transfer theory. In the context of the small polaron model, a cluster approach was used to compute quantities controlling the mobility of localized electrons and holes, i.e. the reorganization energy and the electronic coupling matrix element that enter Marcus? theory. The calculation of the electronic coupling followed the Generalized Mulliken-Hush approach and the quasi-diabatic method using the complete active space self-consistent field (CASSCF) method. Our findings indicate that hole mobility ismore » more than three orders of magnitude larger than electron mobility in both (001) and [001] lattice directions. The difference arises mainly from the larger internal reorganization energy calculated for electron transport relative to hole transport processes while electronic couplings have similar magnitudes. The much larger hole mobility vs electron mobility in ?-Cr2O3 is in contrast to similar hole and electron mobility in hematite ?-Fe2O3 previously calculated. Our calculations also indicate that the electronic coupling for all charge transfer processes of interest is smaller than for the corresponding processes in hematite. This variation is attributed to weaker interaction between the metal 3d states and the O(2p) states in chromia than in hematite, leading to smaller overlap between the charge transfer donor and acceptor wavefunctions and smaller super-exchange coupling in chromia. Nevertheless, the weaker coupling in chromia is still sufficiently large to suggest that charge transport processes in chromia are adiabatic in nature. The electronic coupling is found to depend on both the superexchange interaction through the bridging oxygen atoms and the d-shell electron spin coupling within the Cr-Cr donor-acceptor pair, while the reorganization energy is essentially independent of the electron spin coupling.« less

  14. Theoretical characterization of charge transport in chromia (α-Cr2O3)

    NASA Astrophysics Data System (ADS)

    Iordanova, N.; Dupuis, M.; Rosso, K. M.

    2005-08-01

    Transport of conduction electrons and holes through the lattice of α-Cr2O3 (chromia) is modeled as a valence alternation of chromium cations using ab initio electronic structure calculations and electron-transfer theory. In the context of the small polaron model, a cluster approach was used to compute quantities controlling the mobility of localized electrons and holes, i.e., the reorganization energy and the electronic coupling matrix element that enter Marcus' theory. The calculation of the electronic coupling followed the generalized Mulliken-Hush approach using the complete active space self-consistent-field (CASSCF) method and the quasidiabatic method. Our findings indicate that hole mobility is more than three orders of magnitude larger than electron mobility in both (001) and [001] lattice directions. The difference arises mainly from the larger internal reorganization energy calculated for electron-transport relative to hole-transport processes while electronic couplings have similar magnitudes. The much larger hole mobility versus electron mobility in α-Cr2O3 is in contrast to similar hole and electron mobilities in hematite α-Fe2O3 previously calculated. Our calculations also indicate that the electronic coupling for all charge-transfer processes of interest is smaller than for the corresponding processes in hematite. This variation is attributed to the weaker interaction between the metal 3d states and the O(2p ) states in chromia than in hematite, leading to a smaller overlap between the charge-transfer donor and acceptor wave functions and smaller superexchange coupling in chromia. Nevertheless, the weaker coupling in chromia is still sufficiently large to suggest that charge-transport processes in chromia are adiabatic in nature. The electronic coupling is found to depend on both the superexchange interaction through the bridging oxygen atoms and the d-shell electron-spin coupling within the Cr-Cr donor-acceptor pair, while the reorganization energy is essentially independent of the electron-spin coupling.

  15. Magnetosphere-Ionosphere-Thermosphere Response to Quasi-periodic Oscillations in Solar Wind Driving Conditions

    NASA Astrophysics Data System (ADS)

    Liu, J.; Wang, W.; Zhang, B.; Huang, C.

    2017-12-01

    Periodical oscillations with periods of several tens of minutes to several hours are commonly seen in the Alfven wave embedded in the solar wind. It is yet to be known how the solar wind oscillation frequency modulates the solar wind-magnetosphere-ionosphere coupled system. Utilizing the Coupled Magnetosphere-Ionosphere-Thermosphere Model (CMIT), we analyzed the magnetosphere-ionosphere-thermosphere system response to IMF Bz oscillation with periods of 10, 30, and 60 minutes from the perspective of energy budget and electrodynamic coupling processes. Our results indicate that solar wind energy coupling efficiency depends on IMF Bz oscillation frequency; energy coupling efficiency, represented by the ratio between globally integrated Joule heating and Epsilon function, is higher for lower frequency IMF Bz oscillation. Ionospheric Joule heating dissipation not only depends on the direct solar wind driven process but also is affected by the intrinsic nature of magnetosphere (i.e. loading-unloading process). In addition, ionosphere acts as a low-pass filter and tends to filter out very high-frequency solar wind oscillation (i.e. shorter than 10 minutes). Ionosphere vertical ion drift is most sensitive to IMF Bz oscillation compared to hmF2, and NmF2, while NmF2 is less sensitive. This can account for not synchronized NmF2 and hmF2 response to penetration electric fields in association with fast solar wind changes. This research highlights the critical role of IMF Bz oscillation frequency in constructing energy coupling function and understanding electrodynamic processes in the coupled solar wind-magnetosphere-ionosphere system.

  16. Coupling of snow and permafrost processes using the Basic Modeling Interface (BMI)

    NASA Astrophysics Data System (ADS)

    Wang, K.; Overeem, I.; Jafarov, E. E.; Piper, M.; Stewart, S.; Clow, G. D.; Schaefer, K. M.

    2017-12-01

    We developed a permafrost modeling tool based by implementing the Kudryavtsev empirical permafrost active layer depth model (the so-called "Ku" component). The model is specifically set up to have a basic model interface (BMI), which enhances the potential coupling to other earth surface processes model components. This model is accessible through the Web Modeling Tool in Community Surface Dynamics Modeling System (CSDMS). The Kudryavtsev model has been applied for entire Alaska to model permafrost distribution at high spatial resolution and model predictions have been verified by Circumpolar Active Layer Monitoring (CALM) in-situ observations. The Ku component uses monthly meteorological forcing, including air temperature, snow depth, and snow density, and predicts active layer thickness (ALT) and temperature on the top of permafrost (TTOP), which are important factors in snow-hydrological processes. BMI provides an easy approach to couple the models with each other. Here, we provide a case of coupling the Ku component to snow process components, including the Snow-Degree-Day (SDD) method and Snow-Energy-Balance (SEB) method, which are existing components in the hydrological model TOPOFLOW. The work flow is (1) get variables from meteorology component, set the values to snow process component, and advance the snow process component, (2) get variables from meteorology and snow component, provide these to the Ku component and advance, (3) get variables from snow process component, set the values to meteorology component, and advance the meteorology component. The next phase is to couple the permafrost component with fully BMI-compliant TOPOFLOW hydrological model, which could provide a useful tool to investigate the permafrost hydrological effect.

  17. Copper-catalyzed oxidative homo- and cross-coupling of Grignard reagents using diaziridinone.

    PubMed

    Zhu, Yingguang; Xiong, Tao; Han, Wenyong; Shi, Yian

    2014-12-05

    Transition-metal-catalyzed cross-coupling reactions are among the most powerful synthetic transformations. This paper describes an efficient copper-catalyzed homo- and cross-coupling of Grignard reagents with di-tert-butyldiaziridinone as oxidant under mild conditions, giving the coupling products in good to excellent yields. The reaction process has a broad substrate scope and is also effective for the C(sp)-C(sp(3)) coupling.

  18. "We Hardly Ever Talk about It": Emotional Responsive Attunement in Couples after a Child's Death.

    PubMed

    Hooghe, An; Rosenblatt, Paul C; Rober, Peter

    2018-03-01

    Within Western cultural traditions, the idea that parents should talk about the death of their child with each other is deeply rooted. However, across bereaved parent couples there are wide variations in communication about their grief with each other. In this study, we explored the experiences of bereaved couples related to the process of talking and not talking. We used a thematic coding approach to analyze 20 interviews with 26 bereaved parents (11 interviewed as couples, four as individuals). Four main meanings emerged out of our analysis: not talking because of the inadequacy and pointlessness of words in grief, not talking as a way to regulate emotions in daily life, not talking as an expression of a personal, intimate process, and not talking because the partner has the same loss but a different grief process. In addition, we found that the process of talking and not talking can partly be understood as an emotional responsive process on an intrapersonal and interpersonal level. In this process partners search for a bearable distance from their own grief and their partner's, and attune with their relational context. A better understanding of this process is sought in a dialectical approach, emphasizing the value of both talking and not talking in a tense relationship with each other. Implications for clinical work are described. © 2017 Family Process Institute.

  19. Supplemental Private Health Insurance and Depressive Symptoms in Older Married Couples

    ERIC Educational Resources Information Center

    Min, Meeyoung Oh; Townsend, Aloen L.; Miller, Baila; Rovine, Michael J.

    2005-01-01

    Stress process theory is applied to examine lack of supplemental private health insurance as a risk factor for depressive symptomatology among older married couples covered by Medicare. Dyadic data from 130 African-American couples and 1,429 White couples in the 1993 Asset and Health Dynamics Among the Oldest-Old Survey were analyzed using…

  20. Policy Implementation as a Loosely-Coupled Organizational Adaptation Process.

    ERIC Educational Resources Information Center

    Peterson, Vance T.

    Policy implementation in organizations has been described in the literature as a process of adaptation. A study was performed to investigate three basic linkages specified in the traditional rational adaptation paradigm during the implementation of a new budget structure in a multicampus community college district. Loose coupling between elements…

  1. Coupled numerical approach combining finite volume and lattice Boltzmann methods for multi-scale multi-physicochemical processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Li; He, Ya-Ling; Kang, Qinjun

    2013-12-15

    A coupled (hybrid) simulation strategy spatially combining the finite volume method (FVM) and the lattice Boltzmann method (LBM), called CFVLBM, is developed to simulate coupled multi-scale multi-physicochemical processes. In the CFVLBM, computational domain of multi-scale problems is divided into two sub-domains, i.e., an open, free fluid region and a region filled with porous materials. The FVM and LBM are used for these two regions, respectively, with information exchanged at the interface between the two sub-domains. A general reconstruction operator (RO) is proposed to derive the distribution functions in the LBM from the corresponding macro scalar, the governing equation of whichmore » obeys the convection–diffusion equation. The CFVLBM and the RO are validated in several typical physicochemical problems and then are applied to simulate complex multi-scale coupled fluid flow, heat transfer, mass transport, and chemical reaction in a wall-coated micro reactor. The maximum ratio of the grid size between the FVM and LBM regions is explored and discussed. -- Highlights: •A coupled simulation strategy for simulating multi-scale phenomena is developed. •Finite volume method and lattice Boltzmann method are coupled. •A reconstruction operator is derived to transfer information at the sub-domains interface. •Coupled multi-scale multiple physicochemical processes in micro reactor are simulated. •Techniques to save computational resources and improve the efficiency are discussed.« less

  2. Copper-Catalyzed Oxidative Homo- and Cross-Coupling of Grignard Reagents Using Diaziridinone

    PubMed Central

    2015-01-01

    Transition-metal-catalyzed cross-coupling reactions are among the most powerful synthetic transformations. This paper describes an efficient copper-catalyzed homo- and cross-coupling of Grignard reagents with di-tert-butyldiaziridinone as oxidant under mild conditions, giving the coupling products in good to excellent yields. The reaction process has a broad substrate scope and is also effective for the C(sp)–C(sp3) coupling. PMID:25420218

  3. Microstructure analysis in the coupling region of fiber coupler with a novel electrical micro-heater

    NASA Astrophysics Data System (ADS)

    Shuai, Cijun; Gao, Chengde; Nie, Yi; Hu, Huanlong; Peng, Shuping

    2011-12-01

    Fused-tapered fiber coupler is widely used in optical-fiber communication, optical-fiber sensor and optical signal processing. Its optical performance is mainly determined by the glass properties in the coupling region. In this study, the effect of fused biconical taper (FBT) process on glass microstructure of fiber coupler was investigated by testing the microstructure of the cross-section of coupling region. The fiber coupler is fabricated with a novel home-designed electrical heater. Our experimental results show that the boundary between fiber core and fiber cladding become vague or indistinct after FBT under transmission electron microscopy (TEM) and Ge 2+ in fiber core diffuses into fiber cladding. Crystallizations are observed in coupling region under scanning electron microscope (SEM) and microscopic infrared (IR), and the micro crystallizations become smaller with the drawing speed increasing. The wave number of fiberglass increases after FBT and it is in proportion to the drawing speed. The analysis of the microstructure in the coupling region explored the mechanism of the improvement in the performance of fiber couplers which can be used for the guidance of fabrication process.

  4. Natural Polyphenol Disposition via Coupled Metabolic Pathways

    PubMed Central

    Liu, Zhongqiu; Hu, Ming

    2009-01-01

    A major challenge associated with the development of chemopreventive polyphenols is the lack of bioavailability in vivo, which are primarily the result of coupled metabolic activities of conjugating enzymes and efflux transporters. These coupling processes are present in most of tissues and organs in mammals and are efficient for the purposes of drug metabolism, elimination and detoxification. Therefore, it was expected that these coupling processes represent a significant barrier to the oral bioavailabilities of polyphenols. In various studies of this coupling process, it was identified that various conjugating enzymes such as UGT and SULT are capable of producing very hydrophilic metabolites of polyphenols, which cannot diffuse out of the cells and needs the action of efflux transporters to pump them out of the cells. Additional studies have shown that efflux transporters such as MRP2, BCRP and OAT appear to serve as the gate keeper when there is an excess capacity to metabolize the compounds. These efflux transporters may also act as the facilitator of metabolism when there is a product/metabolite inhibition. For polyphenols, these coupled processes enable a duo recycling scheme of enteric and enterohepatic recycling, which allows the polyphenols to be reabsorbed and results in longer than expected apparent plasma half-lives for these compounds and their conjugates. Since the vast majority of polyphenols in plasma are hydrophilic conjugates, more research is needed to determine if the metabolites are active or reactive, which will help explain their mechanism of actions. PMID:17539746

  5. Reviving oscillations in coupled nonlinear oscillators.

    PubMed

    Zou, Wei; Senthilkumar, D V; Zhan, Meng; Kurths, Jürgen

    2013-07-05

    By introducing a processing delay in the coupling, we find that it can effectively annihilate the quenching of oscillation, amplitude death (AD), in a network of coupled oscillators by switching the stability of AD. It revives the oscillation in the AD regime to retain sustained rhythmic functioning of the networks, which is in sharp contrast to the propagation delay with the tendency to induce AD. This processing delay-induced phenomenon occurs both with and without the propagation delay. Further this effect is rather general from two coupled to networks of oscillators in all known scenarios that can exhibit AD, and it has a wide range of applications where sustained oscillations should be retained for proper functioning of the systems.

  6. Neural Cross-Frequency Coupling: Connecting Architectures, Mechanisms, and Functions.

    PubMed

    Hyafil, Alexandre; Giraud, Anne-Lise; Fontolan, Lorenzo; Gutkin, Boris

    2015-11-01

    Neural oscillations are ubiquitously observed in the mammalian brain, but it has proven difficult to tie oscillatory patterns to specific cognitive operations. Notably, the coupling between neural oscillations at different timescales has recently received much attention, both from experimentalists and theoreticians. We review the mechanisms underlying various forms of this cross-frequency coupling. We show that different types of neural oscillators and cross-frequency interactions yield distinct signatures in neural dynamics. Finally, we associate these mechanisms with several putative functions of cross-frequency coupling, including neural representations of multiple environmental items, communication over distant areas, internal clocking of neural processes, and modulation of neural processing based on temporal predictions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Modeling Quantum Dynamics in Multidimensional Systems

    NASA Astrophysics Data System (ADS)

    Liss, Kyle; Weinacht, Thomas; Pearson, Brett

    2017-04-01

    Coupling between different degrees-of-freedom is an inherent aspect of dynamics in multidimensional quantum systems. As experiments and theory begin to tackle larger molecular structures and environments, models that account for vibrational and/or electronic couplings are essential for interpretation. Relevant processes include intramolecular vibrational relaxation, conical intersections, and system-bath coupling. We describe a set of simulations designed to model coupling processes in multidimensional molecular systems, focusing on models that provide insight and allow visualization of the dynamics. Undergraduates carried out much of the work as part of a senior research project. In addition to the pedagogical value, the simulations allow for comparison between both explicit and implicit treatments of a system's many degrees-of-freedom.

  8. Coupling of ultrasound-assisted extraction and expanded bed adsorption for simplified medicinal plant processing and its theoretical model: extraction and enrichment of ginsenosides from Radix Ginseng as a case study.

    PubMed

    Mi, Jianing; Zhang, Min; Zhang, Hongyang; Wang, Yuerong; Wu, Shikun; Hu, Ping

    2013-02-01

    A high-efficient and environmental-friendly method for the preparation of ginsenosides from Radix Ginseng using the method of coupling of ultrasound-assisted extraction with expanded bed adsorption is described. Based on the optimal extraction conditions screened by surface response methodology, ginsenosides were extracted and adsorbed, then eluted by the two-step elution protocol. The comparison results between the coupling of ultrasound-assisted extraction with expanded bed adsorption method and conventional method showed that the former was better than the latter in both process efficiency and greenness. The process efficiency and energy efficiency of the coupling of ultrasound-assisted extraction with expanded bed adsorption method rapidly increased by 1.4-fold and 18.5-fold of the conventional method, while the environmental cost and CO(2) emission of the conventional method were 12.9-fold and 17.0-fold of the new method. Furthermore, the theoretical model for the extraction of targets was derived. The results revealed that the theoretical model suitably described the process of preparing ginsenosides by the coupling of ultrasound-assisted extraction with expanded bed adsorption system. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Managing complexity in simulations of land surface and near-surface processes

    DOE PAGES

    Coon, Ethan T.; Moulton, J. David; Painter, Scott L.

    2016-01-12

    Increasing computing power and the growing role of simulation in Earth systems science have led to an increase in the number and complexity of processes in modern simulators. We present a multiphysics framework that specifies interfaces for coupled processes and automates weak and strong coupling strategies to manage this complexity. Process management is enabled by viewing the system of equations as a tree, where individual equations are associated with leaf nodes and coupling strategies with internal nodes. A dynamically generated dependency graph connects a variable to its dependencies, streamlining and automating model evaluation, easing model development, and ensuring models aremore » modular and flexible. Additionally, the dependency graph is used to ensure that data requirements are consistent between all processes in a given simulation. Here we discuss the design and implementation of these concepts within the Arcos framework, and demonstrate their use for verification testing and hypothesis evaluation in numerical experiments.« less

  10. Low-Energy, Low-Cost Production of Ethylene by Low- Temperature Oxidative Coupling of Methane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radaelli, Guido; Chachra, Gaurav; Jonnavittula, Divya

    In this project, we develop a catalytic process technology for distributed small-scale production of ethylene by oxidative coupling of methane at low temperatures using an advanced catalyst. The Low Temperature Oxidative Coupling of Methane (LT-OCM) catalyst system is enabled by a novel chemical catalyst and process pioneered by Siluria, at private expense, over the last six years. Herein, we develop the LT-OCM catalyst system for distributed small-scale production of ethylene by identifying and addressing necessary process schemes, unit operations and process parameters that limit the economic viability and mass penetration of this technology to manufacture ethylene at small-scales. The outputmore » of this program is process concepts for small-scale LT-OCM catalyst based ethylene production, lab-scale verification of the novel unit operations adopted in the proposed concept, and an analysis to validate the feasibility of the proposed concepts.« less

  11. Multi-disciplinary coupling effects for integrated design of propulsion systems

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Singhal, S. N.

    1993-01-01

    Effective computational simulation procedures are described for modeling the inherent multi-disciplinary interactions which govern the accurate response of propulsion systems. Results are presented for propulsion system responses including multi-disciplinary coupling effects using coupled multi-discipline thermal, structural, and acoustic tailoring; an integrated system of multi-disciplinary simulators; coupled material behavior/fabrication process tailoring; sensitivities using a probabilistic simulator; and coupled materials, structures, fracture, and probabilistic behavior simulator. The results demonstrate that superior designs can be achieved if the analysis/tailoring methods account for the multi-disciplinary coupling effects. The coupling across disciplines can be used to develop an integrated coupled multi-discipline numerical propulsion system simulator.

  12. Communication devices for network-hopping communications and methods of network-hopping communications

    DOEpatents

    Buttles, John W [Idaho Falls, ID

    2011-12-20

    Wireless communication devices include a software-defined radio coupled to processing circuitry. The processing circuitry is configured to execute computer programming code. Storage media is coupled to the processing circuitry and includes computer programming code configured to cause the processing circuitry to configure and reconfigure the software-defined radio to operate on each of a plurality of communication networks according to a selected sequence. Methods for communicating with a wireless device and methods of wireless network-hopping are also disclosed.

  13. Sensitivity analysis of coupled processes and parameters on the performance of enhanced geothermal systems.

    PubMed

    Pandey, S N; Vishal, Vikram

    2017-12-06

    3-D modeling of coupled thermo-hydro-mechanical (THM) processes in enhanced geothermal systems using the control volume finite element code was done. In a first, a comparative analysis on the effects of coupled processes, operational parameters and reservoir parameters on heat extraction was conducted. We found that significant temperature drop and fluid overpressure occurred inside the reservoirs/fracture that affected the transport behavior of the fracture. The spatio-temporal variations of fracture aperture greatly impacted the thermal drawdown and consequently the net energy output. The results showed that maximum aperture evolution occurred near the injection zone instead of the production zone. Opening of the fracture reduced the injection pressure required to circulate a fixed mass of water. The thermal breakthrough and heat extraction strongly depend on the injection mass flow rate, well distances, reservoir permeability and geothermal gradients. High permeability caused higher water loss, leading to reduced heat extraction. From the results of TH vs THM process simulations, we conclude that appropriate coupling is vital and can impact the estimates of net heat extraction. This study can help in identifying the critical operational parameters, and process optimization for enhanced energy extraction from a geothermal system.

  14. Induction coupled thermomagnetic processing: A disruptive technology

    DOE PAGES

    Ahmad, Aquil; Mackiewicz-Ludtka, Gail; Pfaffmann, George; ...

    2016-06-01

    Here, one of the major goals of the U.S. Department of Energy (DoE) is to achieve energy savings with a corresponding reduction in the carbon footprint. With this in mind, the DoE sponsored the Induction Coupled Thermomagnetic Processing (ITMP) project with major partners Eaton Corp., Ajax Tocco Magnethermic, and Oak Ridge National Laboratory (ORNL) to evaluate the viability of processing metals in a strong magnetic field.

  15. The other side of cardiac Ca2+ signaling: transcriptional control

    PubMed Central

    Domínguez-Rodríguez, Alejandro; Ruiz-Hurtado, Gema; Benitah, Jean-Pierre; Gómez, Ana M.

    2012-01-01

    Ca2+ is probably the most versatile signal transduction element used by all cell types. In the heart, it is essential to activate cellular contraction in each heartbeat. Nevertheless Ca2+ is not only a key element in excitation-contraction coupling (EC coupling), but it is also a pivotal second messenger in cardiac signal transduction, being able to control processes such as excitability, metabolism, and transcriptional regulation. Regarding the latter, Ca2+ activates Ca2+-dependent transcription factors by a process called excitation-transcription coupling (ET coupling). ET coupling is an integrated process by which the common signaling pathways that regulate EC coupling activate transcription factors. Although ET coupling has been extensively studied in neurons and other cell types, less is known in cardiac muscle. Some hints have been found in studies on the development of cardiac hypertrophy, where two Ca2+-dependent enzymes are key actors: Ca2+/Calmodulin kinase II (CaMKII) and phosphatase calcineurin, both of which are activated by the complex Ca2+/Calmodulin. The question now is how ET coupling occurs in cardiomyocytes, where intracellular Ca2+ is continuously oscillating. In this focused review, we will draw attention to location of Ca2+ signaling: intranuclear ([Ca2+]n) or cytoplasmic ([Ca2+]c), and the specific ionic channels involved in the activation of cardiac ET coupling. Specifically, we will highlight the role of the 1,4,5 inositol triphosphate receptors (IP3Rs) in the elevation of [Ca2+]n levels, which are important to locally activate CaMKII, and the role of transient receptor potential channels canonical (TRPCs) in [Ca2+]c, needed to activate calcineurin (Cn). PMID:23226134

  16. Time-reversing light pulses by adiabatic coupling modulation in coupled-resonator optical waveguides

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Martini, Rainer; Search, Christopher P.

    2012-12-01

    We introduce a mechanism to time reverse short optical pulses in coupled resonator optical waveguides (CROWs) by direct modulation of the coupling coefficients between microresonators. The coupling modulation is achieved using phase modulation of a Mach-Zehnder interferometer coupler. We demonstrate that by adiabatic modulation of the coupling between resonators we can time reverse or store light pulses with bandwidths up to a few hundred GHz. The large pulse bandwidths, small device footprint, robustness with respect to resonator losses, and easy tuning process of the coupling coefficients make this method more practical than previous proposals.

  17. How parents whose children have been conceived with donor gametes make their disclosure decision: contexts, influences, and couple dynamics.

    PubMed

    Shehab, Dena; Duff, Julia; Pasch, Lauri A; Mac Dougall, Kirstin; Scheib, Joanna E; Nachtigall, Robert D

    2008-01-01

    To describe parents' disclosure decision-making process. In-depth ethnographic interviews. Participants were recruited from 11 medical infertility practices and 1 sperm bank in Northern California. One hundred forty-one married couples who had conceived a child using donor gametes (62 with donor sperm, 79 with donor oocytes). Husbands and wives were interviewed together and separately. Thematic analysis of interview transcripts. Ninety-five percent of couples came to a united disclosure decision, some "intuitively," but most after discussions influenced by the couples' local sociopolitical environment, professional opinion, counseling, religious and cultural background, family relationships, and individual personal, psychological, and ethical beliefs. Couples who were not initially in agreement ultimately came to a decision after one partner deferred to the wishes or opinions of the other. Deferral could reflect the result of a prior agreement, one partner's recognition of the other's experiential or emotional expertise, or direct persuasion. In disclosing couples, men frequently deferred to their wives, whereas, in nondisclosing couples, women always deferred to their husbands. Although the majority of couples were in initial agreement about disclosure, for many the disclosure decision was a complex, negotiated process reflecting a wide range of influences and contexts.

  18. Electromagnetic pulse (EMP) coupling codes for use with the vulnerability/lethality (VIL) taxonomy. Final report, June-October 1984

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mar, M.H.

    1995-07-01

    Based on the vulnerability Lethality (V/L) taxonomy developed by the Ballistic Vulnerability Lethality Division (BVLD) of the Survivability Lethality Analysis Directorate (SLAD), a nuclear electromagnetic pulse (EMP) coupling V/L analysis taxonomy has been developed. A nuclear EMP threat to a military system can be divided into two levels: (1) coupling to a system level through a cable, antenna, or aperture; and (2) the component level. This report will focus on the initial condition, which includes threat definition and target description, as well as the mapping process from the initial condition to damaged components state. EMP coupling analysis at a systemmore » level is used to accomplish this. This report introduces the nature of EMP threat, interaction between the threat and target, and how the output of EMP coupling analysis at a system level becomes the input to the component level analysis. Many different tools (EMP coupling codes) will be discussed for the mapping process, which correponds to the physics of phenomenology. This EMP coupling V/L taxonomy and the models identified in this report will provide the tools necessary to conduct basic V/L analysis of EMP coupling.« less

  19. Tandem reactions initiated by copper-catalyzed cross-coupling: a new strategy towards heterocycle synthesis.

    PubMed

    Liu, Yunyun; Wan, Jie-Ping

    2011-10-21

    Copper-catalyzed cross-coupling reactions which lead to the formation of C-N, C-O, C-S and C-C bonds have been recognized as one of the most useful strategies in synthetic organic chemistry. During past decades, important breakthroughs in the study of Cu-catalyzed coupling processes demonstrated that Cu-catalyzed reactions are broadly applicable to a variety of research fields related to organic synthesis. Representatively, employing these coupling transformations as key steps, a large number of tandem reactions have been developed for the construction of various heterocyclic compounds. These tactics share the advantages of high atom economics of tandem reactions as well as the broad tolerance of Cu-catalyst systems. Therefore, Cu-catalyzed C-X (X = N, O, S, C) coupling transformation-initiated tandem reactions were quickly recognized as a strategy with great potential for synthesizing heterocyclic compounds and gained worldwide attention. In this review, recent research progress in heterocycle syntheses using tandem reactions initiated by copper-catalyzed coupling transformations, including C-N, C-O, C-S as well as C-C coupling processes are summarized.

  20. Ordering Design Tasks Based on Coupling Strengths

    NASA Technical Reports Server (NTRS)

    Rogers, J. L.; Bloebaum, C. L.

    1994-01-01

    The design process associated with large engineering systems requires an initial decomposition of the complex system into modules of design tasks which are coupled through the transference of output data. In analyzing or optimizing such a coupled system, it is essential to be able to determine which interactions figure prominently enough to significantly affect the accuracy of the system solution. Many decomposition approaches assume the capability is available to determine what design tasks and interactions exist and what order of execution will be imposed during the analysis process. Unfortunately, this is often a complex problem and beyond the capabilities of a human design manager. A new feature for DeMAID (Design Manager's Aid for Intelligent Decomposition) will allow the design manager to use coupling strength information to find a proper sequence for ordering the design tasks. In addition, these coupling strengths aid in deciding if certain tasks or couplings could be removed (or temporarily suspended) from consideration to achieve computational savings without a significant loss of system accuracy. New rules are presented and two small test cases are used to show the effects of using coupling strengths in this manner.

  1. Ordering design tasks based on coupling strengths

    NASA Technical Reports Server (NTRS)

    Rogers, James L., Jr.; Bloebaum, Christina L.

    1994-01-01

    The design process associated with large engineering systems requires an initial decomposition of the complex system into modules of design tasks which are coupled through the transference of output data. In analyzing or optimizing such a coupled system, it is essential to be able to determine which interactions figure prominently enough to significantly affect the accuracy of the system solution. Many decomposition approaches assume the capability is available to determine what design tasks and interactions exist and what order of execution will be imposed during the analysis process. Unfortunately, this is often a complex problem and beyond the capabilities of a human design manager. A new feature for DeMAID (Design Manager's Aid for Intelligent Decomposition) will allow the design manager to use coupling strength information to find a proper sequence for ordering the design tasks. In addition, these coupling strengths aid in deciding if certain tasks or couplings could be removed (or temporarily suspended) from consideration to achieve computational savings without a significant loss of system accuracy. New rules are presented and two small test cases are used to show the effects of using coupling strengths in this manner.

  2. Modular System for Shelves and Coasts (MOSSCO v1.0) - a flexible and multi-component framework for coupled coastal ocean ecosystem modelling

    NASA Astrophysics Data System (ADS)

    Lemmen, Carsten; Hofmeister, Richard; Klingbeil, Knut; Hassan Nasermoaddeli, M.; Kerimoglu, Onur; Burchard, Hans; Kösters, Frank; Wirtz, Kai W.

    2018-03-01

    Shelf and coastal sea processes extend from the atmosphere through the water column and into the seabed. These processes reflect intimate interactions between physical, chemical, and biological states on multiple scales. As a consequence, coastal system modelling requires a high and flexible degree of process and domain integration; this has so far hardly been achieved by current model systems. The lack of modularity and flexibility in integrated models hinders the exchange of data and model components and has historically imposed the supremacy of specific physical driver models. We present the Modular System for Shelves and Coasts (MOSSCO; http://www.mossco.de), a novel domain and process coupling system tailored but not limited to the coupling challenges of and applications in the coastal ocean. MOSSCO builds on the Earth System Modeling Framework (ESMF) and on the Framework for Aquatic Biogeochemical Models (FABM). It goes beyond existing technologies by creating a unique level of modularity in both domain and process coupling, including a clear separation of component and basic model interfaces, flexible scheduling of several tens of models, and facilitation of iterative development at the lab and the station and on the coastal ocean scale. MOSSCO is rich in metadata and its concepts are also applicable outside the coastal domain. For coastal modelling, it contains dozens of example coupling configurations and tested set-ups for coupled applications. Thus, MOSSCO addresses the technology needs of a growing marine coastal Earth system community that encompasses very different disciplines, numerical tools, and research questions.

  3. The importance of benthic-pelagic coupling for marine ecosystem functioning in a changing world.

    PubMed

    Griffiths, Jennifer R; Kadin, Martina; Nascimento, Francisco J A; Tamelander, Tobias; Törnroos, Anna; Bonaglia, Stefano; Bonsdorff, Erik; Brüchert, Volker; Gårdmark, Anna; Järnström, Marie; Kotta, Jonne; Lindegren, Martin; Nordström, Marie C; Norkko, Alf; Olsson, Jens; Weigel, Benjamin; Žydelis, Ramunas; Blenckner, Thorsten; Niiranen, Susa; Winder, Monika

    2017-06-01

    Benthic-pelagic coupling is manifested as the exchange of energy, mass, or nutrients between benthic and pelagic habitats. It plays a prominent role in aquatic ecosystems, and it is crucial to functions from nutrient cycling to energy transfer in food webs. Coastal and estuarine ecosystem structure and function are strongly affected by anthropogenic pressures; however, there are large gaps in our understanding of the responses of inorganic nutrient and organic matter fluxes between benthic habitats and the water column. We illustrate the varied nature of physical and biological benthic-pelagic coupling processes and their potential sensitivity to three anthropogenic pressures - climate change, nutrient loading, and fishing - using the Baltic Sea as a case study and summarize current knowledge on the exchange of inorganic nutrients and organic material between habitats. Traditionally measured benthic-pelagic coupling processes (e.g., nutrient exchange and sedimentation of organic material) are to some extent quantifiable, but the magnitude and variability of biological processes are rarely assessed, preventing quantitative comparisons. Changing oxygen conditions will continue to have widespread effects on the processes that govern inorganic and organic matter exchange among habitats while climate change and nutrient load reductions may have large effects on organic matter sedimentation. Many biological processes (predation, bioturbation) are expected to be sensitive to anthropogenic drivers, but the outcomes for ecosystem function are largely unknown. We emphasize how improved empirical and experimental understanding of benthic-pelagic coupling processes and their variability are necessary to inform models that can quantify the feedbacks among processes and ecosystem responses to a changing world. © 2017 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  4. Theory of a Traveling Wave Feed for a Planar Slot Array Antenna

    NASA Technical Reports Server (NTRS)

    Rengarajan, Sembiam

    2012-01-01

    Planar arrays of waveguide-fed slots have been employed in many radar and remote sensing applications. Such arrays are designed in the standing wave configuration because of high efficiency. Traveling wave arrays can produce greater bandwidth at the expense of efficiency due to power loss in the load or loads. Traveling wave planar slot arrays may be designed with a long feed waveguide consisting of centered-inclined coupling slots. The feed waveguide is terminated in a matched load, and the element spacing in the feed waveguide is chosen to produce a beam squinted from the broadside. The traveling wave planar slot array consists of a long feed waveguide containing resonant-centered inclined coupling slots in the broad wall, coupling power into an array of stacked radiating waveguides orthogonal to it. The radiating waveguides consist of longitudinal offset radiating slots in a standing wave configuration. For the traveling wave feed of a planar slot array, one has to design the tilt angle and length of each coupling slot such that the amplitude and phase of excitation of each radiating waveguide are close to the desired values. The coupling slot spacing is chosen for an appropriate beam squint. Scattering matrix parameters of resonant coupling slots are used in the design process to produce appropriate excitations of radiating waveguides with constraints placed only on amplitudes. Since the radiating slots in each radiating waveguide are designed to produce a certain total admittance, the scattering (S) matrix of each coupling slot is reduced to a 2x2 matrix. Elements of each 2x2 S-matrix and the amount of coupling into the corresponding radiating waveguide are expressed in terms of the element S11. S matrices are converted into transmission (T) matrices, and the T matrices are multiplied to cascade the coupling slots and waveguide sections, starting from the load end and proceeding towards the source. While the use of non-resonant coupling slots may provide an additional degree of freedom in the design, resonant coupling slots simplify the design process. The amplitude of the wave going to the load is set at unity. The S11 parameter, r of the coupling slot closest to the load, is assigned an arbitrary value. A larger value of r will reduce the power dissipated in the load while increasing the reflection coefficient at the input port. It is now possible to obtain the excitation of the radiating waveguide closest to the load and the coefficients of the wave incident and reflected at the input port of this coupling slot. The next coupling slot parameter, r , is chosen to realize the excitation of that radiating waveguide. One continues this process moving towards the source, until all the coupling slot parameters r and hence the S11 parameter of the 4-port coupler, r, are known for each coupling slot. The goal is to produce the desired array aperture distribution in the feed direction. From an interpolation of the computed moment method data for the slot parameters, all the coupling slot tilt angles and lengths are obtained. From the excitations of the radiating waveguides computed from the coupling values, radiating slot parameters may be obtained so as to attain the desired total normalized slot admittances. This process yields the radiating slot parameters, offsets, and lengths. The design is repeated by choosing different values of r for the last coupling slot until the percentage of power dissipated in the load and the input reflection coefficient values are satisfactory. Numerical results computed for the radiation pattern, the tilt angles and lengths of coupling slots, and excitation phases of the radiating waveguides, are presented for an array with uniform amplitude excitation. The design process has been validated using computer simulations. This design procedure is valid for non-uniform amplitude excitations as well.

  5. Understanding Coupled Earth-Surface Processes through Experiments and Models (Invited)

    NASA Astrophysics Data System (ADS)

    Overeem, I.; Kim, W.

    2013-12-01

    Traditionally, both numerical models and experiments have been purposefully designed to ';isolate' singular components or certain processes of a larger mountain to deep-ocean interconnected source-to-sink (S2S) transport system. Controlling factors driven by processes outside of the domain of immediate interest were treated and simplified as input or as boundary conditions. Increasingly, earth surface processes scientists appreciate feedbacks and explore these feedbacks with more dynamically coupled approaches to their experiments and models. Here, we discuss key concepts and recent advances made in coupled modeling and experimental setups. In addition, we emphasize challenges and new frontiers to coupled experiments. Experiments have highlighted the important role of self-organization; river and delta systems do not always need to be forced by external processes to change or develop characteristic morphologies. Similarly modeling f.e. has shown that intricate networks in tidal deltas are stable because of the interplay between river avulsions and the tidal current scouring with both processes being important to develop and maintain the dentritic networks. Both models and experiment have demonstrated that seemingly stable systems can be perturbed slightly and show dramatic responses. Source-to-sink models were developed for both the Fly River System in Papua New Guinea and the Waipaoa River in New Zealand. These models pointed to the importance of upstream-downstream effects and enforced our view of the S2S system as a signal transfer and dampening conveyor belt. Coupled modeling showed that deforestation had extreme effects on sediment fluxes draining from the catchment of the Waipaoa River in New Zealand, and that this increase in sediment production rapidly shifted the locus of offshore deposition. The challenge in designing coupled models and experiments is both technological as well as intellectual. Our community advances to make numerical model coupling more straightforward through common interfaces and standardization of time-stepping, model domains and model parameters. At the same time major steps forward require an interdisciplinary approach, wherein the source to sink system contains ecological feedbacks and human actors.

  6. A global view on the Higgs self-coupling at lepton colliders

    DOE PAGES

    Di Vita, Stefano; Durieux, Gauthier; Grojean, Christophe; ...

    2018-02-28

    We perform a global effective-field-theory analysis to assess the precision on the determination of the Higgs trilinear self-coupling at future lepton colliders. Two main scenarios are considered, depending on whether the center-of-mass energy of the colliders is sufficient or not to access Higgs pair production processes. Low-energy machines allow for ~40% precision on the extraction of the Higgs trilinear coupling through the exploitation of next-to-leading-order effects in single Higgs measurements, provided that runs at both 240/250 GeV and 350 GeV are available with luminosities in the few attobarns range. A global fit, including possible deviations in other SM couplings, ismore » essential in this case to obtain a robust determination of the Higgs self-coupling. High-energy machines can easily achieve a ~20% precision through Higgs pair production processes. In this case, the impact of additional coupling modifications is milder, although not completely negligible.« less

  7. A global view on the Higgs self-coupling at lepton colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Vita, Stefano; Durieux, Gauthier; Grojean, Christophe

    We perform a global effective-field-theory analysis to assess the precision on the determination of the Higgs trilinear self-coupling at future lepton colliders. Two main scenarios are considered, depending on whether the center-of-mass energy of the colliders is sufficient or not to access Higgs pair production processes. Low-energy machines allow for ~40% precision on the extraction of the Higgs trilinear coupling through the exploitation of next-to-leading-order effects in single Higgs measurements, provided that runs at both 240/250 GeV and 350 GeV are available with luminosities in the few attobarns range. A global fit, including possible deviations in other SM couplings, ismore » essential in this case to obtain a robust determination of the Higgs self-coupling. High-energy machines can easily achieve a ~20% precision through Higgs pair production processes. In this case, the impact of additional coupling modifications is milder, although not completely negligible.« less

  8. An intelligent decomposition approach for efficient design of non-hierarchic systems

    NASA Technical Reports Server (NTRS)

    Bloebaum, Christina L.

    1992-01-01

    The design process associated with large engineering systems requires an initial decomposition of the complex systems into subsystem modules which are coupled through transference of output data. The implementation of such a decomposition approach assumes the ability exists to determine what subsystems and interactions exist and what order of execution will be imposed during the analysis process. Unfortunately, this is quite often an extremely complex task which may be beyond human ability to efficiently achieve. Further, in optimizing such a coupled system, it is essential to be able to determine which interactions figure prominently enough to significantly affect the accuracy of the optimal solution. The ability to determine 'weak' versus 'strong' coupling strengths would aid the designer in deciding which couplings could be permanently removed from consideration or which could be temporarily suspended so as to achieve computational savings with minimal loss in solution accuracy. An approach that uses normalized sensitivities to quantify coupling strengths is presented. The approach is applied to a coupled system composed of analysis equations for verification purposes.

  9. Conversion between EIT and Fano spectra in a microring-Bragg grating coupled-resonator system

    NASA Astrophysics Data System (ADS)

    Zhang, Zecen; Ng, Geok Ing; Hu, Ting; Qiu, Haodong; Guo, Xin; Wang, Wanjun; Rouifed, Mohamed Saïd; Liu, Chongyang; Wang, Hong

    2017-08-01

    A conversion between the electromagnetically induced transparency (EIT) transmission and Fano transmission is theoretically and experimentally demonstrated in an all-pass microring-Bragg grating (APMR-BG) coupled-resonator system. In this work, the coupling between the two resonators (the microring resonator and the Fabry-Perot resonator formed by two Bragg gratings) gives rise to the EIT and Fano transmissions. The resonant status strongly depends on the round-trip attenuation of the microring and the coupling strength. By tuning the coupling strength, the EIT and Fano transmissions can be controlled and converted. The device performance has been theoretically calculated and analyzed with a specially developed numerical model based on the transfer matrix method. The APMR-BG coupled-resonator systems with different gap widths were designed, fabricated, and characterized on a silicon-on-insulator (SOI) platform. The conversion of resonance was experimentally observed and verified. In addition, this on-chip system has the advantage of a small footprint, and the fabrication process is compatible with the planar waveguide fabrication process.

  10. Childhood Emotional Abuse and Attachment Processes in the Dyadic Adjustment of Dating Couples

    ERIC Educational Resources Information Center

    Riggs, Shelley A.; Cusimano, Angela M.; Benson, Karen M.

    2011-01-01

    In an effort to improve understanding of the mechanisms that link early maltreatment to later outcomes, this study investigated the mediation effects of adult attachment processes on the association between childhood emotional abuse and later romantic relationships among heterosexual couples. College students and their dating partners (N = 310;…

  11. MIMO signal progressing with RLSCMA algorithm for multi-mode multi-core optical transmission system

    NASA Astrophysics Data System (ADS)

    Bi, Yuan; Liu, Bo; Zhang, Li-jia; Xin, Xiang-jun; Zhang, Qi; Wang, Yong-jun; Tian, Qing-hua; Tian, Feng; Mao, Ya-ya

    2018-01-01

    In the process of transmitting signals of multi-mode multi-core fiber, there will be mode coupling between modes. The mode dispersion will also occur because each mode has different transmission speed in the link. Mode coupling and mode dispersion will cause damage to the useful signal in the transmission link, so the receiver needs to deal received signal with digital signal processing, and compensate the damage in the link. We first analyzes the influence of mode coupling and mode dispersion in the process of transmitting signals of multi-mode multi-core fiber, then presents the relationship between the coupling coefficient and dispersion coefficient. Then we carry out adaptive signal processing with MIMO equalizers based on recursive least squares constant modulus algorithm (RLSCMA). The MIMO equalization algorithm offers adaptive equalization taps according to the degree of crosstalk in cores or modes, which eliminates the interference among different modes and cores in space division multiplexing(SDM) transmission system. The simulation results show that the distorted signals are restored efficiently with fast convergence speed.

  12. Wavelength dependent vertical integration of nanoplasmonic circuits utilizing coupled ring resonators

    NASA Astrophysics Data System (ADS)

    Nielsen, M.; Elezzabi, A. Y.

    2013-03-01

    To become a competitor to replace CMOS-electronics for next-generation data processing, signal routing, and computing, nanoplasmonic circuits will require an analogue to electrical vias in order to enable vertical connections between device layers. Vertically stacked nanoplasmonic nanoring resonators formed of Ag/Si/Ag gap plasmon waveguides were studied as a novel 3-D coupling scheme that could be monolithically integrated on a silicon platform. The vertically coupled ring resonators were evanescently coupled to 100 nm x 100 nm Ag/Si/Ag input and output waveguides and the whole device was submerged in silicon dioxide. 3-D finite difference time domain simulations were used to examine the transmission spectra of the coupling device with varying device sizes and orientations. By having the signal coupling occur over multiple trips around the resonator, coupling efficiencies as high as 39% at telecommunication wavelengths between adjacent layers were present with planar device areas of only 1.00 μm2. As the vertical signal transfer was based on coupled ring resonators, the signal transfer was inherently wavelength dependent. Changing the device size by varying the radii of the nanorings allowed for tailoring the coupled frequency spectra. The plasmonic resonator based coupling scheme was found to have quality (Q) factors of upwards of 30 at telecommunication wavelengths. By allowing different device layers to operate on different wavelengths, this coupling scheme could to lead to parallel processing in stacked independent device layers.

  13. Long-lasting quantum memories: Extending the coherence time of superconducting artificial atoms in the ultrastrong-coupling regime

    NASA Astrophysics Data System (ADS)

    Stassi, Roberto; Nori, Franco

    2018-03-01

    Quantum systems are affected by interactions with their environments, causing decoherence through two processes: pure dephasing and energy relaxation. For quantum information processing it is important to increase the coherence time of Josephson qubits and other artificial two-level atoms. We show theoretically that if the coupling between these qubits and a cavity field is longitudinal and in the ultrastrong-coupling regime, the system is strongly protected against relaxation. Vice versa, if the coupling is transverse and in the ultrastrong-coupling regime, the system is protected against pure dephasing. Taking advantage of the relaxation suppression, we show that it is possible to enhance their coherence time and use these qubits as quantum memories. Indeed, to preserve the coherence from pure dephasing, we prove that it is possible to apply dynamical decoupling. We also use an auxiliary atomic level to store and retrieve quantum information.

  14. Microwave-Assisted Synthesis of a MK2 Inhibitor by Suzuki-Miyaura Coupling for Study in Werner Syndrome Cells.

    PubMed

    Bagley, Mark C; Baashen, Mohammed; Chuckowree, Irina; Dwyer, Jessica E; Kipling, David; Davis, Terence

    2015-06-03

    Microwave-assisted Suzuki-Miyaura cross-coupling reactions have been employed towards the synthesis of three different MAPKAPK2 (MK2) inhibitors to study accelerated aging in Werner syndrome (WS) cells, including the cross-coupling of a 2-chloroquinoline with a 3-pyridinylboronic acid, the coupling of an aryl bromide with an indolylboronic acid and the reaction of a 3-amino-4-bromopyrazole with 4-carbamoylphenylboronic acid. In all of these processes, the Suzuki-Miyaura reaction was fast and relatively efficient using a palladium catalyst under microwave irradiation. The process was incorporated into a rapid 3-step microwave-assisted method for the synthesis of a MK2 inhibitor involving 3-aminopyrazole formation, pyrazole C-4 bromination using N-bromosuccinimide (NBS), and Suzuki-Miyaura cross-coupling of the pyrazolyl bromide with 4-carbamoylphenylboronic acid to give the target 4-arylpyrazole in 35% overall yield, suitable for study in WS cells.

  15. Correlated Coulomb Drag in Capacitively Coupled Quantum-Dot Structures.

    PubMed

    Kaasbjerg, Kristen; Jauho, Antti-Pekka

    2016-05-13

    We study theoretically Coulomb drag in capacitively coupled quantum dots (CQDs)-a bias-driven dot coupled to an unbiased dot where transport is due to Coulomb mediated energy transfer drag. To this end, we introduce a master-equation approach that accounts for higher-order tunneling (cotunneling) processes as well as energy-dependent lead couplings, and identify a mesoscopic Coulomb drag mechanism driven by nonlocal multielectron cotunneling processes. Our theory establishes the conditions for a nonzero drag as well as the direction of the drag current in terms of microscopic system parameters. Interestingly, the direction of the drag current is not determined by the drive current, but by an interplay between the energy-dependent lead couplings. Studying the drag mechanism in a graphene-based CQD heterostructure, we show that the predictions of our theory are consistent with recent experiments on Coulomb drag in CQD systems.

  16. Stochastic process of pragmatic information for 2D spiral wave turbulence in globally and locally coupled Alief-Panfilov oscillators

    NASA Astrophysics Data System (ADS)

    Kuwahara, Jun; Miyata, Hajime; Konno, Hidetoshi

    2017-09-01

    Recently, complex dynamics of globally coupled oscillators have been attracting many researcher's attentions. In spite of their numerous studies, their features of nonlinear oscillator systems with global and local couplings in two-dimension (2D) are not understood fully. The paper focuses on 2D states of coherent, clustered and chaotic oscillation especially under the effect of negative global coupling (NGC) in 2D Alief-Panfilov model. It is found that the tuning NGC can cause various new coupling-parameter dependency on the features of oscillations. Then quantitative characterization of various states of oscillations (so called spiral wave turbulence) is examined by using the pragmatic information (PI) which have been utilized in analyzing multimode laser, solar activity and neuronal systems. It is demonstrated that the dynamics of the PI for various oscillations can be characterized successfully by the Hyper-Gamma stochastic process.

  17. Noise shaping in populations of coupled model neurons.

    PubMed

    Mar, D J; Chow, C C; Gerstner, W; Adams, R W; Collins, J J

    1999-08-31

    Biological information-processing systems, such as populations of sensory and motor neurons, may use correlations between the firings of individual elements to obtain lower noise levels and a systemwide performance improvement in the dynamic range or the signal-to-noise ratio. Here, we implement such correlations in networks of coupled integrate-and-fire neurons using inhibitory coupling and demonstrate that this can improve the system dynamic range and the signal-to-noise ratio in a population rate code. The improvement can surpass that expected for simple averaging of uncorrelated elements. A theory that predicts the resulting power spectrum is developed in terms of a stochastic point-process model in which the instantaneous population firing rate is modulated by the coupling between elements.

  18. Fiber-coupled THz spectroscopy for monitoring polymeric compounding processes

    NASA Astrophysics Data System (ADS)

    Vieweg, N.; Krumbholz, N.; Hasek, T.; Wilk, R.; Bartels, V.; Keseberg, C.; Pethukhov, V.; Mikulics, M.; Wetenkamp, L.; Koch, M.

    2007-06-01

    We present a compact, robust, and transportable fiber-coupled THz system for inline monitoring of polymeric compounding processes in an industrial environment. The system is built on a 90cm x 90cm large shock absorbing optical bench. A sealed metal box protects the system against dust and mechanical disturbances. A closed loop controller unit is used to ensure optimum coupling of the laser beam into the fiber. In order to build efficient and stable fiber-coupled antennas we glue the fibers directly onto photoconductive switches. Thus, the antenna performance is very stable and it is secured from dust or misalignment by vibrations. We discuss fabrication details and antenna performance. First spectroscopic data obtained with this system is presented.

  19. Impact of Gas Heating in Inductively Coupled Plasmas

    NASA Technical Reports Server (NTRS)

    Hash, D. B.; Bose, D.; Rao, M. V. V. S.; Cruden, B. A.; Meyyappan, M.; Sharma, S. P.; Biegel, Bryan (Technical Monitor)

    2001-01-01

    Recently it has been recognized that the neutral gas in inductively coupled plasma reactors heats up significantly during processing. The resulting gas density variations across the reactor affect reaction rates, radical densities, plasma characteristics, and uniformity within the reactor. A self-consistent model that couples the plasma generation and transport to the gas flow and heating has been developed and used to study CF4 discharges. A Langmuir probe has been used to measure radial profiles of electron density and temperature. The model predictions agree well with the experimental results. As a result of these comparisons along with the poorer performance of the model without the gas-plasma coupling, the importance of gas heating in plasma processing has been verified.

  20. Coupling mRNA processing with transcription in time and space

    PubMed Central

    Bentley, David L.

    2015-01-01

    Maturation of mRNA precursors often occurs simultaneously with their synthesis by RNA polymerase II (Pol II). The co-transcriptional nature of mRNA processing has permitted the evolution of coupling mechanisms that coordinate transcription with mRNA capping, splicing, editing and 3′ end formation. Recent experiments using sophisticated new methods for analysis of nascent RNA have provided important insights into the relative amount of co-transcriptional and post-transcriptional processing, the relationship between mRNA elongation and processing, and the role of the Pol II carboxy-terminal domain (CTD) in regulating these processes. PMID:24514444

  1. Multi-disciplinary coupling for integrated design of propulsion systems

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Singhal, S. N.

    1993-01-01

    Effective computational simulation procedures are described for modeling the inherent multi-disciplinary interactions for determining the true response of propulsion systems. Results are presented for propulsion system responses including multi-discipline coupling effects via (1) coupled multi-discipline tailoring, (2) an integrated system of multidisciplinary simulators, (3) coupled material-behavior/fabrication-process tailoring, (4) sensitivities using a probabilistic simulator, and (5) coupled materials/structures/fracture/probabilistic behavior simulator. The results show that the best designs can be determined if the analysis/tailoring methods account for the multi-disciplinary coupling effects. The coupling across disciplines can be used to develop an integrated interactive multi-discipline numerical propulsion system simulator.

  2. Coupled Reactions "versus" Connected Reactions: Coupling Concepts with Terms

    ERIC Educational Resources Information Center

    Aledo, Juan Carlos

    2007-01-01

    A hallmark of living matter is its ability to extract and transform energy from the environment. Not surprisingly, biology students are required to take thermodynamics. The necessity of coupling exergonic reactions to endergonic processes is easily grasped by most undergraduate students. However, when addressing the thermodynamic concept of…

  3. Exploring Couples' Processes of Change in the Context of SASA!, a Violence Against Women and HIV Prevention Intervention in Uganda.

    PubMed

    Starmann, Elizabeth; Collumbien, Martine; Kyegombe, Nambusi; Devries, Karen; Michau, Lori; Musuya, Tina; Watts, Charlotte; Heise, Lori

    2017-02-01

    There is now a growing body of research indicating that prevention interventions can reduce intimate partner violence (IPV); much less is known, however, about how couples exposed to these interventions experience the change process, particularly in low-income countries. Understanding the dynamic process that brings about the cessation of IPV is essential for understanding how interventions work (or don't) to reduce IPV. This study aimed to provide a better understanding of how couples' involvement with SASA!-a violence against women and HIV-related community mobilisation intervention developed by Raising Voices in Uganda-influenced processes of change in relationships. Qualitative data were collected from each partner in separate in-depth interviews following the intervention. Dyadic analysis was conducted using framework analysis methods. Study findings suggest that engagement with SASA! contributed to varied experiences and degrees of change at the individual and relationship levels. Reflection around healthy relationships and communication skills learned through SASA! activities or community activists led to more positive interaction among many couples, which reduced conflict and IPV. This nurtured a growing trust and respect between many partners, facilitating change in longstanding conflicts and generating greater intimacy and love as well as increased partnership among couples to manage economic challenges. This study draws attention to the value of researching and working with both women, men and couples to prevent IPV and suggests IPV prevention interventions may benefit from the inclusion of relationship skills building and support within the context of community mobilisation interventions.

  4. Experience of gastric cancer survivors and their spouses in Korea: secondary analysis.

    PubMed

    Yi, Myungsun; Kahn, David

    2004-06-01

    The purpose of this study was to explore the experiences of gastric cancer couples in Korea and to generate a substantive theory integrating the experiences of gastric cancer survivors and their spouses as a whole. The specific aims of this study were to explore major problems gastric cancer couples faced and how they resolved these problems, focusing on inter-relational dynamics within the couples and on similarities and differences between the couples. This was a secondary analysis study using grounded theory techniques. The study used the data of 11 married couples which was collected from in-depth interviews from two primary studies. The unit of analysis was dyads of gastric cancer survivors and their spouses. The basic social psychological process that emerged from the analysis was "taking charge of their health." Major categories involved in this process were identified as 1) adjusting to new diets, 2) reinforcing physical strength, 3) seeking information, 4) strengthening Ki, 5) lowering life-expectations, and 6) going their separate ways. These six categories represent major strategies in overcoming critical problems that occurred in day-to-day experiences. In terms of the process, the first five categories characterize the earlier stage of the process of "taking charge of their health," while "going their separate ways" indicates the later stage and also the beginning of their separate ways: "pursuing spiritual life" for the survivors, and "preparing for the future" for the spouses. The results of this study will help design family care for the people with gastric cancer by providing in-depth understanding and insight on the lives of gastric cancer couples.

  5. Unified picture of strong-coupling stochastic thermodynamics and time reversals

    NASA Astrophysics Data System (ADS)

    Aurell, Erik

    2018-04-01

    Strong-coupling statistical thermodynamics is formulated as the Hamiltonian dynamics of an observed system interacting with another unobserved system (a bath). It is shown that the entropy production functional of stochastic thermodynamics, defined as the log ratio of forward and backward system path probabilities, is in a one-to-one relation with the log ratios of the joint initial conditions of the system and the bath. A version of strong-coupling statistical thermodynamics where the system-bath interaction vanishes at the beginning and at the end of a process is, as is also weak-coupling stochastic thermodynamics, related to the bath initially in equilibrium by itself. The heat is then the change of bath energy over the process, and it is discussed when this heat is a functional of the system history alone. The version of strong-coupling statistical thermodynamics introduced by Seifert and Jarzynski is related to the bath initially in conditional equilibrium with respect to the system. This leads to heat as another functional of the system history which needs to be determined by thermodynamic integration. The log ratio of forward and backward system path probabilities in a stochastic process is finally related to log ratios of the initial conditions of a combined system and bath. It is shown that the entropy production formulas of stochastic processes under a general class of time reversals are given by the differences of bath energies in a larger underlying Hamiltonian system. The paper highlights the centrality of time reversal in stochastic thermodynamics, also in the case of strong coupling.

  6. [A new strategy for Chinese medicine processing technologies: coupled with individuation processed and cybernetics].

    PubMed

    Zhang, Ding-kun; Yang, Ming; Han, Xue; Lin, Jun-zhi; Wang, Jia-bo; Xiao, Xiao-he

    2015-08-01

    The stable and controllable quality of decoction pieces is an important factor to ensure the efficacy of clinical medicine. Considering the dilemma that the existing standardization of processing mode cannot effectively eliminate the variability of quality raw ingredients, and ensure the stability between different batches, we first propose a new strategy for Chinese medicine processing technologies that coupled with individuation processed and cybernetics. In order to explain this thinking, an individual study case about different grades aconite is provided. We hope this strategy could better serve for clinical medicine, and promote the inheritance and innovation of Chinese medicine processing skills and theories.

  7. Multilevel Modeling of Two Cyclical Processes: Extending Differential Structural Equation Modeling to Nonlinear Coupled Systems

    ERIC Educational Resources Information Center

    Butner, Jonathan; Amazeen, Polemnia G.; Mulvey, Genna M.

    2005-01-01

    The authors present a dynamical multilevel model that captures changes over time in the bidirectional, potentially asymmetric influence of 2 cyclical processes. S. M. Boker and J. Graham's (1998) differential structural equation modeling approach was expanded to the case of a nonlinear coupled oscillator that is common in bimanual coordination…

  8. Mirroring and beyond: coupled dynamics as a generalized framework for modelling social interactions

    PubMed Central

    Hasson, Uri; Frith, Chris D.

    2016-01-01

    When people observe one another, behavioural alignment can be detected at many levels, from the physical to the mental. Likewise, when people process the same highly complex stimulus sequences, such as films and stories, alignment is detected in the elicited brain activity. In early sensory areas, shared neural patterns are coupled to the low-level properties of the stimulus (shape, motion, volume, etc.), while in high-order brain areas, shared neural patterns are coupled to high-levels aspects of the stimulus, such as meaning. Successful social interactions require such alignments (both behavioural and neural), as communication cannot occur without shared understanding. However, we need to go beyond simple, symmetric (mirror) alignment once we start interacting. Interactions are dynamic processes, which involve continuous mutual adaptation, development of complementary behaviour and division of labour such as leader–follower roles. Here, we argue that interacting individuals are dynamically coupled rather than simply aligned. This broader framework for understanding interactions can encompass both processes by which behaviour and brain activity mirror each other (neural alignment), and situations in which behaviour and brain activity in one participant are coupled (but not mirrored) to the dynamics in the other participant. To apply these more sophisticated accounts of social interactions to the study of the underlying neural processes we need to develop new experimental paradigms and novel methods of data analysis PMID:27069044

  9. Model-independent determination of the triple Higgs coupling at e + e – colliders

    DOE PAGES

    Barklow, Tim; Fujii, Keisuke; Jung, Sunghoon; ...

    2018-03-20

    Here, the observation of Higgs pair production at high-energy colliders can give evidence for the presence of a triple Higgs coupling. However, the actual determination of the value of this coupling is more difficult. In the context of general models for new physics, double Higgs production processes can receive contributions from many possible beyond-Standard-Model effects. This dependence must be understood if one is to make a definite statement about the deviation of the Higgs field potential from the Standard Model. In this paper, we study the extraction of the triple Higgs coupling from the process e +e –→Zhh. We showmore » that, by combining the measurement of this process with other measurements available at a 500 GeV e +e – collider, it is possible to quote model-independent limits on the effective field theory parameter c 6 that parametrizes modifications of the Higgs potential. We present precise error estimates based on the anticipated International Linear Collider physics program, studied with full simulation. Our analysis also gives new insight into the model-independent extraction of the Higgs boson coupling constants and total width from e +e – data.« less

  10. Model-independent determination of the triple Higgs coupling at e + e – colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barklow, Tim; Fujii, Keisuke; Jung, Sunghoon

    Here, the observation of Higgs pair production at high-energy colliders can give evidence for the presence of a triple Higgs coupling. However, the actual determination of the value of this coupling is more difficult. In the context of general models for new physics, double Higgs production processes can receive contributions from many possible beyond-Standard-Model effects. This dependence must be understood if one is to make a definite statement about the deviation of the Higgs field potential from the Standard Model. In this paper, we study the extraction of the triple Higgs coupling from the process e +e –→Zhh. We showmore » that, by combining the measurement of this process with other measurements available at a 500 GeV e +e – collider, it is possible to quote model-independent limits on the effective field theory parameter c 6 that parametrizes modifications of the Higgs potential. We present precise error estimates based on the anticipated International Linear Collider physics program, studied with full simulation. Our analysis also gives new insight into the model-independent extraction of the Higgs boson coupling constants and total width from e +e – data.« less

  11. Model-independent determination of the triple Higgs coupling at e+e- colliders

    NASA Astrophysics Data System (ADS)

    Barklow, Tim; Fujii, Keisuke; Jung, Sunghoon; Peskin, Michael E.; Tian, Junping

    2018-03-01

    The observation of Higgs pair production at high-energy colliders can give evidence for the presence of a triple Higgs coupling. However, the actual determination of the value of this coupling is more difficult. In the context of general models for new physics, double Higgs production processes can receive contributions from many possible beyond-Standard-Model effects. This dependence must be understood if one is to make a definite statement about the deviation of the Higgs field potential from the Standard Model. In this paper, we study the extraction of the triple Higgs coupling from the process e+e-→Z h h . We show that, by combining the measurement of this process with other measurements available at a 500 GeV e+e- collider, it is possible to quote model-independent limits on the effective field theory parameter c6 that parametrizes modifications of the Higgs potential. We present precise error estimates based on the anticipated International Linear Collider physics program, studied with full simulation. Our analysis also gives new insight into the model-independent extraction of the Higgs boson coupling constants and total width from e+e- data.

  12. Modeling multi-process connectivity in river deltas: extending the single layer network analysis to a coupled multilayer network framework

    NASA Astrophysics Data System (ADS)

    Tejedor, A.; Longjas, A.; Foufoula-Georgiou, E.

    2017-12-01

    Previous work [e.g. Tejedor et al., 2016 - GRL] has demonstrated the potential of using graph theory to study key properties of the structure and dynamics of river delta channel networks. Although the distribution of fluxes in river deltas is mostly driven by the connectivity of its channel network a significant part of the fluxes might also arise from connectivity between the channels and islands due to overland flow and seepage. This channel-island-subsurface interaction creates connectivity pathways which facilitate or inhibit transport depending on their degree of coupling. The question we pose here is how to collectively study system connectivity that emerges from the aggregated action of different processes (different in nature, intensity and time scales). Single-layer graphs as those introduced for delta channel networks are inadequate as they lack the ability to represent coupled processes, and neglecting across-process interactions can lead to mis-representation of the overall system dynamics. We present here a framework that generalizes the traditional representation of networks (single-layer graphs) to the so-called multi-layer networks or multiplex. A multi-layer network conceptualizes the overall connectivity arising from different processes as distinct graphs (layers), while allowing at the same time to represent interactions between layers by introducing interlayer links (across process interactions). We illustrate this framework using a study of the joint connectivity that arises from the coupling of the confined flow on the channel network and the overland flow on islands, on a prototype delta. We show the potential of the multi-layer framework to answer quantitatively questions related to the characteristic time scales to steady-state transport in the system as a whole when different levels of channel-island coupling are modulated by different magnitudes of discharge rates.

  13. The efficiency of driving chemical reactions by a physical non-equilibrium is kinetically controlled.

    PubMed

    Göppel, Tobias; Palyulin, Vladimir V; Gerland, Ulrich

    2016-07-27

    An out-of-equilibrium physical environment can drive chemical reactions into thermodynamically unfavorable regimes. Under prebiotic conditions such a coupling between physical and chemical non-equilibria may have enabled the spontaneous emergence of primitive evolutionary processes. Here, we study the coupling efficiency within a theoretical model that is inspired by recent laboratory experiments, but focuses on generic effects arising whenever reactant and product molecules have different transport coefficients in a flow-through system. In our model, the physical non-equilibrium is represented by a drift-diffusion process, which is a valid coarse-grained description for the interplay between thermophoresis and convection, as well as for many other molecular transport processes. As a simple chemical reaction, we consider a reversible dimerization process, which is coupled to the transport process by different drift velocities for monomers and dimers. Within this minimal model, the coupling efficiency between the non-equilibrium transport process and the chemical reaction can be analyzed in all parameter regimes. The analysis shows that the efficiency depends strongly on the Damköhler number, a parameter that measures the relative timescales associated with the transport and reaction kinetics. Our model and results will be useful for a better understanding of the conditions for which non-equilibrium environments can provide a significant driving force for chemical reactions in a prebiotic setting.

  14. Moving up the continuum of hope: developing a theory of hope and understanding its influence in couples therapy.

    PubMed

    Ward, David B; Wampler, Karen S

    2010-04-01

    For years therapists have suggested that hope is an important catalyst in the process of change. This study takes a grounded theory approach to address the need for a clearer conceptualization of hope, and to place interventions that increase hope within a therapeutic context so that therapists know how and when to use those interventions. Fifteen active and experienced marriage and family therapists from across the United States participated in hour-long phone interviews about hope in couples therapy. Moving Up the Continuum of Hope emerged as the core category from the grounded theory analysis of the data. This category represents a process, with general and specific conditions and consequences that increase a couple's level of hope. This study serves as a foundation for future process research on couples therapy, as well as research on hope in other contexts (e.g., individual and family therapy) and with other perspectives (e.g., clients).

  15. Aberrant Neural Connectivity during Emotional Processing Associated with Posttraumatic Stress

    PubMed Central

    Sadeh, Naomi; Spielberg, Jeffrey M.; Warren, Stacie L.; Miller, Gregory A.; Heller, Wendy

    2014-01-01

    Given the complexity of the brain, characterizing relations among distributed brain regions is likely essential to describing the neural instantiation of posttraumatic stress symptoms. This study examined patterns of functional connectivity among key brain regions implicated in the pathophysiology of posttraumatic stress disorder (PTSD) in 35 trauma-exposed adults using an emotion-word Stroop task. PTSD symptom severity (particularly hyperarousal symptoms) moderated amygdala-mPFC coupling during the processing of unpleasant words, and this moderation correlated positively with reported real-world impairment and amygdala reactivity. Reexperiencing severity moderated hippocampus-insula coupling during pleasant and unpleasant words. Results provide evidence that PTSD symptoms differentially moderate functional coupling during emotional interference and underscore the importance of examining network connectivity in research on PTSD. They suggest that hyperarousal is associated with negative mPFC-amygdala coupling and that reexperiencing is associated with altered insula-hippocampus function, patterns of connectivity that may represent separable indicators of dysfunctional inhibitory control during affective processing. PMID:25419500

  16. Aberrant Neural Connectivity during Emotional Processing Associated with Posttraumatic Stress.

    PubMed

    Sadeh, Naomi; Spielberg, Jeffrey M; Warren, Stacie L; Miller, Gregory A; Heller, Wendy

    2014-11-01

    Given the complexity of the brain, characterizing relations among distributed brain regions is likely essential to describing the neural instantiation of posttraumatic stress symptoms. This study examined patterns of functional connectivity among key brain regions implicated in the pathophysiology of posttraumatic stress disorder (PTSD) in 35 trauma-exposed adults using an emotion-word Stroop task. PTSD symptom severity (particularly hyperarousal symptoms) moderated amygdala-mPFC coupling during the processing of unpleasant words, and this moderation correlated positively with reported real-world impairment and amygdala reactivity. Reexperiencing severity moderated hippocampus-insula coupling during pleasant and unpleasant words. Results provide evidence that PTSD symptoms differentially moderate functional coupling during emotional interference and underscore the importance of examining network connectivity in research on PTSD. They suggest that hyperarousal is associated with negative mPFC-amygdala coupling and that reexperiencing is associated with altered insula-hippocampus function, patterns of connectivity that may represent separable indicators of dysfunctional inhibitory control during affective processing.

  17. Coupling of Laser with Plasma Arc to Facilitate Hybrid Welding of Metallic Materials: A Review

    NASA Astrophysics Data System (ADS)

    Zhiyong, Li; Srivatsan, T. S.; Yan, LI; Wenzhao, Zhang

    2013-02-01

    Hybrid laser arc welding combines the advantages of laser welding and arc welding. Ever since its origination in the late 1970s, this technique has gained gradual attention and progressive use due to a combination of high welding speed, better formation of weld bead, gap tolerance, and increased penetration coupled with less distortion. In hybrid laser arc welding, one of the reasons for the observed improvement is an interaction or coupling effect between the plasma arc, laser beam, droplet transfer, and the weld pool. Few researchers have made an attempt to study different aspects of the process to facilitate a better understanding. It is difficult to get a thorough understanding of the process if only certain information in a certain field is provided. In this article, an attempt to analyze the coupling effect of the process was carried out based on a careful review of the research work that has been done which provides useful information from a different prospective.

  18. Sandplay therapy with couples within the framework of analytical psychology.

    PubMed

    Albert, Susan Carol

    2015-02-01

    Sandplay therapy with couples is discussed within an analytical framework. Guidelines are proposed as a means of developing this relatively new area within sandplay therapy, and as a platform to open a wider discussion to bring together sandplay therapy and couple therapy. Examples of sand trays created during couple therapy are also presented to illustrate the transformations during the therapeutic process. © 2015, The Society of Analytical Psychology.

  19. Mechanism for Plasma Etching of Shallow Trench Isolation Features in an Inductively Coupled Plasma

    NASA Astrophysics Data System (ADS)

    Agarwal, Ankur; Rauf, Shahid; He, Jim; Choi, Jinhan; Collins, Ken

    2011-10-01

    Plasma etching for microelectronics fabrication is facing extreme challenges as processes are developed for advanced technological nodes. As device sizes shrink, control of shallow trench isolation (STI) features become more important in both logic and memory devices. Halogen-based inductively coupled plasmas in a pressure range of 20-60 mTorr are typically used to etch STI features. The need for improved performance and shorter development cycles are placing greater emphasis on understanding the underlying mechanisms to meet process specifications. In this work, a surface mechanism for STI etch process will be discussed that couples a fundamental plasma model to experimental etch process measurements. This model utilizes ion/neutral fluxes and energy distributions calculated using the Hybrid Plasma Equipment Model. Experiments are for blanket Si wafers in a Cl2/HBr/O2/N2 plasma over a range of pressures, bias powers, and flow rates of feedstock gases. We found that kinetic treatment of electron transport was critical to achieve good agreement with experiments. The calibrated plasma model is then coupled to a string-based feature scale model to quantify the effect of varying process parameters on the etch profile. We found that the operating parameters strongly influence critical dimensions but have only a subtle impact on the etch depths.

  20. To freeze or not to freeze embryos: clarity, confusion and conflict.

    PubMed

    Goswami, Mohar; Murdoch, Alison P; Haimes, Erica

    2015-06-01

    Although embryo freezing is a routine clinical practice, there is little contemporary evidence on how couples make the decision to freeze their surplus embryos, or of their perceptions during that time. This article describes a qualitative study of 16 couples who have had in vitro fertilisation (IVF) treatment. The study question was 'What are the personal and social factors that patients consider when deciding whether to freeze embryos?' We show that while the desire for a baby is the dominant drive, couples' views revealed more nuanced and complex considerations in the decision-making process. It was clear that the desire to have a baby influenced couples' decision-making and that they saw freezing as 'part of the process'. However, there were confusions associated with the term 'freezing' related to concerns about the safety of the procedure. Despite being given written information, couples were confused about the practical aspects of embryo freezing, which suggests they were preoccupied with the immediate demands of IVF. Couples expressed ethical conflicts about freezing 'babies'. We hope the findings from this study will inform clinicians and assist them in providing support to couples confronted with this difficult decision-making.

  1. The Role of Dyadic Coping on the Marital and Emotional Adjustment of Couples With Infertility.

    PubMed

    Chaves, Catarina; Canavarro, Maria Cristina; Moura-Ramos, Mariana

    2018-04-30

    Infertility is a challenging experience, affecting individual and couples' adjustment. However, the way the members of the couple support each other may affect the experience of infertility and their adjustment. This study aimed to investigate the role of dyadic coping by oneself and by the partner in the association between the impact of infertility and dyadic and emotional adjustment (anxiety and depression) to infertility. In this cross-sectional study, a total of 134 participants (67 couples with infertility) completed self-report questionnaires assessing infertility-related stress, dyadic coping, dyadic adjustment, and depression and anxiety symptoms. A path analysis examined the direct and indirect effects between the impact of infertility in one's life and dyadic and emotional adjustment. There is an indirect effect of the impact of infertility in one's life on dyadic adjustment through men's perceived dyadic coping efforts employed by the self (dyadic coping by oneself) and women's perceived dyadic coping efforts of the partner (dyadic coping by the partner). Regarding the emotional adjustment of infertile couples, infertility stress impact had an indirect effect only on depressive symptoms through men's dyadic coping by oneself. The results highlight the importance of men's dyadic coping strategies for the marital adjustment of couples as well as for men's emotional adjustment. Findings emphasize the importance of involving men in the fertility treatment process, reinforcing the dyadic nature of infertility processes. © 2018 Family Process Institute.

  2. Simulation of Stochastic Processes by Coupled ODE-PDE

    NASA Technical Reports Server (NTRS)

    Zak, Michail

    2008-01-01

    A document discusses the emergence of randomness in solutions of coupled, fully deterministic ODE-PDE (ordinary differential equations-partial differential equations) due to failure of the Lipschitz condition as a new phenomenon. It is possible to exploit the special properties of ordinary differential equations (represented by an arbitrarily chosen, dynamical system) coupled with the corresponding Liouville equations (used to describe the evolution of initial uncertainties in terms of joint probability distribution) in order to simulate stochastic processes with the proscribed probability distributions. The important advantage of the proposed approach is that the simulation does not require a random-number generator.

  3. Marital Processes around Depression: A Gendered and Relational Perspective.

    PubMed

    Thomeer, Mieke Beth; Umberson, Debra; Pudrovska, Tetyanna

    2013-11-01

    Despite extensive evidence of the importance of marriage and marital processes for mental health, little is known about the interpersonal processes around depression within marriage and the extent to which these processes are gendered. We use a mixed methods approach to explore the importance of gender in shaping processes around depression within marriage; we approach this in two ways. First, using quantitative longitudinal analysis of 2,601 couples from the Health and Retirement Study (HRS), we address whether depressive symptoms in one spouse shape the other spouse's depressive symptoms and whether men or women are more influential in this process. We find that a wife's depressive symptoms influence her husband's future depressive symptoms but a husband's depressive symptoms do not influence his wife's future symptoms. Second, we conduct a qualitative analysis of in-depth interviews with 29 couples wherein one or both spouses experienced depression to provide additional insight into how gender impacts depression and reactions to depression within marriage. Our study points to the importance of cultural scripts of masculinity and femininity in shaping depression and emotional processes within marriage and highlights the importance of applying a gendered couple-level approach to better understand the mental health effects of marital processes.

  4. Between War and Peace: Interactional Patterns of Couples under Prolonged Uncertainty.

    ERIC Educational Resources Information Center

    Ben-David, Amith; Lavee, Yoav

    1996-01-01

    Explores how global and political issues affect microsystems like the marital unit. A variety of interactional patterns emerged in the observation of 30 couples marital interactions during a prolonged stressful situation. Couples reporting a deterioration of their relationship had more disagreements regarding the meaning of a peace process and its…

  5. Patterns of Tight and Loose Coupling in a Competitive Marketplace: The Case of Learning Center Franchises

    ERIC Educational Resources Information Center

    Aurini, Janice Danielle

    2012-01-01

    The concept of coupling--the relationship between the environment, administrative goals, and instructional practices of education organizations--is a staple in New Institutional research. Yet processes of coupling have remained elusive. Drawing on ethnographic research of the "Ontario Learning Center" (OLC) franchise, along with…

  6. Digital Dwelling: Technology in Couple and Family Relationships

    ERIC Educational Resources Information Center

    Hertlein, Katherine M.

    2012-01-01

    We are in an unprecedented age of technology. Few articles in family journals address online behavior, intimacy patterns, and influences on the ways couples and families communicate through technology. The purpose of this article is to use a multitheoretical model to describe the process of how technologies are affecting couple and family life.…

  7. Coupled effects of solution chemistry and hydrodynamics on the mobility and transport of quantum dot nanomaterials in the Vadose Zone

    USDA-ARS?s Scientific Manuscript database

    To investigate the coupled effects of solution chemistry and vadose zone processes on the mobility of quantum dot (QD) nanoparticles, laboratory scale transport experiments were performed. The complex coupled effects of ionic strength, size of QD aggregates, surface tension, contact angle, infiltrat...

  8. Selection, Alignment, and Their Interplay: Origins of Lifestyle Homogamy in Couple Relationships

    ERIC Educational Resources Information Center

    Becker, Oliver Arranz; Lois, Daniel

    2010-01-01

    The present study examines different processes leading to lifestyle homogamy in married and cohabiting couples using data from the German Socioeconomic Panel (n = 3,490 couples). The analyses first suggest that alignment over time promotes homogamy of leisure-related lifestyles, especially with respect to action-oriented activities. However,…

  9. Base free aryl coupling of diazonium compounds and boronic esters: self-activation allowing an overall highly practical process.

    PubMed

    Bonin, Hélène; Delbrayelle, Dominique; Demonchaux, Patrice; Gras, Emmanuel

    2010-04-21

    Boronic esters have long been considered as poor partners in cross-coupling reactions with arene diazoniums. Here is reported an unprecedented application of self-activated boronic esters in a base-free cross-coupling reaction with diazonium salts under mild and user friendly conditions.

  10. Clausius inequality beyond the weak-coupling limit: the quantum Brownian oscillator.

    PubMed

    Kim, Ilki; Mahler, Günter

    2010-01-01

    We consider a quantum linear oscillator coupled at an arbitrary strength to a bath at an arbitrary temperature. We find an exact closed expression for the oscillator density operator. This state is noncanonical but can be shown to be equivalent to that of an uncoupled linear oscillator at an effective temperature T*(eff) with an effective mass and an effective spring constant. We derive an effective Clausius inequality deltaQ*(eff)< or =T*(eff)dS , where deltaQ*(eff) is the heat exchanged between the effective (weakly coupled) oscillator and the bath, and S represents a thermal entropy of the effective oscillator, being identical to the von-Neumann entropy of the coupled oscillator. Using this inequality (for a cyclic process in terms of a variation of the coupling strength) we confirm the validity of the second law. For a fixed coupling strength this inequality can also be tested for a process in terms of a variation of either the oscillator mass or its spring constant. Then it is never violated. The properly defined Clausius inequality is thus more robust than assumed previously.

  11. From global circulation to flood loss: Coupling models across the scales

    NASA Astrophysics Data System (ADS)

    Felder, Guido; Gomez-Navarro, Juan Jose; Bozhinova, Denica; Zischg, Andreas; Raible, Christoph C.; Ole, Roessler; Martius, Olivia; Weingartner, Rolf

    2017-04-01

    The prediction and the prevention of flood losses requires an extensive understanding of underlying meteorological, hydrological, hydraulic and damage processes. Coupled models help to improve the understanding of such underlying processes and therefore contribute the understanding of flood risk. Using such a modelling approach to determine potentially flood-affected areas and damages requires a complex coupling between several models operating at different spatial and temporal scales. Although the isolated parts of the single modelling components are well established and commonly used in the literature, a full coupling including a mesoscale meteorological model driven by a global circulation one, a hydrologic model, a hydrodynamic model and a flood impact and loss model has not been reported so far. In the present study, we tackle the application of such a coupled model chain in terms of computational resources, scale effects, and model performance. From a technical point of view, results show the general applicability of such a coupled model, as well as good model performance. From a practical point of view, such an approach enables the prediction of flood-induced damages, although some future challenges have been identified.

  12. Development and performance of a new version of the OASIS coupler, OASIS3-MCT_3.0

    NASA Astrophysics Data System (ADS)

    Craig, Anthony; Valcke, Sophie; Coquart, Laure

    2017-09-01

    OASIS is coupling software developed primarily for use in the climate community. It provides the ability to couple different models with low implementation and performance overhead. OASIS3-MCT is the latest version of OASIS. It includes several improvements compared to OASIS3, including elimination of a separate hub coupler process, parallelization of the coupling communication and run-time grid interpolation, and the ability to easily reuse mapping weight files. OASIS3-MCT_3.0 is the latest release and includes the ability to couple between components running sequentially on the same set of tasks as well as to couple within a single component between different grids or decompositions such as physics, dynamics, and I/O. OASIS3-MCT has been tested with different configurations on up to 32 000 processes, with components running on high-resolution grids with up to 1.5 million grid cells, and with over 10 000 2-D coupling fields. Several new features will be available in OASIS3-MCT_4.0, and some of those are also described.

  13. Variable-Range Hopping through Marginally Localized Phonons

    NASA Astrophysics Data System (ADS)

    Banerjee, Sumilan; Altman, Ehud

    2016-03-01

    We investigate the effect of coupling Anderson localized particles in one dimension to a system of marginally localized phonons having a symmetry protected delocalized mode at zero frequency. This situation is naturally realized for electrons coupled to phonons in a disordered nanowire as well as for ultracold fermions coupled to phonons of a superfluid in a one-dimensional disordered trap. To determine if the coupled system can be many-body localized we analyze the phonon-mediated hopping transport for both the weak and strong coupling regimes. We show that the usual variable-range hopping mechanism involving a low-order phonon process is ineffective at low temperature due to discreteness of the bath at the required energy. Instead, the system thermalizes through a many-body process involving exchange of a diverging number n ∝-log T of phonons in the low temperature limit. This effect leads to a highly singular prefactor to Mott's well-known formula and strongly suppresses the variable range hopping rate. Finally, we comment on possible implications of this physics in higher dimensional electron-phonon coupled systems.

  14. Electron-Nuclear Quantum Information Processing

    DTIC Science & Technology

    2008-11-13

    quantum information processing that exploits the anisotropic hyperfine coupling. This scheme enables universal control over a 1-electron, N-nuclear spin...exploits the anisotropic hyperfine coupling. This scheme enables universal control over a 1-electron, N-nuclear spin system, addressing only a...sample of irradiated malonic acid. (a) Papers published in peer-reviewed journals (N/A for none) Universal control of nuclear spins via anisotropic

  15. Tuning of multiple luminescence outputs and white-light emission from a single gelator molecule through an ESIPT coupled AIEE process.

    PubMed

    Maity, Arunava; Ali, Firoj; Agarwalla, Hridesh; Anothumakkool, Bihag; Das, Amitava

    2015-02-07

    A unique example of an ESIPT coupled AIEE process, associated with a single molecule (1), is utilized for generating multiple luminescent colors (blue-green-white-yellow). The J-aggregated state of 1 forms a luminescent gel in THF and this luminescent property is retained even in the solid state.

  16. Conference on Charge-Coupled Device Technology and Applications

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Papers were presented from the conference on charge coupled device technology and applications. The following topics were investigated: data processing; infrared; devices and testing; electron-in, x-ray, radiation; and applications. The emphasis was on the advances of mutual relevance and potential significance both to industry and NASA's current and future requirements in all fields of imaging, signal processing and memory.

  17. Ordering process in the diffusively coupled logistic lattice

    NASA Astrophysics Data System (ADS)

    Conrado, Claudine V.; Bohr, Tomas

    1991-08-01

    We study the ordering process in a lattice of diffusively coupled logistic maps for increasing lattice size. Within a window of parameters, the system goes into a weakly chaotic state with long range "antiferromagnetic" order. This happens for arbitrary lattice size L and the ordering time behaves as t ~ L2 as we would expect from a picture of diffusing defects.

  18. Enhanced out-coupling efficiency of organic light-emitting diodes using an nanostructure imprinted by an alumina nanohole array

    NASA Astrophysics Data System (ADS)

    Endo, Kuniaki; Adachi, Chihaya

    2014-03-01

    We demonstrate organic light-emitting diodes (OLEDs) with enhanced out-coupling efficiency containing nanostructures imprinted by an alumina nanohole array template that can be applied to large-emitting-area and flexible devices using a roll-to-roll process. The nanostructures are imprinted on a glass substrate by an ultraviolet nanoimprint process using an alumina nanohole array mold and then an OLED is fabricated on the nanostructures. The enhancement of out-coupling efficiency is proportional to the root-mean-square roughness of the nanostructures, and a maximum improvement of external electroluminescence quantum efficiency of 17% is achieved. The electroluminescence spectra of the OLEDs indicate that this improvement is caused by enhancement of the out-coupling of surface plasmon polaritons.

  19. Fabrication of Antenna-Coupled KID Array for Cosmic Microwave Background Detection

    NASA Astrophysics Data System (ADS)

    Tang, Q. Y.; Barry, P. S.; Basu Thakur, R.; Kofman, A.; Nadolski, A.; Vieira, J.; Shirokoff, E.

    2018-05-01

    Kinetic inductance detectors (KIDs) have become an attractive alternative to traditional bolometers in the sub-mm and mm observing community due to their innate frequency multiplexing capabilities and simple lithographic processes. These advantages make KIDs a viable option for the O(500,000) detectors needed for the upcoming Cosmic Microwave Background-Stage 4 experiment. We have fabricated an antenna-coupled MKID array in the 150 GHz band optimized for CMB detection. Our design uses a twin-slot antenna coupled to an inverted microstrip made from a superconducting Nb/Al bilayer as the strip, a Nb ground plane and a SiN_x dielectric layer in between, which is then coupled to an Al KID grown on high-resistivity Si. We present the fabrication process and measurements of SiN_x microstrip resonators.

  20. Climate Simulations based on a different-grid nested and coupled model

    NASA Astrophysics Data System (ADS)

    Li, Dan; Ji, Jinjun; Li, Yinpeng

    2002-05-01

    An atmosphere-vegetation interaction model (A VIM) has been coupled with a nine-layer General Cir-culation Model (GCM) of Institute of Atmospheic Physics/State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (IAP/LASG), which is rhomboidally truncated at zonal wave number 15, to simulate global climatic mean states. A VIM is a model having inter-feedback between land surface processes and eco-physiological processes on land. As the first step to couple land with atmosphere completely, the physiological processes are fixed and only the physical part (generally named the SVAT (soil-vegetation-atmosphere-transfer scheme) model) of AVIM is nested into IAP/LASG L9R15 GCM. The ocean part of GCM is prescribed and its monthly sea surface temperature (SST) is the climatic mean value. With respect to the low resolution of GCM, i.e., each grid cell having lon-gitude 7.5° and latitude 4.5°, the vegetation is given a high resolution of 1.5° by 1.5° to nest and couple the fine grid cells of land with the coarse grid cells of atmosphere. The coupling model has been integrated for 15 years and its last ten-year mean of outputs was chosen for analysis. Compared with observed data and NCEP reanalysis, the coupled model simulates the main characteris-tics of global atmospheric circulation and the fields of temperature and moisture. In particular, the simu-lated precipitation and surface air temperature have sound results. The work creates a solid base on coupling climate models with the biosphere.

  1. Method of processing materials using an inductively coupled plasma

    DOEpatents

    Hull, D.E.; Bieniewski, T.M.

    1987-04-13

    A method of processing materials. The invention enables ultrafine, ultrapure powders to be formed from solid ingots in a gas free environment. A plasma is formed directly from an ingot which insures purity. The vaporized material is expanded through a nozzle and the resultant powder settles on a cold surface. An inductively coupled plasma may also be used to process waste chemicals. Noxious chemicals are directed through a series of plasma tubes, breaking molecular bonds and resulting in relatively harmless atomic constituents. 3 figs.

  2. System for processing an encrypted instruction stream in hardware

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griswold, Richard L.; Nickless, William K.; Conrad, Ryan C.

    A system and method of processing an encrypted instruction stream in hardware is disclosed. Main memory stores the encrypted instruction stream and unencrypted data. A central processing unit (CPU) is operatively coupled to the main memory. A decryptor is operatively coupled to the main memory and located within the CPU. The decryptor decrypts the encrypted instruction stream upon receipt of an instruction fetch signal from a CPU core. Unencrypted data is passed through to the CPU core without decryption upon receipt of a data fetch signal.

  3. Combining Mechanistic Approaches for Studying Eco-Hydro-Geomorphic Coupling

    NASA Astrophysics Data System (ADS)

    Francipane, A.; Ivanov, V.; Akutina, Y.; Noto, V.; Istanbullouglu, E.

    2008-12-01

    Vegetation interacts with hydrology and geomorphic form and processes of a river basin in profound ways. Despite recent advances in hydrological modeling, the dynamic coupling between these processes is yet to be adequately captured at the basin scale to elucidate key features of process interaction and their role in the organization of vegetation and landscape morphology. In this study, we present a blueprint for integrating a geomorphic component into the physically-based, spatially distributed ecohydrological model, tRIBS- VEGGIE, which reproduces essential water and energy processes over the complex topography of a river basin and links them to the basic plant life regulatory processes. We present a preliminary design of the integrated modeling framework in which hillslope and channel erosion processes at the catchment scale, will be coupled with vegetation-hydrology dynamics. We evaluate the developed framework by applying the integrated model to Lucky Hills basin, a sub-catchment of the Walnut Gulch Experimental Watershed (Arizona). The evaluation is carried out by comparing sediment yields at the basin outlet, that follows a detailed verification of simulated land-surface energy partition, biomass dynamics, and soil moisture states.

  4. Integrating a Genetic Algorithm Into a Knowledge-Based System for Ordering Complex Design Processes

    NASA Technical Reports Server (NTRS)

    Rogers, James L.; McCulley, Collin M.; Bloebaum, Christina L.

    1996-01-01

    The design cycle associated with large engineering systems requires an initial decomposition of the complex system into design processes which are coupled through the transference of output data. Some of these design processes may be grouped into iterative subcycles. In analyzing or optimizing such a coupled system, it is essential to be able to determine the best ordering of the processes within these subcycles to reduce design cycle time and cost. Many decomposition approaches assume the capability is available to determine what design processes and couplings exist and what order of execution will be imposed during the design cycle. Unfortunately, this is often a complex problem and beyond the capabilities of a human design manager. A new feature, a genetic algorithm, has been added to DeMAID (Design Manager's Aid for Intelligent Decomposition) to allow the design manager to rapidly examine many different combinations of ordering processes in an iterative subcycle and to optimize the ordering based on cost, time, and iteration requirements. Two sample test cases are presented to show the effects of optimizing the ordering with a genetic algorithm.

  5. Coagulation-Fenton coupled treatment for ecotoxicity reduction in highly polluted industrial wastewater.

    PubMed

    Perdigón-Melón, J A; Carbajo, J B; Petre, A L; Rosal, R; García-Calvo, E

    2010-09-15

    A coupled coagulation-Fenton process was applied for the treatment of cosmetic industry effluents. In a first step, FeSO(4) was used as coagulant and the non-precipitated Fe(2+) remaining in dissolution was used as catalyst in the further Fenton process. In the coagulation process a huge decrease in total organic carbon (TOC) was achieved, but the high concentration of phenol derivatives was not diminished. The decrease in TOC in the coagulation step significantly reduces the amount of H(2)O(2) required in the Fenton process for phenol depletion. The coupled process, using a H(2)O(2) dose of only 2 g l(-1), reduced TOC and total phenol to values lower than 40 and 0.10 mg l(-1), respectively. The short reaction period (less than 15 min) in TOC and phenol degradation bodes well for improving treatment in a continuous regime. The combination of both processes significantly reduced the ecotoxicity of raw effluent and markedly increased its biodegradability, thus allowing easier treatment by the conventional biological units in conventional sewage treatment plants (STPs). Copyright 2010 Elsevier B.V. All rights reserved.

  6. Influence of coupling on thermal forces and dynamic friction in plasmas with multiple ion species

    NASA Astrophysics Data System (ADS)

    Kagan, Grigory; Baalrud, Scott D.; Daligault, Jérôme

    2017-07-01

    The recently proposed effective potential theory [Phys. Rev. Lett. 110, 235001 (2013)] is used to investigate the influence of coupling on inter-ion-species diffusion and momentum exchange in multi-component plasmas. Thermo-diffusion and the thermal force are found to diminish rapidly as strong coupling onsets. For the same coupling parameters, the dynamic friction coefficient is found to tend to unity. These results provide an impetus for addressing the role of coupling on diffusive processes in inertial confinement fusion experiments.

  7. Influence of coupling on thermal forces and dynamic friction in plasmas with multiple ion species

    DOE PAGES

    Kagan, Grigory; Baalrud, Scott D.; Daligault, Jérôme

    2017-07-05

    The recently proposed effective potential theory [Phys. Rev. Lett. 110, 235001 (2013)] is used to investigate the influence of coupling on inter-ion-species diffusion and momentum exchange in multi-component plasmas. Thermo-diffusion and the thermal force are found to diminish rapidly as strong coupling onsets. We found that for the same coupling parameters, the dynamic friction coefficient there tends to be unity. Our results provide an impetus for addressing the role of coupling on diffusive processes in inertial confinement fusion experiments.

  8. Influence of coupling on thermal forces and dynamic friction in plasmas with multiple ion species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kagan, Grigory; Baalrud, Scott D.; Daligault, Jérôme

    The recently proposed effective potential theory [Phys. Rev. Lett. 110, 235001 (2013)] is used to investigate the influence of coupling on inter-ion-species diffusion and momentum exchange in multi-component plasmas. Thermo-diffusion and the thermal force are found to diminish rapidly as strong coupling onsets. We found that for the same coupling parameters, the dynamic friction coefficient there tends to be unity. Our results provide an impetus for addressing the role of coupling on diffusive processes in inertial confinement fusion experiments.

  9. Process-independent strong running coupling

    DOE PAGES

    Binosi, Daniele; Mezrag, Cedric; Papavassiliou, Joannis; ...

    2017-09-25

    Here, we unify two widely different approaches to understanding the infrared behavior of quantum chromodynamics (QCD), one essentially phenomenological, based on data, and the other computational, realized via quantum field equations in the continuum theory. Using the latter, we explain and calculate a process-independent running-coupling for QCD, a new type of effective charge that is an analogue of the Gell-Mann–Low effective coupling in quantum electrodynamics. The result is almost identical to the process-dependent effective charge defined via the Bjorken sum rule, which provides one of the most basic constraints on our knowledge of nucleon spin structure. As a result, thismore » reveals the Bjorken sum to be a near direct means by which to gain empirical insight into QCD's Gell-Mann–Low effective charge.« less

  10. When family enters the picture: the model of cultural negotiation and gendered experiences of Japanese academic sojourners in the United States.

    PubMed

    Sakamoto, Izumi

    2006-07-01

    A grounded-theory study aimed at reconceptualizing cultural adaptation processes from gender role and family/couple perspectives while critically drawing from acculturation and culture and self literatures. In-depth interviews with 34 Japanese academic sojourners (international students, scholars) and their spouses (a total of 50 interviews with select longitudinal interviews) were conducted. The author earlier developed the Model of Cultural Negotiation (2001; 2006) capturing uneven and cyclical processes of dealing with multiple cultural contexts. The current study further develops more tailored versions of this model, Family-Based (Couple-Based) Cultural Negotiation and Individual-Based Cultural Negotiation, highlighting the impacts of family/couple and gender roles, especially for female spouses. These conceptualizations afford a sophisticated understanding of the processes of culture.

  11. Vibronic coupling simulations for linear and nonlinear optical processes: Simulation results

    NASA Astrophysics Data System (ADS)

    Silverstein, Daniel W.; Jensen, Lasse

    2012-02-01

    A vibronic coupling model based on time-dependent wavepacket approach is applied to simulate linear optical processes, such as one-photon absorbance and resonance Raman scattering, and nonlinear optical processes, such as two-photon absorbance and resonance hyper-Raman scattering, on a series of small molecules. Simulations employing both the long-range corrected approach in density functional theory and coupled cluster are compared and also examined based on available experimental data. Although many of the small molecules are prone to anharmonicity in their potential energy surfaces, the harmonic approach performs adequately. A detailed discussion of the non-Condon effects is illustrated by the molecules presented in this work. Linear and nonlinear Raman scattering simulations allow for the quantification of interference between the Franck-Condon and Herzberg-Teller terms for different molecules.

  12. Process-independent strong running coupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Binosi, Daniele; Mezrag, Cedric; Papavassiliou, Joannis

    Here, we unify two widely different approaches to understanding the infrared behavior of quantum chromodynamics (QCD), one essentially phenomenological, based on data, and the other computational, realized via quantum field equations in the continuum theory. Using the latter, we explain and calculate a process-independent running-coupling for QCD, a new type of effective charge that is an analogue of the Gell-Mann–Low effective coupling in quantum electrodynamics. The result is almost identical to the process-dependent effective charge defined via the Bjorken sum rule, which provides one of the most basic constraints on our knowledge of nucleon spin structure. As a result, thismore » reveals the Bjorken sum to be a near direct means by which to gain empirical insight into QCD's Gell-Mann–Low effective charge.« less

  13. Pilot scale treatment of chromite ore processing residue using sodium sulfide in single reduction and coupled reduction/stabilization processes.

    PubMed

    Velasco, Antonio; Ramírez, Martha; Hernández, Sergio; Schmidt, Winfried; Revah, Sergio

    2012-03-15

    Single Cr(VI) reduction and coupled reduction/stabilization (R/S) processes were evaluated at pilot scale to determine their effectiveness to treat chromite ore processing residue (COPR). Sodium sulfide was used as the reducing agent and cement, gypsum and lime were tested as the stabilizing agents. The pilot experiments were performed in a helical ribbon blender mixer with batches of 250 kg of COPR and mixing time up to 30 min. Na2S/Cr(VI) mass ratios of 4.6, 5.7 and 6.8 were evaluated in the single reduction process to treat COPR with Cr(VI) concentration of ≈4.2 g/kg. The R/S process was tested with a Na2S/Cr(VI) mass ratio of 5.7 and including stabilizing agents not exceeding 5% (w/w(COPR)), to treat COPR with a Cr(VI) content of ≈5.1g/kg. The single reduction process with a ratio of 6.8, reached Cr(VI) reduction efficiencies up to 97.6% in the first days, however these values decreased to around 93% after 380 days of storage. At this point the total Cr level was around 12.5 mg/L. Cr(VI) removal efficiencies exceeding 96.5% were reached and maintained during 380 days when the coupled R/S process was evaluated. Total Cr levels lower than 5 mg/l were attained at the initials days in all R/S batch tested, however after 380 days, concentrations below the regulatory limit were only found with gypsum (2%) as single agent and with a blend of cement (4%) and lime (1%). These results indicated that the coupled R/S process is an excellent alternative to stabilize COPR. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Coupling Spectral-bin Cloud Microphysics with the MOSAIC Aerosol Model in WRF-Chem: Methodology and Results for Marine Stratocumulus Clouds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Wenhua; Fan, Jiwen; Easter, Richard C.

    Aerosol-cloud interaction processes can be represented more physically with bin cloud microphysics relative to bulk microphysical parameterizations. However, due to computational power limitations in the past, bin cloud microphysics was often run with very simple aerosol treatments. The purpose of this study is to represent better aerosol-cloud interaction processes in the Chemistry version of Weather Research and Forecast model (WRF-Chem) at convection-permitting scales by coupling spectral-bin cloud microphysics (SBM) with the MOSAIC sectional aerosol model. A flexible interface is built that exchanges cloud and aerosol information between them. The interface contains a new bin aerosol activation approach, which replaces themore » treatments in the original SBM. It also includes the modified aerosol resuspension and in-cloud wet removal processes with the droplet loss tendencies and precipitation fluxes from SBM. The newly coupled system is evaluated for two marine stratocumulus cases over the Southeast Pacific Ocean with either a simplified aerosol setup or full-chemistry. We compare the aerosol activation process in the newly-coupled SBM-MOSAIC against the SBM simulation without chemistry using a simplified aerosol setup, and the results show consistent activation rates. A longer time simulation reinforces that aerosol resuspension through cloud drop evaporation plays an important role in replenishing aerosols and impacts cloud and precipitation in marine stratocumulus clouds. Evaluation of the coupled SBM-MOSAIC with full-chemistry using aircraft measurements suggests that the new model works realistically for the marine stratocumulus clouds, and improves the simulation of cloud microphysical properties compared to a simulation using MOSAIC coupled with the Morrison two-moment microphysics.« less

  15. Coupling spectral-bin cloud microphysics with the MOSAIC aerosol model in WRF-Chem: Methodology and results for marine stratocumulus clouds

    NASA Astrophysics Data System (ADS)

    Gao, Wenhua; Fan, Jiwen; Easter, R. C.; Yang, Qing; Zhao, Chun; Ghan, Steven J.

    2016-09-01

    Aerosol-cloud interaction processes can be represented more physically with bin cloud microphysics relative to bulk microphysical parameterizations. However, due to computational power limitations in the past, bin cloud microphysics was often run with very simple aerosol treatments. The purpose of this study is to represent better aerosol-cloud interaction processes in the Chemistry version of Weather Research and Forecast model (WRF-Chem) at convection-permitting scales by coupling spectral-bin cloud microphysics (SBM) with the MOSAIC sectional aerosol model. A flexible interface is built that exchanges cloud and aerosol information between them. The interface contains a new bin aerosol activation approach, which replaces the treatments in the original SBM. It also includes the modified aerosol resuspension and in-cloud wet removal processes with the droplet loss tendencies and precipitation fluxes from SBM. The newly coupled system is evaluated for two marine stratocumulus cases over the Southeast Pacific Ocean with either a simplified aerosol setup or full-chemistry. We compare the aerosol activation process in the newly coupled SBM-MOSAIC against the SBM simulation without chemistry using a simplified aerosol setup, and the results show consistent activation rates. A longer time simulation reinforces that aerosol resuspension through cloud drop evaporation plays an important role in replenishing aerosols and impacts cloud and precipitation in marine stratocumulus clouds. Evaluation of the coupled SBM-MOSAIC with full-chemistry using aircraft measurements suggests that the new model works realistically for the marine stratocumulus clouds, and improves the simulation of cloud microphysical properties compared to a simulation using MOSAIC coupled with the Morrison two-moment microphysics.

  16. Relationship Education for Military Couples: Recommendations for Best Practice.

    PubMed

    Bakhurst, Melissa G; Loew, Benjamin; McGuire, Annabel C L; Halford, W Kim; Markman, Howard J

    2017-06-01

    Military couples have a number of distinctive strengths and challenges that are likely to influence their relationship adjustment. Military couples' strengths include stable employment, financial security, and subsidized health and counseling services. At the same time, military couples often experience long periods of separation and associated difficulties with emotional disconnect, trauma symptoms, and reintegrating the family. This paper describes best practice recommendations for working with military couples, including: addressing the distinctive challenges of the military lifestyle, ensuring program delivery is seen as relevant by military couples, and providing relationship education in formats that enhance the accessibility of programs. © 2016 Family Process Institute.

  17. GOMA 6.0 :

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schunk, Peter Randall; Rao, Rekha Ranjana; Chen, Ken S

    Goma 6.0 is a finite element program which excels in analyses of multiphysical processes, particularly those involving the major branches of mechanics (viz. fluid/solid mechanics, energy transport and chemical species transport). Goma is based on a full-Newton-coupled algorithm which allows for simultaneous solution of the governing principles, making the code ideally suited for problems involving closely coupled bulk mechanics and interfacial phenomena. Example applications include, but are not limited to, coating and polymer processing flows, super-alloy processing, welding/soldering, electrochemical processes, and solid-network or solution film drying. This document serves as a users guide and reference.

  18. Methodologies for launcher-payload coupled dynamic analysis

    NASA Astrophysics Data System (ADS)

    Fransen, S. H. J. A.

    2012-06-01

    An important step in the design and verification process of spacecraft structures is the coupled dynamic analysis with the launch vehicle in the low-frequency domain, also referred to as coupled loads analysis (CLA). The objective of such analyses is the computation of the dynamic environment of the spacecraft (payload) in terms of interface accelerations, interface forces, center of gravity (CoG) accelerations as well as the internal state of stress. In order to perform an efficient, fast and accurate launcher-payload coupled dynamic analysis, various methodologies have been applied and developed. The methods are related to substructuring techniques, data recovery techniques, the effects of prestress and fluids and time integration problems. The aim of this paper was to give an overview of these methodologies and to show why, how and where these techniques can be used in the process of launcher-payload coupled dynamic analysis. In addition, it will be shown how these methodologies fit together in a library of procedures which can be used with the MSC.Nastran™ solution sequences.

  19. Microwave-Assisted Synthesis of a MK2 Inhibitor by Suzuki-Miyaura Coupling for Study in Werner Syndrome Cells

    PubMed Central

    Bagley, Mark C.; Baashen, Mohammed; Chuckowree, Irina; Dwyer, Jessica E.; Kipling, David; Davis, Terence

    2015-01-01

    Microwave-assisted Suzuki-Miyaura cross-coupling reactions have been employed towards the synthesis of three different MAPKAPK2 (MK2) inhibitors to study accelerated aging in Werner syndrome (WS) cells, including the cross-coupling of a 2-chloroquinoline with a 3-pyridinylboronic acid, the coupling of an aryl bromide with an indolylboronic acid and the reaction of a 3-amino-4-bromopyrazole with 4-carbamoylphenylboronic acid. In all of these processes, the Suzuki-Miyaura reaction was fast and relatively efficient using a palladium catalyst under microwave irradiation. The process was incorporated into a rapid 3-step microwave-assisted method for the synthesis of a MK2 inhibitor involving 3-aminopyrazole formation, pyrazole C-4 bromination using N-bromosuccinimide (NBS), and Suzuki-Miyaura cross-coupling of the pyrazolyl bromide with 4-carbamoylphenylboronic acid to give the target 4-arylpyrazole in 35% overall yield, suitable for study in WS cells. PMID:26046488

  20. Mouse rods signal through gap junctions with cones.

    PubMed

    Asteriti, Sabrina; Gargini, Claudia; Cangiano, Lorenzo

    2014-01-01

    Rod and cone photoreceptors are coupled by gap junctions (GJs), relatively large channels able to mediate both electrical and molecular communication. Despite their critical location in our visual system and evidence that they are dynamically gated for dark/light adaptation, the full impact that rod-cone GJs can have on cone function is not known. We recorded the photovoltage of mouse cones and found that the initial level of rod input increased spontaneously after obtaining intracellular access. This process allowed us to explore the underlying coupling capacity to rods, revealing that fully coupled cones acquire a striking rod-like phenotype. Calcium, a candidate mediator of the coupling process, does not appear to be involved on the cone side of the junctional channels. Our findings show that the anatomical substrate is adequate for rod-cone coupling to play an important role in vision and, possibly, in biochemical signaling among photoreceptors. DOI: http://dx.doi.org/10.7554/eLife.01386.001.

  1. Mouse rods signal through gap junctions with cones

    PubMed Central

    Asteriti, Sabrina; Gargini, Claudia; Cangiano, Lorenzo

    2014-01-01

    Rod and cone photoreceptors are coupled by gap junctions (GJs), relatively large channels able to mediate both electrical and molecular communication. Despite their critical location in our visual system and evidence that they are dynamically gated for dark/light adaptation, the full impact that rod–cone GJs can have on cone function is not known. We recorded the photovoltage of mouse cones and found that the initial level of rod input increased spontaneously after obtaining intracellular access. This process allowed us to explore the underlying coupling capacity to rods, revealing that fully coupled cones acquire a striking rod-like phenotype. Calcium, a candidate mediator of the coupling process, does not appear to be involved on the cone side of the junctional channels. Our findings show that the anatomical substrate is adequate for rod–cone coupling to play an important role in vision and, possibly, in biochemical signaling among photoreceptors. DOI: http://dx.doi.org/10.7554/eLife.01386.001 PMID:24399457

  2. Examining the Utility of Topic Models for Linguistic Analysis of Couple Therapy

    ERIC Educational Resources Information Center

    Doeden, Michelle A.

    2012-01-01

    This study examined the basic utility of topic models, a computational linguistics model for text-based data, to the investigation of the process of couple therapy. Linguistic analysis offers an additional lens through which to examine clinical data, and the topic model is presented as a novel methodology within couple and family psychology that…

  3. What, Why, and for Whom: Couples Interventions--A Deconstruction Approach

    ERIC Educational Resources Information Center

    Sher, Tamara Goldman

    2012-01-01

    This paper provides a commentary on the special series on universal processes and common factors in couple therapy. The authors in this section share their insights, from varying perspectives, about what it is in couples therapy and relationship education programs that work, why they work, and for whom they work best. In so doing, these articles…

  4. Exploring the Influence of the Attachment Organizations of Novice Therapists on Their Delivery of Emotionally Focused Therapy for Couples

    ERIC Educational Resources Information Center

    Wittenborn, Andrea K.

    2012-01-01

    Clinicians' own internal resources for understanding relationships--that is, their attachment organizations--have been found to influence the process and outcome of treatment. The current study addressed whether the attachment organizations of novice couple and family therapists were associated with couples' experiences of their therapists,…

  5. Latent Differential Equation Modeling of Self-Regulatory and Coregulatory Affective Processes

    ERIC Educational Resources Information Center

    Steele, Joel S.; Ferrer, Emilio

    2011-01-01

    We examine emotion self-regulation and coregulation in romantic couples using daily self-reports of positive and negative affect. We fit these data using a damped linear oscillator model specified as a latent differential equation to investigate affect dynamics at the individual level and coupled influences for the 2 partners in each couple.…

  6. Beyond the "Two-Body" Problem: Recruitment with Dual-Career Couples Support

    ERIC Educational Resources Information Center

    Kibel, Laurel Sgan

    2013-01-01

    This article addresses issues faced by faculty couples, or any dual-career couple recruited to a college or university. Institutions want to bring the best talent to their campus and increasingly, that means anticipating and responding to the needs of the spouse or partner in the recruiting process. Research has shown that job opportunities for…

  7. Hydromechanical coupling in geologic processes

    USGS Publications Warehouse

    Neuzil, C.E.

    2003-01-01

    Earth's porous crust and the fluids within it are intimately linked through their mechanical effects on each other. This paper presents an overview of such "hydromechanical" coupling and examines current understanding of its role in geologic processes. An outline of the theory of hydromechanics and rheological models for geologic deformation is included to place various analytical approaches in proper context and to provide an introduction to this broad topic for nonspecialists. Effects of hydromechanical coupling are ubiquitous in geology, and can be local and short-lived or regional and very long-lived. Phenomena such as deposition and erosion, tectonism, seismicity, earth tides, and barometric loading produce strains that tend to alter fluid pressure. Resulting pressure perturbations can be dramatic, and many so-called "anomalous" pressures appear to have been created in this manner. The effects of fluid pressure on crustal mechanics are also profound. Geologic media deform and fail largely in response to effective stress, or total stress minus fluid pressure. As a result, fluid pressures control compaction, decompaction, and other types of deformation, as well as jointing, shear failure, and shear slippage, including events that generate earthquakes. By controlling deformation and failure, fluid pressures also regulate states of stress in the upper crust. Advances in the last 80 years, including theories of consolidation, transient groundwater flow, and poroelasticity, have been synthesized into a reasonably complete conceptual framework for understanding and describing hydromechanical coupling. Full coupling in two or three dimensions is described using force balance equations for deformation coupled with a mass conservation equation for fluid flow. Fully coupled analyses allow hypothesis testing and conceptual model development. However, rigorous application of full coupling is often difficult because (1) the rheological behavior of geologic media is complex and poorly understood and (2) the architecture, mechanical properties and boundary conditions, and deformation history of most geologic systems are not well known. Much of what is known about hydromechanical processes in geologic systems is derived from simpler analyses that ignore certain aspects of solid-fluid coupling. The simplifications introduce error, but more complete analyses usually are not warranted. Hydromechanical analyses should thus be interpreted judiciously, with an appreciation for their limitations. Innovative approaches to hydromechanical modeling and obtaining critical data may circumvent some current limitations and provide answers to remaining questions about crustal processes and fluid behavior in the crust.

  8. Synchronization and chaotic dynamics of coupled mechanical metronomes

    NASA Astrophysics Data System (ADS)

    Ulrichs, Henning; Mann, Andreas; Parlitz, Ulrich

    2009-12-01

    Synchronization scenarios of coupled mechanical metronomes are studied by means of numerical simulations showing the onset of synchronization for two, three, and 100 globally coupled metronomes in terms of Arnol'd tongues in parameter space and a Kuramoto transition as a function of coupling strength. Furthermore, we study the dynamics of metronomes where overturning is possible. In this case hyperchaotic dynamics associated with some diffusion process in configuration space is observed, indicating the potential complexity of metronome dynamics.

  9. Efficient self-consistent viscous-inviscid solutions for unsteady transonic flow

    NASA Technical Reports Server (NTRS)

    Howlett, J. T.

    1985-01-01

    An improved method is presented for coupling a boundary layer code with an unsteady inviscid transonic computer code in a quasi-steady fashion. At each fixed time step, the boundary layer and inviscid equations are successively solved until the process converges. An explicit coupling of the equations is described which greatly accelerates the convergence process. Computer times for converged viscous-inviscid solutions are about 1.8 times the comparable inviscid values. Comparison of the results obtained with experimental data on three airfoils are presented. These comparisons demonstrate that the explicitly coupled viscous-inviscid solutions can provide efficient predictions of pressure distributions and lift for unsteady two-dimensional transonic flows.

  10. Efficient self-consistent viscous-inviscid solutions for unsteady transonic flow

    NASA Technical Reports Server (NTRS)

    Howlett, J. T.

    1985-01-01

    An improved method is presented for coupling a boundary layer code with an unsteady inviscid transonic computer code in a quasi-steady fashion. At each fixed time step, the boundary layer and inviscid equations are successively solved until the process converges. An explicit coupling of the equations is described which greatly accelerates the convergence process. Computer times for converged viscous-inviscid solutions are about 1.8 times the comparable inviscid values. Comparison of the results obtained with experimental data on three airfoils are presented. These comparisons demonstrate that the explicitly coupled viscous-inviscid solutions can provide efficient predictions of pressure distributions and lift for unsteady two-dimensional transonic flow.

  11. Raman-Suppressing Coupling for Optical Parametric Oscillator

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy; Maleki, Lute; Matsko, Andrey; Rubiola, Enrico

    2007-01-01

    A Raman-scattering-suppressing input/ output coupling scheme has been devised for a whispering-gallery-mode optical resonator that is used as a four-wave-mixing device to effect an all-optical parametric oscillator. Raman scattering is undesired in such a device because (1) it is a nonlinear process that competes with the desired nonlinear four-wave conversion process involved in optical parametric oscillation and (2) as such, it reduces the power of the desired oscillation and contributes to output noise. The essence of the present input/output coupling scheme is to reduce output loading of the desired resonator modes while increasing output loading of the undesired ones.

  12. Searching for axionlike particles in flavor-changing neutral current processes [A new flavor of searches for axion-like particles

    DOE PAGES

    Izaguirre, Eder; Lin, Tongyan; Shuve, Brian

    2017-03-15

    Here, we propose new searches for axion-like particles (ALPs) produced in flavor-changing neutral current (FCNC) processes. This proposal exploits the often-overlooked coupling of ALPs to W ± bosons, leading to FCNC production of ALPs even in the absence of a direct coupling to fermions. Our proposed searches for resonant ALP production in decays such as B→K(*)a, a→γγ, and K→πa, a→γγ could greatly improve upon the current sensitivity to ALP couplings to standard model particles. Finally, we also determine analogous constraints and discovery prospects for invisibly decaying ALPs.

  13. Tunable Q-factor silicon microring resonators for ultra-low power parametric processes.

    PubMed

    Strain, Michael J; Lacava, Cosimo; Meriggi, Laura; Cristiani, Ilaria; Sorel, Marc

    2015-04-01

    A compact silicon ring resonator is demonstrated that allows simple electrical tuning of the ring coupling coefficient and Q-factor and therefore the resonant enhancement of on-chip nonlinear optical processes. Fabrication-induced variation in designed coupling fraction, crucial in the resonator performance, can be overcome using this post-fabrication trimming technique. Tuning of the microring resonator across the critical coupling point is demonstrated, exhibiting a Q-factor tunable between 9000 and 96,000. Consequently, resonantly enhanced four-wave mixing shows tunable efficiency between -40 and -16.3  dB at an ultra-low on-chip pump power of 0.7 mW.

  14. A graph-theoretical representation of multiphoton resonance processes in superconducting quantum circuits

    DOE PAGES

    Jooya, Hossein Z.; Reihani, Kamran; Chu, Shih-I

    2016-11-21

    We propose a graph-theoretical formalism to study generic circuit quantum electrodynamics systems consisting of a two level qubit coupled with a single-mode resonator in arbitrary coupling strength regimes beyond rotating-wave approximation. We define colored-weighted graphs, and introduce different products between them to investigate the dynamics of superconducting qubits in transverse, longitudinal, and bidirectional coupling schemes. In conclusion, the intuitive and predictive picture provided by this method, and the simplicity of the mathematical construction, are demonstrated with some numerical studies of the multiphoton resonance processes and quantum interference phenomena for the superconducting qubit systems driven by intense ac fields.

  15. Inverse scattering transform and soliton classification of the coupled modified Korteweg-de Vries equation

    NASA Astrophysics Data System (ADS)

    Wu, Jianping; Geng, Xianguo

    2017-12-01

    The inverse scattering transform of the coupled modified Korteweg-de Vries equation is studied by the Riemann-Hilbert approach. In the direct scattering process, the spectral analysis of the Lax pair is performed, from which a Riemann-Hilbert problem is established for the equation. In the inverse scattering process, by solving Riemann-Hilbert problems corresponding to the reflectionless cases, three types of multi-soliton solutions are obtained. The multi-soliton classification is based on the zero structures of the Riemann-Hilbert problem. In addition, some figures are given to illustrate the soliton characteristics of the coupled modified Korteweg-de Vries equation.

  16. Rapid, high-frequency, and theta-coupled gamma oscillations in the inferior occipital gyrus during face processing.

    PubMed

    Sato, Wataru; Kochiyama, Takanori; Uono, Shota; Matsuda, Kazumi; Usui, Keiko; Inoue, Yushi; Toichi, Motomi

    2014-11-01

    Neuroimaging studies have found greater activation in the inferior occipital gyrus (IOG), or occipital face area, in response to faces relative to non-facial stimuli. However, the temporal, frequency, and functional profiles of IOG activity during face processing remain unclear. Here, this issue was investigated by recording intracranial field potentials in the IOG during the presentation of faces, mosaics, and houses in upright and inverted orientations. Time-frequency statistical parametric mapping analyses revealed greater gamma-band activation in the IOG beginning at 110 msec and covering 40-300 Hz in response to upright faces relative to upright houses and mosaics. Phase-amplitude cross-frequency coupling analyses revealed more evident theta-gamma couplings at 115-256 msec during the processing of upright faces as compared with that of upright houses and mosaics. Comparable gamma-band activity was observed during the processing of inverted and upright faces at about 100-200 msec, but weaker activity and different coupling with theta-band activity after 200 msec. These patterns of activity were more evident in the right than in the left IOG. These results, together with other evidence on neural communication, suggest that broadband gamma oscillations in the right IOG conduct rapid and multistage (i.e., both featural and configural) face processing in collaboration with theta oscillations transmitted from other brain regions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Fano-Agarwal couplings and non-rotating wave approximation in single-photon timed Dicke subradiance

    NASA Astrophysics Data System (ADS)

    Mirza, Imran M.; Begzjav, Tuguldur

    2016-04-01

    Recently a new class of single-photon timed Dicke (TD) subradiant states has been introduced with possible applications in single-photon-based quantum information storage and on demand ultrafast retrieval (Scully M. O., Phys. Rev. Lett., 115 (2015) 243602). However, the influence of any kind of virtual processes on the decay of these new kind of subradiant states has been left as an open question. In the present paper, we focus on this problem in detail. In particular, we investigate how pure Fano-Agarwal couplings and other virtual processes arising from non-rotating wave approximation impact the decay of otherwise sub- and superradiant states. In addition to the overall virtual couplings among all TD states, we also focus on the dominant role played by the couplings between specific TD states.

  18. Plasmonic Antenna Coupling for QWIPs

    NASA Technical Reports Server (NTRS)

    Hong, John

    2007-01-01

    In a proposed scheme for coupling light into a quantum-well infrared photodetector (QWIP), an antenna or an array of antennas made of a suitable metal would be fabricated on the face of what would otherwise be a standard QWIP. This or any such coupling scheme is required to effect polarization conversion: Light incident perpendicularly to the face is necessarily polarized in the plane of the face, whereas, as a matter of fundamental electrodynamics and related quantum selection rules, light must have a non-zero component of perpendicular polarization in order to be absorbed in the photodetection process. In a prior coupling scheme, gratings in the form of surface corrugations diffract normally gles, thereby imparting some perpendicular polarization. Unfortunately, the corrugation- fabrication process increases the overall nonuniformity of a large QWIP array. The proposed scheme is an alternative to the use of surface corrugations.

  19. Antiresonance and decoupling in electronic transport through parallel-coupled quantum-dot structures with laterally-coupled Majorana zero modes

    NASA Astrophysics Data System (ADS)

    Zhang, Ya-Jing; Zhang, Lian-Lian; Jiang, Cui; Gong, Wei-Jiang

    2018-02-01

    We theoretically investigate the electronic transport through a parallel-coupled multi-quantum-dot system, in which the terminal dots of a one-dimensional quantum-dot chain are embodied in the two arms of an Aharonov-Bohm interferometer. It is found that in the structures of odd(even) dots, all their even(odd) molecular states have opportunities to decouple from the leads, and in this process antiresonance occurs which are accordant with the odd(even)-numbered eigenenergies of the sub-molecule without terminal dots. Next when Majorana zero modes are introduced to couple laterally to the terminal dots, the antiresonance and decoupling phenomena still co-exist in the quantum transport process. Such a result can be helpful in understanding the special influence of Majorana zero mode on the electronic transport through quantum-dot systems.

  20. Description and evaluation of the Earth System Regional Climate Model (RegCM-ES)

    NASA Astrophysics Data System (ADS)

    Farneti, Riccardo; Sitz, Lina; Di Sante, Fabio; Fuentes-Franco, Ramon; Coppola, Erika; Mariotti, Laura; Reale, Marco; Sannino, Gianmaria; Barreiro, Marcelo; Nogherotto, Rita; Giuliani, Graziano; Graffino, Giorgio; Solidoro, Cosimo; Giorgi, Filippo

    2017-04-01

    The increasing availability of satellite remote sensing data, of high temporal frequency and spatial resolution, has provided a new and enhanced view of the global ocean and atmosphere, revealing strong air-sea coupling processes throughout the ocean basins. In order to obtain an accurate representation and better understanding of the climate system, its variability and change, the inclusion of all mechanisms of interaction among the different sub-components, at high temporal and spatial resolution, becomes ever more desirable. Recently, global coupled models have been able to progressively refine their horizontal resolution to attempt to resolve smaller-scale processes. However, regional coupled ocean-atmosphere models can achieve even finer resolutions and provide additional information on the mechanisms of air-sea interactions and feedbacks. Here we describe a new, state-of-the-art, Earth System Regional Climate Model (RegCM-ES). RegCM-ES presently includes the coupling between atmosphere, ocean, land surface and sea-ice components, as well as an hydrological and ocean biogeochemistry model. The regional coupled model has been implemented and tested over some of the COordinated Regional climate Downscaling Experiment (CORDEX) domains. RegCM-ES has shown improvements in the representation of precipitation and SST fields over the tested domains, as well as realistic representations of coupled air-sea processes and interactions. The RegCM-ES model, which can be easily implemented over any regional domain of interest, is open source making it suitable for usage by the large scientific community.

  1. Multi-Region Boundary Element Analysis for Coupled Thermal-Fracturing Processes in Geomaterials

    NASA Astrophysics Data System (ADS)

    Shen, Baotang; Kim, Hyung-Mok; Park, Eui-Seob; Kim, Taek-Kon; Wuttke, Manfred W.; Rinne, Mikael; Backers, Tobias; Stephansson, Ove

    2013-01-01

    This paper describes a boundary element code development on coupled thermal-mechanical processes of rock fracture propagation. The code development was based on the fracture mechanics code FRACOD that has previously been developed by Shen and Stephansson (Int J Eng Fracture Mech 47:177-189, 1993) and FRACOM (A fracture propagation code—FRACOD, User's manual. FRACOM Ltd. 2002) and simulates complex fracture propagation in rocks governed by both tensile and shear mechanisms. For the coupled thermal-fracturing analysis, an indirect boundary element method, namely the fictitious heat source method, was implemented in FRACOD to simulate the temperature change and thermal stresses in rocks. This indirect method is particularly suitable for the thermal-fracturing coupling in FRACOD where the displacement discontinuity method is used for mechanical simulation. The coupled code was also extended to simulate multiple region problems in which rock mass, concrete linings and insulation layers with different thermal and mechanical properties were present. Both verification and application cases were presented where a point heat source in a 2D infinite medium and a pilot LNG underground cavern were solved and studied using the coupled code. Good agreement was observed between the simulation results, analytical solutions and in situ measurements which validates an applicability of the developed coupled code.

  2. Creative computing with Landlab: an open-source toolkit for building, coupling, and exploring two-dimensional numerical models of Earth-surface dynamics

    NASA Astrophysics Data System (ADS)

    Hobley, Daniel E. J.; Adams, Jordan M.; Nudurupati, Sai Siddhartha; Hutton, Eric W. H.; Gasparini, Nicole M.; Istanbulluoglu, Erkan; Tucker, Gregory E.

    2017-01-01

    The ability to model surface processes and to couple them to both subsurface and atmospheric regimes has proven invaluable to research in the Earth and planetary sciences. However, creating a new model typically demands a very large investment of time, and modifying an existing model to address a new problem typically means the new work is constrained to its detriment by model adaptations for a different problem. Landlab is an open-source software framework explicitly designed to accelerate the development of new process models by providing (1) a set of tools and existing grid structures - including both regular and irregular grids - to make it faster and easier to develop new process components, or numerical implementations of physical processes; (2) a suite of stable, modular, and interoperable process components that can be combined to create an integrated model; and (3) a set of tools for data input, output, manipulation, and visualization. A set of example models built with these components is also provided. Landlab's structure makes it ideal not only for fully developed modelling applications but also for model prototyping and classroom use. Because of its modular nature, it can also act as a platform for model intercomparison and epistemic uncertainty and sensitivity analyses. Landlab exposes a standardized model interoperability interface, and is able to couple to third-party models and software. Landlab also offers tools to allow the creation of cellular automata, and allows native coupling of such models to more traditional continuous differential equation-based modules. We illustrate the principles of component coupling in Landlab using a model of landform evolution, a cellular ecohydrologic model, and a flood-wave routing model.

  3. Thermal-mechanical coupling effect on initial stage oxidation of Si(100) surface

    NASA Astrophysics Data System (ADS)

    Sun, Yu; Liu, Yilun; Chen, Xuefeng; Zhai, Zhi; Izumi, Satoshi

    2018-04-01

    The initial stage oxidation of biaxially strained Si(100) at temperatures ranging from 300 K to 1200 K has been investigated by Reactive Force Field Molecular Dynamics simulations. We reported that the oxidation process involving the reaction rate and the amount of absorbed O atoms could be enhanced by the coupling effect of higher temperatures and larger external tension. By fitting the simulation results, the relationship between absorbed oxygen and the coupling of temperature and strain was obtained. In probing the mechanism, we observed that there was a ballistic transport of O atoms, displaying an enhancement of inward penetration by external tension. Since such an inward transport was favored by thermal actuation, more O atoms penetrated into deeper layers when the 9% strained Si oxidized at 1200 K. Moreover, the evolution of stress in the surface region during the oxidation process was discussed, as well as the related oxide structure and the film quality. These present results may provide a way to understand the thermally-mechanically coupled chemical reactions and propose an effective approach to optimize microscale component processing in the electronic field.

  4. Retropinacol/Cross-pinacol Coupling Reactions - A Catalytic Access to 1,2-Unsymmetrical Diols

    PubMed Central

    Scheffler, Ulf; Mahrwald, Rainer

    2014-01-01

    Unsymmetrical 1,2-diols are hardly accessible by reductive pinacol coupling processes. A successful execution of such a transformation is bound to a clear recognition and strict differentiation of two similar carbonyl compounds (aldehydes → secondary 1,2-diols or ketones → tertiary 1,2-diols). This fine-tuning is still a challenge and an unsolved problem for an organic chemist. There exist several reports on successful execution of this transformation but they cannot be generalized. Herein we describe a catalytic direct pinacol coupling process which proceeds via a retropinacol/cross-pinacol coupling sequence. Thus, unsymmetrical substituted 1,2-diols can be accessed with almost quantitative yields by means of an operationally simple performance under very mild conditions. Artificial techniques, such as syringe-pump techniques or delayed additions of reactants are not necessary. The procedure we describe provides a very rapid access to cross-pinacol products (1,2-diols, vicinal diols). A further extension of this new process, e.g. an enantioselective performance could provide a very useful tool for the synthesis of unsymmetrical chiral 1,2-diols. PMID:24747370

  5. Characteristics of receptor- and transducer-coupled activation of the intracellular signalling in sensory neuron revealed by atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Khalisov, M. M.; Penniyaynen, V. A.; Esikova, N. A.; Ankudinov, A. V.; Krylov, B. V.

    2017-01-01

    The mechanical properties of sensory neurons upon activation of intracellular cascade processes by comenic acid binding to a membrane opioid-like receptor (receptor-coupled), as well as a very low (endogenous) concentration of ouabain (transducer-coupled), have been investigated. Using atomic force microscopy, it is established that exposure to ouabain, in contrast to the impact of comenic acid, leads to a hardening of the neuron soma. This suggests that the receptor-coupled signal transmission to the cell genome is carried out through mechanisms that are different from the transducer-coupled signal pathways.

  6. Probing the Dipolar Coupling in a Heterospin Endohedral Fullerene-Phthalocyanine Dyad.

    PubMed

    Zhou, Shen; Yamamoto, Masanori; Briggs, G Andrew D; Imahori, Hiroshi; Porfyrakis, Kyriakos

    2016-02-03

    Paramagnetic endohedral fullerenes and phthalocyanine (Pc) complexes are promising building blocks for molecular quantum information processing, for which tunable dipolar coupling is required. We have linked these two spin qubit candidates together and characterized the resulting electron paramagnetic resonance properties, including the spin dipolar coupling between the fullerene spin and the copper spin. Having interpreted the distance-dependent coupling strength quantitatively and further discussed the antiferromagnetic aggregation effect of the CuPc moieties, we demonstrate two ways of tuning the dipolar coupling in such dyad systems: changing the spacer group and adjusting the solution concentration.

  7. Exploring cogging free magnetic gears

    NASA Astrophysics Data System (ADS)

    Borgers, Stefan; Völkel, Simeon; Schöpf, Wolfgang; Rehberg, Ingo

    2018-06-01

    The coupling of two rotating spherical magnets is investigated experimentally, with particular emphasis on those motions in which the driven magnet follows the driving one with a uniform angular speed, which is a feature of the so called cogging free couplings. The experiment makes use of standard equipment and digital image processing. The theory for these couplings is based on fundamental dipole-dipole interactions with analytically accessible solutions. Technical applications of this kind of coupling are foreseeable particularly for small machines, an advantage which also comes in handy for classroom demonstrations of this feature of the fundamental concept of dipole-dipole coupling.

  8. Single-photon-driven high-order sideband transitions in an ultrastrongly coupled circuit-quantum-electrodynamics system

    NASA Astrophysics Data System (ADS)

    Chen, Zhen; Wang, Yimin; Li, Tiefu; Tian, Lin; Qiu, Yueyin; Inomata, Kunihiro; Yoshihara, Fumiki; Han, Siyuan; Nori, Franco; Tsai, J. S.; You, J. Q.

    2017-07-01

    We report the experimental observation of high-order sideband transitions at the single-photon level in a quantum circuit system of a flux qubit ultrastrongly coupled to a coplanar waveguide resonator. With the coupling strength reaching 10% of the resonator's fundamental frequency, we obtain clear signatures of higher order red-sideband and first-order blue-sideband transitions, which are mainly due to the ultrastrong Rabi coupling. Our observation advances the understanding of ultrastrongly coupled systems and paves the way to study high-order processes in the quantum Rabi model at the single-photon level.

  9. If We Build It, They Will Come: Exploring Policy and Practice Implications of Public Support for Couple and Relationship Education for Lower Income and Relationally Distressed Couples.

    PubMed

    Bradford, Angela B; Hawkins, Alan J; Acker, Jennifer

    2015-12-01

    Over the past decade, public funding for Couple and Relationship Education programs has expanded. As program administrators have been able to extend their reach to low-income individuals and couples using this support, it has become apparent that greater numbers of relationally distressed couples are attending classes than previously anticipated. Because psychoeducational programs for couples have traditionally served less distressed couples, this dynamic highlights the need to examine the policy and practice implications of more distressed couples accessing these services. This paper reviews some of the most immediate issues, including screening for domestic violence and couple needs, pedagogical considerations, and the potential integration of therapy and education services. We also make suggestions for future research that can inform policy and practice efforts. © 2015 Family Process Institute.

  10. Precise control of coupling strength in photonic molecules over a wide range using nanoelectromechanical systems

    PubMed Central

    Du, Han; Zhang, Xingwang; Chen, Guoqiang; Deng, Jie; Chau, Fook Siong; Zhou, Guangya

    2016-01-01

    Photonic molecules have a range of promising applications including quantum information processing, where precise control of coupling strength is critical. Here, by laterally shifting the center-to-center offset of coupled photonic crystal nanobeam cavities, we demonstrate a method to precisely and dynamically control the coupling strength of photonic molecules through integrated nanoelectromechanical systems with a precision of a few GHz over a range of several THz without modifying the nature of their constituent resonators. Furthermore, the coupling strength can be tuned continuously from negative (strong coupling regime) to zero (weak coupling regime) and further to positive (strong coupling regime) and vice versa. Our work opens a door to the optimization of the coupling strength of photonic molecules in situ for the study of cavity quantum electrodynamics and the development of efficient quantum information devices. PMID:27097883

  11. Diagnosing the Nature of Land-Atmosphere Coupling: A Case Study of Dry/Wet Extremes in the U. S. Southern Great Plains

    NASA Technical Reports Server (NTRS)

    Santanello, Joseph A. Jr.; Peters-Lidard, Christa D.; Kennedy, Aaron; Kumar, Sujay V.

    2012-01-01

    Land-atmosphere (L-A) interactions play a critical role in determining the diurnal evolution of land surface and planetary boundary layer (PBL) temperature and moisture states and fluxes. In turn, these interactions regulate the strength of the connection between surface moisture and precipitation in a coupled system. To address model deficiencies, recent studies have focused on development of diagnostics to quantify the strength and accuracy of the land- PBL coupling at the process-level. In this paper, a diagnosis of the nature and impacts of local land-atmosphere coupling (LoCo) during dry and wet extreme conditions is presented using a combination of models and observations during the summers of 2006 and 2007 in the U.S. Southern Great Plains. A range of diagnostics exploring the links and feedbacks between soil moisture and precipitation are applied to the dry/wet regimes exhibited in this region, and in the process a thorough evaluation of nine different land-PBL scheme couplings is conducted under the umbrella of a high-resolution regional modeling testbed. Results show that the sign and magnitude of errors in land surface energy balance components are sensitive to the choice of land surface model, regime type, and running mode. In addition, LoCo diagnostics show that the sensitivity of L-A coupling is stronger towards the land during dry conditions, while the PBL scheme coupling becomes more important during the wet regime. Results also demonstrate how LoCo diagnostics can be applied to any modeling system (e.g. reanalysis products) in the context of their integrated impacts on the process-chain connecting the land surface to the PBL and in support of hydrological anomalies.

  12. Termination of pregnancy following a prenatal diagnosis of Down syndrome: A qualitative study of the decision-making process of pregnant couples.

    PubMed

    Lou, Stina; Carstensen, Kathrine; Petersen, Olav Bjørn; Nielsen, Camilla Palmhøj; Hvidman, Lone; Lanther, Maja Retpen; Vogel, Ida

    2018-05-23

    In Denmark, first trimester screening has a very high uptake (>90%). If Down syndrome is diagnosed, termination rates are high (>95%). The aim of this study was to investigate the timing of the decision to terminate pregnancy following a diagnosis of Down syndrome and the factors influencing this decision. Semi-structured, qualitative interview study with 21 couples who had received a prenatal diagnosis of Down syndrome and decided to terminate the pregnancy. Participants were recruited from obstetric departments between February 2016 and July 2017. Data were analyzed using thematic analysis. Five themes were identified: "initial decision-making", "consolidating the decision", "reasons and concerns shaping the termination of pregnancy decision", "the right decision is also burdensome", and "perceived influences in decision-making". For most couples, the initial decision to terminate pregnancy was made before or during the diagnostic process, but it was re-addressed and consolidated following the actual diagnosis. Imagining a family future with a severely affected Down syndrome child was the main factor influencing the termination of pregnancy decision. The decision was articulated as "right" but also as existentially burdensome for some, due to fear of regret and concern about ending a potential life. The decision to terminate pregnancy was considered a private matter between the couple, but was refined through interactions with clinicians and social networks. All couples made an initial decision prior to receiving the Down syndrome diagnosis. Knowledge of the couple's initial decision may facilitate patient-centered communication during and after the diagnostic process. Couples may benefit from counseling to deal with grief and existential concerns. © 2018 Nordic Federation of Societies of Obstetrics and Gynecology.

  13. Diagnosing the Nature of Land-Atmosphere Coupling: A Case Study of Dry/Wet Extremes in the U.S. Southern Great Plains

    NASA Technical Reports Server (NTRS)

    Santanello, Joseph A., Jr.; Peters-Lidard, Christa D.; Kennedy, Aaron; Kumar, Sujay V.

    2012-01-01

    Land-atmosphere (L-A) interactions play a critical role in determining the diurnal evolution of land surface and planetary boundary layer (PBL) temperature and moisture states and fluxes. In turn, these interactions regulate the strength of the connection between surface moisture and precipitation in a coupled system. To address model deficiencies, recent studies have focused on development of diagnostics to quantify the strength and accuracy of the land-PBL coupling at the process level. In this paper, a diagnosis of the nature and impacts of local land-atmosphere coupling (LoCo) during dry and wet extreme conditions is presented using a combination of models and observations during the summers of 2006 and 2007 in the U.S. southern Great Plains. A range of diagnostics exploring the links and feedbacks between soil moisture and precipitation is applied to the dry/wet regimes exhibited in this region, and in the process, a thorough evaluation of nine different land-PBL scheme couplings is conducted under the umbrella of a high-resolution regional modeling test bed. Results show that the sign and magnitude of errors in land surface energy balance components are sensitive to the choice of land surface model, regime type, and running mode. In addition, LoCo diagnostics show that the sensitivity of L-A coupling is stronger toward the land during dry conditions, while the PBL scheme coupling becomes more important during the wet regime. Results also demonstrate how LoCo diagnostics can be applied to any modeling system (e.g., reanalysis products) in the context of their integrated impacts on the process chain connecting the land surface to the PBL and in support of hydrological anomalies.

  14. Implementation details of the coupled QMR algorithm

    NASA Technical Reports Server (NTRS)

    Freund, Roland W.; Nachtigal, Noel M.

    1992-01-01

    The original quasi-minimal residual method (QMR) relies on the three-term look-ahead Lanczos process, to generate basis vectors for the underlying Krylov subspaces. However, empirical observations indicate that, in finite precision arithmetic, three-term vector recurrences are less robust than mathematically equivalent coupled two-term recurrences. Therefore, we recently proposed a new implementation of the QMR method based on a coupled two-term look-ahead Lanczos procedure. In this paper, we describe implementation details of this coupled QMR algorithm, and we present results of numerical experiments.

  15. Experimental determination of the effective strong coupling constant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexandre Deur; Volker Burkert; Jian-Ping Chen

    2007-07-01

    We extract an effective strong coupling constant from low Q{sup 2} data on the Bjorken sum. Using sum rules, we establish its Q{sup 2}-behavior over the complete Q{sup 2}-range. The result is compared to effective coupling constants extracted from different processes and to calculations based on Schwinger-Dyson equations, hadron spectroscopy or lattice QCD. Although the connection between the experimentally extracted effective coupling constant and the calculations is not clear, the results agree surprisingly well.

  16. Project Work Plan: Sequestration of Strontium-90 Subsurface Contamination in the Hanford 100-N Area by Surface Infiltration of an Apatite Solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szecsody, Jim E.

    2006-04-30

    We propose to develop an infiltration strategy that defines the precipitation rate of an apatite-forming solution and Sr-90 sequestration processes under variably saturated (low water content) conditions. We will develop this understanding through small-scale column studies, intermediate-scale two-dimensional (2-D) experiments, and numerical modeling to quantify individual and coupled processes associated with apatite formation and Sr-90 transport during and after infiltration of the Ca-citrate-PO4 solution. Development of capabilities to simulate these coupled biogeochemical processes during both injection and infiltration will be used to determine the most cost-effective means to emplace an in situ apatite barrier with a longevity of 300 yearsmore » to permanently sequester Sr-90 until it decays. Biogeochemical processes that will be investigated are citrate biodegradation and apatite precipitation rates at varying water contents as a function of water content. Coupled processes that will be investigated include the influence of apatite precipitation (which occupies pore space) on the hydraulic and transport properties of the porous media during infiltration.« less

  17. Superradiance of cold atoms coupled to a superconducting circuit

    NASA Astrophysics Data System (ADS)

    Braun, Daniel; Hoffman, Jonathan; Tiesinga, Eite

    2011-06-01

    We investigate superradiance of an ensemble of atoms coupled to an integrated superconducting LC circuit. Particular attention is paid to the effect of inhomogeneous coupling constants. Combining perturbation theory in the inhomogeneity and numerical simulations, we show that inhomogeneous coupling constants can significantly affect the superradiant relaxation process. Incomplete relaxation terminating in “dark states” can occur, from which the only escape is through individual spontaneous emission on a much longer time scale. The relaxation dynamics can be significantly accelerated or retarded, depending on the distribution of the coupling constants. On the technical side, we also generalize the previously known propagator of superradiance for identical couplings in the completely symmetric sector to the full exponentially large Hilbert space.

  18. Stability and time-domain analysis of the dispersive tristability in microresonators under modal coupling

    NASA Astrophysics Data System (ADS)

    Dumeige, Yannick; Féron, Patrice

    2011-10-01

    Coupled nonlinear resonators have potential applications for the integration of multistable photonic devices. The dynamic properties of two coupled-mode nonlinear microcavities made of Kerr material are studied by linear stability analysis. Using a suitable combination of the modal coupling rate and the frequency detuning, it is possible to obtain configurations where a hysteresis loop is included inside other bistable cycles. We show that a single resonator with two modes both linearly and nonlinearly coupled via the cross-Kerr effect can have a multistable behavior. This could be implemented in semiconductor nonlinear whispering-gallery-mode microresonators under modal coupling for all optical signal processing or ternary optical logic applications.

  19. High speed preamplifier circuit, detection electronics, and radiation detection systems therefrom

    DOEpatents

    Riedel, Richard A [Knoxville, TN; Wintenberg, Alan L [Knoxville, TN; Clonts, Lloyd G [Knoxville, TN; Cooper, Ronald G [Oak Ridge, TN

    2010-09-21

    A preamplifier circuit for processing a signal provided by a radiation detector includes a transimpedance amplifier coupled to receive a current signal from a detector and generate a voltage signal at its output. A second amplification stage has an input coupled to an output of the transimpedance amplifier for providing an amplified voltage signal. Detector electronics include a preamplifier circuit having a first and second transimpedance amplifier coupled to receive a current signal from a first and second location on a detector, respectively, and generate a first and second voltage signal at respective outputs. A second amplification stage has an input coupled to an output of the transimpedance amplifiers for amplifying the first and said second voltage signals to provide first and second amplified voltage signals. A differential output stage is coupled to the second amplification stage for receiving the first and second amplified voltage signals and providing a pair of outputs from each of the first and second amplified voltage signals. Read out circuitry has an input coupled to receive both of the pair of outputs, the read out circuitry having structure for processing each of the pair of outputs, and providing a single digital output having a time-stamp therefrom.

  20. Radiation detection system

    DOEpatents

    Riedel, Richard A [Knoxville, TN; Wintenberg, Alan L [Knoxville, TN; Clonts, Lloyd G [Knoxville, TN; Cooper, Ronald G [Oak Ridge, TN

    2012-02-14

    A preamplifier circuit for processing a signal provided by a radiation detector includes a transimpedance amplifier coupled to receive a current signal from a detector and generate a voltage signal at its output. A second amplification stage has an input coupled to an output of the transimpedance amplifier for providing an amplified voltage signal. Detector electronics include a preamplifier circuit having a first and second transimpedance amplifier coupled to receive a current signal from a first and second location on a detector, respectively, and generate a first and second voltage signal at respective outputs. A second amplification stage has an input coupled to an output of the transimpedance amplifiers for amplifying the first and said second voltage signals to provide first and second amplified voltage signals. A differential output stage is coupled to the second amplification stage for receiving the first and second amplified voltage signals and providing a pair of outputs from each of the first and second amplified voltage signals. Read out circuitry has an input coupled to receive both of the pair of outputs, the read out circuitry having structure for processing each of the pair of outputs, and providing a single digital output having a time-stamp therefrom.

  1. Ontology-based coupled optimisation design method using state-space analysis for the spindle box system of large ultra-precision optical grinding machine

    NASA Astrophysics Data System (ADS)

    Wang, Qianren; Chen, Xing; Yin, Yuehong; Lu, Jian

    2017-08-01

    With the increasing complexity of mechatronic products, traditional empirical or step-by-step design methods are facing great challenges with various factors and different stages having become inevitably coupled during the design process. Management of massive information or big data, as well as the efficient operation of information flow, is deeply involved in the process of coupled design. Designers have to address increased sophisticated situations when coupled optimisation is also engaged. Aiming at overcoming these difficulties involved in conducting the design of the spindle box system of ultra-precision optical grinding machine, this paper proposed a coupled optimisation design method based on state-space analysis, with the design knowledge represented by ontologies and their semantic networks. An electromechanical coupled model integrating mechanical structure, control system and driving system of the motor is established, mainly concerning the stiffness matrix of hydrostatic bearings, ball screw nut and rolling guide sliders. The effectiveness and precision of the method are validated by the simulation results of the natural frequency and deformation of the spindle box when applying an impact force to the grinding wheel.

  2. Cue-independent memory impairment by reactivation-coupled interference in human declarative memory.

    PubMed

    Zhu, Zijian; Wang, Yingying; Cao, Zhijun; Chen, Biqing; Cai, Huaqian; Wu, Yanhong; Rao, Yi

    2016-10-01

    Memory is a dynamic process. While memory becomes increasingly resistant to interference after consolidation, a brief reactivation renders it unstable again. Previous studies have shown that interference, when applied upon reactivation, impairs the consolidated memory, presumably by disrupting the reconsolidation of the memory. However, attempts have failed in disrupting human declarative memory, raising a question about whether declarative memory becomes unstable upon reactivation. Here, we used a double-cue/one-target paradigm, which associated the same target with two different cues in initial memory formation. Only one cue/target association was later reactivated and treated with behavioral interference. Our results showed, for the first time, that reactivation-coupled interference caused cue-independent memory impairment that generalized to other cues associated with the memory. Critically, such memory impairment appeared immediately after interference, before the reconsolidation process was completed, suggesting that common manipulations of reactivation-coupled interference procedures might disrupt other processes in addition to the reconsolidation process in human declarative memory. Copyright © 2016. Published by Elsevier B.V.

  3. Linking process and structure in the friction stir scribe joining of dissimilar materials: A computational approach with experimental support

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Varun; Upadhyay, Piyush; Fifield, Leonard S.

    The friction stir welding (FSW) is a popular technique to join dissimilar materials in numerous applications. The solid state nature of the process enables joining materials with strikingly different physical properties. For the welds in lap configuration, an enhancement to this technology is made by introducing a short hard insert, referred to as cutting-scribe, at the bottom of the tool pin. The cutting-scribe induces deformation in the bottom plate which leads to the formation of mechanical interlocks or hook like structures at the interface of two materials. A thermo-mechanically coupled computational model employing coupled Eulerian-Lagrangian approach is developed to quantitativelymore » capture the morphology of these interlocks during the FSW process. The simulations using developed model are validated by the experimental observations.The identified interface morphology coupled with the predicted temperature field from this process-structure model can then be used to estimate the post-weld microstructure and joint strength.« less

  4. Thermally-driven Coupled THM Processes in Shales

    NASA Astrophysics Data System (ADS)

    Rutqvist, J.

    2017-12-01

    Temperature changes can trigger strongly coupled thermal-hydrological-mechanical (THM) processes in shales that are important to a number of subsurface energy applications, including geologic nuclear waste disposal and hydrocarbon extraction. These coupled processes include (1) direct pore-volume couplings, by thermal expansion of trapped pore-fluid that triggers instantaneous two-way couplings between pore fluid pressure and mechanical deformation, and (2) indirect couplings in terms of property changes, such as changes in mechanical stiffness, strength, and permeability. Direct pore-volume couplings have been studied in situ during borehole heating experiments in shale (or clay stone) formations at Mont Terri and Bure underground research laboratories in Switzerland and France. Typically, the temperature changes are accompanied with a rapid increase in pore pressure followed by a slower decrease towards initial (pre-heating) pore pressure. Coupled THM modeling of these heater tests shows that the pore pressure increases because the thermal expansion coefficient of the fluid is much higher than that of the porous clay stone. Such thermal pressurization induces fluid flow away from the pressurized area towards areas of lower pressure. The rate of pressure increase and magnitude of peak pressure depends on the rate of heating, pore-compressibility, and permeability of the shale. Modeling as well as laboratory experiments have shown that if the pore pressure increase is sufficiently large it could lead to fracturing of the shale or shear slip along pre-existing bedding planes. Another set of data and observations have been collected associated with studies related to concentrated heating and cooling of oil-shales and shale-gas formations. Heating may be used to enhance production from tight oil-shale, whereas thermal stimulation has been attempted for enhanced shale-gas extraction. Laboratory experiments on shale have shown that strength and elastic deformation modulus decreases with temperature while the rate creep deformations increase with temperature. Such temperature dependency also affects the well stability and zonal sealing across shale layers.

  5. Modeling and Observational Framework for Diagnosing Local Land-Atmosphere Coupling on Diurnal Time Scales

    NASA Technical Reports Server (NTRS)

    Santanello, Joseph A., Jr.; Peters-Lidard, Christa D.; Kumar, Sujay V.; Alonge, Charles; Tao, Wei-Kuo

    2009-01-01

    Land-atmosphere interactions play a critical role in determining the diurnal evolution of both planetary boundary layer (PBL) and land surface temperature and moisture states. The degree of coupling between the land surface and PBL in numerical weather prediction and climate models remains largely unexplored and undiagnosed due to the complex interactions and feedbacks present across a range of scales. Further, uncoupled systems or experiments (e.g., the Project for Intercomparison of Land Parameterization Schemes, PILPS) may lead to inaccurate water and energy cycle process understanding by neglecting feedback processes such as PBL-top entrainment. In this study, a framework for diagnosing local land-atmosphere coupling is presented using a coupled mesoscale model with a suite of PBL and land surface model (LSM) options along with observations during field experiments in the U. S. Southern Great Plains. Specifically, the Weather Research and Forecasting (WRF) model has been coupled to the Land Information System (LIS), which provides a flexible and high-resolution representation and initialization of land surface physics and states. Within this framework, the coupling established by each pairing of the available PBL schemes in WRF with the LSMs in LIS is evaluated in terms of the diurnal temperature and humidity evolution in the mixed layer. The co-evolution of these variables and the convective PBL is sensitive to and, in fact, integrative of the dominant processes that govern the PBL budget, which are synthesized through the use of mixing diagrams. Results show how the sensitivity of land-atmosphere interactions to the specific choice of PBL scheme and LSM varies across surface moisture regimes and can be quantified and evaluated against observations. As such, this methodology provides a potential pathway to study factors controlling local land-atmosphere coupling (LoCo) using the LIS-WRF system, which will serve as a testbed for future experiments to evaluate coupling diagnostics within the community.

  6. The Partnership and Coping Enhancement Programme for couples undergoing in vitro fertilization treatment: the development of a complex intervention in China.

    PubMed

    Ying, Liying; Chen, Xiaomin; Wu, Lai Har; Shu, Jing; Wu, Xiangli; Loke, Alice Yuen

    2017-01-01

    Couples as dyads suffer from the diagnosis of infertility and related treatment. These couples commonly experience emotional and physical pain and tension in their marital lives. The purpose of this study is to report on the process of developing a potentially feasible and effective complex intervention for couples undergoing in vitro fertilization treatment in China. The Medical Research Council (MRC) framework for developing and evaluating the complex intervention was adopted to guide the development of the Partnership and Coping Enhancement Programme (PCEP). In developing the PCEP, three steps were taken, namely, (1) identifying evidence by conducting literature reviews, a concept analysis and a qualitative study; (2) identifying/developing a theory-in this case, a preliminary Endurance with Partnership Conceptual Framework (P-EPCF) was proposed; and (3) modelling the process and outcomes of the PCEP. The PCEP that was developed is targeted mainly at the domains of the partnership mediators of stress in the P-EPCF. It consists of two sections-partnership and coping-and will be delivered to infertile couples on the day of embryo transfer. The main focuses of the programme are to facilitate mutual sharing and support in infertile couples, and to improve their individual and dyadic coping strategies while undergoing IVF treatment, especially in the period when they are waiting for the results of a pregnancy test and after the disclosure of a negative treatment outcome. The programme is couple-based, consisting of experience sharing, psychoeducation, meditation exercise, skill practise and supplemental written materials. The Partnership and Coping Enhancement Programme (PCEP) for couples undergoing in vitro fertilization treatment was developed according to the guideline of the MRC framework. It is recommended that a pilot study be conducted to evaluate its feasibility and to model the process and outcomes of the programme.

  7. Improved simulation of tropospheric ozone by a global-multi-regional two-way coupling model system

    NASA Astrophysics Data System (ADS)

    Yan, Y.-Y.; Lin, J.-T.; Chen, J.; Hu, L.

    2015-09-01

    Small-scale nonlinear chemical and physical processes over pollution source regions affect the global ozone (O3) chemistry, but these processes are not captured by current global chemical transport models (CTMs) and chemistry-climate models that are limited by coarse horizontal resolutions (100-500 km, typically 200 km). These models tend to contain large (and mostly positive) tropospheric O3 biases in the Northern Hemisphere. Here we use a recently built two-way coupling system of the GEOS-Chem CTM to simulate the global tropospheric O3 in 2009. The system couples the global model (at 2.5° long. × 2° lat.) and its three nested models (at 0.667° long. × 0.5° lat.) covering Asia, North America and Europe, respectively. Benefiting from the high resolution, the nested models better capture small-scale processes than the global model alone. In the coupling system, the nested models provide results to modify the global model simulation within respective nested domains while taking the lateral boundary conditions from the global model. Due to the "coupling" effects, the two-way system significantly improves the tropospheric O3 simulation upon the global model alone, as found by comparisons with a suite of ground (1420 sites from WDCGG, GMD, EMEP, and AQS), aircraft (HIPPO and MOZAIC), and satellite measurements (two OMI products). Compared to the global model alone, the two-way coupled simulation enhances the correlation in day-to-day variation of afternoon mean O3 with the ground measurements from 0.53 to 0.68, and it reduces the mean model bias from 10.8 to 6.7 ppb in annual average afternoon O3. Regionally, the coupled model reduces the bias by 4.6 ppb over Europe, 3.9 ppb over North America, and 3.1 ppb over other regions. The two-way coupling brings O3 vertical profiles much closer to the HIPPO (for remote areas) and MOZAIC (for polluted regions) data, reducing the tropospheric (0-9 km) mean bias by 3-10 ppb at most MOZAIC sites and by 5.3 ppb for HIPPO profiles. The two-way coupled simulation also reduces the global tropospheric column ozone by 3.0 DU (9.5 %, annual mean), bringing them closer to the OMI data in all seasons. Simulation improvements are more significant in the northern hemisphere, and are primarily a result of improved representation of urban-rural contrast and other small-scale processes. The two-way coupled simulation also reduces the global tropospheric mean hydroxyl radical by 5 % with enhancements by 5 % in the lifetimes of methyl chloroform (from 5.58 to 5.87 yr) and methane (from 9.63 to 10.12 yr), bringing them closer to observation-based estimates. Improving model representations of small-scale processes are a critical step forward to understanding the global tropospheric chemistry.

  8. Electronic couplings and on-site energies for hole transfer in DNA: Systematic quantum mechanical/molecular dynamic study

    NASA Astrophysics Data System (ADS)

    Voityuk, Alexander A.

    2008-03-01

    The electron hole transfer (HT) properties of DNA are substantially affected by thermal fluctuations of the π stack structure. Depending on the mutual position of neighboring nucleobases, electronic coupling V may change by several orders of magnitude. In the present paper, we report the results of systematic QM/molecular dynamic (MD) calculations of the electronic couplings and on-site energies for the hole transfer. Based on 15ns MD trajectories for several DNA oligomers, we calculate the average coupling squares ⟨V2⟩ and the energies of basepair triplets XG +Y and XA +Y, where X, Y =G, A, T, and C. For each of the 32 systems, 15 000 conformations separated by 1ps are considered. The three-state generalized Mulliken-Hush method is used to derive electronic couplings for HT between neighboring basepairs. The adiabatic energies and dipole moment matrix elements are computed within the INDO/S method. We compare the rms values of V with the couplings estimated for the idealized B-DNA structure and show that in several important cases the couplings calculated for the idealized B-DNA structure are considerably underestimated. The rms values for intrastrand couplings G-G, A-A, G-A, and A-G are found to be similar, ˜0.07eV, while the interstrand couplings are quite different. The energies of hole states G+ and A+ in the stack depend on the nature of the neighboring pairs. The XG +Y are by 0.5eV more stable than XA +Y. The thermal fluctuations of the DNA structure facilitate the HT process from guanine to adenine. The tabulated couplings and on-site energies can be used as reference parameters in theoretical and computational studies of HT processes in DNA.

  9. Biogeochemical Coupling between Ocean and Sea Ice

    NASA Astrophysics Data System (ADS)

    Wang, S.; Jeffery, N.; Maltrud, M. E.; Elliott, S.; Wolfe, J.

    2016-12-01

    Biogeochemical processes in ocean and sea ice are tightly coupled at high latitudes. Ongoing changes in Arctic and Antarctic sea ice domain likely influence the coupled system, not only through physical fields but also biogeochemical properties. Investigating the system and its changes requires representation of ocean and sea ice biogeochemical cycles, as well as their coupling in Earth System Models. Our work is based on ACME-HiLAT, a new offshoot of the Community Earth System Model (CESM), including a comprehensive representation of marine ecosystems in the form of the Biogeochemical Elemental Cycling Module (BEC). A full vertical column sea ice biogeochemical module has recently been incorporated into the sea ice component. We have further introduced code modifications to couple key growth-limiting nutrients (N, Si, Fe), dissolved and particulate organic matter, and phytoplankton classes that are important in polar regions between ocean and sea ice. The coupling of ocean and sea ice biology-chemistry will enable representation of key processes such as the release of important climate active constituents or seeding algae from melting sea ice into surface waters. Sensitivity tests suggest sea ice and ocean biogeochemical coupling influences phytoplankton competition, biological production, and the CO2 flux. Sea ice algal seeding plays an important role in determining phytoplankton composition of Arctic early spring blooms, since different groups show various responses to the seeding biomass. Iron coupling leads to increased phytoplankton biomass in the Southern Ocean, which also affects carbon uptake via the biological pump. The coupling of macronutrients and organic matter may have weaker influences on the marine ecosystem. Our developments will allow climate scientists to investigate the fully coupled responses of the sea ice-ocean BGC system to physical changes in polar climate.

  10. Spin-orbit-coupled Bose-Einstein condensates of rotating polar molecules

    NASA Astrophysics Data System (ADS)

    Deng, Y.; You, L.; Yi, S.

    2018-05-01

    An experimental proposal for realizing spin-orbit (SO) coupling of pseudospin 1 in the ground manifold 1Σ (υ =0 ) of (bosonic) bialkali polar molecules is presented. The three spin components are composed of the ground rotational state and two substates from the first excited rotational level. Using hyperfine resolved Raman processes through two select excited states resonantly coupled by a microwave, an effective coupling between the spin tensor and linear momentum is realized. The properties of Bose-Einstein condensates for such SO-coupled molecules exhibiting dipolar interactions are further explored. In addition to the SO-coupling-induced stripe structures, the singly and doubly quantized vortex phases are found to appear, implicating exciting opportunities for exploring novel quantum physics using SO-coupled rotating polar molecules with dipolar interactions.

  11. Orientation-Dependent Exciton-Plasmon Coupling in Embedded Organic/Metal Nanowire Heterostructures.

    PubMed

    Li, Yong Jun; Hong, Yan; Peng, Qian; Yao, Jiannian; Zhao, Yong Sheng

    2017-10-24

    The excitation of surface plasmons by optical emitters based on exciton-plasmon coupling is important for plasmonic devices with active optical properties. It has been theoretically demonstrated that the orientation of exciton dipole can significantly influence the coupling strength, yet systematic study of the coupling process in nanostructures is still hindered by the lack of proper material systems. In this work, we have experimentally investigated the orientation-dependent exciton-plasmon coupling in a rationally designed organic/metal nanowire heterostructure system. The heterostructures were prepared by inserting silver nanowires into crystalline organic waveguides during the self-assembly of dye molecules. Structures with different exciton orientations exhibited varying coupling efficiencies. The near-field exciton-plasmon coupling facilitates the design of nanophotonic devices based on the directional surface plasmon polariton propagations.

  12. Composition and method for storing and releasing hydrogen

    DOEpatents

    Thorn, David L.; Tumas, William; Ott, Kevin C.; Burrell, Anthony K.

    2010-06-15

    A chemical system for storing and releasing hydrogen utilizes an endothermic reaction that releases hydrogen coupled to an exothermic reaction to drive the process thermodynamically, or an exothermic reaction that releases hydrogen coupled to an endothermic reaction.

  13. Electromechanical coupling and temperature-dependent polarization reversal in piezoelectric ceramics.

    PubMed

    Weaver, Paul M; Cain, Markys G; Correia, Tatiana M; Stewart, Mark

    2011-09-01

    Electrostriction plays a central role in describing the electromechanical properties of ferroelectric materials, including widely used piezoelectric ceramics. The piezoelectric properties are closely related to the underlying electrostriction. Small-field piezoelectric properties can be described as electrostriction offset by the remanent polarization which characterizes the ferroelectric state. Indeed, even large-field piezoelectric effects are accurately accounted for by quadratic electrostriction. However, the electromechanical properties deviate from this simple electrostrictive description at electric fields near the coercive field. This is particularly important for actuator applications, for which very high electromechanical coupling can be obtained in this region. This paper presents the results of an experimental study of electromechanical coupling in piezoelectric ceramics at electric field strengths close to the coercive field, and the effects of temperature on electromechanical processes during polarization reversal. The roles of intrinsic ferroelectric strain coupling and extrinsic domain processes and their temperature dependence in determining the electromechanical response are discussed.

  14. Therapeutically induced changes in couple identity: the role of we-ness and interpersonal processing in relationship satisfaction.

    PubMed

    Reid, David W; Dalton, E Jane; Laderoute, Kristine; Doell, Faye K; Nguyen, Thao

    2006-08-01

    Changes in partners' sense of self-in-relationship, which a systemic-constructivist couple therapy (SCCT) induced, led to robust improvement in satisfaction in 2 studies and a follow-up study. In each study, 13 referred couples completed measures of satisfaction, mutuality, similarities, and other-in-self construal pre-post 12 hours of SCCT. The authors reliably coded transcripts of 1st and final sessions for each partner's we-ness, the identity that each partner establishes in relationship to the other. Having met the criteria for the rigorous study of change in single group process-outcome design, changes in we-ness accompanied large posttherapy dyadic increments on all variables in each study. Therapeutic gains appeared at follow-up and correlated with increased we-ness obtained at end of therapy 2 years earlier. The authors raise theoretical implications for all types of couple therapies and explain clinical techniques.

  15. Monitoring adsorption of gold nanoparticles on gold nanodisk array using dark-field hyperspectral microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zhao, Fusheng; Zenasni, Oussama; Li, Jingting; Shih, Wei-Chuan

    2017-02-01

    Localized surface plasmon resonance (LSPR) arises from the interaction of light with noble metal nanoparticles, which induces a collective oscillation in the free electrons. The size and shape of the metallic nanostructure significantly impact LSPR frequency and strength. Nanoplasmonic sensor has become a recent research focus due to its significant signal enhancement and robust signal transduction measured by extinction spectroscopy, fluorescence, Raman scattering, and absorption spectroscopy. Dark-field microscopy, in contrast, reports the scattered photons after light-matter interactions. In this case, the nanoparticles can be understood as dipole radiators whose free electrons oscillate in concert. Coupled with spectroscopy, this platform allows the collection of plasmonically scattered spectra from gold nanoparticles. Plasmonic coupling between electron-beam lithography patterned gold nanodisks (AuND) and colloidal gold nanoparticles (AuNP) can change the plasmonic resonance of the original entities, and can be effectively studied by dark-field hyperspectral microscopy. Typically, a pronounced redshift can be observed when plasmonic coupling occurs. When these nano-entities are functionalized with interactive surface moieties, biochemistry and molecular processes can be studied. In this paper, we will present the capability of assessing the process of immobilizing streptavidin-functionalized AuNPs on an array of biotin-terminated AuNDs. By monitoring changes in the LSPR band of AuNDs, we are able to evaluate similar processes in other molecular systems. In addition, plasmon coupling induced scattering intensity variations can be measured by an electron-multiplied charge-coupled device camera for rapid in situ monitoring. This method can potentially be useful in studying dynamic biophysical and biochemical processes in situ.

  16. Coupling System Dynamics and Physically-based Models for Participatory Water Management - A Methodological Framework, with Two Case Studies: Water Quality in Quebec, and Soil Salinity in Pakistan

    NASA Astrophysics Data System (ADS)

    Boisvert-Chouinard, J.; Halbe, J.; Baig, A. I.; Adamowski, J. F.

    2014-12-01

    The principles of Integrated Water Resource Management outline the importance of stakeholder participation in water management processes, but in practice, there is a lack of meaningful engagement in water planning and implementation, and participation is often limited to public consultation and education. When models are used to support water planning, stakeholders are usually not involved in their development and use, and the models commonly fail to represent important feedbacks between socio-economic and physical processes. This paper presents the development of holistic models of the Du Chêne basin in Quebec, and the Rechna Doab basin in Pakistan, that simulate socio-economic and physical processes related to, respectively, water quality management, and soil salinity management. The models each consists of two sub-components: a System Dynamics (SD) model, and a physically based model. The SD component was developed in collaboration with key stakeholders in the basins. The Du Chêne SD model was coupled with a Soil and Water Assessment Tool (SWAT) model, while the Rechna Doab SD model was coupled with SahysMod, a soil salinity model. The coupled models were used to assess the environmental and socio-economic impacts of different management scenarios proposed by stakeholders. Results indicate that coupled SD - physically-based models can be used as effective tools for participatory water planning and implementation. The participatory modeling process provides a structure for meaningful stakeholder engagement, and the models themselves can be used to transparently and coherently assess and compare different management options.

  17. Cross-frequency coupling in deep brain structures upon processing the painful sensory inputs.

    PubMed

    Liu, C C; Chien, J H; Kim, J H; Chuang, Y F; Cheng, D T; Anderson, W S; Lenz, F A

    2015-09-10

    Cross-frequency coupling has been shown to be functionally significant in cortical information processing, potentially serving as a mechanism for integrating functionally relevant regions in the brain. In this study, we evaluate the hypothesis that pain-related gamma oscillatory responses are coupled with low-frequency oscillations in the frontal lobe, amygdala and hippocampus, areas known to have roles in pain processing. We delivered painful laser pulses to random locations on the dorsal hand of five patients with uncontrolled epilepsy requiring depth electrode implantation for seizure monitoring. Two blocks of 40 laser stimulations were delivered to each subject and the pain-intensity was controlled at five in a 0-10 scale by adjusting the energy level of the laser pulses. Local-field-potentials (LFPs) were recorded through bilaterally implanted depth electrode contacts to study the oscillatory responses upon processing the painful laser stimulations. Our results show that painful laser stimulations enhanced low-gamma (LH, 40-70 Hz) and high-gamma (HG, 70-110 Hz) oscillatory responses in the amygdala and hippocampal regions on the right hemisphere and these gamma responses were significantly coupled with the phases of theta (4-7 Hz) and alpha (8-1 2 Hz) rhythms during pain processing. Given the roles of these deep brain structures in emotion, these findings suggest that the oscillatory responses in these regions may play a role in integrating the affective component of pain, which may contribute to our understanding of the mechanisms underlying the affective information processing in humans. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. Coupled thermal stresses analysis in the composite elastic-plastic cylinder

    NASA Astrophysics Data System (ADS)

    Murashkin, E. V.; Dats, E. P.

    2018-04-01

    The present study is devoted to the set of boundary value problems in the frameworks of coupled thermoelastoplasticity under axial symmetry conditions for a composite circular cylinder. Throughout the paper the conventional Prandtl–Reuss elastic–plastic model generalised on the thermal effects is used. The yield stress is assumed by linear function of the temperature. The plastic potential is chosen in the form of Tresca yield criterion and the associated plastic flow rule is derived. The adding process of a heated cylinder to another is simulated. The coupled thermal stresses are calculated during processes of cooling and material unloading. The elastic-plastic borders positions are calculated and plastic flow domains are localized. Numerical results are graphically analysed.

  19. Role of Frequency Chirp and Energy Flow Directionality in the Strong Coupling Regime of Brillouin-Based Plasma Amplification.

    PubMed

    Chiaramello, M; Amiranoff, F; Riconda, C; Weber, S

    2016-12-02

    A detailed analysis is presented of the various stages of strong coupling Brillouin plasma amplification, emphasizing the importance of the chirp which can be of threefold origin: the intrinsic one driven by the amplification process, the one originating from the chirped-pulse-generated laser pulses, and the one associated with the plasma profile. Control of the overall chirp can optimize or quench the energy transfer. The time-dependent phase relation explains the energy flow direction during amplification and is characteristic for this strong coupling process. The study is also of potential importance to understand and maybe control cross-beam-energy transfer in inertial confinement fusion.

  20. Projections for neutral Di-Boson and Di-Higgs interactions at FCC-he collider

    NASA Astrophysics Data System (ADS)

    Kuday, S.; Saygın, H.; Hoş, İ.; Çetin, F.

    2018-07-01

    As a high energy e-p collider, FCC-he, has been recently proposed with sufficient energy options to investigate Higgs couplings. To analyze the sensitivity on Higgs boson couplings, we focus specifically on the CP-even and CP-odd Wilson coefficients with hhZZ and hhγγ four-point interactions of Higgs boson with Effective Lagrangian Model through the process e- p → hhje-. We simulate the related processes in FCC-he, with 60 GeV and 120 GeV e- beams and 50 TeV proton beam collisions. We present the exclusion limits on these couplings both for 68% and 95% C.L. in terms of integrated luminosities.

  1. Elaboration of 2-(trifluoromethyl)indoles via a cascade coupling/condensation/deacylation process.

    PubMed

    Chen, Yu; Wang, Yuji; Sun, Zheming; Ma, Dawei

    2008-02-21

    CuI/l-proline-catalyzed coupling of 2-halotrifluoroacetanilides with beta-keto esters in anhydrous DMSO under the action of Cs2CO3 at 40-80 degrees C produces polysubstituted 2-(trifluoromethyl)indoles in good to excellent yields. This reaction is suggested to occur via a novel coupling/condensation/deacylation mechanism, and many functional groups are tolerated under these conditions.

  2. Interaction of chimera states in a multilayered network of nonlocally coupled oscillators

    NASA Astrophysics Data System (ADS)

    Goremyko, M. V.; Maksimenko, V. A.; Makarov, V. V.; Ghosh, D.; Bera, B.; Dana, S. K.; Hramov, A. E.

    2017-08-01

    The processes of formation and evolution of chimera states in the model of a multilayered network of nonlinear elements with complex coupling topology are studied. A two-layered network of nonlocally intralayer-coupled Kuramoto-Sakaguchi phase oscillators is taken as the object of investigation. Different modes implemented in this system upon variation of the degree of interlayer interaction are demonstrated.

  3. Arterial Ventricular Uncoupling with Age and Disease and Recoupling with Exercise

    PubMed Central

    Chantler, Paul D

    2017-01-01

    The deterioration in arterial and cardiac function with aging impairs arterial ventricular coupling, an important determinant of cardiovascular performance. However, exercise training improves arterial ventricular coupling especially during exercise during the age and disease process. This review examines the concept of arterial-ventricular coupling, and how age, and disease uncouples but exercise training recouples the heart and arterial system. PMID:28072585

  4. Fiber-Coupled Acousto-Optical-Filter Spectrometer

    NASA Technical Reports Server (NTRS)

    Levin, Kenneth H.; Li, Frank Yanan

    1993-01-01

    Fiber-coupled acousto-optical-filter spectrometer steps rapidly through commanded sequence of wavelengths. Sample cell located remotely from monochromator and associated electronic circuitry, connected to them with optical fibers. Optical-fiber coupling makes possible to monitor samples in remote, hazardous, or confined locations. Advantages include compactness, speed, and no moving parts. Potential applications include control of chemical processes, medical diagnoses, spectral imaging, and sampling of atmospheres.

  5. Coupling of Processes and Data in PennState Integrated Hydrologic Modeling (PIHM) System

    NASA Astrophysics Data System (ADS)

    Kumar, M.; Duffy, C.

    2007-12-01

    Full physical coupling, "natural" numerical coupling and parsimonious but accurate data coupling is needed to comprehensively and accurately capture the interaction between different components of a hydrologic continuum. Here we present a physically based, spatially distributed hydrologic model that incorporates all the three coupling strategies. Physical coupling of interception, snow melt, transpiration, overland flow, subsurface flow, river flow, macropore based infiltration and stormflow, flow through and over hydraulic structures likes weirs and dams, and evaporation from interception, ground and overland flow is performed. All the physically coupled components are numerically coupled through semi-discrete form of ordinary differential equations, that define each hydrologic process, using Finite-Volume based approach. The fully implicit solution methodology using CVODE solver solves for all the state variables simultaneously at each adaptive time steps thus providing robustness, stability and accuracy. The accurate data coupling is aided by use of constrained unstructured meshes, flexible data model and use of PIHMgis. The spatial adaptivity of decomposed domain and temporal adaptivity of the numerical solver facilitates capture of varied spatio-temporal scales that are inherent in hydrologic process interactions. The implementation of the model has been performed on a meso-scale Little-Juniata Watershed. Model results are validated by comparison of streamflow at multiple locations. We discuss some of the interesting hydrologic interactions between surface, subsurface and atmosphere witnessed during the year long simulation such as a) inverse relationship between evaporation from interception storage and transpiration b) relative influence of forcing (precipitation, temperature and radiation) and source (soil moisture and overland flow) on evaporation c) influence of local topography on gaining, loosing or "flow-through" behavior of river-aquifer interactions d) role of macropores on base flow during wetting and drying conditions. In addition to its use as a potential predictive and exploratory science tool, we present a test case for the application of model in water management by mapping of water table decline index for the whole watershed. Also discussed will be the efficient parallelization strategy of the model for high spatio-temporal resolution simulations.

  6. Field validation of a free-agent cellular automata model of fire spread with fire–atmosphere coupling

    Treesearch

    Gary Achtemeier

    2012-01-01

    A cellular automata fire model represents ‘elements’ of fire by autonomous agents. A few simple algebraic expressions substituted for complex physical and meteorological processes and solved iteratively yield simulations for ‘super-diffusive’ fire spread and coupled surface-layer (2-m) fire–atmosphere processes. Pressure anomalies, which are integrals of the thermal...

  7. Quantum information processing with trapped electrons and superconducting electronics (Open Access, Publisher’s Version)

    DTIC Science & Technology

    2013-07-05

    This content has been downloaded from IOPscience. Please scroll down to see the full text. Download details: IP Address: 198.81.129.186 This content...structures with a quadratic nonlinearity, i.e. electrodes with a quadrupolar potential. The pump for this parametric coupling process is a classical...approximation. The system operates as a parametric frequency converter, with the classical drive providing pump photons which allow coherent coupling between

  8. Integrated optics technology study

    NASA Technical Reports Server (NTRS)

    Chen, B.; Findakly, T.; Innarella, R.

    1982-01-01

    The status and near term potential of materials and processes available for the fabrication of single mode integrated electro-optical components are discussed. Issues discussed are host material and orientation, waveguide formation, optical loss mechanisms, wavelength selection, polarization effects and control, laser to integrated optics coupling fiber optic waveguides to integrated optics coupling, sources, and detectors. Recommendations of the best materials, technology, and processes for fabrication of integrated optical components for communications and fiber gyro applications are given.

  9. "He would never let me just give up": Communicatively Constructing Dyadic Resilience in the Experience of Breast Cancer.

    PubMed

    Lillie, Helen M; Venetis, Maria K; Chernichky-Karcher, Skye M

    2017-09-27

    A breast cancer diagnosis is a significant stressor that impacts both survivors' and their partners' psychological adjustment and well-being. Communication patterns and strategies utilized by survivors and partners are the key determinants of how some couples adjust to a cancer diagnosis. This study employs the Communicative theory of resilience (CTR)(Buzzanell, 2010) to examine the dyadic communicative processes couples enact that contribute to their resilience. Researchers conducted semi-structured interviews with 27 breast cancer survivors concerning communication with their partners. All interviews were transcribed and independently coded using thematic analysis. Findings support and extend the presence of the five communicative processes of resilience outlined by Buzzanell (2010), demonstrating how these processes interact with one another. Results also suggest that couples' communication both promotes and interferes with resilience. Practical and theoretical implications are discussed.

  10. Experimental demonstration of revival of oscillations from death in coupled nonlinear oscillators.

    PubMed

    Senthilkumar, D V; Suresh, K; Chandrasekar, V K; Zou, Wei; Dana, Syamal K; Kathamuthu, Thamilmaran; Kurths, Jürgen

    2016-04-01

    We experimentally demonstrate that a processing delay, a finite response time, in the coupling can revoke the stability of the stable steady states, thereby facilitating the revival of oscillations in the same parameter space where the coupled oscillators suffered the quenching of oscillation. This phenomenon of reviving of oscillations is demonstrated using two different prototype electronic circuits. Further, the analytical critical curves corroborate that the spread of the parameter space with stable steady state is diminished continuously by increasing the processing delay. Finally, the death state is completely wiped off above a threshold value by switching the stability of the stable steady state to retrieve sustained oscillations in the same parameter space. The underlying dynamical mechanism responsible for the decrease in the spread of the stable steady states and the eventual reviving of oscillation as a function of the processing delay is explained using analytical results.

  11. Evidence for a vibrational phase-dependent isotope effect on the photochemistry of vision.

    PubMed

    Schnedermann, C; Yang, X; Liebel, M; Spillane, K M; Lugtenburg, J; Fernández, I; Valentini, A; Schapiro, I; Olivucci, M; Kukura, P; Mathies, R A

    2018-04-01

    Vibronic coupling is key to efficient energy flow in molecular systems and a critical component of most mechanisms invoking quantum effects in biological processes. Despite increasing evidence for coherent coupling of electronic states being mediated by vibrational motion, it is not clear how and to what degree properties associated with vibrational coherence such as phase and coupling of atomic motion can impact the efficiency of light-induced processes under natural, incoherent illumination. Here, we show that deuteration of the H 11 -C 11 =C 12 -H 12 double-bond of the 11-cis retinal chromophore in the visual pigment rhodopsin significantly and unexpectedly alters the photoisomerization yield while inducing smaller changes in the ultrafast isomerization dynamics assignable to known isotope effects. Combination of these results with non-adiabatic molecular dynamics simulations reveals a vibrational phase-dependent isotope effect that we suggest is an intrinsic attribute of vibronically coherent photochemical processes.

  12. Experimental demonstration of revival of oscillations from death in coupled nonlinear oscillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Senthilkumar, D. V., E-mail: skumarusnld@gmail.com; Centre for Nonlinear Science and Engineering, School of Electrical and Electronics Engineering, SASTRA University, Thanjavur 613 401; Suresh, K.

    We experimentally demonstrate that a processing delay, a finite response time, in the coupling can revoke the stability of the stable steady states, thereby facilitating the revival of oscillations in the same parameter space where the coupled oscillators suffered the quenching of oscillation. This phenomenon of reviving of oscillations is demonstrated using two different prototype electronic circuits. Further, the analytical critical curves corroborate that the spread of the parameter space with stable steady state is diminished continuously by increasing the processing delay. Finally, the death state is completely wiped off above a threshold value by switching the stability of themore » stable steady state to retrieve sustained oscillations in the same parameter space. The underlying dynamical mechanism responsible for the decrease in the spread of the stable steady states and the eventual reviving of oscillation as a function of the processing delay is explained using analytical results.« less

  13. Prediction Of Formability In Sheet Metal Forming Processes Using A Local Damage Model

    NASA Astrophysics Data System (ADS)

    Teixeira, P.; Santos, Abel; César Sá, J.; Andrade Pires, F.; Barata da Rocha, A.

    2007-05-01

    The formability in sheet metal forming processes is mainly conditioned by ductile fracture resulting from geometric instabilities due to necking and strain localization. The macroscopic collapse associated with ductile failure is a result of internal degradation described throughout metallographic observations by the nucleation, growth and coalescence of voids and micro-cracks. Damage influences and is influenced by plastic deformation and therefore these two dissipative phenomena should be coupled at the constitutive level. In this contribution, Lemaitre's ductile damage model is coupled with Hill's orthotropic plasticity criterion. The coupling between damaging and material behavior is accounted for within the framework of Continuum Damage Mechanics (CDM). The resulting constitutive equations are implemented in the Abaqus/Explicit code, for the prediction of fracture onset in sheet metal forming processes. The damage evolution law takes into account the important effect of micro-crack closure, which dramatically decreases the rate of damage growth under compressive paths.

  14. Classical-processing and quantum-processing signal separation methods for qubit uncoupling

    NASA Astrophysics Data System (ADS)

    Deville, Yannick; Deville, Alain

    2012-12-01

    The Blind Source Separation problem consists in estimating a set of unknown source signals from their measured combinations. It was only investigated in a non-quantum framework up to now. We propose its first quantum extensions. We thus introduce the Quantum Source Separation field, investigating both its blind and non-blind configurations. More precisely, we show how to retrieve individual quantum bits (qubits) only from the global state resulting from their undesired coupling. We consider cylindrical-symmetry Heisenberg coupling, which e.g. occurs when two electron spins interact through exchange. We first propose several qubit uncoupling methods which typically measure repeatedly the coupled quantum states resulting from individual qubits preparations, and which then statistically process the classical data provided by these measurements. Numerical tests prove the effectiveness of these methods. We then derive a combination of quantum gates for performing qubit uncoupling, thus avoiding repeated qubit preparations and irreversible measurements.

  15. Removal of malachite green from aqueous solutions by electrocoagulation/peanut shell adsorption coupling in a batch system.

    PubMed

    Wang, Xiansheng; Ni, Jiaheng; Pang, Shuo; Li, Ying

    2017-04-01

    A electrocoagulation (EC)/peanut shell (PS) adsorption coupling technique was studied for the removal of malachite green (MG) in our present work. The addition of an appropriate PS dosage (5 g/L) resulted in remarkable increase in the removal efficiency of MG at lower current density and shorter operating time compared with the conventional EC process. The effect of current density, pH of MG solution, dosage of PS and initial concentration of MG were also investigated. The maximum removal efficiency of MG was 98% under optimum conditions in 5 min. And it was 23% higher than that in EC process. Furthermore, the unit energy demand (UED) and the unit electrode material demand (UEMD) were calculated and discussed. The results demonstrated that the EC/PS adsorption coupling method achieved a reduction of 94% UED and UEMD compared with EC process.

  16. Restoration of rhythmicity in diffusively coupled dynamical networks.

    PubMed

    Zou, Wei; Senthilkumar, D V; Nagao, Raphael; Kiss, István Z; Tang, Yang; Koseska, Aneta; Duan, Jinqiao; Kurths, Jürgen

    2015-07-15

    Oscillatory behaviour is essential for proper functioning of various physical and biological processes. However, diffusive coupling is capable of suppressing intrinsic oscillations due to the manifestation of the phenomena of amplitude and oscillation deaths. Here we present a scheme to revoke these quenching states in diffusively coupled dynamical networks, and demonstrate the approach in experiments with an oscillatory chemical reaction. By introducing a simple feedback factor in the diffusive coupling, we show that the stable (in)homogeneous steady states can be effectively destabilized to restore dynamic behaviours of coupled systems. Even a feeble deviation from the normal diffusive coupling drastically shrinks the death regions in the parameter space. The generality of our method is corroborated in diverse non-linear systems of diffusively coupled paradigmatic models with various death scenarios. Our study provides a general framework to strengthen the robustness of dynamic activity in diffusively coupled dynamical networks.

  17. Enhancing the Relationship Adjustment of South Asian Canadian Couples Using a Systemic-Constructivist Approach to Couple Therapy.

    PubMed

    Ahmad, Saunia; Reid, David W

    2016-10-01

    The effectiveness of systemic-constructivist couple therapy (SCCT) in improving the relationship adjustment of South Asian Canadian couples in ways that attend to their culture was evaluated. The SCCT interventions engage partners in reflexive processing of both their own and their partner's ways of construing, and the reciprocity between these two. A core change mechanism of SCCT, couple identity ("we-ness"), that connotes the ability for thinking and experiencing relationally, was coded from verbatim transcripts of partners' within-session dialogue. As predicted, South Asian partners' relationship adjustment improved significantly from the first to final session of SCCT, and concurrent increases in each partner's couple identity mediated such improvements. The implications for considering culture and couple identity in couple therapy are discussed. Video Abstract is found in the online version of the article. © 2016 American Association for Marriage and Family Therapy.

  18. FunCoup 3.0: database of genome-wide functional coupling networks

    PubMed Central

    Schmitt, Thomas; Ogris, Christoph; Sonnhammer, Erik L. L.

    2014-01-01

    We present an update of the FunCoup database (http://FunCoup.sbc.su.se) of functional couplings, or functional associations, between genes and gene products. Identifying these functional couplings is an important step in the understanding of higher level mechanisms performed by complex cellular processes. FunCoup distinguishes between four classes of couplings: participation in the same signaling cascade, participation in the same metabolic process, co-membership in a protein complex and physical interaction. For each of these four classes, several types of experimental and statistical evidence are combined by Bayesian integration to predict genome-wide functional coupling networks. The FunCoup framework has been completely re-implemented to allow for more frequent future updates. It contains many improvements, such as a regularization procedure to automatically downweight redundant evidences and a novel method to incorporate phylogenetic profile similarity. Several datasets have been updated and new data have been added in FunCoup 3.0. Furthermore, we have developed a new Web site, which provides powerful tools to explore the predicted networks and to retrieve detailed information about the data underlying each prediction. PMID:24185702

  19. Leap Frog and Time Step Sub-Cycle Scheme for Coupled Neutronics and Thermal-Hydraulic Codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, S.

    2002-07-01

    As the result of the advancing TCP/IP based inter-process communication technology, more and more legacy thermal-hydraulic codes have been coupled with neutronics codes to provide best-estimate capabilities for reactivity related reactor transient analysis. Most of the coupling schemes are based on closely coupled serial or parallel approaches. Therefore, the execution of the coupled codes usually requires significant CPU time, when a complicated system is analyzed. Leap Frog scheme has been used to reduce the run time. The extent of the decoupling is usually determined based on a trial and error process for a specific analysis. It is the intent ofmore » this paper to develop a set of general criteria, which can be used to invoke the automatic Leap Frog algorithm. The algorithm will not only provide the run time reduction but also preserve the accuracy. The criteria will also serve as the base of an automatic time step sub-cycle scheme when a sudden reactivity change is introduced and the thermal-hydraulic code is marching with a relatively large time step. (authors)« less

  20. Polaron effects on the performance of light-harvesting systems: a quantum heat engine perspective

    NASA Astrophysics Data System (ADS)

    Xu, Dazhi; Wang, Chen; Zhao, Yang; Cao, Jianshu

    2016-02-01

    We explore energy transfer in a generic three-level system, which is coupled to three non-equilibrium baths. Built on the concept of quantum heat engine, our three-level model describes non-equilibrium quantum processes including light-harvesting energy transfer, nano-scale heat transfer, photo-induced isomerization, and photovoltaics in double quantum-dots. In the context of light-harvesting, the excitation energy is first pumped up by sunlight, then is transferred via two excited states which are coupled to a phonon bath, and finally decays to the reaction center. The efficiency of this process is evaluated by steady state analysis via a polaron-transformed master equation; thus the entire range of the system-phonon coupling strength can be covered. We show that the coupling with the phonon bath not only modifies the steady state, resulting in population inversion, but also introduces a finite steady state coherence which optimizes the energy transfer flux and efficiency. In the strong coupling limit, the steady state coherence disappears and the efficiency recovers the heat engine limit given by Scovil and Schultz-Dubois (1959 Phys. Rev. Lett. 2 262).

  1. A new family of nucleophiles for photoinduced, copper-catalyzed cross-couplings via single-electron transfer: reactions of thiols with aryl halides under mild conditions (O °C).

    PubMed

    Uyeda, Christopher; Tan, Yichen; Fu, Gregory C; Peters, Jonas C

    2013-06-26

    Building on the known photophysical properties of well-defined copper-carbazolide complexes, we have recently described photoinduced, copper-catalyzed N-arylations and N-alkylations of carbazoles. Until now, there have been no examples of the use of other families of heteroatom nucleophiles in such photoinduced processes. Herein, we report a versatile photoinduced, copper-catalyzed method for coupling aryl thiols with aryl halides, wherein a single set of reaction conditions, using inexpensive CuI as a precatalyst without the need for an added ligand, is effective for a wide range of coupling partners. As far as we are aware, copper-catalyzed C-S cross-couplings at 0 °C have not previously been achieved, which renders our observation of efficient reaction of an unactivated aryl iodide at -40 °C especially striking. Mechanistic investigations are consistent with these photoinduced C-S cross-couplings following a SET/radical pathway for C-X bond cleavage (via a Cu(I)-thiolate), which contrasts with nonphotoinduced, copper-catalyzed processes wherein a concerted mechanism is believed to occur.

  2. FunCoup 3.0: database of genome-wide functional coupling networks.

    PubMed

    Schmitt, Thomas; Ogris, Christoph; Sonnhammer, Erik L L

    2014-01-01

    We present an update of the FunCoup database (http://FunCoup.sbc.su.se) of functional couplings, or functional associations, between genes and gene products. Identifying these functional couplings is an important step in the understanding of higher level mechanisms performed by complex cellular processes. FunCoup distinguishes between four classes of couplings: participation in the same signaling cascade, participation in the same metabolic process, co-membership in a protein complex and physical interaction. For each of these four classes, several types of experimental and statistical evidence are combined by Bayesian integration to predict genome-wide functional coupling networks. The FunCoup framework has been completely re-implemented to allow for more frequent future updates. It contains many improvements, such as a regularization procedure to automatically downweight redundant evidences and a novel method to incorporate phylogenetic profile similarity. Several datasets have been updated and new data have been added in FunCoup 3.0. Furthermore, we have developed a new Web site, which provides powerful tools to explore the predicted networks and to retrieve detailed information about the data underlying each prediction.

  3. The role of satellite directional wave spectra for the improvement of the ocean-waves coupling

    NASA Astrophysics Data System (ADS)

    Aouf, Lotfi; Hauser, Danièle; Chapron, Bertrand

    2017-04-01

    Swell waves are well captured by the Synthetic Aperture Radar (SAR) which provides the directional wave spectra for waves roughly larger than 200 m. Since the launch of sentinel-1A and 1B SAR directional wave spectra are available to improve the swell wave forecasting and the coupling processes at the air-sea interface. Moreover next year CFOSAT mission will provide directional wave spectra for waves with wavelengths comprised between 70 to 500 m. This study aims to evaluate the assimilation of SAR and synthetic CFOSAT wave spectra on the coupling between the wave model MFWAM and the ocean model NEMO. Three coupling processes as described in Breivik et al. (2014) of Stokes-Coriolis forcing, the ocean side stress and the turbulence injected by the wave breaking in the ocean mixed layer have been used. a coupling run is performed with and without assimilation of directional wave spectra. the impact of SAR wave data on key parameters such as surface sea temperature, currents and salinity is investigated. Particular attention is carried out for ocean areas with swell dominant wave climate.

  4. Chemical event chain model of coupled genetic oscillators.

    PubMed

    Jörg, David J; Morelli, Luis G; Jülicher, Frank

    2018-03-01

    We introduce a stochastic model of coupled genetic oscillators in which chains of chemical events involved in gene regulation and expression are represented as sequences of Poisson processes. We characterize steady states by their frequency, their quality factor, and their synchrony by the oscillator cross correlation. The steady state is determined by coupling and exhibits stochastic transitions between different modes. The interplay of stochasticity and nonlinearity leads to isolated regions in parameter space in which the coupled system works best as a biological pacemaker. Key features of the stochastic oscillations can be captured by an effective model for phase oscillators that are coupled by signals with distributed delays.

  5. Toroid Joining Gun For Fittings And Couplings

    NASA Technical Reports Server (NTRS)

    Fox, Robert L.; Swaim, Robert J.; Johnson, Samuel D.; Buckley, John D.; Copeland, Carl E.; Coultrip, Robert H.; Johnston, David F.; Phillips, William M.

    1992-01-01

    Hand-held gun used to join metal heat-to-shrink couplings. Uses magnetic induction (eddy currents) to produce heat in metal coupling, and thermocouple to measure temperature and signals end of process. Gun, called "toroid joining gun" concentrates high levels of heat in localized areas. Reconfigured for use on metal heat-to-shrink fitting and coupling applications. Provides rapid heating, operates on low power, lightweight and portable. Safe for use around aircraft fuel and has no detrimental effects on surrounding surfaces or objects. Reliable in any environment and under all weather conditions. Gun logical device for taking full advantage of capabilities of new metal heat-to-shrink couplings and fittings.

  6. FAST TRACK COMMUNICATION Unexpected systematic degeneracy in a system of two coupled Gaudin models with homogeneous couplings

    NASA Astrophysics Data System (ADS)

    Erbe, B.; Schliemann, J.

    2010-12-01

    We report an unexpected systematic degeneracy between different multiplets in an inversion symmetric system of two coupled Gaudin models with homogeneous couplings, as occurring for example in the context of solid state quantum information processing. We construct the full degenerate subspace (being of macroscopic dimension), which turns out to lie in the kernel of the commutator between the two Gaudin models and the coupling term. Finally we investigate to what extent the degeneracy is related to the inversion symmetry of the system and find that indeed there is a large class of systems showing the same type of degeneracy.

  7. Gendered power in cultural contexts: Part I. Immigrant couples.

    PubMed

    Maciel, Jose A; Van Putten, Zanetta; Knudson-Martin, Carmen

    2009-03-01

    Immigration is a world-wide phenomenon and practitioners are increasingly called on to work with issues related to it. The authors examine the experience of couples who are immigrants to the United States in regard to gender and power issues. Although the study limited participation to one religious group in order to hold that aspect of culture and gender attitudes constant, the experiences of these couples help to make visible the link between microlevel couple interaction and larger social processes. The results show how the couples manage a delicate balance between the push for gender change and avoiding too much conflict as male power is challenged.

  8. Cavity-Mediated Coherent Coupling between Distant Quantum Dots

    NASA Astrophysics Data System (ADS)

    Nicolí, Giorgio; Ferguson, Michael Sven; Rössler, Clemens; Wolfertz, Alexander; Blatter, Gianni; Ihn, Thomas; Ensslin, Klaus; Reichl, Christian; Wegscheider, Werner; Zilberberg, Oded

    2018-06-01

    Scalable architectures for quantum information technologies require one to selectively couple long-distance qubits while suppressing environmental noise and cross talk. In semiconductor materials, the coherent coupling of a single spin on a quantum dot to a cavity hosting fermionic modes offers a new solution to this technological challenge. Here, we demonstrate coherent coupling between two spatially separated quantum dots using an electronic cavity design that takes advantage of whispering-gallery modes in a two-dimensional electron gas. The cavity-mediated, long-distance coupling effectively minimizes undesirable direct cross talk between the dots and defines a scalable architecture for all-electronic semiconductor-based quantum information processing.

  9. Chemical event chain model of coupled genetic oscillators

    NASA Astrophysics Data System (ADS)

    Jörg, David J.; Morelli, Luis G.; Jülicher, Frank

    2018-03-01

    We introduce a stochastic model of coupled genetic oscillators in which chains of chemical events involved in gene regulation and expression are represented as sequences of Poisson processes. We characterize steady states by their frequency, their quality factor, and their synchrony by the oscillator cross correlation. The steady state is determined by coupling and exhibits stochastic transitions between different modes. The interplay of stochasticity and nonlinearity leads to isolated regions in parameter space in which the coupled system works best as a biological pacemaker. Key features of the stochastic oscillations can be captured by an effective model for phase oscillators that are coupled by signals with distributed delays.

  10. Muscle activation described with a differential equation model for large ensembles of locally coupled molecular motors.

    PubMed

    Walcott, Sam

    2014-10-01

    Molecular motors, by turning chemical energy into mechanical work, are responsible for active cellular processes. Often groups of these motors work together to perform their biological role. Motors in an ensemble are coupled and exhibit complex emergent behavior. Although large motor ensembles can be modeled with partial differential equations (PDEs) by assuming that molecules function independently of their neighbors, this assumption is violated when motors are coupled locally. It is therefore unclear how to describe the ensemble behavior of the locally coupled motors responsible for biological processes such as calcium-dependent skeletal muscle activation. Here we develop a theory to describe locally coupled motor ensembles and apply the theory to skeletal muscle activation. The central idea is that a muscle filament can be divided into two phases: an active and an inactive phase. Dynamic changes in the relative size of these phases are described by a set of linear ordinary differential equations (ODEs). As the dynamics of the active phase are described by PDEs, muscle activation is governed by a set of coupled ODEs and PDEs, building on previous PDE models. With comparison to Monte Carlo simulations, we demonstrate that the theory captures the behavior of locally coupled ensembles. The theory also plausibly describes and predicts muscle experiments from molecular to whole muscle scales, suggesting that a micro- to macroscale muscle model is within reach.

  11. Method of processing materials using an inductively coupled plasma

    DOEpatents

    Hull, Donald E.; Bieniewski, Thomas M.

    1990-01-01

    A method for making fine power using an inductively coupled plasma. The method provides a gas-free environment, since the plasma is formed without using a gas. The starting material used in the method is in solid form.

  12. Electronic pictures from charged-coupled devices

    NASA Technical Reports Server (NTRS)

    Mccann, D. H.; Turly, A. P.; White, M.

    1979-01-01

    Imaging system uses charge-coupled devices (CCD's) to generate TV-like pictures with high resolution, sensitivity, and signal-to-noise ratio. It combines detectors for five spectral bands as well as processing and control circuitry all on single silicon chip.

  13. Bimetallic catalysis for C–C and C–X coupling reactions

    PubMed Central

    Pye, Dominic R.

    2017-01-01

    Bimetallic catalysis represents an alternative paradigm for coupling chemistry that complements the more traditional single-site catalysis approach. In this perspective, recent advances in bimetallic systems for catalytic C–C and C–X coupling reactions are reviewed. Behavior which complements that of established single-site catalysts is highlighted. Two major reaction classes are covered. First, generation of catalytic amounts of organometallic species of e.g. Cu, Au, or Ni capable of transmetallation to a Pd co-catalyst (or other traditional cross-coupling catalyst) has allowed important new C–C coupling technologies to emerge. Second, catalytic transformations involving binuclear bond-breaking and/or bond-forming steps, in some cases involving metal–metal bonds, represent a frontier area for C–C and C–X coupling processes.

  14. [Agricultural eco-economic system coupling in Zhifanggou watershed in hilly-gully region of Loess Plateau].

    PubMed

    Wang, Ji-Jun

    2009-11-01

    Agricultural eco-economic system coupling is an organic unit formed by the inherent interaction between agricultural ecosystem and economic system, and regulated and controlled by mankind moderate interference. Its status can be expressed by the circular chain-net structure of agricultural resources and agricultural industry. The agricultural eco-economic system in Zhifanggou watershed has gone through the process of system coupling, system conflict, system coupling, and partial conflict in high leverage, which is caused by the farmers' requirement and the state's macro-policy, economic means, and administrative means. To cope with the problems of agricultural eco-economics system coupling in Zhifanggou watershed, the optimal coupling model should be established, with tree-grass resources and related industries as the core.

  15. Modelling fully-coupled Thermo-Hydro-Mechanical (THM) processes in fractured reservoirs using GOLEM: a massively parallel open-source simulator

    NASA Astrophysics Data System (ADS)

    Jacquey, Antoine; Cacace, Mauro

    2017-04-01

    Utilization of the underground for energy-related purposes have received increasing attention in the last decades as a source for carbon-free energy and for safe storage solutions. Understanding the key processes controlling fluid and heat flow around geological discontinuities such as faults and fractures as well as their mechanical behaviours is therefore of interest in order to design safe and sustainable reservoir operations. These processes occur in a naturally complex geological setting, comprising natural or engineered discrete heterogeneities as faults and fractures, span a relatively large spectrum of temporal and spatial scales and they interact in a highly non-linear fashion. In this regard, numerical simulators have become necessary in geological studies to model coupled processes and complex geological geometries. In this study, we present a new simulator GOLEM, using multiphysics coupling to characterize geological reservoirs. In particular, special attention is given to discrete geological features such as faults and fractures. GOLEM is based on the Multiphysics Object-Oriented Simulation Environment (MOOSE). The MOOSE framework provides a powerful and flexible platform to solve multiphysics problems implicitly and in a tightly coupled manner on unstructured meshes which is of interest for the considered non-linear context. Governing equations in 3D for fluid flow, heat transfer (conductive and advective), saline transport as well as deformation (elastic and plastic) have been implemented into the GOLEM application. Coupling between rock deformation and fluid and heat flow is considered using theories of poroelasticity and thermoelasticity. Furthermore, considering material properties such as density and viscosity and transport properties such as porosity as dependent on the state variables (based on the International Association for the Properties of Water and Steam models) increase the coupling complexity of the problem. The GOLEM application aims therefore at integrating more physical processes observed in the field or in the laboratory to simulate more realistic scenarios. The use of high-level nonlinear solver technology allow us to tackle these complex multiphysics problems in three dimensions. Basic concepts behing the GOLEM simulator will be presented in this study as well as a few application examples to illustrate its main features.

  16. Diagnosing the Sensitivity of Local Land-Atmosphere Coupling via the Soil Moisture-Boundary Layer Interaction

    NASA Technical Reports Server (NTRS)

    Santanello, Joseph A., Jr.; Peters-Lidard, Christa D.; Kumar, Sujay V.

    2011-01-01

    The inherent coupled nature of earth s energy and water cycles places significant importance on the proper representation and diagnosis of land atmosphere (LA) interactions in hydrometeorological prediction models. However, the precise nature of the soil moisture precipitation relationship at the local scale is largely determined by a series of nonlinear processes and feedbacks that are difficult to quantify. To quantify the strength of the local LA coupling (LoCo), this process chain must be considered both in full and as individual components through their relationships and sensitivities. To address this, recent modeling and diagnostic studies have been extended to 1) quantify the processes governing LoCo utilizing the thermodynamic properties of mixing diagrams, and 2) diagnose the sensitivity of coupled systems, including clouds and moist processes, to perturbations in soil moisture. This work employs NASA s Land Information System (LIS) coupled to the Weather Research and Forecasting (WRF) mesoscale model and simulations performed over the U.S. Southern Great Plains. The behavior of different planetary boundary layers (PBL) and land surface scheme couplings in LIS WRF are examined in the context of the evolution of thermodynamic quantities that link the surface soil moisture condition to the PBL regime, clouds, and precipitation. Specifically, the tendency toward saturation in the PBL is quantified by the lifting condensation level (LCL) deficit and addressed as a function of time and space. The sensitivity of the LCL deficit to the soil moisture condition is indicative of the strength of LoCo, where both positive and negative feedbacks can be identified. Overall, this methodology can be applied to any model or observations and is a crucial step toward improved evaluation and quantification of LoCo within models, particularly given the advent of next-generation satellite measurements of PBL and land surface properties along with advances in data assimilation schemes.

  17. Single-Electron Transmetalation via Photoredox/Nickel Dual Catalysis: Unlocking a New Paradigm for sp(3)-sp(2) Cross-Coupling.

    PubMed

    Tellis, John C; Kelly, Christopher B; Primer, David N; Jouffroy, Matthieu; Patel, Niki R; Molander, Gary A

    2016-07-19

    The important role of transition metal-catalyzed cross-coupling in expanding the frontiers of accessible chemical territory is unquestionable. Despite empowering chemists with Herculean capabilities in complex molecule construction, contemporary protocols are not without their Achilles' heel: Csp(3)-Csp(2)/sp(3) coupling. The underlying challenge in sp(3) cross-couplings is 2-fold: (i) methods employing conventional, bench-stable precursors are universally reliant on extreme reaction conditions because of the high activation barrier of transmetalation; (ii) circumvention of this barrier invariably relies on use of more reactive precursors, thereby sacrificing functional group tolerance, operational simplicity, and broad applicability. Despite the ubiquity of this problem, the nature of the transmetalation step has remained unchanged from the seminal reports of Negishi, Suzuki, Kumada, and Stille, thus suggesting that the challenges in Csp(3)-Csp(2)/sp(3) coupling result from inherent mechanistic constraints in the traditional cross-coupling paradigm. Rather than submitting to the limitations of this conventional approach, we envisioned that a process rooted in single-electron reactivity could furnish the same key metalated intermediate posited in two-electron transmetalation, while demonstrating entirely complementary reactivity patterns. Inspired by literature reports on the susceptibility of organoboron reagents toward photochemical, single-electron oxidative fragmentation, realization of a conceptually novel open shell transmetalation framework was achieved in the facile coupling of benzylic trifluoroborates with aryl halides via cooperative visible-light activated photoredox and Ni cross-coupling catalysis. Following this seminal study, we disclosed a suite of protocols for the cross-coupling of secondary alkyl, α-alkoxy, α-amino, and α-trifluoromethylbenzyltrifluoroborates. Furthermore, the selective cross-coupling of Csp(3) organoboron moieties in the presence of Csp(2) organoboron motifs was also demonstrated, highlighting the nuances of this approach to transmetalation. Computational modeling of the reaction mechanism uncovered useful details about the intermediates and transition-state structures involved in the nickel catalytic cycle. Most notably, a unique dynamic kinetic resolution process, characterized by radical homolysis/recombination equilibrium of a Ni(III) intermediate, was discovered. This process was ultimately found to be responsible for stereoselectivity in an enantioselective variant of these cross-couplings. Prompted by the intrinsic limitations of organotrifluoroborates, we sought other radical feedstocks and quickly identified alkylbis(catecholato)silicates as viable radical precursors for Ni/photoredox dual catalysis. These hypervalent silicate species have several notable benefits, including more favorable redox potentials that allow extension to primary alkyl systems incorporating unprotected amines as well as compatibility with less expensive Ru-based photocatalysts. Additionally, these reagents exhibit an amenability to alkenyl halide cross-coupling while simultaneously expanding the aryl halide scope. In the process of exploring these reagents, we serendipitously discovered a method to effect thioetherification of aryl halides via a H atom transfer mechanism. This latter discovery emphasizes that this robust cross-coupling paradigm is "blind" to the origins of the radical, opening opportunities for a wealth of new discoveries. Taken together, our studies in the area of photoredox/nickel dual catalysis have validated single-electron transmetalation as a powerful platform for enabling conventionally challenging Csp(3)-Csp(2) cross-couplings. More broadly, these findings represent the power of rational design in catalysis and the strategic use of mechanistic knowledge and manipulation for the development of new synthetic methods.

  18. Markovian limit for a reduced operation-valued stochastic process

    NASA Astrophysics Data System (ADS)

    Barchielli, Alberto

    1987-04-01

    Operation-valued stochastic processes give a formalization of the concept of continuous (in time) measurements in quantum mechanics. In this article, a first stage M of a measuring apparatus coupled to the system S is explicitly introduced, and continuous measurement of some observables of M is considered (one can speak of an indirect continuous measurement on S). When the degrees of freedom of the measuring apparatus M are eliminated and the weak coupling limit is taken, it is shown that an operation-valued stochastic process describing a direct continuous observation of the system S is obtained.

  19. A process to control light in a micro resonator through a coupling modulation by surface acoustic waves

    NASA Astrophysics Data System (ADS)

    Fan, Guofang; Li, Yuan; Hu, Chunguang; Lei, Lihua; Guo, Yanchuan

    2016-08-01

    A novel process to control light through the coupling modulation by surface acoustic wave (SAW) is presented in an optical micro resonator. An optical waveguide modulator of a racetrack resonator on silicon-on-insulator (SOI) technology is took as an example to explore the mechanism. A finite-difference time-domain (FDTD) is developed to simulate the acousto-optical (AO) modulator using the mechanism. An analytical method is presented to verify our proposal. The results show that the process can work well as an optical modulator by SAW.

  20. Telemedicine optoelectronic biomedical data processing system

    NASA Astrophysics Data System (ADS)

    Prosolovska, Vita V.

    2010-08-01

    The telemedicine optoelectronic biomedical data processing system is created to share medical information for the control of health rights and timely and rapid response to crisis. The system includes the main blocks: bioprocessor, analog-digital converter biomedical images, optoelectronic module for image processing, optoelectronic module for parallel recording and storage of biomedical imaging and matrix screen display of biomedical images. Rated temporal characteristics of the blocks defined by a particular triggering optoelectronic couple in analog-digital converters and time imaging for matrix screen. The element base for hardware implementation of the developed matrix screen is integrated optoelectronic couples produced by selective epitaxy.

  1. Tropospheric ozone simulated by a global-multi-regional two-way coupling model system

    NASA Astrophysics Data System (ADS)

    Yan, Y.; Lin, J.; Chen, J.; Hu, L.

    2015-12-01

    Current global chemical transport models are limited by horizontal resolutions (100-500 km), and they cannot capture small-scale processes affecting tropospheric ozone (O3). Here we use a recently built two-way coupling system of GEOS-Chem to simulate the global tropospheric O3 in 2009. The system couples the global model (~ 200 km) and its three nested models (~ 50 km) covering Asia, North America and Europe, respectively. Benefiting from the high resolution, the nested models better capture small-scale processes than the global model alone. In the coupling system, the nested models provide results to modify the global model simulation within respective nested domains while taking the lateral boundary conditions from the global model. Due to the "coupling" effects, the two-way system significantly improves the tropospheric O3 simulation upon the global model alone, as found by comparisons with a suite of ground (1420 sites from WDCGG, GMD, EMEP, and AQS), aircraft (HIPPO and MOZAIC), and satellite measurements (two OMI products). Compared to the global model alone, the two-way coupled simulation enhances the correlation in day-to-day variation of afternoon mean O3 with the ground measurements from 0.53 to 0.68 and reduces the mean model bias from 10.8 to 6.7 ppb. Regionally, the coupled model reduces the bias by 4.6 ppb over Europe, 3.9 ppb over North America, and 3.1 ppb over other regions. The two-way coupling brings O3 vertical profiles much closer to the HIPPO and MOZAIC data, reducing the tropospheric (0-9 km) mean bias by 3-10 ppb at most MOZAIC sites and by 5.3 ppb for HIPPO profiles. The two-way coupled simulation also reduces the global tropospheric column ozone by 3.0 DU (9.5%), bringing them closer to the OMI data in all seasons. Simulation improvements are more significant in the northern hemisphere, and are primarily a result of improved representation of the nonlinear ozone chemistry, including but not limited to urban-rural contrast. The two-way coupled simulation also reduces the global tropospheric mean hydroxyl radical by 5% with enhancements by 5% in lifetimes of methyl chloroform and methane, bringing them closer to observation-based estimates. Therefore improving model representations of small-scale processes are a critical step forward to understanding the global tropospheric chemistry.

  2. Sexual life and fertility desire in long-term HIV serodiscordant couples in Addis Ababa, Ethiopia: a grounded theory study.

    PubMed

    Hailemariam, Tewodros G; Kassie, Getnet M; Sisay, Mitike M

    2012-10-24

    Even though remarkable progress has been achieved, HIV/AIDS continues to be a major global health priority. HIV discordant relationship is one of the emerging issues in HIV prevention endeavour. In Ethiopia, very little is known about HIV-serodiscordant couples particularly how they manage their sexual relationship and fertility desire. Therefore, we conduct this study with the aim of exploring the experiences of HIV discordant couples about their sexual life, and fertility desire in the context of long-term relationships in Addis Ababa, Ethiopia. A grounded theory approach was employed using in-depth interviews among 36 informants in ART/PMTCT centers of three public hospitals, a health center and one PLHIV association in Addis Ababa. Theoretical sampling was used to recruit 28 clients who lived in a discordant relationship and eight health care providers as key informants. Data collection and analysis were undertaken simultaneously using a constant comparison. The analysis was facilitated using OpenCode software. A grounded theory pertaining to sexual life and desire to have a child among HIV discordant couples emerged as "maintaining the relationship" as a core category. Couples pass through a social process of struggle to maintain their relationship. The causal conditions for couples to enter into the process of struggle to maintain their relationship were collectively categorized as "Entering in-to a transition" (knowing HIV serostatus) and this includes mismatch of desire to have a child, controversy on safe sex versus desire to have a child, and undeniable change in sexual desire and practice through time were the features in entering into-transition. Then after the transition, couples engaged in certain actions/strategies that are categorized as "dealing with discordancy" such as entertaining partner's interest by scarifying once self interest to maintain their relationship. HIV discordant couples' relationship is filled with controversies of maintaining relationship versus fear of getting infected. The findings of this study have suggested the need to view discordant couple's actions as a process of maintaining their relationship in the context of eminent risks. Further study should be done among HIV discordant couples to assess the fitness of the current model in different setups and population. In addition, a study could begin to test the hypotheses proposed in this study.

  3. On-line coupling of supercritical fluid extraction and chromatographic techniques.

    PubMed

    Sánchez-Camargo, Andrea Del Pilar; Parada-Alfonso, Fabián; Ibáñez, Elena; Cifuentes, Alejandro

    2017-01-01

    This review summarizes and discusses recent advances and applications of on-line supercritical fluid extraction coupled to liquid chromatography, gas chromatography, and supercritical fluid chromatographic techniques. Supercritical fluids, due to their exceptional physical properties, provide unique opportunities not only during the extraction step but also in the separation process. Although supercritical fluid extraction is especially suitable for recovery of non-polar organic compounds, this technique can also be successfully applied to the extraction of polar analytes by the aid of modifiers. Supercritical fluid extraction process can be performed following "off-line" or "on-line" approaches and their main features are contrasted herein. Besides, the parameters affecting the supercritical fluid extraction process are explained and a "decision tree" is for the first time presented in this review work as a guide tool for method development. The general principles (instrumental and methodological) of the different on-line couplings of supercritical fluid extraction with chromatographic techniques are described. Advantages and shortcomings of supercritical fluid extraction as hyphenated technique are discussed. Besides, an update of the most recent applications (from 2005 up to now) of the mentioned couplings is also presented in this review. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. [Study on the modeling of earth-atmosphere coupling over rugged scenes for hyperspectral remote sensing].

    PubMed

    Zhao, Hui-Jie; Jiang, Cheng; Jia, Guo-Rui

    2014-01-01

    Adjacency effects may introduce errors in the quantitative applications of hyperspectral remote sensing, of which the significant item is the earth-atmosphere coupling radiance. However, the surrounding relief and shadow induce strong changes in hyperspectral images acquired from rugged terrain, which is not accurate to describe the spectral characteristics. Furthermore, the radiative coupling process between the earth and the atmosphere is more complex over the rugged scenes. In order to meet the requirements of real-time processing in data simulation, an equivalent reflectance of background was developed by taking into account the topography and the geometry between surroundings and targets based on the radiative transfer process. The contributions of the coupling to the signal at sensor level were then evaluated. This approach was integrated to the sensor-level radiance simulation model and then validated through simulating a set of actual radiance data. The results show that the visual effect of simulated images is consistent with that of observed images. It was also shown that the spectral similarity is improved over rugged scenes. In addition, the model precision is maintained at the same level over flat scenes.

  5. Laser-fiber coupling by means of a silicon micro-optical bench and a self-aligned soldering process

    NASA Astrophysics Data System (ADS)

    Schmidt, Jan P.; Cordes, A.; Mueller, Joerg; Burkhardt, Hans

    1995-02-01

    The alignment of laser diodes to monomode fibers has to meet extremely close tolerances for a low coupling loss. Typically < 0.5 micrometers in lateral and vertical direction and less than two degrees in angle deviation are allowed for a coupling loss below 2 dB. Presently such close tolerances can only be met by gluing or soldering both components on separate base plates and combining them via piezoactivated alignment monitoring the output of the circuit and then gluing them using UV-hardening epoxies. Such a procedure is not very economical and not useful for mass applications. This paper presents the principle and realization of a silicon micro-optical bench for laser-fiber-coupling, which avoids the above mentioned disadvantages. The micro-optical bench is realized using well controlled plasma etching processes to transfer the guiding patterns for the laser and the fiber into the silicon substrate, keeping geometry tolerances below +/- 0.5 micrometers in lateral and vertical direction. Mounting the laser diode by means of a self-aligned soldering process, an additional contribution to the precise alignment of the laser is further improved.

  6. Parallel Quantum Circuit in a Tunnel Junction

    NASA Astrophysics Data System (ADS)

    Faizy Namarvar, Omid; Dridi, Ghassen; Joachim, Christian

    2016-07-01

    Spectral analysis of 1 and 2-states per line quantum bus are normally sufficient to determine the effective Vab(N) electronic coupling between the emitter and receiver states through the bus as a function of the number N of parallel lines. When Vab(N) is difficult to determine, an Heisenberg-Rabi time dependent quantum exchange process must be triggered through the bus to capture the secular oscillation frequency Ωab(N) between those states. Two different linear and regimes are demonstrated for Ωab(N) as a function of N. When the initial preparation is replaced by coupling of the quantum bus to semi-infinite electrodes, the resulting quantum transduction process is not faithfully following the Ωab(N) variations. Because of the electronic transparency normalisation to unity and of the low pass filter character of this transduction, large Ωab(N) cannot be captured by the tunnel junction. The broadly used concept of electrical contact between a metallic nanopad and a molecular device must be better described as a quantum transduction process. At small coupling and when N is small enough not to compensate for this small coupling, an N2 power law is preserved for Ωab(N) and for Vab(N).

  7. Parallel Quantum Circuit in a Tunnel Junction

    PubMed Central

    Faizy Namarvar, Omid; Dridi, Ghassen; Joachim, Christian

    2016-01-01

    Spectral analysis of 1 and 2-states per line quantum bus are normally sufficient to determine the effective Vab(N) electronic coupling between the emitter and receiver states through the bus as a function of the number N of parallel lines. When Vab(N) is difficult to determine, an Heisenberg-Rabi time dependent quantum exchange process must be triggered through the bus to capture the secular oscillation frequency Ωab(N) between those states. Two different linear and regimes are demonstrated for Ωab(N) as a function of N. When the initial preparation is replaced by coupling of the quantum bus to semi-infinite electrodes, the resulting quantum transduction process is not faithfully following the Ωab(N) variations. Because of the electronic transparency normalisation to unity and of the low pass filter character of this transduction, large Ωab(N) cannot be captured by the tunnel junction. The broadly used concept of electrical contact between a metallic nanopad and a molecular device must be better described as a quantum transduction process. At small coupling and when N is small enough not to compensate for this small coupling, an N2 power law is preserved for Ωab(N) and for Vab(N). PMID:27453262

  8. Parallel Quantum Circuit in a Tunnel Junction.

    PubMed

    Faizy Namarvar, Omid; Dridi, Ghassen; Joachim, Christian

    2016-07-25

    Spectral analysis of 1 and 2-states per line quantum bus are normally sufficient to determine the effective Vab(N) electronic coupling between the emitter and receiver states through the bus as a function of the number N of parallel lines. When Vab(N) is difficult to determine, an Heisenberg-Rabi time dependent quantum exchange process must be triggered through the bus to capture the secular oscillation frequency Ωab(N) between those states. Two different linear and regimes are demonstrated for Ωab(N) as a function of N. When the initial preparation is replaced by coupling of the quantum bus to semi-infinite electrodes, the resulting quantum transduction process is not faithfully following the Ωab(N) variations. Because of the electronic transparency normalisation to unity and of the low pass filter character of this transduction, large Ωab(N) cannot be captured by the tunnel junction. The broadly used concept of electrical contact between a metallic nanopad and a molecular device must be better described as a quantum transduction process. At small coupling and when N is small enough not to compensate for this small coupling, an N(2) power law is preserved for Ωab(N) and for Vab(N).

  9. Computing algebraic transfer entropy and coupling directions via transcripts

    NASA Astrophysics Data System (ADS)

    Amigó, José M.; Monetti, Roberto; Graff, Beata; Graff, Grzegorz

    2016-11-01

    Most random processes studied in nonlinear time series analysis take values on sets endowed with a group structure, e.g., the real and rational numbers, and the integers. This fact allows to associate with each pair of group elements a third element, called their transcript, which is defined as the product of the second element in the pair times the first one. The transfer entropy of two such processes is called algebraic transfer entropy. It measures the information transferred between two coupled processes whose values belong to a group. In this paper, we show that, subject to one constraint, the algebraic transfer entropy matches the (in general, conditional) mutual information of certain transcripts with one variable less. This property has interesting practical applications, especially to the analysis of short time series. We also derive weak conditions for the 3-dimensional algebraic transfer entropy to yield the same coupling direction as the corresponding mutual information of transcripts. A related issue concerns the use of mutual information of transcripts to determine coupling directions in cases where the conditions just mentioned are not fulfilled. We checked the latter possibility in the lowest dimensional case with numerical simulations and cardiovascular data, and obtained positive results.

  10. Heavy metal removal from MSWI fly ash by electrokinetic remediation coupled with a permeable activated charcoal reactive barrier

    PubMed Central

    Huang, Tao; Li, Dongwei; Kexiang, Liu; Zhang, Yuewei

    2015-01-01

    This paper presents the investigations into the feasibility of the application of a remediation system that couples electrokinetic remediation (EKR) with the permeable reactive barrier (PRB) concept for municipal solid waste incineration (MSWI) fly ash with activated charcoal as the PRB material. The experimental results of this study showed that the proposed combined method can effectively improve the remediation efficiency and that the addition of the oxalic acid to the PRB media before the coupled system can further enhance the remediation process. In the optimization tests, the maximum removals of Zn, Pb, Cu and Cd were achieved under different experimental conditions. The voltage gradient and processing time were shown to have significant effects on the removal of Cu and Cd, whereas the addition of the oxalic acid had a more significant influence on the removal of Pb. Generally, the processing time is the most significant factor in changing the removal rates of HMs in the enhanced coupled system. In terms of the leaching toxicity, the specimen remediated by ENEKR + PRB showed the lowest leaching value for each HM in the S2 and S3 regions. PMID:26486449

  11. High-efficiency cell concepts on low-cost silicon sheets

    NASA Technical Reports Server (NTRS)

    Bell, R. O.; Ravi, K. V.

    1985-01-01

    The limitations on sheet growth material in terms of the defect structure and minority carrier lifetime are discussed. The effect of various defects on performance are estimated. Given these limitations designs for a sheet growth cell that will make the best of the material characteristics are proposed. Achievement of optimum synergy between base material quality and device processing variables is proposed. A strong coupling exists between material quality and the variables during crystal growth, and device processing variables. Two objectives are outlined: (1) optimization of the coupling for maximum performance at minimal cost; and (2) decoupling of materials from processing by improvement in base material quality to make it less sensitive to processing variables.

  12. Reduced equations of motion for quantum systems driven by diffusive Markov processes.

    PubMed

    Sarovar, Mohan; Grace, Matthew D

    2012-09-28

    The expansion of a stochastic Liouville equation for the coupled evolution of a quantum system and an Ornstein-Uhlenbeck process into a hierarchy of coupled differential equations is a useful technique that simplifies the simulation of stochastically driven quantum systems. We expand the applicability of this technique by completely characterizing the class of diffusive Markov processes for which a useful hierarchy of equations can be derived. The expansion of this technique enables the examination of quantum systems driven by non-Gaussian stochastic processes with bounded range. We present an application of this extended technique by simulating Stark-tuned Förster resonance transfer in Rydberg atoms with nonperturbative position fluctuations.

  13. DNA nanostructures: Through, rather than across

    NASA Astrophysics Data System (ADS)

    Bruchez, Marcel P.

    2018-02-01

    Dye molecules are shown to assemble into J-aggregate arrays by sequence-specific organization in the minor groove of DNA duplex sequences. Energy transfer through these structures displays the hallmarks of coherent coupling over distances that exceed those of conventional dipole-coupling processes.

  14. A One-Pot Synthesis of Dibenzofurans from 6-Diazo-2-cyclohexenones.

    PubMed

    Zhao, Hua; Yang, Ke; Zheng, Hongyan; Ding, Ruichao; Yin, Fangjie; Wang, Ning; Li, Yun; Cheng, Bin; Wang, Huifei; Zhai, Hongbin

    2015-12-04

    A novel and efficient protocol for the rapid construction of dibenzofuran motifs from 6-diazo-2-cyclohexenone and ortho-haloiodobenzene has been developed. The process involves one-pot Pd-catalyzed cross-coupling/aromatization and Cu-catalyzed Ullmann coupling.

  15. High Pulse Energy Flashlamp Pumpable Laser Dyes

    DTIC Science & Technology

    1990-04-09

    on a large scale, and the difficult alkylation to 35 accomplished with 1-iodopropane with sodium hydroxide in acetone. Coupling the Grignard reagent ...dialkylated with 4-(chloromethyl)stilbene (47), which recently became available from Aldrich, to give 48b. The attempt to couple the Grignard reagent from 4...search turned up a useful procedure for coupling aryl Grignard reagents with benzyl halides, the process in Scheme E was largely completed. The Grignard

  16. Dynamics of a network of phase oscillators with plastic couplings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nekorkin, V. I.; Kasatkin, D. V.; Moscow Institute of Physics and Technology

    The processes of synchronization and phase cluster formation are investigated in a complex network of dynamically coupled phase oscillators. Coupling weights evolve dynamically depending on the phase relations between the oscillators. It is shown that the network exhibits several types of behavior: the globally synchronized state, two-cluster and multi-cluster states, different synchronous states with a fixed phase relationship between the oscillators and chaotic desynchronized state.

  17. Thermosphere Dynamics Workshop, volume 2

    NASA Technical Reports Server (NTRS)

    Mayr, H. G. (Editor); Miller, N. J. (Editor)

    1986-01-01

    Atmospheric observations reported on include recent measurements of thermospherical composition, gas temperatures, auroral emissions, ion-neutral collisional coupling, electric fields, and plasma convection. Theoretical studies reported on include model calculations of thermospherical general circulation, thermospheric tides, thermospheric tidal coupling to the lower atmosphere, interactions between thermospheic chemistry and dynamics and thermosphere-ionosphere coupling processes. The abstracts provide details given in each talk but the figures represent the fundamental information exchanged within the workshop

  18. Programming PHREEQC calculations with C++ and Python a comparative study

    USGS Publications Warehouse

    Charlton, Scott R.; Parkhurst, David L.; Muller, Mike

    2011-01-01

    The new IPhreeqc module provides an application programming interface (API) to facilitate coupling of other codes with the U.S. Geological Survey geochemical model PHREEQC. Traditionally, loose coupling of PHREEQC with other applications required methods to create PHREEQC input files, start external PHREEQC processes, and process PHREEQC output files. IPhreeqc eliminates most of this effort by providing direct access to PHREEQC capabilities through a component object model (COM), a library, or a dynamically linked library (DLL). Input and calculations can be specified through internally programmed strings, and all data exchange between an application and the module can occur in computer memory. This study compares simulations programmed in C++ and Python that are tightly coupled with IPhreeqc modules to the traditional simulations that are loosely coupled to PHREEQC. The study compares performance, quantifies effort, and evaluates lines of code and the complexity of the design. The comparisons show that IPhreeqc offers a more powerful and simpler approach for incorporating PHREEQC calculations into transport models and other applications that need to perform PHREEQC calculations. The IPhreeqc module facilitates the design of coupled applications and significantly reduces run times. Even a moderate knowledge of one of the supported programming languages allows more efficient use of PHREEQC than the traditional loosely coupled approach.

  19. Effect of the fissile bead's and thermocouple wires' sizes on the response time of a fission couple.

    PubMed

    Liang, Wenfeng; Lu, Yi; Li, Meng; Fan, Xiaoqiang; Lu, Wei

    2014-05-01

    The fission couple is proposed as a fast response miniature neutron detector in the measurement of time dependent energy depositions within the fissile material based on theoretical analysis, but the response time of a fission couple is relatively slow in practice. The time lag originated from heat transfer process was demonstrated to be the dominating factor by theoretical simulations and experimental verification in this paper. The response of a fission couple as a function of the bead size and the thermocouple wires' sizes are simulated using ANSYS workbench. The decrease of wires' diameter results in the decrease of response time, and the increase of bead's diameter leads to a slight increase of response time. During a pulse heating transient in the fuel of Chinese Fast Burst Reactor II with a FWHM of 181 μs, the time lag originated from heat transfer process is about tens of microseconds for the peaks of the change rate of temperature, and is of the order of milliseconds to achieve 85% of the temperature rise for a typical fission couple with a Φ 1 mm fissile bead and two Φ 0.05 mm thermocouple wires. The results obtained provide foundation for the optimization of fission couples.

  20. Effect of the fissile bead's and thermocouple wires’ sizes on the response time of a fission couple

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Wenfeng, E-mail: liang-wen-feng@163.com; Lu, Yi; Li, Meng

    The fission couple is proposed as a fast response miniature neutron detector in the measurement of time dependent energy depositions within the fissile material based on theoretical analysis, but the response time of a fission couple is relatively slow in practice. The time lag originated from heat transfer process was demonstrated to be the dominating factor by theoretical simulations and experimental verification in this paper. The response of a fission couple as a function of the bead size and the thermocouple wires’ sizes are simulated using ANSYS workbench. The decrease of wires’ diameter results in the decrease of response time,more » and the increase of bead's diameter leads to a slight increase of response time. During a pulse heating transient in the fuel of Chinese Fast Burst Reactor II with a FWHM of 181μs, the time lag originated from heat transfer process is about tens of microseconds for the peaks of the change rate of temperature, and is of the order of milliseconds to achieve 85% of the temperature rise for a typical fission couple with a Φ 1 mm fissile bead and two Φ 0.05 mm thermocouple wires. The results obtained provide foundation for the optimization of fission couples.« less

  1. Systemic couple therapy for dysthymia.

    PubMed

    Montesano, Adrián; Feixas, Guillem; Muñoz, Dámaris; Compañ, Victoria

    2014-03-01

    We examined the effect of Systemic Couple Therapy on a patient diagnosed with dysthymic disorder and her partner. Marge and Peter, a middle-aged married couple, showed significant and meaningful changes in their pattern of interaction over the course of the therapy and, by the end of it, Marge no longer met the diagnostic criteria for dysthymic disorder. Her scores on the Structured Clinical Interview for DSM-IV Axis I Disorders (SCID-I) and Beck Depression Inventory, Second Edition (BDI-II) were in the clinical range before treatment and in the nonclinical one at the end of therapy. Although scores on Dyadic Adjustment Scale showed different patterns, both members reported significant improvement. The analysis of change in the alliance-related behaviors throughout the process concurred with change in couple's pattern of interaction. Treatment effects were maintained at 12-month follow-up. Highlights in the therapy process showed the importance of relational mechanisms of change, such as broadening the therapeutic focus into the couple's pattern of interaction, reducing expressed emotion and resentment, as well as increasing positive exchanges. The results of this evidence-based case study should prompt further investigation of couple therapy for dysthymia disorder. Randomized clinical trial design is needed to reach an evidence-based treatment status. (c) 2014 APA, all rights reserved.

  2. Proxemics in Couple Interactions: Rekindling an Old Optic.

    PubMed

    Sluzki, Carlos E

    2016-03-01

    Utilizing as a lens the interpersonal implications of physical interpersonal distances in social contexts (a set of variables present during the professional discourse during the 1960s and 1970s, to then fade away), this article explores interactive process displayed by the protagonic couple in Bela Bartok's opera "Bluebeard Castle," an exercise aimed at underlining the value of maintaining proxemics as an explicit level of observation for clinical practice and interpersonal research. © 2015 Family Process Institute.

  3. The application of charge-coupled device processors in automatic-control systems

    NASA Technical Reports Server (NTRS)

    Mcvey, E. S.; Parrish, E. A., Jr.

    1977-01-01

    The application of charge-coupled device (CCD) processors to automatic-control systems is suggested. CCD processors are a new form of semiconductor component with the unique ability to process sampled signals on an analog basis. Specific implementations of controllers are suggested for linear time-invariant, time-varying, and nonlinear systems. Typical processing time should be only a few microseconds. This form of technology may become competitive with microprocessors and minicomputers in addition to supplementing them.

  4. Integrated optics technology study

    NASA Technical Reports Server (NTRS)

    Chen, B.

    1982-01-01

    The materials and processes available for the fabrication of single mode integrated electrooptical components are described. Issues included in the study are: (1) host material and orientation, (2) waveguide formation, (3) optical loss mechanisms, (4) wavelength selection, (5) polarization effects and control, (6) laser to integrated optics coupling,(7) fiber optic waveguides to integrated optics coupling, (8) souces, (9) detectors. The best materials, technology and processes for fabrication of integrated optical components for communications and fiber gyro applications are recommended.

  5. Spectral fingerprints of large-scale cortical dynamics during ambiguous motion perception.

    PubMed

    Helfrich, Randolph F; Knepper, Hannah; Nolte, Guido; Sengelmann, Malte; König, Peter; Schneider, Till R; Engel, Andreas K

    2016-11-01

    Ambiguous stimuli have been widely used to study the neuronal correlates of consciousness. Recently, it has been suggested that conscious perception might arise from the dynamic interplay of functionally specialized but widely distributed cortical areas. While previous research mainly focused on phase coupling as a correlate of cortical communication, more recent findings indicated that additional coupling modes might coexist and possibly subserve distinct cortical functions. Here, we studied two coupling modes, namely phase and envelope coupling, which might differ in their origins, putative functions and dynamics. Therefore, we recorded 128-channel EEG while participants performed a bistable motion task and utilized state-of-the-art source-space connectivity analysis techniques to study the functional relevance of different coupling modes for cortical communication. Our results indicate that gamma-band phase coupling in extrastriate visual cortex might mediate the integration of visual tokens into a moving stimulus during ambiguous visual stimulation. Furthermore, our results suggest that long-range fronto-occipital gamma-band envelope coupling sustains the horizontal percept during ambiguous motion perception. Additionally, our results support the idea that local parieto-occipital alpha-band phase coupling controls the inter-hemispheric information transfer. These findings provide correlative evidence for the notion that synchronized oscillatory brain activity reflects the processing of sensory input as well as the information integration across several spatiotemporal scales. The results indicate that distinct coupling modes are involved in different cortical computations and that the rich spatiotemporal correlation structure of the brain might constitute the functional architecture for cortical processing and specific multi-site communication. Hum Brain Mapp 37:4099-4111, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. Understanding of Coupled Terrestrial Carbon, Nitrogen and Water Dynamics—An Overview

    PubMed Central

    Chen, Baozhang; Coops, Nicholas C.

    2009-01-01

    Coupled terrestrial carbon (C), nitrogen (N) and hydrological processes play a crucial role in the climate system, providing both positive and negative feedbacks to climate change. In this review we summarize published research results to gain an increased understanding of the dynamics between vegetation and atmosphere processes. A variety of methods, including monitoring (e.g., eddy covariance flux tower, remote sensing, etc.) and modeling (i.e., ecosystem, hydrology and atmospheric inversion modeling) the terrestrial carbon and water budgeting, are evaluated and compared. We highlight two major research areas where additional research could be focused: (i) Conceptually, the hydrological and biogeochemical processes are closely linked, however, the coupling processes between terrestrial C, N and hydrological processes are far from well understood; and (ii) there are significant uncertainties in estimates of the components of the C balance, especially at landscape and regional scales. To address these two questions, a synthetic research framework is needed which includes both bottom-up and top-down approaches integrating scalable (footprint and ecosystem) models and a spatially nested hierarchy of observations which include multispectral remote sensing, inventories, existing regional clusters of eddy-covariance flux towers and CO2 mixing ratio towers and chambers. PMID:22291528

  7. Understanding of coupled terrestrial carbon, nitrogen and water dynamics-an overview.

    PubMed

    Chen, Baozhang; Coops, Nicholas C

    2009-01-01

    Coupled terrestrial carbon (C), nitrogen (N) and hydrological processes play a crucial role in the climate system, providing both positive and negative feedbacks to climate change. In this review we summarize published research results to gain an increased understanding of the dynamics between vegetation and atmosphere processes. A variety of methods, including monitoring (e.g., eddy covariance flux tower, remote sensing, etc.) and modeling (i.e., ecosystem, hydrology and atmospheric inversion modeling) the terrestrial carbon and water budgeting, are evaluated and compared. We highlight two major research areas where additional research could be focused: (i) Conceptually, the hydrological and biogeochemical processes are closely linked, however, the coupling processes between terrestrial C, N and hydrological processes are far from well understood; and (ii) there are significant uncertainties in estimates of the components of the C balance, especially at landscape and regional scales. To address these two questions, a synthetic research framework is needed which includes both bottom-up and top-down approaches integrating scalable (footprint and ecosystem) models and a spatially nested hierarchy of observations which include multispectral remote sensing, inventories, existing regional clusters of eddy-covariance flux towers and CO(2) mixing ratio towers and chambers.

  8. Couples coping with stress: Between-person differences and within-person processes.

    PubMed

    Hilpert, Peter; Xu, Feng; Milek, Anne; Atkins, David C; Bodenmann, Guy; Bradbury, Thomas N

    2018-04-01

    In intimate relationships, spousal support (or dyadic coping) can directly benefit relationships (i.e., direct effect) and protect the relationship against the negative spillover effects of stress (i.e., buffer effect). As stress-coping theories suggest, both processes can vary between persons as well as within persons. However, empirically, this distinction is not always made explicit, resulting in potentially misleading conclusions about dyadic stress-coping processes. In the current study, we investigated stress and coping processes in couples at both between- and within-person levels. Participants were 84 Chinese dual-earning couples (N = 168 individuals) participated in a 7-day diary study. Between persons, our multilevel analyses replicated well-established buffering effects: The link between average stress and relationship outcomes was reduced if the partner provided more support on average. Within persons, results implied a significant buffer effect only in women; their relationship satisfaction was highest on days when they experienced higher levels of stress and higher levels of partner support. The present findings demonstrate how distinguishing between- and within-person effects can provide a better conceptual understanding of dyadic processes in intimate relationships while examining stress-coping associations in an understudied group. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  9. A novel method of simultaneous NH4+ and NO3- removal using Fe cycling as a catalyst: Feammox coupled with NAFO.

    PubMed

    Li, Xiang; Yuan, Yan; Huang, Yong; Liu, Heng-Wei; Bi, Zhen; Yuan, Yi; Yang, Peng-Bin

    2018-08-01

    The feasibility of using Feammox coupled with nitrate-dependent Fe(II) oxidizing (NAFO) to cause the simultaneous conversion of NH 4 + and NO 3 - was explored by inoculation with Feammox sludge and the use Fe cycling as catalyst. After 61days operation, the simultaneous conversion of NO 3 - and NH 4 + occurred with the presence of interconversion between Fe(III) and Fe(II). The conversion ratio of NH 4 + to NO 3 - stabilized at 0.9-1. The results of isotopic tracing and microbial diversity analysis indicated that NH 4 + was first oxidized to NO 2 - by Fe(III), then NO 3 - was reduced to NO 2 - and N 2 by the Fe(II) produced in Feammox process, and finally, the NO 2 - produced in NAFO process underwent an Anammox process with the remaining NH 4 + to yield N 2 . The results showed the simultaneous continuous conversion process of NO 3 - and NH 4 + with limited Fe as a catalyst was a coupled process of Feammox, Anammox, and NAFO under the anaerobic conditions. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. The Effects of a Couples-Based Health Behavior Intervention During Pregnancy on Latino Couples' Dyadic Satisfaction Postpartum.

    PubMed

    Coop Gordon, Kristina; Roberson, Patricia N E; Hughes, Jessica A; Khaddouma, Alexander M; Swamy, Geeta K; Noonan, Devon; Gonzalez, Alicia M; Fish, Laura; Pollak, Kathryn I

    2018-03-30

    Many couples tend to report steadily decreasing relationship quality following the birth of a child. However, little is known about the postpartum period for Latino couples, a rapidly growing ethnic group who are notably underserved by mental and physical health caregivers in the United States. Thus, this study investigated whether a brief couples' intervention focused on helping couples support each other while increasing healthy behaviors might improve dyadic functioning postpartum. This study presents secondary analyses of data regarding couple functioning from a larger randomized controlled trial with 348 Latino couples to promote smoking cessation. Portions of the intervention taught the couple communication and problem-solving skills to increase healthy behavior. Couples participated in four face-to-face assessments across 1 year starting at the end of the first trimester. Latent growth curve analyses revealed that the treatment group reported an increase in relationship satisfaction and constructive communication after the intervention, which diminished by 1-year follow-up, returning couples to their baseline levels of satisfaction. Results suggest that incorporating a brief couple intervention as part of a larger health intervention for Latinos may prevent postpartum decreases in relationship satisfaction. © 2018 Family Process Institute.

  11. Diagnosing the Nature of Land-Atmosphere Coupling During the 2006-7 Dry/Wet Extremes in the U.S. Southern Great Plains

    NASA Technical Reports Server (NTRS)

    Santanello, Joseph A., Jr.; Peters-Lidard, Christa D.; Kumar, Sujay V.; Dong, Xiquan; Kennedy, Aaron D.

    2011-01-01

    Land-atmosphere interactions play a critical role in determining the. diurnal evolution of both planetary boundary layer (PBL) and land surface temperature and moisture states. The degree of coupling between the land surface and PBL in numerical weather prediction and climate models remains largely unexplored and undiagnosed due to the complex interactions and feedbacks present across a range of scales. Further, uncoupled systems or experiments (e.g., the Project for Intercomparison of Land Parameterization Schemes, PILPS) may lead to inaccurate water and energy cycle process understanding by neglecting feedback processes such as PBL-top entrainment. In this study, a framework for diagnosing local land-atmosphere coupling (LoCo) is presented using a coupled mesoscale model with a suite of PBL and land surface model (LSM) options along with observations during the summers of 200617 in the U.S. Southern Great Plains. Specifically, the Weather Research and Forecasting (WRF) model has been coupled to NASA's Land Information System (LIS), which provides a flexible and high-resolution representation and initialization of land surface physics and states. A range of diagnostics exploring the links and feedbacks between soil moisture and precipitation are examined for the dry/wet extremes of this region, along with the sensitivity of PBL-LSM coupling to perturbations in soil moisture. As such, this methodology provides a potential pathway to study factors controlling local land-atmosphere coupling (LoCo) using the LIS-WRF system, which is serving as a testbed for LoCo experiments to evaluate coupling diagnostics within the community.

  12. Modeling of Inner Magnetosphere Coupling Processes

    NASA Technical Reports Server (NTRS)

    Khazanov, George V.

    2011-01-01

    The Ring Current (RC) is the biggest energy player in the inner magnetosphere. It is the source of free energy for Electromagnetic Ion Cyclotron (EMIC) wave excitation provided by a temperature anisotropy of RC ions, which develops naturally during inward E B convection from the plasmasheet. The cold plasmasphere, which is under the strong influence of the magnetospheric electric field, strongly mediates the RC-EMIC wave-particle-coupling process and ultimately becomes part of the particle and energy interplay. On the other hand, there is a strong influence of the RC on the inner magnetospheric electric and magnetic field configurations and these configurations, in turn, are important to RC dynamics. Therefore, one of the biggest needs for inner magnetospheric research is the continued progression toward a coupled, interconnected system with the inclusion of nonlinear feedback mechanisms between the plasma populations, the electric and magnetic fields, and plasma waves. As we clearly demonstrated in our studies, EMIC waves strongly interact with electrons and ions of energies ranging from approx.1 eV to approx.10 MeV, and that these waves strongly affect the dynamics of resonant RC ions, thermal electrons and ions, and the outer RB relativistic electrons. As we found, the rate of ion and electron scattering/heating in the Earth's magnetosphere is not only controlled by the wave intensity-spatial-temporal distribution but also strongly depends on the spectral distribution of the wave power. The latter is also a function of the plasmaspheric heavy ion content, and the plasma density and temperature distributions along the magnetic field lines. The above discussion places RC-EMIC wave coupling dynamics in context with inner magnetospheric coupling processes and, ultimately, relates RC studies with plasmaspheric and Superthermal Electrons formation processes as well as with outer RB physics.

  13. A cloudy planetary boundary layer oscillation arising from the coupling of turbulence with precipitation in climate simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, X.; Klein, S. A.; Ma, H. -Y.

    The Community Atmosphere Model (CAM) adopts Cloud Layers Unified By Binormals (CLUBB) scheme and an updated microphysics (MG2) scheme for a more unified treatment of cloud processes. This makes interactions between parameterizations tighter and more explicit. In this study, a cloudy planetary boundary layer (PBL) oscillation related to interaction between CLUBB and MG2 is identified in CAM. This highlights the need for consistency between the coupled subgrid processes in climate model development. This oscillation occurs most often in the marine cumulus cloud regime. The oscillation occurs only if the modeled PBL is strongly decoupled and precipitation evaporates below the cloud.more » Two aspects of the parameterized coupling assumptions between CLUBB and MG2 schemes cause the oscillation: (1) a parameterized relationship between rain evaporation and CLUBB's subgrid spatial variance of moisture and heat that induces an extra cooling in the lower PBL and (2) rain evaporation which happens at a too low an altitude because of the precipitation fraction parameterization in MG2. Either one of these two conditions can overly stabilize the PBL and reduce the upward moisture transport to the cloud layer so that the PBL collapses. Global simulations prove that turning off the evaporation-variance coupling and improving the precipitation fraction parameterization effectively reduces the cloudy PBL oscillation in marine cumulus clouds. By evaluating the causes of the oscillation in CAM, we have identified the PBL processes that should be examined in models having similar oscillations. This study may draw the attention of the modeling and observational communities to the issue of coupling between parameterized physical processes.« less

  14. A cloudy planetary boundary layer oscillation arising from the coupling of turbulence with precipitation in climate simulations

    DOE PAGES

    Zheng, X.; Klein, S. A.; Ma, H. -Y.; ...

    2017-08-24

    The Community Atmosphere Model (CAM) adopts Cloud Layers Unified By Binormals (CLUBB) scheme and an updated microphysics (MG2) scheme for a more unified treatment of cloud processes. This makes interactions between parameterizations tighter and more explicit. In this study, a cloudy planetary boundary layer (PBL) oscillation related to interaction between CLUBB and MG2 is identified in CAM. This highlights the need for consistency between the coupled subgrid processes in climate model development. This oscillation occurs most often in the marine cumulus cloud regime. The oscillation occurs only if the modeled PBL is strongly decoupled and precipitation evaporates below the cloud.more » Two aspects of the parameterized coupling assumptions between CLUBB and MG2 schemes cause the oscillation: (1) a parameterized relationship between rain evaporation and CLUBB's subgrid spatial variance of moisture and heat that induces an extra cooling in the lower PBL and (2) rain evaporation which happens at a too low an altitude because of the precipitation fraction parameterization in MG2. Either one of these two conditions can overly stabilize the PBL and reduce the upward moisture transport to the cloud layer so that the PBL collapses. Global simulations prove that turning off the evaporation-variance coupling and improving the precipitation fraction parameterization effectively reduces the cloudy PBL oscillation in marine cumulus clouds. By evaluating the causes of the oscillation in CAM, we have identified the PBL processes that should be examined in models having similar oscillations. This study may draw the attention of the modeling and observational communities to the issue of coupling between parameterized physical processes.« less

  15. EEG source reconstruction reveals frontal-parietal dynamics of spatial conflict processing.

    PubMed

    Cohen, Michael X; Ridderinkhof, K Richard

    2013-01-01

    Cognitive control requires the suppression of distracting information in order to focus on task-relevant information. We applied EEG source reconstruction via time-frequency linear constrained minimum variance beamforming to help elucidate the neural mechanisms involved in spatial conflict processing. Human subjects performed a Simon task, in which conflict was induced by incongruence between spatial location and response hand. We found an early (∼200 ms post-stimulus) conflict modulation in stimulus-contralateral parietal gamma (30-50 Hz), followed by a later alpha-band (8-12 Hz) conflict modulation, suggesting an early detection of spatial conflict and inhibition of spatial location processing. Inter-regional connectivity analyses assessed via cross-frequency coupling of theta (4-8 Hz), alpha, and gamma power revealed conflict-induced shifts in cortical network interactions: Congruent trials (relative to incongruent trials) had stronger coupling between frontal theta and stimulus-contrahemifield parietal alpha/gamma power, whereas incongruent trials had increased theta coupling between medial frontal and lateral frontal regions. These findings shed new light into the large-scale network dynamics of spatial conflict processing, and how those networks are shaped by oscillatory interactions.

  16. Possible Quantum Absorber Effects in Cortical Synchronization

    NASA Astrophysics Data System (ADS)

    Kämpf, Uwe

    The Wheeler-Feynman transactional "absorber" approach was proposed originally to account for anomalous resonance coupling between spatio-temporally distant measurement partners in entangled quantum states of so-called Einstein-Podolsky-Rosen paradoxes, e.g. of spatio-temporal non-locality, quantum teleportation, etc. Applied to quantum brain dynamics, however, this view provides an anticipative resonance coupling model for aspects of cortical synchronization and recurrent visual action control. It is proposed to consider the registered activation patterns of neuronal loops in so-called synfire chains not as a result of retarded brain communication processes, but rather as surface effects of a system of standing waves generated in the depth of visual processing. According to this view, they arise from a counterbalance between the actual input's delayed bottom-up data streams and top-down recurrent information-processing of advanced anticipative signals in a Wheeler-Feynman-type absorber mode. In the framework of a "time-loop" model, findings about mirror neurons in the brain cortex are suggested to be at least partially associated with temporal rather than spatial mirror functions of visual processing, similar to phase conjugate adaptive resonance-coupling in nonlinear optics.

  17. Numerical Propulsion System Simulation: An Overview

    NASA Technical Reports Server (NTRS)

    Lytle, John K.

    2000-01-01

    The cost of implementing new technology in aerospace propulsion systems is becoming prohibitively expensive and time consuming. One of the main contributors to the high cost and lengthy time is the need to perform many large-scale hardware tests and the inability to integrate all appropriate subsystems early in the design process. The NASA Glenn Research Center is developing the technologies required to enable simulations of full aerospace propulsion systems in sufficient detail to resolve critical design issues early in the design process before hardware is built. This concept, called the Numerical Propulsion System Simulation (NPSS), is focused on the integration of multiple disciplines such as aerodynamics, structures and heat transfer with computing and communication technologies to capture complex physical processes in a timely and cost-effective manner. The vision for NPSS, as illustrated, is to be a "numerical test cell" that enables full engine simulation overnight on cost-effective computing platforms. There are several key elements within NPSS that are required to achieve this capability: 1) clear data interfaces through the development and/or use of data exchange standards, 2) modular and flexible program construction through the use of object-oriented programming, 3) integrated multiple fidelity analysis (zooming) techniques that capture the appropriate physics at the appropriate fidelity for the engine systems, 4) multidisciplinary coupling techniques and finally 5) high performance parallel and distributed computing. The current state of development in these five area focuses on air breathing gas turbine engines and is reported in this paper. However, many of the technologies are generic and can be readily applied to rocket based systems and combined cycles currently being considered for low-cost access-to-space applications. Recent accomplishments include: (1) the development of an industry-standard engine cycle analysis program and plug 'n play architecture, called NPSS Version 1, (2) A full engine simulation that combines a 3D low-pressure subsystem with a 0D high pressure core simulation. This demonstrates the ability to integrate analyses at different levels of detail and to aerodynamically couple components, the fan/booster and low-pressure turbine, through a 3D computational fluid dynamics simulation. (3) Simulation of all of the turbomachinery in a modern turbofan engine on parallel computing platform for rapid and cost-effective execution. This capability can also be used to generate full compressor map, requiring both design and off-design simulation. (4) Three levels of coupling characterize the multidisciplinary analysis under NPSS: loosely coupled, process coupled and tightly coupled. The loosely coupled and process coupled approaches require a common geometry definition to link CAD to analysis tools. The tightly coupled approach is currently validating the use of arbitrary Lagrangian/Eulerian formulation for rotating turbomachinery. The validation includes both centrifugal and axial compression systems. The results of the validation will be reported in the paper. (5) The demonstration of significant computing cost/performance reduction for turbine engine applications using PC clusters. The NPSS Project is supported under the NASA High Performance Computing and Communications Program.

  18. Impact of Scale-Dependent Coupled Processes on Solute Fate and Transport in the Critical Zone: Case Studies Involving Inorganic and Radioactive Contaminants

    NASA Astrophysics Data System (ADS)

    Jardine, P. M.; Gentry, R. W.

    2011-12-01

    Soil, the thin veneer of matter covering the Earths surface that supports a web of living diversity, is often abused through anthropogenic inputs of toxic waste. This subsurface regime, coupled with life sustaining surface water and groundwater is known as the "Critical Zone". The disposal of radioactive and toxic organic and inorganic waste generated by industry and various government agencies has historically involved shallow land burial or the use of surface impoundments in unsaturated soils and sediments. Presently, contaminated sites have been closing rapidly and many remediation strategies have chosen to leave contaminants in-place. As such, contaminants will continue to interact with the geosphere and investigations on long term changes and interactive processes is imperative to verify risks. In this presentation we provide a snap-shot of subsurface science research from the past 25 y that seeks to provide an improved understanding and predictive capability of multi-scale contaminant fate and transport processes in heterogeneous unsaturated and saturated environments. Investigations focus on coupled hydrological, geochemical, and microbial processes that control reactive contaminant transport and that involve multi-scale fundamental research ranging from the molecular scale (e.g. synchrotrons, electron sources, arrays) to in situ plume interrogation strategies at the macroscopic scale (e.g. geophysics, field biostimulation, coupled processes monitoring). We show how this fundamental research is used to provide multi-process, multi-scale predictive monitoring and modeling tools that can be used at contaminated sites to (1) inform and improve the technical basis for decision making, and (2) assess which sites are amenable to natural attenuation and which would benefit from source zone remedial intervention.

  19. Impact of Physics Parameterization Ordering in a Global Atmosphere Model

    DOE PAGES

    Donahue, Aaron S.; Caldwell, Peter M.

    2018-02-02

    Because weather and climate models must capture a wide variety of spatial and temporal scales, they rely heavily on parameterizations of subgrid-scale processes. The goal of this study is to demonstrate that the assumptions used to couple these parameterizations have an important effect on the climate of version 0 of the Energy Exascale Earth System Model (E3SM) General Circulation Model (GCM), a close relative of version 1 of the Community Earth System Model (CESM1). Like most GCMs, parameterizations in E3SM are sequentially split in the sense that parameterizations are called one after another with each subsequent process feeling the effectmore » of the preceding processes. This coupling strategy is noncommutative in the sense that the order in which processes are called impacts the solution. By examining a suite of 24 simulations with deep convection, shallow convection, macrophysics/microphysics, and radiation parameterizations reordered, process order is shown to have a big impact on predicted climate. In particular, reordering of processes induces differences in net climate feedback that are as big as the intermodel spread in phase 5 of the Coupled Model Intercomparison Project. One reason why process ordering has such a large impact is that the effect of each process is influenced by the processes preceding it. Where output is written is therefore an important control on apparent model behavior. Application of k-means clustering demonstrates that the positioning of macro/microphysics and shallow convection plays a critical role on the model solution.« less

  20. Impact of Physics Parameterization Ordering in a Global Atmosphere Model

    NASA Astrophysics Data System (ADS)

    Donahue, Aaron S.; Caldwell, Peter M.

    2018-02-01

    Because weather and climate models must capture a wide variety of spatial and temporal scales, they rely heavily on parameterizations of subgrid-scale processes. The goal of this study is to demonstrate that the assumptions used to couple these parameterizations have an important effect on the climate of version 0 of the Energy Exascale Earth System Model (E3SM) General Circulation Model (GCM), a close relative of version 1 of the Community Earth System Model (CESM1). Like most GCMs, parameterizations in E3SM are sequentially split in the sense that parameterizations are called one after another with each subsequent process feeling the effect of the preceding processes. This coupling strategy is noncommutative in the sense that the order in which processes are called impacts the solution. By examining a suite of 24 simulations with deep convection, shallow convection, macrophysics/microphysics, and radiation parameterizations reordered, process order is shown to have a big impact on predicted climate. In particular, reordering of processes induces differences in net climate feedback that are as big as the intermodel spread in phase 5 of the Coupled Model Intercomparison Project. One reason why process ordering has such a large impact is that the effect of each process is influenced by the processes preceding it. Where output is written is therefore an important control on apparent model behavior. Application of k-means clustering demonstrates that the positioning of macro/microphysics and shallow convection plays a critical role on the model solution.

  1. Adding Processing Functionality to the Sensor Web

    NASA Astrophysics Data System (ADS)

    Stasch, Christoph; Pross, Benjamin; Jirka, Simon; Gräler, Benedikt

    2017-04-01

    The Sensor Web allows discovering, accessing and tasking different kinds of environmental sensors in the Web, ranging from simple in-situ sensors to remote sensing systems. However, (geo-)processing functionality needs to be applied to integrate data from different sensor sources and to generate higher level information products. Yet, a common standardized approach for processing sensor data in the Sensor Web is still missing and the integration differs from application to application. Standardizing not only the provision of sensor data, but also the processing facilitates sharing and re-use of processing modules, enables reproducibility of processing results, and provides a common way to integrate external scalable processing facilities or legacy software. In this presentation, we provide an overview on on-going research projects that develop concepts for coupling standardized geoprocessing technologies with Sensor Web technologies. At first, different architectures for coupling sensor data services with geoprocessing services are presented. Afterwards, profiles for linear regression and spatio-temporal interpolation of the OGC Web Processing Services that allow consuming sensor data coming from and uploading predictions to Sensor Observation Services are introduced. The profiles are implemented in processing services for the hydrological domain. Finally, we illustrate how the R software can be coupled with existing OGC Sensor Web and Geoprocessing Services and present an example, how a Web app can be built that allows exploring the results of environmental models in an interactive way using the R Shiny framework. All of the software presented is available as Open Source Software.

  2. Impact of Physics Parameterization Ordering in a Global Atmosphere Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donahue, Aaron S.; Caldwell, Peter M.

    Because weather and climate models must capture a wide variety of spatial and temporal scales, they rely heavily on parameterizations of subgrid-scale processes. The goal of this study is to demonstrate that the assumptions used to couple these parameterizations have an important effect on the climate of version 0 of the Energy Exascale Earth System Model (E3SM) General Circulation Model (GCM), a close relative of version 1 of the Community Earth System Model (CESM1). Like most GCMs, parameterizations in E3SM are sequentially split in the sense that parameterizations are called one after another with each subsequent process feeling the effectmore » of the preceding processes. This coupling strategy is noncommutative in the sense that the order in which processes are called impacts the solution. By examining a suite of 24 simulations with deep convection, shallow convection, macrophysics/microphysics, and radiation parameterizations reordered, process order is shown to have a big impact on predicted climate. In particular, reordering of processes induces differences in net climate feedback that are as big as the intermodel spread in phase 5 of the Coupled Model Intercomparison Project. One reason why process ordering has such a large impact is that the effect of each process is influenced by the processes preceding it. Where output is written is therefore an important control on apparent model behavior. Application of k-means clustering demonstrates that the positioning of macro/microphysics and shallow convection plays a critical role on the model solution.« less

  3. Clustering and phase synchronization in populations of coupled phase oscillators

    NASA Astrophysics Data System (ADS)

    Cascallares, Guadalupe; Gleiser, Pablo M.

    2015-10-01

    In many species daily rhythms are endogenously generated by groups of coupled neurons that play the role of a circadian pacemaker. The adaptation of the circadian clock to environmental and seasonal changes has been proposed to be regulated by a dual oscillator system. In order to gain insight into this model, we analyzed the synchronization properties of two fully coupled groups of Kuramoto oscillators. Each group has an internal coupling parameter and the interaction between the two groups can be controlled by two parameters allowing for symmetric or non-symmetric coupling. We show that even for such a simple model counterintuitive behaviours take place, such as a global decrease in synchrony when the coupling between the groups is increased. Through a detailed analysis of the local synchronization processes we explain this behaviour.

  4. Space Station Freedom coupling tasks: An evaluation of their telerobotic and EVA compatibility

    NASA Technical Reports Server (NTRS)

    Sampaio, Carlos E.; Bierschwale, John M.; Fleming, Terence F.; Stuart, Mark A.

    1993-01-01

    Of the couplings included in this study, several design components were found to be of interest. With respect to the operation of the couplings, the various concepts resulted in differing reactions from the four subjects who participated in this study. The purpose of this study was not to conceive the final coupling design. Rather, it was intended as a step along an interactive process. The newly modified coupling will be included in a series of further controlled, as well as subjective, evaluations. This part of the ongoing work in the Remote Operator Interaction Laboratory (ROIL) designed to enhance the overall interface by improving design at both the teleoperator and telerobot ends of the system.

  5. Overdamping by weakly coupled environments

    NASA Astrophysics Data System (ADS)

    Esposito, Massimiliano; Haake, Fritz

    2005-12-01

    A quantum system weakly interacting with a fast environment usually undergoes a relaxation with complex frequencies whose imaginary parts are damping rates quadratic in the coupling to the environment in accord with Fermi’s “golden rule.” We show for various models (spin damped by harmonic-oscillator or random-matrix baths, quantum diffusion, and quantum Brownian motion) that upon increasing the coupling up to a critical value still small enough to allow for weak-coupling Markovian master equations, a different relaxation regime can occur. In that regime, complex frequencies lose their real parts such that the process becomes overdamped. Our results call into question the standard belief that overdamping is exclusively a strong coupling feature.

  6. Exploring Variations Within Situational Couple Violence and Comparisons With Coercive Controlling Violence and No Violence/No Control.

    PubMed

    Nielsen, Samantha K; Hardesty, Jennifer L; Raffaelli, Marcela

    2016-02-01

    We examined variations within situational couple violence among 23 divorcing mothers and compared them with mothers with coercive controlling violence and no violence/no control. Situational couple violence had great variability in frequency and severity of violence, fear, harassment, and protective strategies. In some cases, situational couple violence was frequent and severe and resembled coercive controlling violence in its consequences. The dynamics of fear and harassment in situational couple violence and in the divorce process in general warrant attention. Finally, mothers reported mental health symptoms that did not differ by group, which is likely due to the stresses of divorce. © The Author(s) 2015.

  7. Micromechanical Aspects of Hydraulic Fracturing Processes

    NASA Astrophysics Data System (ADS)

    Galindo-torres, S. A.; Behraftar, S.; Scheuermann, A.; Li, L.; Williams, D.

    2014-12-01

    A micromechanical model is developed to simulate the hydraulic fracturing process. The model comprises two key components. Firstly, the solid matrix, assumed as a rock mass with pre-fabricated cracks, is represented by an array of bonded particles simulated by the Discrete Element Model (DEM)[1]. The interaction is ruled by the spheropolyhedra method, which was introduced by the authors previously and has been shown to realistically represent many of the features found in fracturing and communition processes. The second component is the fluid, which is modelled by the Lattice Boltzmann Method (LBM). It was recently coupled with the spheropolyhedra by the authors and validated. An advantage of this coupled LBM-DEM model is the control of many of the parameters of the fracturing fluid, such as its viscosity and the injection rate. To the best of the authors' knowledge this is the first application of such a coupled scheme for studying hydraulic fracturing[2]. In this first implementation, results are presented for a two-dimensional situation. Fig. 1 shows one snapshot of the LBM-DEM coupled simulation for the hydraulic fracturing where the elements with broken bonds can be identified and the fracture geometry quantified. The simulation involves a variation of the underground stress, particularly the difference between the two principal components of the stress tensor, to explore the effect on the fracture path. A second study focuses on the fluid viscosity to examine the effect of the time scales of different injection plans on the fracture geometry. The developed tool and the presented results have important implications for future studies of the hydraulic fracturing process and technology. references 1. Galindo-Torres, S.A., et al., Breaking processes in three-dimensional bonded granular materials with general shapes. Computer Physics Communications, 2012. 183(2): p. 266-277. 2. Galindo-Torres, S.A., A coupled Discrete Element Lattice Boltzmann Method for the simulation of fluid-solid interaction with particles of general shapes. Computer Methods in Applied Mechanics and Engineering, 2013. 265(0): p. 107-119.

  8. A question driven socio-hydrological modeling process

    NASA Astrophysics Data System (ADS)

    Garcia, M.; Portney, K.; Islam, S.

    2016-01-01

    Human and hydrological systems are coupled: human activity impacts the hydrological cycle and hydrological conditions can, but do not always, trigger changes in human systems. Traditional modeling approaches with no feedback between hydrological and human systems typically cannot offer insight into how different patterns of natural variability or human-induced changes may propagate through this coupled system. Modeling of coupled human-hydrological systems, also called socio-hydrological systems, recognizes the potential for humans to transform hydrological systems and for hydrological conditions to influence human behavior. However, this coupling introduces new challenges and existing literature does not offer clear guidance regarding model conceptualization. There are no universally accepted laws of human behavior as there are for the physical systems; furthermore, a shared understanding of important processes within the field is often used to develop hydrological models, but there is no such consensus on the relevant processes in socio-hydrological systems. Here we present a question driven process to address these challenges. Such an approach allows modeling structure, scope and detail to remain contingent on and adaptive to the question context. We demonstrate the utility of this process by revisiting a classic question in water resources engineering on reservoir operation rules: what is the impact of reservoir operation policy on the reliability of water supply for a growing city? Our example model couples hydrological and human systems by linking the rate of demand decreases to the past reliability to compare standard operating policy (SOP) with hedging policy (HP). The model shows that reservoir storage acts both as a buffer for variability and as a delay triggering oscillations around a sustainable level of demand. HP reduces the threshold for action thereby decreasing the delay and the oscillation effect. As a result, per capita demand decreases during periods of water stress are more frequent but less drastic and the additive effect of small adjustments decreases the tendency of the system to overshoot available supplies. This distinction between the two policies was not apparent using a traditional noncoupled model.

  9. MOUNTAIN-SCALE COUPLED PROCESSES (TH/THC/THM)MODELS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Y.S. Wu

    This report documents the development and validation of the mountain-scale thermal-hydrologic (TH), thermal-hydrologic-chemical (THC), and thermal-hydrologic-mechanical (THM) models. These models provide technical support for screening of features, events, and processes (FEPs) related to the effects of coupled TH/THC/THM processes on mountain-scale unsaturated zone (UZ) and saturated zone (SZ) flow at Yucca Mountain, Nevada (BSC 2005 [DIRS 174842], Section 2.1.1.1). The purpose and validation criteria for these models are specified in ''Technical Work Plan for: Near-Field Environment and Transport: Coupled Processes (Mountain-Scale TH/THC/THM, Drift-Scale THC Seepage, and Drift-Scale Abstraction) Model Report Integration'' (BSC 2005 [DIRS 174842]). Model results are used tomore » support exclusion of certain FEPs from the total system performance assessment for the license application (TSPA-LA) model on the basis of low consequence, consistent with the requirements of 10 CFR 63.342 [DIRS 173273]. Outputs from this report are not direct feeds to the TSPA-LA. All the FEPs related to the effects of coupled TH/THC/THM processes on mountain-scale UZ and SZ flow are discussed in Sections 6 and 7 of this report. The mountain-scale coupled TH/THC/THM processes models numerically simulate the impact of nuclear waste heat release on the natural hydrogeological system, including a representation of heat-driven processes occurring in the far field. The mountain-scale TH simulations provide predictions for thermally affected liquid saturation, gas- and liquid-phase fluxes, and water and rock temperature (together called the flow fields). The main focus of the TH model is to predict the changes in water flux driven by evaporation/condensation processes, and drainage between drifts. The TH model captures mountain-scale three-dimensional flow effects, including lateral diversion and mountain-scale flow patterns. The mountain-scale THC model evaluates TH effects on water and gas chemistry, mineral dissolution/precipitation, and the resulting impact to UZ hydrologic properties, flow and transport. The mountain-scale THM model addresses changes in permeability due to mechanical and thermal disturbances in stratigraphic units above and below the repository host rock. The THM model focuses on evaluating the changes in UZ flow fields arising out of thermal stress and rock deformation during and after the thermal period (the period during which temperatures in the mountain are significantly higher than ambient temperatures).« less

  10. Understanding the biological underpinnings of ecohydrological processes

    NASA Astrophysics Data System (ADS)

    Huxman, T. E.; Scott, R. L.; Barron-Gafford, G. A.; Hamerlynck, E. P.; Jenerette, D.; Tissue, D. T.; Breshears, D. D.; Saleska, S. R.

    2012-12-01

    Climate change presents a challenge for predicting ecosystem response, as multiple factors drive both the physical and life processes happening on the land surface and their interactions result in a complex, evolving coupled system. For example, changes in surface temperature and precipitation influence near-surface hydrology through impacts on system energy balance, affecting a range of physical processes. These changes in the salient features of the environment affect biological processes and elicit responses along the hierarchy of life (biochemistry to community composition). Many of these structural or process changes can alter patterns of soil water-use and influence land surface characteristics that affect local climate. Of the many features that affect our ability to predict the future dynamics of ecosystems, it is this hierarchical response of life that creates substantial complexity. Advances in the ability to predict or understand aspects of demography help describe thresholds in coupled ecohydrological system. Disentangling the physical and biological features that underlie land surface dynamics following disturbance are allowing a better understanding of the partitioning of water in the time-course of recovery. Better predicting the timing of phenology and key seasonal events allow for a more accurate description of the full functional response of the land surface to climate. In addition, explicitly considering the hierarchical structural features of life are helping to describe complex time-dependent behavior in ecosystems. However, despite this progress, we have yet to build an ability to fully account for the generalization of the main features of living systems into models that can describe ecohydrological processes, especially acclimation, assembly and adaptation. This is unfortunate, given that many key ecosystem services are functions of these coupled co-evolutionary processes. To date, both the lack of controlled measurements and experimentation has precluded determination of sufficient theoretical development. Understanding the land-surface response and feedback to climate change requires a mechanistic understanding of the coupling of ecological and hydrological processes and an expansion of theory from the life sciences to appropriately contribute to the broader Earth system science goal.

  11. Creating a duet: The Couples Life Story Approach in the United States and Japan

    PubMed Central

    Ingersoll-Dayton, Berit; Spencer, Beth; Campbell, Ruth; Kurokowa, Yukiko; Ito, Mio

    2015-01-01

    There is a global need for interventions that help couples who are dealing with dementia. This paper describes the way in which interventionists from the United States and Japan participated in the development of an intervention for dyads in which one person is experiencing memory loss. The 5-week intervention, the Couples Life Story Approach, helps dyads to reminisce about their life together as a couple, to work on their patterns of communication, and to develop a Life Story Book. Based on an analysis of cases conducted in the United States (n = 20 couples) and Japan (n = 9 couples), this paper highlights the cross-fertilization process that has occurred as interventionists from the two countries have shared their experiences with one another. Using case illustrations, the discussion focuses on the clinical themes that have emerged for couples in the United States and Japan. PMID:24627456

  12. Adaptive coupling optimized spiking coherence and synchronization in Newman-Watts neuronal networks

    NASA Astrophysics Data System (ADS)

    Gong, Yubing; Xu, Bo; Wu, Ya'nan

    2013-09-01

    In this paper, we have numerically studied the effect of adaptive coupling on the temporal coherence and synchronization of spiking activity in Newman-Watts Hodgkin-Huxley neuronal networks. It is found that random shortcuts can enhance the spiking synchronization more rapidly when the increment speed of adaptive coupling is increased and can optimize the temporal coherence of spikes only when the increment speed of adaptive coupling is appropriate. It is also found that adaptive coupling strength can enhance the synchronization of spikes and can optimize the temporal coherence of spikes when random shortcuts are appropriate. These results show that adaptive coupling has a big influence on random shortcuts related spiking activity and can enhance and optimize the temporal coherence and synchronization of spiking activity of the network. These findings can help better understand the roles of adaptive coupling for improving the information processing and transmission in neural systems.

  13. A variationally coupled FE-BE method for elasticity and fracture mechanics

    NASA Technical Reports Server (NTRS)

    Lu, Y. Y.; Belytschko, T.; Liu, W. K.

    1991-01-01

    A new method for coupling finite element and boundary element subdomains in elasticity and fracture mechanics problems is described. The essential feature of this new method is that a single variational statement is obtained for the entire domain, and in this process the terms associated with tractions on the interfaces between the subdomains are eliminated. This provides the additional advantage that the ambiguities associated with the matching of discontinuous tractions are circumvented. The method leads to a direct procedure for obtaining the discrete equations for the coupled problem without any intermediate steps. In order to evaluate this method and compare it with previous methods, a patch test for coupled procedures has been devised. Evaluation of this variationally coupled method and other methods, such as stiffness coupling and constraint traction matching coupling, shows that this method is substantially superior. Solutions for a series of fracture mechanics problems are also reported to illustrate the effectiveness of this method.

  14. Stability of entrainment of a continuum of coupled oscillators

    DOE PAGES

    Snyder, Jordan; Zlotnik, Anatoly; Hagberg, Aric

    2017-10-05

    Complex natural and engineered systems are ubiquitous, and their behavior is challenging to characterize and control. Here, we examine the design of the entrainment process for an uncountably infinite collection of coupled phase oscillators that are all subject to the same periodic driving signal. In the absence of coupling, an appropriately designed input can result in each oscillator attaining the frequency of the driving signal, with a phase offset determined by its natural frequency. We also consider a special case of interacting oscillators in which the coupling tends to destabilize the phase configuration to which the driving signal would sendmore » the collection in the absence of coupling. In this setting, we derive stability results that characterize the trade-off between the effects of driving and coupling, and compare these results to the well-known Kuramoto model of a collection of free-running coupled oscillators.« less

  15. Study on the Vehicle Dynamic Load Considering the Vehicle-Pavement Coupled Effect

    NASA Astrophysics Data System (ADS)

    Xu, H. L.; He, L.; An, D.

    2017-11-01

    The vibration of vehicle-pavement interaction system is sophisticated random vibration process and the vehicle-pavement coupled effect was not considered in the previous study. A new linear elastic model of the vehicle-pavement coupled system was established in the paper. The new model was verified with field measurement which could reflect the real vibration between vehicle and pavement. Using the new model, the study on the vehicle dynamic load considering the vehicle-pavement coupled effect showed that random forces (centralization) between vehicle and pavement were influenced largely by vehicle-pavement coupled effect. Numerical calculation indicated that the maximum of random forces in coupled model was 2.4 times than that in uncoupled model. Inquiring the reason, it was found that the main vibration frequency of the vehicle non-suspension system was similar with that of the vehicle suspension system in the coupled model and the resonance vibration lead to vehicle dynamic load increase significantly.

  16. Stability of entrainment of a continuum of coupled oscillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snyder, Jordan; Zlotnik, Anatoly; Hagberg, Aric

    Complex natural and engineered systems are ubiquitous, and their behavior is challenging to characterize and control. Here, we examine the design of the entrainment process for an uncountably infinite collection of coupled phase oscillators that are all subject to the same periodic driving signal. In the absence of coupling, an appropriately designed input can result in each oscillator attaining the frequency of the driving signal, with a phase offset determined by its natural frequency. We also consider a special case of interacting oscillators in which the coupling tends to destabilize the phase configuration to which the driving signal would sendmore » the collection in the absence of coupling. In this setting, we derive stability results that characterize the trade-off between the effects of driving and coupling, and compare these results to the well-known Kuramoto model of a collection of free-running coupled oscillators.« less

  17. Ocean-Atmosphere Coupling Processes Affecting Predictability in the Climate System

    NASA Astrophysics Data System (ADS)

    Miller, A. J.; Subramanian, A. C.; Seo, H.; Eliashiv, J. D.

    2017-12-01

    Predictions of the ocean and atmosphere are often sensitive to coupling at the air-sea interface in ways that depend on the temporal and spatial scales of the target fields. We will discuss several aspects of these types of coupled interactions including oceanic and atmospheric forecast applications. For oceanic mesoscale eddies, the coupling can influence the energetics of the oceanic flow itself. For Madden-Julian Oscillation onset, the coupling timestep should resolve the diurnal cycle to properly raise time-mean SST and latent heat flux prior to deep convection. For Atmospheric River events, the evolving SST field can alter the trajectory and intensity of precipitation anomalies along the California coast. Improvements in predictions will also rely on identifying and alleviating sources of biases in the climate states of the coupled system. Surprisingly, forecast skill can also be improved by enhancing stochastic variability in the atmospheric component of coupled models as found in a multiscale ensemble modeling approach.

  18. An agricultural drought index to incorporate the irrigation process and reservoir operations: A case study in the Tarim River Basin

    NASA Astrophysics Data System (ADS)

    Li, Zehua; Hao, Zhenchun; Shi, Xiaogang; Déry, Stephen J.; Li, Jieyou; Chen, Sichun; Li, Yongkun

    2016-08-01

    To help the decision making process and reduce climate change impacts, hydrologically-based drought indices have been used to determine drought severity in the Tarim River Basin (TRB) over the past decades. As the major components of the surface water balance, however, the irrigation process and reservoir operations have not been incorporated into drought indices in previous studies. Therefore, efforts are needed to develop a new agricultural drought index, which is based on the Variable Infiltration Capacity (VIC) model coupled with an irrigation scheme and a reservoir module. The new drought index was derived from the simulated soil moisture data from a retrospective VIC simulation from 1961 to 2007 over the irrigated area in the TRB. The physical processes in the coupled VIC model allow the new agricultural drought index to take into account a wide range of hydrologic processes including the irrigation process and reservoir operations. Notably, the irrigation process was found to dominate the surface water balance and drought evolution in the TRB. Furthermore, the drought conditions identified by the new agricultural drought index presented a good agreement with the historical drought events that occurred in 1993-94, 2004, and 2006-07, respectively. Moreover, the spatial distribution of coupled VIC model outputs using the new drought index provided detailed information about where and to what extent droughts occurred.

  19. Dynamic Processes at the Outer Boundary of the Magnetosphere, Including Coupling to the Ionosphere

    DTIC Science & Technology

    1994-04-15

    numerical simulation, of the stability of laminar flow in the equatorial LLBL in the presence of coupling to the ionosphere and associated nonuniform ...L.C. Laec Theory of inaperfcs eto lhreio s1w dependenceors dependenceon theelecio precpittion associated coupling. GeV*li. Res. Lair ... nonuniform magnetic field, the nonuniformity being created by electic currents that connect the plasma in the layer to two conducting plates which

  20. Couple decision making and use of cultural scripts in Malawi.

    PubMed

    Mbweza, Ellen; Norr, Kathleen F; McElmurry, Beverly

    2008-01-01

    To examine the decision-making processes of husband and wife dyads in matrilineal and patrilineal marriage traditions of Malawi in the areas of money, food, pregnancy, contraception, and sexual relations. Qualitative grounded theory using simultaneous interviews of 60 husbands and wives (30 couples). Data were analyzed according to the guidelines of simultaneous data collection and analysis. The analysis resulted in development of core categories and categories of decision-making process. Data matrixes were used to identify similarities and differences within couples and across cases. Most couples reported using a mix of final decision-making approaches: husband-dominated, wife-dominated, and shared. Gender based and nongender based cultural scripts provided rationales for their approaches to decision making. Gender based cultural scripts (husband-dominant and wife-dominant) were used to justify decision-making approaches. Non-gender based cultural scripts (communicating openly, maintaining harmony, and children's welfare) supported shared decision making. Gender based cultural scripts were used in decision making more often among couples from the district with a patrilineal marriage tradition and where the husband had less than secondary school education and was not formally employed. Nongender based cultural scripts to encourage shared decision making can be used in designing culturally tailored reproductive health interventions for couples. Nurses who work with women and families should be aware of the variations that occur in actual couple decision-making approaches. Shared decision making can be used to encourage the involvement of men in reproductive health programs.

  1. Diagnosing the Nature of Land-Atmosphere Coupling During the 2006-7 Dry/Wet Extremes in the U. S. Southern Great Plains

    NASA Technical Reports Server (NTRS)

    Santanello, Joseph A.; Peters-Lidard, Christa D.; Kennedy, Aaron D.; Kumar, Sujay; Dong, Xiquan

    2011-01-01

    Land-atmosphere (L-A) interactions play a critical role in determining the diurnal evolution of land surface and planetary boundary layer (PBL) temperature and moisture states and fluxes. In turn, these interactions regulate the strength of the connection between surface moisture and precipitation in a coupled system. To address deficiencies in numerical weather prediction and climate models due to improper treatment of L-A interactions, recent studies have focused on development of diagnostics to quantify the strength and accuracy of the land-PBL coupling at the process-level. In this study, a diagnosis of the nature and impacts of local land-atmosphere coupling (LoCo) during dry and wet extreme conditions is presented using a combination of models and observations during the summers of2006-7 in the U.S. Southern Great Plains. Specifically, the Weather Research and Forecasting (WRF) model has been coupled to NASA's Land Information System (LIS), which provides a flexible and high resolution representation and initialization of land surface physics and states. A range of diagnostics exploring the links and feedbacks between soil moisture and precipitation are examined for the dry/wet regimes of this region, along with the behavior and accuracy of different land-PBL scheme couplings under these conditions. Results demonstrate how LoCo diagnostics can be applied to coupled model components in the context of their integrated impacts on the process-chain connecting the land surface to the PBL and support of hydrological anomalies.

  2. Coupled Research in Ocean Acoustics and Signal Processing for the Next Generation of Underwater Acoustic Communication Systems

    DTIC Science & Technology

    2016-08-05

    JPAnalytics LLC CC: DCMA Boston DTIC Director, NRL Progress Report #8 Coupled Research in Ocean Acoustics and Signal Processing for the Next...Generation of Underwater Acoustic Communication Systems Principal Investigator’s Name: Dr. James Preisig Period Covered By Report: 1/20/2016 to 4/19/2016...Technical work this period has spanned two areas. The first of these is VHF Acoustics . During this time period, the Principle Investigator worked with Dr

  3. Ruthenium-catalyzed insertion of adjacent diol carbon atoms into C-C bonds: Entry to type II polyketides.

    PubMed

    Bender, Matthias; Turnbull, Ben W H; Ambler, Brett R; Krische, Michael J

    2017-08-25

    Current catalytic processes involving carbon-carbon bond activation rely on π-unsaturated coupling partners. Exploiting the concept of transfer hydrogenative coupling, we report a ruthenium(0)-catalyzed cycloaddition of benzocyclobutenones that functionalizes two adjacent saturated diol carbon-hydrogen bonds. These regio- and diastereoselective processes enable convergent construction of type II polyketide substructures. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  4. Process control monitoring systems, industrial plants, and process control monitoring methods

    DOEpatents

    Skorpik, James R [Kennewick, WA; Gosselin, Stephen R [Richland, WA; Harris, Joe C [Kennewick, WA

    2010-09-07

    A system comprises a valve; a plurality of RFID sensor assemblies coupled to the valve to monitor a plurality of parameters associated with the valve; a control tag configured to wirelessly communicate with the respective tags that are coupled to the valve, the control tag being further configured to communicate with an RF reader; and an RF reader configured to selectively communicate with the control tag, the reader including an RF receiver. Other systems and methods are also provided.

  5. Relationship Between the Electromagnetic Wave Energy Coupled by Overhead Lines and the Radiation Source Current Explored in the Laboratory

    NASA Astrophysics Data System (ADS)

    Li, Xiangchao; Wan, Zhicheng

    2018-04-01

    In order to solve the damage and interference problems to the electronic devices, which are induced by overvoltage excited by the coupling process between lightning electromagnetic wave and overhead lines, the lightning channel is set to be equivalent to a radiant wire antenna. Based on the integration model of lightning return stroke channel, transmission line, and ground, we take advantage of the derived formula gotten from the transmission line model. By combing the theoretical and experimental methods, we conduct a comparative analysis on the coupling process between natural/simulated lightning and overhead line. Besides, we also calculate the amplitude and energy of overvoltage, which is caused by the coupling process between lightning electromagnetic wave and overhead lines. Upon these experimental results, we can draw several conclusions as follows: when the amplitude of the lightning current in the channel is between 5 kA and 41 kA, it takes on an excellent linear relation between the amplitude of overvoltage and the magnitude of the lightning current, the relation between coupling energy and magnitude of the lightning current takes on an exponential trend. When lightning wave transmits on the transmission lines, the high-order mode will be excited. Through analysis on the high-order mode's characteristics, we find that the theoretical analysis is consistent with the experimental results, which has a certain reference value to the protection on overhead lines.

  6. Tip-Nanoparticle Near-Field Coupling in Scanning Near-Field Microscopy by Coupled Dipole Method

    NASA Astrophysics Data System (ADS)

    Ruan, Yi; Li, Kan; Lin, Qiang; Zhang, Ting

    2018-04-01

    Not Available Supported by the Start-Up Grant of Zhejiang University of Technology, the Zhejiang Provincial Key Laboratory of Information Processing, Communication and Networking, the Zhejiang University, and the National Natural Science Foundation of China under Grant No 61605171.

  7. Method of processing materials using an inductively coupled plasma

    DOEpatents

    Hull, Donald E.; Bieniewski, Thomas M.

    1989-01-01

    A method for coating surfaces or implanting ions in an object using an inductively coupled plasma. The method provides a gas-free environment, since the plasma is formed without using a gas. The coating material or implantation material is intitially in solid form.

  8. Gay and lesbian couples in Italy: comparisons with heterosexual couples.

    PubMed

    Antonelli, Paolo; Dèttore, Davide; Lasagni, Irene; Snyder, Douglas K; Balderrama-Durbin, Christina

    2014-12-01

    Assessing couple relationships across diverse languages and cultures has important implications for both clinical intervention and prevention. This is especially true for nontraditional relationships potentially subject to various expressions of negative societal evaluation or bias. Few empirically validated measures of relationship functioning have been developed for cross-cultural applications, and none have been examined for their psychometric sufficiency for evaluating same-sex couples across different languages and cultures. The current study examined the psychometric properties of an Italian translation of the Marital Satisfaction Inventory - Revised (MSI-R), a 150-item 13-scale measure of couple relationship functioning, for its use in assessing the intimate relationships of gay and lesbian couples in Italy. Results for these couples were compared to data from heterosexual married and unmarried cohabiting couples from the same geographical region, as well as to previously published data for gay, lesbian, and unmarried heterosexual couples from the United States. Findings suggest that, despite unique societal pressures confronting Italian same-sex couples, these relationships appear resilient and fare well both overall and in specific domains of functioning compared to heterosexual couples both in Italy and the United States. © 2014 Family Process Institute.

  9. Sequoia: A fault-tolerant tightly coupled multiprocessor for transaction processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernstein, P.A.

    1988-02-01

    The Sequoia computer is a tightly coupled multiprocessor, and thus attains the performance advantages of this style of architecture. It avoids most of the fault-tolerance disadvantages of tight coupling by using a new fault-tolerance design. The Sequoia architecture is similar to other multimicroprocessor architectures, such as those of Encore and Sequent, in that it gives dozens of microprocessors shared access to a large main memory. It resembles the Stratus architecture in its extensive use of hardware fault-detection techniques. It resembles Stratus and Auragen in its ability to quickly recover all processes after a single point failure, transparently to the user.more » However, Sequoia is unique in its combination of a large-scale tightly coupled architecture with a hardware approach to fault tolerance. This article gives an overview of how the hardware architecture and operating systems (OS) work together to provide a high degree of fault tolerance with good system performance.« less

  10. Passively aligned multichannel fiber-pigtailing of planar integrated optical waveguides

    NASA Astrophysics Data System (ADS)

    Kremmel, Johannes; Lamprecht, Tobias; Crameri, Nino; Michler, Markus

    2017-02-01

    A silicon device to simplify the coupling of multiple single-mode fibers to embedded single-mode waveguides has been developed. The silicon device features alignment structures that enable a passive alignment of fibers to integrated waveguides. For passive alignment, precisely machined V-grooves on a silicon device are used and the planar lightwave circuit board features high-precision structures acting as a mechanical stop. The approach has been tested for up to eight fiber-to-waveguide connections. The alignment approach, the design, and the fabrication of the silicon device as well as the assembly process are presented. The characterization of the fiber-to-waveguide link reveals total coupling losses of (0.45±0.20 dB) per coupling interface, which is significantly lower than the values reported in earlier works. Subsequent climate tests reveal that the coupling losses remain stable during thermal cycling but increases significantly during an 85°C/85 Rh-test. All applied fabrication and bonding steps have been performed using standard MOEMS fabrication and packaging processes.

  11. Coupled Molecular Switching Processes in Ordered Mono- and Multilayers of Stimulus-Responsive Rotaxanes on Gold Surfaces

    PubMed Central

    2015-01-01

    Interfaces provide the structural basis for function as, for example, encountered in nature in the membrane-embedded photosystem or in technology in solar cells. Synthetic functional multilayers of molecules cooperating in a coupled manner can be fabricated on surfaces through layer-by-layer self-assembly. Ordered arrays of stimulus-responsive rotaxanes undergoing well-controlled axle shuttling are excellent candidates for coupled mechanical motion. Such stimulus-responsive surfaces may help integrate synthetic molecular machines in larger systems exhibiting even macroscopic effects or generating mechanical work from chemical energy through cooperative action. The present work demonstrates the successful deposition of ordered mono- and multilayers of chemically switchable rotaxanes on gold surfaces. Rotaxane mono- and multilayers are shown to reversibly switch in a coupled manner between two ordered states as revealed by linear dichroism effects in angle-resolved NEXAFS spectra. Such a concerted switching process is observed only when the surfaces are well packed, while less densely packed surfaces lacking lateral order do not exhibit such effects. PMID:25782057

  12. Fracturing And Liquid CONvection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2012-02-29

    FALCON has been developed to enable simulation of the tightly coupled fluid-rock behavior in hydrothermal and engineered geothermal system (EGS) reservoirs, targeting the dynamics of fracture stimulation, fluid flow, rock deformation, and heat transport in a single integrated code, with the ultimate goal of providing a tool that can be used to test the viability of EGS in the United States and worldwide. Reliable reservoir performance predictions of EGS systems require accurate and robust modeling for the coupled thermal-hydrological-mechanical processes. Conventionally, these types of problems are solved using operator-splitting methods, usually by coupling a subsurface flow and heat transport simulatormore » with a solid mechanics simulator via input files. FALCON eliminates the need for using operator-splitting methods to simulate these systems, and the scalability of the underlying MOOSE architecture allows for simulating these tightly coupled processes at the reservoir scale, allowing for examination of the system as a whole (something the operator-splitting methodologies generally cannot do).« less

  13. Position sensor for a fuel injection element in an internal combustion engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fulkerson, D.E.; Geske, M.L.

    1987-08-18

    This patent describes an electronic circuit for dynamically sensing and processing signals representative of changes in a magnet field, the circuit comprising: means for sensing a change in a magnetic field external to the circuit and providing an output representative of the change; circuit means electronically coupled with the output of the sensing means for providing an output indicating the presence of the magnetic field change; and a nulling circuit coupled with the output of the sensing means and across the indicating circuit means for nulling the electronic circuit responsive to the sensing means output, to thereby avoid ambient magneticmore » fields temperature and process variations, and wherein the nulling circuit comprises a capacitor coupled to the output of the nulling circuit, means for charging and discharging the capacitor responsive to any imbalance in the input to the nulling circuit, and circuit means coupling the capacitor with the output of the sensing means for nulling any imbalance during the charging or discharging of the capacitor.« less

  14. Testing a spin-2 mediator by angular observables in b →s μ+μ-

    NASA Astrophysics Data System (ADS)

    Fajfer, Svjetlana; Melić, Blaženka; Patra, Monalisa

    2018-05-01

    We consider the effects of the spin-2 particle in the b →s μ+μ- transition assuming that the spin-2 particle couples in a flavor-nonuniversal way to b and s quarks and in the leptonic sector couples only to the muons, thereby only contributing to the process b →s μ+μ-. The Bs-B¯s transition gives the strong constraint on the coupling of the spin-2 mediator and b and s quarks, while the observed discrepancy from the standard model prediction for the muon anomalous magnetic moment (g -2 )μ serves to constrain the μ coupling to a spin-2 particle. We find that the spin-2 particle can modify the angular observables in the B →K μ+μ- and B →K*μ+μ- decays and produce effects that do not exist in the standard model. The generated forward-backward asymmetries in these processes can reach 15%, while other observables for these decays receive tiny effects.

  15. Electroactive Polymer Nanoparticles Exhibiting Photothermal Properties

    PubMed Central

    Cantu, Travis; Rodier, Bradley; Iszard, Zachary; Kilian, Alissa; Pattani, Varun; Walsh, Kyle; Weber, Katharina; Tunnell, James; Betancourt, Tania; Irvin, Jennifer

    2016-01-01

    A method for the synthesis of electroactive polymers is demonstrated, starting with the synthesis of extended conjugation monomers using a three-step process that finishes with Negishi coupling. Negishi coupling is a cross-coupling process in which a chemical precursor is first lithiated, followed by transmetallation with ZnCl2. The resultant organozinc compound can be coupled to a dibrominated aromatic precursor to give the conjugated monomer. Polymer films can be prepared via electropolymerization of the monomer and characterized using cyclic voltammetry and ultraviolet-visible-near infrared (UV-Vis-NIR) spectroscopy. Nanoparticles (NPs) are prepared via emulsion polymerization of the monomer using a two-surfactant system to yield an aqueous dispersion of the polymer NPs. The NPs are characterized using dynamic light scattering, electron microscopy, and UV-Vis-NIR-spectroscopy. Cytocompatibility of NPs is investigated using the cell viability assay. Finally, the NP suspensions are irradiated with a NIR laser to determine their effectiveness as potential materials for photothermal therapy (PTT). PMID:26780244

  16. Enzymatic coupling of 2,4-dichlorophenol to stream fulvic acid in the presence of oxidoreductases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarkar, J.M.; Malcolm, R.L.; Bollag, J.M.

    The coupling {sup 14}C-ring-labelled 2,4-dichlorophenol (2,4-DCP) to stream fulvic acid was investigated in the presence of several oxidoreductases including tyrosinase, peroxidase, and laccases of Rhizoctonia praticola and Trametes vesicolor. During 12-h incubation of the oxidoreductases with {sup 14}C-2, 4-DCP and stream fulvic acid, a substantial amount of the radioactivity was incorporated into fulvic acid. Chromatographic analysis indicated that although a large portion of the radioactivity remained in solution, no unbound {sup 14}C-2,4-DCP was present in the supernatant. The effects of pH, temperature, concentration of fulvic acid, and concentration of enzyme on the coupling processes were studied. The results of thismore » research provide evidence that the enzymatic coupling of certain xenobiotic pollutants to humic substances is an important natural process which must be considered in studies of the fate, reactivity, and persistence of these organic compounds in soils and stream waters.« less

  17. Quenching of dynamic nuclear polarization by spin-orbit coupling in GaAs quantum dots.

    PubMed

    Nichol, John M; Harvey, Shannon P; Shulman, Michael D; Pal, Arijeet; Umansky, Vladimir; Rashba, Emmanuel I; Halperin, Bertrand I; Yacoby, Amir

    2015-07-17

    The central-spin problem is a widely studied model of quantum decoherence. Dynamic nuclear polarization occurs in central-spin systems when electronic angular momentum is transferred to nuclear spins and is exploited in quantum information processing for coherent spin manipulation. However, the mechanisms limiting this process remain only partially understood. Here we show that spin-orbit coupling can quench dynamic nuclear polarization in a GaAs quantum dot, because spin conservation is violated in the electron-nuclear system, despite weak spin-orbit coupling in GaAs. Using Landau-Zener sweeps to measure static and dynamic properties of the electron spin-flip probability, we observe that the size of the spin-orbit and hyperfine interactions depends on the magnitude and direction of applied magnetic field. We find that dynamic nuclear polarization is quenched when the spin-orbit contribution exceeds the hyperfine, in agreement with a theoretical model. Our results shed light on the surprisingly strong effect of spin-orbit coupling in central-spin systems.

  18. Coupling of geochemical and multiphase flow processes for validation of the MUFITS reservoir simulator against TOUGHREACT

    NASA Astrophysics Data System (ADS)

    De Lucia, Marco; Kempka, Thomas; Afanasyev, Andrey; Melnik, Oleg; Kühn, Michael

    2016-04-01

    Coupled reactive transport simulations, especially in heterogeneous settings considering multiphase flow, are extremely time consuming and suffer from significant numerical issues compared to purely hydrodynamic simulations. This represents a major hurdle in the assessment of geological subsurface utilization, since it constrains the practical application of reactive transport modelling to coarse spatial discretization or oversimplified geological settings. In order to overcome such limitations, De Lucia et al. [1] developed and validated a one-way coupling approach between geochemistry and hydrodynamics, which is particularly well suited for CO2 storage simulations, while being of general validity. In the present study, the models used for the validation of the one-way coupling approach introduced by De Lucia et al. (2015), and originally performed with the TOUGHREACT simulator, are transferred to and benchmarked against the multiphase reservoir simulator MUFITS [2]. The geological model is loosely inspired by an existing CO2 storage site. Its grid comprises 2,950 elements enclosed in a single layer, but reflecting a realistic three-dimensional anticline geometry. For the purpose of this comparison, homogeneous and heterogeneous scenarios in terms of porosity and permeability were investigated. In both cases, the results of the MUFITS simulator are in excellent agreement with those produced with the fully-coupled TOUGHREACT simulator, while profiting from significantly higher computational performance. This study demonstrates how a computationally efficient simulator such as MUFITS can be successfully included in a coupled process simulation framework, and also suggests ameliorations and specific strategies for the coupling of chemical processes with hydrodynamics and heat transport, aiming at tackling geoscientific problems beyond the storage of CO2. References [1] De Lucia, M., Kempka, T., and Kühn, M. A coupling alternative to reactive transport simulations for long-term prediction of chemical reactions in heterogeneous CO2 storage systems, Geosci. Model Dev., 8, 279-294, 2015, doi:10.5194/gmd-8-279-2015 [2] Afanasyev, A.A. Application of the reservoir simulator MUFITS for 3D modeling of CO2 storage in geological formations, Energy Procedia, 40, 365-374, 2013, doi:10.1016/j.egypro.2013.08.042

  19. Optical signatures of coupled quantum dots.

    PubMed

    Stinaff, E A; Scheibner, M; Bracker, A S; Ponomarev, I V; Korenev, V L; Ware, M E; Doty, M F; Reinecke, T L; Gammon, D

    2006-02-03

    An asymmetric pair of coupled InAs quantum dots is tuned into resonance by applying an electric field so that a single hole forms a coherent molecular wave function. The optical spectrum shows a rich pattern of level anticrossings and crossings that can be understood as a superposition of charge and spin configurations of the two dots. Coulomb interactions shift the molecular resonance of the optically excited state (charged exciton) with respect to the ground state (single charge), enabling light-induced coupling of the quantum dots. This result demonstrates the possibility of optically coupling quantum dots for application in quantum information processing.

  20. Optical Signatures of Coupled Quantum Dots

    NASA Astrophysics Data System (ADS)

    Stinaff, E. A.; Scheibner, M.; Bracker, A. S.; Ponomarev, I. V.; Korenev, V. L.; Ware, M. E.; Doty, M. F.; Reinecke, T. L.; Gammon, D.

    2006-02-01

    An asymmetric pair of coupled InAs quantum dots is tuned into resonance by applying an electric field so that a single hole forms a coherent molecular wave function. The optical spectrum shows a rich pattern of level anticrossings and crossings that can be understood as a superposition of charge and spin configurations of the two dots. Coulomb interactions shift the molecular resonance of the optically excited state (charged exciton) with respect to the ground state (single charge), enabling light-induced coupling of the quantum dots. This result demonstrates the possibility of optically coupling quantum dots for application in quantum information processing.

  1. Self-organized emergence of multilayer structure and chimera states in dynamical networks with adaptive couplings

    NASA Astrophysics Data System (ADS)

    Kasatkin, D. V.; Yanchuk, S.; Schöll, E.; Nekorkin, V. I.

    2017-12-01

    We report the phenomenon of self-organized emergence of hierarchical multilayered structures and chimera states in dynamical networks with adaptive couplings. This process is characterized by a sequential formation of subnetworks (layers) of densely coupled elements, the size of which is ordered in a hierarchical way, and which are weakly coupled between each other. We show that the hierarchical structure causes the decoupling of the subnetworks. Each layer can exhibit either a two-cluster state, a periodic traveling wave, or an incoherent state, and these states can coexist on different scales of subnetwork sizes.

  2. Imaging quality evaluation method of pixel coupled electro-optical imaging system

    NASA Astrophysics Data System (ADS)

    He, Xu; Yuan, Li; Jin, Chunqi; Zhang, Xiaohui

    2017-09-01

    With advancements in high-resolution imaging optical fiber bundle fabrication technology, traditional photoelectric imaging system have become ;flexible; with greatly reduced volume and weight. However, traditional image quality evaluation models are limited by the coupling discrete sampling effect of fiber-optic image bundles and charge-coupled device (CCD) pixels. This limitation substantially complicates the design, optimization, assembly, and evaluation image quality of the coupled discrete sampling imaging system. Based on the transfer process of grayscale cosine distribution optical signal in the fiber-optic image bundle and CCD, a mathematical model of coupled modulation transfer function (coupled-MTF) is established. This model can be used as a basis for following studies on the convergence and periodically oscillating characteristics of the function. We also propose the concept of the average coupled-MTF, which is consistent with the definition of traditional MTF. Based on this concept, the relationships among core distance, core layer radius, and average coupled-MTF are investigated.

  3. Modelling hydrologic and hydrodynamic processes in basins with large semi-arid wetlands

    NASA Astrophysics Data System (ADS)

    Fleischmann, Ayan; Siqueira, Vinícius; Paris, Adrien; Collischonn, Walter; Paiva, Rodrigo; Pontes, Paulo; Crétaux, Jean-François; Bergé-Nguyen, Muriel; Biancamaria, Sylvain; Gosset, Marielle; Calmant, Stephane; Tanimoun, Bachir

    2018-06-01

    Hydrological and hydrodynamic models are core tools for simulation of large basins and complex river systems associated to wetlands. Recent studies have pointed towards the importance of online coupling strategies, representing feedbacks between floodplain inundation and vertical hydrology. Especially across semi-arid regions, soil-floodplain interactions can be strong. In this study, we included a two-way coupling scheme in a large scale hydrological-hydrodynamic model (MGB) and tested different model structures, in order to assess which processes are important to be simulated in large semi-arid wetlands and how these processes interact with water budget components. To demonstrate benefits from this coupling over a validation case, the model was applied to the Upper Niger River basin encompassing the Niger Inner Delta, a vast semi-arid wetland in the Sahel Desert. Simulation was carried out from 1999 to 2014 with daily TMPA 3B42 precipitation as forcing, using both in-situ and remotely sensed data for calibration and validation. Model outputs were in good agreement with discharge and water levels at stations both upstream and downstream of the Inner Delta (Nash-Sutcliffe Efficiency (NSE) >0.6 for most gauges), as well as for flooded areas within the Delta region (NSE = 0.6; r = 0.85). Model estimates of annual water losses across the Delta varied between 20.1 and 30.6 km3/yr, while annual evapotranspiration ranged between 760 mm/yr and 1130 mm/yr. Evaluation of model structure indicated that representation of both floodplain channels hydrodynamics (storage, bifurcations, lateral connections) and vertical hydrological processes (floodplain water infiltration into soil column; evapotranspiration from soil and vegetation and evaporation of open water) are necessary to correctly simulate flood wave attenuation and evapotranspiration along the basin. Two-way coupled models are necessary to better understand processes in large semi-arid wetlands. Finally, such coupled hydrologic and hydrodynamic modelling proves to be an important tool for integrated evaluation of hydrological processes in such poorly gauged, large scale basins. We hope that this model application provides new ways forward for large scale model development in such systems, involving semi-arid regions and complex floodplains.

  4. New frontiers in couple-based interventions in cancer care: refining the prescription for spousal communication.

    PubMed

    Badr, Hoda

    2017-02-01

    The diagnosis and treatment of cancer is a life-altering experience that signals profound changes in a person's life. However, most people do not experience cancer in isolation or cope alone. Despite the fact that partners (i.e. spouses, significant others) provide emotional support and play a critical role in caregiving, cancer exacts a heavy toll on them and challenges their relationship with the patient by altering established communication patterns and roles. In recognition of this, a burgeoning literature involving couple-based interventions to improve patient and partner quality of life and adaptation has emerged. However, questions remain regarding how we can improve these interventions to exact greater impact on patient and partner outcomes. A narrative review of the literature on couples' communication processes in cancer was conducted in order to describe knowledge gaps and directions for future research. Most couple-based interventions have included a communication skills training component because communication is an important process through which couples make sense of cancer, engage in social support, negotiate role changes and coordinate coping responses. However, scholars still know very little about what they should instruct couples to talk about, how often they should talk and when talking (or not talking) is beneficial (and for whom - the patient, partner, or both). In order push this field forward, we need to develop a more nuanced view of couples' communication that acknowledges that there are multiple ways to talk, different aspects of the cancer experience to talk about, and preexisting communication patterns and preferences for different couples that may influence the utility of talk. Interventions that replace the unilateral and generic prescription to talk openly about cancer with targeted questions that prompt reflection on couples' unique strengths, preexisting communication patterns and support resources may thus help bolster the impact of couple-based interventions on patient and partner quality of life.

  5. SIERRA Multimechanics Module: Aria User Manual Version 4.44

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sierra Thermal /Fluid Team

    2017-04-01

    Aria is a Galerkin fnite element based program for solving coupled-physics problems described by systems of PDEs and is capable of solving nonlinear, implicit, transient and direct-to-steady state problems in two and three dimensions on parallel architectures. The suite of physics currently supported by Aria includes thermal energy transport, species transport, and electrostatics as well as generalized scalar, vector and tensor transport equations. Additionally, Aria includes support for manufacturing process fows via the incompressible Navier-Stokes equations specialized to a low Reynolds number ( %3C 1 ) regime. Enhanced modeling support of manufacturing processing is made possible through use of eithermore » arbitrary Lagrangian- Eulerian (ALE) and level set based free and moving boundary tracking in conjunction with quasi-static nonlinear elastic solid mechanics for mesh control. Coupled physics problems are solved in several ways including fully-coupled Newton's method with analytic or numerical sensitivities, fully-coupled Newton- Krylov methods and a loosely-coupled nonlinear iteration about subsets of the system that are solved using combinations of the aforementioned methods. Error estimation, uniform and dynamic h -adaptivity and dynamic load balancing are some of Aria's more advanced capabilities. Aria is based upon the Sierra Framework.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sierra Thermal/Fluid Team

    Aria is a Galerkin fnite element based program for solving coupled-physics problems described by systems of PDEs and is capable of solving nonlinear, implicit, transient and direct-to-steady state problems in two and three dimensions on parallel architectures. The suite of physics currently supported by Aria includes thermal energy transport, species transport, and electrostatics as well as generalized scalar, vector and tensor transport equations. Additionally, Aria includes support for manufacturing process fows via the incompressible Navier-Stokes equations specialized to a low Reynolds number ( %3C 1 ) regime. Enhanced modeling support of manufacturing processing is made possible through use of eithermore » arbitrary Lagrangian- Eulerian (ALE) and level set based free and moving boundary tracking in conjunction with quasi-static nonlinear elastic solid mechanics for mesh control. Coupled physics problems are solved in several ways including fully-coupled Newton's method with analytic or numerical sensitivities, fully-coupled Newton- Krylov methods and a loosely-coupled nonlinear iteration about subsets of the system that are solved using combinations of the aforementioned methods. Error estimation, uniform and dynamic h -adaptivity and dynamic load balancing are some of Aria's more advanced capabilities. Aria is based upon the Sierra Framework.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sierra Thermal /Fluid Team

    Aria is a Galerkin finite element based program for solving coupled-physics problems described by systems of PDEs and is capable of solving nonlinear, implicit, transient and direct-to-steady state problems in two and three dimensions on parallel architectures. The suite of physics currently supported by Aria includes thermal energy transport, species transport, and electrostatics as well as generalized scalar, vector and tensor transport equations. Additionally, Aria includes support for manufacturing process flows via the incompressible Navier-Stokes equations specialized to a low Reynolds number (Re %3C 1) regime. Enhanced modeling support of manufacturing processing is made possible through use of either arbitrarymore » Lagrangian- Eulerian (ALE) and level set based free and moving boundary tracking in conjunction with quasi-static nonlinear elastic solid mechanics for mesh control. Coupled physics problems are solved in several ways including fully-coupled Newton's method with analytic or numerical sensitivities, fully-coupled Newton- Krylov methods and a loosely-coupled nonlinear iteration about subsets of the system that are solved using combinations of the aforementioned methods. Error estimation, uniform and dynamic h-adaptivity and dynamic load balancing are some of Aria's more advanced capabilities. Aria is based upon the Sierra Framework.« less

  8. The effect of inclusion of inlets in dual drainage modelling

    NASA Astrophysics Data System (ADS)

    Chang, Tsang-Jung; Wang, Chia-Ho; Chen, Albert S.; Djordjević, Slobodan

    2018-04-01

    In coupled sewer and surface flood modelling approaches, the flow process in gullies is often ignored although the overland flow is drained to sewer network via inlets and gullies. Therefore, the flow entering inlets is transferred to the sewer network immediately, which may lead to a different flood estimation than the reality. In this paper, we compared two modelling approach with and without considering the flow processes in gullies in the coupled sewer and surface modelling. Three historical flood events were adopted for model calibration and validation. The results showed that the inclusion of flow process in gullies can further improve the accuracy of urban flood modelling.

  9. Final Report: Mechanisms of sputter ripple formation: coupling among energetic ions, surface kinetics, stress and composition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chason, Eric; Shenoy, Vivek

    Self-organized pattern formation enables the creation of nanoscale surface structures over large areas based on fundamental physical processes rather than an applied template. Low energy ion bombardment is one such method that induces the spontaneous formation of a wide variety of interesting morphological features (e.g., sputter ripples and/or quantum dots). This program focused on the processes controlling sputter ripple formation and the kinetics controlling the evolution of surfaces and nanostructures in high flux environments. This was done by using systematic, quantitative experiments to measure ripple formation under a variety of processing conditions coupled with modeling to interpret the results.

  10. 7 CFR 4279.113 - Eligible loan purposes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... processing of agricultural products. (1) Examples of potentially eligible production include but are not limited to: An apple orchard in conjunction with a food processing plant; poultry buildings linked to a meat processing operation; or sugar beet production coupled with storage and processing. Any...

  11. 7 CFR 4279.113 - Eligible loan purposes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... processing of agricultural products. (1) Examples of potentially eligible production include but are not limited to: An apple orchard in conjunction with a food processing plant; poultry buildings linked to a meat processing operation; or sugar beet production coupled with storage and processing. Any...

  12. 7 CFR 4279.113 - Eligible loan purposes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... processing of agricultural products. (1) Examples of potentially eligible production include but are not limited to: An apple orchard in conjunction with a food processing plant; poultry buildings linked to a meat processing operation; or sugar beet production coupled with storage and processing. Any...

  13. 7 CFR 4279.113 - Eligible loan purposes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... processing of agricultural products. (1) Examples of potentially eligible production include but are not limited to: An apple orchard in conjunction with a food processing plant; poultry buildings linked to a meat processing operation; or sugar beet production coupled with storage and processing. Any...

  14. Continuity-based model interfacing for plant-wide simulation: a general approach.

    PubMed

    Volcke, Eveline I P; van Loosdrecht, Mark C M; Vanrolleghem, Peter A

    2006-08-01

    In plant-wide simulation studies of wastewater treatment facilities, often existing models from different origin need to be coupled. However, as these submodels are likely to contain different state variables, their coupling is not straightforward. The continuity-based interfacing method (CBIM) provides a general framework to construct model interfaces for models of wastewater systems, taking into account conservation principles. In this contribution, the CBIM approach is applied to study the effect of sludge digestion reject water treatment with a SHARON-Anammox process on a plant-wide scale. Separate models were available for the SHARON process and for the Anammox process. The Benchmark simulation model no. 2 (BSM2) is used to simulate the behaviour of the complete WWTP including sludge digestion. The CBIM approach is followed to develop three different model interfaces. At the same time, the generally applicable CBIM approach was further refined and particular issues when coupling models in which pH is considered as a state variable, are pointed out.

  15. Continuum Thermodynamics - Part II: Applications and Examples

    NASA Astrophysics Data System (ADS)

    Albers, Bettina; Wilmanski, Krzysztof

    The intention by writing Part II of the book on continuum thermodynamics was the deepening of some issues covered in Part I as well as a development of certain skills in dealing with practical problems of oscopic processes. However, the main motivation for this part is the presentation of main facets of thermodynamics which appear when interdisciplinary problems are considered. There are many monographs on the subjects of solid mechanics and thermomechanics, on fluid mechanics and on coupled fields but most of them cover only special problems in great details which are characteristic for the chosen field. It is rather seldom that relations between these fields are discussed. This concerns, for instance, large deformations of the skeleton of porous materials with diffusion (e.g. lungs), couplings of deformable particles with the fluid motion in suspensions, couplings of adsorption processes and chemical reactions in immiscible mixtures with diffusion, various multi-component aspects of the motion, e.g. of avalanches, such as segregation processes, etc...

  16. A thermo-chemo-mechanically coupled constitutive model for curing of glassy polymers

    NASA Astrophysics Data System (ADS)

    Sain, Trisha; Loeffel, Kaspar; Chester, Shawn

    2018-07-01

    Curing of a polymer is the process through which a polymer liquid transitions into a solid polymer, capable of bearing mechanical loads. The curing process is a coupled thermo-chemo-mechanical conversion process which requires a thorough understanding of the system behavior to predict the cure dependent mechanical behavior of the solid polymer. In this paper, a thermodynamically consistent, frame indifferent, thermo-chemo-mechanically coupled continuum level constitutive framework is proposed for thermally cured glassy polymers. The constitutive framework considers the thermodynamics of chemical reactions, as well as the material behavior for a glassy polymer. A stress-free intermediate configuration is introduced within a finite deformation setting to capture the formation of the network in a stress-free configuration. This work considers a definition for the degree of cure based on the chemistry of the curing reactions. A simplified version of the proposed model has been numerically implemented, and simulations are used to understand the capabilities of the model and framework.

  17. Generalized Chirp Scaling Combined with Baseband Azimuth Scaling Algorithm for Large Bandwidth Sliding Spotlight SAR Imaging

    PubMed Central

    Yi, Tianzhu; He, Zhihua; He, Feng; Dong, Zhen; Wu, Manqing

    2017-01-01

    This paper presents an efficient and precise imaging algorithm for the large bandwidth sliding spotlight synthetic aperture radar (SAR). The existing sub-aperture processing method based on the baseband azimuth scaling (BAS) algorithm cannot cope with the high order phase coupling along the range and azimuth dimensions. This coupling problem causes defocusing along the range and azimuth dimensions. This paper proposes a generalized chirp scaling (GCS)-BAS processing algorithm, which is based on the GCS algorithm. It successfully mitigates the deep focus along the range dimension of a sub-aperture of the large bandwidth sliding spotlight SAR, as well as high order phase coupling along the range and azimuth dimensions. Additionally, the azimuth focusing can be achieved by this azimuth scaling method. Simulation results demonstrate the ability of the GCS-BAS algorithm to process the large bandwidth sliding spotlight SAR data. It is proven that great improvements of the focus depth and imaging accuracy are obtained via the GCS-BAS algorithm. PMID:28555057

  18. Experimental phase synchronization detection in non-phase coherent chaotic systems by using the discrete complex wavelet approach

    NASA Astrophysics Data System (ADS)

    Ferreira, Maria Teodora; Follmann, Rosangela; Domingues, Margarete O.; Macau, Elbert E. N.; Kiss, István Z.

    2017-08-01

    Phase synchronization may emerge from mutually interacting non-linear oscillators, even under weak coupling, when phase differences are bounded, while amplitudes remain uncorrelated. However, the detection of this phenomenon can be a challenging problem to tackle. In this work, we apply the Discrete Complex Wavelet Approach (DCWA) for phase assignment, considering signals from coupled chaotic systems and experimental data. The DCWA is based on the Dual-Tree Complex Wavelet Transform (DT-CWT), which is a discrete transformation. Due to its multi-scale properties in the context of phase characterization, it is possible to obtain very good results from scalar time series, even with non-phase-coherent chaotic systems without state space reconstruction or pre-processing. The method correctly predicts the phase synchronization for a chemical experiment with three locally coupled, non-phase-coherent chaotic processes. The impact of different time-scales is demonstrated on the synchronization process that outlines the advantages of DCWA for analysis of experimental data.

  19. Benthic-Pelagic Coupling in Biogeochemical and Climate Models: Existing Approaches, Recent developments and Roadblocks

    NASA Astrophysics Data System (ADS)

    Arndt, Sandra

    2016-04-01

    Marine sediments are key components in the Earth System. They host the largest carbon reservoir on Earth, provide the only long term sink for atmospheric CO2, recycle nutrients and represent the most important climate archive. Biogeochemical processes in marine sediments are thus essential for our understanding of the global biogeochemical cycles and climate. They are first and foremost, donor controlled and, thus, driven by the rain of particulate material from the euphotic zone and influenced by the overlying bottom water. Geochemical species may undergo several recycling loops (e.g. authigenic mineral precipitation/dissolution) before they are either buried or diffuse back to the water column. The tightly coupled and complex pelagic and benthic process interplay thus delays recycling flux, significantly modifies the depositional signal and controls the long-term removal of carbon from the ocean-atmosphere system. Despite the importance of this mutual interaction, coupled regional/global biogeochemical models and (paleo)climate models, which are designed to assess and quantify the transformations and fluxes of carbon and nutrients and evaluate their response to past and future perturbations of the climate system either completely neglect marine sediments or incorporate a highly simplified representation of benthic processes. On the other end of the spectrum, coupled, multi-component state-of-the-art early diagenetic models have been successfully developed and applied over the past decades to reproduce observations and quantify sediment-water exchange fluxes, but cannot easily be coupled to pelagic models. The primary constraint here is the high computation cost of simulating all of the essential redox and equilibrium reactions within marine sediments that control carbon burial and benthic recycling fluxes: a barrier that is easily exacerbated if a variety of benthic environments are to be spatially resolved. This presentation provides an integrative overview of the benthic-pelagic coupling that accounts for the complex process interplay from the euphotic ocean to the deep sediment. It explores the intensity of the benthic-pelagic coupling across different environments and from the seasonal to the geological timescale. Different modelling approaches of coupling sediment and water column dynamics in regional/global biogeochemical models and (paleo)climate models are critically evaluated and their most important limitations, as well as the implications for our ability to predict the response of the global carbon cycle to past or future perturbations is discussed. Finally, the presentation identifies major roadblocks to the development of new model approaches and highlights how new techniques, new observational and laboratory data, as well as a close interdisciplinary collaboration can overcome these roadblocks.

  20. Direct catalytic cross-coupling of organolithium compounds

    NASA Astrophysics Data System (ADS)

    Giannerini, Massimo; Fañanás-Mastral, Martín; Feringa, Ben L.

    2013-08-01

    Catalytic carbon-carbon bond formation based on cross-coupling reactions plays a central role in the production of natural products, pharmaceuticals, agrochemicals and organic materials. Coupling reactions of a variety of organometallic reagents and organic halides have changed the face of modern synthetic chemistry. However, the high reactivity and poor selectivity of common organolithium reagents have largely prohibited their use as a viable partner in direct catalytic cross-coupling. Here we report that in the presence of a Pd-phosphine catalyst, a wide range of alkyl-, aryl- and heteroaryl-lithium reagents undergo selective cross-coupling with aryl- and alkenyl-bromides. The process proceeds quickly under mild conditions (room temperature) and avoids the notorious lithium halogen exchange and homocoupling. The preparation of key alkyl-, aryl- and heterobiaryl intermediates reported here highlights the potential of these cross-coupling reactions for medicinal chemistry and material science.

  1. Using the Model Coupling Toolkit to couple earth system models

    USGS Publications Warehouse

    Warner, J.C.; Perlin, N.; Skyllingstad, E.D.

    2008-01-01

    Continued advances in computational resources are providing the opportunity to operate more sophisticated numerical models. Additionally, there is an increasing demand for multidisciplinary studies that include interactions between different physical processes. Therefore there is a strong desire to develop coupled modeling systems that utilize existing models and allow efficient data exchange and model control. The basic system would entail model "1" running on "M" processors and model "2" running on "N" processors, with efficient exchange of model fields at predetermined synchronization intervals. Here we demonstrate two coupled systems: the coupling of the ocean circulation model Regional Ocean Modeling System (ROMS) to the surface wave model Simulating WAves Nearshore (SWAN), and the coupling of ROMS to the atmospheric model Coupled Ocean Atmosphere Prediction System (COAMPS). Both coupled systems use the Model Coupling Toolkit (MCT) as a mechanism for operation control and inter-model distributed memory transfer of model variables. In this paper we describe requirements and other options for model coupling, explain the MCT library, ROMS, SWAN and COAMPS models, methods for grid decomposition and sparse matrix interpolation, and provide an example from each coupled system. Methods presented in this paper are clearly applicable for coupling of other types of models. ?? 2008 Elsevier Ltd. All rights reserved.

  2. Development of Chemical Process Design and Control for Sustainability

    EPA Science Inventory

    This contribution describes a novel process systems engineering framework that couples advanced control with sustainability evaluation and decision making for the optimization of process operations to minimize environmental impacts associated with products, materials, and energy....

  3. Diagnosable structured logic array

    NASA Technical Reports Server (NTRS)

    Whitaker, Sterling (Inventor); Miles, Lowell (Inventor); Gambles, Jody (Inventor); Maki, Gary K. (Inventor)

    2009-01-01

    A diagnosable structured logic array and associated process is provided. A base cell structure is provided comprising a logic unit comprising a plurality of input nodes, a plurality of selection nodes, and an output node, a plurality of switches coupled to the selection nodes, where the switches comprises a plurality of input lines, a selection line and an output line, a memory cell coupled to the output node, and a test address bus and a program control bus coupled to the plurality of input lines and the selection line of the plurality of switches. A state on each of the plurality of input nodes is verifiably loaded and read from the memory cell. A trusted memory block is provided. The associated process is provided for testing and verifying a plurality of truth table inputs of the logic unit.

  4. Middle atmospheric electrodynamics

    NASA Technical Reports Server (NTRS)

    Kelley, M. C.

    1983-01-01

    A review is presented of the advances made during the last few years with respect to the study of the electrodynamics in the earth's middle atmosphere. In a report of the experimental work conducted, attention is given to large middle atmospheric electric fields, the downward coupling of high altitude processes into the middle atmosphere, and upward coupling of tropospheric processes into the middle atmosphere. It is pointed out that new developments in tethered balloons and superpressure balloons should greatly increase the measurement duration of earth-ionospheric potential measurements and of stratospheric electric field measurements in the next few years. Theoretical work considered provides an excellent starting point for study of upward coupling of transient and dc electric fields. Hays and Roble (1979) were the first to construct a model which included orographic features as well as the classical thunderstorm generator.

  5. Quantum process tomography with informational incomplete data of two J-coupled heterogeneous spins relaxation in a time window much greater than T1

    NASA Astrophysics Data System (ADS)

    Maciel, Thiago O.; Vianna, Reinaldo O.; Sarthour, Roberto S.; Oliveira, Ivan S.

    2015-11-01

    We reconstruct the time dependent quantum map corresponding to the relaxation process of a two-spin system in liquid-state NMR at room temperature. By means of quantum tomography techniques that handle informational incomplete data, we show how to properly post-process and normalize the measurements data for the simulation of quantum information processing, overcoming the unknown number of molecules prepared in a non-equilibrium magnetization state (Nj) by an initial sequence of radiofrequency pulses. From the reconstructed quantum map, we infer both longitudinal (T1) and transversal (T2) relaxation times, and introduce the J-coupling relaxation times ({T}1J,{T}2J), which are relevant for quantum information processing simulations. We show that the map associated to the relaxation process cannot be assumed approximated unital and trace-preserving for times greater than {T}2J.

  6. Moderate Geomagnetic Storms: Interplanetary Origins and Coupling Functions (ISEE3 Data)

    NASA Technical Reports Server (NTRS)

    Mendes, Odim, Jr.; Gonzalez, W. D.; Gonzalez, A. L. C.; Pinto, O., Jr.; Tsurutani, B. T.

    1996-01-01

    Geomagnetic storms are related to the ring current intensification, which is driven by energy injection primarily during energetic solar wind-magnetosphere coupling due to reconnection at the magnetopause. This work identified the interplanetary origins of moderate geomagnetic storms (-100nT is less or equal to Dst(sub peak) is less than or equal to -50 nT) and analyzed the coupling processes during the storm main phase at solar maximum (1978-1979).

  7. Overcoming the Coupling Dilemma in DNA-Programmable Nanoparticle Assemblies by "Ag+ Soldering".

    PubMed

    Wang, Huiqiao; Li, Yulin; Liu, Miao; Gong, Ming; Deng, Zhaoxiang

    2015-05-20

    Strong coupling between nanoparticles is critical for facilitating charge and energy transfers. Despite the great success of DNA-programmable nanoparticle assemblies, the very weak interparticle coupling represents a key barrier to various applications. Here, an extremely simple, fast, and highly efficient process combining DNA-programming and molecular/ionic bonding is developed to address this challenge, which exhibits a seamless fusion with DNA nanotechnology. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Feasibility of antenna-to-antenna isolation measurements at S-band in the Facility for Antenna and Radar-cross-section Measurements (FARM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brock, Billy C.

    2014-01-01

    Frequency-domain antenna-coupling measurements performed in the compact-range room of the FARM, will actually be dominated by reflected components from the ceiling, floor, walls, etc., not the direct freespace coupling. Consequently, signal processing must be applied to the frequency-domain data to extract the direct free-space coupling. The analysis presented above demonstrates that it is possible to do so successfully.

  9. Up and down or down and up? The process of change in constructive couple behavior during Traditional and Integrative Behavioral Couple Therapy.

    PubMed

    Sevier, Mia; Atkins, David C; Doss, Brian D; Christensen, Andrew

    2015-01-01

    Observed positive and negative spouse behavior during sessions of Traditional (TBCT) and Integrative Behavioral Couples Therapy (IBCT) were compared for couples with successful outcomes and their unsuccessful counterparts. One hundred and thirty-four married chronically and seriously distressed couples (on average in their forties and 80% Caucasian) were randomly assigned to TBCT or IBCT. Trained observers made ratings of 1224 segments from approximately 956 sessions sampled from the course of up to 26 sessions. Multilevel modeling was used to examine change over time. TBCT treatment responders demonstrated a boost-drop pattern, increasing in constructive behaviors early (more positive behaviors and less negative behaviors) but decreasing later. IBCT responders demonstrated an opposite, drop-boost pattern, decreasing in constructive behaviors early and increasing later. Patterns were significant for positive behaviors (p < .05) and approached significance for negative behaviors (p = .05). In both treatments, nonresponders showed a significant pattern of decline in positive and increase in negative behaviors over time, although a trend (p = .05) indicates that TBCT nonresponders initially declined in negative behaviors. This study helps clarify the different process of change in two behavioral couple therapies, which may assist in treatment development and provide a guide for therapists in considering behavioral markers of change during treatment. © 2013 American Association for Marriage and Family Therapy.

  10. A Couple-Based Communication Intervention for Hematopoietic Cell Transplantation Survivors and Their Caregiving Partners: Feasibility, Acceptability, and Change in Process Measures.

    PubMed

    Langer, Shelby L; Porter, Laura S; Romano, Joan M; Todd, Michael W; Lee, Stephanie J

    2018-05-14

    Hematopoietic cell transplantation (HCT) poses significant challenges for recipients and their caregiving partners. Couples may refrain from talking about treatment-related fears and concerns to minimize distress. This single-group, pre-post study examined feasibility and acceptability of an intervention designed to optimize communication between HCT patients and partners; it also assessed change in process measures. Couples met with a therapist 5 times to learn skills for disclosing illness-related thoughts and feelings and responding supportively to one another. The extent to which participants disclosed thoughts, feelings, and information during the session and felt supported was assessed at the close of each session. Forty of 89 eligible couples consented (45%). Thirty couples commenced intervention 1-month post-transplant; 26 of these completed all sessions (87%) and 27 completed follow-up (90%). Ratings of self-disclosure and feeling supported by one's partner increased linearly across intervention sessions among both patients and caregivers (all P ≥ .01). Ratings of satisfaction with the intervention were high. HCT couples can be recruited and retained for this intervention. They found it acceptable and were amenable to skills training. A randomized trial is needed to test efficacy and to identify moderators of treatment response. Copyright © 2018 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  11. Multiscale modeling of nanostructured ZnO based devices for optoelectronic applications: Dynamically-coupled structural fields, charge, and thermal transport processes

    NASA Astrophysics Data System (ADS)

    Abdullah, Abdulmuin; Alqahtani, Saad; Nishat, Md Rezaul Karim; Ahmed, Shaikh; SIU Nanoelectronics Research Group Team

    Recently, hybrid ZnO nanostructures (such as ZnO deposited on ZnO-alloys, Si, GaN, polymer, conducting oxides, and organic compounds) have attracted much attention for their possible applications in optoelectronic devices (such as solar cells, light emitting and laser diodes), as well as in spintronics (such as spin-based memory, and logic). However, efficiency and performance of these hybrid ZnO devices strongly depend on an intricate interplay of complex, nonlinear, highly stochastic and dynamically-coupled structural fields, charge, and thermal transport processes at different length and time scales, which have not yet been fully assessed experimentally. In this work, we study the effects of these coupled processes on the electronic and optical emission properties in nanostructured ZnO devices. The multiscale computational framework employs the atomistic valence force-field molecular mechanics, models for linear and non-linear polarization, the 8-band sp3s* tight-binding models, and coupling to a TCAD toolkit to determine the terminal properties of the device. A series of numerical experiments are performed (by varying different nanoscale parameters such as size, geometry, crystal cut, composition, and electrostatics) that mainly aim to improve the efficiency of these devices. Supported by the U.S. National Science Foundation Grant No. 1102192.

  12. Modeling of coulpled deformation and permeability evolution during fault reactivation induced by deep underground injection of CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cappa, F.; Rutqvist, J.

    2010-06-01

    The interaction between mechanical deformation and fluid flow in fault zones gives rise to a host of coupled hydromechanical processes fundamental to fault instability, induced seismicity, and associated fluid migration. In this paper, we discuss these coupled processes in general and describe three modeling approaches that have been considered to analyze fluid flow and stress coupling in fault-instability processes. First, fault hydromechanical models were tested to investigate fault behavior using different mechanical modeling approaches, including slip interface and finite-thickness elements with isotropic or anisotropic elasto-plastic constitutive models. The results of this investigation showed that fault hydromechanical behavior can be appropriatelymore » represented with the least complex alternative, using a finite-thickness element and isotropic plasticity. We utilized this pragmatic approach coupled with a strain-permeability model to study hydromechanical effects on fault instability during deep underground injection of CO{sub 2}. We demonstrated how such a modeling approach can be applied to determine the likelihood of fault reactivation and to estimate the associated loss of CO{sub 2} from the injection zone. It is shown that shear-enhanced permeability initiated where the fault intersects the injection zone plays an important role in propagating fault instability and permeability enhancement through the overlying caprock.« less

  13. Inference of the sparse kinetic Ising model using the decimation method

    NASA Astrophysics Data System (ADS)

    Decelle, Aurélien; Zhang, Pan

    2015-05-01

    In this paper we study the inference of the kinetic Ising model on sparse graphs by the decimation method. The decimation method, which was first proposed in Decelle and Ricci-Tersenghi [Phys. Rev. Lett. 112, 070603 (2014), 10.1103/PhysRevLett.112.070603] for the static inverse Ising problem, tries to recover the topology of the inferred system by setting the weakest couplings to zero iteratively. During the decimation process the likelihood function is maximized over the remaining couplings. Unlike the ℓ1-optimization-based methods, the decimation method does not use the Laplace distribution as a heuristic choice of prior to select a sparse solution. In our case, the whole process can be done auto-matically without fixing any parameters by hand. We show that in the dynamical inference problem, where the task is to reconstruct the couplings of an Ising model given the data, the decimation process can be applied naturally into a maximum-likelihood optimization algorithm, as opposed to the static case where pseudolikelihood method needs to be adopted. We also use extensive numerical studies to validate the accuracy of our methods in dynamical inference problems. Our results illustrate that, on various topologies and with different distribution of couplings, the decimation method outperforms the widely used ℓ1-optimization-based methods.

  14. Functional Coupling of Human Microphysiology Systems: Intestine, Liver, Kidney Proximal Tubule, Blood-Brain Barrier and Skeletal Muscle

    PubMed Central

    Vernetti, Lawrence; Gough, Albert; Baetz, Nicholas; Blutt, Sarah; Broughman, James R.; Brown, Jacquelyn A.; Foulke-Abel, Jennifer; Hasan, Nesrin; In, Julie; Kelly, Edward; Kovbasnjuk, Olga; Repper, Jonathan; Senutovitch, Nina; Stabb, Janet; Yeung, Catherine; Zachos, Nick C.; Donowitz, Mark; Estes, Mary; Himmelfarb, Jonathan; Truskey, George; Wikswo, John P.; Taylor, D. Lansing

    2017-01-01

    Organ interactions resulting from drug, metabolite or xenobiotic transport between organs are key components of human metabolism that impact therapeutic action and toxic side effects. Preclinical animal testing often fails to predict adverse outcomes arising from sequential, multi-organ metabolism of drugs and xenobiotics. Human microphysiological systems (MPS) can model these interactions and are predicted to dramatically improve the efficiency of the drug development process. In this study, five human MPS models were evaluated for functional coupling, defined as the determination of organ interactions via an in vivo-like sequential, organ-to-organ transfer of media. MPS models representing the major absorption, metabolism and clearance organs (the jejunum, liver and kidney) were evaluated, along with skeletal muscle and neurovascular models. Three compounds were evaluated for organ-specific processing: terfenadine for pharmacokinetics (PK) and toxicity; trimethylamine (TMA) as a potentially toxic microbiome metabolite; and vitamin D3. We show that the organ-specific processing of these compounds was consistent with clinical data, and discovered that trimethylamine-N-oxide (TMAO) crosses the blood-brain barrier. These studies demonstrate the potential of human MPS for multi-organ toxicity and absorption, distribution, metabolism and excretion (ADME), provide guidance for physically coupling MPS, and offer an approach to coupling MPS with distinct media and perfusion requirements. PMID:28176881

  15. TOUGH2Biot - A simulator for coupled thermal-hydrodynamic-mechanical processes in subsurface flow systems: Application to CO2 geological storage and geothermal development

    NASA Astrophysics Data System (ADS)

    Lei, Hongwu; Xu, Tianfu; Jin, Guangrong

    2015-04-01

    Coupled thermal-hydrodynamic-mechanical processes have become increasingly important in studying the issues affecting subsurface flow systems, such as CO2 sequestration in deep saline aquifers and geothermal development. In this study, a mechanical module based on the extended Biot consolidation model was developed and incorporated into the well-established thermal-hydrodynamic simulator TOUGH2, resulting in an integrated numerical THM simulation program TOUGH2Biot. A finite element method was employed to discretize space for rock mechanical calculation and the Mohr-Coulomb failure criterion was used to determine if the rock undergoes shear-slip failure. Mechanics is partly coupled with the thermal-hydrodynamic processes and gives feedback to flow through stress-dependent porosity and permeability. TOUGH2Biot was verified against analytical solutions for the 1D Terzaghi consolidation and cooling-induced subsidence. TOUGH2Biot was applied to evaluate the thermal, hydrodynamic, and mechanical responses of CO2 geological sequestration at the Ordos CCS Demonstration Project, China and geothermal exploitation at the Geysers geothermal field, California. The results demonstrate that TOUGH2Biot is capable of analyzing change in pressure and temperature, displacement, stress, and potential shear-slip failure caused by large scale underground man-made activity in subsurface flow systems. TOUGH2Biot can also be easily extended for complex coupled process problems in fractured media and be conveniently updated to parallel versions on different platforms to take advantage of high-performance computing.

  16. A Review of Low Frequency Electromagnetic Wave Phenomena Related to Tropospheric-Ionospheric Coupling Mechanisms

    NASA Technical Reports Server (NTRS)

    Simoes, Fernando; Pfaff, Robert; Berthelier, Jean-Jacques; Klenzing, Jeffrey

    2012-01-01

    Investigation of coupling mechanisms between the troposphere and the ionosphere requires a multidisciplinary approach involving several branches of atmospheric sciences, from meteorology, atmospheric chemistry, and fulminology to aeronomy, plasma physics, and space weather. In this work, we review low frequency electromagnetic wave propagation in the Earth-ionosphere cavity from a troposphere-ionosphere coupling perspective. We discuss electromagnetic wave generation, propagation, and resonance phenomena, considering atmospheric, ionospheric and magnetospheric sources, from lightning and transient luminous events at low altitude to Alfven waves and particle precipitation related to solar and magnetospheric processes. We review in situ ionospheric processes as well as surface and space weather phenomena that drive troposphere-ionosphere dynamics. Effects of aerosols, water vapor distribution, thermodynamic parameters, and cloud charge separation and electrification processes on atmospheric electricity and electromagnetic waves are reviewed. We also briefly revisit ionospheric irregularities such as spread-F and explosive spread-F, sporadic-E, traveling ionospheric disturbances, Trimpi effect, and hiss and plasma turbulence. Regarding the role of the lower boundary of the cavity, we review transient surface phenomena, including seismic activity, earthquakes, volcanic processes and dust electrification. The role of surface and atmospheric gravity waves in ionospheric dynamics is also briefly addressed. We summarize analytical and numerical tools and techniques to model low frequency electromagnetic wave propagation and solving inverse problems and summarize in a final section a few challenging subjects that are important for a better understanding of tropospheric-ionospheric coupling mechanisms.

  17. Signal dependence of inter-pixel capacitance in hybridized HgCdTe H2RG arrays for use in James Webb space telescope's NIRcam

    NASA Astrophysics Data System (ADS)

    Donlon, Kevan; Ninkov, Zoran; Baum, Stefi

    2016-08-01

    Interpixel capacitance (IPC) is a deterministic electronic coupling by which signal generated in one pixel is measured in neighboring pixels. Examination of dark frames from test NIRcam arrays corroborates earlier results and simulations illustrating a signal dependent coupling. When the signal on an individual pixel is larger, the fractional coupling to nearest neighbors is lesser than when the signal is lower. Frames from test arrays indicate a drop in average coupling from approximately 1.0% at low signals down to approximately 0.65% at high signals depending on the particular array in question. The photometric ramifications for this non-uniformity are not fully understood. This non-uniformity intro-duces a non-linearity in the current mathematical model for IPC coupling. IPC coupling has been mathematically formalized as convolution by a blur kernel. Signal dependence requires that the blur kernel be locally defined as a function of signal intensity. Through application of a signal dependent coupling kernel, the IPC coupling can be modeled computationally. This method allows for simultaneous knowledge of the intrinsic parameters of the image scene, the result of applying a constant IPC, and the result of a signal dependent IPC. In the age of sub-pixel precision in astronomy these effects must be properly understood and accounted for in order for the data to accurately represent the object of observation. Implementation of this method is done through python scripted processing of images. The introduction of IPC into simulated frames is accomplished through convolution of the image with a blur kernel whose parameters are themselves locally defined functions of the image. These techniques can be used to enhance the data processing pipeline for NIRcam.

  18. Diagnosing the Nature of Land-Atmosphere Coupling: A Case Study of Dry/Wet Extremes

    NASA Technical Reports Server (NTRS)

    Santanello, Joseph A., Jr.; Peters-Lidard, Christa; Kennedy, Aaron D.

    2012-01-01

    Land-atmosphere (L-A) interactions play a critical role in determining the diurnal evolution of land surface and planetary boundary layer (PBL) temperature and moisture states and fluxes. In turn, these interactions regulate the strength of the connection between surface moisture and precipitation in a coupled system. To address deficiencies in numerical weather prediction and climate models due to improper treatment of L-A interactions, recent studies have focused on development of diagnostics to quantify the strength and accuracy of the land-PBL coupling at the process-level. In this study, a diagnosis of the nature and impacts oflocalland-atmosphere coupling (LoCo) during dry and wet extreme conditions is presented using a combination of models and observations during the summers of2006-7 in the U.S. Southern Great Plains. Specifically, the Weather Research and Forecasting (WRF) model has been coupled to NASA's Land Information System (LIS), which provides a flexible and high-resolution representation and initialization of land surface physics and states. A range of diagnostics exploring the links and feedbacks between soil moisture and precipitation are examined for the dry/wet regimes of this region, along with the behavior and accuracy of different land-PBL scheme couplings under these conditions. In addition, we examine the impact of improved specification ofland surface states, anomalies, and fluxes that are obtained through the use of a hew optimization and uncertainty module in LIS, on the L-A coupling in WRF forecasts. Results demonstrate how LoCo diagnostics can be applied to coupled model components in the context of their integrated impacts on the process-chain connecting the land surface to the PBL and support of hydrological anomalies.

  19. An Embedded Statistical Method for Coupling Molecular Dynamics and Finite Element Analyses

    NASA Technical Reports Server (NTRS)

    Saether, E.; Glaessgen, E.H.; Yamakov, V.

    2008-01-01

    The coupling of molecular dynamics (MD) simulations with finite element methods (FEM) yields computationally efficient models that link fundamental material processes at the atomistic level with continuum field responses at higher length scales. The theoretical challenge involves developing a seamless connection along an interface between two inherently different simulation frameworks. Various specialized methods have been developed to solve particular classes of problems. Many of these methods link the kinematics of individual MD atoms with FEM nodes at their common interface, necessarily requiring that the finite element mesh be refined to atomic resolution. Some of these coupling approaches also require simulations to be carried out at 0 K and restrict modeling to two-dimensional material domains due to difficulties in simulating full three-dimensional material processes. In the present work, a new approach to MD-FEM coupling is developed based on a restatement of the standard boundary value problem used to define a coupled domain. The method replaces a direct linkage of individual MD atoms and finite element (FE) nodes with a statistical averaging of atomistic displacements in local atomic volumes associated with each FE node in an interface region. The FEM and MD computational systems are effectively independent and communicate only through an iterative update of their boundary conditions. With the use of statistical averages of the atomistic quantities to couple the two computational schemes, the developed approach is referred to as an embedded statistical coupling method (ESCM). ESCM provides an enhanced coupling methodology that is inherently applicable to three-dimensional domains, avoids discretization of the continuum model to atomic scale resolution, and permits finite temperature states to be applied.

  20. A New Concurrent Multiscale Methodology for Coupling Molecular Dynamics and Finite Element Analyses

    NASA Technical Reports Server (NTRS)

    Yamakov, Vesselin; Saether, Erik; Glaessgen, Edward H/.

    2008-01-01

    The coupling of molecular dynamics (MD) simulations with finite element methods (FEM) yields computationally efficient models that link fundamental material processes at the atomistic level with continuum field responses at higher length scales. The theoretical challenge involves developing a seamless connection along an interface between two inherently different simulation frameworks. Various specialized methods have been developed to solve particular classes of problems. Many of these methods link the kinematics of individual MD atoms with FEM nodes at their common interface, necessarily requiring that the finite element mesh be refined to atomic resolution. Some of these coupling approaches also require simulations to be carried out at 0 K and restrict modeling to two-dimensional material domains due to difficulties in simulating full three-dimensional material processes. In the present work, a new approach to MD-FEM coupling is developed based on a restatement of the standard boundary value problem used to define a coupled domain. The method replaces a direct linkage of individual MD atoms and finite element (FE) nodes with a statistical averaging of atomistic displacements in local atomic volumes associated with each FE node in an interface region. The FEM and MD computational systems are effectively independent and communicate only through an iterative update of their boundary conditions. With the use of statistical averages of the atomistic quantities to couple the two computational schemes, the developed approach is referred to as an embedded statistical coupling method (ESCM). ESCM provides an enhanced coupling methodology that is inherently applicable to three-dimensional domains, avoids discretization of the continuum model to atomic scale resolution, and permits finite temperature states to be applied.

  1. Automated Solid-Phase Protein Modification with Integrated Enzymatic Digest for Reaction Validation: Application of a Compartmented Microfluidic Reactor for Rapid Optimization and Analysis of Protein Biotinylation

    PubMed Central

    Fraas, Regina; Diehm, Juliane; Franzreb, Matthias

    2017-01-01

    Protein modification by covalent coupling of small ligands or markers is an important prerequisite for the use of proteins in many applications. Well-known examples are the use of proteins with fluorescent markers in many in vivo experiments or the binding of biotinylated antibodies via biotin–streptavidin coupling in the frame of numerous bioassays. Multiple protocols were established for the coupling of the respective molecules, e.g., via the C and N-terminus, or via cysteines and lysines exposed at the protein surface. Still, in most cases the conditions of these standard protocols are only an initial guess. Optimization of the coupling parameters like reagent concentrations, pH, or temperature may strongly increase coupling yield and the biological activity of the modified protein. In order to facilitate the process of optimizing coupling conditions, a method was developed which uses a compartmented microfluidic reactor for the rapid screening of different coupling conditions. In addition, the system allows for the integration of an enzymatic digest of the modified protein directly after modification. In combination with a subsequent MALDI-TOF analysis of the resulting fragments, this gives a fast and detailed picture not only of the number and extent of the generated modifications but also of their position within the protein sequence. The described process was demonstrated for biotinylation of green fluorescent protein. Different biotin-excesses and different pH-values were tested in order to elucidate the influence on the modification extent and pattern. In addition, the results of solid-phase based modifications within the microfluidic reactor were compared to modification patterns resulting from coupling trials with unbound protein. As expected, modification patterns of immobilized proteins showed clear differences to the ones of dissolved proteins. PMID:29181376

  2. Systemic-constructivist couple therapy (SCCT): Description of approach, theoretical advances, and published longitudinal evidence.

    PubMed

    Reid, David W; Doell, Faye K; Dalton, E Jane; Ahmad, Saunia

    2008-12-01

    The systemic-constructivist approach to studying and benefiting couples was derived from qualitative and quantitative research on distressed couples over the past 10 years. Systemic-constructivist couple therapy (SCCT) is the clinical intervention that accompanies the approach. SCCT guides the therapist to work with both the intrapersonal and the interpersonal aspects of marriage while also integrating the social-environmental context of the couple. The theory that underlies SCCT is explained, including concepts such as we-ness and interpersonal processing. The primary components of the therapy are described. Findings described previously in an inaugural monograph containing extensive research demonstrating the long-term utility of SCCT are reviewed. (PsycINFO Database Record (c) 2010 APA, all rights reserved).

  3. Mode coupling at connectors in mode-division multiplexed transmission over few-mode fiber.

    PubMed

    Vuong, Jordi; Ramantanis, Petros; Frignac, Yann; Salsi, Massimiliano; Genevaux, Philippe; Bendimerad, Djalal F; Charlet, Gabriel

    2015-01-26

    In mode-division multiplexed (MDM) transmission systems, mode coupling is responsible for inter-modal crosstalk. We consider the transmission of modulated signals over a few-mode fiber (FMF) having low mode coupling and large differential mode group delay in the presence of a non-ideal fiber connection responsible for extra mode coupling. In this context, we first analytically derive the coupling matrix of the multimode connector and we numerically study the dependence of the matrix coefficients as a function of the butt-joint connection characteristics. The numerical results are then validated through an experiment with a five-mode setup. Finally, through numerical simulations, we assess the impact of the connector on the signal quality investigating different receiver digital signal processing (DSP) schemes.

  4. Single-photon driven high-order sideband transitions in an ultrastrongly coupled circuit quantum electrodynamics system

    NASA Astrophysics Data System (ADS)

    Li, Tiefu; Chen, Zhen; Wang, Yimin; Tian, Lin; Qiu, Yueyin; Inomata, Kunihiro; Yoshihara, Fumiki; Han, Siyuan; Nori, Franco; Tsai, Jaw-Shen; You, J. Q.

    We report the experimental observation of high-order sideband transitions at the single-photon level in a quantum circuit system of a flux qubit ultrastrongly coupled to a coplanar waveguide resonator. With the coupling strength reaching 10 % of the resonator's fundamental frequency, we obtain clear signatures of higher-order red- and first-order blue-sideband transitions. These transitions are owing to the ultrastrong Rabi coupling, instead of the driving power. Our observation advances the understanding of ultrastrongly-coupled systems and paves the way to study high-order processes in the quantum Rabi model. This work is supported by the National Basic Research Program of China and the National Natural Science Foundation of China.

  5. Numerical simulation of the SAGD process coupled with geomechanical behavior

    NASA Astrophysics Data System (ADS)

    Li, Pingke

    Canada has vast oil sand resources. While a large portion of this resource can be recovered by surface mining techniques, a majority is located at depths requiring the application of in situ recovery technologies. Although a number of in situ recovery technologies exist, the steam assisted gravity drainage (SAGD) process has emerged as one of the most promising technologies to develop the in situ oil sands resources. During the SAGD operations, saturated steam is continuously injected into the oil sands reservoir, which induces pore pressure and stress variations. As a result, reservoir parameters and processes may also vary, particularly when tensile and shear failure occur. This geomechanical effect is obvious for oil sands material because oil sands have the in situ interlocked fabric. The conventional reservoir simulation generally does not take this coupled mechanism into consideration. Therefore, this research is to improve the reservoir simulation techniques of the SAGD process applied in the development of oil sands and heavy oil reservoirs. The analyses of the decoupled reservoir geomechanical simulation results show that the geomechanical behavior in SAGD has obvious impact on reservoir parameters, such as absolute permeability. The issues with the coupled reservoir geomechanical simulations of the SAGD process have been clarified and the permeability variations due to geomechanical behaviors in the SAGD process investigated. A methodology of sequentially coupled reservoir geomechanical simulation technique was developed based on the reservoir simulator, EXOTHERM, and the geomechanical simulator, FLAC. In addition, a representative geomechanical model of oil sands material was summarized in this research. Finally, this reservoir geomechanical simulation methodology was verified with the UTF Phase A SAGD project and applied in a SAGD operation with gas-over-bitumen geometry. Based on this methodology, the geomechanical effect on the SAGD production performance can be quantified. This research program involves the analyses of laboratory testing results obtained from literatures. However, no laboratory testing was conducted in the process of this research.

  6. POLLUTION PREVENTION IN THE EARLY STAGES OF HIERARCHICAL PROCESS DESIGN

    EPA Science Inventory

    Hierarchical methods are often used in the conceptual stages of process design to synthesize and evaluate process alternatives. In this work, the methods of hierarchical process design will be focused on environmental aspects. In particular, the design methods will be coupled to ...

  7. Collective Phenomena Emerging from the Interactions between Dynamical Processes in Multiplex Networks

    NASA Astrophysics Data System (ADS)

    Nicosia, Vincenzo; Skardal, Per Sebastian; Arenas, Alex; Latora, Vito

    2017-03-01

    We introduce a framework to intertwine dynamical processes of different nature, each with its own distinct network topology, using a multilayer network approach. As an example of collective phenomena emerging from the interactions of multiple dynamical processes, we study a model where neural dynamics and nutrient transport are bidirectionally coupled in such a way that the allocation of the transport process at one layer depends on the degree of synchronization at the other layer, and vice versa. We show numerically, and we prove analytically, that the multilayer coupling induces a spontaneous explosive synchronization and a heterogeneous distribution of allocations, otherwise not present in the two systems considered separately. Our framework can find application to other cases where two or more dynamical processes such as synchronization, opinion formation, information diffusion, or disease spreading, are interacting with each other.

  8. A COMSOL-GEMS interface for modeling coupled reactive-transport geochemical processes

    NASA Astrophysics Data System (ADS)

    Azad, Vahid Jafari; Li, Chang; Verba, Circe; Ideker, Jason H.; Isgor, O. Burkan

    2016-07-01

    An interface was developed between COMSOL MultiphysicsTM finite element analysis software and (geo)chemical modeling platform, GEMS, for the reactive-transport modeling of (geo)chemical processes in variably saturated porous media. The two standalone software packages are managed from the interface that uses a non-iterative operator splitting technique to couple the transport (COMSOL) and reaction (GEMS) processes. The interface allows modeling media with complex chemistry (e.g. cement) using GEMS thermodynamic database formats. Benchmark comparisons show that the developed interface can be used to predict a variety of reactive-transport processes accurately. The full functionality of the interface was demonstrated to model transport processes, governed by extended Nernst-Plank equation, in Class H Portland cement samples in high pressure and temperature autoclaves simulating systems that are used to store captured carbon dioxide (CO2) in geological reservoirs.

  9. Assessment of hydrothermal carbonization and coupling washing with torrefaction of bamboo sawdust for biofuels production.

    PubMed

    Zhang, Shuping; Su, Yinhai; Xu, Dan; Zhu, Shuguang; Zhang, Houlei; Liu, Xinzhi

    2018-06-01

    Two kinds of biofuels were produced and compared from hydrothermal carbonization (HTC) and coupling washing with torrefaction (CWT) processes of bamboo sawdust in this study. The mass and energy yields, mass energy density, fuel properties, structural characterizations, combustion behavior and ash behavior during combustion process were investigated. Significant increases in the carbon contents resulted in the improvement of mass energy density and fuel properties of biofuels obtained. Both HTC and CWT improved the safety of the biofuels during the process of handling, storing and transportation. The ash-related issues of the biofuels were significantly mitigated and combustion behavior was remarkably improved after HTC and CWT processes of bamboo sawdust. In general, both HTC and CWT processes are suitable to produce biofuels with high fuel quality from bamboo sawdust. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Finer Distinctions: Variability in Satisfied Older Couples' Problem-Solving Behaviors.

    PubMed

    Rauer, Amy; Williams, Leah; Jensen, Jakob

    2017-06-01

    This study utilized observational and self-report data from 64 maritally satisfied and stable older couples to explore if there were meaningful differences in how couples approached marital disagreements. Using a typology approach to classify couples based on their behaviors in a 15-minute problem-solving interaction, findings revealed four types of couples: (1) problem solvers (characterized by both spouses' higher problem-solving skills and warmth), (2) supporters (characterized by both spouses' notable warmth), (3) even couples (characterized by both spouses' moderate problem-solving skills and warmth), and (4) cool couples (characterized by both spouses' greater negativity and lower problem-solving skills and warmth). Despite the differences in these behaviors, all couples had relatively high marital satisfaction and functioning. However, across nearly all indices, spouses in the cool couple cluster reported poorer marital functioning, particularly when compared to the problem solvers and supporters. These findings suggest that even modest doses of negativity (e.g., eye roll) may be problematic for some satisfied couples later in life. The implications of these typologies are discussed as they pertain to practitioners' efforts to tailor their approaches to a wider swath of the population. © 2015 Family Process Institute.

  11. Marital Processes Linking Gender Role Attitudes and Marital Satisfaction Among Mexican-Origin Couples: Application of an Actor-Partner Interdependence Mediation Model.

    PubMed

    Helms, Heather M; Supple, Andrew J; Hengstebeck, Natalie D; Wood, Claire A; Rodriguez, Yuliana

    2018-01-24

    Informed by dyadic approaches and culturally informed, ecological perspectives of marriage, we applied an actor-partner interdependence mediation model (APIMeM) in a sample of 120 Mexican-origin couples to examine (a) the associations linking Mexican immigrant husbands' and wives' gender role attitudes to marital satisfaction directly and indirectly through marital processes (i.e., warmth and negativity) and (b) whether the associations between spouses' gender role attitudes and marital processes were moderated by wives' employment. Although previous research has identified spouses' gender role attitudes as potential predictors of spouses' marital satisfaction, no study has examined these links in a dyadic model that elucidates how gender role attitudes may operate through processes to shape marital satisfaction and conditions under which associations may differ. We found that when spouses reported less sex-typed attitudes, their partners reported feeling more connected to them and more satisfied with the marriage, regardless of whether wives were employed. Our results suggest that marital satisfaction was highest for those Mexican-origin couples in which marital partners were less sex-typed in their attitudes about marital roles to the extent that partners' attitudinal role flexibility promoted spouses' feelings of warmth and connection to their partner. © 2018 Family Process Institute.

  12. Implementationof a modular software system for multiphysical processes in porous media

    NASA Astrophysics Data System (ADS)

    Naumov, Dmitri; Watanabe, Norihiro; Bilke, Lars; Fischer, Thomas; Lehmann, Christoph; Rink, Karsten; Walther, Marc; Wang, Wenqing; Kolditz, Olaf

    2016-04-01

    Subsurface georeservoirs are a candidate technology for large scale energy storage required as part of the transition to renewable energy sources. The increased use of the subsurface results in competing interests and possible impacts on protected entities. To optimize and plan the use of the subsurface in large scale scenario analyses,powerful numerical frameworks are required that aid process understanding and can capture the coupled thermal (T), hydraulic (H), mechanical (M), and chemical (C) processes with high computational efficiency. Due to having a multitude of different couplings between basic T, H, M, or C processes and the necessity to implement new numerical schemes the development focus has moved to software's modularity. The decreased coupling between the components results in two major advantages: easier addition of specialized processes and improvement of the code's testability and therefore its quality. The idea of modularization is implemented on several levels, in addition to library based separation of the previous code version, by using generalized algorithms available in the Standard Template Library and the Boost library, relying on efficient implementations of liner algebra solvers, using concepts when designing new types, and localization of frequently accessed data structures. This procedure shows certain benefits for a flexible high-performance framework applied to the analysis of multipurpose georeservoirs.

  13. Brief Treatment for Borderline and Narcissistic Couples: Working the Reenactment Spiral.

    ERIC Educational Resources Information Center

    Clark, Steven

    1997-01-01

    Develops a brief, psychoanalytically informed treatment model for borderline and narcissistic couples. Advantages and disadvantages as well as treatment principles of brief treatment for this population are explored. Phases of treatment are reviewed with an emphasis on process and interventions. Explores managing the spiraling escalation of affect…

  14. Phenomenological Experiences of International Students in Marriage, Couple, and Family Counseling Programs

    ERIC Educational Resources Information Center

    Rahimi, Mohd Khairul Anuar

    2017-01-01

    This phenomenological study explored the experiences of international students in CACREP-accredited marriage, couple, and family counseling programs. Seven former international students from the program who have practiced counseling in their home country were interviewed to understand their learning experiences, adaptation process and counseling…

  15. Laser vaporization/ionization interface for coupling microscale separation techniques with mass spectrometry

    DOEpatents

    Yeung, Edward S.; Chang, Yu-chen

    1999-06-29

    The present invention provides a laser-induced vaporization and ionization interface for directly coupling microscale separation processes to a mass spectrometer. Vaporization and ionization of the separated analytes are facilitated by the addition of a light-absorbing component to the separation buffer or solvent.

  16. Spousal Capital as a Resource for Couples Starting a Business

    ERIC Educational Resources Information Center

    Matzek, Amanda E.; Gudmunson, Clinton G.; Danes, Sharon M.

    2010-01-01

    This longitudinal study finds that spousal capital is an important resource for entrepreneurs starting a business because it has implications for business sustainability and couple relationship quality. Structural equation modeling supported a process whereby gender had an impact on spousal involvement in the business, which was positively…

  17. Animation-Based Learning in Geology: Impact of Animations Coupled with Seductive Details

    ERIC Educational Resources Information Center

    Clayton, Rodney L.

    2016-01-01

    Research is not clear on how to address the difficulty students have conceptualizing geologic processes and phenomena. This study investigated how animations coupled with seductive details effect learners' situational interest and emotions. A quantitative quasi-experimental study employing an independent-measures factorial design was used. The…

  18. Self-Silencing and Rejection Sensitivity in Adolescent Romantic Relationships

    ERIC Educational Resources Information Center

    Harper, Melinda S.; Dickson, Joseph W.; Welsh, Deborah P.

    2006-01-01

    This study examined the link between rejection sensitivity, self-silencing behaviors, and depressive symptomatology among adolescent dating couples. Self-silencing was hypothesized to be the process mediating the association between rejection sensitivity and depressive symptoms. Our sample included 211 couples between 14 and 21 who were dating at…

  19. Laser vaporization/ionization interface for coupling microscale separation techniques with mass spectrometry

    DOEpatents

    Yeung, E.S.; Chang, Y.C.

    1999-06-29

    The present invention provides a laser-induced vaporization and ionization interface for directly coupling microscale separation processes to a mass spectrometer. Vaporization and ionization of the separated analytes are facilitated by the addition of a light-absorbing component to the separation buffer or solvent. 8 figs.

  20. The Use of Dreams in Couples' Group Therapy

    ERIC Educational Resources Information Center

    Nell, Renee

    1975-01-01

    Describes the use of Jung's subjective approach to dream interpretation in couples' group therapy to bring unconscious material quickly to the surface. Dreams show the connection between the manifest behavior and the underlying dynamics. They clarify the characteristic behavior of the psychological types. Finally, they aid the therapeutic process.…

Top